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Abstract

Many recommendation and decision processes depend on eliciting evaluations of opportu-

nities, products, and vendors. A scoring system is devised that induces honest reporting of

feedback. Each rater merely reports a signal, and the system applies proper scoring rules to the

implied posterior beliefs about another rater�s report. Honest reporting proves to be a Nash

Equilibrium. The scoring schemes can be scaled to induce appropriate e¤ort by raters and can

be extended to handle sequential interaction and continuous signals. We also address a number

of practical implementation issues that arise in settings such as academic reviewing and on-line

recommender and reputation systems.

1 Introduction

Decision makers frequently draw on the experiences of multiple other individuals when making

decisions. The process of eliciting others�information is sometimes informal, as when an executive

consults underlings about a new business opportunity. In other contexts, the process is institution-

alized, as when journal editors secure independent reviews of papers, or an admissions committee

has multiple faculty readers for each �le. The internet has greatly enhanced the role of institu-

tionalized feedback methods, since it can gather and disseminate information from vast numbers of

individuals at minimal cost. To name just a few examples, eBay invites buyers and sellers to rate

�Miller and Zeckhauser, Kennedy School of Government, Harvard University; Resnick, School of Information,
University of Michigan.

yWe thank Alberto Abadie, Chris Avery, Miriam Avins, Chris Dellarocas, Je¤ Ely, John Pratt, Bill Sandholm,
Lones Smith, Ennio Stachetti, Steve Tadelis, Hal Varian, two referees and two editors for helpful comments. We
gratefully acknowledge �nancial support from the National Science Foundation under grant numbers IIS-9977999 and
IIS-0308006, and the Harvard Business School for hospitality (Zeckhauser).

1



each other; NetFlix, Amazon, and ePinions invite ratings of movies, books, etc. on a 1-5 scale; and

Zagat Survey solicits restaurant ratings on a 1-30 scale on food, decor, and service.

Any system that solicits individual opinions must overcome two challenges. The �rst is un-

derprovision. Forming and reporting an opinion requires time and e¤ort, yet the information only

bene�ts others. The second challenge is honesty. Raters�desire to be nice or fear of retaliation may

cause them to withhold negative feedback.1 On the other hand, con�icts of interest or a desire

to improve others�perception of them may lead raters to report distorted versions of their true

opinions.

An explicit reward system for honest rating and e¤ort may help to overcome these challenges.

When objective information will be publicly revealed at a future time, individuals�reports can be

compared to that objective information. For example, evaluations of stocks can be compared to

subsequent price movements, and weather forecasts can be compared to what actually occurs.

This analysis develops methods to elicit feedback e¤ectively when independent, objective out-

comes are not available. Examples include situations where no objective outcome exists (e.g.,

evaluations of a product�s �quality�), and where the relevant information is objective but not pub-

lic (e.g., a product�s breakdown frequency, which is only available to others if the product�s current

owners reveal it).

In these situations, one solution is to compare raters�reports to their peers�reports and reward

agreement.2 However, if rewards are made part of the process, dangers arise. If a particular outcome

is highly likely, such as a positive experience with a seller at eBay who has a stellar feedback history,

then a rater who has a bad experience will still believe that the next rater is likely to have a good

experience. If she will be rewarded simply for agreeing with her peers, she will not report her bad

1Dellarocas (2001) shows that leniency in feedback can o¤er some advantages in deterring seller opportunism.

The problem we are concerned with here is not systematic leniency, but the failure to report negative evaluations,

whatever threshold is in use.
2Subjective evaluations of ratings could be elicited directly instead of relying on correlations between ratings.

For example, the news and commentary site Slashdot.org allows meta-moderators to rate the ratings of comments

given by regular moderators. Meta-evaluation incurs an obvious ine¢ ciency, since the e¤ort to rate evaluations could

presumably be put to better use in rating comments or other products that are a site�s primary product of interest.

Moreover, meta-evaluation merely pushes the problem of motivating e¤ort and honest reporting up one level, to

ratings of evaluations. Thus, scoring evaluations in comparsion to other evaluations is preferable.
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experience. This phenomenon is akin to the problems of herding or information cascades.

In this paper, we develop a formal mechanism to implement the process of comparing with

peers. We label this mechanism the peer-prediction method. The scheme uses one rater�s report

to update a probability distribution for the report of someone else, whom we refer to as the reference

rater. The �rst rater is then scored not on agreement between the ratings, but on a comparison

between the likelihood assigned to the reference rater�s possible ratings and the reference rater�s

actual rating. Raters need not perform any complex computations: so long as a rater trusts that

the center will update appropriately, she will prefer to report honestly.

Scores can be converted to monetary incentives, either as direct payments or as discounts on

future merchandise purchases. In many online systems, however, raters seem to be quite motivated

by prestige or privileges within the system. For example, at Slashdot.org, users accumulate karma

points for various actions and higher karma entitles users to rate others�postings and to have their

own postings begin with higher ratings (Lampe and Resnick, 2004); at ePinions.com, reviewers gain

status and have their reviews highlighted if they accumulate points. Similarly, o­ ine point systems

that do not provide any tangible reward seem to motivate chess and bridge players to compete

harder and more frequently.

The key insight that the correlation in agents�private information can be used to induce truth-

ful revelation has been addressed, albeit in an abstract way, in the mechanism design literature.

Seminal papers by d�Aspremont and Gérard-Varet (1979; 1982) and Crémer and McLean (1985;

1988) demonstrate that it is generally possible to use budget-balancing transfer payments to extract

agents�private information. Adapting tools from statistical decision theory, Johnson, Pratt, and

Zeckhauser (1990) show how to construct budget-balancing transfer payments based on �proper

scoring rules.� Johnson, Miller, Pratt, and Zeckhauser (2002) extend those results to the case of

multidimensional, continuous private information. Kandori and Matsushima (1998, section 4.2)

consider how to enforce cooperation in repeated games through correlated equilibria despite the

lack of public information about stage game outcomes, and show how to apply a proper scoring

rule to elicit truthful communication of private information about stage game outcomes.

This paper applies the general insights on the usefulness of proper scoring rules for eliciting

correlated information to the particular problem of eliciting honest reviews of products, papers,

and proposals. Our mechanism is well suited to Internet-based implementations, and it could
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potentially be applied to services such as NetFlix or Amazon.3 Once ratings are collected and

distributed electronically, it is relatively easy to compute posteriors and scores and keep track of

payments.4

In Section 2 we construct payments based on proper scoring rules that allow the center to elicit

the rater�s private information and show how the payments can be adapted to address costly e¤ort

elicitation, and budget balance and voluntary participation requirements. Section 3 extends our

approach to scenarios of sequential reporting and of discrete reporting based on continuous signals.

In Section 4 we address practical issues that would arise in implementing proper scoring rules in

real systems, including con�icts of interest, estimating the information the mechanism requires

from historical reviewing data, and accommodating di¤erences among raters in both tastes and in

prior beliefs. We also discuss limitations of the mechanism. Section 5 concludes. Proofs and

supporting materials are contained in two appendices.

2 A Mechanism for Eliciting Honest Feedback

A number of raters experience a product and then rate its quality. The product�s quality product

does not vary, but is observed with some idiosyncratic error. After experiencing the product, each

rater sends a message to a common processing facility called the center. The center makes transfers

to each rater, awarding or taking away points based on the raters�messages. The center has no

independent information, so its scoring decisions can depend only on the information provided by

other raters. As noted above, points may be convertible to money, discounts or privileges within

the system, or merely to prestige. We assume that raters�utilities are linear in points.5 We refer

to a product�s quality as its type. We refer to a rater�s perception of a product�s type as her signal.

Suppose that the number of product types is �nite, and let the types be indexed by t = 1; :::; T .

3 It could also be extended to eBay or Bizrate, which rate sellers rather than products. Rating sellers, however,

complicates the analysis. For example, if sellers strategically vary the quality of service they provide over time, the

correlation between one rater�s evaluation and future raters� evaluations might be severed, disrupting our scoring

mechanism.
4Drazen Prelec�s Information Pump (2001) exploits correlated information and proper scoring rules to elicit honest

reports in a di¤erent setting, estimating the additional information provided by a sequence of true-false statements

about an object.
5We consider the impacts of risk aversion in section 4.1.
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Let p (t) be the commonly held prior probability assigned to the product�s being type t.6 Assume

that p (t) > 0 for all t and
PT
t=1 p (t) = 1.

Let I be the set of raters, where jIj � 3. We allow for the possibility that I is (countably)

in�nite. Each rater privately observes a signal of the product�s type.7 Conditional on the

product�s type, raters� signals are independent and identically distributed. Let Si denote the

random signal received by rater i. Let S = fs1; :::; sMg be the set of possible signals, and let

f (smjt) = Pr
�
Si = smjt

�
, where f (smjt) > 0 for all sm and t, and

PM
m=1 f (smjt) = 1 for all t.

We assume that f (smjt) is common knowledge, and that the conditional distribution of signals is

di¤erent for di¤erent values of t. Let si 2 S denote a generic realization of Si. We use sim to

denote the event Si = sm. We assume that raters are risk neutral and seek to maximize expected

wealth.

To illustrate throughout this section, we introduce a simple example. There are only two

product types, H and L, with prior p(H) = :5, and two possible signals, h and l, with f(hjH) = :85

and f(hjL) = :45. Thus, Pr(h) = :5 � :85 + :5 � :45 = :65.

In the mechanism we propose, the center asks each rater to announce her signal. After all

signals are announced to the center, they are revealed to the other raters and the center computes

transfers. We refer to this as the simultaneous reporting game. Let ai 2 S denote one such

announcement, and a =
�
a1; :::; aI

�
denote a vector of announcements, one by each rater. Let

aim 2 S denote rater i�s announcement when her signal is sm, and �ai =
�
ai1; :::; a

i
M

�
2 SM denote

rater i�s announcement strategy. Let �a =
�
�a1; :::; �aI

�
denote a vector of announcement strategies.

As is customary, let the superscript ��i�denote a vector without rater i�s component.

Let � i (a) denote the transfer paid to rater i when the raters make announcements a, and let

� (a) = (�1 (a) ; :::; � I (a)) be the vector of transfers made to all agents. An announcement strategy

�ai is a best response to �a�i for player i if for each m:

ES�i
�
� i
�
�aim; �a

�i� jsim� � ES�i �� i �âi; �a�i� jsim� for all âi 2 S. (1)

That is, a strategy is a best response if, conditional on receiving signal sm, the announcement

6We brie�y address the issue of non-common priors in Section 4.5.
7We refer to raters as female and to the center as male.
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speci�ed by the strategy maximizes that rater�s expected transfer, where the expectation is taken

with respect to the distribution of all other raters�signals conditional on Si = sm. Given transfer

scheme � (a), a vector of announcement strategies �a is a Nash Equilibrium of the reporting game

if (1) holds for i = 1; :::; I, and a strict Nash Equilibrium if the inequality in (1) is strict for all

i = 1;..., I.

Truthful revelation is a Nash Equilibrium of the reporting game if (1) holds for all i when

aim = sm for all i and all m, and is a strict Nash Equilibrium if the inequality is strict. That is, if

all the other players announce truthfully, truthful announcement is a strict best response. Since

raters receive no direct return from their announcement, if there were no transfers at all then any

strategy vector, including truthful revelation, would be a Nash equilibrium. However, since players

are indi¤erent among all strategies when there are no transfers, this Nash equilibrium is not strict.

2.1 The Base Case

Our base result de�nes transfers that make truthful revelation a strict Nash equilibrium. Because

all raters experience the same product, it is natural to assume that their signals are dependent.

Our results rely on a form of dependence which we call stochastic relevance.8

De�nition: Random variable Si is stochastically relevant for random variable Sj if and only

if the distribution of Sj conditional on Si is di¤erent for di¤erent realizations of Si. That is,

Si is stochastically relevant for Sj if for any distinct realizations of Si, call them si and ŝi, there

exists at least one realization of Sj, call it sj, such that Pr
�
sj jsi

�
6= Pr

�
sj jŝi

�
.

Stochastic relevance is almost always satis�ed when di¤erent types of products generate di¤erent

signal distributions, as we assumed above, and so throughout the paper we assume that stochastic

relevance holds for all Si and Sj .9

Continuing the two-type, two-signal example, suppose that rater i receives the signal l. Recall

that p(H) = :5, f(hjH) = :85, and f(hjL) = :45, so that Pr
�
sil
�
= :35. Given i�s signal, the

8The term �stochastic relevance� is introduced in Johnson, Miller, Pratt, and Zeckhauser (2002). It is the same

as condition (A4) used in Kandori and Matsushima (1998).
9 In Miller, Resnick, and Zeckhauser (2005), we show that stochastic relevance is generically satis�ed in product-

rating environments.
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probability that rater j will receive a signal h is:

g
�
sjhjs

i
l

�
= f (hjH) f (ljH) p (H)

Pr
�
sil
� + f (hjL) f (ljL) p (L)

Pr
�
sil
� = :85

:15 � :5
:35

+ :45
:55 � :5
:35

�= 0:54:

If i had instead observed h, then:

g
�
sjhjs

i
h

�
= f (hjH) f (hjH) p (H)

Pr
�
sih
� + f (hjL) f (hjL) p (L)

Pr
�
sih
� = :85

:85 � :5
:65

+ :45
:45 � :5
:65

�= 0:71.

A scoring rule is a function R
�
sj jai

�
that, for each possible announcement ai of Si, assigns

a score to each possible realization of Sj . A scoring rule is strictly proper if rater i uniquely

maximizes her expected score by announcing the true realization of Si.

The literature discusses a number of strictly proper scoring rules.10 The three best known are:

1. Quadratic Scoring Rule: R
�
sjnjai

�
= 2g

�
sjnjai

�
�
PM
h=1 g

�
sjhjai

�2
:

2. Spherical Scoring Rule: R
�
sjnjai

�
=

g(sinjai)�PM
h=1 g(s

j
hjai)

2
� 1
2
:

3. Logarithmic Scoring Rule: R
�
sjnjai

�
= ln g

�
sjnjai

�
:

Further, if R (�j�) is a strictly proper scoring rule, then a positive a¢ ne transformation of it, i.e.,

�R (�j�)+ �, � > 0, is also a strictly proper scoring rule. The ability of the center to manipulate �

and � is useful in inducing the raters to exert e¤ort and satisfying their participation constraints

(see Section 2.2). We will use R
�
sjnjai

�
to denote a generic strictly proper scoring rule. At times

we will illustrate our results using the logarithmic rule because of its intuitive appeal and notational

simplicity. However, unless otherwise noted, all results hold for any strictly proper scoring rule.

Transfers based on a strictly proper scoring rule induce truthful revelation by agent i as long as

her private information is stochastically relevant for some other publicly available signal. However,

in our case each rater�s signal is private information, and therefore we can only check players�

announcements against other players�announcements, not their actual signals. For each rater, we

10See Cooke (1991, p. 139) for a discussion of strictly proper scoring rules. Selten (1998) provides proofs that

each of the three rules below is strictly proper and discusses other strictly proper scoring rules.
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will choose a reference rater r(i), whose announcement i will be asked to predict. Let:

��i

�
ai; ar(i)

�
= R

�
ar(i)jai

�
. (2)

Proposition 1: For any mapping r that that assigns to each rater i a reference rater r (i) 6= i,

and for any proper scoring rule R, truthful reporting is a strict Nash equilibrium of the simultaneous

reporting game with transfers ��i .

Proof of Proposition 1: Assume that rater r (i) reports honestly: ar(i) (sm) = sm for all m.

Since Si is stochastically relevant for Sr(i), and r (i) reports honestly, Si is stochastically relevant

for r (i)�s report as well. For any Si = s�, player i chooses ai 2 S in order to maximize:

MX
n=1

R
�
sr(i)n jai

�
g
�
sr(i)n js�

�
: (3)

Since R (�j�) is a strictly proper scoring rule, (3) is uniquely maximized by announcing ai = s�.

Thus, given that rater r (i) is truthful, rater i�s best response is to be truthful as well.�

We illustrate Proposition 1 using the logarithmic scoring rule. Since 0 < g
�
sjmjsin

�
< 1,

ln g
�
sjmjsin

�
< 0; we refer to ��i as rater i�s penalty since it is always negative in this case. Consider

the simple example where rater i received the relatively unlikely signal l (Pr
�
sil
�
= :35). Even

contingent on observing l it is unlikely that rater j will also receive an l signal ( g
�
sjl jsil

�
= 1 �

0:54 = :46). Thus, if rater i were rewarded merely for matching her report to that of rater j, she

would prefer to report h. With the log scoring rule, an honest report of l leads to an expected

payo¤

ln g
�
sjhjl
�
g
�
sjhjl
�
+ ln g

�
sjl jl
�
g
�
sjl jl
�
= ln (:54) :54 + ln(:46):46 = �0:69:

If, instead, she reports h, rater i�s expected score is:

ln g
�
sjhjh

�
g
�
sjhjl
�
+ ln g

�
sjl jh

�
g
�
sjl jl
�
= ln (:71) :54 + ln(:29):46 = �0:75:

As claimed, the expected score is maximized by honest reporting.

The key idea is that the scoring function is based on the updated beliefs about the reference
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rater�s signal, given the rater�s report. The updating takes into account both the priors and the

reported signal, and thus re�ects the initial rater�s priors. Thus, she has no reason to shade her

report toward the signal expected from the priors. Note also that she need not perform any complex

Bayesian updating. She merely reports her signal. As long as she trusts the center to correctly

perform the updating and believes other raters will report honestly, she can be con�dent that honest

reporting is her best action.11

Note that while Proposition 1 establishes that there is a truthful equilibrium, it is not unique,

and there may be non-truthful equilibria. To illustrate, in the example we have been considering

two other equilibria are (1) report h all the time, and (2) report l all the time.12 While such

non-truthful equilibria exist, it is reasonable to think that the truthful equilibrium will be a focal

point, especially when communication among raters is limited, or when some raters are known to

have a strong ethical preference for honesty. In addition, the center can punish all the raters if it

detects a completely uninformative equilibrium such as all h or all l.

2.2 Eliciting E¤ort and Deterring Bribes

Assuming costless evaluation and reporting allowed us to focus on the essence of the scoring-rule

based mechanism. However, raters�willingness to exert e¤ort will depend on the direct costs of

e¤ort as well as the opportunity cost of being an early evaluator rather than free riding o¤ the

evaluations of others. Avery, Resnick, and Zeckhauser (1997) explore how market mechanisms

can elicit costs and determine appropriate compensation levels, but the assumption that raters will

exert e¤ort once they accept compensation is problematic.13 Here, we use a scoring rule to induce

e¤ort. We begin by assuming a �xed cost of rating. We then move on to consider how the center

can induce raters to select an optimal e¤ort level when additional costly e¤ort leads to more precise

11 In an experiment, Nelson and Bessler (1989) show that, even when the center does not perform the updating for

them, with training and feedback subjects learn that truthful revelation is a best response when rewards are based

on a proper scoring rule.
12 To verify the �always play h equilibrium,�note that if the reference rater always reports high, the rater expects

ln (:54) 1 + ln (:46) 0 = �0:616 19 if she reports l, and ln (:71) 1 + ln (:29) 0 = �0:342 49 if she reports h. Similar

reasoning veri�es the �always play l equilibrium.�
13At the news and commentary site Slashdot, where users earn "karma" points for acting as moderators, sta¤ have

noticed that occasionally ratings are entered very quickly in succession, faster than someone could reasonably read

and evaluate the comments. They call this �vote dumping.�
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signals.

Suppose there is a �xed cost, c > 0, of evaluating and reporting. To induce e¤ort, the expected

value of incurring e¤ort and reporting honestly must exceed the expected value of reporting without

a signal. As the proof of Proposition 1 makes clear, the truth-inducing incentives provided by

scoring-rule based payments are una¤ected by a positive rescaling of all transfers: if transfers

��i
�
ai; ar(i)

�
= R

�
ar(i)jai

�
induce truthful reporting, then ��i

�
ai; ar(i)

�
= �R

�
ar(i)jai

�
, where � > 0,

does as well. Since the rater is better-informed if she acquires a signal than if she doesn�t, and

better information always increases the expected value of a decision problem (Savage, 1954; Lavalle,

1968), increasing the scaling factor increases the value of e¤ort without a¤ecting the incentives for

honest reporting once e¤ort is expended.

Proposition 2: Let c > 0 denote the cost of acquiring and reporting a signal. If other raters

acquire and report their signals honestly, there exists a scalar � > 0 such that when rater i is

paid according to ��i
�
ai; ar(i)

�
= �R

�
ar(i)jai

�
, her best response is to acquire a signal and report it

honestly.14

Scaling can be used to induce raters to work harder to obtain better information. Without

putting additional structure on the distributions under consideration, the natural notion of �bet-

ter� information is to think about the rater�s experience as being a random sample, with better

information corresponding to greater sample size. If the cost of acquiring a sample is increasing

and convex in its size, we can ask when and how the center can induce the raters to acquire samples

of a particular size.

Because of space considerations, we relegate the technical presentation to Appendix B. However,

the basic idea is straightforward.15 For any sample size, stochastic relevance continues to hold.

Thus, when the rater is paid according to a strictly proper scoring rule, she maximizes her expected

score by truthfully announcing her information (if all other raters do as well). When a rater

increases her sample size from, say, x to x + 1, the additional observation further partitions the

outcome space. Using well-known results from decision theory (Savage, 1954; Lavalle 1968), this

implies that the rater�s optimized expected score increases in the sample size. Let V � (x) denote

14Proofs not included in the main text are in Appendix A.
15Clemen (2002) undertakes a similar analysis in the context of a principal-agent problem.
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optimized expected score as a function of sample size. The question of whether the center can

induce the rater to choose a particular sample size, x�, then comes down to whether there exists a

scaling factor, ��, such that

x� 2 argmax
x
��V � (x)� c (x) .

If V � (x) is concave in x and c (x) satis�es certain regularity conditions (i.e., c0 (0) = 0, and

limx!1 c0 (x) = 1), it is possible to induce the agent to choose any desired sample size. We

return to the question of eliciting e¤ort in Section 3.2.1, where, due to assuming information is

normally distributed, we are able to present the theory more parsimoniously.

Scaling can also be used to overwhelm individuals�outside preferences, including bribes that

may be o¤ered for positive ratings. For example, if a bribe has been o¤ered for a positive rating,

the constant c can be interpreted to include the potential opportunity cost of acquiring a negative

signal and then reporting it.

2.3 Voluntary Participation and Budget Balance

In some cases, the expected payment from truthful reporting (and optimal e¤ort) may be insu¢ cient

to induce the rater to participate in the mechanism in the �rst place. This is most apparent when

the logarithmic rule is employed, since the logarithmic score is always negative. However, this

problem is easily addressed. Since adding a constant to all payments (i.e., letting the transfer

be �iR
�
ar(i)jai

�
+ ki) does not a¤ect incentives for e¤ort or honest reporting, the constant ki

can be chosen to satisfy either ex ante participation constraints (i.e., each agent must earn a

non-negative expected return), interim participation constraints (i.e., each agent must earn a non-

negative expected return conditional on any observed signal), or ex post participation constraints

(i.e., the agent must earn a non-negative expected return for each possible
�
sj ; si

�
pair). To illustrate

using the logarithmic case, let �0 = min
sm;sn2S

(� ln g (smjsn)), and de�ne �+ = �� � �0. Transfers �+

will attract voluntary (ex post) participation while still inducing e¤ort and honest reporting.

It is often desirable for the center to balance its budget. Clearly, this is important if scores are

converted into monetary payments. Even if scores are merely points that the center can generate

at will, uncontrolled in�ation would make it hard for users to interpret point totals. If there are at

least three raters, the center can balance the budget by reducing each rater�s base transfer �� by
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some other rater�s base transfer. Though all the transactions actually occur between raters and the

center, this creates the e¤ect of having the raters settle the transfers among each other.16 Let b (i)

be the rater whose base transfer i settles (paying if �� is positive, and collecting if it is negative),

and let b (i) be a permutation such that b (i) 6= i and r (b (i)) 6= i. Rater i�s net transfer is:

� i (a) = �
�
i

�
ai; ar(i)

�
� ��b(i)

�
ab(i); ar(b(i))

�
. (4)

These transfers balance. The only raters whose reports can in�uence the second term are b (i)

and rater b (i)�s reference rater, r (b (i)), and by construction of b (�) they are both distinct from

rater i. Since all reports are revealed simultaneously, rater i also cannot in�uence other players�

reports through strategic choice of her own report. Thus, the second term in (4) does not adversely

a¤ect rater i�s incentive to report honestly or put forth e¤ort.

The balanced transfers in (4) do not guarantee voluntary participation. In some cases, a rater�s

net transfer may be negative. One way to assure ex-post voluntary participation is to collect

bonds or entry fees in advance, and use the collected funds to ensure that all transfers are positive.

For example, with the logarithmic scoring rule, min � � min �� = �0. If ��0 is collected from

each player in advance, and then returned with the transfer � , each player will receive positive

payments after the evaluations are reported. Some raters will still incur net losses, but their bonds

prevent them from dropping out after they learn of their negative outcome. Alternatively, it may

be su¢ cient to threaten to exclude a rater from future participation in the system if she is unwilling

to act as a rater or settle her account after a negative outcome.

3 Extensions

We now consider two extensions to the base model. In the �rst, raters report sequentially rather

than simultaneously. In the second, their types and signals are continuous rather than discrete.

16Since each player will receive her own base transfer and fund one other player�s, the addition of �0 to each has

no net e¤ect, so we phrase the discussion in terms of the raw penalties �� rather than the net payments �+.
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3.1 Sequential Interaction

Sequential reporting may be desirable, since it allows later raters to make immediate use of the in-

formation provided by their predecessors. The mechanism adapts readily to sequential situations.17

Rater i�s transfer can be determined using any subsequent rater as a reference rater. To balance

the budget, the transfer can be settled by any subsequent rater other than rater i�s reference rater.

For example, suppose an in�nite sequence of raters, indexed by i = 1; 2; :::, interacts with the

product. Let rater i+1 be rater i�s reference rater, i.e., i�s report is used to predict the distribution

of rater i+ 1�s report. Let p (t) be the initial, commonly held prior distribution for the product�s

type. Let p1
�
tjs1
�
denote the posterior distribution after rater 1 receives signal s1. This can be

computed using Bayes�Rule in the usual way. Rater 1�s posterior belief about the probability that

S2 = s2 when S1 = s1 is then given by g
�
s2js1

�
=
PT
t=1 f

�
s2jt
�
p1
�
tjs1
�
. Using this distribution

(and still assuming stochastic relevance), rater 1 can be induced to truthfully reveal s1 using the

scoring rule speci�ed in Proposition 1. After rater 1 announces her signal, this information is made

public and is used to update beliefs about the product�s type.

This process can be iterated. When rater i is asked to announce her signal, the �prior�

distribution over types takes into account all previous announcements. Incentives to rater i are

constructed using a scoring rule that incorporates these updated beliefs, i.e., rater i is scored using

a strictly proper scoring rule applied to the distribution implied by rater i�s announcement and the

current beliefs about the product�s type (which incorporates the announcements of the �rst i � 1

raters). To balance the budget, rater i�s transfer could be paid by rater i+ 2.

When a �nite string of raters experience the product, the last rater has no incentive to lie, but

also none to tell the truth, since there is no future signal upon which to base her reward. Thus,

there is a danger of the whole process unravelling. Fortunately, the center can solve this problem

by grouping some raters together and treating group members as if they report simultaneously.

For example, suppose there are 10 raters. Consider the last three: 8, 9, and 10. The center

can score rater 8 based on 9�s announcement, 9 based on 10�s, and 10 based on 8�s. As long as

17Hanson (2002) applies a scoring-rule based approach in a model in which a number of experts are sequentially

asked their belief about the distribution of a random event, whose realization is revealed after all experts have

reported. In our model, the product�s type is never revealed, and therefore we must rely on other agents�reports to

provide incentives.
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the center can avoid revealing these three raters�announcements until all three have announced,

e¤ective incentives can be provided using our earlier techniques, and the chain will not unravel.

Transfers can also be made within the ring in order to balance the budget for the ring.

3.2 Continuous Signals

Until now, we have considered discrete type and signal spaces. All of our results translate to the

continuous case in a natural way (e.g., density functions replace discrete distributions, integrals

replace sums, etc.). For example, if rater i reports signal si, the logarithmic score is computed

as ln
�
g
�
sj jsi

��
, where g

�
sj jsi

�
is now the posterior density of Sj = sj given Si = si. Most

importantly, the scoring rules we have discussed continue to be strictly proper in the continuous

case.

In this section, we brie�y consider two particularly interesting aspects of the problem with

continuous signals and product-type spaces, a comparison of the three scoring rules when prior

and sample information are normally distributed, and the problem of eliciting discrete information

when signals are continuous.

3.2.1 E¤ort elicitation with normally distributed noise: A comparison of scoring rules

Let q denote the unknown quality of the good, and suppose that raters have prior beliefs that q is

normally distributed with mean � and precision �q, where precision equals 1/variance. Suppose

each rater observes a real-valued signal Si of the object�s quality that is normally distributed with

mean q and precision �i. That is, each rater receives a noisy but unbiased signal of the object�s

quality. Conditional on observing Si = si, the rater�s posterior belief about q is that q is distributed

normally with mean �̂ = (��q+si�i)
(�q+�i)

and precision �̂ = �q + �i.18

Suppose that rater j observes signal Sj on the object�s quality, where Sj is normally distributed

with mean q and precision �j . Conditional on observing Si = si, rater i�s posterior belief about

the distribution of Sj is that Sj is normally distributed with mean �̂ and precision � = �̂�j

�̂+�j
.19

Since di¤erent observation-precision combinations lead to di¤erent posterior beliefs about the

18See Pratt, Rai¤a, and Schlaifer (1965).
19The variance of Sj conditional on Si is the sum of the variance of the posterior belief about q, 1

�̂
, and the variance

of Sj conditional on q, 1
�j
, which implies precision � = �̂�j=

�
�̂ + �j

�
.
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distribution of Sj , assuming stochastic relevance continues to be reasonable in the continuous case.

If we make this assumption, then payments based on a proper scoring rule can induce e¤ort and

honest reporting. As before, rater i will prefer to be scored on her posterior for the reference rater

j, and this is achieved by honestly reporting her observation and her precision, allowing the center

to correctly compute her posterior.20

We assume that by exerting e¤ort, raters can increase the precision of their signals. Let c (�i)

represent the cost of acquiring a signal of precision �i � 0, where c0 (�i) > 0, c0 (0) = 0; c0 (1) =1,

and c00 (�i) � 0. To compare the logarithmic, quadratic, and spherical scoring rules, it is necessary

to ensure that the rater is choosing the same signal precision under each rule. As suggested by our

analysis in Section 2.2, the center can induce the rater to choose more or less e¤ort by multiplying

all transfers by a larger or smaller constant.

Let f (x) be the probability density function of a normal random variable with mean � and

precision �. Under the logarithmic scoring rule, the maximized expected utility as a function of

precision (i.e., when the rater announces truthfully) is given by:

vl (�i) =

Z
log (f (x)) f (x) dx = �1

2
+
1

2
log

�
�

2�

�
.

It is straightforward to verify that vl (�i) is increasing and concave in �i. Thus, as in the discrete

case, by varying the multiplicative scaling factor, the center can induce the rater to choose any

particular level of precision.

The scaling factor � that induces a particular �i is found by solving:

max
�i
�

�
�1
2
+
1

2
log

�
�

2�

��
� c (�i) .

Setting the derivative of this expression equal to zero yields that choosing

� = 2
�j
(�q + �i) (�q + �i + �j) c

0 (�i) � �l induces precision �i under the logarithmic rule. Anal-

20Ottavianni and Sorensen (2003) consider a related model, with normally distributed information of �xed precision

for each rater. In their analysis, however, each rater attempts to convince the world of their expertise (i.e., that they

have precise signals.) With that objective function, there is no equilibrium where signals are fully revealed. By

contrast, we introduce an explicit scoring function that is not based solely on the inferred or reported precision of

raters�signals, and full information revelation can be induced.
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ogous calculations for the quadratic and spherical scoring rules �nd that to induce precision �i,

� = 4�1=2

�
3=2
j

(�q + �i)
1=2 (�q + �i + �j)

3
2 c0 (�i) and � = 4

p
2�1=4

�
5=4
j

(�q + �i)
3=4 (�q + �i + �j)

5=4 c0 (�i) re-

spectively.

Based on these choices for �, the variance and range of the transfers under each of the rules

is:21

Rule Variance of transfers Min Max Range

Log 2A2c0 (�i)
2 �1 A log

�
�
2�

�
c0 (�i) 1

Quadratic
16(2

p
3�3)
3 A2c0 (�i)

2 �2Ac0 (�i) 2
�
2
p
2� 1

�
Ac0 (�i) 4

p
2Ac0 (�i)

Spherical
16(2

p
3�3)
3 A2c0 (�i)

2 0 4
p
2Ac0 (�i) 4

p
2Ac0 (�i)

where A = (�i+�q)(�i+�j+�q)
�j

.

Two notable features emerge from this analysis. First, the quadratic and spherical rules have

the same variance and range of payments. This is because both rules specify scores that are linear

in f (x), and so, once scaled to induce the same precision, they di¤er only by an additive constant.

Second, while the logarithmic rule has the smallest variance (163
�
2
p
3� 3

�
' 2: 475 2), its the range

of payments is in�nite because limx!0 ln (x) = �1. We refer to these results in Section 4.2, where

we discuss how to choose among the scoring rules in particular application contexts.

3.2.2 Eliciting Coarse Reports

Raters�information is often highly nuanced. Yet, systems often employ coarser measures of quality,

such as 1 to 5 stars. In this section, we consider situations where the center o¤ers raters a choice

between several �coarse�reports, and analyze whether it is possible to design payments that induce

people to be as truthful as possible, i.e., to choose the admissible report closest to their true signal.

The problem of coarse reporting is both subtle and complex. Proper scoring rules induce

people to truthfully announce their exact information. One might hope that in a su¢ ciently

smooth environment, a rater o¤ered a restricted set of admissible reports will choose the one

that is �closest� to her true information. However, this intuition relies on two assumptions:

that closeness in signals corresponds to closeness in posteriors over product types, and that close

21Supporting computations for this table are available from the authors upon request.
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beliefs in product-type space correspond to close beliefs about the distribution of a reference rater�s

announcement. Although it remains an open question whether these assumptions hold in general,

it is possible to show that they hold when there are only two types of products.

Suppose raters receive signals drawn from the unit interval and that there are only two types

of objects, good (type G) and bad (type B). Their signal densities are f (sjG) and f (sjB). Let

p 2 (0; 1) denote the prior probability (commonly held) that the object is good. We assume that

densities f (sjG) and f (sjB) satisfy the Monotone Likelihood Ratio Property (MLRP), i.e., f(sjG)f(sjB)

is strictly increasing in s.

MLRP implies the distribution for type G �rst-order stochastically dominates the distribution

for B (see Gollier, 2001). If rater i observes signal Si = si, she assigns posterior probability

p
�
Gjsi

�
=

pf(sijG)
pf(sijG)+(1�p)f(sijB) to the object�s being good. MLRP ensures that p

�
Gjsi

�
is strictly

increasing in si. Thus, MLRP embodies the idea that higher signals provide stronger evidence

that the object is good.

We divide the signal space into a �nite number of intervals, which we call bins, and construct a

scoring rule such that rater i�s best response is to announce the bin in which her signal lies, if she

believes that all other raters will do the same. The construction of reporting bins and a scoring

rule capitalizes on a special property of the quadratic scoring rule. Friedman (1983) develops

the notion of �e¤ective� scoring rules. A scoring rule is e¤ective with respect to a metric if the

expected score from announcing a distribution increases as the announced distribution�s distance

from the rater�s true distribution decreases. When distance between distributions is measured

using the L2-metric, the quadratic scoring rule has this property. Also, when there are only two

types, the L2-distance between two distributions of reference raters�announcements is proportional

to the product type beliefs that generate them (if such beliefs exist).

Proposition 3: Suppose there are two types of objects with signal densities that satisfy MLRP.

Then, for any integer L, there exists a partition of signals into L intervals and a set of transfers

that induce Nash Equilibrium truthful reporting when agents can report only in which interval their

signal lies.

The essence of the proof of Proposition 3, which appears in Appendix A, is as follows. After

observing Si = si, rater i�s belief about the product�s type (PT belief) is summarized by rater
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i�s posterior probability that the product is good, p
�
Gjsi

�
. We begin by dividing the space of

PT beliefs into L equal-sized bins. Since p
�
Gjsi

�
is monotone, these PT-belief bins translate to

intervals in the rater�s signal space, which we refer to as signal bins. Signal bins can di¤er in size.

A rater who announces her signal is in the lth bin of signals is treated as if she had announced

beliefs about the product type at the midpoint of the lth PT bin, which implies some distribution

for the reference rater�s announcement (RRA). Each signal bin announcement thus maps to PT

beliefs and then to an RRA distribution. The RRA distribution is scored using the quadratic rule.

Since the quadratic scoring rule is e¤ective, given a choice among this restricted set of admissible

RRA distributions the rater chooses the RRA distribution nearest (in the L2 metric) to her true

one. This turns out to be the one with PT belief nearest her true PT belief. If si is in the lth signal

bin, the closest available PT belief is the midpoint of the lth PT bin. Thus, given coarse bins, the

quadratic scoring rule induces truthful (albeit coarse) bin announcements.

Note that the bins are constructed by dividing the PT space rather than the signal space into

equal-sized bins. While closeness of PT beliefs corresponds to closeness of RRA beliefs, close signals

do not translate linearly to close PT beliefs. For example, suppose a rater observes signal si = 0:5,

and that p (Gj0:5) = 0:3. It is possible that p (Gj0:4) = 0:2 while p (Gj0:6) = 0:35. Thus, although

the distance between signals 0:5 and 0:6 is the same as the distance between signals 0:5 and 0:4,

the PT beliefs (and therefore the RRA beliefs) are closer for the �rst pair than for the second.

Even in the simple case of only two product types, it is somewhat complicated to show that

raters will want to honestly reveal their coarse information. It remains an open question whether

it is possible to elicit honest coarse reports in more complex environments.

4 Issues in Practical Application

The previous section provides a theoretical framework for inducing e¤ort and honest reporting.

Designers of practical systems will face many challenges in applying it. Many of these challenges

can be overcome with adjustments in the transfer payment scheme, computation of parameters

based on historical data, and careful choice of the dimensions on which raters are asked to report.
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4.1 Risk Aversion

Until now, we have assumed that raters are risk neutral, i.e., that maximizing the expected transfer

is equivalent to maximizing expected utility. If raters are risk averse, then scoring-rule based

transfers will not always induce truthful revelation. We present three ways to address risk aversion.

If the center knows the rater�s utility function, the transfers can be easily adjusted to induce

truthful reporting. If U () is the rater�s utility function and R is a proper scoring rule, then choosing

transfers � = U�1 (R) induces truthful reporting, since U
�
U�1 (R)

�
� R (Winkler 1969).

If the rater�s utility function is not known, risk-neutral behavior can be induced by paying the

rater in �lottery tickets� for a binary-outcome lottery instead of in money (Smith 1961; Savage

1971). In e¤ect, the score assigned to a particular outcome gives the probability of winning a �xed

prize. Since von-Neumann Morgenstern utility functions are linear in probabilities, an expected-

utility maximizer will seek to maximize the expected probability of winning the lottery. Thus

the lottery-ticket approach induces individuals with unknown non-linear utility functions to behave

as if they are risk neutral. Experimental evidence suggests that, while not perfect, the binary-

lottery procedure can be e¤ective in controlling for risk aversion, especially when raters have a good

understanding of how the procedure works.22

A third method of dealing with risk averse raters capitalizes on the fact that raters�risk aversion

is likely to be less important when the variability in payments is small. Although we have presented

our results for the case where each rater is scored against a single reference rater, the idiosyncratic

noise in the rater�s �nal payment (measured in terms of its variance) can be reduced by scoring

the rater against multiple raters and paying her the average of those scores. By averaging the

scores from a su¢ ciently large number of reference raters, the center can e¤ectively eliminate the

idiosyncratic noise in the reference raters�signals. However, the systematic risk due to the object�s

type being unknown cannot be eliminated.

4.2 Choosing a Scoring Rule

Which of the three scoring rules we have discussed is best? Each rule has its relative strengths

and weaknesses, and none emerges as clearly superior.

22See Roth (1995, pp 81-83) and the references therein.
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The logarithmic rule is the simplest, giving it a modest advantage in comprehension and com-

putational ease. It is also �relevant�in the sense that it depends only on the likelihood of events

that actually occur.23 In addition, our results in Section 3.2.1 show that the payments needed to

induce a particular e¤ort level have lower variance under the logarithmic rule than under either

of the other two rules, at least when information is normally distributed. If scores are used to

evaluate the raters (for example, to decide whether to invite them back as reviewers in the future),

this lower variance enables the logarithmic rule to provide a more reliable evaluation given the same

number of trials.

On the other hand, the fact that log (x) goes to �1 as x decreases to zero renders the log

rule unattractive when probabilities become small and raters� limited liability is a concern, or if

the support of the raters� posterior distributions changes with their information. On a related

note, under the log rule small changes in low-probability events can signi�cantly a¤ect a rater�s

expected score, which may be undesirable if raters have di¢ culty properly assessing low-probability

events. A �nal disadvantage to the logarithmic score is that, in contrast to the quadratic rule,

there is no metric with respect to which the logarithmic rule is e¤ective (Nau 1985). That is, a

rater�s expected score from announcing a particular distribution need not increase as its distance

(as measured by any valid metric) from the true distribution decreases.

As discussed above, the quadratic rule is e¤ective with respect to the L2-metric, which is what

allowed us to solve the coarse reporting problem in Section 3.2.2. However, the quadratic rule is

not relevant, so it can have the perverse property that, given two distributions, the quadratic score

may be higher for the distribution that assigns lower probability to the event that actually occurs

(Winkler, 1996). The spherical rule shares many properties with the quadratic rule (although its

payments are always positive). As we saw in the normal-information case, once the spherical and

quadratic rules are scaled to induce the same rating e¤ort, they become identical up to an additive

constant. The spherical rule is e¤ective with respect to a renormalized L2-metric (see Friedman,

1983).

Jensen and Peterson (1973) compare the three scoring rules in head-to-head experimental trials.

They conclude that there is essentially no di¤erence in the probabilities elicited from raters. They

23Relevance is important in Bayesian models of comparing di¤erent probability assessors (Winkler 1969; Staël Von

Holstein 1970), although this is not important for our application.
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do note that subjects seem to have trouble understanding scoring rules involving both positive and

negative payments; while the quadratic rule has this property, it is easily addressed by adding a

constant to all payments. Thus, except for situations where some events have low-probability or

raters�information a¤ects the set of possible events (i.e., moving support), factors that make the

logarithmic score undesirable, there is no clear reason to prefer one scoring rule over the others.

4.3 Estimating Types, Priors, and Signal Distributions

In many situations, there will be su¢ cient rating history available for the center to estimate the

prior probabilities of alternative types and signals so as to start the scoring process. One technique

would de�ne the product types in terms of the signal distributions they generate. For example,

suppose that there are only two signals h and l. Products are of varying quality, which determines

the percentage of users who submit h ratings for the product. The type space is continuous in

principle, but in practice the site could approximately capture reality by de�ning a set of discrete

types that partitions the space. For illustrative purposes, we de�ne a fairly coarse partition of

types, 1,..,9, with f(hji) = i
10 : That is, products of type 1 get rated h 10% of the time, and those

of type 7 get rated h 70% of the time. The site would then estimate the prior distribution function

p(i) based on how many products in the past accumulated approximately 10i% ratings.24

Table 1 illustrates updating of beliefs about the probability that a product is of any of the nine

types. Note that the initial distribution is symmetric about type 5, implying that initial probability

of h is :5. After receiving a report h, types that have higher frequencies of h signals become more

likely, as shown in the second row of the table. After receiving two con�icting reports, h and l,

the distribution is again symmetric about type 5, but the extreme types are now seen as less likely

than they were initially.

24Obviously, the partition could be �ner, for example with types 1-99 de�ned by percentage of raters rating the

product h. In addition, the partition need not be uniform: more types could be de�ned in the region that occur most

often on a particular site.
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after signal p (1) p (2) p (3) p (4) p (5) p (6) p (7) p (8) p (9) pr (h)

.05 .1 .1 .1 .3 .1 .1 .1 .05 .5

h .01 .04 .06 .08 .3 .12 .14 .16 .09 .59

h; l .02 .08 .1 .12 .36 .12 .1 .08 .02 .5
Table 1: Initial and updated probabilities of nine types

de�ned by their probability of yielding signal h.

4.4 Taste Di¤erences Among Raters

Suppose that raters di¤er systematically in their tastes. For example, raters of type A might be

generally harsher in their assessments than those of type B, so that, with binary signals, they would

be more likely to perceive goods of any particular type as being low quality, fA (ljt) > fB (ljt). The

same problems could arise if the di¤erences among raters�perceptions covaried with the product

types. For example, an action movie a�cionado might perceive most action movies to be h and

most romantic comedies to be l; perceptions would be reversed for fans of comedies.

When tastes di¤er systematically, the center will need to model rater types explicitly. As in the

simpler case in section 4.3, given a su¢ cient history the center can estimate the distribution of user

types and for each type the signal distributions. An individual rater�s history provides additional

information for inferring the distribution from which her type is drawn.25

4.5 Non-Common Priors and Other Private Information

The incentives for e¤ort and honest reporting depend critically on the center�s ability to compute

a posterior distribution for another rater�s signal that the current rater would agree with, if only

she had the information and computational ability available to the center. Problems may arise if

raters have relevant private information beyond their own signals. Knowing that the center will not

use that other private information, the rater will no longer be con�dent that an honest report of

25A variety of recommender systems or collaborative �ltering algorithms rely on the past ratings of a set of users

to make personalized predictions of how well each individual will like products they have not yet rated. See Breese,

Heckerman, and Kadie (1998) and Sarwar et al (2000) for reviews. Often these algorithms merely predict a scalar

value for an individual�s rating, but they could be extended to predict a distribution over signals for each rater for

each product not yet rated. When an additional rating is added from rater i, the predicted distributions for each

other rater for that product would be updated.
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her signal will lead to scoring based on her true posterior beliefs about the distribution of another

rater�s signals. If she can intuit the correct direction, she may distort her reported signal so as to

cause the center to score her based on posterior beliefs closer to what she would compute herself.

Fortunately, the mechanisms in this paper easily adapt if raters can report any private infor-

mation they have about the distribution of product types, rater types, or signals contingent on

product and rater types.26 The center will use the reference rater�s report to compute two scores.

The �rst comes from the distribution implied by the reported private priors; the second is based

on the posteriors computed from the priors and the reported signal. An honest report of priors

maximizes the �rst score. The second is maximized when the center calculates accurate posteriors,

and that occurs when both priors and signal are honestly reported. Thus, honest reports maximize

either score.

In most practical situations, it will not be necessary to elicit all possible private information.

Where the center has a su¢ cient history of past ratings, most raters will trust the center�s inferences

about the distribution of product types, rater types, and signals conditional on product and rater

types. In those cases, raters need only report what they saw. However, when raters may have

beliefs that diverge from the center�s, it will be useful to o¤er raters an opportunity to report those

beliefs, lest the unreported beliefs create incentives for distorting signal reports.

4.6 Other Potential Limitations

Other potential limitations could interfere with the smooth functioning of a scoring system based

on the peer-prediction method. We mention three. First, while we have shown there is a Nash

equilibrium involving e¤ort and honest reporting, raters could collude to gain higher transfers. Of

course, with balanced transfers it will not be possible for all of the raters to be better o¤ through

collusive actions, and it is unclear whether a subset of the raters could collude to gain at the expense

of the remaining raters who exerted e¤ort and reported honestly. For example, one rater can gain

by knowing what a colluding reference rater will report, but it is not clear whether the gain would

outweigh the losses for the colluding reference rater when she is scored against some other, honest

rater. Even if such collusion were pro�table, the center has two approaches available to deter it.

26Note that for peer-prediction scoring to work, we need to compare one rater�s posterior to another rater�s reported

signal, so it is critical to elicit raters�signals separately from any other information that is also elicited from them.
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The selection of who will serve as a reference rater for each rater can be randomized and delayed

until after ratings are reported, which would make collusion harder to coordinate. In addition,

the center may be able to detect suspicious rating patterns through statistical analysis, and then

employ an outside expert to independently evaluate the product.27

A second potential limitation may arise when raters perceive multidimensional signals. Our

scoring system can generalize easily to handle multiple dimensions by eliciting reports on several

dimensions, such as food, decor, and service for restaurants. Scores can then be computed based on

implied distributions for reports on one or all of the dimensions. If, however, some dimensions are

not elicited, two problems emerge. First, information may not be captured that would be valuable

to consumers. More troubling, in some situations the information not elicited from a rater may

be useful in predicting the next report, in which case the rater may be tempted to manipulate the

report that is requested.

Consider, for example, an interdisciplinary review panel. An economist with some knowledge of

computer science may evaluate proposals as other economists do, but may perceive some additional

signal about how computer scientists will perceive the proposals. Suppose she is asked to report

only her perception of the proposal�s quality. The center then computes an updated distribution of

signals for the next rater, accounting for both raters�types as in Section 4.4. But the economist�s

secondary signal about how well computer scientists will like the proposal may allow her to compute

a more accurate distribution than the center can, and thus she will sometimes want to report

dishonestly in order to make the center more closely approximate her true beliefs.28

One solution to this problem would be to �nd a set of dimensions on which raters are asked to

report such that any other signals the raters get are not relevant for predicting the next player�s

report. For example, if restaurant reviewers are asked to report separately on food, decor, and

27This would be analogous to a University Provost who normally accepts promotion and tenure recommendations

with a minimal review, but may undertake the costly option of personally evaluating the portfolios of candidates from

units whose recommendation patterns are suspicious, or employing an outside expert to evaluate those portfolios.
28Canice Prendergast�s (1993) model of Yes-Men is one example of this type of situation. In that model, the �rst

rater receives one signal about the expected value of a business action and another signal about how well the next

rater (the boss) will like that action. There is no scoring function that will elicit reports from which the center can

infer just the rater�s direct signal as opposed to her signal about the boss� signal. Thus, she will become, at least

partially, a Yes-Man, who says what she thinks the boss will think.
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service, the transfer payments can induce honest reporting so long as any other independent signals

that reviewers may receive (such as the number of people in the restaurant that night) are not

useful in predicting how other raters will perceive food, decor, or service. On an interdisciplinary

review panel, reviewers might be asked to separately report quality from the perspective of each

of the disciplines involved. When scores are computed, they can be based on the probabilities for

another player�s report on any one dimension, or on all of them. Again, since honest reporting will

cause the center to correctly compute the rater�s beliefs about the reference rater�s signal, honest

reporting will be an equilibrium. Unfortunately, it may be di¢ cult in practice to �nd a set of

rating dimensions such that unreported signals for a rater are irrelevant to computing beliefs about

reported signals for a reference rater.

Given the computational power and the information resources available to the center, it may

not be necessary in practice to elicit from raters all of their weakly stochastically relevant signals.

For example, suppose the center performs a complex collaborative �ltering algorithm to predict

the next rater�s distribution, and the individual rater either lacks the computational resources or

the history of everyone�s previous ratings, or does not know in advance which rater she will be

scored against. Although an additional private signal might make rater i think that, say, signal h

is more likely for some raters than the center would otherwise compute, she will often be unable to

determine which false report on the dimensions that the center elicits would raise her payo¤.

A third potential limitation is trust in the system: people may not believe that e¤ort and

honest reporting are optimal strategies. In individual instances, raters who follow that strategy

will have negative transfers, and they may incorrectly attribute such outcomes to their strategy

rather than to the vagaries of chance. Few raters will be willing or able to verify the mathematical

properties of the scoring system proven in this paper, so it will be necessary to rely on outside

attestations to ensure public con�dence. Professional experts could be invited to investigate the

working of the systems, or independent auditors could be hired.

5 Conclusion

Buyers derive immense value from drawing on the experience of others. However, they have the

incentive to shirk from the collective endeavor of providing accurate information about products,
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be they microwave ovens or movies, academic papers or appliances. Peer-prediction methods,

capitalizing on the stochastic relevance between the reports of di¤erent raters, in conjunction with

appropriate rewards, can create incentives for e¤ort and honest reporting.

Implementors of such systems will face a number of design choices, ranging from rating dimen-

sions and procedures for selecting reviewers to technology platforms and user interfaces. This paper

provides only a conceptual road map, not a detailed implementation plan, and only for those de-

sign decisions that involve incentives for e¤ort and honest reporting. It is an important road map,

however, because the most obvious approach to peer comparison, simply rewarding for agreement

in reviews, o¤ers inappropriate incentives.

The basic insight is to compare implied posteriors (rather than an actual report) to the report of

a reference rater. A rater need not compute the implications of her own signal for the distribution of

the reference rater, so long as she trusts the center to do a good job of computing those implications.

There remain many pitfalls, limitations, and practical implementation issues, for which this paper

provides conceptual design guidance.

Recommender and reputation systems require that ratings be widely collected and disseminated.

To overcome incentive problems, raters must be rewarded. Whether those rewards are monetary

or merely grades or points in some scoring system that the raters care about, intense computa-

tional methods are required to calibrate appropriate rewards. The upward march of information

technology holds promise.

References

[1] Avery, Chris, Paul Resnick, and Richard Zeckhauser (1999): �The Market for Evaluations,�

American Economic Review, 89(3) 564-584.

[2] Breese, J., D. Heckerman, C. Kadie. 1998. Empirical Analysis of Predictive Algorithms for

Collaborative Filtering. Proceedings of the Fourteenth Conference on Uncertainty in Arti�cial

Intelligence, Madison, WI, July, 1998. Morgan Kaufmann Publisher.

[3] Clemen, R. 2002. Incentive Contracts and Strictly Proper Scoring Rules. Test 11(1) 195-217.

[4] Congdon, P. 2001. Bayesian Statistical Modelling. Wiley, Chichester, England.

26



[5] Cooke, R. M. 1991. Experts in Uncertainty: Opinion and Subjective Probability in Science.

Oxford University Press, New York.

[6] Crémer, J., R. McLean. 1985. Optimal Selling Strategies Under Uncertainty for a Discrimi-

nating Monopolist When Demands Are Interdependent. Econometrica 53(2) 345-361.

[7] . 1988. �Full Extraction of Surplus in Bayesian and Dominant

Strategy Auctions. Econometrica 56(6) 1247-1257.

[8] d�Aspremont, C., L.-A. Gérard-Varet. 1979. Incentives and Incomplete Information. Journal

of Public Economics, 11(1) 25-45.

[9] . 1982. Bayesian Incentive Compatible Beliefs. Journal of Mathe-

matical Economics 10(1) 83-103.

[10] Dellarocas, C. 2001. Analyzing the Economic E¢ ciency of eBay-like Online Reputation Re-

porting Mechanisms. Proceedings of the 3rd ACM Conference on Electronic Commerce, Tampa,

FL, October 14-16, 2001.

[11] Friedman, D. 1983. E¤ective Scoring Rules for Probabilistic Forecasts. Management Science

29(4) 447-454.

[12] Gollier, Cristian. 2001. The Economics of Risk and Time. MIT Press, Cambridge, MA.

[13] Hanson, R. 2002. Logarithmic Market Scoring Rules for Modular Combinatoral Informa-

tion Aggregation. Working Paper, George Mason University Department of Economics,

http://hanson.gmu.edu/mktscore.pdf.

[14] Jensen, F.,C. Peterson. 1973. Psychological E¤ects of Proper Scoring Rules. Organizational

Behavior and Human Performance 9(2) 307-317.

[15] Johnson, S., N. Miller, J. Pratt, R. Zeckhauser. 2002. E¢ cient Design with Interdepen-

dent Valuations and an Informed Center. Kennedy School Working Paper, RWP02-025,

http://ksgnotes1.harvard.edu/research/wpaper.nsf/rwp/RWP02-025.

[16] Johnson, S., J. Pratt, and R. Zeckhauser. 1990. E¢ ciency Despite Mutually Payo¤-Relevant

Private Information: The Finite Case. Econometrica 58(4) 873-900.

27



[17] Kandori, M., H. Matsushima. 1998. Private Observation, Communication and Collusion.

Econometrica, 66(3) 627-652.

[18] Lampe, C., P. Resnick. 2004. Slash(dot) and Burn: Distributed Moderation in a Large Online

Conversation Space. CHI 2004, ACM Conference on Human Factors in Computing Systems,

CHI Letters 6(1), 543-550.

[19] Lavalle, I. 1968. On Cash Equivalents and Information Evaluation in Decisions Under Uncer-

tainty: Part I: Basic Theory. Journal of the American Statistical Association 63(321) 252-276.

[20] Miller, N., P. Resnick, and R. Zeckhauser. 2005. A su¢ cient condition for correlated informa-

tion in mechanism design. mimeo, Harvard University.

[21] Nau, R. 1985. Should Scoring Rules Be E¤ective? Management Science 34(5) 527-535.

[22] Nelson, R., D. Bessler. 1989. Subjective Probabilities and Scoring Rules: Experimental Evi-

dence. American Journal of Agricultural Economics 71(2) 363-369.

[23] Ottaviani, M., P. N. Sørensen. 2003. Professional Advice: The Theory

of Reputational Cheap Talk. Working Paper, University of Copenhagen,

http://www.econ.ku.dk/sorensen/Papers/pa.pdf.

[24] Pratt, J., H. Rai¤a, R. Schlaifer. 1965. Introduction to Statistical Decision Theory. McGraw-

Hill, New York.

[25] Prelec, D. 2001. A two-person scoring rule for subjective reports. Working Paper, Marketing

Center, MIT Sloan School, http://mitsloan.mit.edu/vc/IPPacket.pdf.

[26] Prendergast, C. 1993. A Theory of Yes Men. American Economic Review 83(4) 757-770.

[27] Roth, A. 1995. Introduction to Experimental Economics. J. Kagel, A. Roth,eds. The Handbook

of Experimental Economics, Princeton University Press, Princeton, NJ, 3-110.

[28] Sarwar, B. M., G. Karypis, J. A. Konstan, J. Riedl. 2000. Analysis of Recommender Algorithms

for E-Commerce. Proceedings of the ACM E-Commerce 2000 Conference. Oct. 17-20, 2000,

158-167.

28



[29] Savage, L. 1954. Foundations of Statistics. Dover Publications, New York.

[30] Savage, L. 1971. Elicitation of Personal Probabilities and Expectations. Journal of the Amer-

ican Statistical Association 66(336) 783-801.

[31] Selten, R. 1998. Axiomatic Characterization of the Quadratic Scoring Rule. Experimental

Economics 1(1) 43-62.

[32] Smith, C. 1961. Consistency in Statistical Inference and Decision. Journal of the Royal Statis-

tical Society, Series B (Methodological), 23(1) 1-37.

[33] Staël von Holstein, C.-A. 1970. Measurement of Subjective Probability. Acta Psychologica

34(1) 146-159.

[34] Winkler, R. 1969. Scoring Rules and the Evaluation of Probability Assessors. Journal of the

American Statistical Association 64(327) 1073-1078.

[35] Winkler, Robert. 1996. Scoring Rules and the Evaluation of Probabilities. Test 5(1) 1-60.

A Proofs

Proof of Proposition 2: Let Zi(0) = argmaxa
PM
n=1R

�
s
r(i)
n ja

�
f (a), so that the maximum

expected value of any report made without acquiring a signal is �Zi(0). Let

Zi(1) = Esim

�
E
s
r(i)
n
R
�
sr(i)n jsim

��
=

MX
m=1

f
�
sim
� MX
n=1

g
�
sr(i)n jsim

�
R
�
sr(i)n jsim

�
;

so that the expected value of getting a signal and reporting it is �Zi(1). Savage�s analysis of

the partition problem (1954, Chapter 7) shows that acquiring the signal strictly increases the

buyer�s expected score whenever it changes the rater�s posterior belief about the other raters�

announcements (see also Lavalle (1968)). Thus Zi (1) > Zi (0) when stochastic relevance holds.

Pick � > c
Zi(1)�Zi(0) . Thus �Zi(1) � �Zi(0) > c, so the best response is to pay the cost c to

acquire a signal and report it.�

Proof of Proposition 3: Divide the space of product type (PT) beliefs, which are just prob-

abilities that the product is of the good type, into L equal-sized bins, with the lth bin being

29



Bl = [ l�1L ;
l
L), and BL =

�
L�1
L ; 1

�
. Given these bins, the rater�s PT belief induces a reference

rater bin announcement (RRA) belief. Let P lG =
R l
l�1
L
f (sjG) ds and P lB =

R l
l�1
L
f (sjB) ds, the

probabilities assigned to the reference rater announcing the lth bin if the object is known to be

good or bad, respectively. If the rater observes si, the likelihood of the reference rater�s announcing

the lth bin is:

P lsi =

Z l

l�1
L

p
�
Gjsi

�
f (sjG) +

�
1� p

�
Gjsi

��
f (sjB) ds = p

�
Gjsi

�
P lG +

�
1� p

�
Gjsi

��
P lB,

Let Psi =
�
P 1
si
; :::; PL

si

�
denote the RRA distribution of a rater who has observed si.

Since p (Gjs) is monotone in s, the inverse function � (p) is well-de�ned. Let ~Bl = [�
�
l�1
L

�
; �
�
l
L

�
)

be the lth bin of signals and ~BL =
�
�
�
L�1
L

�
; � (1)

�
; i.e., raters observing signals in ~Bl have PT

beliefs in Bl. A rater who announces that her signal is in ~Bl is paid using the quadratic scoring

rule based on the RRA distribution for a rater who has PT belief ml =
2l�1
2L . Thus, if a rater

always prefers to be scored on the PT bin that contains her true beliefs, she will report the signal

bin that contains her true signal. The remainder of the proof is to show that it is optimal for a

rater to be scored against the midpoint of the PT bin that contains her true posterior PT belief.

First, we show that closeness of PT beliefs corresponds to closeness of RRA beliefs. The distance

between two PT beliefs p1 and p2 is simply their absolute di¤erence, jp1 � p2j. For the distance

between two RRA distributions, we use the L2-metric. That is, if P and P̂ denote two RRA

distributions, the L2-distance between them is given by d
�
P; P̂

�
=

�P
l

�
P l � P̂ l

�2�1=2
.

A rater who observes signal si assigns probability P l
si
= p

�
Gjsi

�
P lG +

�
1� p

�
Gjsi

��
P lB to

the reference rater announcing bin l: The distance between the posterior distributions of a rater

observing si and a rater observing ŝi is therefore given by:

d (Psi ; Pŝi) =

 X
l

�
P lsi � P

l
ŝi

�2!1=2
=
��p �Gjsi�� p �Gjŝi��� X

l

�
P lG � P lB

�2!1=2
. (5)

Expression (5) establishes that the L2-distance between two RRA distributions is proportional to

the distance between the PT beliefs that generate them.

The �nal step is to show that, given the choice between being scored based on the RRA distri-

bution for m1; :::;mL, a rater observing si maximizes her expected quadratic score by choosing the
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ml that is closest to p
�
Gjsi

�
, i.e., her true PT beliefs. This follows from a result due to Friedman

(1983, Proposition 1), who shows that the expected quadratic score of a rater with true RRA P

is larger from reporting P̂ than from reporting ~P if and only if d
�
P̂ ; P

�
< d

�
~P ; P

�
.29 Thus

Friedman�s result, in conjunction with (5), establishes that if a rater believes the reference rater

will truthfully announce her bin, then she maximizes her expected quadratic score by selecting the

PT bin that contains her true beliefs.�

B Eliciting E¤ort

To consider the issue of e¤ort elicitation, the rater�s experience with the product is encoded not as

a single outcome, but as a sequence of outcomes generated by random sampling from distribution

f (smjt). Greater e¤ort corresponds to obtaining a larger sample. Let xi denote the number of

outcomes observed by rater i, i.e., her sample size. We require the rater to put forth e¤ort to learn

about her experience, letting ci (xi) be the cost of observing a sample of size xi, where ci (xi) is

strictly positive, strictly increasing, and strictly convex, and assumed to be known by the center.

For a rater who already observes a sample of size x; learning the x + 1st component further

partitions the outcome space, i.e., larger samples correspond to better information. We begin by

arguing that, holding �xed the agents� sample sizes, scoring-rule based payments can elicit this

information. We then ask how the mechanism can be used to induce agents to acquire more

information, even though such acquisition is costly.

For any �xed xi, the information content of two possible xi component sequences depends only

on the frequencies of the various outcomes and not on the order in which they occur. Consequently,

let Y i (xi) be theM -dimensional random variable whosemth component counts the number of times

outcome sm occurs in the �rst xi components of the agent�s information.30 Let yi =
�
yi1; :::; y

i
M

�
denote a generic realization of Y i (xi), where yim is the number of times out of xi that signal sm is

received, and note that
PM
m=1 y

i
M = xi. Rater i�s observation of Y i (xi) determines her posterior

beliefs about the product�s type, which are informative about the expected distribution of the

other players�signals. Since di¤erent realizations of Y i (xi) yield di¤erent posterior beliefs about

29Friedman (1983) calls metric-scoring rule pairs that have this property �e¤ective.�
30Y i (xi) is a multinomial random variable with xi trials and M possible outcomes. On any trial, the probability

of the mth is f (smjt), where t is the product�s unknown type.
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the product�s type, it is also natural to assume that Y i (xi) is stochastically relevant for Y j (xj),

and we make this assumption throughout this section. In the remainder of this section, we let

g
�
yj (xj) jyi (xi)

�
denote the distribution of Y j (xj) conditional on Y i (xi).

Lemma 1: Consider distinct players i and j, and suppose xi, xj � 0 are commonly known.

If agent i is asked to announce a realization of Y i (xi) and is paid according to the realization

of Y j (xj) using a strictly proper scoring rule, i.e., R
�
yj (xj) jyi (xi)

�
, then the rater�s expected

payment is uniquely maximized by announcing the true realization of Y i (xi).

Proof: Follows from the de�nition of a strictly proper scoring rule.

Proposition 4 restates Proposition 1 in the case where the sizes of the raters�samples are �xed

and possibly greater than 1, i.e., xi � 1 for i = 1;..., I. It follows as an immediate consequence of

Lemma 1.

Proposition 4: Suppose rater i collects xi � 1 signals. There exist transfers under which truthful

reporting is a strict Nash Equilibrium of the reporting game.

Proof of Proposition 4: The construction follows that in Proposition 1, using Y i (xi) for the

information received by rater i and constructing transfers as in (2) and (4). Under the equilibrium

hypothesis, j = r (i) announces truthfully. Let ai denote rater i�s announcement of the realization

of Y i (xi), and let transfers be given by:

��i
�
yj jai

�
= R

�
yj jai

�
: (6)

Under these transfers, truthful announcement is a strict best response. �

Proposition 4 establishes that truthful reporting remains an equilibrium when raters can choose

how much information to acquire. We next turn to the questions of how and whether the center

can induce a rater to choose a particular xi. Let j denote the rater whose signal player i is asked

to predict (i.e., let r (i) = j), and suppose rater j has a sample of size xj and that she truthfully

reports the realization of Y j (xj) : For simplicity, we omit argument xj in what follows. Further,

suppose that rater i is paid according to the scoring-rule based scheme described in (6). Since xi

a¤ects these transfers only through rater i�s announcement, it is optimal for rater i to truthfully

announce Y i (xi) regardless of xi.
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Since xi is chosen before observing any information, rater i�s incentive to choose xi depends

on her ex ante expected payo¤ before learning her own signal. This expectation is written as

Zi (xi) = EY i
�
EY jR

�
Y j jY i (xi)

��
.

Lemma 2 establishes that raters bene�t from better information, and is a restatement of the

well-known result in decision theory that every decision maker bene�ts from a �ner partition of the

outcome space (Savage 1954).

Lemma 2: Zi (xi) is strictly increasing in xi.

Proof of Lemma 2: Fix xi and let yi be a generic realization of Y i (xi). Conditional upon

observing yi, rater i maximizes her expected transfer by announcing distribution g
�
Y j jyi

�
for rater

j�s information. Suppose rater i observes the xi + 1st component of her information. By Lemma

1, i�s expected transfer is now strictly maximized by announcing distribution g
�
Y j j

�
yi; sm

��
, and

rater i increases her expected value by observing the additional information. Since this is true for

every yi, it is true in expectation, and Zi (xi + 1) > Zi (xi).�

Lemma 2 establishes that as xi increases, rater i�s information becomes more informative regard-

ing rater j�s signal as xi increases. Of course, the direct e¤ect of rater i�s gathering more information

is to provide her with better information about the product, not about rater j. Nevertheless, as

long as rater i�s information is stochastically relevant for that of rater j, better information about

the product translates into better information about rater j.

When transfers are given by (6), the expected net bene�t to rater i from collecting a sample

of size xi and truthfully reporting her observation is Zi (xi) � c (xi). Hence, transfers (6) induce

rater i to collect a sample of size x�i 2 argmax (Zi (xi)� cxi).

Rater i�s incentives to truthfully report are una¤ected by a uniform scaling of all transfers in

(6). Therefore, by a judicious rescaling of the payments to rater i, the center may be able to induce

the agent to acquire more or less information. Expression (7) extends the transfers described in

(6) to allow for multiple signals and a rescaling of all payments by multiplier �i > 0:

��i

�
ai; yr(i)

�
= �iR

�
yr(i)jai

�
. (7)

Under transfers (7), the maximal expected bene�t from a sample of size xi is �iZi (xi). Hence the

center can induce rater i to select a particular sample size, x̂i, if and only if there is some multiplier
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�̂ > 0 such that x̂i 2 argmax �̂Zi (xi) � c (xi). The simplest case has Zi (xi) concave, i.e., where

Zi (xi + 1)� Zi (xi) decreases in xi.

Proposition 5: If Zi (xi + 1) � Zi (xi) decreases in xi, then for any sample size x̂i � 0 there

exists a scalar �̂i � 0 such that when paid according to (7), rater i chooses sample size x̂i.

Proof of Proposition 5: Since Zi (x) is concave, sample size x̂i is optimal if there exists �̂i

satisfying

�̂iZi (x̂i)� ci (x̂i) � �̂iZi (x̂i + 1)� ci (x̂i + 1) , and

�̂iZi (x̂i)� ci (x̂i) � �̂iZi (x̂i � 1)� ci (x̂i � 1) .

Solving each condition for �̂i yields:

ci (x̂i)� ci (x̂i � 1)
Zi (x̂i)� Zi (x̂i � 1)

� �̂i �
ci (x̂i + 1)� ci (x̂i)
Zi (x̂i + 1)� Zi (x̂i)

.

Such an �̂i exists if and only if
Zi(x̂i)�Zi(x̂i�1)
Zi(x̂i+1)�Zi(x̂i) �

ci(x̂i)�ci(x̂i�1)
ci(x̂i+1)�ci(x̂i) . By our assumptions, this expression

is always true.�

If Zi (xi + 1) � Zi (xi) does not decrease in xi, then there may be some sample sizes that are

never optimal.31 Nevertheless, increasing the scaling factor never decreases optimal sample size,

and so while the center may not be able to perfectly control the raters�e¤ort choices, it can always

induce them to put forth greater e¤ort if it wishes.

In practice, the center will not know each individual�s cost of procuring additional informa-

tion. However, the center may be able to estimate costs, and then pick a scaling factor that, in

expectation, induces each rater to acquire an optimal-size sample.32

31Clemen (2002) provides a number of examples of cases in which Zi (xi + 1)� Zi (xi) decreases in xi.
32The center chooses the scale that induces the optimal ex ante precision. Ex post, if raters know their costs, they

will tend to choose lower precision if they are high cost and vice versa.
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