
Language Models as Zero-Shot Planners:
Extracting Actionable Knowledge for Embodied Agents

Wenlong Huang 1 Pieter Abbeel 1 Deepak Pathak * 2 Igor Mordatch * 3

Abstract

Can world knowledge learned by large language
models (LLMs) be used to act in interactive envi-
ronments? In this paper, we investigate the pos-
sibility of grounding high-level tasks, expressed
in natural language (e.g. “make breakfast”), to a
chosen set of actionable steps (e.g. “open fridge”).
While prior work focused on learning from ex-
plicit step-by-step examples of how to act, we
surprisingly find that if pre-trained LMs are large
enough and prompted appropriately, they can ef-
fectively decompose high-level tasks into mid-
level plans without any further training. However,
the plans produced naively by LLMs often cannot
map precisely to admissible actions. We propose
a procedure that conditions on existing demon-
strations and semantically translates the plans to
admissible actions. Our evaluation in the recent
VirtualHome environment shows that the resulting
method substantially improves executability over
the LLM baseline. The conducted human evalua-
tion reveals a trade-off between executability and
correctness but shows a promising sign towards
extracting actionable knowledge from language
models.

1. Introduction
Large language models (LLMs) have made impressive ad-
vances in language generation and understanding in recent
years (Devlin et al., 2018; Radford et al., 2019; Raffel et al.,
2019; Brown et al., 2020). See (Bommasani et al., 2021) for
a recent summary of their capabilities and impacts. Being
trained on large corpora of human-produced language, these
models are thought to contain a lot of information about

*Equal Advising 1University of California, Berkeley 2Carnegie
Mellon University 3Google. Correspondence to: Wenlong Huang
<wenlong.huang@berkeley.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

� �� �� �� �� ���
��([HFXWDELOLW\

�

��

��

��

��

���

�
�&
RU
UH
FW
QH
VV

+XPDQ�������([HFXWDELOLW\�

GPT-2 1.5B

GPT-3 13B

Codex 12B

GPT-3 175B

Translated
Codex 12B
(Ours)

GPT-2 0.1B

Translated
GPT-3 175B (Ours)

Figure 1. Executability (x-axis) and semantic correctness (y-axis)
of generated action plans. Large models can produce plans indistin-
guishable from those by humans, but frequently are not executable
in the environment. Using our techniques, executability is signifi-
cantly improved, albeit at the cost of correctness. Website: https:
//huangwl18.github.io/language-planner/.

the world (Roberts et al., 2020; Li et al., 2021; BIG-bench
collaboration, 2021) - albeit in linguistic form.

We ask whether we can use such knowledge contained in
LLMs not just for linguistic tasks, but to make goal-driven
decisions that can be enacted in interactive, embodied envi-
ronments. But we are not simply interested in whether we
can train models on a dataset of demonstrations collected
for some specific environment – we are instead interested
in whether LLMs already contain information necessary to
accomplish goals without any additional training.

More specifically, we explore whether world knowledge
about how to perform high-level tasks (e.g. “make break-
fast”) can be expanded to a series of unambiguous actions
(e.g. “open fridge”, “grab milk”, “close fridge”) chosen
from a pre-defined set, assuming low-level controller is
given. Notably, we require the series of actions to include all
necessary steps for completing the high-level task, includ-
ing the common-sense actions which are often not explicitly
mentioned by humans (e.g. “open fridge”). We thus focus
on this mid-level grounding challenge and investigate if raw
knowledge of LLMs can achieve this without requiring any
finetuning on the downstream task data.

https://huangwl18.github.io/language-planner/
https://huangwl18.github.io/language-planner/

Language Models as Zero-Shot Planners

For our investigation, we use the recently proposed Virtu-
alHome environment (Puig et al., 2018). It can simulate
a large variety of realistic human activities in a household
environment and supports the ability to perform them via a
rich set of 47522 unique embodied actions defined with a
verb-object syntax. However, due to the open-ended
nature of the tasks, it is difficult to autonomously evaluate
their success. We rely on human evaluation (conducted on
Mechanical Turk) to decide whether sequences of actions
meaningfully accomplish posed tasks.

We find that large GPT-3 (Brown et al., 2020) and
Codex (Chen et al., 2021) models, when prompted with
a single fixed example of a task description and its associ-
ated sequence of actions, can produce very plausible action
plans for the task we’re interested in. Such completions
reflect the information already stored in the model – no
model fine-tuning is involved. Additionally, we only ob-
serve this effect in the larger models. Unfortunately, despite
their semantic correctness, the produced action plans are
often not executable in the environment. Produced actions
may not map precisely to admissible actions, may leave out
common-sense actions, or may contain various linguistic
ambiguities.

We propose several tools to improve executability of the
model’s outputs. First, we enumerate all admissible ac-
tions and map the model’s output phrases to the most
semantically-similar admissible action (we use similar-
ity measure between sentence embeddings produced by a
RoBERTa model (Liu et al., 2019) in this work, but other
choices are possible). Second, we use the model to au-
toregressively generate actions in a plan by conditioning
past actions that have been made admissible via the tech-
nique above. Such on-the-fly correction can keep generation
anchored to admissible actions. Third, we provide weak
supervision to the model by prompting the model with a
known task example similar to the query task. This is some-
what reminiscent of prompt tuning approaches but does not
require access to gradients or internals of the model.

Using the above tools to bias model generation, we find that
we improve executability of action plans from 18% to 79%
(see Figure 1) without any invasive modifications to model
parameters or any extra gradient or internal information be-
yond what is returned from the model’s forward pass. This is
advantageous because it does not require any modifications
to the model training procedure and can fit within existing
model serving pipelines. However, we do find there to be
some drop in correctness of the action sequences generated
with the above tools (as judged by humans), indicating a
promising step, but requiring more research on the topic.

To summarize, our paper’s contributions are as follows:

• We show that without any training, large language

models can be prompted to generate plausible goal-
driven action plans, but such plans are frequently not
executable in interactive environments.

• We propose several tools to improve executability of
the model generation without invasive probing or mod-
ifications to the model.

• We conduct a human evaluation of multiple techniques
and models and report on the trade-offs between exe-
cutability and semantic correctness.

2. Evaluation Framework
Simulating open-ended tasks that resemble naturalistic hu-
man activities requires an environment to support a rich set
of diverse interactions, rendering most existing embodied en-
vironments unsuitable for our investigation. One exception
is VirtualHome (Puig et al., 2018), which we evaluate on as
it supports a large action space and models complex human
activities in a household setting (such as “make breakfast”,
“microwave milk”, “open TV”). However, since no further
training is involved throughout our investigations, the pre-
sented findings should also translate to similar environments,
likely even beyond the household domain.

2.1. Evaluated Environment: VirtualHome

Preliminaries In VirtualHome, activities are expressed
as programs (an example is in Appendix A.1). Each pro-
gram consists of a sequence of textual action steps, where
each step is written as: [atomic] ⟨arg⟩(idx). Each
atomic refers to one of the 42 atomic actions supported
in VirtualHome, such as “walk” and “open” (full list is in
Appendix A.6). Different atomic actions take in different
numbers of arg, such as “bedroom” and “fridge”, that are
necessary for specifying a full interaction (i.e. an action).
The combinatorial structure gives rise to a rich set of 47522
unique actions. Associated with each arg is a unique id
specifying the corresponding node in the environment graph,
in case of multiple instances of the same object class are
present in the graph. We allow automatic assignment of
id by the environment, and we make the simplifying as-
sumption that a program does not refer to different instances
of the same object class throughout its execution. This
is because it is difficult for raw language models to iden-
tify specific object instance without additional training or
without conditioning on environment state (a limitation we
discuss in Section 7).

Evaluated Tasks We use the ActivityPrograms knowl-
edge base collected by Puig et al. (2018) for evaluation.
It contains 2821 different entries collected from Amazon
Mechanical Turk (MTurk) workers. Each entry contains
1) a high-level task name (e.g. “Watch TV”), 2) detailed
instructions expressed in natural language to complete the
task (e.g. “Sit on my couch directly opposite my TV, switch

Language Models as Zero-Shot Planners

Task: Brush teeth
Step 1: Go to bathroom

GPT-2 1.5B

Task: Brush teeth
Step 1: Walk to bathroom
Step 2: Walk to sink
Step 3: Find toothbrush
Step 4: Pick up toothbrush
Step 5: Put toothbrush in mouth
Step 6: Move brush around mouth

for two minutes
Step 7: Spit out toothpaste and

brush into sink
Step 8: Turn on water in sink and

rinse brush for one minute
Step 9: Turn off water in sink and

return brush to cupboard

Codex 12B

Task: Brush teeth
Step 1: Walk to bathroom
Step 2: Open door
Step 3: Walk to sink
Step 4: Put pot on sink
Step 5: Put brush on toothbrush
Step 6: Turn to toothpaste
Step 7: Put toothpaste on toothbrush
Step 8: Put teeth on toothbrush

Translated Codex 12B

Task: Throw away paper
Step 1: Walk to home office
Step 2: Walk to desk
Step 3: Find desk
Step 4: Turn to desk
Step 5: Find chair
Step 6: Sit on chair
Step 7: Find check
Step 8: Grab check
Step 9: Squeeze check
Step 10: Stand up
Step 11: Walk to trashcan
Step 12: Put check on trashcan

Human
Task: Throw away paper
Step 1: Walk to home office
Step 2: Walk to wastebasket
Step 3: Find wastebasket
Step 4: Grab wastebasket
Step 5: Walk to desk
Step 6: Drop paper in wastebasket

GPT-3 175B
Task: Throw away paper
Step 1: Walk to home office
Step 2: Walk to table
Step 3: Find table
Step 4: Turn to table
Step 5: Find paper
Step 6: Grab paper
Step 7: Walk to trashcan
Step 8: Open trashcan
Step 9: Put paper on trashcan
Step 10: Close trashcan

Translated GPT-3 175B Task: Complete Amazon Turk Surveys

Sit on Chair

Switch on Computer

Walk to Home Office

Look at Computer

Task: Get Glass of Milk

Walk to Kitchen Open Fridge

GrabMilk Close Fridge

Figure 2. Sample action plans generated by different models (left) and visualization of VirtualHome execution of plans generated by our
approach (right). We show LLMs not only can generate sensible action plans given only high-level tasks but also contains the actionable
knowledge that can be extracted to perform common-sense grounding in embodied environments. More samples in Appendix A.7.

on my TV with the remote control and watch”), and 3) an
executable program containing all necessary steps. We omit
the use of detailed instructions (2) as we desire direct ex-
traction of executable programs (3) from only high-level
task names (1). There are 292 distinct high-level tasks in
the knowledge base, from which we randomly sample 88
held-out tasks for evaluation. The remaining 204 tasks are
used as demonstration set from which we are allowed to
select as example(s) for prompting language models, or in
the case of supervised fine-tuning baselines, they are used
as training data.

2.2. Metrics

A program that only commands the agent to wander around
is highly executable but is mostly not correct. On the other
hand, a program composed of natural language instruc-
tions written by humans is likely correct but cannot be exe-
cuted, because they are often ambiguous and lack necessary
common-sense actions (e.g. fridge must be opened before
the objects contained can be retrieved). We thus consider
two axes for evaluation: executability and correctness.

Executability Executability is an inherent metric directly
reported by VirtualHome. It measures whether an action
plan can be correctly parsed and satisfies the common-sense
constraints of the environment. To be correctly parsed, an
action plan must be syntactically correct and contain only
allowed actions and recognizable objects. To satisfy the
common-sense constraints, each action step must not violate
the set of its pre-conditions (e.g. the agent cannot grab milk

from the fridge before opening it) and post-conditions (e.g.
the state of the fridge changes from “closed” to “open” after
the agent opens it). Although this is a metric specific to
VirtualHome, the built-in common-sense constraints are
well-grounded and representative of those in a real-world
household setting. Following these rules, executable plans
can perform diverse household tasks such as “microwaving
a cup” and “open TV”. We report the average executability
across all 88 tasks and all 7 VirtualHome scenes.

Correctness Unlike most embodied environments where
the completion of a task can be easily judged, the ambiguous
and multimodal nature of natural language task specification
makes it impractical to obtain a gold-standard measurement
of correctness. Therefore, we conduct human evaluations
for the main methods. For the remaining analysis, we rely
on a match-based metric that measures how similar a gen-
erated program is to human annotations. Specifically, we
follow Puig et al. (2018) and calculate the longest common
subsequence (LCS) between two programs, normalized by
the maximum length of the two. In the presence of multiple
human-written programs for a single task, we take the maxi-
mum LCS across them. However, we note that the majority
of the tasks only have one human annotation, but there are
often many plausible ways to complete a certain task, mak-
ing this metric imperfect at evaluation program correctness1.
Although correlation between the two is shown by Puig et al.
(2018), we consider it only as a proxy metric in replacement

1Although LCS has a theoretical range of [0, 1], we measure
the LCS between different human-written programs for the same
task and find an empirical maximum of 0.489.

Language Models as Zero-Shot Planners

Task: Shave
Step 1: Grab razor
Step 2: Wash razor
Step 3: Switch on razor

Task: Apply lotion
Step 1: Pour lotion into right hand
Step 2:

Task: Shave
Step 1: Grab razor
Step 2: Switch on razor
Step 3: Put razor on face

Task: Apply lotion

Pre-Trained Causal LLM
Frozen

Pre-Trained
Masked LLM

Frozen

Step 1: Squeeze out a glob of lotion Step 1: Pour lotion into right hand

Step 1: Squeeze out a glob of lotion

Pre-Trained Causal LLM
Frozen

Zero-Shot Planning via Causal LLM Translation to Admissible Action
Step-By-Step

Autoregressive Generation

Prompt Prompt

Figure 3. We first show surprising finding that pre-trained causal LLMs can decompose high-level tasks into sensible mid-level action
plans (left). To make the plans executable, we propose to translate each step into admissible action via another pre-trained masked LLM
(middle). The translated action is appended to the prompt used for generating the remaining steps (right). All models are kept frozen
without additional training.

of unscalable human evaluation.

3. Method
In this section, we investigate the possibility of extract-
ing actionable knowledge from pre-trained language mod-
els without further training. We first give an overview
of the common approach to query large language models
(LLMs) and how it may be used for embodied agents in
Section 3.1. Then we describe an inference-time procedure
that addresses several deficiencies of the LLM baseline and
offers better executability in embodied environments. We
break down the proposed procedure into three individual
components, each discussed in Section 3.2, 3.3, 3.4. Pseudo-
code is in Appendix A.4.

Since LMs excel at dealing with natural language text in-
stead of the specific format required by VirtualHome as
described in Section 2.1, we only expose natural language
text to LMs. To do this, we define a bi-directional mapping
for each atomic action that converts between the natural lan-
guage format and the program format. For instance, “walk to
living room” is mapped to [WALK] ⟨living room⟩(1).
Full list of the mappings is in Appendix A.6.

3.1. Querying LLMs for Action Plans

Previous works have shown that large language models pre-
trained on a colossal amount of data would internalize rich
world knowledge that can be probed to perform various
downstream tasks (Radford et al., 2019; Brown et al., 2020).
Notably, autoregressive LLMs can even perform in-context
learning, an ability to solve tasks using only contextual
information without gradient updates (Brown et al., 2020).
Contextual information is given as part of the input prompt
and LMs are asked to complete the remaining text. It often
consists of natural language instructions and/or a number of
examples containing the desired input/output pairs.

We adopt the same approach to query LLMs to generate

action plans for high-level tasks. Specifically, we prepend
one example high-level task and its annotated action plan
from the demonstration set to the query task, as shown in
Figure 3. To obtain text completion results, we sample
from autoregressive LLM using temperature sampling and
nucleus sampling (Holtzman et al., 2019). We refer to this
LM as Planning LM and the approach using this LM for
plan generation as Vanilla ⟨LM⟩, where ⟨LM⟩ is replaced by
specific language model such as GPT-3 or Codex.

To improve the generation quality, we follow Chen et al.
(2021) to sample multiple outputs for each query. However,
unlike Chen et al. (2021) who investigate program synthesis
and can choose the sample with highest unit test pass rate,
we only consider the setting where one sample is allowed to
be evaluated for each task. This is because repetitive trial-
and-error is equivalent to probing the environment for privi-
leged information, which should not be considered viable in
our setting. For Vanilla ⟨LM⟩, to choose the best action plan
X∗ among k samples (X1, X2, ..., Xk), each consisting of
ni tokens Xi = (xi,1, xi,2, ..., xi,ni

), we select the sample
with highest mean log probability as follows:

argmax
Xi

(
Pθ(Xi) :=

1

ni

ni∑
j=1

log pθ(xi,j |xi,<j)

)
(1)

where θ parameterizes the Planning LM.

3.2. Admissible Action Parsing by Semantic Translation

One issue arises when naively following the above approach
to generate action plans: the plan expressed in free-form
language often cannot be mapped to unambiguous action-
able steps and thus is not executable by a robotic agent.
Many reasons can cause such failures: 1) the output does
not follow pre-defined mappings of any atomic action (e.g.
“I first walk to the bedroom” is not of the format “walk to
⟨PLACE⟩”), 2) the output may contain compounded action
phrases that can only be achieved in several environment
steps (e.g. “microwave a cup” should be expanded to “put

Language Models as Zero-Shot Planners

cup in microwave” and ‘switch on microwave‘), or 3) the
output contains lexically ambiguous words (e.g. the verb
“open” can either mean “switch on” or “unlatch”).

Instead of developing a set of rules to transform the free-
form text into admissible action steps, we propose to again
leverage world knowledge learned by language models to
semantically translate the action. For each admissible envi-
ronment action ae, we calculate its semantic distance to the
predicted action phrase â by cosine similarity:

C(f(â), f(ae)) :=
f(â) · f(ae)

∥f(â)∥∥f(ae)∥
(2)

where f is an embedding function.

To embed the output action phrase and environment ac-
tions, we use a BERT-style LM (Devlin et al., 2018; Liu
et al., 2019) pre-trained with Sentence-BERT (Reimers &
Gurevych, 2019) objective, to which we refer as Trans-
lation LM2. The action embedding is obtained by mean-
pooling the last layer hidden states across all tokens in that
action phrase. While the set of admissible actions in our
environment is discrete and possible to exhaustively enu-
merate, sampling or projection can be employed in larger
discrete or continuous action spaces.

3.3. Autoregressive Trajectory Correction

Translating each step of the program after the entire program
has been synthesized lacks consideration of achievability
of individual steps and subjects to compounding errors. In
practice, LLMs might output compounded instructions for a
single step, even though it cannot be completed using one
admissible action in the environment. To this end, we can
instead interleave plan generation and action translation to
allow for automatic trajectory correction. At each step, we
first query Planning LM to generate k samples for a single
action (â1, â2, ..., âk). For each sample â, we consider both
its semantic soundness and its achievability in the environ-
ment. Specifically, we aim to find admissible environment
action ae by modifying the ranking scheme described in
Equation 1 as follows:

argmax
ae

[
max

â
C(f(â), f(ae)) + β · Pθ(â)

]
(3)

where β is a weighting coefficient.

Then we append the translated environment action ae to
the unfinished text completion. This way all subsequent
steps will be conditioned on admissible actions instead
of free-form action phrases generated by Planning LM.
Furthermore, we can use Translation LM to detect out-of-
distribution actions, those outside the capabilities of a robot,

2Note that this is a different LM than the GPT-style Planning
LM. Using a single LM could as well be possible and likely more
efficient, but we leave such investigation to future works.

and terminate a program early instead of mapping to a faulty
action. This can be achieved by setting a threshold ϵ such
that if maxâ,ae C(f(â), f(ae)) + β · Pθ(â) < ϵ at step t,
the program is terminated early. Since we now sample Plan-
ning LM for individual steps instead of an entire sequence,
another termination condition we consider is when > 50%
of current-step samples are 0-length (excluding leading or
trailing non-English text tokens).

3.4. Dynamic Example Selection for Improved
Knowledge Extraction

So far in the text, we always give the same example in
the prompt for all query tasks. However, consider the task
of “ordering pizza”. Prompting LLMs with this task may
give the assumption that the agent is initialized in front of
a computer, and the LLMs may guide the agent to search
for a pizza store and click “checkout my cart”. Although
these are reasonable and feasible in the real world, such
assumption cannot always be made as these actions may
not be supported by an agent. In fact, the closest series
of actions that human experts give in VirtualHome may be
“walking to a computer”, “switching on the computer”, and
“typing the keyboard”. Without being fine-tuned on these
data, LLMs would often fail at these tasks.

To provide weak supervision at inference time, we propose
to select the most similar task T and its example plan E
from the demonstration set to be used as the example in
the prompt. Specifically, we re-use the same Translation
LM introduced in Section 3.2 and select (T ∗, E∗) whose
high-level task name T ∗ maximizes C(f(T), f(Q)), where
Q is the query task. This approach bears resemblance to
several recent works (Poesia et al., 2022; Gao et al., 2020;
Liu et al., 2021; Rubin et al., 2021). An example is shown
in Figure 3 where “Shave” is the most similar to the query
task “Apply lotion”.

FINAL METHOD Combining the various improvement
discussed above, we refer to the final method as Trans-
lated ⟨LM⟩, where ⟨LM⟩ is replaced by specific language
model used such as GPT-3 or Codex.

4. Results
In this section, we first show that language models can gen-
erate sensible action plans for many high-level tasks, even
without any additional training. Then we highlight its in-
adequacy when naively applied to embodied environments
and demonstrate how this can be improved by again lever-
aging world knowledge learned by LLMs. Visualization of
generated programs is shown in Figure 2.

Sampling from LMs Pre-trained LMs are sensitive to
sampling parameters and the specific example given in the
prompt. For all evaluated methods, we perform hyperpa-

Language Models as Zero-Shot Planners

Model Exec. LCS Correctness

Vanilla ⟨LM⟩
GPT-2 117M 18.66% 3.19% 15.81% (4.90%)
GPT-2 1.5B 39.40% 7.78% 29.25% (5.28%)
Codex 2.5B 17.62% 15.57% 63.08% (7.12%)
GPT-Neo 2.7B 29.92% 11.52% 65.29% (9.08%)
Codex 12B 18.07% 16.97% 64.87% (5.41%)
GPT-3 13B 25.87% 13.40% 49.44% (8.14%)
GPT-3 175B 7.79% 17.82% 77.86% (6.42%)

Finetuned ⟨LM⟩
GPT-3 13B 66.07% 34.08% 64.92% (5.96%)

Human 100.00% N/A 70.05% (5.44%)

Translated ⟨LM⟩
Codex 12B 78.57% 24.72% 54.88% (5.90%)
GPT-3 175B 73.05% 24.09% 66.13% (8.38%)

Table 1. Human-evaluated correctness and evaluation results in
VirtualHome. Although action plans generated by large language
models can match or even surpass human-written plans in correct-
ness measure, they are rarely executable. Using proposed tech-
niques, we observe LLMs achieve significantly better common-
sense grounding as measured by executability, but we observe
room to achieve this without trading for correctness. We also
observe a failure mode among smaller models that lead to high
executability. For correctness measure, standard error of the mean
across 10 human annotators is reported in the parenthesis.

rameter search over various sampling parameters, and for
methods using a fixed prompt example, we report metrics
averaged across three randomly chosen examples. To select
the best run for each method, we rank the runs by the sum
of LCS and executability, each normalized by human-expert
scores. Further details are in Appendix A.2.

Model Choices For Planning LM, we evaluate a represen-
tative set of causal language models. For Translation LM,
we mainly use Sentence-RoBERTa-355M and provide rele-
vant ablations in Section 5.3. GPT-3 and Codex are accessed
using OpenAI API, and the remaining models are accessed
through open-source packages, Hugging Face Transform-
ers (Wolf et al., 2019) and SentenceTransformers (Reimers
& Gurevych, 2019), all without additional training (except
for the fine-tuning baseline).

4.1. Do LLMs contain actionable knowledge?

We first investigate whether LLMs can generate sensible
action plans expressed in free-form language. We use the ap-
proach described in Section 3.1 to query pre-trained LLMs.
To evaluate the correctness of generated action plans, we
conduct human evaluations. For each model, we ask 10 hu-
man annotators to determine – by answering “Yes” or “No”
– whether each task can be completed using provided action
steps. To provide a reference of how humans might rate the
action plans written by other humans, we also ask annota-

tors to rate the human-written action plans included in the
VirtualHome dataset for the same set of tasks. In contrast
to the free-form text output by LLMs, humans wrote the
plans using a graphical programming interface that enforces
strict syntax and the use of only supported atomic actions,
which limit the expressivity and the completeness of their
answers. More details of our human evaluation procedure
can be found in Appendix A.3.

We show the human evaluation results in Figure 1, where the
y-axis shows correctness averaged across all tasks and all
annotators. Surprisingly, when LLMs are large enough and
without imposed syntactic constraints, they can generate
highly realistic action plans whose correctness – as deemed
by human annotators – even surpasses human-written action
plans with syntactic constraints. We also observe some level
of correctness for smaller models such as GPT-2. However,
inspection of its produced output indicates that it often gen-
erates shorter plans by ignoring common-sense actions or
by simply rephrasing the given task. These failure modes
sometimes mislead human annotators to mark them correct
as the annotators may ignore common-sense actions in their
judgment as well, resulting in a higher correctness rate than
the quality of the output shows.

4.2. How executable are the vanilla LLM action plans?

We analyze the executability of LLM plans by evaluating
them in all 7 household scenes in VirtualHome. As shown
in Table 1, we find action plans generated naively by LLMs
are generally not very executable. Although smaller models
seem to have higher executability, we find that the major-
ity of these executable plans are produced by ignoring the
queried task and repeating the given example of a differ-
ent task. This is validated by the fact that smaller models
have lower LCS than larger models despite having high exe-
cutability, showing that this failure mode is prevalent among
smaller models. In contrast, larger models do not suffer
severely from this failure mode. Yet as a result of being
more expressive, their generated programs are substantially
less executable.

4.3. Can proposed procedure improve executability?

We evaluate the effectiveness of our proposed procedure
of action translation. We first create a bank of all al-
lowed 47522 action steps in the environment, including
all possible combinations of atomic actions and allowed
arguments/objects. Then we use an off-the-shelf Sentence-
RoBERTa (Liu et al., 2019; Reimers & Gurevych, 2019) as
Translation LM to create embeddings for actions and output
text. For better computational efficiency, we pre-compute
the embeddings for all allowed actions, leaving minor com-
putation overhead for our procedure over the baseline meth-
ods at inference time. As shown in Table 1, executability of

Language Models as Zero-Shot Planners

generated programs is significantly improved. Furthermore,
we also observe improved LCS because the translated action
steps precisely follow the program syntax and thus are more
similar to the plans produced by human experts. Sample
output is shown in Figure 2 and a larger random subset of
generated samples can be found in Appendix A.7.

To validate their correctness, we again perform human eval-
uations using the same procedure from Section 4.1. Results
are shown in Table 1. We find that despite being more simi-
lar to human-written plans as they follow strict syntax, the
programs are deemed less correct by humans compared to
their vanilla counterparts. By examining the output, we
observe two main sources of errors. First, we find Trans-
lation LM is poor at mapping compounded instructions to
a succinct admissible action, e.g. “brush teeth with tooth-
brush and toothpaste”. Second, we find that the generated
programs are sometimes terminated too early. This is partly
due to the imperfect expressivity of the environment; certain
necessary actions or objects are not implemented to fully
achieve some tasks, so Translation LM cannot map to a suf-
ficiently similar action. This is also reflected by our human
evaluation results of the programs written by other humans,
as only 70% of the programs are considered complete3.

5. Analysis
We perform ablations of design decisions and investigate to
what extent language models can perform common-sense
grounding in VirtualHome without further training. We also
analyze the choice of Translated LM, length of generated
programs, and planning under instruction-following setting.

5.1. Can LLMs perform common-sense grounding?

Since successful execution of correct action plans directly
measures common-sense grounding for mid-level actions,
we calculate the percentage of generated action plans that
are both correct and executable. We deem an action plan
to be correct if 70% or more human annotators decide it
is correct. Human-written plans are 100% executable, of
which 65.91% are deemed correct by conducted human
evaluation. Results for LMs are shown in Figure 5.1.

Although smaller LMs such as GPT-2 can generate highly
executable action plans as shown in Table 1, these exe-
cutable plans mostly are not correct, as they often repeat
the given example or do not contain all necessary steps. In-
creasing model parameters can lead to some improvement
in generating plans that are both executable and correct, yet
it scales poorly with the parameter count. In the meantime,
action translation offers a promising way towards grounding
actionable knowledge by producing executable and correct

3 Puig et al. (2018) also conduct a similar human evaluation on
human-written plans and report completeness to be 64%.

plans, though a large gap remains to be closed to reach
human-level performance (65.91%).

Translated GPT-3 175B

Translated Codex 12B

Vanilla GPT-3 175B

Vanilla GPT-3 12B

Vanilla Codex 12B

Vanilla GPT-2 1.5B

Vanilla GPT-2 0.1B

35.23%

27.27%

6.82%

2.27%

4.55%

1.14%

0.0%

% of Executable & Correct Plans

5.2. Ablation of design decisions

We perform ablation studies for the three components of our
proposed procedure, described in Section 3.2, 3.3, and 3.4
respectively. As shown in Table 5.2, leaving out any of the
three components would all lead to decreased performance
in both executability and LCS. An exception is Translated
GPT-3 w/o Trajectory Correction, where we observe a slight
improvement in LCS at the expense of a considerable drop
in executability. Among the three proposed components,
leaving out action translation leads to the most significant
executability drop.

Methods Executability LCS

Translated Codex 12B 78.57% 24.72%
- w/o Action Translation 31.49% 22.53%
- w/o Dynamic Example 50.86% 22.84%
- w/o Trajectory Correction 55.19% 24.43%

Translated GPT-3 175B 73.05% 24.09%
- w/o Action Translation 36.04% 24.31%
- w/o Dynamic Example 60.82% 22.92%
- w/o Trajectory Correction 40.10% 24.98%

5.3. Effect of Different Translation LMs

In this section, we study the effect of using different Trans-
lation LM. We compare two size variants of Sentence BERT
and Sentence RoBERTa (Devlin et al., 2018; Liu et al., 2019;
Reimers & Gurevych, 2019) trained on the STS bench-
mark (Cer et al., 2017) and a baseline using averaged GloVe
embeddings (Pennington et al., 2014). Results are shown
below. Notably, we do not observe significant differences in
executability and LCS across different variants of BERT and
RoBERTa. We hypothesize that this is because any language
models trained on reasonably large datasets should be capa-
ble of the single-step action phrase translation considered
in this work. However, simply using average GloVe embed-
dings would lead to significantly reduced performance.

Language Models as Zero-Shot Planners

Translation LM Exec. LCS

Codex 12B as Planning LM
Avg. GloVe embeddings 46.92% 9.71%
Sentence Bert (base) 73.21% 24.10%
Sentence Bert (large) 75.16% 20.79%
Sentence RoBERTa (base) 74.35% 22.82%
Sentence RoBERTa (large) 78.57% 24.72%

GPT-3 175B as Planning LM
Avg. GloVe embeddings 47.40% 12.16%
Sentence Bert (base) 77.60% 24.49%
Sentence Bert (large) 67.86% 21.24%
Sentence RoBERTa (base) 72.73% 23.64%
Sentence RoBERTa (large) 73.05% 24.09%

5.4. Analysis of program length

Shorter programs have a natural advantage of being more
executable as they need to satisfy less pre-/post-conditions,
albeit being prone to incompleteness. To validate the pro-
posed approach does not simply generate very short pro-
grams, we calculate the average program length across the
88 evaluated tasks. Results are shown in Table 5.4. Mirror-
ing the observations made in Section 4.1 and Section 4.2,
we find smaller LMs such as GPT-2 tend to generate shorter
programs than larger models do while frequently repeating
the given executable example. In contrast, larger models
like Codex and GPT-3 can generate more expressive pro-
grams with high realism, yet consequently, they often suffer
from executability. We show proposed procedure can find
appropriate balance and is capable of generating programs
that are highly executable while maintaining reasonable
expressiveness as measured by program length.

Methods Exec. Avg. Length

Vanilla GPT-2 1.5B 39.40% 4.24
Vanilla Codex 12B 18.07% 7.22
Vanilla GPT-3 175B 7.79% 9.716

Translated Codex 12B 78.57% 7.13
Translated GPT-3 175B 73.05% 7.36

Human 100.00% 9.66

5.5. Can LLMs generate actionable programs by
following step-by-step instructions?

Prior works often focus on translating step-by-step instruc-
tions into executable programs. Specifically, instead of
only providing a high-level task name, how-to instructions
are also provided, as shown below. Although this set-
ting is easier as it does not require rich prior knowledge,
how-to instructions can help resolve much ambiguity of
exactly how to perform a high-level task when multiple
solutions are possible. We compare to a supervised base-
line from VirtualHome that trains an LSTM (Hochreiter
& Schmidhuber, 1997) from scratch on human-annotated

data, which achieves an LCS score of 34.00%. Surprisingly,
without being fine-tuned on any domain data, Translated
Codex/GPT-3 can attain LCS close to supervised methods
(32.87%, 31.05%) while generating highly executable pro-
grams (78.57%, 74.15%). 4

Task:	Read	book
Description:	Walk	to	home	office,	
turn	on	light,	grab	a	book,	sit	in	
chair,	start	to	read	the	book.
Step	1:	Walk	to	home	office
Step	2:	Walk	to	light
Step	3:	Find	light
Step	4:	Switch	on	light
Step	5:	Find	novel
Step	6:	Grab	novel
Step	7:	Find	chair

Step	8:	Sit	on	chair
Step	9:	Read	novel

Task:	Find	dictionary
Description:	Move	towards	the
bookshelf,	scan	the	bookshelf	for
the	dictionary,	when	the
dictionary	is	found,	pick	up	the
dictionary.

6. Related Works
Large-scale natural language modeling has witnessed rapid
advances since the inception of the Transformer architec-
ture (Vaswani et al., 2017). Recent works show that large
language models (LLMs) pre-trained on large unstructured
text corpus not only can perform strongly on various down-
stream NLP tasks (Devlin et al., 2018; Radford et al., 2019;
Raffel et al., 2019; Brown et al., 2020) but the learned repre-
sentations can also be used to model relations of entities (Li
et al., 2021), retrieve matching visual features (Ilharco et al.,
2020), synthesize code from docstrings (Hendrycks et al.,
2021; Chen et al., 2021), solve math problems (Cobbe et al.,
2021; Shen et al., 2021), and even as valuable priors when
applied to diverse tasks from different modalities (Lu et al.,
2021; Tsimpoukelli et al., 2021). Notably, by pre-training
on large-scale data, these models can also internalize an
implicit knowledge base containing rich information about
the world from which factual answers (e.g. “Dante was
born in ⟨PLACE⟩”) can be extracted (Petroni et al., 2019;
Jiang et al., 2020; Davison et al., 2019; Talmor et al., 2020;
Roberts et al., 2020). Compared to prior works in single-step
knowledge extraction, we aim to extract sequential actions
to complete open-ended human activities while satisfying
various constraints of interactive environments.

Many prior works have looked into grounding natural lan-
guage in embodied environments. A series of them parse
language instructions into formal logic or rely mainly on
lexical analysis to resolve various linguistic ambiguities for
embodied agents (Artzi & Zettlemoyer, 2013; Misra et al.,
2015; 2016; Tenorth et al., 2010). However, they often re-
quire hand-designed rules or scale inadequately to more
complex tasks and environments. Recently, many efforts
have been put into creating more realistic environments with
the goal to further advances in this area (Puig et al., 2018;

4Since the code to train the baseline is not publicly released
and a different train/test split is likely used, we only show results
reported in Puig et al. (2018) as a crude reference. We also cannot
compare executability as it is not reported.

Language Models as Zero-Shot Planners

Shridhar et al., 2020a;b; Kolve et al., 2017; Savva et al.,
2019; Anderson et al., 2018). At the same time, by lever-
aging representation power of neural architectures, various
works looked into creating instruction-following agents that
can perform manipulation (Lynch & Sermanet, 2020; 2021),
navigation (Fried et al., 2018; Wang et al., 2019; Majum-
dar et al., 2020), or both (Suglia et al., 2021; Hill et al.,
2020; Fu et al., 2019). Recent works also use language
as hierarchical abstractions to plan actions using imitation
learning (Sharma et al., 2021) and to guide exploration in
reinforcement learning (Mirchandani et al., 2021).

Notably, many prior works do not leverage full-blown pre-
trained LLMs; most investigate smaller LMs that require
considerable domain-specific data for fine-tuning to obtain
reasonable performance. Perhaps more importantly, few
works have evaluated LLMs in an embodiment setting that
realizes the full potential of the actionable knowledge these
models already contain by pre-training on large-scale un-
structured text: the tasks evaluated are often generated from
a handful of templates, which do not resemble the highly
diverse activities that humans perform in daily lives (Har-
rison & Riedl, 2016; Jansen, 2020). The development of
VirtualHome environment (Puig et al., 2018) enables such
possibility. However, relevant works (Puig et al., 2018; Liao
et al., 2019) rely on human-annotated data and perform su-
pervised training from scratch. Due to the lack of rich world
knowledge, these models can only generate action plans
given detailed instructions of how to act or video demonstra-
tions. Concurrent work by Li et al. (2022) validates similar
hypothesis that LMs contain rich actionable knowledge.
They fine-tune GPT-2 with demonstrations to incorporate
environment context and to predict actions in VirtualHome,
and evaluate on tasks that are generated from pre-defined
predicates. In contrast, we investigate existing knowledge
in LLMs without any additional training and evaluate on
human activity tasks expressed in free-form language.

7. Conclusion, Limitations & Future Work
In this work, we investigate actionable knowledge already
contained in pre-trained LLMs without performing any ad-
ditional training. We present several techniques to extract
this knowledge to perform common-sense grounding by
planning actions for complex human activities.

Despite promising findings, there remain several limitations
of the current study which we discuss as follows:

Drop in Correctness Although our approach can signif-
icantly improve executability of the generated plans, we
observe a considerable drop in correctness. In addition to
the errors caused by the proposed action translation (dis-
cussed in Section 4.3), this is partially attributed to the
limited expressivity of VirtualHome, as it may not support

all necessary actions to fully complete all evaluated tasks
(correctness is judged by humans). This is also reflected
by that Vanilla LMs can even surpass human-written plans,
which are restricted by environment expressivity.

Mid-Level Grounding Instead of grounding the LLM gen-
eration to low-level actions by using downstream data from
a specific environment, we focus on high-level to mid-level
grounding such that we evaluate raw knowledge of LLMs as
closely and broadly as possible. Hence, we only consider the
most prominent challenge in mid-level grounding that the
generated plans must satisfy all common-sense constraints
(characterized by executability metric). As a result, we as-
sume there is a low-level controller that can execute these
mid-level actions (such as “grab cup”), and we do not inves-
tigate the usefulness of LLMs for low-level sensorimotor
behavior grounding. To perform sensorimotor grounding,
such as navigation and interaction mask prediction, domain-
specific data and fine-tuning are likely required.

Ignorant of Environment Context We do not incorpo-
rate observation context or feedback into our models. To
some extent, we approach LLMs in the same way as how
VirtualHome asks human annotators to write action plans
for a given human activity by imagination, in which case
humans similarly do not observe environment context. Sim-
ilar to human-written plans, we assume the plans generated
by LMs only refer to one instance of each object class. As a
result, successful plan generation for tasks like “stack two
plates on the right side of a cup” is not possible.

Evaluation Protocol We measure quality of plans by a
combination of executability and correctness instead of one
straightforward metric. To the best of our knowledge, there
isn’t a known way to computationally assess the semantic
correctness of the plans due to the tasks’ open-ended and
multi-modal nature. Prior work also adopt similar combina-
tion of metrics (Puig et al., 2018). We report two metrics
individually to shine light on the deficiencies of existing
LLMs which we hope could provide insights for future
works. To provide a holistic view, we report results by
combining two metrics in Section 5.1.

We believe addressing each of these shortcoming will lead
to exciting future directions. We also hope these findings
can inspire future investigations into using pre-trained LMs
for goal-driven decision-making problems and grounding
the learned knowledge in embodied environments.

Acknowledgment
We would like to thank OpenAI for providing academic
access to the OpenAI API and Luke Metz for valuable feed-
back and discussions. This work was supported in part
by Berkeley Deep Drive, NSF IIS-2024594, and GoodAI
Research Award.

Language Models as Zero-Shot Planners

References
Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M.,

Sünderhauf, N., Reid, I., Gould, S., and Van Den Hengel,
A. Vision-and-language navigation: Interpreting visually-
grounded navigation instructions in real environments. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3674–3683, 2018.

Artzi, Y. and Zettlemoyer, L. Weakly supervised learning
of semantic parsers for mapping instructions to actions.
Transactions of the Association for Computational Lin-
guistics, 1:49–62, 2013.

BIG-bench collaboration. Beyond the imitation game: Mea-
suring and extrapolating the capabilities of language mod-
els. In preparation, 2021. URL https://github.
com/google/BIG-bench/.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-
lut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card,
D., Castellon, R., Chatterji, N., Chen, A., Creel, K.,
Davis, J. Q., Demszky, D., Donahue, C., Doumbouya,
M., Durmus, E., Ermon, S., Etchemendy, J., Ethayarajh,
K., Fei-Fei, L., Finn, C., Gale, T., Gillespie, L., Goel,
K., Goodman, N., Grossman, S., Guha, N., Hashimoto,
T., Henderson, P., Hewitt, J., Ho, D. E., Hong, J., Hsu,
K., Huang, J., Icard, T., Jain, S., Jurafsky, D., Kalluri, P.,
Karamcheti, S., Keeling, G., Khani, F., Khattab, O., Kohd,
P. W., Krass, M., Krishna, R., Kuditipudi, R., Kumar, A.,
Ladhak, F., Lee, M., Lee, T., Leskovec, J., Levent, I., Li,
X. L., Li, X., Ma, T., Malik, A., Manning, C. D., Mirchan-
dani, S., Mitchell, E., Munyikwa, Z., Nair, S., Narayan,
A., Narayanan, D., Newman, B., Nie, A., Niebles, J. C.,
Nilforoshan, H., Nyarko, J., Ogut, G., Orr, L., Papadim-
itriou, I., Park, J. S., Piech, C., Portelance, E., Potts, C.,
Raghunathan, A., Reich, R., Ren, H., Rong, F., Roohani,
Y., Ruiz, C., Ryan, J., Ré, C., Sadigh, D., Sagawa, S., San-
thanam, K., Shih, A., Srinivasan, K., Tamkin, A., Taori,
R., Thomas, A. W., Tramèr, F., Wang, R. E., Wang, W.,
Wu, B., Wu, J., Wu, Y., Xie, S. M., Yasunaga, M., You, J.,
Zaharia, M., Zhang, M., Zhang, T., Zhang, X., Zhang, Y.,
Zheng, L., Zhou, K., and Liang, P. On the opportunities
and risks of foundation models, 2021.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., and Specia,
L. Semeval-2017 task 1: Semantic textual similarity-
multilingual and cross-lingual focused evaluation. arXiv
preprint arXiv:1708.00055, 2017.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Ponde, H., Kaplan,
J., Edwards, H., Burda, Y., Joseph, N., Brockman, G.,
et al. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374, 2021.

Cobbe, K., Kosaraju, V., Bavarian, M., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168,
2021.

Davison, J., Feldman, J., and Rush, A. M. Commonsense
knowledge mining from pretrained models. In Proceed-
ings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 1173–1178, 2019.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Fried, D., Hu, R., Cirik, V., Rohrbach, A., Andreas,
J., Morency, L.-P., Berg-Kirkpatrick, T., Saenko, K.,
Klein, D., and Darrell, T. Speaker-follower models
for vision-and-language navigation. arXiv preprint
arXiv:1806.02724, 2018.

Fu, J., Korattikara, A., Levine, S., and Guadarrama, S.
From language to goals: Inverse reinforcement learn-
ing for vision-based instruction following. arXiv preprint
arXiv:1902.07742, 2019.

Gao, T., Fisch, A., and Chen, D. Making pre-trained lan-
guage models better few-shot learners. arXiv preprint
arXiv:2012.15723, 2020.

Harrison, B. and Riedl, M. O. Learning from stories: using
crowdsourced narratives to train virtual agents. In Twelfth
Artificial Intelligence and Interactive Digital Entertain-
ment Conference, 2016.

Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora,
A., Guo, E., Burns, C., Puranik, S., He, H., Song, D., et al.
Measuring coding challenge competence with apps. arXiv
preprint arXiv:2105.09938, 2021.

Hill, F., Mokra, S., Wong, N., and Harley, T. Hu-
man instruction-following with deep reinforcement learn-
ing via transfer-learning from text. arXiv preprint
arXiv:2005.09382, 2020.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. The
curious case of neural text degeneration. arXiv preprint
arXiv:1904.09751, 2019.

https://github.com/google/BIG-bench/
https://github.com/google/BIG-bench/

Language Models as Zero-Shot Planners

Ilharco, G., Zellers, R., Farhadi, A., and Hajishirzi, H. Prob-
ing text models for common ground with visual represen-
tations. arXiv e-prints, pp. arXiv–2005, 2020.

Jansen, P. A. Visually-grounded planning without vision:
Language models infer detailed plans from high-level
instructions. arXiv preprint arXiv:2009.14259, 2020.

Jiang, Z., Xu, F. F., Araki, J., and Neubig, G. How can we
know what language models know? Transactions of the
Association for Computational Linguistics, 8:423–438,
2020.

Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L.,
Herrasti, A., Gordon, D., Zhu, Y., Gupta, A., and Farhadi,
A. Ai2-thor: An interactive 3d environment for visual ai.
arXiv preprint arXiv:1712.05474, 2017.

Li, B. Z., Nye, M., and Andreas, J. Implicit representations
of meaning in neural language models. arXiv preprint
arXiv:2106.00737, 2021.

Li, S., Puig, X., Du, Y., Wang, C., Akyurek, E., Torralba,
A., Andreas, J., and Mordatch, I. Pre-trained language
models for interactive decision-making. arXiv preprint
arXiv:2202.01771, 2022.

Liao, Y.-H., Puig, X., Boben, M., Torralba, A., and Fidler,
S. Synthesizing environment-aware activities via activity
sketches. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 6291–
6299, 2019.

Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., and Chen,
W. What makes good in-context examples for gpt-3?
arXiv preprint arXiv:2101.06804, 2021.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

Lu, K., Grover, A., Abbeel, P., and Mordatch, I. Pretrained
transformers as universal computation engines. arXiv
preprint arXiv:2103.05247, 2021.

Lynch, C. and Sermanet, P. Grounding language in play.
arXiv preprint arXiv:2005.07648, 2020.

Lynch, C. and Sermanet, P. Language conditioned imitation
learning over unstructured data. Proceedings of Robotics:
Science and Systems. doi, 10, 2021.

Majumdar, A., Shrivastava, A., Lee, S., Anderson, P., Parikh,
D., and Batra, D. Improving vision-and-language navi-
gation with image-text pairs from the web. In European
Conference on Computer Vision, pp. 259–274. Springer,
2020.

Mirchandani, S., Karamcheti, S., and Sadigh, D. Ella: Ex-
ploration through learned language abstraction. arXiv
preprint arXiv:2103.05825, 2021.

Misra, D., Tao, K., Liang, P., and Saxena, A. Environment-
driven lexicon induction for high-level instructions. In
Proceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 992–1002, 2015.

Misra, D. K., Sung, J., Lee, K., and Saxena, A. Tell me
dave: Context-sensitive grounding of natural language to
manipulation instructions. The International Journal of
Robotics Research, 35(1-3):281–300, 2016.

Pennington, J., Socher, R., and Manning, C. D. Glove:
Global vectors for word representation. In Proceedings
of the 2014 conference on empirical methods in natural
language processing (EMNLP), pp. 1532–1543, 2014.

Petroni, F., Rocktäschel, T., Lewis, P., Bakhtin, A., Wu,
Y., Miller, A. H., and Riedel, S. Language models as
knowledge bases? arXiv preprint arXiv:1909.01066,
2019.

Poesia, G., Polozov, O., Le, V., Tiwari, A., Soares, G., Meek,
C., and Gulwani, S. Synchromesh: Reliable code gener-
ation from pre-trained language models. arXiv preprint
arXiv:2201.11227, 2022.

Puig, X., Ra, K., Boben, M., Li, J., Wang, T., Fidler, S.,
and Torralba, A. Virtualhome: Simulating household
activities via programs. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp.
8494–8502, 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Reimers, N. and Gurevych, I. Sentence-bert: Sentence
embeddings using siamese bert-networks. arXiv preprint
arXiv:1908.10084, 2019.

Roberts, A., Raffel, C., and Shazeer, N. How much knowl-
edge can you pack into the parameters of a language
model? arXiv preprint arXiv:2002.08910, 2020.

Rubin, O., Herzig, J., and Berant, J. Learning to re-
trieve prompts for in-context learning. arXiv preprint
arXiv:2112.08633, 2021.

Language Models as Zero-Shot Planners

Savva, M., Kadian, A., Maksymets, O., Zhao, Y., Wijmans,
E., Jain, B., Straub, J., Liu, J., Koltun, V., Malik, J.,
et al. Habitat: A platform for embodied ai research. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 9339–9347, 2019.

Sharma, P., Torralba, A., and Andreas, J. Skill induc-
tion and planning with latent language. arXiv preprint
arXiv:2110.01517, 2021.

Shen, J., Yin, Y., Li, L., Shang, L., Jiang, X., Zhang, M.,
and Liu, Q. Generate & rank: A multi-task framework for
math word problems. arXiv preprint arXiv:2109.03034,
2021.

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han,
W., Mottaghi, R., Zettlemoyer, L., and Fox, D. Alfred:
A benchmark for interpreting grounded instructions for
everyday tasks. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10740–10749, 2020a.

Shridhar, M., Yuan, X., Côté, M.-A., Bisk, Y., Trischler,
A., and Hausknecht, M. Alfworld: Aligning text and
embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020b.

Suglia, A., Gao, Q., Thomason, J., Thattai, G., and
Sukhatme, G. Embodied bert: A transformer model
for embodied, language-guided visual task completion.
arXiv preprint arXiv:2108.04927, 2021.

Talmor, A., Elazar, Y., Goldberg, Y., and Berant, J. olmpics-
on what language model pre-training captures. Transac-
tions of the Association for Computational Linguistics, 8:
743–758, 2020.

Tenorth, M., Nyga, D., and Beetz, M. Understanding and
executing instructions for everyday manipulation tasks
from the world wide web. In 2010 ieee international
conference on robotics and automation, pp. 1486–1491.
IEEE, 2010.

Tsimpoukelli, M., Menick, J., Cabi, S., Eslami, S., Vinyals,
O., and Hill, F. Multimodal few-shot learning with frozen
language models. arXiv preprint arXiv:2106.13884,
2021.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Wang, X., Huang, Q., Celikyilmaz, A., Gao, J., Shen, D.,
Wang, Y.-F., Wang, W. Y., and Zhang, L. Reinforced
cross-modal matching and self-supervised imitation learn-
ing for vision-language navigation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6629–6638, 2019.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
et al. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771,
2019.

Language Models as Zero-Shot Planners

A. Appendix
A.1. Example Program in VirtualHome

Below is an example program (i.e. action plan) for the task “Relax on sofa”:

[WALK] ⟨living room⟩(1)
[WALK] ⟨television⟩(1)
[FIND] ⟨television⟩(1)
[SWITCHON] ⟨television⟩(1)
[FIND] ⟨sofa⟩(1)
[SIT] ⟨sofa⟩(1)
[TURNTO] ⟨television⟩(1)
[WATCH] ⟨television⟩(1)

A.2. Hyperparameter Search

For each evaluated method, we perform grid search over the following hyperparameters:

Name Description Search Values

epsilon (ϵ) Out-of-distribution early termination threshold {0, 0.4, 0.8}
temperature sampling parameter adjusting relative token probabilities {0.1, 0.3, 0.6}
k number of samples generated by Planning LM {1, 10}
beta (β) weighting coefficient in action translation to trade off semantic

and translation correctness
{0.3}

frequence penalty OpenAI API only; penalize new tokens based on their existing
frequency in the text so far

{0.1, 0.3, 0.6, 0.9}

presence penalty OpenAI API only; penalize new tokens based on whether they
appear in the text so far

{0.3, 0.5, 0.8}

repetition penalty Hugging Face Transformers only; penalize new tokens based
on whether repeating existing text

{1.0, 1.2, 1.5, 1.8}

For methods that use fixed example across evaluated tasks, we search over the following three randomly chosen examples:

Example 1 Example 2 Example 3

Task: Use computer
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find computer
Step 6: Switch on computer
Step 7: Turn to computer
Step 8: Look at computer
Step 9: Find keyboard
Step 10: Type on keyboard

Task: Relax on sofa
Step 1: Walk to home office
Step 2: Walk to couch
Step 3: Find couch
Step 4: Sit on couch
Step 5: Find pillow
Step 6: Lie on couch

Task: Read book
Step 1: Walk to home office
Step 2: Walk to novel
Step 3: Find novel
Step 4: Grab novel
Step 5: Find chair
Step 6: Sit on chair
Step 7: Read novel

Language Models as Zero-Shot Planners

A.3. Details of Human Evaluations

Human evaluations are conducted on Amazon Mechanical Turk. For each method, we generate action plans for all 88
high-level tasks. To account for the expressivity of the VirtualHome environment (Puig et al., 2018), we include action
plans written by human experts from the VirtualHome dataset as references in our human evaluations. The evaluations
are conducted in the form of questionnaires containing all action plans whose order is randomly shuffled and whose
corresponding methods are unknown to the annotators. Human annotators are required to answer all the questions in
the questionnaire. For each question, the annotators need to answer either “Yes” or “No” indicating if they believe the
action plan completes the task. For each method, we report correctness percentage averaged across 10 participated human
annotators and all 88 tasks. We further report the standard error of the mean across human annotators. Screenshot can be
found in Figure 4.

Figure 4. Screenshot of human evaluation interface, conducted as a Google Forms questionnaire.

Language Models as Zero-Shot Planners

A.4. Pseudo-Code

Algorithm 1 Generating Action Plans from Pre-Trained Language Models with Proposed Procedure
Notation Summary:
LMP : text completion language model (Planning LM)
LMT : text embedding language model (Translation LM)
{(Ti, Ei)}Ni=1: demonstration set, where T is task name and E is example plan for T
C: cosine similarity function
P : mean token log probability under LMP

Input: query task name Q, e.g. “make breakfast”
Output: plan w/ admissible actions, e.g. “open fridge”

Extract most similar example (T ∗, E∗) whose T ∗ maximizes C(LMT (T), LMT (Q))
Initialize prompt with (T ∗ + E∗ +Q)
while max step is not reached do

Sample LMP w/ current prompt to obtain k actions
for each sample â and each admissible action ae do

Calculate score C(LMT (â), LMT (ae)) + β · P (â)
end for
Append highest-scoring env action a∗e to prompt
Append a∗e to output
if > 50% samples 0-length or best score < ϵ then

break
end if

end while

Language Models as Zero-Shot Planners

A.5. All Evaluated Tasks

The evaluated tasks are part of the ActivityPrograms dataset collected by Puig et al. (2018). Some of the task names may
contain misspelling(s).

1. Apply lotion

2. Arrange folders

3. Breakfast

4. Browse internet

5. Brush teeth

6. Change clothes

7. Change sheets and pillow cases

8. Collect napkin rings

9. Complete surveys on amazon
turk

10. Compute

11. Decorate it

12. Do homework

13. Do work

14. Draft home

15. Draw picture

16. Dry soap bottles

17. Dust

18. Eat cereal

19. Eat cheese

20. Eat snacks and drink tea

21. Empty dishwasher and fill dish-
washer

22. Entertain

23. Feed me

24. Find dictionary

25. Fix snack

26. Get glass of milk

27. Give milk to cat

28. Go to sleep

29. Grab things

30. Hand washing

31. Hang keys

32. Hang pictures

33. Iron shirt

34. Keep cats inside while door is
open

35. Keep cats out of room

36. Leave home

37. Listen to music

38. Look at mirror

39. Look at painting

40. Make bed

41. Make popcorn

42. Organize closet

43. Organize pantry

44. Paint ceiling

45. Pay bills

46. Pick up toys

47. Play musical chairs

48. Prepare pot of boiling water

49. Push all chairs in

50. Push in desk chair

51. Put alarm clock in bedroom

52. Put away groceries

53. Put away toys

54. Put clothes away

55. Put mail in mail organizer

56. Put on your shoes

57. Put out flowers

58. Put up decoration

59. Read

60. Read newspaper

61. Read on sofa

62. Read to child

63. Read yourself to sleep

64. Receive credit card

65. Restock

66. Scrubbing living room tile floor
is once week activity for me

67. Style hair

68. Switch on lamp

69. Take jacket off

70. Take shoes off

71. Tale off shoes

72. Throw away paper

73. Try yourself off

74. Turn off TV

75. Turn on TV with remote

76. Turn on radio

77. Type up document

78. Unload various items from pock-
ets and place them in bowl on ta-
ble

79. Use laptop

80. Vacuum

81. Walk to room

82. Wash dirty dishes

83. Wash face

84. Wash monitor

85. Wash teeth

86. Watch horror movie

87. Wipe down sink

88. Write book

Language Models as Zero-Shot Planners

A.6. Natural Language Templates for Atomic Actions

We define a natural language template for each atomic action and only expose the converted natural language text in all
operations involving language models, i.e. autoregressive generation and action translation. Full list of the atomic actions
and their natural language templates is below.

Atomic Action in VirtualHome Syntax Natural Language Template

[CLOSE] ⟨arg1⟩(1) close ⟨arg1⟩
[CUT] ⟨arg1⟩(1) cut ⟨arg1⟩
[DRINK] ⟨arg1⟩(1) drink ⟨arg1⟩
[DROP] ⟨arg1⟩(1) drop ⟨arg1⟩
[EAT] ⟨arg1⟩(1) eat ⟨arg1⟩
[FIND] ⟨arg1⟩(1) find ⟨arg1⟩
[GRAB] ⟨arg1⟩(1) grab ⟨arg1⟩
[GREET] ⟨arg1⟩(1) greet ⟨arg1⟩
[LIE] ⟨arg1⟩(1) lie on ⟨arg1⟩
[LOOKAT] ⟨arg1⟩(1) look at ⟨arg1⟩
[MOVE] ⟨arg1⟩(1) move ⟨arg1⟩
[OPEN] ⟨arg1⟩(1) open ⟨arg1⟩
[PLUGIN] ⟨arg1⟩(1) plug in ⟨arg1⟩
[PLUGOUT] ⟨arg1⟩(1) plug out ⟨arg1⟩
[POINTAT] ⟨arg1⟩(1) point at ⟨arg1⟩
[POUR] ⟨arg1⟩(1) ⟨arg2⟩(1) pour ⟨arg1⟩ into ⟨arg2⟩
[PULL] ⟨arg1⟩(1) pull ⟨arg1⟩
[PUSH] ⟨arg1⟩(1) push ⟨arg1⟩
[PUTBACK] ⟨arg1⟩(1) ⟨arg2⟩(1) put ⟨arg1⟩ on ⟨arg2⟩
[PUTIN] ⟨arg1⟩(1) ⟨arg2⟩(1) put ⟨arg1⟩ in ⟨arg2⟩
[PUTOBJBACK] ⟨arg1⟩(1) put back ⟨arg1⟩
[PUTOFF] ⟨arg1⟩(1) take off ⟨arg1⟩
[PUTON] ⟨arg1⟩(1) put on ⟨arg1⟩
[READ] ⟨arg1⟩(1) read ⟨arg1⟩
[RELEASE] release
[RINSE] ⟨arg1⟩(1) rinse ⟨arg1⟩
[RUN] ⟨arg1⟩(1) run to ⟨arg1⟩
[SCRUB] ⟨arg1⟩(1) scrub ⟨arg1⟩
[SIT] ⟨arg1⟩(1) sit on ⟨arg1⟩
[SLEEP] sleep
[SQUEEZE] ⟨arg1⟩(1) squeeze ⟨arg1⟩
[STANDUP] stand up
[SWITCHOFF] ⟨arg1⟩(1) switch off ⟨arg1⟩
[SWITCHON] ⟨arg1⟩(1) switch on ⟨arg1⟩
[TOUCH] ⟨arg1⟩(1) touch ⟨arg1⟩
[TURNTO] ⟨arg1⟩(1) turn to ⟨arg1⟩
[TYPE] ⟨arg1⟩(1) type on ⟨arg1⟩
[WAKEUP] wake up
[WALK] ⟨arg1⟩(1) walk to ⟨arg1⟩
[WASH] ⟨arg1⟩(1) wash ⟨arg1⟩
[WATCH] ⟨arg1⟩(1) watch ⟨arg1⟩
[WIPE] ⟨arg1⟩(1) wipe ⟨arg1⟩

Language Models as Zero-Shot Planners

A.7. Random Samples of Action Plans

Uncurated random sample action plans produced by human-annotators (from VirtualHome dataset), Vanilla GPT-3 175B,
and Translated GPT-3 175B.

Human Vanilla GPT-3 175B Translated GPT-3 175B (Ours)

Task: Go to sleep
Step 1: Walk to bedroom
Step 2: Walk to bed
Step 3: Find bed
Step 4: Turn to bed
Step 5: Look at bed
Step 6: Sit on bed
Step 7: Sleep

Task: Go to sleep
Step 1: Walk to bedroom
Step 2: Walk to bed
Step 3: Find pajamas
Step 4: Put on pajamas
Step 5: Find slippers
Step 6: Put on slippers
Step 7: Get in bed
Step 8: Sleep

Task: Go to sleep
Step 1: Walk to bedroom
Step 2: Walk to bed
Step 3: Lie on bed
Step 4: Sleep

Task: Browse internet
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find computer
Step 6: Switch on computer
Step 7: Turn to computer
Step 8: Look at computer
Step 9: Find keyboard
Step 10: Type on keyboard

Task: Browse internet
Step 1: Walk to home office
Step 2: Walk to computer
Step 3: Find computer
Step 4: Grab computer
Step 5: Find chair
Step 6: Sit on chair
Step 7: Browse internet

Task: Browse internet
Step 1: Walk to home office
Step 2: Walk to desk
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find computer
Step 6: Switch on computer
Step 7: Find mouse
Step 8: Grab mouse
Step 9: Turn to computer
Step 10: Point at computer

Task: Wash teeth
Step 1: Stand up
Step 2: Walk to bathroom
Step 3: Walk to sink
Step 4: Find sink
Step 5: Turn to sink
Step 6: Look at sink
Step 7: Find teeth
Step 8: Wash teeth

Task: Wash teeth
Step 1: Walk to bathroom
Step 2: Walk to sink
Step 3: Turn on faucet
Step 4: Grab toothbrush
Step 5: Put toothpaste on toothbrush
Step 6: Put toothbrush in mouth
Step 7: Brush teeth
Step 8: Rinse mouth out with water
Step 9: Turn off faucet
Step 10: Walk back to bedroom

Task: Wash teeth
Step 1: Walk to bathroom
Step 2: Walk to sink
Step 3: Find faucet
Step 4: Switch on faucet
Step 5: Walk to toothbrush
Step 6: Grab toothbrush

Task: Brush teeth
Step 1: Walk to bathroom
Step 2: Walk to tooth paste
Step 3: Find tooth paste
Step 4: Grab tooth paste
Step 5: Find toothbrush
Step 6: Grab toothbrush

Task: Brush teeth
Step 1: Walk to bathroom
Step 2: Walk to sink
Step 3: Turn on water
Step 4: Grab toothbrush
Step 5: Put toothpaste on toothbrush
Step 6: Put toothbrush in mouth
Step 7: Brush teeth

Task: Brush teeth
Step 1: Find toothbrush
Step 2: Turn to toothbrush
Step 3: Point at toothbrush
Step 4: Wash toothbrush

Language Models as Zero-Shot Planners

Task: Vacuum
Step 1: Walk to home office
Step 2: Walk to computer
Step 3: Find vacuum cleaner
Step 4: Switch on vacuum cleaner
Step 5: Switch off vacuum cleaner

Task: Vacuum
Step 1: Walk to home office
Step 2: Walk to vacuum
Step 3: Find vacuum
Step 4: Grab vacuum
Step 5: Find chair
Step 6: Sit on chair
Step 7: Vacuum

Task: Vacuum
Step 1: Walk to home office
Step 2: Walk to dresser
Step 3: Open dresser
Step 4: Find vacuum cleaner
Step 5: Grab vacuum cleaner
Step 6: Pull vacuum cleaner
Step 7: Plug in vacuum cleaner
Step 8: Switch on vacuum cleaner

Task: Change sheets and pillow cases
Step 1: Find pillow
Step 2: Turn to pillow
Step 3: Look at pillow
Step 4: Grab pillow

Task: Change sheets and pillow cases
Step 1: Walk to bedroom
Step 2: Walk to bed
Step 3: Change sheets and pillow
cases
Step 4: Walk to kitchen
Step 5: Walk to sink
Step 6: Wash sheets and pillow cases
Step 7: Walk to bedroom
Step 8: Put sheets and pillow cases
on bed
Step 9: Walk to living room
Step 10: Sit on couch

Task: Change sheets and pillow cases
Step 1: Walk to bedroom
Step 2: Walk to bed
Step 3: Find sheets
Step 4: Grab sheets
Step 5: Find pillow
Step 6: Grab pillow

Task: Wash dirty dishes
Step 1: Walk to dining room
Step 2: Walk to sink
Step 3: Find sponge
Step 4: Grab sponge
Step 5: Find faucet
Step 6: Switch on faucet
Step 7: Put sponge on sink
Step 8: Grab sponge
Step 9: Find dish soap
Step 10: Grab dish soap
Step 11: Pour dish soap into sponge
Step 12: Put back dish soap
Step 13: Find plate
Step 14: Grab plate
Step 15: Scrub plate
Step 16: Rinse plate
Step 17: Find dishrack
Step 18: Put plate on dishrack
Step 19: Find plate
Step 20: Grab plate
Step 21: Scrub plate
Step 22: Rinse plate
Step 23: Put plate on dishrack
Step 24: Rinse sponge
Step 25: Put back sponge
Step 26: Switch off faucet

Task: Wash dirty dishes
Step 1: Walk to kitchen
Step 2: Walk to sink
Step 3: Wash dishes
Step 4: Dry dishes
Step 5: Put dishes away

Task: Wash dirty dishes
Step 1: Walk to dining room
Step 2: Walk to sink
Step 3: Find faucet
Step 4: Switch on faucet
Step 5: Walk to plate
Step 6: Grab plate

Language Models as Zero-Shot Planners

Task: Feed me
Step 1: Walk to dining room
Step 2: Walk to plate
Step 3: Find plate
Step 4: Grab plate
Step 5: Find food
Step 6: Grab food
Step 7: Put food on plate
Step 8: Find food
Step 9: Grab food
Step 10: Put food on plate
Step 11: Find fork
Step 12: Grab fork
Step 13: Eat plate
Step 14: Eat plate

Task: Feed me
Step 1: Walk to kitchen
Step 2: Walk to refrigerator
Step 3: Open refrigerator
Step 4: Grab food
Step 5: Find plate
Step 6: Put food on plate
Step 7: Find fork
Step 8: Put fork on plate
Step 9: Find spoon
Step 10: Put spoon on plate
Step 11: Find cup
Step 12: Pour water in cup
Step 13: Walk to table
Step 14: Sit at table
Step 15: Eat food

Task: Feed me
Step 1: Walk to dining room
Step 2: Walk to table
Step 3: Find table
Step 4: Turn to table
Step 5: Find chair
Step 6: Sit on chair
Step 7: Find food
Step 8: Grab food
Step 9: Find plate
Step 10: Put food on plate

Task: Breakfast
Step 1: Walk to dining room
Step 2: Walk to food
Step 3: Grab food
Step 4: Walk to bedroom
Step 5: Walk to television
Step 6: Switch on television
Step 7: Walk to bed
Step 8: Lie on bed
Step 9: Turn to television
Step 10: Watch television
Step 11: Eat food

Task: Breakfast
Step 1: Walk to kitchen
Step 2: Find cereal
Step 3: Pour cereal into bowl
Step 4: Pour milk into bowl
Step 5: Walk to living room
Step 6: Sit on couch
Step 7: Eat cereal

Task: Breakfast
Step 1: Walk to dining room
Step 2: Walk to freezer
Step 3: Find freezer
Step 4: Open freezer
Step 5: Find bread
Step 6: Grab bread
Step 7: Close freezer
Step 8: Find toaster
Step 9: Plug in toaster
Step 10: Put bread on plate
Step 11: Switch on toaster

Task: Read
Step 1: Find novel
Step 2: Grab novel
Step 3: Walk to bedroom
Step 4: Walk to chair
Step 5: Sit on chair
Step 6: Read novel

Task: Read
Step 1: Walk to home office
Step 2: Walk to novel
Step 3: Find novel
Step 4: Grab novel
Step 5: Find chair
Step 6: Sit on chair
Step 7: Read novel

Task: Read
Step 1: Walk to home office
Step 2: Walk to light
Step 3: Find light
Step 4: Switch on light
Step 5: Find novel
Step 6: Grab novel
Step 7: Find chair
Step 8: Sit on chair
Step 9: Read novel

Task: Style hair
Step 1: Find towel
Step 2: Turn to towel
Step 3: Point at towel
Step 4: Wash towel
Step 5: Turn to towel
Step 6: Look at towel
Step 7: Squeeze towel
Step 8: Walk to bathroom

Task: Style hair
Step 1: Walk to bathroom
Step 2: Walk to mirror
Step 3: Find hairbrush
Step 4: Grab hairbrush
Step 5: Find chair
Step 6: Sit on chair
Step 7: Style hair

Task: Style hair
Step 1: Walk to bathroom
Step 2: Walk to mirror
Step 3: Find hair
Step 4: Grab hair
Step 5: Find comb
Step 6: Grab comb
Step 7: Find brush
Step 8: Grab brush

Language Models as Zero-Shot Planners

Task: Pick up toys
Step 1: Walk to bedroom
Step 2: Walk to toy
Step 3: Find toy
Step 4: Grab toy
Step 5: Walk to filing cabinet
Step 6: Open filing cabinet
Step 7: Put toy on filing cabinet
Step 8: Find toy
Step 9: Grab toy
Step 10: Walk to filing cabinet
Step 11: Put toy on filing cabinet
Step 12: Find toy
Step 13: Grab toy
Step 14: Walk to filing cabinet
Step 15: Put toy on filing cabinet
Step 16: Close filing cabinet

Task: Pick up toys
Step 1: Walk to living room
Step 2: Walk to toy box
Step 3: Find toy box
Step 4: Grab toy box
Step 5: Find chair
Step 6: Sit on chair
Step 7: Pick up toys

Task: Pick up toys
Step 1: Find toy
Step 2: Turn to toy
Step 3: Point at toy
Step 4: Wash toy

Task: Decorate it
Step 1: Walk to home office
Step 2: Walk to centerpiece
Step 3: Find centerpiece
Step 4: Grab centerpiece
Step 5: Walk to table
Step 6: Put centerpiece on table
Step 7: Find drawing
Step 8: Grab drawing
Step 9: Find wall
Step 10: Turn to wall
Step 11: Put drawing on wall
Step 12: Find drawing
Step 13: Grab drawing
Step 14: Turn to wall
Step 15: Put drawing on wall

Task: Decorate it
Step 1: Walk to home office
Step 2: Walk to novel
Step 3: Find novel
Step 4: Grab novel
Step 5: Find chair
Step 6: Sit on chair
Step 7: Read novel
Step 8: Decorate it

Task: Decorate it
Step 1: Walk to table
Step 2: Walk to centerpiece
Step 3: Look at centerpiece
Step 4: Grab centerpiece
Step 5: Point at centerpiece

Task: Put away groceries
Step 1: Walk to dining room
Step 2: Walk to freezer
Step 3: Find freezer
Step 4: Open freezer
Step 5: Find food
Step 6: Grab food
Step 7: Put food in freezer
Step 8: Close freezer

Task: Put away groceries
Step 1: Walk to kitchen
Step 2: Walk to refrigerator
Step 3: Open refrigerator
Step 4: Grab milk and eggs
Step 5: Close refrigerator
Step 6: Walk to counter
Step 7: Put milk and eggs on counter
Step 8: Walk to cabinet
Step 9: Open cabinet
Step 10: Put away milk and eggs
Step 11: Close cabinet
Step 12: Walk to refrigerator
Step 13: Grab orange juice and bread
Step 14: Close refrigerator

Task: Put away groceries
Step 1: Walk to kitchen
Step 2: Walk to fridge
Step 3: Open fridge
Step 4: Put food in fridge
Step 5: Close fridge
Step 6: Walk to dining room
Step 7: Walk to livingroom
Step 8: Walk to bedroom
Step 9: Walk to bathroom

Language Models as Zero-Shot Planners

Task: Draw picture
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find desk
Step 6: Open desk
Step 7: Find check
Step 8: Grab check
Step 9: Put check on desk
Step 10: Find pencil
Step 11: Grab pencil
Step 12: Close desk

Task: Draw picture
Step 1: Walk to home office
Step 2: Walk to pencils
Step 3: Find pencils
Step 4: Grab pencils
Step 5: Find paper
Step 6: Sit on chair
Step 7: Draw picture

Task: Draw picture
Step 1: Walk to home office
Step 2: Walk to wall
Step 3: Walk to drawing
Step 4: Find drawing
Step 5: Turn to drawing
Step 6: Look at drawing
Step 7: Touch drawing
Step 8: Pull drawing
Step 9: Push drawing

Task: Entertain
Step 1: Walk to home office
Step 2: Walk to cheese
Step 3: Find cheese
Step 4: Find food
Step 5: Find couch
Step 6: Sit on couch
Step 7: Find wine glass
Step 8: Grab wine glass
Step 9: Drink wine glass

Task: Entertain
Step 1: Walk to living room
Step 2: Walk to entertainment center
Step 3: Find remote
Step 4: Grab remote
Step 5: Find chair
Step 6: Sit on chair
Step 7: Entertain self

Task: Entertain
Step 1: Walk to livingroom
Step 2: Walk to couch
Step 3: Find couch
Step 4: Sit on couch

Task: Type up document
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find computer
Step 6: Switch on computer
Step 7: Turn to computer
Step 8: Look at computer
Step 9: Find check
Step 10: Grab check
Step 11: Read check
Step 12: Find coffee cup
Step 13: Grab coffee cup
Step 14: Drink coffee cup
Step 15: Put back coffee cup
Step 16: Find keyboard
Step 17: Type on keyboard

Task: Type up document
Step 1: Walk to home office
Step 2: Walk to keyboard
Step 3: Find keyboard
Step 4: Grab keyboard
Step 5: Find chair
Step 6: Sit on chair
Step 7: Type document

Task: Type up document
Step 1: Walk to home office
Step 2: Walk to computer
Step 3: Find computer
Step 4: Switch on computer
Step 5: Find chair
Step 6: Sit on chair
Step 7: Turn to computer
Step 8: Look at computer
Step 9: Find keyboard
Step 10: Grab keyboard
Step 11: Type on keyboard
Step 12: Stand up
Step 13: Find printer
Step 14: Switch on printer
Step 15: Find printing paper

Task: Put on your shoes
Step 1: Walk to home office
Step 2: Walk to shoes
Step 3: Find shoes
Step 4: Grab shoes
Step 5: Find chair
Step 6: Sit on chair
Step 7: Find feet both
Step 8: Put shoes on feet both

Task: Put on your shoes
Step 1: Walk to home office
Step 2: Walk to shoes
Step 3: Find shoes
Step 4: Grab shoes
Step 5: Find chair
Step 6: Sit on chair
Step 7: Put on shoes

Task: Put on your shoes
Step 1: Find shoes
Step 2: Turn to shoes
Step 3: Point at shoes
Step 4: Wash shoes

Language Models as Zero-Shot Planners

Task: Watch horror movie
Step 1: Walk to home office
Step 2: Walk to remote control
Step 3: Find remote control
Step 4: Grab remote control
Step 5: Find couch
Step 6: Sit on couch
Step 7: Find television
Step 8: Switch on television
Step 9: Turn to television
Step 10: Watch television

Task: Watch horror movie
Step 1: Walk to home office
Step 2: Walk to horror movie
Step 3: Find horror movie
Step 4: Grab horror movie
Step 5: Find chair
Step 6: Sit on chair
Step 7: Watch horror movie

Task: Watch horror movie
Step 1: Find television
Step 2: Switch on television
Step 3: Find cd player
Step 4: Switch on cd player
Step 5: Switch off cd player
Step 6: Find remote control
Step 7: Switch on remote control
Step 8: Switch off remote control

Task: Turn on radio
Step 1: Walk to home office
Step 2: Walk to stereo
Step 3: Find stereo
Step 4: Find electrical outlet
Step 5: Turn to electrical outlet
Step 6: Plug in stereo
Step 7: Switch on electrical outlet
Step 8: Switch on stereo

Task: Turn on radio
Step 1: Walk to home office
Step 2: Walk to radio
Step 3: Find radio
Step 4: Grab radio
Step 5: Find chair
Step 6: Sit on chair
Step 7: Turn on radio

Task: Turn on radio
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find remote control
Step 6: Grab remote control
Step 7: Find radio
Step 8: Point at radio
Step 9: Switch on radio
Step 10: Put back remote control

Task: Look at mirror
Step 1: Walk to bathroom
Step 2: Walk to mirror
Step 3: Find mirror
Step 4: Turn to mirror
Step 5: Look at mirror

Task: Look at mirror
Step 1: Walk to bathroom
Step 2: Walk to mirror
Step 3: Look in mirror

Task: Look at mirror
Step 1: Walk to bedroom
Step 2: Walk to mirror
Step 3: Find mirror
Step 4: Turn to mirror
Step 5: Look at mirror
Step 6: Find face
Step 7: Turn to face
Step 8: Look at face
Step 9: Find hair
Step 10: Turn to hair
Step 11: Look at hair
Step 12: Find dress
Step 13: Turn to dress
Step 14: Look at dress

Task: Leave home
Step 1: Walk to home office
Step 2: Walk to shoes
Step 3: Find shoes
Step 4: Grab shoes
Step 5: Put on shoes

Task: Leave home
Step 1: Walk to front door
Step 2: Open front door
Step 3: Walk to car
Step 4: Open car door
Step 5: Get in car
Step 6: Close car door
Step 7: Drive to work

Task: Leave home
Step 1: Find shoes
Step 2: Grab shoes
Step 3: Put on shoes

Language Models as Zero-Shot Planners

Task: Walk to room
Step 1: Walk to home office
Step 2: Walk to home office

Task: Walk to room
Step 1: Walk to home office
Step 2: Walk to novel
Step 3: Find novel
Step 4: Grab novel
Step 5: Find chair
Step 6: Sit on chair
Step 7: Read novel

Task: Walk to room
Step 1: Walk to dining room
Step 2: Walk to livingroom
Step 3: Walk to bedroom

Task: Hang pictures
Step 1: Walk to bedroom
Step 2: Walk to drawing
Step 3: Find drawing
Step 4: Grab drawing
Step 5: Find wall
Step 6: Put drawing on wall
Step 7: Turn to drawing
Step 8: Look at drawing
Step 9: Find drawing
Step 10: Grab drawing
Step 11: Put drawing on wall
Step 12: Turn to drawing
Step 13: Look at drawing

Task: Hang pictures
Step 1: Walk to home office
Step 2: Walk to box of pictures
Step 3: Find box of pictures
Step 4: Grab box of pictures
Step 5: Walk to wall
Step 6: Hang pictures on wall

Task: Hang pictures
Step 1: Walk to home office
Step 2: Walk to table
Step 3: Find keys
Step 4: Grab keys
Step 5: Walk to wall
Step 6: Find hanger
Step 7: Put keys on hanger

Task: Wipe down sink
Step 1: Walk to dining room
Step 2: Walk to rag
Step 3: Find rag
Step 4: Grab rag
Step 5: Walk to sink
Step 6: Wipe sink
Step 7: Put back rag

Task: Wipe down sink
Step 1: Walk to kitchen
Step 2: Walk to sink
Step 3: Grab sponge
Step 4: Wipe down sink
Step 5: Rinse sponge
Step 6: Put sponge away
Step 7: Wash hands

Task: Wipe down sink
Step 1: Walk to bathroom
Step 2: Walk to cleaning solution
Step 3: Find cleaning solution
Step 4: Grab cleaning solution
Step 5: Find sink
Step 6: Pour cleaning solution into
sink
Step 7: Find faucet
Step 8: Switch on faucet
Step 9: Scrub sink
Step 10: Wash sink

Task: Take shoes off
Step 1: Walk to home office
Step 2: Walk to shoes
Step 3: Find shoes
Step 4: Find shoes
Step 5: Take off shoes
Step 6: Find dresser
Step 7: Open dresser
Step 8: Grab shoes
Step 9: Put shoes in dresser
Step 10: Close dresser

Task: Take shoes off
Step 1: Walk to home office
Step 2: Walk to shoes
Step 3: Find shoes
Step 4: Grab shoes
Step 5: Find chair
Step 6: Sit on chair
Step 7: Take shoes off

Task: Take shoes off
Step 1: Walk to home office
Step 2: Walk to shoes
Step 3: Find shoes

Language Models as Zero-Shot Planners

Task: Give milk to cat
Step 1: Walk to home office
Step 2: Walk to cat
Step 3: Find cat
Step 4: Turn to cat
Step 5: Point at cat
Step 6: Pull cat
Step 7: Find milk
Step 8: Grab milk
Step 9: Find plate
Step 10: Pour milk into plate
Step 11: Touch cat
Step 12: Scrub cat

Task: Give milk to cat
Step 1: Walk to kitchen
Step 2: Walk to fridge
Step 3: Open fridge
Step 4: Grab milk
Step 5: Walk to cat
Step 6: Pour milk into bowl
Step 7: Put bowl on floor
Step 8: Walk away from cat

Task: Give milk to cat
Step 1: Find cat
Step 2: Touch cat
Step 3: Open fridge
Step 4: Touch milk
Step 5: Pour milk into bowl

Task: Grab things
Step 1: Walk to novel
Step 2: Turn to novel
Step 3: Grab novel

Task: Grab things
Step 1: Walk to home office
Step 2: Walk to novel
Step 3: Find novel
Step 4: Grab novel
Step 5: Find chair
Step 6: Sit on chair
Step 7: Read novel
Step 8: Grab things

Task: Grab things
Step 1: Find toy
Step 2: Turn to toy
Step 3: Point at toy
Step 4: Wash toy

Task: Use laptop
Step 1: Walk to home office
Step 2: Walk to couch
Step 3: Find couch
Step 4: Sit on couch
Step 5: Find laptop
Step 6: Switch on laptop
Step 7: Turn to laptop
Step 8: Look at laptop
Step 9: Find keyboard
Step 10: Type on keyboard
Step 11: Turn to keyboard
Step 12: Look at keyboard
Step 13: Type on keyboard
Step 14: Turn to laptop
Step 15: Look at laptop

Task: Use laptop
Step 1: Walk to home office
Step 2: Walk to laptop
Step 3: Find laptop
Step 4: Grab laptop
Step 5: Find chair
Step 6: Sit on chair
Step 7: Use laptop

Task: Use laptop
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find laptop
Step 6: Switch on laptop
Step 7: Find mouse
Step 8: Grab mouse
Step 9: Find mousepad
Step 10: Put mouse on mousepad
Step 11: Turn to laptop
Step 12: Point at laptop

Language Models as Zero-Shot Planners

Task: Organize pantry
Step 1: Walk to dining room
Step 2: Walk to pantry
Step 3: Find food
Step 4: Grab food
Step 5: Turn to food
Step 6: Look at food
Step 7: Find garbage can
Step 8: Put food on garbage can
Step 9: Find vegetable
Step 10: Grab vegetable
Step 11: Turn to vegetable
Step 12: Look at vegetable
Step 13: Put vegetable on garbage
can
Step 14: Find dry pasta
Step 15: Grab dry pasta
Step 16: Turn to dry pasta
Step 17: Look at dry pasta
Step 18: Put back dry pasta
Step 19: Find food
Step 20: Turn to food
Step 21: Look at food
Step 22: Push food
Step 23: Find noodles
Step 24: Grab noodles
Step 25: Turn to noodles
Step 26: Look at noodles
Step 27: Put back noodles

Task: Organize pantry
Step 1: Walk to kitchen
Step 2: Walk to pantry
Step 3: Find pantry
Step 4: Grab pantry
Step 5: Find chair
Step 6: Sit on chair
Step 7: Organize pantry

Task: Organize pantry
Step 1: Walk to pantry
Step 2: Find pantry

Task: Change clothes
Step 1: Walk to bedroom
Step 2: Walk to dresser
Step 3: Open dresser
Step 4: Find dress
Step 5: Grab dress
Step 6: Put on dress
Step 7: Close dresser

Task: Change clothes
Step 1: Walk to bedroom
Step 2: Walk to closet
Step 3: Find clothes
Step 4: Grab clothes
Step 5: Find chair
Step 6: Sit on chair
Step 7: Change clothes

Task: Change clothes
Step 1: Walk to bedroom
Step 2: Walk to dresser
Step 3: Find dresser
Step 4: Open dresser
Step 5: Find pants
Step 6: Grab pants
Step 7: Put on pants
Step 8: Find shirt
Step 9: Grab shirt
Step 10: Put on shirt
Step 11: Close dresser

Language Models as Zero-Shot Planners

Task: Put up decoration
Step 1: Walk to home office
Step 2: Walk to drawing
Step 3: Find drawing
Step 4: Find centerpiece
Step 5: Grab centerpiece
Step 6: Walk to wall
Step 7: Grab drawing
Step 8: Put drawing on wall
Step 9: Find centerpiece
Step 10: Grab centerpiece
Step 11: Walk to table
Step 12: Put centerpiece on table

Task: Put up decoration
Step 1: Walk to home office
Step 2: Walk to decoration
Step 3: Find decoration
Step 4: Grab decoration
Step 5: Find chair
Step 6: Sit on chair
Step 7: Put up decoration

Task: Put up decoration
Step 1: Walk to livingroom
Step 2: Walk to table

Task: Make bed
Step 1: Walk to bedroom
Step 2: Walk to bed
Step 3: Find sheets
Step 4: Grab sheets
Step 5: Pull sheets

Task: Make bed
Step 1: Walk to bedroom
Step 2: Walk to bed
Step 3: Find sheets
Step 4: Find blanket
Step 5: Find pillow
Step 6: Put sheets on bed
Step 7: Put blanket on bed
Step 8: Put pillow on bed

Task: Make bed
Step 1: Stand up
Step 2: Find sheets
Step 3: Find blanket
Step 4: Find pillow
Step 5: Find comforter
Step 6: Find bed

Task: Scrubbing living room tile floor
is once week activity for me
Step 1: Find mop
Step 2: Turn to mop
Step 3: Point at mop
Step 4: Wash mop
Step 5: Turn to mop
Step 6: Look at mop

Task: Scrubbing living room tile floor
is once week activity for me
Step 1: Walk to living room
Step 2: Walk to tile floor
Step 3: Find scrub brush
Step 4: Grab scrub brush
Step 5: Scrub tile floor
Step 6: Put down scrub brush
Step 7: Walk to kitchen

Task: Scrubbing living room tile floor
is once week activity for me
Step 1: Walk to livingroom
Step 2: Walk to mop
Step 3: Find mop
Step 4: Grab mop
Step 5: Walk to bathroom
Step 6: Find bucket
Step 7: Switch on faucet

Task: Read yourself to sleep
Step 1: Walk to bedroom
Step 2: Walk to novel
Step 3: Find novel
Step 4: Grab novel
Step 5: Find bed
Step 6: Sit on bed
Step 7: Find bookmark
Step 8: Grab bookmark
Step 9: Read novel
Step 10: Put bookmark on novel
Step 11: Sleep

Task: Read yourself to sleep
Step 1: Walk to bedroom
Step 2: Walk to bed
Step 3: Find book
Step 4: Grab book
Step 5: Find chair
Step 6: Sit on chair
Step 7: Read book
Step 8: Sleep

Task: Read yourself to sleep
Step 1: Walk to bedroom
Step 2: Walk to bed
Step 3: Lie on bed
Step 4: Sleep
Step 5: Read book

Language Models as Zero-Shot Planners

Task: Hand washing
Step 1: Walk to bathroom
Step 2: Walk to sink
Step 3: Find faucet
Step 4: Switch on faucet
Step 5: Find soap
Step 6: Grab soap
Step 7: Find hands both
Step 8: Scrub hands both
Step 9: Put back soap
Step 10: Wash hands both
Step 11: Switch off faucet
Step 12: Find towel
Step 13: Grab towel
Step 14: Wipe hands both

Task: Hand washing
Step 1: Walk to bathroom
Step 2: Walk to sink
Step 3: Turn on faucet
Step 4: Grab soap
Step 5: Wash hands
Step 6: Rinse hands
Step 7: Dry hands

Task: Hand washing
Step 1: Walk to bathroom
Step 2: Walk to sink
Step 3: Find faucet
Step 4: Turn to faucet
Step 5: Find hands both
Step 6: Wash hands both

Task: Throw away paper
Step 1: Walk to home office
Step 2: Walk to desk
Step 3: Find desk
Step 4: Turn to desk
Step 5: Find chair
Step 6: Sit on chair
Step 7: Find check
Step 8: Grab check
Step 9: Squeeze check
Step 10: Stand up
Step 11: Walk to trashcan
Step 12: Put check on trashcan

Task: Throw away paper
Step 1: Walk to home office
Step 2: Walk to wastebasket
Step 3: Find wastebasket
Step 4: Grab wastebasket
Step 5: Walk to desk
Step 6: Drop paper in wastebasket

Task: Throw away paper
Step 1: Walk to home office
Step 2: Walk to table
Step 3: Find table
Step 4: Turn to table
Step 5: Find paper
Step 6: Grab paper
Step 7: Walk to trashcan
Step 8: Open trashcan
Step 9: Put paper on trashcan
Step 10: Close trashcan

Task: Tale off shoes
Step 1: Walk to home office
Step 2: Walk to shoes
Step 3: Find shoes
Step 4: Find shoes
Step 5: Take off shoes
Step 6: Grab shoes
Step 7: Find mat
Step 8: Put shoes on mat

Task: Tale off shoes
Step 1: Walk to home office
Step 2: Walk to novel
Step 3: Find novel
Step 4: Grab novel
Step 5: Find chair
Step 6: Sit on chair
Step 7: Read novel

Task: Tale off shoes
Step 1: Walk to home office
Step 2: Walk to shoes
Step 3: Find shoes

Task: Hang keys
Step 1: Walk to bedroom
Step 2: Walk to dresser
Step 3: Find purse
Step 4: Grab purse
Step 5: Open purse
Step 6: Find keys
Step 7: Grab keys
Step 8: Find bowl
Step 9: Put keys on bowl
Step 10: Close purse
Step 11: Put back purse

Task: Hang keys
Step 1: Walk to home office
Step 2: Walk to key hook
Step 3: Find key hook
Step 4: Grab key hook
Step 5: Find keys
Step 6: Hang keys on key hook
Step 7: Walk to front door
Step 8: Leave house

Task: Hang keys
Step 1: Walk to home office
Step 2: Walk to table
Step 3: Find keys
Step 4: Grab keys
Step 5: Walk to wall
Step 6: Find hanger
Step 7: Put keys on hanger

Language Models as Zero-Shot Planners

Task: Make popcorn
Step 1: Walk to dining room
Step 2: Walk to food
Step 3: Find food
Step 4: Grab food
Step 5: Walk to microwave
Step 6: Turn to microwave
Step 7: Open microwave
Step 8: Put food in microwave
Step 9: Close microwave
Step 10: Switch on microwave

Task: Make popcorn
Step 1: Walk to kitchen
Step 2: Walk to microwave
Step 3: Open microwave
Step 4: Put bag of popcorn in mi-
crowave
Step 5: Close microwave
Step 6: Push buttons on microwave
Step 7: Wait for popcorn to pop
Step 8: Get bowl out of cupboard
Step 9: Get butter out of fridge
Step 10: Get salt out of cupboard
Step 11: Pour popcorn into bowl
Step 12: Add butter and salt to bowl
Step 13:

Task: Make popcorn
Step 1: Walk to kitchen
Step 2: Walk to microwave
Step 3: Find microwave
Step 4: Open microwave

Task: Receive credit card
Step 1: Walk to home office
Step 2: Walk to envelope
Step 3: Find envelope
Step 4: Grab envelope
Step 5: Walk to home office
Step 6: Walk to scissors
Step 7: Find scissors
Step 8: Open envelope
Step 9: Find creditcard
Step 10: Grab creditcard

Task: Receive credit card
Step 1: Walk to mailbox
Step 2: Open mailbox
Step 3: Grab credit card
Step 4: Walk to home office
Step 5: Walk to desk
Step 6: Put credit card on desk
Step 7: Sit at desk
Step 8: Look at credit card

Task: Receive credit card
Step 1: Walk to home office
Step 2: Walk to cabinet
Step 3: Find cabinet
Step 4: Open cabinet

Task: Read to child
Step 1: Walk to bedroom
Step 2: Walk to child
Step 3: Find child
Step 4: Greet child
Step 5: Walk to filing cabinet
Step 6: Open filing cabinet
Step 7: Find novel
Step 8: Grab novel
Step 9: Walk to chair
Step 10: Pull chair
Step 11: Sit on chair
Step 12: Turn to novel
Step 13: Look at novel
Step 14: Turn to novel
Step 15: Point at novel
Step 16: Turn to novel
Step 17: Point at novel
Step 18: Read novel
Step 19: Read novel
Step 20: Read novel

Task: Read to child
Step 1: Walk to home office
Step 2: Walk to novel
Step 3: Find novel
Step 4: Grab novel
Step 5: Find chair
Step 6: Sit on chair
Step 7: Read novel

Task: Read to child
Step 1: Walk to child
Step 2: Read book

Language Models as Zero-Shot Planners

Task: Eat cheese
Step 1: Walk to dining room
Step 2: Walk to freezer
Step 3: Open freezer
Step 4: Find cheese
Step 5: Grab cheese
Step 6: Eat cheese

Task: Eat cheese
Step 1: Walk to kitchen
Step 2: Walk to refrigerator
Step 3: Open refrigerator
Step 4: Grab cheese
Step 5: Eat cheese

Task: Eat cheese
Step 1: Walk to dining room
Step 2: Walk to table
Step 3: Find table
Step 4: Turn to table
Step 5: Find chair
Step 6: Sit on chair
Step 7: Find food
Step 8: Grab food
Step 9: Find plate
Step 10: Put food on plate

Task: Unload various items from
pockets and place them in bowl on
table
Step 1: Walk to home office
Step 2: Walk to table
Step 3: Find bowl
Step 4: Grab bowl
Step 5: Put bowl on table
Step 6: Find pants
Step 7: Find bills
Step 8: Grab bills
Step 9: Find phone
Step 10: Grab phone

Task: Unload various items from
pockets and place them in bowl on
table
Step 1: Walk to home office
Step 2: Walk to bowl on table
Step 3: Find bowl on table
Step 4: Grab bowl on table
Step 5: Unload various items from
pockets and place them in bowl on
table

Task: Unload various items from
pockets and place them in bowl on
table
Step 1: Find bowl
Step 2: Turn to bowl
Step 3: Point at bowl
Step 4: Wash bowl

Task: Switch on lamp
Step 1: Walk to bedroom
Step 2: Walk to floor lamp
Step 3: Find floor lamp
Step 4: Switch on floor lamp

Task: Switch on lamp
Step 1: Walk to lamp
Step 2: Switch on lamp
Step 3: Walk to chair
Step 4: Sit on chair
Step 5: Read book

Task: Switch on lamp
Step 1: Walk to bedroom
Step 2: Walk to floor lamp
Step 3: Find floor lamp
Step 4: Turn to floor lamp
Step 5: Switch on floor lamp
Step 6: Find bed
Step 7: Lie on bed

Task: Take jacket off
Step 1: Walk to bedroom
Step 2: Walk to jacket
Step 3: Find jacket
Step 4: Find jacket
Step 5: Take off jacket
Step 6: Find dresser
Step 7: Open dresser
Step 8: Close dresser

Task: Take jacket off
Step 1: Walk to home office
Step 2: Walk to jacket
Step 3: Find jacket
Step 4: Grab jacket
Step 5: Find chair
Step 6: Sit on chair
Step 7: Take jacket off

Task: Take jacket off
Step 1: Walk to home office
Step 2: Walk to jacket
Step 3: Find jacket

