
Proceedings of Machine Learning Research 157, 2021 ACML 2021

CTAB-GAN: Effective Table Data Synthesizing

Zilong Zhao∗ Z.Zhao-8@tudelft.nl

Aditya Kunar∗ A.Kunar@student.tudelft.nl

TU Delft, Delft, The Netherlands.

Robert Birke robert.birke@ch.abb.com

ABB Research Switzerland, Dättwil, Switzerland

Lydia Y. Chen Lydiaychen@ieee.org

TU Delft, Delft, The Netherlands.

Editors: Vineeth N Balasubramanian and Ivor Tsang

Abstract

While data sharing is crucial for knowledge development, privacy concerns and strict regu-
lation (e.g., European General Data Protection Regulation (GDPR)) unfortunately limit its
full effectiveness. Synthetic tabular data emerges as an alternative to enable data sharing
while fulfilling regulatory and privacy constraints. The state-of-the-art tabular data syn-
thesizers draw methodologies from Generative Adversarial Networks (GAN) and address
two main data types in industry, i.e., continuous and categorical. In this paper, we develop
CTAB-GAN, a novel conditional table GAN architecture that can effectively model diverse
data types, including a mix of continuous and categorical variables. Moreover, we address
data imbalance and long tail issues, i.e., certain variables have drastic frequency differ-
ences across large values. To achieve those aims, we first introduce the information loss,
classification loss and generator loss to the conditional GAN. Secondly, we design a novel
conditional vector, which efficiently encodes the mixed data type and skewed distribution
of data variable. We extensively evaluate CTAB-GAN with the state of the art GANs that
generate synthetic tables, in terms of data similarity and analysis utility. The results on five
datasets show that the synthetic data of CTAB-GAN remarkably resembles the real data
for all three types of variables and results into higher accuracy for five machine learning
algorithms, by up to 17%.

Keywords: GAN; Data synthesis; Tabular data; Imbalanced distribution

1. Introduction

“Data is the new oil” is a quote that goes back to 2006, which is credited to mathematician
Clive Humby. It has recently picked up more steam after The Economist1 published a report
titled “The world’s most valuable resource is no longer oil, but data”. Many companies
nowadays discover valuable business insights from various internal and external data sources.
However, the big knowledge behind big data often impedes personal privacy and leads to
unjustified analysis (Narayanan and Shmatikov (2008)). To prevent the abuse of data and
the risks of privacy breaching, the European Commission introduced the European General

∗ Equal contribution
1. https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-l

onger-oil-but-data

© 2021 Z. Zhao, A. Kunar, R. Birke & L.Y. Chen.

https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data

Zhao Kunar Birke Chen

Data Protection Regulation (GDPR) and enforced strict data protection measures. This
however instills a new challenge in the data-driven industries to look for new scientific
solutions that can empower big discovery while respecting the constraints of data privacy
and governmental regulation.

An emerging solution is to leverage synthetic data (Mottini et al. (2018)), which sta-
tistically resembles real data and can comply with GDPR due to its synthetic nature.
The industrial datasets (at stakeholders like banks, insurance companies, and health care)
present multi-fold challenges. First of all, such datasets are organized in tables and popu-
lated with both continuous and categorical variables, or a mix of the two, e.g., the value of
mortgage for a loan holder. This value can be either 0 (no mortgage) or some continuous
positive number. Here, we term such a type of variables, mixed variable. Secondly data
variables often have a wide range of values as well as skewed frequency distribution, e.g., the
statistic of transaction amount for credit card. Most transactions should be within 0 and
500 bucks (i.e. daily shopping for food and clothes), but exceptions of a high transaction
amount surely exist.

Generative Adversarial Network (GAN) (Goodfellow et al. (2014)) is one of the emerging
data synthesizing methodologies. The GAN is first trained on a real dataset. Then used to
generate data. Beyond its success on generating images, Xu et al. (2019); Park et al. (2018);
Mottini et al. (2018) have recently applied GAN to generate tabular data. The state of the
art of tabular generator (Xu et al. (2019)) treats categorical variables via conditional GAN,
where each categorical value is considered as a condition. However, their focus is only on
two types of variables, namely continuous and categorical, overlooking an important class
of mixed data type. In addition, it is unclear if existing solutions can efficiently handle
highly imbalanced categorical variables and skewed continuous variables.

In this paper, we aim to design a tabular data synthesizer that addresses the limitations
of the prior state-of-the-art: (i) encoding mixed data type of continuous and categorical
variables, (ii) efficient modeling of long tail continuous variables and (iii) increased robust-
ness to imbalanced categorical variables along with skewed continuous variables. Hence,
we propose a novel conditional table generative adversarial network, CTAB-GAN. Two key
features of CTAB-GAN are the introduction of classification loss in conditional GAN, and
novel encoding for the conditional vector that efficiently encodes mixed variables and helps
to deal with highly skewed distributions for continuous variables.

We rigorously evaluate CTAB-GAN in three dimensions: (i) utility of machine learning
based analysis on the synthetic data, (ii) statistical similarity to the real data, and (iii)
privacy preservability. Specifically, the proposed CTAB-GAN is tested on 5 widely used
machine learning datasets: Adult, Covertype, Credit, Intrusion and Loan, against 4 state-
of-the-art GAN-based tabular data generation algorithms: CTGAN, TableGAN, CWGAN
and MedGAN. Our results show that CTAB-GAN not only outperforms all the comparisons
in machine learning utility and statistical similarity but also provides better distance-based
privacy guarantees than TableGAN, the second best performing algorithm in the machine
learning utility and statistical similarly evaluation.

The main contributions of this study can be summarized as follows: (1) Novel condi-
tional adversarial network which introduces a classifier providing additional supervision to
improve its utility for ML applications. (2) Efficient modelling of continuous, categorical,
and mixed variables via novel data encoding and conditional vector. (3) Light-weight data

CTAB-GAN

(a) Mortgage in Loan (b) Amount in Credit (c) Hours-per-week in Adult

Figure 1: Challenges of modeling industrial dataset using existing GAN-based table gener-
ator: (a) mixed type, (b) long tail distribution, and (c) skewed data

pre-processing to mitigate the impact of long tail distribution of continuous variables. (4)
Providing an effective data synthesizer for the relevant stakeholders.

1.1. Motivation

We empirically demonstrate how the prior state-of-the-art methods fall short in solving
challenges in industrial data sets. The detailed experimental setup can be found in Sec. 4.1.

Mixed data type variables. To the best of our knowledge, existing GAN-based
tabular generators only consider table columns as either categorical or continuous. However,
in reality, a variable can be a mix of these two types, and often variables have missing values.
The Mortgage variable from the Loan dataset is a good example of mixed variable. Fig. 1(a)
shows the distribution of the original and synthetic data generated by 4 state-of-the-art
algorithms for this variable. According to the data description, a loan holder can either
have no mortgage (0 value) or a mortgage (any positive value). In appearance this variable
is not a categorical type due to the numeric nature of the data. So all 4 state-of-the-art
algorithms treat this variables as continuous type without capturing the special meaning of
the value zero. Hence, all 4 algorithms generate a value around 0 instead of exact 0. And
the negative values for Mortgage have no/wrong meaning in the real world.

Long tail distributions. Many real world data can have long tail distributions where
most of the occurrences happen near the initial value of the distribution, and rare cases
towards the end. Fig. 1(b) plots the cumulative frequency for the original (top) and synthetic
(bottom) data generated by 4 state-of-the-art algorithms for the Amount in the Credit
dataset. This variable represents the transaction amount when using credit cards. One can
imagine that most transactions have small amounts, ranging from few bucks to thousands
of dollars. However, there definitely exists a very small number of transactions with large
amounts. Note that for ease of comparison both plots use the same x-axis, but Real has
no negative values. Real data clearly has 99% of occurrences happening at the start of the
range, but the distribution extends until around 25000. In comparison none of the synthetic
data generators is able to learn and imitate this behavior.

Zhao Kunar Birke Chen

Skewed multi-mode continuous variables. The term multi-mode is extended from
Variational Gaussian Mixtures (VGM). More details are given in Sec. 3.3. The intuition
behind using multiple modes can be easily captured from Fig. 1(c). The figure plots in each
row the distribution of the working Hours-per-week variable from the Adult dataset. This is
not a typical Gaussian distribution. There is an obvious peak at 40 hours but with several
other lower peaks, e.g. at 50, 20 and 45. Also the number of people working 20 hours per
week is higher than those working 10 or 30 hours per week. This behavior is difficult to
capture for the state-of-the-art data generators (see subsequent rows in Fig.1(c)). The clos-
est results are obtained by CTGAN which uses Gaussian mixture estimation for continuous
variables. However, CTGAN loses some modes compared to the original distribution.

The above examples show the shortcomings of current state-of-the-art GAN-based tab-
ular data generation algorithms and motivate the design of our proposed CTAB-GAN.

2. Related Studies

We divide the related studies using GAN to generate tabular data into two categories: (i)
based on GAN, and (ii) based on conditional GAN.

GAN-based generator. Several studies extend GAN to accommodate categorical
variables by augmenting GAN architecture. MedGAN (Choi et al. (2017)) combines an auto-
encoder with a GAN. It can generate continuous or discrete variables, and has been applied
to generate synthetic electronic health record (EHR) data. CrGAN-Cnet (Mottini et al.
(2018)) uses GAN to conduct Airline Passenger Name Record Generation. It integrates the
Cramér Distance (Bellemare et al. (2017)) and Cross-Net architecture (Wang et al. (2017))
into the algorithm. In addition to generating with continuous and categorical data types,
CrGAN-Cnet can also handle missing value in the table by adding new variables. TableGAN
(Park et al. (2018)) introduces information loss and a classifier into GAN framework. It
specifically adopts Convolutional Neural Network (CNN) for generator, discriminator and
classifier. Although aforementioned algorithms can generate tabular data, they cannot
specify how to generate from a specific class for particular variable. For example, it is
not possible to generate health record for users whose sex is female. In addition to data
generation, privacy is another important factor for synthetic tabular data. PATE-GAN
(Yoon et al. (2019)) is not specifically designed for tabular data generation, but it proposes
a framework which generates synthetic data with differential privacy guarantees.

Conditional GAN-based generator. Due to the limitation of controlling generated
data via GAN, Conditional GAN is increasingly used, and its conditional vector can be used
to specify to generate a particular class of data. This feature is important when our available
data is limited and highly skewed, and we need synthetic data of a specific class to re-balance
the distribution. For instance, for preparing starting dataset of online learning scenarios
(Zhao et al. (2019, 2021); Younesian et al. (2020)). CW-GAN (Engelmann and Lessmann
(2020)) applies the Wasserstein distance (Arjovsky et al. (2017)) into the conditional GAN
framework. It leverages the usage of conditional vector to oversample the minority class to
address imbalanced tabular data generation. CTGAN (Xu et al. (2019)) integrates PacGAN
(Lin et al. (2020)) structure in its discriminator and uses Generator loss and WGAN loss
plus gradient penalty (Gulrajani et al. (2017)) to train a conditional GAN framework. It also
adopts a strategy called training-by-sampling, which takes advantage of conditional vector,

CTAB-GAN

Figure 2: Synthetic Tabular Data Generation via CTAB-GAN

to deal with the imbalanced categorical variable problem. In our paper, we not only focus
on modelling continuous or categorical variables, but also cover the mixed data type (i.e.,
variables that contain both categorical and continuous values, or even missing values). We
effectively combine the strengths of prior art, such as classifier, information, generator loss,
effective encoding, and conditional vector. Furthermore, we proactively address the pain
point of long tail variable distributions and propose a new conditional vector structure to
better deal with imbalanced datasets.

3. CTAB-GAN

CTAB-GAN is a tabular data generator designed to overcome the challenges outlined in
Sec. 1.1. In CTAB-GAN we invent a Mixed-type Encoder which can better represent mixed
categorical-continuous variables as well as missing values. CTAB-GAN is based on a condi-
tional GAN (CGAN) to efficiently treat minority classes, with the addition of classification,
information and generator loss (Park et al. (2018); Odena et al. (2017); Xu et al. (2019))
to improve semantic integrity and training stability, respectively. Finally, we leverage a
log-frequency sampler to overcome the mode collapse problem for imbalanced variables.

3.1. Technical Background

GANs are a popular method to generate synthetic data first applied with great success to
images (Karras et al. (2019)) and later adapted to tabular data (Yahi et al. (2017)). GANs
leverage an adversarial game between a generator trying to synthesize realistic data and a
discriminator trying to discern synthetic from real samples.

To address the problem of dataset imbalance, we leverage conditional generator and
training-by-sampling methods from CTGAN. The idea behind this is to use an additional
vector, termed as the conditional vector, to represent the classes of categorical variables.
This vector is both fed to the generator and used to bound the sampling of the real training
data to subsets satisfying the condition. We can leverage the condition to resample all
classes giving higher chances to minority classes to train the model.

To enhance the generation quality, we incorporate three extra terms in the loss function
of the generator: information (Park et al. (2018)), classification (Odena et al. (2017)) and
generator loss (Xu et al. (2019)). The information loss penalizes the discrepancy between
statistics of the generated data and the real data. This helps to generate data which
is statistically closer to the real one. The classification loss requires to add to the GAN
architecture an auxiliary classifier in parallel to the discriminator. For each synthesized label

Zhao Kunar Birke Chen

the classifier outputs a predicted label. The classification loss quantifies the discrepancy
between the synthesized and predicted class. This helps to increase the semantic integrity of
synthetic records. For instance, (sex=female, disease=prostate cancer) is not a semantically
correct record as women do not have a prostate, and no such record should appear in the
original data and is hence not learnt by the classifier. The generator loss measures the
difference between the given conditions and the output classes of the generator. This loss
helps the generator to learn to produce the exact same classes as the given conditions.
Classification loss is used by TableGAN but not CTGAN, since CTGAN does not contain
classifier. Generator loss is implemented by CTGAN but not TableGAN, because TableGAN
is not a conditional GAN.

To counter complex distributions in continuous variables we embrace the mode-specific
normalization (MSN) idea (Xu et al. (2019)) which encodes each value as a value-mode
pair stemming from Gaussian mixture model.

3.2. Design of CTAB-GAN

The structure of CTAB-GAN comprises three blocks: Generator G, Discriminator D and
an auxiliary Classifier C (see Fig. 2). Since our algorithm is based on conditional GAN,
the generator requires a noise vector plus a conditional vector. Details on the conditional
vector are given in Sec. 3.4. To simplify the figure, we omit the encoding and decoding of
the synthetic and real data detailed in Sec. 3.3.

GANs are trained via a zero-sum minimax game where the discriminator tries to max-
imize the objective, while the generator tries to minimize it. The game can be seen as
a mentor (D) providing feedback to a student (G) on the quality of his work. Here, we
introduce additional feedback for G based on the information loss, classification loss and
generator loss. The information loss matches the first-order (i.e., mean) and second-order
(i.e., standard deviation) statistics of synthesized and real records. This leads the synthetic
records to have the same statistical characteristics as the real records. The classification loss
equates the correlation between classes and the other variable values. This helps to check
the semantic integrity, and penalizes synthesized records where the combination of values
are semantically incorrect. Finally, the generator loss is the cross-entropy between the given
conditional vector and the generated output classes. It enforces the conditional generator
to produce the same classes as the given conditional vector. These three losses are added to
the original loss term of G during training. G and D are implemented using CNNs with the
same structure as in Park et al. (2018). CNNs are good at capturing the relation between
pixels within an image, which in our case, can help to increase the semantic integrity of
synthetic data. To process row records stored as vectors with CNN, we wrap the row data
into the closest square matrix dimensions, i.e. d× d where d is the ceiled square root of the
row data dimensionality and pad missing values with zeros. C uses a multi-layer-perceptron
(MLP) with four 256-neuron hidden layers. The classifier is trained on the original data
to better interpret the semantic integrity. Hence synthetic data are reverse transformed
from their matrix encoding to vector (details in Sec. 3.3). Real data is encoded (details in
Sec. 3.3 and 3.5) before being used as input for C to create the class label predictions.

Let fx and fG(z) denote the features fed into the softmax layer of D for a real sample x
and a sample generated from latent value z, respectively. The information loss for G is

CTAB-GAN

(a) Mixed type (b) Mode selection

Figure 3: Encoding for mix data type variable Figure 4: Conditional vector V example

expressed as LGinfo = ||E[fx]x∼pdata(x)−E[fG(z)]z∼p(z)||2+||SD[fx]x∼pdata(x)−SD[fG(z)]z∼p(z)||2
where pdata(x) and p(z) denote prior distributions for real data and latent variable, E and
SD denote the mean and standard deviations of the features, respectively. The classifier
loss is given by LGclass = E[|l(G(z))−C(fe(G(z)))|]z∼p(z) where l(.) returns the target label
and fe(.) returns the input features of a given row x. Finally, the generator loss is given
by LGgenerator = H(mi, m̂i) where mi and m̂i are the given and generated conditional vector
bits corresponding to column i and H(.) is the cross-entropy loss. Columns are selected
using the training-by-sampling procedure (see Sec. 3.4 for details).

Let LDorig and LGorig denote the original GAN loss functions from Goodfellow et al. (2014)
to train the discriminator D and generator G, respectively. For G the complete training
objective is the combination of LG = LGorig + LGinfo + LGclass + LGgenerator, while for D it is

unchanged, i.e. LDorig. Finally, the loss to train the classifier C is similar to the classification

loss of the generator, i.e. LCclass = E[|l(x)− C(fe(x))|]x∼pdata(x).

3.3. Mixed-type Encoder

The tabular data is encoded variable by variable. We distinguish three types of variables:
categorical, continuous and mixed. We define variables as mixed if they contain both
categorical and continuous values or continuous values with missing values. We propose
the new Mixed-type Encoder to deal with such variables. With this encoder, values of
mixed variables are seen as concatenated value-mode pairs. We illustrate the encoding via
the exemplary distribution of a mixed variable shown in red in Fig. 3(a). One can see
that values can either be exactly µ0 or µ3 (the categorical part) or distributed around two
peaks in µ1 and µ2 (the continuous part). We treat the continuous part using a variational
Gaussian mixture model (VGM) (Bishop (2006)) to estimate the number of modes k, e.g.
k = 2 in our example, and fit a Gaussian mixture. The learned Gaussian mixture is
P =

∑2
k=1 ωkN (µk, σk), where N is the normal distribution and ωk, µk and σk are the

weight, mean and standard deviation of each mode, respectively.
To encode values in the continuous region of the variable distribution, we associate and

normalize each value with the mode having the highest probability (see Fig. 3(b)). Given ρ1
and ρ2 being the probability density from the two modes in correspondence of the variable
value τ to encode, we select the mode with the highest probability. In our example ρ1 is
higher and we use mode 1 to normalize τ . The normalized value α is: α = τ−µ1

4σ1
. Moreover

we keep track of the mode β used to encode τ via one-hot encoding, e.g. β = [0, 1, 0, 0] in
our example. The final encoding is giving by the concatenation of α and β: α

⊕
β where⊕

is the vector concatenation operator. The categorical part (e.g., µ0 or µ3 in Fig. 3(a))
is treated similarly, except α is directly set to 0. Because the category is determined only

Zhao Kunar Birke Chen

by one-hot encoding part. For example, for a value in µ3, the final encoding is given by
0
⊕

[0, 0, 0, 1]. Categorical variables use the same encoding as the continuous intervals of
mixed variables. Categorical variables are encoded via a one-hot vector γ. Missing values
are treated as a separate unique class and we add an extra bit to the one-hot vector for it.
A row with [1, . . . , N] variables is encoded by concatenation of the encoding of all variable
values, i.e. either (α

⊕
β) for continuous and mixed variables or γ for categorical variables.

Having n continuous/mixed variables and m categorical variables (n + m = N) the final
encoding is:

n⊕
i=1

αi
⊕
βi

N⊕
j=n+1

γj (1)

3.4. Counter Imbalanced Training Datasets

In CTAB-GAN, we use conditional GAN to counter imbalanced training datasets using
training-by-sampling (Xu et al. (2019)), but extended to include the modes of continuous
and mixed columns. When we sample real data, we use the conditional vector to filter
and rebalance the training data. The conditional vector V is a bit vector given by the
concatenation of all mode one-hot encodings β (for continuous and mixed variables) and all
class one-hot encodings γ (for categorical variables) for all variables present in Eq. (1). Each
conditional vector specifies a single mode or a class. More in detail, V is a zero vector with a
single one in correspondence to the selected variable with selected mode/class. Fig. 4 shows
an example with three variables, one continuous (C1), one mixed (C2) and one categorical
(C3), with class 2 selected on C3.

To rebalance the dataset, each time we need a conditional vector during training, we
first randomly choose a variable with uniform probability. Then we calculate the proba-
bility distribution of each mode (or class for categorical variables) in that variable using
frequency as proxy and sample a mode based on the logarithm of its probability. Using the
log probability instead of the original frequency gives minority modes/classes higher chances
to appear during training. This helps to alleviate the collapse issue for rare modes/classes.
Extending the conditional vector to include the continuous and mixed variables helps to
deal with imbalance in the frequency of modes used to represent them. Moreover, since gen-
erator is conditioned on all data-types during training, this enhances the learned correlation
between all variables.

3.5. Treat Long Tails

We encode continuous values using variational Gaussian mixtures to treat multi-mode data
distributions (details in Sec. 3.3). However, Gaussian mixtures can not deal with all types
of data distribution, notably distributions with long tail where few rare points are far
from the bulk of the data. VGM has difficulty to encode the values towards the tail. To
counter this issue we pre-process variables with long tail distributions with a logarithm
transformation. For such a variable having values with lower bound l, we replace each value
τ with compressed τ c:

τ c =

{
log(τ) if l >0

log(τ - l+ε) if l 60, where ε >0

}
(2)

CTAB-GAN

Table 1: Description of Datasets.
Dataset Train/Test Split Target variable Continuous Binary Multi-class Mixed-type Long-tail

Adult 39k/9k ’income’ 3 2 7 2 0

Covertype 45k/5k ’Cover Type’ 10 44 1 0 0

Credit 40k/10k ’Class’ 30 1 0 0 1

Intrusion 45k/5k ’Class’ 22 6 14 0 2

Loan 4k/1k ’PersonalLoan’ 5 5 2 1 0

The log-transform allows to compress and reduce the distance between the tail and bulk
data making it easier for VGM to encode all values, including tail ones. We show the
effectiveness of this simple yet performant method in Sec. 4.6.

4. Experimental Analysis

To show the efficacy of the proposed CTAB-GAN, we select five commonly used machine
learning datasets, and compare with four state-of-the-art GAN based tabular data gener-
ators. We evaluate the effectiveness of CTAB-GAN in terms of the resulting ML utility,
statistical similarity to the real data, and privacy distance. Moreover, we provide an abla-
tion analysis to highlight the efficacy of the unique components of CTAB-GAN.

4.1. Experimental Setup

Datasets. Our algorithm is tested on five commonly used machine learning datasets.
Three of them Adult, Covertype and Intrusionare from the UCI machine learning repos-
itory2. The other two Credit and Loan are from Kaggle3. All five tabular datasets have
a target variable, for which we use the rest of the variables to perform classification. Due
to computing resource limitations, 50K rows of data are sampled randomly in a stratified
manner with respect to the target variable for Covertype, Credit and Intrusion datasets.
However, the Adult and Loan datasets are not sampled. The details of each dataset are
shown in Tab. 1. One thing to notice is that we assume that the user already knows the
data type of each variable before training. Xu et al. (2019) holds the same assumptions.

Baselines. Our CTAB-GAN is compared with 4 state-of-the-art GAN-based tabular
data generators: CTGAN, TableGAN, CWGAN and MedGAN. To have a fair comparison,
all algorithms are coded using Pytorch, with the generator and discriminator structures
matching the descriptions provided in their respective papers. For Gaussian mixture es-
timation of continuous variables, we use the same settings as the evaluation of CTGAN,
i.e. 10 modes. All algorithms are trained for 150 epochs for Adult, Covertype, Credit and
Intrusion datasets, whereas the algorithms are trained for 300 epochs on Loan dataset. The
reason is Loan dataset is significantly smaller than the others containing only 5000 rows
and requires a long training time to converge. Lastly, each experiment is repeated 3 times.

Environment. Experiments are run under Ubuntu 20.04 on a machine equipped with
32 GB memory, a GeForce RTX 2080 Ti GPU and a 10-core Intel i9 CPU.

2. http://archive.ics.uci.edu/ml/datasets
3. https://www.kaggle.com/{mlg-ulb/creditcardfraud,itsmesunil/bank-loan-modelling}

http://archive.ics.uci.edu/ml/datasets
https://www.kaggle.com/{mlg-ulb/creditcardfraud,itsmesunil/bank-loan-modelling}

Zhao Kunar Birke Chen

Figure 5: Evaluation for ML utility Figure 6: Illustration of NNDR

4.2. Evaluation Metrics

The evaluation is conducted on three dimensions: (1) machine learning (ML) utility, (2) sta-
tistical similarity and (3) privacy preservability. The first two measure if the synthetic data
can be used as a good proxy of the original data. The third criterion evaluates the nearest
neighbour distances within and between the original and synthetic datasets, respectively.

4.2.1. Machine Learning Utility

To quantify the ML utility, we compare the performance achieved by 5 widely used machine
learning algorithms on real versus synthetic data: decision tree classifier, linear support-
vector-machine (SVM), random forest classifier, multinomial logistic regression and MLP.
We use scikit-learn 0.24.2 with default parameters except max-depth 28 for decision tree
and random forest, and neurons 128 for MLP.For a fair compassion, all hyper-parameters
are fixed across all datasets. Due to this our results can differ slightly from Xu et al. (2019)
where the authors use different ML models and hyper-parameters for each dataset. Fig. 5
shows the evaluation process. The train dataset and synthetic dataset are the same size.
The aim of this design is to test how close the ML utility is when we train a ML model
using the synthetic data vs the real data.

4.2.2. Statistical Similarity

Three metrics are used to quantify the statistical similarity between real and synthetic data.
Jensen-Shannon divergence (JSD). The JSD provides a measure to quantify the

difference between the probability mass distributions of individual categorical variables
belonging to the real and synthetic datasets, respectively. Moreover, this metric is bounded
between 0 and 1 and is symmetric allowing for an easy interpretation of results.

Wasserstein distance (WD). In similar vein, the Wasserstein distance is used to
capture how well the distributions of individual continuous/mixed variables are emulated by
synthetically produced datasets in correspondence to real datasets. We use WD because we
found that the JSD metric was numerically unstable for evaluating the quality of continuous
variables, especially when there is no overlap between the synthetic and original dataset.
Hence, we resorted to utilize the more stable Wasserstein distance.

Difference in pair-wise correlation (Diff. Corr.). To evaluate how well feature in-
teractions are preserved in the synthetic datasets, we first compute the pair-wise correlation
matrix for the columns within real and synthetic datasets individually. Pearson correlation

CTAB-GAN

(a) Covertype (b) Intrusion (c) Loan

Figure 7: ML utilities difference (i.e., AUC and F1-scoree) for five algorithms and five datasets

coefficient is used between any two continuous variables. It ranges between [−1,+1]. Simi-
larly, the Theil uncertainty coefficient is used to measure the correlation between any two
categorical features. It ranges between [0, 1]. And the correlation ratio between categorical
and continuous variables is used. It also ranges between [0, 1]. Note that the dython4 li-
brary is used to compute these metrics. Finally, the difference between pair-wise correlation
matrices for real and synthetic datasets is computed.

4.2.3. Privacy preservability

To quantify the privacy preservability, we resort to distance metrics (instead of differential
privacy (Yoon et al. (2019))) as they are intuitive and easy to understand by data science
practitioners. Specifically, we use the following metrics to evaluate the privacy risk.

Distance to Closest Record (DCR). The DCR is used to measure the Euclidean
distance between any synthetic record and its closest corresponding real neighbour. Ideally,
the higher the DCR the lesser the risk of privacy breach. Furthermore, the 5th percentile
of this metric is computed to provide a robust estimate of the privacy risk.

Nearest Neighbour Distance Ratio (NNDR). NNDR measures the ratio between
the Euclidean distance for the closest and second closest real neighbour to any corresponding
synthetic record. NNDR is a commonly used concept in computer vision area for matching
local image descriptors. Platzer5 introduces this idea to evaluate the privacy for synthetic
data. This ratio is within [0, 1]. Higher values indicate better privacy. Low NNDR values
between synthetic and real data may reveal sensitive information from the closest real data
record. Fig. 6 illustrates the case. Note that the 5th percentile is computed here as well.

4.3. Results Analysis

ML Utility. Tab. 2 shows the average ML utility difference between real and synthetic
data in terms of accuracy, F1 score, and AUC. A better synthetic data is expected to have
small differences. It can be seen that CTAB-GAN outperforms all other state-of-the-art
methods in terms of Accuracy, F1-score and AUC. Accuracy is the most commonly used
classification metric, but since we have imbalanced target variable, F1-score and AUC are
more stable metrics for such cases. AUC ranges from 0 to 1. CTAB-GAN largely shortens
the AUC difference from 0.169 (best in state-of-the-art) to 0.094.

To obtain a better understanding, Fig. 7 plots the (F1-score, AUC) for all 5 ML models
for the Covertype, Intrusion and Loan datasets. Due to the page limit restrictions, results

4. http://shakedzy.xyz/dython/modules/nominal/#compute associations

5. https://github.com/mostly-ai/virtualdatalab

http://shakedzy.xyz/dython/modules/nominal/#compute_associations
https://github.com/mostly-ai/virtualdatalab

Zhao Kunar Birke Chen

Table 2: Results against State of the Art on ML Utility, Data Similarity, and Privacy.

Method
ML Utility Difference Statistical Similarity

Privacy Preservation
DCR NNDR

Accuracy F1-score AUC Avg JSD Avg WD Diff. Corr. R&S R S R&S R S

CTAB-GAN 8.90% 0.107 0.094 0.062 1197 2.09 1.118 0.428 0.937 0.713 0.414 0.591
CTGAN 21.51% 0.274 0.253 0.0704 1769 2.73 1.517 0.428 1.026 0.763 0.414 0.624

TableGAN 11.40% 0.130 0.169 0.0796 2117 2.30 0.988 0.428 0.920 0.681 0.414 0.632
MedGAN 14.11% 0.282 0.285 0.2135 46257 5.48 1.918 0.428 0.254 0.871 0.414 0.393
CW-GAN 20.06% 0.354 0.299 0.1318 238155 5.82 2.197 0.428 1.124 0.847 0.414 0.675

for Adult and Credit datasets are not shown. Their results are similar to the ones for
Covertype (see Fig. 7(a)). Fig. 7(b) shows that for the Intrusion dataset CTAB-GAN
largely outperforms all others across all ML models used for evaluation. For datasets such
as Covertype, the results of CTAB-GAN and TableGAN are similar and clearly better
than the rest. This is because apart from CTGAN, the other models fail to deal with
the imbalanced categorical variables. Furthermore, as CTGAN uses a VGM model with
10 modes, it fails to converge to a suitable optimum for Covertype that mostly comprises
single mode Gaussian distributions.

For the Loan dataset (see Fig. 7(c)), TableGAN is better than CTAB-GAN and others,
but the difference between the two is smaller than for the Intrusion dataset. We believe that
the reason CTAB-GAN outperforms the others by such a wide margin (17% higher than
second best for averaged accuracy across the 5 machine learning algorithms) for the Intru-
sion dataset is that it contains many highly imbalanced categorical variables. In addition,
Intrusion also includes 3 long tail continuous variables. Our results indicate that none of
the state-of-the-art techniques can perform well under these conditions. The Loan dataset
is significantly smaller than the other four and has the least number of variables. Moreover,
all continuous variables are either simple one mode Gaussian distributions or just uniform
distributions. Therefore, we find that the encoding method in CTAB-GAN which works
well for complex cases, fails to converge to a better optimum for simple and small datasets.

Statistical similarity. Statistical similarity results are reported in Tab. 2. CTAB-
GAN stands out again across all comparisons. For categorical variables (i.e. average JSD),
CTAB-GAN outperforms CTGAN and TableGAN by 13.5% and 28.4%. This is due to
the use of the conditional vector, the log-frequency sampling and extra losses, which works
well for both balanced and imbalanced distributions. For continuous variables (i.e. average
WD), we still benefit from the design of the conditional vector. The average WD column
shows some extreme numbers such as 46257 and 238155 comparing to 1197 of CTAB-GAN.
The reason is that these algorithms generate extremely large values for long tail variables.
Besides divergence and distance, our synthetic data also maintains better correlation. We
can see that TableGAN also performs well here. However, as the extended conditional
vector enhances the training procedure, this helps to maintain even more the correlation
between variables. Because the extended conditional vector allows the generator to produce
samples conditioned even on a given VGM mode for continuous variables. This increases
the capacity to learn the conditional distribution for continuous variables and hence leads
to an improvement in the overall feature interactions captured by the model.

Privacy preservability. We use distance-based algorithms to give an overview on
privacy in our evaluation. On the one hand, if the distance between real and synthetic
data is too large, it simply means that the quality of generated data is poor. On the other

CTAB-GAN

Table 3: Ablation and Training Time Analysis.
Dataset

Ablation [F1 score] Training Time [s/epoch]
CTAB-GAN w/o C w/o I. Loss w/o MSN w/o LT CTAB-GAN CTGAN TableGAN MedGAN CWGAN

Adult 0.704 -0.01 -0.037 -0.05 - 7.50 1.66 0.52 0.33 4.73
Covertype 0.532 -0.018 -0.184 -0.118 - 8.38 3.32 1.69 0.33 10.41

Credit 0.710 +0.011 -0.177 +0.06 +0.001 8.92 2.42 1.73 0.34 4.50
Intrusion 0.842 -0.031 -0.437 +0.003 -0.074 10.73 2.80 1.75 0.34 10.81

Loan 0.803 -0.044 +0.028 +0.013 - 0.57 0.17 0.06 0.04 1.12

hand, if the distance between real and synthetic data is too small, it means that there is
a risk to reveal sensitive information from the training data. Therefore, the evaluation of
privacy is relative. The privacy results are shown in Tab. 2. It can be seen that the DCR
and NNDR between real and synthetic data (i.e., R&S) all indicate that generation from
TableGAN has the shortest distance to real data (i.e., highest privacy risk). In that case,
CTAB-GAN not only outperforms TableGAN in ML utility and statistic similarity, but also
in all privacy preservability metrics by 11.6% and 4.5% for DCR and NNDR, respectively.
Another insight from this table is that for MedGAN, DCR within synthetic data is 41%
smaller than within real data. This suggests that it suffers from the mode collapse problem.

4.4. Ablation Analysis

To illustrate the efficiency of each strategy we implement an ablation study which cuts off the
different components of CTAB-GAN one by one: (1) w/o C. In this experiment, Classifier C
and the corresponding classification loss for Generator G are taken away from CTAB-GAN;
(2) w/o I. loss (information loss). In this experiment, we remove information loss from
CTAB-GAN; (3) w/o MSN. In this case, we substitute the mode specific normalization
based on VGM for continuous variables with min-max normalization and use simple one-hot
encoding for categorical variables. Here the conditional vector is the same as for CTGAN;
(4) w/o LT (long tail). In this experiment, long tail treatment is no longer applied. This
only affects datasets with long tailed columns, i.e. Credit and Intrusion.

The results are compared with the baseline implementing all strategies. All experiments
are repeated 3 times, and results are evaluated on the same 5 machine learning algorithms
introduced in Sec. 4.2.1. The test datasets and evaluation flow are the same as shown in
Sec. 4.1 and Sec. 4.2. Tab. 3 shows the results. Each part of CTAB-GAN has different
impacts on different datasets. For instance, w/o C has a negative impact for all datasets
except Credit. Since Credit has only 30 continuous variables and one target variable, the
semantic check can not be very effective. w/o information loss has a positive impact for
Loan, but results degenerate for all other datasets. It can even make the model unusable,
e.g. for Intrusion. w/o MSN performs bad for Covertype, but has little impact for
Intrusion. Credit w/o MSN performs better than original CTAB-GAN. This is because out
of 30 continuous variables, 28 are nearly single mode Gaussian distributed. The initialized
high number of modes, i.e. 10, for each continuous variable (same setting as in CTGAN)
degrades the estimation quality. w/o LT has the biggest impact on Intrusion, since it
contains 2 long tail columns which are important predictors for the target column. For
Credit, the influence is limited. Even if the long tail treatment fits well the amount column
(see Sec. 4.6), this variable is not a strong predictor for the target column. In general, if we
average the column values, all the ablation tests have a negative impact for the performance
which justifies our design choices for CTAB-GAN.

Zhao Kunar Birke Chen

(a) Mortgage in Loan (b) Amount in Credit (c) Hours-per-week in Adult

Figure 8: Challenges of modeling industrial dataset using existing GAN-based table gener-
ator: (a) mixed type, (b) long tail distribution, and (c) skewed data

4.5. Training Time Analysis

The above results show that CTAB-GAN outperforms the State of the art in ML utility,
statistical similarity and privacy preservation. This comes at the expense of additional
training complexity, i.e., information, classifier and generator losses, and feature encoding,
i.e., mixted-type, long tail, and VGM mode in conditional vectors. Tab. 3 shows the train-
ing time per epoch for all models on all datasets. As expected, CTAB-GAN is slower than
other algorithms. To improve the training efficiency of CTAB-GAN, we may do the follow-
ing: (1) pre-train the classifier with the real dataset before-hand instead as in parallel to
the generator. By storing once the inference results we can speed up the calculation of the
classifier loss. (2) use min-max normalization instead of a VGM estimation for continuous
columns with a clear single mode Gaussian distribution. Since VGM estimates k >> 1
modes, using min-max normalization can significantly reduce the length of the continuous
column encoding; (3) treat categorical columns with a clear single mode Gaussian distribu-
tion as a continuous column and use min-max normalization instead of one-hot encoding.
To convert values back to categorical form, rounding has been shown to work well in Park
et al. (2018). (1) is easy to adopt. However, (2) and (3) require human intuition to verify
and determine the distribution of each column before training. From our preliminary study
based on Adult dataset, CTAB-GAN can reduce training time by 29% implementing (1)
and by 12% using (2) and (3) while maintaining a similar quality of generation.

4.6. Results for Motivation Cases

After reviewing all the metrics, let us recall the three motivation cases from Sec. 1.1.
Mixed data type variables. Fig. 8(a) compares the real and CTAB-GAN generated

variable Mortgage in Loan dataset. CTAB-GAN encodes this variable as mixed type. We
can see that CTAB-GAN generates clear 0 values and the frequency is close to real data.

Long tail distributions. Fig. 8(b) compares the cumulative frequency graph for the
Amount variable in Credit. This variable is a typical long tail distribution. One can see
that CTAB-GAN perfectly recovers the real distribution. Due to log-transform data pre-
processsing, CTAB-GAN learns this structure significantly better than the state-of-the-art
methods shown in Fig. 1(b).

CTAB-GAN

Skewed multi-mode continuous variables. Fig. 8(c) compares the frequency distri-
bution for the continuous variable Hours-per-week from Adult. Except the dominant peak
at 40, there are many side peaks. Fig. 1(c), shows that TableGAN, CWGAN and MedGAN
struggle since they can learn only a simple Gaussian distribution due to the lack of any
special treatment for continuous variables. CTGAN, which also use VGM, can detect other
modes. Still, CTGAN is not as good as CTAB-GAN. The reason is that CTGAN lacks
the mode of continuous variables in the conditional vector. By incorporating the mode
of continuous variables into conditional vector, we can apply the training-by-sample and
logarithm frequency also to modes. This gives the mode with less weight more chance to
appear in the training and avoids the mode collapse.

5. Conclusion

Motivated by the importance of data sharing and fulfillment of governmental regulations, we
propose CTAB-GAN– a conditional GAN based tabular data generator. CTAB-GAN ad-
vances beyond the prior state-of-the-art methods by modeling mixed variables and provides
strong generation capability for imbalanced categorical variables, and continuous variables
with complex distributions. To such ends, the core features of CTAB-GAN include (i)
introduction of the classifier into conditional GAN, (ii) effective data encoding for mixed
variable, and (iii) a novel construction of conditional vectors. We exhaustively evaluate
CTAB-GAN against four tabular data generators on a wide range of metrics, namely ML
utilities, statistical similarity and privacy preservation. The results show that the syn-
thetic data of CTAB-GAN results into high utilities, high similarity and reasonable privacy
guarantee, compared to existing state-of-the-art techniques. The improvement on complex
datasets is up to 17% in accuracy comparing to all state-of-the-art algorithms. The remark-
able results of CTAB-GAN demonstrate its potential for a wide range of applications that
greatly benefit from data sharing, such as banking, insurance, and manufacturing.

References

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In Proceedings of the 34th ICML - Volume 70, page 214–223. JMLR.org, 2017.

Marc G. Bellemare, Ivo Danihelka, W. Dabney, S. Mohamed, Balaji Lakshminarayanan,
S. Hoyer, and R. Munos. The cramer distance as a solution to biased wasserstein gradients.
ArXiv, abs/1705.10743, 2017.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

Edward Choi, Siddharth Biswal, Bradley Malin, Jon Duke, Walter F Stewart, and Jimeng
Sun. Generating multi-label discrete patient records using generative adversarial net-
works. arXiv preprint arXiv:1703.06490, 2017.

Justin Engelmann and Stefan Lessmann. Conditional wasserstein gan-based oversampling
of tabular data for imbalanced learning. arXiv preprint arXiv:2008.09202, 2020.

Zhao Kunar Birke Chen

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Proceedings
of the 27th NIPS - Volume 2, page 2672–2680, Cambridge, MA, USA, 2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville.
Improved training of wasserstein gans. In the 31st NIPS, page 5769–5779, 2017.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for gener-
ative adversarial networks. In IEEE/CVF CVPR, pages 4396–4405, 2019.

Zinan Lin, Ashish Khetan, Giulia Fanti, and Sewoong Oh. Pacgan: The power of two
samples in generative adversarial networks. IEEE JSAIT, 1(1):324–335, 2020.

Alejandro Mottini, Alix Lheritier, and Rodrigo Acuna-Agost. Airline Passenger Name
Record Generation using Generative Adversarial Networks. In workshop on Theoretical
Foundations and Applications of Deep Generative Models. ICML, July 2018.

Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse datasets.
In IEEE Symposium on Security and Privacy, pages 111–125, 2008.

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis
with auxiliary classifier gans. In The 34th ICML - Volume 70, page 2642–2651, 2017.

Noseong Park, Mahmoud Mohammadi, Kshitij Gorde, Sushil Jajodia, Hongkyu Park, and
Youngmin Kim. Data synthesis based on generative adversarial networks. Proc. VLDB
Endow., 11(10):1071–1083, June 2018.

Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & cross network for ad click
predictions. In Proceedings of the ADKDD’17, New York, NY, USA, 2017.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling
tabular data using conditional gan. In NIPS, 2019.

Alexandre Yahi, Rami Vanguri, and Noémie Elhadad. Generative adversarial networks
for electronic health records: A framework for exploring and evaluating methods for
predicting drug-induced laboratory test trajectories. In NIPS workshop, 2017.

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. PATE-GAN: Generating syn-
thetic data with differential privacy guarantees. In ICLR, 2019.

Taraneh Younesian, Zilong Zhao, Amirmasoud Ghiassi, Robert Birke, and Lydia Y
Chen. Qactor: On-line active learning for noisy labeled stream data. arXiv preprint
arXiv:2001.10399, 2020.

Zilong Zhao, Sophie Cerf, Robert Birke, Bogdan Robu, Sara Bouchenak, Sonia Ben
Mokhtar, and Lydia Y. Chen. Robust anomaly detection on unreliable data. In 49th An-
nual IEEE/IFIP International Conference on Dependable Systems and Networks, 2019.

Zilong Zhao, Robert Birke, Rui Han, Bogdan Robu, Sara Bouchenak, Sonia Ben Mokhtar,
and Lydia Y. Chen. Enhancing robustness of on-line learning models on highly noisy
data. IEEE Transactions on Dependable and Secure Computing, 18(5):2177–2192, 2021.

	Introduction
	Motivation

	Related Studies
	CTAB-GAN
	Technical Background
	Design of CTAB-GAN
	Mixed-type Encoder
	Counter Imbalanced Training Datasets
	Treat Long Tails

	Experimental Analysis
	Experimental Setup
	Evaluation Metrics
	Machine Learning Utility
	Statistical Similarity
	Privacy preservability

	Results Analysis
	Ablation Analysis
	Training Time Analysis
	Results for Motivation Cases

	Conclusion

