Forget-free Continual Learning with Winning Subnetworks
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Abstract

Inspired by Lottery Ticket Hypothesis that com-
petitive subnetworks exist within a dense net-
work, we propose a continual learning method
referred to as Winning SubNetworks (WSN) which
sequentially learns and selects an optimal sub-
network for each task. Specifically, WSN jointly
learns the model weights and task-adaptive bi-
nary masks pertaining to subnetworks associ-
ated with each task whilst attempting to select
a small set of weights to be activated (winning
ticket) by reusing weights of the prior subnet-
works. The proposed method is inherently im-
mune to catastrophic forgetting as each selected
subnetwork model does not infringe upon other
subnetworks. Binary masks spawned per winning
ticket are encoded into one N-bit binary digit
mask, then compressed using Huffman coding
for a sub-linear increase in network capacity with
respect to the number of tasks. Code is available at
https://github.com/ihaeyong/WSN.

1. Introduction

Continual Learning (CL), also known as Lifelong Learn-
ing (Thrun, 1995), is a paradigm for learning a series of
tasks in a sequential manner. One of the major goals in
continual learning is to mimic human cognition, exempli-
fied by the ability to incremental learning new concepts
over his/her lifespan. An ideal continual learner encourages
positive forward/backward transfer, utilizing the learned
knowledge from previous tasks when solving for new ones,
and updating the previous task knowledge with the new
task knowledge. Nevertheless, this is nontrivial due to the
phenomenon referred to as catastrophic forgetting or catas-
trophic interference (McCloskey & Cohen, 1989), where
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the model performance on previous tasks significantly de-
creases upon learning on new tasks. Various approaches
have been proposed to solve catastrophic forgetting during
continual learning, which can be broadly categorized as
follows: (1) Regularization-based methods (Kirkpatrick
et al., 2017; Chaudhry et al., 2020; Jung et al., 2020; Tit-
sias et al., 2020; Mirzadeh et al., 2021) aim to keep the
learned information of past tasks during continual training
aided by sophisticatedly designed regularization terms, (2)
Rehearsal-based methods (Rebuffi et al., 2017; Chaudhry
et al., 2019a;b; Saha et al., 2021) utilize a set of real or
synthesized data from the previous tasks and revisit them,
and (3) Architecture-based methods (Mallya et al., 2018;
Serra et al., 2018; Li et al., 2019; Wortsman et al., 2020)
propose to minimize the inter-task interference via newly
designed architectural components.

Despite the remarkable success of recent works on con-
tinual learning, existing methods suffer from a limitation
that the overall memory usage increases as new tasks arrive.
Rehearsal-based CL requires additional room to store the
replay buffer or generative models, and architecture-based
methods leverage additional model capacity to account for
new tasks. The methods lead to an essential question: how
can we build a memory-efficient CL model that does not
exceed the capacity of the backbone network or even re-
quires a much smaller capacity? Several studies have shown
that deep neural networks are over-parameterized (Denil
et al., 2013; Han et al., 2016; Li et al., 2016) and thus re-
moving redundant/unnecessary weights can achieve on-par
or even better performance than the original dense network.
More recently, Lottery Ticket Hypothesis (LTH) (Frankle &
Carbin, 2019) demonstrates the existence of sparse subnet-
works, named winning tickets, that preserve the performance
of a dense network. However, searching for optimal win-
ning tickets during continual learning with iterative pruning
methods requires repetitive pruning and retraining for each
arriving task, which is impractical.

To tackle the problem, we suggest a novel CL method
that finds the high-performing Winning SubNetwork (WSN)
given tasks without the need for retraining and rewinding,
as shown in Figure 1 (d). Unlike previous pruning-based CL
approaches (Mallya et al., 2018; Wortsman et al., 2020) (see
Figure 1 (a)), which obtain task-specific subnetworks given
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Figure 1. Concept Comparison: (a) Piggyback (Mallya et al., 2018), and SupSup (Wortsman et al., 2020) find the optimal binary mask
on a fixed backbone network a given task (b) PackNet (Mallya & Lazebnik, 2018) and CLNP (Golkar et al., 2019) forces the model to
reuse all features and weights from previous subnetworks which causes bias in the transfer of knowledge (c) APD (Yoon et al., 2020)
selectively reuse and dynamically expand the dense network (d) Our WSN selectively reuse and dynamically expand subnetworks within

a dense network. Green edges are reused weights

a pre-trained backbone network, we incrementally learn
model weights and task-adaptive binary masks (the sub-
networks) within the neural network. To allow the forward
transfer when a model learns on a new task, we reuse the
learned subnetwork weights for the previous tasks, however
selectively, as opposed to using all the weights (Mallya &
Lazebnik, 2018) (see Figure 1 (b)), that may lead to biased
transfer. Further, our method eliminates the threat of catas-
trophic forgetting during continual learning by freezing the
subnetwork weights for the previous tasks, and does not suf-
fer from the negative transfer, unlike Yoon et al. (2018) (see
Figure 1 (c)), whose subnetwork weights for the previous
tasks can be updated when training on the new tasks.

The magnitudes of the weights are often used as a pruning
criterion for finding the optimal subnetwork used in LTH.
However, in CL, relying only on the weight magnitude may
be suboptimal since the weights are shared across classes,
and thus training on the new tasks will change the weights
trained for previous tasks (reused weights). This will trig-
ger an avalanche effect where weights selected to be part
of the subnetworks for later tasks will always be better in
the eyes of the learner, which will result in the catastrophic
forgetting of the knowledge for the prior tasks. Thus, in
CL, it is important for the learner to train on the new tasks
without changing the reused weights. To find the optimal
subnetworks, we decouple the information of the learning
parameter and the network structure into two separate learn-
able parameters, namely, weights and weight scores. The
weight scores are binary masks that have the same shapes as
the weights. Now, subnetworks are found by selecting the
weights with the top-k percent weight ranking scores. More
importantly, decoupling the weights and the subnetwork
structure allows us to find the optimal subnetwork online
without iterative retraining, pruning, and rewinding. To this

end, the proposed method is designed to jointly learn the
weights and the structure of the optimal subnetworks, whose
overall size is smaller than a dense network.

Our contributions can be summarized as follows:

* We propose a novel forgetting-free continual learning
method inspired by Lottery Ticket Hypothesis (LTH),
which learns a compact subnetwork for each task while
keeping the weights selected by the previous tasks
intact. The proposed method does not perform any
explicit pruning for learning the subnetwork. This not
only eliminates catastrophic forgetting but also enables
forward transfer from the previous tasks to new ones.

¢ Our method obtains compact subnetworks using Huff-
man coding with a sub-linear increase in the network
capacity, outperforming existing continual learning
methods in terms of accuracy-capacity trade-off and
backward transfer.

2. Related Works

Continual Learning. Continual learning (McCloskey &
Cohen, 1989; Thrun, 1995; Kumar & Daume III, 2012; Li
& Hoiem, 2016), or lifelong learning, is the problem of
continuous learning on a sequence of tasks while utiliz-
ing and preserving previously learned knowledge of the
tasks. There exist several major directions to tackle the chal-
lenges for continual learning, such as catastrophic forget-
ting: Regularization-based approaches (Kirkpatrick et al.,
2017; Chaudhry et al., 2020; Jung et al., 2020; Titsias et al.,
2020; Mirzadeh et al., 2021) lessen the catastrophic for-
getting by imposing regularization constraints that inhibit
the change of weights or nodes for past tasks. Rehearsal-
based approaches (Rebuffi et al., 2017; Chaudhry et al.,
2019a;b; Saha et al., 2021; Deng et al., 2021) store small



data summaries to the tasks and replay them to retain the past
tasks knowledge. Some methods in this line of works (Shin
et al., 2017; Aljundi et al., 2019) accommodate the genera-
tive model to construct the pseudo-rehearsals. Architecture-
based approaches (Mallya et al., 2018; Serra et al., 2018;
Li et al., 2019; Wortsman et al., 2020) utilize additional
capacity to expand (Xu & Zhu, 2018; Yoon et al., 2018) or
isolate (Rusu et al., 2016) model parameters thereby pre-
serving the learned knowledge without the forgetting. Both
rehearsal and architecture-based methods have shown re-
markable efficacy in suppressing catastrophic forgetting but
require additional capacity for the task-adaptive parameters
or the replay buffers.

Pruning-based Continual Learning. When most works
have dived to increase the performance of continual learn-
ers by adopting additional memory, another line of works
has pursued to build memory and computational effi-
cient continual learners utilizing pruning-based constraints.
CLNP (Golkar et al., 2019) selects the important neurons
for a given task using ¢; regularization to induce sparsity
and freezes them to maintain the performance. After that,
the model reinitializes the neurons that were not selected
for future task training. Piggyback (Mallya et al., 2018)
trains task-specific binary masks on the weights given the
pre-trained model. The method does not allow knowledge
transfer among tasks while memorizing the learned masks
for each task. Then, the performance highly depends on the
quality of the backbone model. HAT (Serra et al., 2018)
proposes task-specific learnable attention vectors to iden-
tify important weights per task, where the masks are for-
mulated to layerwise cumulative attention vectors during
continual learning. Very recently, LL-Tickets (Chen et al.,
2021) shows the existence of a sparse subnetwork, called
lifelong tickets, that performs well on all tasks during con-
tinual learning. When obtained tickets cannot sufficiently
learn the new task while maintaining performance on past
tasks, the method searches for more prominent tickets from
current ones. However, LL-Tickets require external data to
maximize knowledge distillation with learned models for
prior tasks and the ticket expansion process is composed of
another series of retraining and pruning steps. On the other
hand, our WSN jointly learns the model and task-adaptive
binary masks pertaining to subnetworks associated with
each task whilst attempting to select a small set of weights
to be activated (winning ticket) by reusing weights of the
prior subnetworks.

3. Forget-Free Continual Learning with
Winning SubNetworks

In this section, we propose our pruning-based continual
learning method, Winning SubNetworks (WSN). In WSN,
the neural network searches for the task-adaptive winning

tickets and updates only the weights that have not been
trained on the previous tasks. After training for each task,
the model freezes the subnetwork parameters so that the
proposed method is immune to the catastrophic forgetting by
design. We emphasize that our WSN can selectively transfer
the previously learned knowledge to the future task (forward
transfer), which also substantially reduces the training time
it takes to converge during sequential learning. The strength
becomes more critical to the large-scaled continual learning
problems where a continual learner trains on several tasks
in a sequence.

Problem Statement. Consider a supervised learning setup
where T tasks arrive to a learner in a sequential order. We
denote that D, = {X;,y;};, is the dataset of task ¢,
composed of n; pairs of raw instances and corresponding
labels. We assume a neural network f(-; @), parameterized
by the model weights @ and standard continual learning
scenario aims to learn a sequence of tasks by solving the
following optimization procedure at each step ¢:

I

.1
0" = minimize - Z L(f(X:,450),9it), (1)

i=1

where L(-, -) is a classification objective loss such as cross-
entropy loss. D; for task ¢ is only accessible when learning
task ¢, yet rehearsal-based continual learning methods allow
memorizing a small portion of the dataset to replay. We
further assume that task identity is given in both the training
and the testing stage.

To allow room for learning future tasks, a continual learner
often adopts over-parameterized deep neural networks. As
a continual learner often adopts over-parameterized deep
neural networks to allow resource freedom for future tasks,
we can find the subnetworks that obtain on par or even
better performance. Given the neural network parameters
0, the binary attention mask mj that describes the optimal
subnetwork for task ¢ such that |m;| is less than the model
capacity c follows as:

ny

m; = minimize 1 Z L(f(xi,;0 ©my), ;) —C

m€{0,1}101 Ny
subject to |my| < ¢,

2

where task loss C' = L(f(x;4;6), ;) and ¢ < |6]. In the
optimization section, we describe how to obtain my using
a single learnable weight score s that is subject to updates
while minimizing task loss jointly for each task.

3.1. Winning SubNetworks

Let each weight be associated with a learnable parameter
we call weight score s which numerically determines the
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Figure 2. An illustration of Winning SubNetworks (WSN): (a) The top-c%
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pass of a new task, WSN reuses weights selected from prior tasks, (c) In the backward pass, WSN updates only non-used weights, and (d)
after several iterations of (b) and (c), we acquire again the top-c% weights 6; including subsets of reused weights. for the new task.

importance of weight associated with it; that is, a weight
with a higher weight score is seen as more important. We
find a sparse subnetwork 6, of the neural network and assign
it as a solver of the current task ¢. We use subnetworks
instead of the whole original network as solvers for two
reasons: (1) Lottery Ticket Hypothesis (Frankle & Carbin,
2019) shows the existence of a subnetwork that performs as
well as the whole network, and (2) subnetwork requires less
capacity than dense networks, and therefore it inherently
reduces the size of the expansion of the solver.

Motivated by such benefits, we propose a novel Winning
SubNetworks (WSN) which is the joint training method for
continual learning that trains on task - while selecting an im-
portant subnetwork given the task ¢ as shown in Fig. 2. The
illustration of WSN explains how to acquire binary weights
within a full network step by step. We find 6, by selecting
the c% weights with the highest weight scores s, where ¢
is the target layerwise capacity ratio in %. The selection of
weights is represented by a task-dependent binary weight
mask m; where a value of 1 denotes that the weight is se-
lected during the forward pass and O otherwise. Formally,
m, is obtained by applying a indicator function 1. on s
where 1.(s) = 1if s belongs to top-¢% scores and 0 other-
wise. Therefore, the subnetwork ét for task ¢ is obtained by
ét =0 ® my.

3.2. Optimization Procedure for Winning SubNetworks

To jointly learn the model weights and task-adaptive binary
masks of subnetworks associated with each task, given an
objective L(-), we optimize 0 and s with:

minimize £(0 © my; D). 3)

0,s

However, this vanilla optimization procedure presents two
problems: (1) updating all & when training for new tasks
will cause interference to the weights allocated for previous
tasks, and (2) the indicator function always has a gradient
value of 0; therefore, updating the weight scores s with its
loss gradient is not possible. To solve the first problem, we
update the weights selectively by allowing updates only on
the weights that have not been selected in the previous tasks.
To do that, we use an accumulate binary mask M;_1 =
\/’;;i m; when learning task ¢, then for an optimizer with
learning rate 7, the € is updated as follows:

oco-n(jpon-Mmoy). @
effectively freezing the weights of the subnetworks selected
for the previous tasks. To solve the second problem, we
use Straight-through Estimator (Hinton, 2012; Bengio et al.,
2013; Ramanujan et al., 2020) in the backward pass since
m; is obtained by top-c¢% scores. Specifically, we ignore the
derivatives of the indicator function and update the weight

score as follows:
S<s—1n (&C) . 5)
Os

The use of separate weight scores s as the basis for selecting
subnetwork weights makes it possible to reuse some of the
weights from previously chosen weights 8 ® m; in solving
the current task ¢, which can be viewed as transfer learning.
Likewise, previously chosen weights that are irrelevant to
the new tasks are not selected, instead, weights from the set
of not-yet-chosen weights are selected to meet the target
network capacity for each task, which can be viewed as
finetuning from tasks {1,...,t — 1} to task ¢. Our WSN
optimizing procedure is summarized in pseudo algorithm 1.



Algorithm 1 Winning SubNetworks (WSN)

input {Dt}z—zl, model weights 6, score weights s, binary mask
M, = 0'9!, layer-wise capacity ¢
1: Randomly initialize € and s.
2: fortaskt =1,..., 7 do
3:  for batch b; ~ D, do

4 Obtain mask my of the top-c% scores s at each layer

5 Compute £ (6 © my; by)

6 60«—0—n (% ®(1—M; 1)) > Weight update
7: S+ 8— n(%) > Weight score update
8 end for

9 M; + M;_1 Vm, > Accumulate binary mask
10: end for

3.3. Binary Mask Encoding

The subnetworks need a binary mask to store the task-
specific weights for each task. One point with the subnet-
works is that the binary masks to save increase as the number
of tasks is added to the deep-learning models. In order to
alleviate the point and achieve forget-free continual learning,
we use a compression algorithm for compressing all task
binary masks to save. First, to compress compactly, we con-
vert a sequence of binary masks into a single accumulated
decimal mask and change each integer into ASCII code
to represent a unique single symbol. Then, with the sym-
bols, We test a lossless compression algorithm - Huffman
encoding (Huffman, 1952). We empirically observed that
Huffman Encoding was able to compress 7-bit binary maps
and decompress ones to infer without bit loss approximately
with a 78% compression rate and showed the compression
rate is sub-linearly increasing with the size of binary bits in
the experimental results.

4. Experiments

We now validate our method on several benchmark datasets
against relevant continual learning baselines. We consider
task-incremental continual learning with a multi-head con-
figuration for all experiments in the paper. We follow the
experimental setups in recent works (Saha et al., 2021; Yoon
et al., 2020; Deng et al., 2021).

Datasets and architectures. We use six different popular
sequential datasets for CL problems with five different neu-
ral network architectures as follows: 1) Permuted MNIST
(PMNIST): A variant of MNIST (LeCun, 1998) where
each task has a deterministic permutation to the input im-
age pixels. 2) 5-Datasets: A mixture of 5 different vision
datasets (Saha et al., 2021): CIFAR-10 (Krizhevsky et al.,
2009), MNIST (LeCun, 1998), SVHN (Netzer et al., 2011),
FashionMNIST (Xiao et al., 2017), and notMNIST (Bulatov,
2011). 3) Omniglot Rotation: An OCR images datasets,
composed of 100 tasks as of each includes 12 classes. We
further preprocess and the raw images by generating their

rotated version in 90°, 180°, and 270°, followed by Yoon
et al. (2020). 4) CIFAR-100 Split (Krizhevsky et al., 2009):
A visual object dataset, constructed by randomly dividing
100 classes of CIFAR-100 into 10 tasks with 10 classes
per task. 5) CIFAR-100 Superclass: We follow the setting
from Yoon et al. (2020) that divides CIFAR-100 dataset
into 20 tasks according to the 20 superclasses, and each
superclass contains 5 different but semantically related
classes. 6) TinyImageNet (Stanford, 2021): A variant of
ImageNet (Krizhevsky et al., 2012) containing 40 of 5-way
classification tasks with the image sized by 64 x 64 x 3.

We use two-layered MLP with 100 neurons per layer for PM-
NIST, variants of LeNet (LeCun, 1998) for the experiments
on Omniglot Rotation and CIFAR-100 Superclass experi-
ments. Also, we use a modified version of AlexNet similar
to Serra et al. (2018); Saha et al. (2021) for CIFAR-100
Split dataset and a reduced ResNet-18 similar to Chaudhry
et al. (2019b); Saha et al. (2021) for 5-Datasets. For TinyIm-
ageNet, we also use the same network architecture as Gupta
et al. (2020); Deng et al. (2021), which consists of 4 Conv
layers and 3 fully connected layers.

Baselines. We compare our WSN with strong CL base-
lines; regularization-based methods: HAT (Serra et al.,
2018) and EWC (Kirkpatrick et al., 2017), rehearsal-based
methods: GPM (Saha et al., 2021), and a pruning-based
method: PackNet (Mallya & Lazebnik, 2018) and Sup-
Sup (Wortsman et al., 2020). PackNet and SupSup are set
to baseline to show the effectiveness of re-used weights.
We also compare with naive sequential training strategy, re-
ferred to as FINETUNE. Multitask Learning (MTL) and
Single-task Learning (STL) are not a CL method. MTL
trains on multiple tasks simultaneously, and STL trains sin-
gle task independently.

We summarize the architecture-based baselines as follows:

1. PackNet (Mallya & Lazebnik, 2018): iterative pruning
and network re-training architecture for packing multiple
tasks into a single network.

2. SupSup (Wortsman et al., 2020): finding supermasks
(subnetworks) within a randomly initialized network for
each task in continual learning.

3. WSN (ours): jointly training model and finding task-
adaptive subnetworks of novel/prior parameters for con-
tinual learning.

Experimental settings. As we directly implement our
method from the official code of Saha et al. (2021), we pro-
vide the values for HAT and GPM reported in Saha et al.
(2021). For Omniglot Rotation and Split CIFAR-100 Su-
perclass, we deploy the proposed architecture as reported
in Yoon et al. (2020) in multi-head settings with hyperpa-
rameters. All our experiments run on a single-GPU setup
of NVIDIA V100. We provide more details of the datasets,



Table 1. Performance comparison of the proposed method and baselines on various benchmark datasets. We report the mean and standard
deviation of the average accuracy (ACC), average capacity (CAP), and average backward transfer (BWT) across five independent runs.
The best results are highlighted in bold. Values with { and * denote reported performances from (Saha et al., 2021) and (Yoon et al., 2020).
We consider PackNet (Mallya & Lazebnik, 2018) and SupSup (Wortsman et al., 2020) as the baselines.

Method Permuted MNIST 5 Datasets Omniglot Rotation
ACC (%) CAP (%) BWT ACC (%) CAP (%) BWT ACC (%) CAP (%) BWT

STL 97.37 (£ 0.01) 1,000.0 93.44 (£ 0.12) 500.0 - 82.13 (4 0.08)" 10,000.0
FINETUNE 78.22 (4 0.84) 100.0 -0.21 (£ 0.01) 80.06 (+ 0.74) 100.0 -0.17 (+ 0.01) 44.48 (+ 1.68) 100.0 -0.45 (+0.02)
EWC (Kirkpatrick et al., 2017) 92.01 (& 0.56) 100.0 -0.03 (£ 0.00) 88.64 (+0.26) 100.07 -0.04 (+0.0n" 68.66 (+1.92)" 100.0* -
HAT (Serra et al., 2018) - - - 91.32 (£ 018)" 100.0 -0.03 (£ 0.00)" - - -
GPM (Saha et al., 2021) 94.96 (+ 0.07) 100.0 -0.02 (+0.01) 91.22 (+0.20)" 100.0 -0.01 (£ 0.00) 85.24 (+037) 100.0 -0.01 (+ 0.00)
PackNet (Mallya & Lazebnik, 2018) 96.37 (& 0.04) 96.38 0.0 92.81 (£0.12) 82.86 0.0 30.70 (% 1.50) 399.2 0.0
SupSup (Wortsman et al., 2020) 96.31 (4 0.09) 122.89 (£ 0.07) 0.0 93.28 (£ 0.21) 104.27 (+021) 0.0 58.14 (£ 2.42) 407.12 (£ 0.17) 0.0
WSN, ¢ = 0.03 94.84 (+0.11) 19.87 (+ 0.16) 0.0 90.57 (+ 0.65) 12.11 (= 0.06) 0.0 80.68 (+ 2.60) 75.87 (+1.24) 0.0
WSN, ¢ = 0.05 95.65 (4 0.03) 26.49 (+0.16) 0.0 91.61 (+021) 17.26 (+0.25) 0.0 87.28 (+0.712) 79.85 (+1.19) 0.0
WSN, ¢ = 0.1 96.14 (+ 0.03) 40.41 (£ 054 0.0 92.67 (+0.12) 28.01 (4 0.28) 0.0 83.10 (& 1.56) 83.08 (+ 1.61) 0.0
WSN, c=0.3 96.41 (+0.07) 77.73 (+036) 0.0 93.22 (+032) 62.30 (& 0.69) 0.0 81.89 (+ 1.15) 102.2 (+0.89) 0.0
WSN, ¢ = 0.5 96.24 (+0.11) 98.10 (+0.25) 0.0 93.41 (+0.13) 86.10 (+0.57) 0.0 79.80 (+ 2.16) 121.2 (+ 0.50) 0.0
MTL 96.70 (+0.02)" 100.0 - 91.54 (+0.28)" 100.0 - 81.23 (£ 052) 100.0

architectures, and experimental settings, including the hy-
perparameter configurations for all methods in Appendix A.
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Figure 3. Accuracy over Total Capacity Usage: The perfor-
mances of WSN gets better than others as total model capacities
increase, and then, saturated approximately at 80 %.

Performance metrics. We evaluate all methods based on

the following metrics:

1. Accuracy (ACC) measures the average of the final clas-
sification accuracy on all tasks: ACC = % 23;1 Ar,
where Ar; is the test accuracy for task ¢ after training

on task 7T'.

2. Capacity (CAP) measures the total of percentage of non-
zero weights plus the prime masks for all tasks as follows:
Capacity = (1 — S) (1_3‘;)T, where we assume all
task weights of 32-bit precision. S is the sparsity of Mp
and the average compression rate o ~ 0.78 that we
acquired through 7bit Huffman encoding, which depends
on the size of bit-binary maps; the compression rate «

also depends on compression methods typically.

3. Backward Transfer (BWT) measures the forgetting
during continual learning. Negative BWT means that
learning new tasks causes the forgetting on past tasks:
BWT = Lo SV Ap, — A

5. Results and Discussion
5.1. Comparisons with the Baseline

We evaluate our algorithm on three-standard benchmark
datasets: Permuted MNIST, 5-Datasets, and Omniglot Ro-
tation. We set PackNet and SupSup to baselines as non-
reused weight methods and compared WSN with the base-
lines, including other algorithms as shown in Table 1. Our
WSN outperformed all the baselines in three measurements,
achieving the best average accuracy of 96.41%, 93.41%,
and 87.28% while using the least capacity compared to the
other existing methods, respectively. Moreover, our WSN is
proved to be a forget-free model like PackNet. Compared
with PackNet, however, our WSN showed the effectiveness
of reused weights for continual learning and its scalability
in the Omniglot Rotation experiments with the least ca-
pacities by a large margin. Figure 3 provides the accuracy
over total capacity usage. Our WSN’s accuracy is higher
than PackNet’s, approximately at 80% total capacity usage
on 5-Dataset, and WSN outperformed others at 80% total
capacity usage on Omniglot Rotation. The lower perfor-
mances of PackNet might attribute to Omniglot Rotation
dataset statistics since, regardless of random rotations, tasks
could share common visual features such as circles, curves,
and straight lines. Therefore, non-reused methods might
be difficult to train a new task model unless prior weights
were transferred to the current model, a.k.a. forward transfer
learning.

5.2. Comparisons with the SOTA

We use a multi-head setting to evaluate our WSN algorithm
under the more challenging visual classification benchmarks.
The WSN’s performances are compared with others w.r.t
three measurements on three major benchmark datasets as
shown in Table 2. Our WSN outperformed all state-of-the-
arts, achieving the best average accuracy of 76.38%, 61.79%,
and 71.96%. In these experiments, WSN is also a forget-free



Table 2. Performance comparisons of the proposed method and other state-of-the-art including baselines - PackNet (Mallya & Lazebnik,
2018) and SupSup (Wortsman et al., 2020) - on various benchmark datasets. We report the mean and standard deviation of the average
accuracy (ACC), average capacity (CAP), and average backward transfer (BWT) across 5 independent runs with 5 seeds under the same
experimental setup (Deng et al., 2021). The best results are highlighted in bold. Also, T denotes results reported from Deng et al. (2021).

Method CIFAR-100 Split CIFAR-100 Superclass TinyImageNet
ACC (%) CAP (%) BWT (%) ACC (%) CAP (%) BWT (%) ACC (%) CAP (%) BWT (%)
La-MaML (Gupta et al., 2020) 71.37 (067" 100.0 -5.39 (+ 053 54.44 (+136) 100.0 -6.65 (0851 66.90 (+ 1.65)1 100.0 -9.13 (£ 0.90)
GPM (Saha et al., 2021) 73.18 (+0.52)" 100.0 -1.17 (+ 020" 57.33 (037t 100.0 -0.37 012t 67.39 (+o04nt 100.0 1.45 (+0.22)
FS-DGPM (Deng et al., 2021) 74.33 (+031)! 100.0 2,71 (0t 58.81 (+ 034" 100.0 -2.97 (+ 0351 70.41 (+ 130! 100.0 <211 (& os!
PackNet (Mallya & Lazebnik, 2018) 72.39 (+037) 96.38 (£ 0.00) 0.0 58.78 (+0.52) 126.65 (+ 0.00) 0.0 55.46 (+1.22) 188.67 (+ 0.00) 0.0
SupSup (Wortsman et al., 2020) 7547 +030)  129.00 (+ 0.03) 0.0 61.70 (031 162.49 (+0.00) 0.0 59.60 (£ 105  214.52 (089 0.0
WSN, ¢ = 0.03 70.65 (+ 0.36) 18.56 (+ 0.25) 0.0 54.99 +0.71) 22.30 (+0.22) 0.0 68.72 (+ 1.63) 37.19 (+ 021 0.0
WSN, ¢ = 0.05 72.44 (+027) 25.09 (+042) 0.0 57.99 (+ 1.34) 27.37 (+033) 0.0 T71.22 (+0.94) 41.98 (4052 0.0
WSN, ¢=0.1 T74.55 (+047) 39.87 (+0.62) 0.0 60.45 (+037) 38.55 (+0.20 0.0 71.96 (+ 1.41) 48.65 (+3.03) 0.0
WSN, c=0.3 75.98 (+0.68) 80.26 (+ 1.53) 0.0 61.47 (+030) 63.47 (+133) 0.0 70.92 (+137) 73.44 (+235) 0.0
WSN, c=0.5 76.38 (+0.34) 99.13 (+0.48) 0.0 61.79 (+0.23) 80.93 (+1.58) 0.0 69.06 (+ 0.82) 92.03 (+ 1.80) 0.0
Multitask 79.75 (038" 100.0 61.00 (020" 100.0 77.10 (£ 1.06) 100.0
o ure 4 (b). The most interesting part is that the average com-
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Figure 4. Performances and Compressed Capacities: Sequence
of TinyImageNet Dataset Experiments: (a) Setting ¢ = 0.1 shows
generalized performances over others and (b) Within 40 tasks, the
7-bits compressed model increase its capacity the least.

model (BWT = ZERO) with the least model capacity. Note
that we assume the model capacities are compared based
on the model size without extra memory, such as samples.
We highlight that our method achieves the highest accuracy,
the lowest capacity, and backward transfer on all datasets.
Figure 4 shows the process of performance and compressed
capacity changing with the number of tasks on the Tinylma-
geNet datasets, where the “Average Progressive Capacity”
metric is defined as the average capacity (the proportion
of the number of network weights used for any one of the
tasks) after 5 run of the experiment with different seed val-
ues. Furthermore, we consistently showed the progressively
improved performances of WSN than others on CIFAR-100
Split datasets as shown in Figure 6.

5.3. Forget-Free Performance and Model Capacity

We prepare results on performance and bit-map compressed
capacity on the TinyImageNet dataset as shown in Figure 4
- “c=0.1" and “c=0.1+7bit-Huffman” refers respectively to
using 10% of network weights and no compression on the
binary mask and the latter refers to the same with 7bit-
Huffman encoding. In Figure 4 (a), using initial capacity,
¢ = 0.1 shows better performances over others. With fixed
¢ = 0.1, the bit-wise Huffman compression rate delivers
positive as the number of tasks increases, as shown in Fig-

increases. (see Appendix B.2), and the increasing ratio of
reused weights (symbols with a high probability in the Huff-
man encoding) might affect the compression rate (symbols
with a small probability might be rare in the Huffman tree,
where the infrequent symbols tend to have long bit codes).
We investigated how the compression rate is related to the
total model capacity. The more bits the binary mask com-
pression does, the less the model capacity to save is required.
This shows that within 40 tasks, N-bit Huffman compressed
capacities are sub-linearly increasing as binary map capaci-
ties increase linearly. The 7-bit Huffman encoding is enough
to compress binary maps without exceeding the model ca-
pacity even though the compression rate a depends on com-
pression methods typically.

5.4. Catastrophic Forgetting From WSN’s Viewpoint

We interpreted how reused weights affect the inference per-
formances on the TinyImageNet dataset as shown in Fig-
ure 5. For more precise interpretability, we divide all used
weights for solving sequential tasks into specific sets. All
used weights (a) within a trained dense network are sep-
arated as follows: all used represents all activated sets of
weights up to task ¢ — 1. per task represents an activated set
of weights at task t. new per task represents a new activated
set of weights at task ¢. reused per task represents an inter-
section set of weights per task and all used weights. reused
Jor all tasks represents an intersection set of weights reused
from task 1 up to task ¢ — 1.

First, our WSN adaptively reuses weights to solve the se-
quential tasks. In Figure 5 (b), both initial task capacity and
progressive task capacity start from c value; the proportion
of reused weights per task decreases in the early task learn-
ing stage. However, it tends to be progressively saturated to
¢ = 0.1 value since the number of the new activated set of
weights decreases, and the proportion of reused weights for
all prior tasks tends to be decreasing. In other words, WSN
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Figure 5. Layer-wise Analysis on TinyImageNet Dataset Experiments: (a) Weights reusability within a dense network, (b) Capacities
except to binary maps are determined by ¢ = 0.1, (c) The most significant forgetting occurs from weights without reused per task; the
significance of weights reused for all tasks gets lower, and from task 7, all used weights seem to be enough to infer all tasks, and (d) In the
inference step, we inspected a layer-wise forgetting caused by removing (setting masking value 1 to 0) reused weights per task on the

trained model and observed performance drops significantly at Conv1 layer.
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Figure 6. Comparisons on CIFAR100-Split with (Deng et al.,
2021): It was difficult to determine the superiority of WSN only by
comparing the performances in the early stage, however, it shows
the progressively better performances of WSN than others.

uses diverse weights to solve the sequential tasks within all
used weights rather than depending on the reused weights
for all prior tasks as the number of tasks increases.

Second, our WSN provides a stepping stone for forget-free
continual learning. Regarding the benefits of WSN, in Fig-
ure 5 (c), we interpret the importance of three types of
weights through an ablation study. The additional evalua-
tions were performed by the acquired task binary masks
and trained models to investigate the importance of reused
weights in each layer, where the "w/" refers to "with reused
network weights" and the "w/o" refers to "without reused
network weights." Model forgetting occurred from the per-
formances without using weights reused per task severely.
The most significant weights were weights reused per task,
the subset of all used weights; the importance of the weights
reused for all prior tasks decreases as the number of tasks
increases since its capasity gets small relatively, as shown
in Figure 5 (b). Moreover, in Figure 5 (d), we inspected
layer-wise forgetting caused by removing weights reused
per task of network layers; the performance sensitivities
were quite diverse. In particular, we observed that the most
performance drops at the Convl layer.

Finally, our WSN reuses weights if the knowledge from pre-
vious tasks is already enough to solve the task at hand and
employs a few new weights otherwise. Specifically, from
task 7, all used weights seem to be enough to infer all tasks
since the weights reused per task catch up with the task
performances. For more generalized forget-free continual
learning, the model should consider the layer-wise sensi-
tivity of weights reused per task when selecting weights
reused for all prior tasks. These analyses might broadly im-
pact other machine learning fields, such as transfer learning,
semi-supervised learning, and domain adaptation.

Table 3. Performance comparisons of Re-initialized WSN and Ini-
tialized ones with ¢ = 0.5 on the three benchmark datasets.

Method CIFAR-100 Split CIFAR-100 Superclass TinyImageNet

WSN ACC (%) CAP (%) ACC (%) CAP (%) ACC (%) CAP (%)
Re-init.  75.68 (+042)  104.47x000) 61.72 (029 11374 o000) 61.13 £ 1.13)  127.49 (& 0.00)
Init. 76.38 (034  99.13 (048 6179 (023 8093 (158  69.06 +082)  92.03 (+ 180)
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Figure 7. Comparisons of Capacities on TinylmageNet Dataset:
(a) re-initialized weight score per task and (b) initialized weight
score only once before training task 1.

5.5. Re-initialized WSN v.s. Initialized WSN

Although the re-initialized weight score explores task-
relevant subnetworks, our WSN would lose all task knowl-
edge when the weight score is re-initialized. To validate it,
we have performed analysis on WSN with re-initialization
of weight scores, as shown in Table 3 and Figure 7. When
the weight score is re-initialized for each task, WSN learns
all the weights of the network only after a small number of



Table 4. Computational efficiency of WSN compared with PackNet and SupSup. We report model training time in hours.

Method Permuted MNIST 5 Dataset Omniglot Rotation
ACC (%) CAP (%)  Training TIME (HOUR)  ACC (%) CAP (%)  Training TIME (HOUR)  ACC (%) CAP (%)  Training TIME (HOUR)
PackNet 96.37 (+004)  96.38 (+0.00) 0.49 (+0.03) 92.81 (+0.12)  82.86 (+0.00) 3.38 (o011 30.70 (+1.50)  399.2 (+0.00) 7.30 (+0.01)
SupSup 96.31 (009  122.89 (= 0.07) 0.48 (= 0.06) 93.28 (x021)  104.27 (=021 3.20 o001 58.14 (+242  407.12 = 0.17) 6.92 (+0.03)
WSN (best)  96.41 (=007  77.73 (+036) 0.35 (= 0.02) 9341 (=013  86.10 (057 3.02 (= 0.03 87.28 (+072)  79.85 (£ 1.19) 6.33 (+0.04)
Method CIFAR-100 Split CIFAR-100 Superclass TinyImageNet
ACC (%) CAP (%)  Training TIME (HOUR)  ACC (%) CAP (%)  Training TIME (HOUR)  ACC (%) CAP (%)  Training TIME (HOUR)
PackNet 72.39 (037 96.38 (+0.00) 1.04 (+0.19) 58.78 (+052)  126.65 (+0.00) 0.46 (+0.01) 55.46 (+1.22) 188.67 (+0.00) 1.39 (£ 0.03)
SupSup 75.47 =030 129.00 (= 0.03) 0.79 x0.14) 61.70 031  162.49 (=0.00) 0.37 (£ 0.00) 59.60 (£1.05) 214.52 (= 0.89) 0.92 (+0.00)
WSN (best)  76.38 (034)  99.13 (+ 0.48) 0.71 (+0.09) 61.79 (023  80.93 (+1.58) 0.36 (+ 0.00) 71.96 (+141)  48.65 (+3.03) 0.89 (+ 0.00)

tasks, and the newly learned weights drop quickly to 0%
while the reused weight shared to all tasks also drops to
0% (See Figure 7 (a)). On the other hand, WSN adaptively
selects task-relevant weights. Since WSN does not initialize
weight scores for every task, the network weights learned
for the prior tasks will be offered to be reused with a "pre-
mium" as the weight score is updated for the new task (See
Figure 7 (b)). To this end, WSN learns new tasks by ap-
propriately selecting learned reused weights (substantially
includes shared network weights) and small new learned
weights. The effectiveness of the reused weights is also
proven by the computational efficiency as summarized in
Table 4. WSN consistently converged faster than PackNet
and SupSup on six different benchmark datasets. In Ap-
pendix B.4, the comparison study between SupSup and
WSN is revealed by the long sequence of tasks.

T
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T90

100
T1 T10 T20 T30 T40 TS50 T60 T70 T80 T90 T100

(b) WSN, ¢ = 0.05

0 -
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(a) PackNet
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(d) WSN, ¢ = 0.5
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(c) WSN, c=10.1

Figure 8. Task-wise Binary Map Correlations on Omniglot Ro-
tation (Top row) and TinyImageNet (Bottom row). WSN reuses
the weights while PackNet does not. WSN with ¢ = 0.5 reuses
task weights more than the case of ¢ = 0.1 as shown in higher
correlation results than others.

5.6. Sparse Binary Maps

To investigate how WSN reuses weights over sequential
tasks, we prepared task-wise binary mask correlations. As

shown in Figure 8 (a) and (b), WSN tends to progressively
transfer weights used for prior tasks to weights for new ones
compared with PackNet. Figure 8 (c) and (d) showed that
the tendency of reused weights differs according to the c.
This result might suggest that more sparse reused binary
maps lead to generalization than others. In Appendix B.6,
more results are stated.

6. Conclusion

We proposed a continual learning method inspired by Lot-
tery Ticket Hypothesis, which continually learns a network
by finding an optimal subnetwork for each task, assuming
that a subnetwork works well as the dense network. Specifi-
cally, at each arrival of a new task, we use a separate learn-
able weight score to obtain the subnetwork and store the
binary mask for subnetwork selection, which allows obtain-
ing a task-specific subnetwork for any previous tasks. Then,
we freeze the subnetwork weights used by the previous
tasks’ subnetworks using their binary masks and train the
subnetwork on the new task. This process eliminated catas-
trophic forgetting and transferred knowledge from previous
tasks to new ones. We experimentally validated our method
on standard benchmark datasets, on which it obtains a com-
pact subnetwork for all tasks, vastly outperforming existing
continual learning methods while obtaining a much smaller
network due to logarithmic growth in network capacity -
binary masks spawned per winning ticket were encoded into
one N-bit binary digit mask successfully, then compressed
using Huffman coding for a sub-linear increase in network
capacity for the number of tasks.
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A. Experimental Details

We now validate our method on several benchmark datasets
against relevant continual learning baselines. We followed
similar experimental setups described in (Saha et al., 2021)
for baseline comparisons and explained in (Deng et al.,
2021) for SOTA comparisons, including the dataset splits,
preprocessing, and training budget.

A.1. Datasets for Baseline and SOTA
The following datasets are used in baseline comparisons:

1-1) Permuted MNIST (PMNIST) is a variant of MNIST
(LeCun, 1998) where each task has a deterministic per-
mutation applied to the input image pixels. The ground
truth labels remain the same. 1-2) 5-Datasets (Saha et al.,
2021) is a mixture of 5 different vision datasets (CIFAR10
(Krizhevsky et al., 2009), MNIST(LeCun, 1998), SVHN
(Netzer et al., 2011), FashionMNIST (Xiao et al., 2017),
and notMNIST (Bulatov, 2011)). We pad O values to raw
images of MNIST and FashionMNIST and convert them
to RGB format to have a dimension of 3 x 32 x 32. After-
ward, we normalize the raw image data as in (Serra et al.,
2018). 1-3) Omniglot Rotation has split 1200 classes into
100 tasks with 12 classes for each task. We further prepro-
cess the raw images by generating their rotated version in
(90°,180°,270°) as in (Yoon et al., 2018). We use the Om-
niglot dataset to test the scalability of our method for a large
number of tasks.

In performing SOTA comparison, we are employing the
following datasets: 2-1) CIFAR-100 Split (Krizhevsky et al.,
2009) is constructed by randomly dividing 100 classes of
CIFAR-100 into 10 tasks with 10 classes per task. 2-2)
CIFAR-100 Superclass (Yoon et al., 2018) is divided into
20 tasks according to the 20 superclasses of the CIFAR-
100 dataset, and each superclass contains 5 different but
semantically related classes. 2-3) TinyImageNet (Stanford,
2021) is constructed by splitting 200 classes into 40 5-way
classification tasks without data augmentation.

A.2. Architecture Details

Two-layered MLP: In conducting the PMNIST experi-
ments, we are following the exact setup as denoted by (Saha
et al., 2021) fully-connected network with two hidden layers
of 100 (Lopez-Paz & Ranzato, 2017).

Reduced ResNet18: In conducting the 5-Dataset experi-
ments, we use a smaller version of ResNetl8 with three
times fewer feature maps across all layers as denoted by
(Lopez-Paz & Ranzato, 2017).

Modified LeNet: In conducting the Omniglot Rotation and
CIFAR-100 Superclass experiments, we use a large vari-
ant of LeNet as the base network with 64-128-2500-1500

neurons based on (Yoon et al., 2020).

Modified AlexNet: In conducting the split CIFAR-100
dataset, we use a modified version of AlexNet similar to
Serra et al. (2018); Saha et al. (2021).

4 Conv layers and 3 Fully connected layers: For TinyIma-
geNet, we use the same network architecture as Gupta et al.
(2020); Deng et al. (2021).

All the networks for our experiments are implemented in
a multi-head setting. They also utilize ReLU in the hidden
units and softmax with cross-entropy loss in the final layer.

A.3. Training Details

In training all the models within the baseline comparison,
we are using the exact setup and dataset splits described
in (Saha et al., 2021). In conducting experiments with the
PMNIST dataset, we keep 10% of the training data from
each task for validation. On the other datasets, however, we
keep only 5% of training data from each task for validation.
We train all models within the baseline experiments using
stochastic gradient descent (SGD). For each task in PM-
NIST, we train the network for 5 epochs with a batch size
of 10. In 5-Dataset and Omniglot Rotation experiments, we
train each task for a maximum of 100 epochs with the early
termination strategy based on the validation loss proposed in
(Serra et al., 2018). For experiments in both datasets, we fix
the batch size to 64. We run experiments under five different
seed values for all experiments.

For conducting experiments for GPM (Saha et al., 2021)
in Omniglot Rotation dataset, we use the threshold hyper-
parameter ¢;;, = 0.98 for all the layers and increasing the
value of €, by 0.0002 for each incoming new tasks.

For PackNet (Mallya & Lazebnik, 2018) and WSN, sparsity
constraint c is applied across every layer within these meth-
ods except the last layer, where the multi-head classifier
lies. Since PackNet (Mallya & Lazebnik, 2018) includes
layer-wise capacity c for parameters that will be isolated
for an incoming new set of tasks, we fix ¢ = 1/7 while
performing PMNIST and 5-Dataset experiments. Here, ¢
denotes the layer-wise capacity, and 7 indicates the number
of incoming tasks. For Omniglot experiments, we are fixing
¢ = 2/7 as it turns out to be the setup that produces the
most optimum accuracy-capacity tradeoff. Since PackNet
(Mallya & Lazebnik, 2018) involves fine-tuning toward net-
work parameters that are isolated for a given task to recover
the accuracy, we allow the network to fine-tune up to half
of the number of epochs required to finish the preceding
training process.

As denoted in Table 1 and Table 2, we are performing ex-
periments on WSN using different layer-wise capacity c
ranging from 0.03 to 0.5 to analyze the behavior of WSN.



WSN decides whether to use the remaining free parameters
within the architecture or reuse the weights in the past tasks
upon dealing with the incoming tasks.

A 4. List of Hyperparameters

Table 5. List of hyperparameters for the baselines and our WSN.
Here, ’Ir’ and ’optim’ represents (initial) learning rate and op-
timizer used for training. We represent PMNIST as ’perm’, 5-
Datasets as *5data’, Omniglot Rotation as *omniglot’, CIFAR-100
Split as ’cifar100-split’, and CIFAR-100 Superclass as ’cifar100-

s

SC .

Methods Hyperparameters
EWC Ir : 0.03 (perm)

optim : sgd

regularization coefficient : 1000 (perm)
GPM Ir : 0.01(perm, omniglot), 0.1 (S5data)

optim : sgd

ns : 300 (perm), 100 (5data), 125 (omniglot)
PackNet Ir = 0.001 (perm, Sdata, omniglot)

optim : adam

c: 0.1 (perm), 0.2 (5data), 0.02 (omniglot)
WSN (ours) 1r=0.001

(perm, 5data, omniglot,
cifar100-split, cifar100-sc, tinyimagenet)
optim : adam

Table 5 details hyperparameter setup for the baselines and
our approach. n, in GPM denotes the number of random
training examples sampled from the replay buffer to con-
struct the representation matrix for each architecture layer.

B. Additional Results

B.1. Additional Analysis on Baseline Comparisons.
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Figure 9. Accuracy over Total Capacity Usage: WSN achieves
best performance under Accuracy-Capacity trade-off in PMNIST
and Omniglot Rotation datasets - It can be seen that WSN’s accu-
racy is higher than other competing baselines, especially PackNet,
while utilizing less total capacity.

Figure 9 shows the detailed accuracy over total capacity
usage for the baselines and our approach on the PMNIST

and Omniglot Rotation datasets with PackNet removed due
to its substantial total capacity.

Employing WSN with the initial layer-wise capacity of ¢ =
0.3 within the PMNIST dataset returns the best performing
model in terms of accuracy-capacity tradeoff.

B.2. Forget-Free Performances and Capacities.

We prepare performances and bit-map compressed capac-
ities on the TinyImageNet Dataset as shown in Figure 10.
The ¢ = 0.1 shows better performances over others. With
fixed ¢ = 0.1, the bit-wise Huffman compression rate shows
positive as the number of tasks increases. The most interest-
ing part is that as the number of bits to compress increases,
the average compression rate gets higher as the increased
amount of reused weights might affect the compression
rate (nodes with small probability might be rare). We in-
vestigated how the compression rate is related to the total
model capacity. The more bits the binary mask compression
does, the less the model capacity to save is required. We
validated that within 40 tasks, N-bit Huffman compressed
capacities are sub-linearly increasing while binary map ca-
pacities increase linearly. The 7-bit Huffman encoding is
enough to compress binary maps without exceeding the
model capacity even though the compression rate « depends
on compression methods typically.

B.3. Comparisons with the SOTA

The WSN’s performances are compared with others w.r.t
three measurements on three major benchmark datasets as
shown in Table 6.

B.4. Comparisions of SupSup and WSN

Capability of WSN on PMNIST-250: We conduct exper-
iments of WSN ¢ = 0.5,0.7,0.8 (LeNet 300-100, s=100)
with a single weight score on 250 tasks PMNIST (Wortsman
et al., 2020) as shown in Figure 11. WSN performance with
¢ = 0.7, initially at 97.3%, gradually drops after the 90th
task, and it performed better than SupSup (96.4%) until then.
When we divide PMNIST-250 into 90 tasks and use three
weight scores, WSN performs better than SupSup (requiring
250 weight scores) in accuracy and memory efficiency.

B.5. Capacities of Re-used Weights.

There exist two kinds of reused weight in a total model
capacity, one is per task-dependent weights, and another is
all task-dependent ones. To interpret the proportion of the
two kinds of reused weights, we prepare the progressive
capacities of layer-wise reused weights as shown in Fig-
ure 12. In Figure 12 (a), the c value determines the model
capacity of the initial task, entire tasks, and the proportions
of reused weights per task, and for all tasks. From Figure 12
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Figure 10. Performances and Compressed Capacities - Sequence of TinylmageNet Dataset Experiments. (a) The ¢ = 0.1 shows
generalized performances over others, (b) With fixed ¢ = 0.1, we investigate the bit-wise Huffman compression rate and observe that
as the number of bits to compress increases the average compression rate gets higher, and (c) We compared the model capacity with
the model capacity + the compressed binary masks over varying bits. Within the 40-tasks, the 7-bits compressed capacities are the least

increasing along with the ¢ = 0.1 model capacity.

Table 6. Performance comparisons of the proposed method and other state-of-the-art on various benchmark datasets. We report the
mean and standard-deviation of the average accuracy (ACC), average capacity (CAP), and average backward transfer (BWT) across 5
independent runs with 5 seeds under the same experimental setup (Deng et al., 2021). The best results are highlighted in bold. Also, {
and * denotes results reported from (Deng et al., 2021) and (Gupta et al., 2020) respectively.

Method CIFAR-100 Split CIFAR-100 Superclass TinyImageNet
ACC (%) CAP (%) BWT (%) ACC (%) CAP (%) BWT (%) ACC (%) CAP (%) BWT (%)
EWC (Kirkpatrick et al., 2017) T2.77 (+ 045) 100.0 -3.59 055" 50.26 (£ 148)" 100.0 -7.87 (= 1.63)" - - -
GEM (Lopez-Paz & Ranzato, 2017) ~ 70.15 (+ 0341 100.0 -8.61 (x042"  50.35 (£ 080" 100.0 -9.50 (085" 50.57 (061" 100.0 -20.50 (= 0.10)*
ICARL (Rebulffi et al., 2017) 53.50 (+ 081t 100.0 -20.44 (+ o082t 49.05 (o051t 100.0 -11.24 +o02nt 5477 (032" 100.0 -3.93 (+0.55)*
ER (Chaudhry et al., 2019b) 70.07 (+ 03351 100.0 -7.70 (+ 059" 51.64 (+1.09) 100.0 -7.86 (+089)7  48.32 (+ 151" 100.0 -19.86 (+0.70)*
La-MaML (Gupta et al., 2020) 71.37 067! 100.0 -5.39 o5yt 54.44 @ 136) 100.0 -6.65 (£ 085" 66.90 (& 1.65) 100.0 -9.13 (090"
GPM (Saha et al., 2021) 73.18 (052" 100.0 -117 o2nt 57.33 (o037t 100.0 -0.37 o2t 67.39 (047" 100.0 1.45 (+ 022
FS-DGPM (Deng et al., 2021) 74.33 (031" 100.0 271 xoant 58.81 (034! 100.0 2297 o035t 7041 (+ 130" 100.0 2211 (084!
PackNet (Mallya & Lazebnik, 2018)  72.39 (+ 037 96.38 (& 0.00) 0.0 58.78 (+0.52) 126.65 (& 0.00) 0.0 55.46 (+1.22) 188.67 (= 0.00) 0.0
SupSup (Wortsman et al., 2020) 75.47 (+0.30) 129.00 (+0.03) 0.0 61.70 (0.31) 162.49 (+0.00) 0.0 59.60 (105  214.52 (089 0.0
WSN, ¢ = 0.03 70.65 (+0.36) 18.56 (+0.25) 0.0 54.99 (+071) 22.30 (+0.22) 0.0 68.72 (+1.63) 37.19 (+0.21) 0.0
WSN, ¢ = 0.05 72.44 (+027) 25.09 (+042) 0.0 57.99 (+134) 27.37 (+033) 0.0 T1.22 (+094) 41.98 (+052) 0.0
WSN, ¢ = 0.1 74.55 (+047) 39.87 (+0.62) 0.0 60.45 (+037) 38.55 (+0.20) 0.0 71.96 (+ 1.41) 48.65 (+3.03) 0.0
WSN, ¢ = 0.3 75.98 (+0.68) 80.26 (+1.53) 0.0 61.47 (+030) 63.47 (+133) 0.0 70.92 (+137) 73.44 (+235) 0.0
WSN, ¢ = 0.5 76.38 (+ 0.34) 99.13 (4 0.48) 0.0 61.79 (+0.23) 80.93 (& 1.58) 0.0 69.06 (+0.82) 92.03 (+ 1.80) 0.0
Multitask 79.75 = 038)! 100.0 - 61.00 (£ 0.20)! 100.0 - 77.10 (+ 1.06)" 100.0 -
the properties such as the most dynamic change of progres-
—+— Supsup sive capacity and the least progressive capacity of reused
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Figure 11. Comparisons of SupSup and WSN on PMNIST-250.

(b), the capacity of Conv4 is greater than that of Convl,
while the Conv4 proportion of reused weights for all tasks
is smaller than Conv1. From the results, we conclude that
higher progressive capacity varieties result in less amount of
reused weights for all tasks. In Figure 12 (c), the Conv4 has

B.6. Sparse Binary Maps

We prepared binary map correlation results on several bench-
mark datasets. Figure 14 showed the progressive reused
weights tendency, however, it tends to reuse weights least
since PMNIST has an independent task. Also, Figure 15
resulted in the same tendency as in PMNIST results. Fig-
ure 16 shows the most discrete binary map since all tasks
consist of 5 individual datasets. Figure 17, Figure 18, and
Figure 19 showed a similar sparse binary map correlation
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Figure 12. The 4 Conv & 3 FC Layer-wise Average Capacities on Sequence of TinyImageNet Dataset Experiments. (a) The proportion
of reused weights per task depends on ¢ value, and the proportion of reused weights for all tasks tends to be decreasing, (b) The capacity
of Conv4 with high variance is greater than Conv1 with low variance, and the Conv4 proportion of reused weights for all tasks are smaller
than the Convl, (c) The capacity of Conv4 with high variance is greater than Liner2 with low variance and the Conv4 proportion of reused
weights for all tasks are smaller than the Linear2, and (d) The capacity of Linearl is greater than Linear2 in the early task learning stage,
and the Linear] proportion of reused weights for all tasks are smaller than the Linear2 in the early task learning stage. From (b), (c), and
(d), the proportion of reused weights per task tends to be progressively saturated to ¢ = 0.1 value.

according to the c value. From these observations, we could
conclude that the sparsity of reused binary maps leads to
better performances than others.

B.7. Additional Analysis

We reported the progressive ratio of weights used so far per
layer as the number of tasks increases in Figure 12. Here,
we interpreted how reused weights affect the performances
on CIFAR-100 Split dataset as shown in Figure 13. The
¢ = 0.5 represents the average accuracy of reused weights
per task; the most significant weights were the subset of
all prior weights since model forgetting occurs from the
performances without being reused per task. The weights
being reused for all tasks doesn’t seem to be always positive
effect on forget-free in that the importance of the weights
decreases as the number of tasks increases. Our WSN reuse
weights if the knowledge from previous tasks is already
enough to solve the task at hand, and employs a few new
weights otherwise. To be specific, in task 5, all used weights
seem to be enough to infer all CIFAR-100 Split tasks since
the weights reused per task catch up with the task perfor-
mance.

1401 —+— ¢=0.5,

€=0.5, w/ reused per task

£ 120{ —e— c=0.5, w/ reused for all tasks
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Figure 13. Reused Weight Performances on CIFAR-100 Split:
(left) A diagram to explain a dense network of reused weights,
(right) An average accuracy of reused weights; the most significant
forgetting occurs from weights without reused per task; the signifi-
cance of weights reused for all tasks gets lower as the number of
tasks increases; In task 5, all used weights seem to be enough to
infer all CIFAR-100 Split tasks since the weights reused per task
catch up with the task performance.
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Figure 14. Average Binary Map Correlation on Sequence of PMNIST Experiments: the binary maps get overlapped with prior ones as
the number of tasks increases..
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Figure 15. Average Binary Map Correlation on Sequence of CIFAR-100 Split Experiments: the binary maps get overlapped with prior
ones as the number of tasks increases..

T1 T1 T1 T1
T5 T5 T5 T5
T1 5 T1 T5 T1 T5 T1 5

(a)c=0.05 (b)c=0.1 (©)ec=0.3 (d)c=0.5

Figure 16. Average Binary Map Correlation on Sequence of 5-Dataset Experiments: the binary maps get overlapped with prior ones as
the number of tasks increases..
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Figure 17. Average Binary Map Correlation on Sequence of CIFAR-100 Superclass Experiments: the binary maps get overlapped with
prior ones as the number of tasks increases..
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Figure 18. Average Binary Map Correlation on Sequence of TinyImageNet Dataset Experiments: the binary maps get overlapped with
prior ones as the number of tasks increases..
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Figure 19. Average Binary Map Correlation on Sequence of Omniglot Rotation Experiments: the binary maps get overlapped with prior
ones as the number of tasks increases..



