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Abstract
We enhance auto-regressive language models by
conditioning on document chunks retrieved from
a large corpus, based on local similarity with pre-
ceding tokens. With a 2 trillion token database,
our Retrieval-Enhanced Transformer (RETRO)
obtains comparable performance to GPT-3 and
Jurassic-1 on the Pile, despite using 25× fewer pa-
rameters. After fine-tuning, RETRO performance
translates to downstream knowledge-intensive
tasks such as question answering. RETRO com-
bines a frozen BERT retriever, a differentiable en-
coder and a chunked cross-attention mechanism
to predict tokens based on an order of magni-
tude more data than what is typically consumed
during training. We typically train RETRO from
scratch, yet can also rapidly RETROfit pre-trained
transformers with retrieval and still achieve good
performance. Our work opens up new avenues
for improving language models through explicit
memory at unprecedented scale.

Language modelling is an unsupervised task that consists
of modelling the probability of text, usually by factorising
it into conditional next-token predictions p(x1, . . . , xn) =∏
i p(xi|x<i). Neural networks have proven to be power-

ful language models, first in the form of recurrent models
(Mikolov et al., 2010; Graves, 2013; Jozefowicz et al., 2016)
and more recently in the form of Transformers (Vaswani
et al., 2017), that use attention to contextualise the past.
Large performance improvements have come from increas-
ing the amount of data, training compute, or model pa-
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rameters. Transformers have been scaled from millions of
parameter models in seminal work to over hundred billion
parameters (Brown et al., 2020), which has led to models
that do well on a wide array of tasks in a zero or few-shot
formulation. Increasing model size predictably improves
performance on downstream tasks (Kaplan et al., 2020). In-
creasing the number of parameters is beneficial in two ways:
additional computations at training and inference time, and
increased memorization of the training data.

We endeavor to decouple these improvements, by efficiently
augmenting language models with a massive-scale memory
without significantly increasing computations. Specifically,
we suggest retrieval from a large text database as a com-
plementary path to scaling language models. Instead of in-
creasing the model size and training on more data, we equip
models with the ability to directly access a large database
to perform predictions—a semi-parametric approach. At a
high level, our Retrieval Transformer (RETRO) model splits
the input sequence into chunks and retrieves text similar to
the previous chunk to improve the predictions in the current
chunk. Existing retrieval for language modelling work only
considers small transformers (100 millions parameters) and
databases of limited size (up to billions of tokens) (Khan-
delwal et al., 2020; Yogatama et al., 2021; Guu et al., 2020;
Lewis et al., 2020). To our knowledge, our work is the
first to show the benefits of scaling the retrieval database
to trillions of tokens for large parametric language models.
Our main contributions are the following:

• We introduce RETRO, a retrieval-enhanced autoregressive
language model (§2.2). We use a chunked cross-attention
module to incorporate the retrieved text (§2.4), with time
complexity linear in the amount of retrieved data. We show
that retrieving based on a pre-trained frozen BERT model
(§2.3) works at scale, removing the need for training and
updating a retriever network.

• We show that our method scales well with model size
and database size (Fig. 1): RETRO provides a constant gain
for models ranging from 150M to 7B parameters; it can be
improved at evaluation time by increasing the database size
and the number of retrieved neighbours. Our largest model
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Figure 1. Scaling of RETRO. The performance gain of our retrieval models remains constant with model scale (left), and is comparable
to multiplying the parameteric model size by∼ 10×. The gain increases with the size of the retrieval database (middle) and the number of
retrieved neighbours (right) on the C4 validation set, when using up to 40 neighbours. Past this, performance begins to degrade, perhaps
due to the reduced quality. Disabling retrieval at evaluation (RETRO [OFF]) brings little degradation compared to a standard transformer.

obtains state-of-the-art results on a range of downstream
evaluation datasets including Wikitext103 and the Pile (§4).
We fine tune RETRO to achieve competitive performance on
question answering (§4.3).

• We propose an evaluation aware of proximity of test doc-
uments with the training set (§2.6), addressing the problem
of test set leakage (Lee et al., 2021). We show that the
performance of RETRO comes from both explicit neighbour
copying and general knowledge extraction (§4.4).

2. Method
We design our retrieval-enhanced architecture to be capable
of retrieving from a database with trillions of tokens. For
this purpose, we retrieve at the level of contiguous token
chunks instead of individual tokens which reduces storage
and computation requirements by a large linear factor. Our
method first constructs a key-value database, where val-
ues store raw chunks of text tokens and keys are frozen
BERT embedddings (Devlin et al., 2019). We use a frozen
model to avoid having to periodically re-compute embed-
dings over the entire database during training. Each training
sequence is then split into chunks, which are augmented
with their k-nearest neighbour retrieved from the database.
An encoder-decoder architecture integrates retrieval chunks
into the model’s predictions. We summarize the RETRO
architecture in Fig. 2, and detail it in this section. We finally
introduce a new method to evaluate language models when
an evaluation set is partially present in the training set.

2.1. Training dataset

We use a multi-lingual version of MassiveText (Rae et al.,
2021) for both training and retrieval data. The dataset con-
sists of text documents from multiple sources and multiple
languages totalling over 5 trillion tokens (detailed in Ta-
ble 1). Sequences are sampled from subsets of the training

Table 1. MassiveText. The last column indicates the sampling
weight during training. The full breakdown is given in §B.1.

Source Tokens (M) Documents (M) Weighting

Web 977,563 1,208 55%
Books 3,423,740 20 25%
News 236,918 398 10%

Wikipedia 13,288 23 5%
GitHub 374,952 143 5%

data, with sampling weights given in the right-most column
of Table 1. We tokenize the dataset using SentencePiece
(Kudo & Richardson, 2018) with a vocabulary of 128,000
tokens. During training (unless otherwise specified), we re-
trieve from 600B tokens from the training data. The training
retrieval database is made of the same subsets as the training
data, in proportion that matches the training sampling fre-
quencies. During evaluation the retrieval database consists
in the full union of these datasets, with the exception of
books for which we use a sub-sample of 4%. The evaluation
retrieval database thus contains 1.75T tokens. To limit test
set leakage, we compute the 13-gram Jaccard similarity be-
tween train and test documents using the MinHash scheme
and remove all training documents with high similarity (0.8
or higher) to a validation or test set document. Additionally,
we remove all validation and test articles from Wikitext103
(Merity et al., 2017) from our Wikipedia training data.

2.2. Retrieval-enhanced autoregressive token models

Our approach uses retrieval as a way to augment input ex-
amples at the granularity of small chunks of tokens. For-
mally, we consider sequences of integer tokens in V =
[1, v] , {1, . . . , v}, obtained using a text tokenizer. We
split each n-token-long example X = (x1, . . . , xn) into
a sequence of l chunks (C1, . . . , Cl) of size m = n

l , i.e.
C1 , (x1, . . . , xm), . . . , Cl ,(xn−m+1, . . . , xn) ∈ Vm.
We use n = 2048 andm = 64. We augment each chunk Cu
with a set RETD(Cu) of k neighbours from the database D.
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RETD (or RET for brevity) is a non-trainable operator spec-
ified in §2.3. Token likelihoods are provided by a model,
parameterized by θ, that takes as input both previous tokens
and their retrieved neighbours. This defines the following
retrieval-enhanced sequence log-likelihood:

L (X|θ,D) ,
n∑
i=1

`θ(xi|(xj)j<i, (RETD(Cv))v<ui), (1)

where ui = b imc ∈ [1, l] is the chunk of the sequence
containing token i. We set RET(C1) = ∅, namely the like-
lihood of tokens from the first chunk does not depend on
any retrieval data. The likelihood definition (1) preserves
autoregressivity: the probability of the i-th token of the
u-th chunk, x(u−1)m+i, only depends on previously seen to-
kens (xj)16j<(u−1)m+i and on the data retrieved from the
previous chunks (RET(Cv))v<u. We can therefore directly
sample with log-probability `, where sampling within the
chunk Cu is conditioned on the neighbours (RET(Cv))v<u.
This makes retrieval-enhanced models directly comparable
with the largest LMs that are evaluated by sampling.

2.3. Nearest neighbour retrieval

Retrieval neighbours. Our database consists of a key-
value memory. Each value consists of two contiguous
chunks of tokens which we denote [N,F ] where N is
the neighbour chunk which is used to compute the key,
and F is its continuation in the original document. The
corresponding key is the BERT embedding of N , aver-
aged over time, that we denote BERT(N). For each
chunk C, we retrieve its approximate k-nearest neighbours
from our key-value database using the L2 distance on
BERT embeddings d(C,N) = ||BERT(C)− BERT(N)||22.
The model receives the corresponding values RET(C) ,
([N1, F 1], . . . , [Nk, F k]). Both neighbour chunks and their
continuations provide meaningful improvements, as illus-
trated in our ablation study (App. E). We use a length 64
for both N j and F j , thus RET(C) has a shape of k × r
with r = 128. To avoid retrieving the chunk Cu+1 in the
retrieval set RET(Cu), which would break causality during
training, we filter out neighbours originating from the same
document as the training sequence X .

For a database of T elements, we can query the approximate
nearest neighbours in O(log T ) time. We use the SCaNN
library (Guo et al., 2020) to achieve this using a combination
of a tree based approach and quantization. This means that
we can query our 2 trillion token database in 10ms whilst
evaluating or sampling from the model; this is amortized
over a chunk. Performing retrieval on-the-fly is too slow
to keep up with the training calculations—we leverage the
frozen aspect of the embedding operator BERT to precom-
pute all approximate nearest neighbours and save the results
as part of the data. When retrieving from Wikipedia, a chunk

and its neighbours are 2-3 links away on average, compared
to a chance level of 5 links (App. Fig. 8).

2.4. RETRO model architecture

Our model relies on an encoder-decoder transformer ar-
chitecture, integrating the retrieved data through a cross-
attention mechanism as introduced in Vaswani et al. (2017).
First, the retrieved tokens RET(C) are fed into an encoder
transformer, which computes the encoded neighbours set E.
Denoting the intermediate activations byH , our transformer
decoder then interleaves RETRO-blocks RETRO(H,E) and
standard transformer blocks LM(H) (the hyperparameter
P ⊆ [1, L] determines at which layers we use a RETRO-
block). These blocks are built from three different residual
operators with signature Rn×d → Rn×d: a fully-connected
layer FFW, the standard sequence-level self-attention layer
ATTN, and a chunked cross-attention layer CCA(·, E) that
incorporates information from the retrieval encoder:

RETRO (H,E) , FFW (CCA (ATTN (H) , E))

LM(H) , FFW(ATTN(H))
(2)

Since FFW, ATTN and CCA are all autoregressive operators
whose output at position i only depends on (hj)j6i, any
succession of RETRO and LM layers, followed by a token
classification head defines an autoregressive log-likelihood
(1). An overview of the model architecture is given in
Algorithm 1 and in Fig. 2. We next describe the retrieval
encoder and the chunked cross-attention layer in more detail,
and explain how to sample from RETRO.

Encoding retrieval neighbours. For each chunk Cu,
the k retrieved neighbours RET(Cu) are fed into a bi-
directional transformer ENCODER, yielding the outputs
Eju , ENCODER(RET(Cu)

j , Hu) ∈ Rr×d′ , where j ∈
[1, k] indexes each neighbour. The retrieval encoder is a
non-causal transformer. It is conditioned on Hu, the acti-
vations of chunk Cu, through cross-attention layers; this
allows the representations of the retrieval encoder to be
modulated by the retrieving chunk in a differentiable way.
More precisely, the encoding of the jth neighbour of the
uth chunk, RET(Cu)

j , depends on the attended activation
Hu , (h(u−1)m+i)i∈[1,m]

∈ Rm×d of chunk Cu at layer
min(P ). All neighbours for all chunks are encoded in par-
allel, yielding a full encoded set E , (Eju)u∈[1,l],j∈[1,k] ∈
Rl×k×r×d′ . We denote Eu ∈ Rk×r×d′ as the encoded
neighbours for chunk u ∈ [1, l].

Chunked cross-attention. To perform the CCA op-
eration, we first split a given intermediate acti-
vation H ∈ Rn×d into l−1 attending chunks(
H+
u , (hum+i−1)i∈[1,m] ∈ Rm×d

)
u∈[1,l−1]

, as depicted
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Figure 2. RETRO architecture. Left: simplified version where a sequence of length n = 12 is split into l = 3 chunks of size m = 4.
For each chunk, we retrieve k = 2 neighbours of r = 5 tokens each. The retrieval pathway is shown on top. Right: Details of the CCA

operator. Causality is maintained as neighbours of the first chunk only affect the last token of the first chunk and tokens in the 2nd chunk.

on the right of Fig. 2. H+
u holds the intermediary embed-

dings of the last token in chunk Cu and of the first m − 1
tokens in Cu+1

1. We compute the cross-attention between
H+
u and Eu—the encoded retrieval set obtained from chunk

Cu. Attention is computed across time and across neigh-
bours simultaneously, as we merge the neighbour and time
dimensions of Eu before applying cross-attention. We lever-
age known alignment between data chunks and retrieval
neighbours with relative positional encodings.

We concatenate the l−1 outputs of the per-chunk cross-
attentions (each of shape m × d) across time, and prop-
erly pad the result; we thus form the output activation
CCA(H,E) ∈ Rn×d. Formally, for each chunk Cu and
for each token i ∈ [1,m] we set

CCA(H,E)um+i−1 , CA(hum+i−1, Eu), (3)

where CA is the cross-attention residual operator over time-
concatenated encoded neighbours. We recall that this op-
erator is defined in its simplest version by three parameter
matrices K ∈ Rd×c, Q ∈ Rd×c and V ∈ Rd×d. For all
h ∈ Rd and Y ∈ RT×d, we define

CA(h, Y ) , softmax(Y KQTh)Y V, (4)

where the softmax is performed on the second dimension
and all products are matrix products. We use multi-head
cross-attention, and add positional encodings before the
softmax (details in §C.2.2).

1The last token of chunk Cu can access the retrieved content
Eu while maintaining autoregressivity in (1). Hence, there is a
one token overlap between chunk Cu =

(
x(u−1)m+i

)
i∈[1,m]

and

the corresponding attending chunk C+
u , (xum+i−1)i∈[1,m].

The first m − 1 tokens cannot attend to any neighbour of
a previous chunk; at these positions, we define CCA as
the identity, setting CCA(H,E)j , hj for all tokens j ∈
[1,m − 1]. Finally, the last token hlm attends to the last
retrieval set El and we set hlm , CA(hlm, El) (not shown
in Fig. 2). Listing 1 contains a simplified implementation of
CCA. Note that chunked cross-attention is autoregressive:
the output of CCA at position i depends on the sequence
from tokens from 0 to i that is input to CCA.

With RETRO, even though each CCA cross-attention attends
only to the neighbours of the preceding chunk RET(Cu−1),
the dependencies over previous neighbours are propagated
via the self-attention operations. The activations of the ith

token in the uth chunk therefore potentially depend upon
the set of all previous neighbours RET(Cv)v<u, without
incurring the quadratic cost of cross attending to that set.

Sampling. When sampling, at the end of a chunk Cu,
we use SCaNN to retrieve neighbours RET(Cu), based
on the embedding BERT(Cu). The encoded neighbours
Eu = ENCODER(RET(Cu)) are then used to condition the
incremental generation of the next chunk Cu+1. The cost
of sampling is thus quadratic in the size of the sampled se-
quence, similar to sampling from regular transformers. The
added cost of retrieval is linear in the number of chunks l; it
is negligible compared to the token sampling cost.

2.5. Training details

We use a transformer (Vaswani et al., 2017) similar to the
one described in (Radford et al., 2019), with some minimal
changes: we replace LayerNorm with RMSNorm (Zhang
& Sennrich, 2019) and use relative position encodings (Dai
et al., 2019). As baselines, we train retrieval-free transform-
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ers with 132M, 368M, 1.3B and 7.0B parameters (embed-
ding matrices are excluded from parameter counts). Hyper-
parameters are detailed in Table 7. All retrieval models use
the same size encoder for the retrieval data, with d′ = 896
and 2 layers, which roughly adds 19M parameters. The
encoder uses relative positional encodings. The retrieval
models contain one RETRO-block every 3 blocks, starting
from layer 6. Additional CCA layers (3 in the decoder, 1 in
the encoder) hold 12M parameters. The relative number of
extra parameters reduces as we increase the baseline model
size. All models are implemented using JAX (Bradbury
et al., 2018) and Haiku (Hennigan et al., 2020).

We train the BERT model for 500,000 steps with a batch
size of 2,048 on the same data distribution and the same
tokenizer as the baseline and retrieval models. We use the
BERT Base configuration from Devlin et al. (2019), the
LAMB (You et al., 2019) optimizer, and a learning rate of
1.25× 10−3.

2.6. Quantifying dataset leakage exploitation

RETRO models may arguably benefit more from evalua-
tion dataset leakage (i.e. some evaluation data may also
be present in the training set). To better understand how
retrieval improves language modelling performance, we
quantify evaluation likelihood as a function of the overlap
between the evaluation and training datasets.

The following approach can be used with any language
model, and depends only on the frozen retriever system
presented in §2.3. We split the evaluation sequences (Xi)i
into chunks of length m ≤ 64, and we see the training data
as a set of chunks C. For each evaluation chunk C ∈ C, we
retrieve the 10 closest neighbours (of length up to 128) in the
training data. We then compute the longest token substring
common to both the evaluation chunk and its neighbours.
This gives a number s ∈ [0,m]. The value r(C) = s

m ,
ranging from 0 (chunk never seen) to 1 (chunk entirely
seen), gives a reliable indication of how much overlap there
is between the evaluation chunk and the training data. For a
given model, we then obtain the log-likelihood `(C) of each
chunk C, and the number of bytes N(C) it encodes. We
then define filtered bits-per-bytes to be, for all α ∈ [0, 1]:

Cα , {C ∈ C, r(C) 6 α}, bpb(α) ,

∑
C∈Cα `(C)∑
C∈Cα N(C)

. (5)

This corresponds to the bits-per-bytes on the set of chunks
that overlap less than α% with the training chunks. Note that
the full evaluation bit-per-bytes performance is recovered
by bpb(1). The function bpb(·) allows us to evaluate the
impact of evaluation leakage over predictive performance:
for low α, bpb(α) gives an indication on how the model
performs on chunks that are entirely new; the slope of bpb(·)
shows how much the model exploits evaluation leakage.

3. Related Work
We first review existing work on using retrieval for language
modelling, and compare them to RETRO (see also Table 6).
As we train RETRO models on a large dataset containing a
substantial section of the internet, our work raises potential
privacy, safety, and fairness issues that we review in App. A.

Brants et al. (2007) show that scaling the training data to
trillions of tokens improves the machine translation perfor-
mance of n-gram models. More recently, GPT-2 (Radford
et al., 2019), GPT-3 (Brown et al., 2020), and Jurassic-1
(Lieber et al., 2021) show that scaling up language models
leads to massive improvements on many downstream tasks.
At the same time, Carlini et al. (2021) demonstrate that
large-scale language models can perfectly memorise parts
of their training data, suggesting that enhancing models with
retrieval may lead to further improvements. However, sig-
nificant leakage between train and test datasets (Lee et al.,
2021; Lewis et al., 2021) makes it difficult to compare and
evaluate large models trained on large datasets, especially
once adding retrieval capabilities over the training dataset.

Historically, information retrieval for text relies on inverted
index matching such as TF-IDF and BM25 (Robertson &
Zaragoza, 2009). Foundational work use latent topic mod-
elling approaches like LDA (Blei et al., 2003) to identify
relevant neighbours (Wei & Croft, 2006). Work in machine
translation such as Zhang et al. (2018) and Gu et al. (2018)
retrieve translation pairs based on edit distance between
source sentences and guide the translation output using the
closest retrieved target sentences.

With the success of deep learning, retrieving systems have
partly switched to dense learned representations based on a
neural network’s activations. Continuous cache (Grave et al.,
2017) adds probability mass to tokens for which previous
activations resemble the current activation vector, extending
the model’s context to the local history. kNN-LM (Khan-
delwal et al., 2020) applies this idea to transformers and
extends the retrieval database to English Wikipedia, result-
ing in substantial improvements on Wikitext103 evaluation.
Continuous cache and kNN-LM do not modify the under-
lying neural-network models, but interpolate at inference
between the language model’s output and distributions com-
puted from retrieved tokens. These methods can therefore
be plugged into any model without additional training, al-
though this limits the model’s ability to reason about the
retrieved text. SPALM (Yogatama et al., 2021) addresses
this limitation by adding an extra gating network to post-
process the retrieved data; in contrast with RETRO most of
the network is unaffected by the retrieval during inference.

The retrieval representations may be trained directly instead
of relying on a pre-trained model—retriever systems have
been developed for this purpose, primarily on open-domain
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question answering. For example, DPR (Karpukhin et al.,
2020) trains two BERT models (for queries and keys respec-
tively) using a contrastive loss to align the representations
of a question and of its answers. (Lee et al., 2019) use
an inverse cloze task to find semantic representations of
passages for retrieval. These works differs from continu-
ous cache and kNN-LM in that they embeds passages (or
chunks) of text together, as opposed to each token individ-
ually. The retriever network is trained in isolation of the
downstream task that uses the retrieval data. This potential
issue is specifically addressed by REALM (Guu et al., 2020),
which trains the retrieval system end-to-end to maximize
the final training cross-entropy. This comes with the extra
complexity of searching the database during training and
periodically updating the embedding table, severely limit-
ing the scale at which it can operate. RAG (Lewis et al.,
2020) and FID (Izacard & Grave, 2021) build upon DPR to
set the state of the art on question answering benchmarks
by training encoder-decoder transformer models. More re-
cently, EMDR2 (Sachan et al., 2021) extends FID by using
an expectation-maximization algorithm to train the retriever.

RETRO shares components with kNN-LM and DPR in that it
uses frozen retrieval representations. RETRO models longer
sequences than QA examples; this requires to reason at a
sub-sequence level, and to retrieve different documents for
the different chunks of a sequence. Similar to FID, RETRO
processes the retrieved neighbours separately in the encoder,
and assemble them in the chunked cross-attention. This dif-
fers from e.g., REALM, that prepends retrieved documents
to the prompt. Using chunks allows for repeated retrieval
whilst generating a sequence as opposed to retrieving only
once based on the prompt alone. Furthermore, RETRO per-
forms retrieval during the pre-training phase, in contrast to
being plugged-in to solve specific downstream tasks. Finally,
methods based on dense query vectors use small models and
retrieve from Wikipedia, which is less than 3B tokens.

4. Results
We first report results on language modelling benchmarks.
Second, we show how to RETROfit pre-trained transformer
language models into retrieval models with few additional
FLOPs. Next, we report RETRO results on question answer-
ing. Finally, we evaluate our models with leakage filtering.

4.1. Language modelling

Datasets. We evaluate our models on C4 (Raffel et al.,
2020), Wikitext103 (Merity et al., 2017), Curation Corpus
(Curation, 2020), Lambada (Paperno et al., 2016) and the
Pile (Gao et al., 2020). We also evaluate on a set of manually
selected Wikipedia articles that were added or heavily edited
in September 2021, months after our pre-training and re-
trieval dataset was collected (details are given in §B.2). We

construct the dataset with articles from the “future” and man-
ually remove new articles that strongly overlap documents
in our training data. This guarantees that the evaluation
documents are not leaked in our training data.

For C4, Wikitext103, the Pile, and our Wikipedia dataset
we evaluate the language modelling performance on entire
documents and measure the bits-per-byte (bpb). We favour
bits-per-byte over loss as it is tokenizer agnostic. We evalu-
ate with a sequence length of 2048 tokens but use a stride
of 1024 within documents to mitigate boundary effects. On
Curation Corpus we concatenate the article, the “TL;DR:”
string, and the summary, but only evaluate the bpb on the
summary. For Lambada we evaluate the accuracy on the
last word, using greedy generation.

Model scaling. In Fig. 1 (left) and Fig. 3 we show the
language modelling performance as we scale models from
150 million to 7 billion (non-embedding) parameters. On all
datasets, RETRO outperforms the baseline at all model sizes.
Furthermore, improvements do not diminish as we scale the
models. The performance is dataset dependent, with the
largest gains on Wikitext103 and C4. Wikipedia articles
and other web pages are similar to Wikitext103 documents,
even if not exact copies (§4.4), we thus obtain dramatic
improvements on Wikitext103 as our retrieval model is able
to directly exploit these overlaps. The smallest gains are for
Curation Corpus, where RETRO only slightly outperforms
the baseline. This is expected as Curation Corpus summaries
are designed to only contain information from the source
article and are not included in our retrieval database. On our
“future” Wikipedia September 2021 dataset, we also observe
consistent gains for all model sizes.

Data scaling. Fig. 1 (middle) shows how scaling the re-
trieval database at evaluation improves the language mod-
elling performance. We observe dramatic gains as the re-
trieval data is increased from Wikipedia scale (4B tokens)
to all of Massive text (1.7T tokens). Fig. 1(right) shows how
performance scales as we increase the number of retrieved
chunks. Despite being only trained with 2 neighbours, we
see consistent improvements for all models when the num-
ber of neighbours is increased from 1 to 10. Furthermore,
we observe that larger models are able to better utilise more
neighbours: the 172M model improves with up to 10 neigh-
bours, whereas the 7B model improves with up to 40.

The Pile. We evaluate our 7B models on the Pile test
sets and compare against the 178B parameter Jurrasic-1
(Lieber et al., 2021) model and the 280B parameter Gopher
(Rae et al., 2021) model. Due to legal and ethical con-
cerns relating to their use, we exclude the Enron Emails and
the Youtube Subtitles datasets. GPT-3 is outperformed by
Jurassic-1 and Gopher on almost all subsets. Fig. 4 shows
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Figure 3. Scaling with respect to model size. (a) LAMBADA top-1 accuracy. (b) Evaluation loss on curation corpus. (c) Perplexity on
Wikitext103 valid. (d) Bits-per-byte on selected Wikipedia articles from September 2021.
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Figure 4. The Pile: Comparison of our 7B baseline against
Jurassic-1, Gopher, and RETRO. RETRO outperforms the base-
line on all test sets and outperforms Jurassic-1 on a majority of
them, despite being over an order of magnitude smaller.

the relative improvements in bits-per-byte over our 7B trans-
former baseline for our 7.5B RETRO model, Jurassic-1
and Gopher. Jurassic-1 outperforms the baseline on all
datasets except for books, likely due to the inclusion of
books in our training data. Gopher and RETRO outperform
the baseline on all test sets. Overall, RETRO 7.5B outper-
forms Jurassic-1 and Gopher on a majority of the test sets.
On the dm mathematics and ubuntu irc subsets, our
RETRO model does not outperform our 7B baseline and
underperforms Jurassic-1. We hypothesise that the retrieved
neighbours on these datasets are not helpful, due to a com-
bination of what is in our retrieval dataset and the efficacy
of the nearest-neighbour search.

Wikitext103. We establish RETRO as a competitive alter-
native to kNN-LM(Khandelwal et al., 2020) on the Wiki-
text103 dataset. We first train a standard transformer on
this data using an open-vocabulary tokenizer. This gives

Table 2. Perplexities on Wikitext103. When using the Wikpedia
dataset for retrieval, RETRO performs similarly to our implemen-
tation of kNN-LM. As we scale the retrieval dataset, RETRO

performs better, in part due to exploiting chunk-level leakage.

Model / Database #tokens #keys Valid Test

Adapt. inputs / - - - 17.96 18.65
SPALM / Wiki 3B 3B 17.20 17.60
kNN-LM / Wiki 3B 3B 16.06 16.12
Megatron / - - - - 10.81

Baseline / - - - 21.53 22.96
kNN-LM / Wiki 4B 4B 18.52 19.54
RETRO / Wiki 4B 0.06B 18.46 18.97
RETRO / C4 174B 2.9B 12.87 10.23
RETRO / MT 1% 18B 0.8B 18.92 20.33
RETRO / MT 10% 179B 4B 13.54 14.95
RETRO / MT 100% 1.8T 28B 3.21 3.92

baseline perplexities that are higher (and not comparable)
to the ones reported in Khandelwal et al. (2020). We then
apply kNN-LM with properly tuned parameters α and λ.
Using RETRO-fitting (§4.2) on Wikitext103, we fine-tune
the same pre-trained transformer into a RETRO model, re-
trieving from Wikipedia (training RETRO from scratch leads
to overfitting). The full experiment details are given in §D.2

We evaluate fine-tuned RETRO models with different re-
trieval sets, using 10 neighbours at evaluation. Results are
reported in Table 2, along with numbers from other works.
When retrieving from Wikipedia, we obtain results compara-
ble to our kNN-LM baseline. Scaling the retrieval database
to MassiveText yields dramatic improvements; this is partly
due to Wikipedia leaking in MassiveText (§4.4). We note
that kNN-LM stores an embedding for every token of the
retrieval dataset, totalling 15Tb for Wikipedia. In compari-
son, RETRO only requires 215Gb to index Wikipedia, and
93Tb for MassiveText, by using a key-value store of chunks.

4.2. RETRO-fitting baseline models

We extend baseline models into RETRO models by freezing
the pre-trained weights and training only chunked cross-
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Table 3. Question answering results on Natural Questions.

Model Test Accuracy

REALM (Guu et al., 2020) 40.4
DPR (Karpukhin et al., 2020) 41.5
RAG (Lewis et al., 2020) 44.5
EMDR2 (Sachan et al., 2021) 52.5
FID (Izacard & Grave, 2021) 51.4
FID + Distill. (Izacard et al., 2020) 54.7

Baseline 7B (closed book) 30.4
RETRO 7.5B (DPR retrieval) 45.5

attention and neighbour encoder parameters (less than 10%
of weights for the 7B model). RETROfitting models quickly
surpasses the performance of baseline models and even
achieves performance close to that of RETRO models trained
from scratch, as displayed in Fig. 3. This offers an efficient
alternative path to enhance transformers with retrieval, re-
quiring only 6 million sequences (3% of the pre-training
sequences that we used). Additionally, training exclusively
the new weights ensures that the original model perfor-
mance is exactly maintained when evaluated without re-
trieval. RETROfitting hyperparameters are provided in §D.3.

4.3. Question answering

We fine-tune our retrieval models on the Natural Questions
(Kwiatkowski et al., 2019) dataset to demonstrate that our
retrieval pathway can be used to inject information from ar-
bitrary data sources. We use the version by Izacard & Grave
(2021) which is augmented with the retrieved passages from
DPR (Karpukhin et al., 2020). We fine-tune all the weights
of our 7.5B pre-trained RETRO model for 25,000 steps us-
ing the top 20 retrieved passages. The model has access
to the question via the previous tokens in the sequence as
well as the top 20 DPR Wikipedia passages and their titles
via the neighbours. The exact match scores are shown in
Table 3 and the full fine-tuning details are given in §D.4.
Our method is competitive with previous approaches such
as REALM, RAG and DPR, but underperforms the more re-
cent FID. In contrast with this work, we find that increasing
the number of neighbours past 20 does not improve RETRO
performance on this task. We hypothesise that the encoder-
decoder structure of T5—the base model in FID— and the
T5 pre-training objective leads to a model that relies more
on the encoder output than RETRO, which is important in
the QA setting. To compete with T5 models, future work
may consider ways of forcing RETRO predictions to rely
further on the retrieval encoder output.

4.4. Relating retrieval performance to dataset leakage.

In Fig. 5, we compute the filtered eval losses introduced
in §2.6 on Curation Corpus and Wikipedia Sept 21. On
Wikipedia Sept 21 there is leakage from the training set as

the slope is negative for both baseline models and RETRO
models. RETRO models exploit leakage more strongly than
baseline models, as indicated by the more negative slope.
This is due to its explicit ability to copy-paste existing train-
ing chunks to predict leaked evaluation chunks (see a qual-
itative example of this model behavior on a Wikitext103
article in Table 16). On Curation Corpus, retrieval provides
a constant offset, which is expected as there is by design no
leakage between Curation Corpus and the training dataset.
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0.60

0.65
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al

 b
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172M 425M
Baseline

1.5B
RETRO [ON]

7.5B

12.5% 50% 100%
Max eval/train chunk overlap when filtering

0.6

0.7

0.8

Wikipedia Sept 2021

Figure 5. Eval loss as a function of longest common substring
allowed between evaluation data chunks and their nearest neigh-
bours. Retrieval still helps when considering chunks with no more
than 8 contiguous tokens overlapping with training dataset chunks.
RETRO outperforms baseline models at all leakage levels,
down to α = 12.5%. At this level, the loss is computed
on chunks with less than 8 contiguous tokens shared with
the closest matching chunk in the training dataset—this is a
reasonable level of overlap at which we consider that there
is no local leakage. Retrieval thus improves predictions on
both chunks that are syntactically similar to chunks in the
training set, and on chunks that are syntactically different
from all training chunks. This points toward a non trivial
RETRO capacity of generalizing based on both model pa-
rameters and retrieval database. Similar results are found on
C4, Wikitext103 and the Pile (see Fig. 9, Fig. 12, §G.3).

4.5. Qualitative results

We show examples of samples obtained using the 7.5B
RETRO model in §F.2. As expected, we observe that the
retrieved chunks influence the sample: there are overlaps
between the sampled tokens and neighbour tokens. Overall,
retrieval reduces hallucinations (in line with the findings of
Shuster et al. (2021)) and makes the model more knowledge-
able, when comparing with samples produced with retrieval
disabled. The model is able to recognize snippets of existing
documents in the prompt, and to generate a continuation
accordingly (e.g., prompting the model with the incipit of
Hamlet yields the model to generate the whole first scene).

5. Conclusion
We present Retrieval-Enhanced Transformers (RETRO), a
method for modelling arbitrary text sequences whilst retriev-
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ing from databases with trillions of tokens—scaling the data
available to models by an order of magnitude compared to
what is typically consumed during training. RETRO models
gains do not diminish for models with up to at least 7B
parameters, and match non-retrieval models with 10× more
parameters on certain datasets. On Wikitext103 and the Pile,
RETRO outperforms previous models trained on large scale
datasets. Whilst RETRO is competitive on retrieval-intensive
downstream tasks such as question answering, additional
future work should aim to understand the performance of
our method on NLU tasks in the few shot and finetuning
setting.

Standard causal Transformers can be rapidly fine-tuned into
RETRO models to obtain nearly the same performance as
if trained from scratch. Careful analysis shows that only a
fraction of the gains obtained by RETRO are due to test set
leakage. Further work is yet needed to better understanding
the role of test set leakage in the performance of LMs.

Overall, we demonstrate at an unprecedented scale that semi-
parametric approaches improves language modelling in an
orthogonal way to increasing model sizes.
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A. Privacy, safety and fairness
Bender et al. (2021); Weidinger et al. (2021) highlight several dangers of large language models. Those stem from their
ability to memorise training data, their high training cost, the static nature of their training data (Lazaridou et al., 2021),
their tendency of amplifying inherent biases in the training data, and their ability to generate toxic language (Gehman et al.,
2020). In this section we inspect these dangers, focusing on how retrieval augmented language models may exacerbate or
mitigate them.

Large language models can perfectly memorise parts of their training data (Carlini et al., 2021). When coupled with large
training datasets gathered from the web or other sources, this has clear privacy and safety implications. Retrieval models
such as RETRO that have access to the entire training dataset during inference exacerbate these privacy issues by being able
to directly copy training data. However, retrieval systems offer a path towards mitigating these concerns via obliteration of
the retrievable data at inference time. In addition, differential privacy training (Abadi et al., 2016) of retrieval models could
guarantee that no private information is stored in the model weights, while individualisation on private data could be made
by updating the retrieval database at inference time.

Due to their high training cost, re-training large language model regularly to incorporate new data, languages, and norms is
prohibitively expensive. To keep retrieval models up-to-date, it may be sufficient to update the retrieval database, which is
orders of magnitude cheaper than re-training a model from scratch. In addition to the benefits of updating models in terms
of fairness and bias, simply training large language models has a significant energy cost (Strubell et al., 2019; Schwartz
et al., 2020). Retrieval mechanisms offer a path to reducing the compute requirements needed to train and update language
models that reach a certain performance.

Large language models are prone to generating toxic outputs, as shown in Gehman et al. (2020). Bender et al. (2021); Jo
& Gebru (2020) advocate for the importance of better training data curation and documentation. Additionally, if portions
of the training data are found to be eliciting biased or toxic outputs after training, retrieval allows for some correction,
as the offending retrieval data can be retroactively filtered. However, it is also the case that without careful analysis and
intervention, retrieval models may exacerbate biases that are present in the training data. Retrieval models can also add a
further source of bias through the selection mechanism for retrieval documents. Further work in this area is required to
better understand how retrieval affects the bias and toxicity of the model outputs.

Finally, samples from large models are difficult to interpret, making mitigating these issues all the more challenging
(Belinkov et al., 2020; Jain & Wallace, 2019). Retrieval provides more insights in to the outputs of a model, as one can
directly visualise or modify the neighbours that are being used. The examples in Table 17, 18, 19 and 20 illustrate how
retrieval makes language models more factual and interpretable by providing more transparent outputs.

B. Datasets
We provide a full description of MassiveText and of our extract of recent Wikipedia articles.

B.1. Full description of MassiveText

The full break down of MassiveText by source and languages is given in Table 4. For a full description and analysis of
MassiveText, see Rae et al. (2021).

B.2. Wikipedia September 2021

We create an evaluation dataset consisting of 23 Wikipedia articles that were added or heavily edited in September 2021,
after we collected our training dataset. In addition, we filter out articles that rely too heavily on templated content, using
the method detailed in §2.6 to identify articles with chunks that have a high overlap with their neighbours. Fig. 10 show
that little overlap remains between our test dataset and the retrieved neighbours from the training dataset. The full list of
included articles is given in Table 5.

We first parse articles using mwparserfromhell2. We then remove sections with the following titles: “references”,
“external links”, “sources”, “further reading”, “see also”, “citations”, and “note”. In the remaining sections, we remove
Wikilinks and remove the following templates: “reflist”, “notelist”, “notelist-ua”, “notelist-lr”, “notelist-ur”, and “notelist-lg”.

2https://github.com/earwig/mwparserfromhell

https://github.com/earwig/mwparserfromhell
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Table 4. MassiveText dataset. The final column indicates the sampling weight for each dataset during training. For the retrieval database,
the entire dataset is used, with the exception of books for which we use a sub-sample of 4%.

Source Language Token count (M) Documents Sampling weight

Web

En 483,002 604,938,816 0.314
Ru 103,954 93,004,882 0.033
Es 95,762 126,893,286 0.033
Zh 95,152 121,813,451 0.033
Fr 59,450 76,612,205 0.033
De 57,546 77,242,640 0.033
Pt 44,561 62,524,362 0.033
It 35,255 42,565,093 0.033

Sw 2,246 1,971,234 0.0044
Ur 631 455,429 0.0011

Books En 3,423,740 20,472,632 0.25

News En 236,918 397,852,713 0.1

Wikipedia

En 3,977 6,267,214 0.0285
De 2,155 3,307,818 0.003
Fr 1,783 2,310,040 0.003
Ru 1,411 2,767,039 0.003
Es 1,270 2,885,013 0.003
It 1,071 2,014,291 0.003
Zh 927 1,654,772 0.003
Pt 614 1,423,335 0.003
Ur 61 344,811 0.0001
Sw 15 58,090 0.0004

Github - 374,952 142,881,832 0.05

Total - 5,026,463 1,792,260,998 1

We also exclude objects with the “ref” or “table” tag and clean the remaining text with the strip code function. Finally,
we concatenate the title and all the sections and use \n\n to delimitate them.

C. Details on the retrieval architecture
C.1. Detailed comparison with existing work

We summarize the differences between RETRO and existing methods in Table 6.

C.2. RETRO architecture and implementation

We give details on the RETRO architecture, and on the fine-tuning procedure we use for RETROfitting existing language
models.

C.2.1. FEED-FORWARD ARCHITECTURE

As mentioned in the main text, the overall encoder-decoder architecture is fully feed-forward. We start with a sequence
X ∈ Vn = (Cu)16u6l, and its pre-computed neighbours (RET(Cu))16u6l and returns logits in Rn×|V|. Along with ATTN,
FFW, CCA and CA operators introduced in the main text, we define the decoder embedding layer EMB : Vn → Rn×d, the
SPLIT operator that extracts chunked intermediary embeddings SPLIT(H) , (Hu)16u6l ∈ Rl×m×d and the read-out layer
READ : Rn×d → Rn×|V|. We then describe the forward pass in Algorithm 1. In addition to the usual Transformer ones,
RETRO architecture hyperparameters involves the layer indices Penc and P , at which the encoder and the decoder perform
cross-attention.
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Table 5. Full set of articles included in our Wikipedia Sept. 2021 evaluation dataset.

Megan Rohrer Aakashavaani
Emma Raducanu Junior Eurovision Song Contest 2021
Ambra Sabatini Pavilion Bukit Jalil
WhyDonate Blake Desjarlais
The Juggernaut (company) 2021 All-Ireland Senior Football Championship Final
Angela Diaz Drift-barrier hypothesis
2020 Summer Paralympics Venomics
2021 Afghan protests Great Circle (novel)
Rexh Xhakli Hurricane Ida
Julia Laskin 2021 Montenegrin episcopal enthronement protests
Cuijk At War With the Silverfish
Ghoubet Wind Power Station

Table 6. Comparison of RETRO with existing retrieval approaches.

# Retrieval tokens Granularity Retriever training Retrieval integration

Continuous Cache O
(
103

)
Token Frozen (LSTM) Add to probs

kNN-LM O
(
109

)
Token Frozen (Transformer) Add to probs

SPALM O
(
109

)
Token Frozen (Transformer) Gated logits

DPR O
(
109

)
Prompt Contrastive proxy Extractive QA

REALM O
(
109

)
Prompt End-to-End Prepend to prompt

RAG O
(
109

)
Prompt Fine-tuned DPR Cross-attention

FID O
(
109

)
Prompt Frozen DPR Cross-attention

EMDR2 O
(
109

)
Prompt End-to-End (EM) Cross-attention

RETRO (ours) O
(
1012

)
Chunk Frozen (BERT) Chunked cross-attention

C.2.2. RELATIVE POSITIONAL ENCODING IN THE CHUNKED CROSS-ATTENTION LAYER

The CA operator uses relative positional logits, that are computed from a specific relative distance separating data tokens
from retrieval tokens. Indeed, we expect any retrieval neighbour RET(Cu)

j and the chunk Cu to be relatively well aligned,
and assume that they start at the same position. Therefore, when computing CA(H+

u , Eu), we set the distance between the
data token i ∈ [1, l] of chunk C+

u and the retrieval token i′ ∈ [1, 2l] of RET(Cu)
j to be

d(i, i′) , i− i′ + l − 1. (6)

When computing the encoder cross-attentions CA(RET(Cu)
j , Hu), we set the distance between the retrieval token i′ ∈ [1, 2l]

and the data token i ∈ [1, l] to be

denc(i
′, i) , i′ − i. (7)

Positional logits are obtained as a linear transform of a cosine vector computed from (d(i, i′))i,i′ , and are added to content
logits, as in a regular self-attention block.

C.2.3. CHUNKED CROSS-ATTENTION IMPLEMENTATION

Our implementation of the CCA operator, shown in Listing 1, is based on a vectorized application of a cross-attention layer.
For simplicity, we omit the multi-head attention logic and use the simplest Q,K,V attention. We omit relative positional
logits computation, described above.

C.2.4. OPTIONAL SHARING OF EMBEDDING MATRICES

We use disjoint embeddings for the encoder and decoder by default, which allows us to use a different dimensionality for
the encoder (typically kept at dENC = 896) and for the decoder (that we scale up to d = 8192). It is possible to share the
embeddings, with little difference in training, as we show in the ablation section.
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Listing 1. Jax implementation of the chunked cross attention, simplified.

n = 128 # Sequence length
m = 16 # Chunk length
r = 32 # Retrieval length
k = 4 # Number of neighbours
d = 16 # Embedding size
l = n // m # Number of chunks

# Parameters
Q = jnp.zeros((d, d))
K = jnp.zeros((d, d))
V = jnp.zeros((d, d))

def relative_positional_encodings(attending_length, attended_length):
# Classical relative positional encodings
...

def cross_attention(chunk, neighbour):
m, d = chunk.shape
r, d = neighbour.shape
queries = chunk @ Q
keys = neighbour @ K
logits = queries @ keys.T
values = neighbour @ V
return logits, values

def multi_neighbour_cross_attention(chunk, neighbours):
m, d = chunk.shape
k, r, d = neighbours.shape

logits, values = jnp.vectorize(cross_attention,
signature=’(m,d),(r,d)->(m,r),(r,d)’)(

chunk, neighbours)
assert logits.shape == (k, m, r)
assert values.shape == (k, r, d)
logits += relative_positional_encodings(m, r)[None, :, :]
logits = jnp.moveaxis(logits, 0, -1).reshape((m, r * k))
values = jnp.moveaxis(values, 0, 1).reshape((r * k, d))
return jax.nn.softmax(logits) @ values

def multi_chunk_cross_attention(observation, neighbours):
attending_chunks = jnp.pad(observation[m-1:],

((0, m - 1), (0, 0)),
mode=’constant’).reshape(l, m, d)

chunked_output = jnp.vectorize(multi_neighbour_cross_attention,
signature=’(m,d),(k,r,d)->(m,d)’)(

attending_chunks, neighbours)
assert chunked_output.shape == (l, m, d)
output = jnp.pad(chunked_output.reshape(n, d),

((m - 1, 0), (0, 0)),
mode=’constant’)[:n]

return output

observation = jnp.zeros((n, d)) # Input
neighbours = jnp.zeros((l, k, r, d))

h = multi_chunk_cross_attention(observation, neighbours)

assert h.shape == (n, d) # Output
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Algorithm 1 Overview of RETRO model architecture.
Hyperparam: P and Penc, indices of layers with cross-attention in the decoder and encoder respectively

Hyperparam: L and Lenc, number of decoder layers and number of encoder layers.
Input: X ∈ Vn: sequence of tokens. (RET(Cu))16u6l: the retrieved neighbours

Output: O ∈ Rn×|V|: the output logits

def ENCODER(RET(Cu)16u6l, H):
(Hu)u∈[1,l] ← SPLIT(H) for j ∈ [1, k], u ∈ [1, l] do // Encoder shared across neighbours and

chunks
Eju = EMBenc(RET(Cu)

j) // May be shared with the decoder EMB
for p′ ∈ [1, Lenc] do

Eju ← ATTNenc(E
j
u) // Bi-directional attention

if p′ ∈ Penc then
Eju ← CAenc(E

j
u, Hu)

Eju ← FFWenc(E
j
u)

return E
H ← EMB(X)
for p ∈ [1, L] do
H ← ATTN(H) // Causal attention
if p = min(P ) then

// The neighbour ENCODER is conditioned with the decoder activations of the
last layer before the first cross-attention
E = ENCODER(RET(Cu)16u6l, H)

if p ∈ P then
H ← CCA(H,E)

H ← FFW(H)
O ← READ(H)

C.3. Baseline to RETRO model fine-tuning

As shown in Fig. 3, we found that we were able to take a pre-trained baseline transformer and add RETRO through fine-tuning.
In all cases, we froze all weights from pre-training and freshly initialised the retrieval encoder and cross-attention weights. In
all cases, the cross-attention is added every third layer starting at layer six. The learning rate for the three smaller models was
set to 2× 10−4 and half that for the larger model. We experimented with allowing the entire model to resume training during
fine-tuning but consistently found that the best approach was to freeze the pre-trained model. This kept the retrieval-off
performance frozen whereas when all weights were tuned the retrieval off performance would degrade.

D. Training details and hyperparameters
We provide the hyperparameters of the experiments in §4.

D.1. Language model pre-training

In Table 7, we show the hyperparameters of the different models we train. In all cases, we train for 419,430,400,000 training
tokens. The three smaller models are trained with a batch size of 256 and the largest model is trained with a batch size of
1024. The minimum learning rate is set to 0.1 times the maximum learning rate, which is shown in Table 7. The learning
rate is decayed using a cosine cycle length that matches the total number of training tokens. All models are trained using
AdamW (Loshchilov & Hutter, 2019) with a weight decay parameter of 0.1. The learning rate linearly increases from 10−7

to the maximum learning rate over the first 750 steps of training.

All models use ZeRO to shard the optimiser state (Rajbhandari et al., 2020). Additional infrastructure details can be found
in Rae et al. (2021).
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Table 7. Number of parameters for our baseline and RETRO models, excluding embeddings, along with hyperparameters.

Baseline RETRO dmodel dffw # heads Head size # layers P PENC Max LR

132M 172M (+30%) 896 3584 16 64 12 [6, 9, 12] [1] 2×10−4

368M 425M (+15%) 1536 6144 12 128 12 [6, 9, 12] [1] 2×10−4

1,309M 1,451M (+11%) 2048 8192 16 128 24 [9, 12, . . . , 24] [1] 2×10−4

6,982M 7,532M (+8%) 2048 16384 32 128 32 [9, 12, . . . , 32] [1] 1×10−4

Table 8. Hyperparameters for the Wikitext103 experiments presented in Table 2. We use the same learning rate schedule for the baseline
and the RETRO-fitting. For RETRO-fitting, we reset the schedule i.e. the schedule starts from step 0, not from step 35,000.

Model Number of layers 18
d 1024
dFFW 4096
Key size 64
Value size 64
Number of heads 16

Training data Dataset Wikitext103train
Sequence length 3072
Batch size 128
Tokenizer vocabulary size 128,000

Optimisation optimiser Adam
Adam’s β1 0.9
Adam’s β2 0.95
Adam’s ε 1e-8
Dropout rate 0.25

Schedule Learning rate start 1e-7
Learning rate max 2.5e-4
Learning rate min 2e-5
Warmup steps 4,000
Cosine cycle steps 100,000

Evaluation Overlapping proportion 87.5 %

D.2. Wikitext103 comparison

We provide more details on our Wikitext103 results presented in §4.1 and Table 2. We train a baseline transformer on the
Wikitext103 training set with the hyperparameters presented in Table 8. The learning rate ramps linearly from 1× 10−7

to 2.5 × 10−4 in the first 4,000 steps, then decays to 2 × 10−5 at 100,000 steps using a cosine schedule. The baseline
checkpoint at step 35,000 has the lowest perplexity on Wikitext103 valid, of 21.58, for overlapping proportion of 75%
(sliding window evaluation that only uses probabilities for tokens that have at least 75% of the sequence length of context,
when available). We use this checkpoint for all our baseline and kNN-LM numbers reported in Table 2, except that Table 2
reports for an overlapping proportion of 87.5 %, which slightly lowers the perplexity of our baseline to 21.53 on Wikitext103
valid.

We also use the 35,000 step baseline checkpoint as initialization for a RETROfit, which otherwise uses the same optimiser
and schedule hyperparameters but only trains the new retrieval weights, as explained in §4.2. Our best RETROfit checkpoint
has a Wikitext103 valid perplexity 18.46, when retrieving from Wikipedia. We use this RETRO checkpoint in Table 2 for
all other retrieval sets. The evaluation curves for our baseline and RETROfit is shown if Fig. 6 (left). In this particular
case, because Wikitext103 is quite small, training a RETRO model from scratch led to weaker results than the baseline, at
least when retrieving from Wikipedia, as we couldn’t find an effective way to mitigate the increased over-fitting due to the
additional weights of RETRO.

We also re-implement kNN-LM using the same tokenizer and dataset that we use for our baseline and RETROfitting
experiments. kNN-LM has probabilities pkNN-LM = λpLM + (1− λ)pkNN with pkNN (nk) ∝ exp(−αdk). To tune λ and
α, we begin with α = 0.0012, which corresponds to the inverse of the standard deviation of the norm of the embeddings
that we use as keys and queries for kNN-LM. We find the best λ = 0.118. We then find the best α = 0.00785 for that value
of λ. Fig. 6 center and right respectively show the perplexity of kNN-LM as a function of λ and α.
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Figure 6. Wikitext103valid perplexities. Left: Baseline and RETROfit (initialized from baseline’s checkpoint at 35,000 steps) perplexities
as a function of training steps. Center and right: kNN-LM perplexity as a function of λ (for α = 0.0012) and α (for λ = 0.12)
respectively.

D.3. RETROfitting baseline models experiments

In Table 9, we give the hyperparameters used for RETROfitting the models on Massive Text.

Table 9. Hyperparameters for the RETROfitting experiments

Model Layers with RETRO-block (P ) Learning rate Batch size

172M Every 3rd from 6 2× 10−4 → 2× 10−5 256
425M Every 3rd from 6 2× 10−4 → 2× 10−5 256
1.5B Every 3rd from 6 2× 10−4 → 2× 10−5 256
7.5B Every 3rd from 6 1× 10−4 → 1× 10−5 256

D.4. Question answering experiments

We fine-tune our 7.5B RETRO model for 25,000 steps, using a batch size of 128, a learning rate cosine scheduled from 10−6

to 10−7, with a linear ramp of 750 steps. We use dropout in the decoder only, as it performs better than using dropout in
both the encoder and the decoder. We use the top 20 neighbours from DPR when training and evaluating. We format the data
as question: {q} \nanswer: {a} and left pad the data such that answer: coincides with the end of the first
chunk of 64 tokens and thus aligns with the first retrieving chunk. Each neighbour is formatted as title: {title},
source: {source}.

E. Model ablations
We validate important design choices by evaluating what happens when we do not include them. We use the 247M parameter
model for all experiments and we train on a compressed 157 billion token schedule for all ablation experiments. We describe
results relative to the default settings presented in the main text and recalled here. We report C4 evaluation loss at the end of
the training process, and also compares how the evaluation loss decrease versus the training time, measured relatively to the
baseline training time. Results are reported in Fig. 7 and Table 10.

Using relative encodings in cross-attention. Using relative encodings in cross-attention, as described in §C.2.2, provides
a pure improvement both in the number of steps to reach a given performance and computational efficiency.

Conditioning the encoder on the previous chunk. Conditioning the encoder on the previous chunk’s intermediate
embeddings, as described in §C.2.1, provides a pure improvement both in term of number of steps and computational
efficiency.
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Table 10. Performance of RETRO for different variants. Model performance on C4 evaluation set, measured in bytes-per-bits, for a
247M parameter model trained with a 157 billion token learning rate schedule.

Ablation group Ablation C4 eval bpb

Model RETRO 0.822
No query conditioning 0.829
No CA positional encodings 0.826
Shared embeddings 0.823
6-layer encoder 0.821

Retrieval values Neighbours N 0.950
Continuations F 0.895
No retrieval 0.987

Training neighbours 1 training neighbours 0.858
4 training neighbours 0.847

Cross attention position CA top layer (1/12) 0.827
CA mid layer (6/12) 0.823
CA top layer (12/12) 0.831
CA all layers 0.860
CA every 3 from 1 0.823

Sharing embeddings. Sharing embeddings across the encoder and the decoder does not affect performance. This
motivates us using separate embeddings, as it allows to have a narrower encoder than decoder as we scale up the decoder
size.

Attending neighbours and their continuation. RETRO models are trained by attending, for a given chunk, to both the
neighbours of the preceding chunk and their continuation in time. We measure how training and evaluating RETRO models
on neighbours only and their continuation only affects performance. Overall, attending to neighbours only provides 22%
of the performance improvement due to retrieval in RETRO, while attending the future of the neighbours gives 56% of
the performance. Attending to both neighbours and their continuation is the most efficient choice both in term of final
performance and training efficiency.

Training a deeper encoder. All models in the text use a relatively small RETRO encoder. We experimented with a 3×
deeper encoder. We found that this resulted in a tiny decrease in loss– 0.15% at the cost of a larger training time (+20%).
Overall, using a shallow encoder is the best choice in term of training efficiency.

Training with multiple neighbours. We measure the effect of training on a single retrieved neighbour, as well as training
on 4 neighbours (RETRO uses 2 neighbours in training). Training on a single neighbour results in a large decrease in
performance, while training on 4 neighbours does not give substantial performance improvement at the end of training,
but induces a large computational overhead. Overall, we find that using 2 neighbours is the best choice in term of training
efficiency. Furthermore, evaluation can be done with additional neighbours.

Frequency of cross-attention. We measure how the frequency of cross-attention in the decoder affects performance.
Overall, attending only once at the top or the bottom layer is a bad choice, while attending once on a mid-depth layer is
relatively sound. We choose to have cross-attention every 3 layer as this provides a good trade-off between performance and
run-time.

F. Qualitative experiments
We illustrate the usage of RETRO models by looking at the perplexity of evaluation samples and by producing samples
autoregressively.
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Figure 7. Computational efficiency for different variants. We report the training curves plotting C4 evaluation bytes per bits against
time, relative to the time taken to train the baseline RETRO model. Overall, our design choices are optimal in term of computational
efficiency.

F.1. Inspecting neighbours and perplexities on evaluation data

To build an intuition of what kind of information is leveraged by RETRO models, we suggest to have a closer look at a
few evaluation documents and the corresponding retrieved data in Tables 13, 14, 15 and 16. In these tables, the 4 rows
corresponds to the first 4 chunks of the documents. The left-most column shows the chunk Cu from the document being
evaluated, where each token is coloured by the negative cross entropy loss difference LRETRO[OFF] − LRETRO, a positive value,
coloured in yellow, indicates that RETRO performs better when it has access to neighbours data. The second columns
also shows the evaluated chunk Cu but where each token i is coloured by the length of the longest common prefix (LCP)
with the preceding neighbours, i.e. the largest integer j such that the prefix (xi−j−1, . . . , xi) also appears in RET(Cu−1).
Conversely, columns three and four show the first two neighbours and their continuation, respectively [N1

u , F
1
u ] and [N2

u , F
2
u ]

coloured by LCP with subsequent chunk Cu+1. LCP colouring helps to visually identify where the evaluated document
overlaps the retrieved data. Note that the first chunk, C1, in the second column is not coloured as it does not have any
preceding neighbours to compute LCP with. Similarly, we do not show the neighbours of the fourth chunk, as these are not
used to condition any of the first four chunks.

Our qualitative analysis exhibits two major behaviors.

Firstly, we observe that sometimes, specific facts in Cu can be extracted from the preceding neighbours RET(Cu−1) and that
this can correspond to significant reduction in loss from the RETRO model for the corresponding tokens. Some examples
of such behavior include the journal name Publishers Weekly in Table 13, the football team name Tyrone in Table 14 or
the event dates 25 August to 6 September 2020 in Table 15. In these three examples, the evaluated data consists of recent
Wikipedia articles written in September 2021, after we built our retrieval dataset (see section §B.2). Yet, relevant information
to predict this new data was available in the pre-existing retrieval data and the RETRO model seems to be able to correctly
leverage it.
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On the other hand, we also observe that some of the evaluation data can partially leak in our training and retrieval data,
despite the use of deduplication. RETRO can dramatically exploit such leakage. Table 16 illustrates this behavior, where the
chunks C2 and C3 largely overlaps RET(C1) and RET(C2) respectively, up to small formatting differences, which leads
to much lower RETRO loss for all the corresponding tokens. Fig. 5 shows that it is possible to quantify how much of the
RETRO loss reduction is due to each of these two behaviors, by filtering out evaluation chunks that overlaps with the retrieval
set.

F.2. Inspecting RETRO samples

We can follow the same procedure as above on samples generated using RETRO models, in order to better understand
where retrieval data had an influence on sampling. We show examples of samples obtained using the 7.5B RETRO model in
Table 17, 18, 19 and 20.

For each chunk (the first one being the prompt), we juxtapose sampled chunks Cu with retrieved neighbours RET(Cu). To
give an indication of local overlap, we colour each sampled token in chunk Cu based on the length of the longest common
prefix (LCP) found in the retrieved chunks RET(Cu−1). Similarly, we colour the retrieved chunks based on the LCP in the
sampled chunk. For the sample in Table 17, for which we chose the prompt, we observe that the retrieved chunks influence
the sample as there are overlaps between the sampled tokens and neighbour tokens. Overall, retrieval reduces hallucinations
(in line with the findings of Shuster et al. (2021)) and makes the model more knowledgeable, when comparing with samples
produced with retrieval disabled. In the sample in Table 18, the model recognises that the prompt is the beginning of the first
scene of Hamlet and leverages retrieval data to continue it with only a few mistakes.

F.3. Neighbour quantification

Figure 8. Wikipedia link-distance between retrieved articles. For each sequences, chunk combination we compute the link distance
between the target and the top-5 neighbours using only Wikipedia. The rank shows the relative neighbour distance, where rank-1 is the
first neighbour and rank 5 is the fifth. The different colours represent link distance. Because we do not retrieve from the same document, 1
is the smallest value. We find, on average, the distance between random articles with a path between them is over 5.0

To quantify a notion of distance between the source document and the retrieved chunks, we can ask the distance between
source articles when retrieving only from Wikipedia. Consonni et al. (2019) provides a Wikipedia link dataset which, for
each article, contains a list of neighbouring articles. Using this, we construct a directed graph and compute the distance
from one page to another. In Fig. 8 we compute the link-distance between training sequences and the retrieved neighbours.
We find that retrieved documents tend to be from articles that are quite close to the article containing the target. Furthermore,
we find that on average the distance increases with rank, suggesting that our neighbours are both useful and that the order is
reasonable. This provides confidence for our larger-scale experiments where document distance is less well defined.
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G. Complementary quantitative results
We report tables corresponding to quantitative figures of the main text, as well as further filtered language model results on
the Pile.

G.1. Main text datasets

We report the performance of RETRO and baseline models, measured in bits-per-bytes on evaluation set, in Table 11.

Table 11. Full results for the main language modelling datasets. First three sets of rows correspond to Fig. 1, last set of rows to Fig. 3.
Baseline RETRO [Off] RETRO[On]

172M 425M 1.5B 7.5B 172M 425M 1.5B 7.5B 172M 425M 1.5B 7.5B

C4 Eval bpb 0.98 0.92 0.84 0.78 0.98 0.92 0.84 0.78 0.82 0.77 0.71 0.66

C4 Eval bpb (900B) - - - - - - - - 0.88 0.83 0.76 0.71
C4 Eval bpb (360B) - - - - - - - - 0.92 0.87 0.80 0.74
C4 Eval bpb (180B) - - - - - - - - 0.94 0.89 0.81 0.75
C4 Eval bpb (90B) - - - - - - - - 0.95 0.89 0.82 0.76
C4 Eval bpb (36B) - - - - - - - - 0.96 0.90 0.83 0.77
C4 Eval bpb (18B) - - - - - - - - 0.96 0.91 0.83 0.77
C4 Eval bpb (9B) - - - - - - - - 0.96 0.91 0.83 0.77
C4 Eval bpb (4B) - - - - - - - - 0.97 0.91 0.84 0.78
C4 Eval bpb (2B) - - - - - - - - 0.97 0.91 0.84 0.78

C4 Eval bpb (k = 1) - - - - - - - - 0.84 0.79 0.73 0.67
C4 Eval bpb (k = 2) - - - - - - - - 0.83 0.78 0.72 0.67
C4 Eval bpb (k = 3) - - - - - - - - 0.82 0.78 0.71 0.66
C4 Eval bpb (k = 4) - - - - - - - - 0.82 0.77 0.71 0.66
C4 Eval bpb (k = 5) - - - - - - - - 0.82 0.77 0.71 0.66
C4 Eval bpb (k = 10) - - - - - - - - 0.82 0.77 0.71 0.66
C4 Eval bpb (k = 20) - - - - - - - - 0.82 0.77 0.71 0.66
C4 Eval bpb (k = 30) - - - - - - - - 0.82 0.77 0.71 0.65
C4 Eval bpb (k = 40) - - - - - - - - 0.83 0.77 0.71 0.65
C4 Eval bpb (k = 50) - - - - - - - - 0.83 0.78 0.71 0.66
C4 Eval bpb (k = 60) - - - - - - - - 0.84 0.78 0.72 0.66
C4 Eval bpb (k = 70) - - - - - - - - 0.84 0.79 0.72 0.66
C4 Eval bpb (k = 80) - - - - - - - - 0.85 0.79 0.73 0.66
C4 Eval bpb (k = 90) - - - - - - - - 0.85 0.79 0.73 0.66
C4 Eval bpb (k = 100) - - - - - - - - 0.85 0.79 - 0.67

Lambada Accuracy 0.42 0.51 0.61 0.69 0.47 0.54 0.63 0.70 0.52 0.60 0.67 0.73
Curation Corpus bpb 0.69 0.63 0.56 0.52 0.68 0.64 0.57 0.51 0.66 0.61 0.55 0.50
Wikitext103 Perplexity 25.62 19.29 13.98 10.65 25.88 19.78 13.89 10.40 3.32 2.96 2.53 2.22
Wikipedia Sept. 2021 bpb 0.85 0.78 0.71 0.65 0.86 0.79 0.71 0.65 0.79 0.73 0.66 0.61

G.2. The Pile

In Fig. 4, we compare RETRO against Jurassic-1 (Lieber et al., 2021). The full bits-per-bytes results are reported in Table 12.

G.3. Filtered results

Distribution of leaked chunks in our main evaluation sets. We evaluate leakage between the evaluation sets and the
training set by measuring the proportion of evaluation chunks with a certain overlap r(C). We show histograms in Fig. 10.
We can see that C4 has some slight overlaps between train and evaluation. Similarly, chunks of Wikitext103 appear in the
training set despite having removed the actual Wikitext103 evaluation documents from the training set. On the other hand,
our Wikipedia September 21 dataset shows almost no leakage (data being original documents that did not exist at training
data creation), and neither does Curation Corpus.
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Table 12. Full results on The Pile, measured in bits-per-bytes. Jurassic-1 and GPT-3 numbers are taken from Lieber et al. (2021).
Gopher numbers are taken from Rae et al. (2021).

Subset 7B Baseline (Ours) GPT-3 Jurassic-1 Gopher 7.5B RETRO

arxiv 0.742 0.838 0.680 0.641 0.714
books3 0.792 0.802 0.835 0.706 0.653
dm mathematics 1.177 1.371 1.037 1.135 1.164
freelaw 0.576 0.612 0.514 0.506 0.499
github 0.420 0.645 0.358 0.367 0.199
gutenberg pg 19 0.803 1.163 0.890 0.652 0.400
hackernews 0.971 0.975 0.869 0.888 0.860
nih exporter 0.650 0.612 0.590 0.590 0.635
opensubtitles 0.974 0.932 0.879 0.894 0.930
philpapers 0.760 0.723 0.742 0.682 0.699
pile cc 0.771 0.698 0.669 0.688 0.626
pubmed abstracts 0.639 0.625 0.587 0.578 0.542
pubmed central 0.588 0.690 0.579 0.512 0.419
stackexchange 0.714 0.773 0.655 0.638 0.624
ubuntu irc 1.200 0.946 0.857 1.081 1.178
uspto backgrounds 0.603 0.566 0.537 0.545 0.583
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Figure 9. Performance vs. longest common retrieval substring. Evaluation loss as a function of allowed longest common substring
between evaluation data chunks and their nearest neighbours. Retrieval still helps when considering chunks with no more than 8 contiguous
tokens overlapping with training dataset chunks.

Filtered results on the Pile. We report chunk overlap distribution and filtered performance curves on the Pile in Fig. 12
and Fig. 11, respectively. The qualitative interpretation of the filtered curves is the same: RETRO models exploit leakage
more, but the performance improvement they provide remains significant even on original chunks that haven’t been observed
in the training set.
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Figure 10. Distribution of the overlap between evaluation and train chunks for C4, Curation Corpus, Wikitext103 and Wikipedia
Sept. 2021.
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Figure 11. Filtered evaluation losses on the Pile, with baseline Transformers and RETRO.



Improving Language Models by Retrieving from Trillions of Tokens
Ch

un
k 

de
ns

ity

arxiv bookcorpus2 books3 dm_mathematics

Ch
un

k 
de

ns
ity

europarl freelaw github gutenberg_pg_19

Ch
un

k 
de

ns
ity

hackernews nih_exporter opensubtitles openwebtext2

Ch
un

k 
de

ns
ity

philpapers pile_cc pubmed_abstracts pubmed_central

0% 50% 100%
Eval/train chunk overlap

Ch
un

k 
de

ns
ity

stackexchange

0% 50% 100%
Eval/train chunk overlap

ubuntu_irc

0% 50% 100%
Eval/train chunk overlap

uspto_backgrounds

Figure 12. Distribution of the overlap between evaluation and train chunks for the Pile evaluation sets.



Improving Language Models by Retrieving from Trillions of Tokens

Table 13. Great Circle (novel), from Wikipedia September 21. The article is about a recent novel and chunks C3 and C4 are specifically
about its reception. The name Publishers Weekly of the journal that reviewed the novel appears both in the neighbours [N1

3 , F
1
3 ], [N

2
3 , F

2
3 ]

of chunk C3 and in the subsequent chunk C4, where the loss for those tokens is significantly reduced by RETRO.

Cu colored by loss difference Cu colored by LCP with RET(Cu−1) [N1
u, F

1
u ] colored by LCP with Cu+1 [N2

u, F
2
u ] colored by LCP with Cu+1

LRETRO[OFF] − LRETRO6 −0.5,= 0,> 0.5 LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5

Great Circle (novel)Great Circle i Great Circle (novel) Great Circle i The Dutch House (novel)The Dutch H The Dutch House (novel)The Dutch H
s a 2021 novel by Maggie Shipstead, s a 2021 novel by Maggie Shipstead, ouse is a 2019 novel by Ann Patchett ouse is a 2019 novel by Ann Patchett
published on May 4, 2021, by Alfred published on May 4, 2021, by Alfred . It was published by Harper on Sept . It was published by Harper on Sept
A. Knopf.The novel has been shortl A. Knopf. The novel has been shortl ember 24, 2019. It tells the story o ember 24, 2019. It tells the story o
isted for the 2021 Booker Prize.Sy isted for the 2021 Booker Prize. Sy f a brother and sister over the cour f a brother and sister over the cour
nopsis The novel consists of two pa nopsis The novel consists of two pa se of five decades.The novel was a se of five decades.[2]The novel wa
rallel narratives about two fictiona rallel narratives about two fictiona finalist for the 2020 Pulitzer Priz s a finalist for the 2020 Pulitzer P
l women. One is l women. One is e for Fiction.PlotThe Dutch House rize for Fiction.[3]Plot[edit]Th

is a mansion located in Elkins Park e Dutch House is a mansion located i
, Pennsylvania, a suburb of Philadel n Elkins Park, Pennsylvania, a subur
phia. It was built in 1922 by the Va b of Philadelphia. It was built in 1
nHoebeek family, a husband and wife 922 by the VanHoebeek family, a husb
originally from the Netherlands who and and wife originally from the Net
made their fortune in the tobacco in herlands who made their fortune in t
dustry. Cyril Conroy, a self-made re he tobacco industry. Cyril Conroy, a
al estate mogul self-

about the disappeared 20th-century about the disappeared 20th-century on becoming a filmmaker. She has fo based closely on her own youthful e
aviator Marian Graves, while the oth aviator Marian Graves, while the oth und a subject for her film project, xperiences. (She plans the film to b
er is about the struggling 21st-cent er is about the struggling 21st-cent an obscure African American actress e the first of two parts, the second
ury Hollywood actress Hadley Baxter, ury Hollywood actress Hadley Baxter, credited only as “the watermelon wom dealing with the aftermath of the f
who is attempting to make a film ab who is attempting to make a film ab an” in old Hollywood films, and the irst’s events.) Byrne plays a young
out Marian. Hadley’s narrative is to out Marian. Hadley’s narrative is to subsequent film recounts her search film student named Julie (Hogg’s ava
ld in the first-person, while Marian ld in the first-person, while Marian for this woman even as it covers, in tar), who starts her artistic educat
’s sections are told in the third-pe ’s sections are told in the third-pe the manner of the earlier Dunyement ion with high hopes of making a movi
rson rson aries, Dunye’s friendships and her l e about a boy named Tony, living in

ove life. InThe Watermelon Woman, D working-class Sunderland, who adores
unye makes the film she set out to m his mother — “is almost obsessed wi
ake in 1990 about African American w th her,” as eager Julie tells her ad
omen artists, a film that both inven visers. Her idealism is evident from
ts an artistic predecessor with whom the start.The advisers are skepti
she can identify and also “finds” C cal, and no wonder; Julie’s family i
heryl herself as the artist that she s posh, with a comfortable country e
seeks. As Dunye identifies herself state and

.Reception Great Circle received .Reception Great Circle received first edition hardcoverReception The book also debuted at number tw
very favorable reviews, with a cumul very favorable reviews, with a cumul The novel debuted at number one on T o on The New York Times Hardcover No
ative ”Rave” rating at the review ag ative ”Rave” rating at the review ag he New York Times fiction best-selle nfiction best-sellers list on July 2
gregator website Book Marks, based o gregator website Book Marks, based o r list. As of the week ending Februa 8, 2019.[5] It spent eleven weeks on
n 22 book reviews from mainstream li n 22 book reviews from mainstream li ry 20, 2021, the novel has spent 38 the list.[6]Reception[edit]At t
terary critics. The novel debuted at terary critics. The novel debuted at weeks on the list.At the review ag he review aggregator website Book Ma
number fourteen on The New York Tim number fourteen on The New York Tim gregator website Book Marks, which a rks, which assigns individual rating
es Hardcover fiction best-seller lis es Hardcover fiction best-seller lis ssigns individual ratings to book re s to book reviews from mainstream li
t for the week ending May t for the week ending May views from mainstream literary criti terary critics, the book received a

cs, the novel received a cumulative cumulative ”Positive” rating based o
”Rave” rating based on 38 reviews, w n 29 reviews: 12 ”Rave” reviews, 6 ”
ith only one ”mixed” review. Publish Positive” reviews, 9 ”Mixed” reviews
ers Weekly wrote, ”Bennett renders h , and 2 ”Pan” reviews.[7]Publisher
er characters and their struggles wi s Weekly gave the book a mixed revie
th great compassion, and explores th w, writing, ”Unfortunately, all thre
e complicated state of mind that Ste e
lla finds herself in while passing a
s white.” In its

8, 2021. Critics praised the novel 8, 2021. Critics praised the novel
for sustaining its length and for Sh for sustaining its length and for Sh
ipstead’s research and intricate nov ipstead’s research and intricate nov
el structure for perfectly interweav el structure for perfectly interweav
ing the parallel narratives, despite ing the parallel narratives, despite
the time and circumstances separati the time and circumstances separati
ng them.In its starred review, Pub ng them.In its starred review, Pub
lishers Weekly wrote, ”Shipstead man lishers Weekly wrote, ”Shipstead man
ages to portray both Marian’s and Ha ages to portray both Marian’s and Ha
dley’s dley’s
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Table 14. All-Ireland Senior Football Championship Final, from Wikipedia September 21. The name of the team Tyrone appears both
in the second neighbours [N2

1 , F
2
1 ] of chunk C1 and in the subsequent chunk C2, where the loss for those tokens is significantly reduced

by RETRO.

Cu colored by loss difference Cu colored by LCP with RET(Cu−1) [N1
u, F

1
u ] colored by LCP with Cu+1 [N2

u, F
2
u ] colored by LCP with Cu+1

LRETRO[OFF] − LRETRO6 −0.5,= 0,> 0.5 LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5

2021 All-Ireland Senior Football Cha 2021 All-Ireland Senior Football Cha 2018 All-Ireland Senior Football Cha 2018 All-Ireland Senior Football Cha
mpionship FinalThe 2021 All-Irelan mpionship Final The 2021 All-Irelan mpionship FinalThe 2018 All-Irelan mpionship FinalThe 2018 All-Irelan
d Senior Football Championship Final d Senior Football Championship Final d Senior Football Championship Final d Senior Football Championship Final
was the 134th final of the All-Irel was the 134th final of the All-Irel was the 131st final of the All-Irel was the 131st final of the All-Irel
and Senior Football Championship and and Senior Football Championship and and Senior Football Championship and and Senior Football Championship and
the culmination of the 2021 All-Ire the culmination of the 2021 All-Ire the culmination of the 2018 All-Ire the culmination of the 2018 All-Ire
land Senior Football Championship. T land Senior Football Championship. T land Senior Football Championship in land Senior Football Championship in
he match was played at Croke Park in he match was played at Croke Park in Gaelic football. The match was play Gaelic football. The match was play
Dublin on 11 September 2021. It was Dublin on 11 September 2021. It was ed at Croke Park in Dublin on 2 Sept ed at Croke Park in Dublin on 2 Sept
originally scheduled originally scheduled ember 2018.[3]It was the second ti ember 2018.It was the second time

me the teams had met in the final; D the teams had met in the final; Dubl
ublin won the first encounter in 199 in won the first encounter in 1995.
5.The final was shown live in Irel It was the third consecutive year th
and on RTÉ Two as part of The Sunday at a team qualified under the system
Game live programme, presented by M of second chances introduced in 200
ichael Lyster from Croke Park, with 1; Tyrone qualified despite defeat i
studio analysis from Joe Brolly, n its provincial championship.Dubl

in won the final by a margin of six
points

for 28 August but had to be postpon for 28 August but had to be postpon game 23–23 after extra time, howeve with a last-ditch plan of action –
ed by two weeks when the – semi-fina ed by two weeks when the – semi-fina r Ulster progressed under the compet play the Munster/Ulster Semi-Final o
l was postponed due to a COVID-19 ou l was postponed due to a COVID-19 ou ition rules as they scored three tir n March 16th, with the winners to pl
tbreak. Ulster champions Tyrone took tbreak. Ulster champions Tyrone took es in the match against Leinster’s t ay Connacht in the following day’s F
on Connacht champions Mayo, in what on Connacht champions Mayo, in what wo. The semi-finals took place in mi inal.On March 16th then Munster ha
was their first ever meeting in a f was their first ever meeting in a f d November and saw both the away tea d an easy win over Ulster (9-07 to 0
inal, winning their 4th title after inal, winning their 4th title after ms win, as Ulster beat Glasgow and E -00) but thankfully for the Munster
a 2–14 to 0–15 win. Mayo lost a 2–14 to 0–15 win. Mayo lost dinburgh beat Connacht. The final wa players, the pitch cut up so badly d

s held on Saturday December 20 at Mu uring the game, it was decided to po
rrayfield Stadium and saw Ulster bea stpone the following day’s hurling F
t Edinburgh 21–27 to win the Celtic inal (until Easter Sunday) with the
Cup.2004–05 seasonThe format of football Final going ahead on its ow
the competition was changed for the n on St. Patrick’s Day.Less than a
second edition of the competition. T week later, on March 23rd, seven
he competition was moved to April an
d May to run after the conclusion of
the Celtic League competition, with
only eight

their 11th consecutive final since their 11th consecutive final since 1-16 to 0-15 winners to qualify for which Dublin won by 0-12 to 0-9.D
1989, losing 6 finals in 9 years, wi 1989, losing 6 finals in 9 years, wi their 10th league final in the past ublin are going for an unprecedented
th this latest defeat on an identica th this latest defeat on an identica 13 years.They have won seven of t fourth successive Championship win
l scoreline to 2020, when Mayo lost l scoreline to 2020, when Mayo lost heir previous league finals under Co over Kerry. Prior to their current r
to Dublin.Background were aiming to Dublin.Background were aiming dy since 2002, losing the other two un, which started with the 2011 All-
to win their fourth title and first to win their fourth title and first to Waterford (2007 ) and Dublin (201 Ireland final, they had only managed
All-Ireland since 1951. Since then, All-Ireland since 1951. Since then, 1 ).Despite the defeat there were two consecutive victories over them
they had lost ten finals (1989, 1996 they had lost ten finals (1989, 1996 some distinct positives from a Galwa on two separate occasions - 1909 an
, 1997, 2004, 2006, , 1997, 2004, 2006, y perspective- most notably the soli d ’24, 1976 and ’77.The longest wi

d displays of Daithı́ Burke at centre nning sequence in the rivalry was se
-back, Joseph Cooney at wing-back an t by Kerry between 1941 and 1975, wh
d Ronan Burke at full-back. Colm Cal en they won each of the six Champion
lanan continued his excellent form i ship meetings. Kerry went nine games
n goal and also hit a stunning free unbeaten between 1978 and 2009, wit
from distance.Indeed it was not th h four victories either side of a dr
e Galway defence that was the proble amatic draw at the quarter-final sta
m ge in Thurles in 2001.Sunday will

mark their 11th

2012, 2013, 2016, 2017, 2020). app 2012, 2013, 2016, 2017, 2020). app
eared in their seventh final, winnin eared in their seventh final, winnin
g on three occasions in 2003, 2005 a g on three occasions in 2003, 2005 a
nd 2008.This final was the fifth to nd 2008.This final was the fifth to
be contested by county teams from C be contested by county teams from C
onnacht and Ulster, the other finals onnacht and Ulster, the other finals
were 1925 (Galway beat Cavan), 1943 were 1925 (Galway beat Cavan), 1943
(Roscommon beat Cavan), 1948 (Cavan (Roscommon beat Cavan), 1948 (Cavan
beat beat
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Table 15. 2020 Summer Paralympics, from Wikipedia September 21. The original dates of the event, 25 August to 6 September 2020,
appears both in the neighbors [N1

1 , F
1
1 ], [N

2
1 , F

2
1 ] of chunk C1 and in the subsequent chunk C2, where the loss for those tokens is

significantly reduced by RETRO. Interestingly, in this case, the neighbors were written at a time when the event hadn’t yet been postponed.

Cu colored by loss difference Cu colored by LCP with RET(Cu−1) [N1
u, F

1
u ] colored by LCP with Cu+1 [N2

u, F
2
u ] colored by LCP with Cu+1

LRETRO[OFF] − LRETRO6 −0.5,= 0,> 0.5 LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5

2020 Summer ParalympicsThe , brand 2020 Summer Paralympics The , brand pics Games.* The 2020 Summer Paraly 2020 Summer ParalympicsThe are an
ed as the Tokyo 2020 Paralympic Game ed as the Tokyo 2020 Paralympic Game mpics are an upcoming major internat upcoming major international multi-
s, was an international multi-sport s, was an international multi-sport ional multi-sport event for athletes sport event for athletes with disabi
parasports event held from 24 August parasports event held from 24 August with disabilities governed by the I lities governed by the International
to 5 September 2021 in Tokyo, Japan to 5 September 2021 in Tokyo, Japan nternational Paralympic Committee. S Paralympic Committee. Scheduled as
. They were the 16th Summer Paralymp . They were the 16th Summer Paralymp cheduled as the 16th Summer Paralymp the 16th Summer Paralympic Games, th
ic Games as organized by the Interna ic Games as organized by the Interna ic Games, it is planned to be held i ey are scheduled to be held in Tokyo
tional Paralympic Committee (IPC). tional Paralympic Committee (IPC). n Tokyo, Japan from 25 August to 6 S , Japan between 24 August and 5 Sept

eptember 2020.3. 2019 BWF Para-Bad ember 2021. Originally due to take p
minton World Championships- The 20 lace between 25 August and 6 Septemb
19 BWF Para-Badminton World Champion er 2020. On 24 March 2020, the IOC a
ships was held from 20 to 25 August nd the Tokyo Organizing Committee of
2019 in Basel, Switzerland.- Men’s ficially announced that the 2020 Sum
event: Gold Medal: Pramod Bhagat in mer Olympics and 2020 Summer Paralym
Singles SL3 Event and Pramod Bhagat pics would be postponed to 2021, due
and Manoj to the COVID-19 pandemic, marking t

he first time that the Paralympics h
as been postponed. They will still b
e publicly marketed as

Originally scheduled to take place f Originally scheduled to take place f once submitted.This process was u Olympiad, have now been postponed a
rom 25 August to 6 September 2020, i rom 25 August to 6 September 2020, i ndertaken following the postponement nd rescheduled for 23 July to 8 Augu
n March 2020 both the 2020 Summer Ol n March 2020 both the 2020 Summer Ol of the Tokyo 2020 Games due to the st 2021 in Tokyo, Japan. The Games
ympics and Paralympics were postpone ympics and Paralympics were postpone COVID-19 pandemic, with both the Oly were postponed in March 2020 as a re
d by one year due to the COVID-19 pa d by one year due to the COVID-19 pa mpics and Paralympics pushed back a sult of the worldwide Covid-19 pande
ndemic, with the rescheduled Games s ndemic, with the rescheduled Games s year.Now, the Tokyo 2020 Olympics mic, although they will still keep t
till referred to as Tokyo 2020 for m till referred to as Tokyo 2020 for m are scheduled for July 23 to August he name Tokyo 2020 for marketing and
arketing and branding purposes. As arketing and branding purposes. As 8 while the Paralympics are due to f branding purposes. This will be th
with the Olympics, the Games were la with the Olympics, the Games were la ollow from August 24 to September 5. e first time the Olympic Games have
rgely held behind rgely held behind The refund process is separate for been postponed rather than cancelled

ticketholders outside of Japan, who .
purchased tickets through authorise
d ticket resellers (ATR).Each ATR
has its own individual refund proced
ure.Early figures from the refund
process for the Tokyo 2020 Olympics
stated that around 18 per cent

closed doors with no outside specta closed doors with no outside specta has been rescheduled to May 1-4 bec Olympic Games, when Tokyo became th
tors due to a state of emergency in tors due to a state of emergency in ause of travel restrictions under th e first city in Asia to host the Oly
the Greater Tokyo Area and other pre the Greater Tokyo Area and other pre e current state of emergency in Toky mpic and Paralympic Games, but unfor
fectures. The Games were the second fectures. The Games were the second o and other 10 prefectures across Ja tunately strong winds made it an imp
Summer Paralympics hosted by Tokyo s Summer Paralympics hosted by Tokyo s pan.The Tokyo 2020 organizing comm ossible task this time around.Memb
ince 1964, and the third Paralympics ince 1964, and the third Paralympics ittee announced that the first of 18 ers of the Tokyo Organising Committe
held in Japan overall since the 199 held in Japan overall since the 199 test events for the Olympic and Par e of the Olympic and Paralympic Game
8 Winter Paralympics in Nagano. Th 8 Winter Paralympics in Nagano. Th alympic Games will involve wheelchai s (Tokyo 2020), Tokyo Metropolitan G
e Games featured e Games featured r rugby, which will be held in Yoyog overnment officials, Tokyo 2020 Torc

i National Stadium from April 3 to 4 h Relay Official Ambassadors and rep
.The FINA Diving World Cup will fo resentatives from Miyagi Prefecture
llow from April 18 to 23 at the Toky joined the arrival ceremony.FLAME
o Aquatics Centre, which will also s OF RECOVERYThe Olympic flame will
erve as an Olympic qualifying event. now be put on display at various loc
The spread of the COVID-19 pandemi ations in the Tohoku region, to high
c has slowed down in Tokyo three wee light the message of hope in the are
ks after the Japanese capital entere as worst affected by the 2011 Great
d a state of emergency on East Japan Earthqu

539 medal events in 22 sports, with 539 medal events in 22 sports, with
badminton and taekwondo both making badminton and taekwondo both making
their Paralympic debut to replace f their Paralympic debut to replace f
ootball 7-a-side and sailing. China ootball 7-a-side and sailing. China
topped the medal table for the fifth topped the medal table for the fifth
consecutive Paralympics, with 96 go consecutive Paralympics, with 96 go
lds and 207 total medals. Great Brit lds and 207 total medals. Great Brit
ain finished second for the ninth t ain finished second for the ninth t
ime, ime,
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Table 16. Daniel Radcliffe, from Wikitext103Valid, retrieval data from c4. The chunks C2 and C3 are almost entirely retrieved from
neighbours [N1, F1] and [N2, F2] respectively, up to formatting differences, which dramatically reduces the loss for these tokens. This
example illustrates that when training data leaks into evaluation sets despite deduplication, our RETRO model can directly exploit this
leakage.

Cu colored by loss difference Cu colored by LCP with RET(Cu−1) [N1
u, F

1
u ] colored by LCP with Cu+1 [N2

u, F
2
u ] colored by LCP with Cu+1

LRETRO[OFF] − LRETRO6 −0.5,= 0,> 0.5 LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5

= Daniel Radcliffe =Daniel Jacob R = Daniel Radcliffe = Daniel Jacob R Daniel Jacob Radcliffe (born 23 July Daniel Jacob Radcliffe (born 23 July
adcliffe ( born 23 July 1989 ) is an adcliffe ( born 23 July 1989 ) is an 1989) is an English actor who rose 1989) is an English actor who rose
English actor who rose to prominenc English actor who rose to prominenc to prominence as the title character to prominence as the title character
e as the title character in the Harr e as the title character in the Harr in the Harry Potter film series. He in the Harry Potter film series. He
y Potter film series. He made his ac y Potter film series. He made his ac made his acting debut at 10 years o made his acting debut at 10 years o
ting debut at 10 years of age in BBC ting debut at 10 years of age in BBC f age in BBC One’s 1999 television f f age in BBC One’s 1999 television m
One’s 1999 television film David Co One’s 1999 television film David Co ilm David Copperfield, followed by h ovie David Copperfield, followed by
pperfield, followed by his cinematic pperfield, followed by his cinematic is cinematic debut in 2001’s The Tai his film debut in 2001’s The Tailor
debut debut lor of Panama. At age 11, he was cas of Panama. At age 11, he was cast as

t as Harry Potter in the first Harry Harry Potter in the first Harry Pot
Potter film, and starred in the ser ter film, and starred in the series
ies for 10 years until the release o for 10 years until the release of th
f the eighth and final film in 2011. e eighth and final film in 2011. Rad
Radcliffe began to branch out to s cliffe began to branch out to stage
tage acting in 2007, starring in the acting in 2007, starring in the Lond
London and New York productions of on and New York productions of Equus
Equus, and , and in the

in 2001’s The Tailor of Panama. At in 2001’s The Tailor of Panama. At in 2001’s The Tailor of Panama. At of Panama. At age 11, he was cast a
age 11, he was cast as Harry Potter age 11, he was cast as Harry Potter age 11, he was cast as Harry Potter s Harry Potter in the first Harry Po
in the first Harry Potter film, and in the first Harry Potter film, and in the first Harry Potter film, and tter film, and starred in the series
starred in the series for 10 years u starred in the series for 10 years u starred in the series for 10 years u for 10 years until the release of t
ntil the release of the eighth and f ntil the release of the eighth and f ntil the release of the eighth and f he eighth and final film in 2011.R
inal film in 2011.Radcliffe began inal film in 2011.Radcliffe began inal film in 2011.Radcliffe began adcliffe began to branch out to stag
to branch out to stage acting in 200 to branch out to stage acting in 200 to branch out to stage acting in 200 e acting in 2007, starring in the Lo
7, starring in the London and New 7, starring in the London and New 7, starring in the London and New Yo ndon and New York productions of Equ

rk productions of Equus, and in the us, and in the 2011 Broadway revival
2011 Broadway revival of the musical of the musical How to Succeed in Bu
How to Succeed in Business Without siness Without Really Trying. He sta
Really Trying. He starred in the 201 rred in the 2012 horror film The Wom
2 horror film The Woman in Black, an an in Black, and played beat poet Al
d played beat poet Allen Ginsberg in len Ginsberg in the 2013 independent
the 2013 independent film Kill Your film Kill Your Darlings. He has con
Darlings.He has contributed to ma tributed to many charities, includin
ny charities g Demelza House Children’s

York productions of Equus, and in t York productions of Equus, and in t York productions of Equus, and in t in the 2011 Broadway revival of the
he 2011 Broadway revival of the musi he 2011 Broadway revival of the musi he 2011 Broadway revival of the musi musical How to Succeed in Business
cal How to Succeed in Business Witho cal How to Succeed in Business Witho cal How to Succeed in Business Witho Without Really Trying. He starred in
ut Really Trying. He starred in the ut Really Trying. He starred in the ut Really Trying. He starred in the the 2012 horror film The Woman in B
2012 horror film The Woman in Black, 2012 horror film The Woman in Black, 2012 horror film The Woman in Black, lack, and played beat poet Allen Gin
and played beat poet Allen Ginsberg and played beat poet Allen Ginsberg and played beat poet Allen Ginsberg sberg in the 2013 independent film K
in the 2013 independent film Kill Y in the 2013 independent film Kill Y in the 2013 independent film Kill Y ill Your Darlings. He has contribute
our ¡unk¿.He has contributed to ma our ¡unk¿.He has contributed to ma our Darlings.He has contributed to d to many charities, including Demel
ny charities, ny charities, many charities, including Demelza H za House Children’s Hospice and The

ouse Children’s Hospice and The Trev Trevor Project. He also made public
or Project. He also made public serv service announcements for the latter
ice announcements for the latter. In . In 2011, he was awarded the Trevor
2011, he was awarded the Trevor Pro Project’s ”Hero Award.”
ject’s ”Hero Award.”Sources disagr
ee about Radcliffe’s personal wealth
; he was reported to have earned £1
million for the first Harry Potter

including ¡unk¿ Hospice Care for Ch including ¡unk¿ Hospice Care for Ch
ildren, and The Trevor Project for s ildren, and The Trevor Project for s
uicide prevention among LGBTQ youth, uicide prevention among LGBTQ youth,
which gave him its Hero Award in 20 which gave him its Hero Award in 20
11.= = Early life = =Radcliffe w 11.= = Early life = =Radcliffe w
as born in West London, England. He as born in West London, England. He
is the only child of Alan George Rad is the only child of Alan George Rad
cliffe, a literary agent, and cliffe, a literary agent, and
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Table 17. Sample - Beavers are interesting animals. The RETRO[OFF] sample quickly diverges to other animals while the RETRO[ON]
sample tends to stay focused on the beaver topic due to neighbour conditioning.

Prompt and sample of RETRO[OFF] Prompt and sample of RETRO[ON] [N1
u, F

1
u ] colored by LCP with Cu+1 [N2

u, F
2
u ] colored by LCP with Cu+1

colored by LCP with RET(Cu−1)
LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5

Beavers are interesting animals that Beavers are interesting animals that .Beavers build their lodges in pon naw them into smaller sections and d
live near rivers. They build live near rivers. They build ds they have created in wooded areas rag them into the water.Engineers

.Like many things in nature, there of the Pond Beavers are interesting
is a connection between creatures i animals because they change the hab

n the wild.Beaver ponds cause tree itat in which they live. Beavers do
s to drown, but the dead trees attra this by blocking up streams to creat
ct the great blue heron, which often e ponds. Then they build their homes
return year after year. Over time, , called lodges, in these ponds. Bea

a beaver pond can attract more than vers’ bodies make them well-suited f
50 nests in a colony, called a rooke or underwater building Special muscl
ry.An example of this can be found es close off their noses, ears, and
in the large pond off Bradford Road throats to keep the water out. Beave
at Carter Fields near the Boxford l rs’ broad tails act like rudders for

ine.Chris Leahy, an expert with th steering. Their two very large, ora
e Massachusetts Audubon Society who nge front teeth are used to gnaw dow
wrote n trees. They begin building their d

am

dams to create ponds. Frogs are am their houses called beaver dams in , then they mean that you are very b ar-like tail, and two protruding tee
phibians, so they can live in both l the riverbeds. They also live on lan usy. Beavers swim easily in streams, th that are strong enough to gnaw do
and and water. They have great camou d.Beavers use their strong teeth an picking up rocks and sticks to buil wn trees. The beaver uses trees, bra
flage to hide from predators. The G d strong jaws to cut down trees and d their dams. They gnaw at trees wit nches, and mud to build dams across
olden Retriever, or Golden, is a ver branches to build their homes. They h their big front teeth to cut them rivers and streams. These dams creat
y big dog. They are very strong, and also use their teeth and jaws to che down. Then they use parts of the tre e a deep pool of water in which the
have a thick coat to help them live w up food. Beavers use their big, fl es to build their houses.Beavers ar beaver builds its home. A beaver hom
in at tails to swim. They use e clever builders. They know exactly e is called a lodge. A baby beaver o

what they need to build their beave r “kit” remains in the family lodge
r dams. They use mud from the stream until the age of two.Beaver fur, kn
to make their dams stay together. T own as pelt, was once highly popular

hey use their tails to pat down the as a trim for hats and coats. How m
mud.Beavers put a snug room at the ight the popularity of beaver fur co
top of their dams for their babies. ntributed to the colonization of New
They store their food underwater. Be York?wwwWw
avers eat the bark from the

cold areas. A kangaroo is an anima their sharp teeth to gnaw at rocks , then they mean that you are very b w at trees with their big front teet
l that is very large. It can jump ve and cut trees. They use their flat t usy. Beavers swim easily in streams, h to cut them down. Then they use pa
ry high. They can run very fast. A ails to steer when they are swimming picking up rocks and sticks to buil rts of the trees to build their hous
meerkat is a small animal that lives .In the winter, beavers have to bui d their dams. They gnaw at trees wit es.Beavers are clever builders. The
in Africa. They live in colonies of ld a house called a beaver lodge. Th h their big front teeth to cut them y know exactly what they need to bui
up to a hundred of them. They can c ey build a house that is very strong down. Then they use parts of the tre ld their beaver dams. They use mud f

limb trees very easily. . The walls are made of twigs. The r es to build their houses.Beavers ar rom the stream to make their dams st
oof is made e clever builders. They know exactly ay together. They use their tails to

what they need to build their beave pat down the mud.Beavers put a snu
r dams. They use mud from the stream g room at the top of their dams for
to make their dams stay together. T their babies. They store their food

hey use their tails to pat down the underwater. Beavers eat the bark fro
mud.Beavers put a snug room at the m the trees that they cut down!1. W
top of their dams for their babies. hat is the main idea of the first pa
They store their food underwater. Be ragraph?.2. What is the main idea o
avers eat the bark from the f the second paragraph?

A mouse is a small mammal that lives of branches and other tree parts. T
on land. It is a very good climber hey also use their strong jaws to cu

and it can run very fast. Penguins t trees. They bring them to their ho
are birds that live on Antarctica. T use. They also use their sharp teeth
hey have a thick coat to keep them w to chew up the tree parts. They use
arm. Rabbits are small animals that their flat tails to swim to the top
live in the ground. They of their house. Then they use their

teeth and jaws to chew up the tree
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Table 18. Sample - Hamlet, Act 1, Scene 1. The RETRO[OFF] sample has correct syntax but is hallucinated, and ends with repetition of
one character (FRANCISCO Approach me not). The RETRO[ON] sample is the correct continuation of the original text, and is robust to
formatting differences between our prompt and the retrieved data.

Prompt and sample of RETRO[OFF] Prompt and sample of RETRO[ON] [N1
u, F

1
u ] colored by LCP with Cu+1 [N2

u, F
2
u ] colored by LCP with Cu+1

colored by LCP with RET(Cu−1)
LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5

ACT I SCENE I. Elsinore. A pla ACT I SCENE I. Elsinore. A pla ACT I SCENE I. Elsinore. A pla ¿¡TEXT¿ACT I SCENE I. Elsin
tform before the castle. FRANC tform before the castle. FRANC tform before the castle. (FRAN ore. A platform before the cas
ISCO at his post. Enter to him ISCO at his post. Enter to him CISCO at his post. Enter to hi tle. FRANCISCO at his post. E
BERNARDO BERNARDO Who’s there BERNARDO BERNARDO Who’s there m BERNARDO) BERNARDO Who’s the nter to him BERNARDO BERNARDO
? FRANCISCO Nay, answer me: st ? FRANCISCO Nay, answer me: st re? FRANCISCO Nay, answer me: Who’s there? FRANCISCO Nay, an
and, and unfold yourself. BERN and, and unfold yourself. BERN stand, and unfold yourself. BE swer me: stand, and unfold you
ARDO ARDO RNARDO Long live the king! FRA rself. BERNARDO Long live the

NCISCO Bernardo? BERNARDO He. king! FRANCISCO Bernardo? BERN
FRANCISCO You come most carefu ARDO He. FRANCISCO You come mo
lly upon your hour. BERNARDO ’ st carefully upon your hour. B
Tis now struck twelve; get the ERNARDO ’Tis now struck twelve
e to bed, Francisco. FRANCISCO ; get thee to bed, Francisco.
For this relief much thanks: FRANCISCO For this relief much
’tis bitter cold, And I am sic thanks: ’tis bitter cold, And
k at heart. BERNARDO Have you I am sick at heart.

Who calls ? FRANCISCO I am th Long live the king! FRANCISCO Long live the king! FRANCISCO live the king! FRANCISCO Bern
e lord here; I, Francisco, tha Bernardo? BERNARDO He. FRANCI Bernardo? BERNARDO He. FRANCI ardo? BERNARDO He. FRANCISCO Y
t am sick of grief. [ Aside. B SCO You come most carefully up SCO You come most carefully up ou come most carefully upon yo
ERNARDO The king ! FRANCISCO I on your hour. BERNARDO ’Tis no on your hour. BERNARDO ’Tis no ur hour. BERNARDO ’Tis now str
am sick of that also. BERNARD w struck twelve; get thee to b w struck twelve; get thee to b uck twelve: get thee to bed, F
O My lord ? FRANCISCO Do not a ed, Francisco. FRANCISCO For t ed, Francisco. FRANCISCO For t rancisco. FRANCISCO For this r
pproach me. BERNARDO his relief much thanks: ’tis b his relief much thanks: ’tis b elief much thanks: ’tis bitter

itter cold, And I am sick at h itter cold, And I am sick at h cold, And I am sick at heart.
eart. B eart.¡/TEXT¿¡/DOC¿¡DOC¿¡DO BERNARDO Have you had quiet g

CNO¿romeo¡/DOCNO¿¡TEXT¿ACT I uard? FRANCISCO Not a mouse st
PROLOGUE Two households, bo irring. BERNARDO Well, good ni

th alike in dignity, In fair V ght. Ifyou do meet Horatio and
erona, where we lay our scene, Marcellus, The rivals2 of my
From ancient grudge break to watch, bid them make haste. FR
new mutiny, ANCISCO I think I hear them.—

Stand, ho! who is there? EN

Francisco, I would speak with ERNARDO Have you had quiet gua had quiet guard? FRANCISCO No ARDO Have you had quiet guard?
you. FRANCISCO Approach me not rd? FRANCISCO Not a mouse stir t a mouse stirring. BERNARDO W FRANCISCO Not a mouse stirrin
, but speak. BERNARDO Your han ring. BERNARDO Well, good nigh ell, good night. If you do mee g. BERNARDO Well, good night.
d, your voice FRANCISCO I will t. If you do meet Horatio and t Horatio and Marcellus, The r Ifyou do meet Horatio and Marc
not hear thee speak. BERNARDO Marcellus, The rivals of my wa ivals of my watch, bid them ma ellus, The rivals2 of my watch
Francisco, your hand, I entre tch, bid them make haste. FRAN ke haste. FRANCISCO I think I , bid them make haste. FRANCIS
at thee. FRANCISCO Approach me CISCO I think I hear them. Sta hear them. Stand, ho! Who’s th CO I think I hear them.— Stand
not. BERNARDO Francisco FRANC nd, ho! who is there? Enter ere? (Enter HORATIO and MARCEL , ho! who is there? ENTER HORA

LUS) HORATIO Friends to this g TIO AND MARCELLUS. HORATIO Fri
round. MARCELLUS And liegemen ends to this ground. MARCELLUS
to the Dane. FRANCISCO Give yo And liegemen to the Dane.3 FR
u good night. MARCELLUS O, far ANCISCO Give you good night. M
ewell, honest soldier: Who hat ARCELLUS O, farewell, honest s
h relieved you? FRANCISCO Bern oldier: Who hath relieved you?
ardo has my place. Give you go FRANCISCO Bernardo hath my pl
od night. (Exit ace. Give you good night

ISCO Approach me not. BERNARDO HORATIO and MARCELLUS HORATIO
I have a letter FRANCISCO App Friends to this ground. MARCE
roach me not. BERNARDO For the LLUS And liegemen to the Dane.
king. FRANCISCO Approach me n FRANCISCO Give you good night
ot. BERNARDO There’s no treaso . MARCELLUS O, farewell, hones
n in’t. FRANCISCO Approach me t soldier: Who hath relieved y
not. BERNARDO I will ou? FRANCISCO Bernardo hath my

place. Give you good night.
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Table 19. Sample - Déclaration des droits de l’homme: Article premier. The RETRO[OFF] sample has correct syntax and is almost
plausible but is hallucinated. The RETRO[ON] sample is correctly copied from neighbour data, and robustly re-formated according to our
prompt.

Prompt and sample of RETRO[OFF] Prompt and sample of RETRO[ON] [N1
u, F

1
u ] colored by LCP with Cu+1 [N2

u, F
2
u ] colored by LCP with Cu+1

colored by LCP with RET(Cu−1)
LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5

Article premier - Les hommes Article premier - Les hommes de l’homme et du citoyen.Ar Les hommes naissent et demeur
naissent et demeurent libres e naissent et demeurent libres e ticle 1erLes hommes naissent ent libres et égaux en droits.
t égaux en droits. Les distinc t égaux en droits. Les distinc et demeurent libres et égaux Les distinctions sociales ne
tions sociales ne peuvent être tions sociales ne peuvent être en droits. Les distinctions so peuvent être fondées que sur l
fondées que sur l’utilité com fondées que sur l’utilité com ciales ne peuvent être fondées ’utilité commune.Art. 2. -

mune. Article 2. - Le but de mune. Article 2. - Le but de que sur l’utilité commune.A Le but de toute association po
toute association politique e toute association politique e rticle 2Le but de toute asso litique est la conservation de

st la conservation des droits st la conservation des droits ciation politique est la conse s droits naturels et imprescri
naturels et naturels et rvation des droits naturels et ptibles de l’Homme. Ces droits

imprescriptibles de l’homme. sont la liberté, la propriété
Ces droits sont la liberté, la , la sûreté, et la résistance
propriété, la sûreté, et la r à l’oppression.Art. 3. -Le
ésistance à l’oppression.Art principe de toute Souverainet
icle 3Le principe de toute s é réside essentiellement dans
ouveraineté réside essentielle la Nation. Nul corps, nul indi
ment dans la nation. Nul corps vidu ne peut exercer d’autorit
, nul individu ne peut exercer é qui n’en émane expressément.
d’autorité qui n’en Art

imprescriptibles de l’homme, imprescriptibles de l’homme. criptibles del’homme. Ces dro et imprescriptibles de l’homm
et par conséquent la garantie Ces droits sont la liberté, la its sont la liberté, la propri e. Ces droits sont la liberté,
à chacun des droits suivants propriété, la sûreté et la ré été, la sûretéet la résistanc la propriété, la sûreté et la

: Article 3. - La propriété sistance à l’oppression.Arti e à l’oppression.Article 3 - résistance à l’oppression.A
est un droit inviolable et sa cle 3.- Le principe de toute Le principe de toute souverai rticle 3 - Le principe de tout

cré. Toute personne a le droit souveraineté réside essentiel neté résideessentiellement da e souveraineté réside essentie
de procéder à sa propre cons lement dans la nation. Nul cor ns la Nation. Nul corps, nul i llement dans la Nation. Nul co

ervation. Article 4. - Le ps, nul individu ne peut exerc ndividu nepeut exercer d’auto rps, nul individu ne peut exer
er d’autorité qui n rité qui n’en émane expresséme cer d’autorité qui n’en émane

nt.Article 4 - La liberté co expressément.Article 4 - La
nsiste à pouvoir faire tout ce liberté consiste à pouvoir fai
quine nuit pas à autrui : ai re tout ce qui ne nuit pas à a
nsi, l’exercice des droits nat utrui : ainsi, l’exercice des
urelsde chaque homme n’a de b droits naturels de chaque homm
ornes que celles qui assurent e n’a de bornes que celles qui
auxautres membres de la socié assurent aux autres membres d
té la jouissance de e la société la jouissance de

ces mêmes droits. Ces bornes

but de toute association est ’en émane expressément.Artic mane expressément.Article 4 mane expressément.Article 4
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pas défendu par la loi ne peu pas défendu par la loi ne peu
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Table 20. Sample - Decimals of π. The RETRO[OFF] sample quickly diverges two digits after the end of the prompt whereas RETRO[ON]
correctly outputs a large number of π digits, directly copied from the neighbours data.

Prompt and sample of RETRO[OFF] Prompt and sample of RETRO[ON] [N1
u, F

1
u ] colored by LCP with Cu+1 [N2

u, F
2
u ] colored by LCP with Cu+1

colored by LCP with RET(Cu−1)
LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5 LCP = 0, 1, 2, 3,4,> 5

Pi = 3. 1415926535 8979323846 Pi = 3. 1415926535 8979323846 “1415926535 8979323846 26433 46 2643383279 5028841971 69399
2643383279 5028841971 69399375 2643383279 5028841971 69399375 83279 5028841971 693993751058 37510 5820974944 592307816406
10 5820974944 5923078164 06286 10 5820974944 5923078164 06286 20974944 5923078164 0628620899 28620899 8628034825 3421170679
20899 8628034825 3421170679 20899 8628034825 3421170679 8628034825 34211706798214808 8214808651 3282306647 0938446

651 3282306647 0938446095 5058 095 50582231725359408128 4811
223172 53594081284811174502 8 174502 8410270193 8521105559 6
410270193 8521105559 644622948 446229489 5493038196 442881097
9 54930381964428810975 665933 56659334461 2847564823 378678
4461 2847564823 3786783 3165 2712019091 4564856692 346

0

8294049602 8988496069 9858349 8214808651 3282306647 0938446 651 3282306647 0938446095 5058 47 0938446095 5058223172 53594
065 9873246379 9644789435 8628 095 5058223172 53594081284811 223172 5359408128 4811174502 081284811174502 8410270193 85
730709 6540159079 5944069810 5 174502 8410270193 8521105559 6 8410270193 8521105559 64462294 21105559 6446229489 5493038196
992965913 7095378412 69378359 446229489 5493038196442881097 89 54930381964428810975 66593 4428810975 6659334461 2847564

5 6659334461 284 34461 2847564823 3786783165 27 823 3786783165 27120190914564
12019091 4564856692 346034861 856692 3460348610 4543266482 1
0 4543266482 1339360726 024914 339360726 0249141273724587006
12737245870066 0631558817 488 6 0631558817 4881520920 962829
1520920 9628292540 91715364 2540 91715364367892590360

10 6940372045 7088679512 85612 7564823 3786783165 2712019091 23 3786783165 2712019091 4564 165 27120190914564856692 3460
30857 9046461290 9276642155 56 4564856692 3460348610 45432664 856692 3460348610 4543266482 1 348610 4543266482 1339360726 0
54603269 5656128798 6366475705 82 1339360726 024914127372458 339360726 0249141273724587006 2491412737245870066 063155881
6294954741 5886335339 57657 70066 0631558817 4881520920 96 6 0631558817 4881520920 962829 7 4881520920 9628292540 917153

28292540 91715 2540 9171536436 7892590360 01 64367892590360 0113305305 488
13305305 4882046652 1384146951 2046652 1384146951 9415116094
94151160943305727036 5759591 3305727036 5759591953 09218611
953 0921861173 8193261179 3105 73 8193261179 310511854807446
118548 0744623799 627495 23799 6274956735 1885752724 89

1227

76345 5770886953 7988876910 79 364367892590360 0113305305 48
66169745 6493974637 6345801550 82046652 1384146951 9415116094
6663542854 6333764630 6356284 3305727036 5759591953 0921861

271 7885339804 5672434 173 8193261179 31051185480744
623799 6274


