
Ice Pasupat   and   Percy Liang
Stanford University

ACL 2016
Monday, August 8, 2016

Inferring Logical Forms
From Denotations



Semantic Parsing

“Where did the last 1st place finish occur?”

Year Venue Position Time

2003 Finland 1st 47.12

2005 Germany 5th 46.62

2007 Thailand 1st 53.13

2from WikiTableQuestions dataset (Pasupat & Liang, 2015); simplified

Utterance

World



Semantic Parsing

R[Venue].argmax(Position.1st, Index)

“Where did the last 1st place finish occur?”

Parse utterances into executable logical forms

Year Venue Position Time

2003 Finland 1st 47.12

2005 Germany 5th 46.62

2007 Thailand 1st 53.13

3



Semantic Parsing

R[Venue].argmax(Position.1st, Index)

Parse utterances into executable logical forms

Year Venue Position Time

2003 Finland 1st 47.12

2005 Germany 5th 46.62

2007 Thailand 1st 53.13

Denotation
4

“Where did the last 1st place finish occur?”



Semantic Parsing

R[Venue].argmax(Position.1st, Index)

Year Venue Position Time

2003 Finland 1st 47.12

2005 Germany 5th 46.62

2007 Thailand 1st 53.13

5

Parse utterances into executable logical forms

“Where did the last 1st place finish occur?”



Semantic Parsing

R[Venue].argmax(Position.1st, Index)

Year Venue Position Time

2003 Finland 1st 47.12

2005 Germany 5th 46.62

2007 Thailand 1st 53.13

6

Parse utterances into executable logical forms

“Where did the last 1st place finish occur?”



Semantic Parsing

R[Venue].argmax(Position.1st, Index)

Year Venue Position Time

2003 Finland 1st 47.12

2005 Germany 5th 46.62

2007 Thailand 1st 53.13

7

Parse utterances into executable logical forms

“Where did the last 1st place finish occur?”



Semantic Parsing

8

Setting:  Learn a semantic parser from denotations

Training Data

“Where did the last 1st 
place finish occur?”

Year Venue Position Time

2003 Finland 1st 47.12

2005 Germany 5th 46.62

2007 Thailand 1st 53.13

Thailand

The logical form is latent!



Space of Logical Forms

9

For each input utterance and world, we can set the 

space of logical forms that we want the semantic 

parser to consider

“Where did the last 1st 
place finish occur?”

Year Venue Position Time

2003 Finland 1st 47.12

2005 Germany 5th 46.62

2007 Thailand 1st 53.13

logical forms

R[Venue].argmax(Position.1st, Index)

...

...

...

...

...
...



▸ Restrict which predicates can appear

Restricting the Space of Logical Forms

10

“… Germany ...” Venue.Germany

▸ Only allow certain logical form compositions

F(Values
1

) - F(Values
2

) → Values

Must have a parallel structure

“… German ...” Venue.Germany

(Pasupat & Liang, 2015)



▸ Restrict which predicates can appear

Restricting the Space of Logical Forms

11

“… Germany ...” Venue.Germany

▸ Only allow certain logical form compositions

+ Easier to learn

– Low coverage

F(Values
1

) - F(Values
2

) → Values

Must have a parallel structure

“… German ...” Venue.Germany

(Pasupat & Liang, 2015)



Expanding the Space of Logical Forms

12

▸ Less restriction on predicates

“… Germany ...” Venue.Germany

▸ Very generic logical form composition

Anything goes!

“… German ...” Venue.Germany

Set
1

 - Set
2

 → Set
(Details in the paper)

+ Higher coverage



Expanding the Space of Logical Forms

13

+ Higher coverage

– Two new challenges … 

▸ Less restriction on predicates

“… Germany ...” Venue.Germany

▸ Very generic logical form composition

Anything goes!

“… German ...” Venue.Germany

Set
1

 - Set
2

 → Set
(Details in the paper)



Space of Logical Forms

A semantic parser defines a distribution on logical 

forms

all logical forms

14



Consistent Logical Forms

A logical form is consistent if it executes to the 

target denotation

During training, a semantic parser learns to 

maximize the probability of consistent logical forms

all logical forms

consistent

15



Consistent Logical Forms

Challenge 1:  Identifying this region of consistent 

logical forms during training = finding needles in a 

haystack

all logical forms

consistent
(actual size)

16



Spurious Logical Forms

R[Venue].argmax(Position.1st, Index)

“Where did the last 1st place finish occur?”

17

Year Venue Position Time

2003 Finland 1st 47.12

2005 Germany 5th 46.62

2007 Thailand 1st 53.13



Spurious Logical Forms

Sometimes a consistent logical form is spurious: it 

gets the correct denotation for a wrong reason

R[Venue].argmax(Position.1st, Time)

Year Venue Position Time

2003 Finland 1st 47.12

2005 Germany 5th 46.62

2007 Thailand 1st 53.13

18

“Where did the last 1st place finish occur?”



Spurious Logical Forms

Challenge 2:  With the expanded space of logical 

forms, we get even more spurious logical forms!

Year Venue Position Time

2003 Finland 1st 47.12

2005 Germany 5th 46.62

2007 Thailand 1st 53.13

R[Venue].R[Next].Year.avg(R[Year].Type.Row)

19

“Where did the last 1st place finish occur?”



Spurious Logical Forms

Challenge 2:  With the expanded space of logical 

forms, we get even more spurious logical forms!

▸ These spurious logical forms can hurt learning 

since they give misleading signals

20

all logical forms

correct

spurious



Challenge 1: Enumerate Consistent LFs

Given a training example (an utterance, a world, and 

the target denotation), find all consistent logical 

forms

21

“Where did the last 1st 
place finish occur?”

Year Venue Position Time

2003 Finland 1st 47.12

2005 Germany 5th 46.62

2007 Thailand 1st 53.13

Thailand

all logical forms

consistent



Review: Beam Search

Idea:  Compose logical forms of increasing sizes 

then keep the consistent final logical forms

22

(Set, 0) (Relation, 0)

(Set, 1)

(Set, 2)

...



Review: Beam Search

A cell (c, s) contains logical forms with the same 

category c and “size” s

23

(Set, 0)

5th

Germany

(Relation, 0)

Index

Next

Venue

Position
(Set, 0) (Relation, 0)

(Set, 1)

(Set, 2)

...

[Similar to cell (c, i, j) in CYK 
algorithm for syntactic parsing]



Review: Beam Search

Start from base predicates (size = 0)

For the sake of illustration, assume any cell / column can become a base predicate

24

(Set, 0) (Relation, 0)

(Set, 1)

(Set, 2)

(Set, 0)

5th

Germany

...

(Relation, 0)

Index

Next

Venue

Position



Review: Beam Search

Start from base predicates (size = 0) and compose 

partial logical forms of increasing sizes

25

(Set, 0)

5th

Germany

(Relation, 0)

Index

Next

Venue

Position

(Set, 1)

Position.5th

Relation.Set → Set

(Set, 0) (Relation, 0)

(Set, 1)

(Set, 2)

...

Venue.Germany



Review: Beam Search

To control the search space, we prune cells to a 

fixed beam size

26

(Set, 2)

(Set, 0) (Relation, 0)

(Set, 1)

(Set, 2)

...

Next.Venue.Germany

Next.Position.5th

R[Venue].Position.5th

count(Venue.Germany)

R[Next].Position.5th

R[Index].Venue.Germany

R[Position].Position.5th

count(Position.5th)



Review: Beam Search

Finally, collect complete logical forms that execute 

to the target denotation

27

(Set, 5)

(Set, 6)

R[Venue].argmax(Position.1st, Time)

R[Year].argmin(Position.1st, Time)

count(Venue.Germany) - count( … )

R[Venue].argmax(Position.1st, Index)

(Set, 4)

(Set, 5)

(Map, 6) R[Venue].Index.min(R[Year].Position.1st)



Review: Beam Search

Only generates a partial list of logical forms

→ Misses many consistent logical forms

28

all logical forms

consistent

beam
search



Better Way to Control Search Space

Observation:  Many logical forms execute to the 

same denotation

29

Year Venue Position Time

2003 Finland 1st 47.12

2005 Germany 5th 46.62

2007 Thailand 1st 53.13

Venue.Germany

Position.5th

all execute to
{r

1
}

Index.1



R[Time].

R[Time].

Better Way to Control Search Space

If we only care about denotations, these logical 

forms are interchangeable

30

Year Venue Position Time

2003 Finland 1st 47.12

2005 Germany 5th 46.62

2007 Thailand 1st 53.13

R[Time].

Venue.Germany

Position.5th

all execute to
{46.62}

Index.1



R[Time].

Better Way to Control Search Space

So if we collapse them into one “meta” logical form, 

the search space will be reduced

31

Year Venue Position Time

2003 Finland 1st 47.12

2005 Germany 5th 46.62

2007 Thailand 1st 53.13

R[Time]. {r
1

}

executes to
{46.62}



Better Way to Control Search Space

So if we collapse them into one “meta” logical form, 

the search space will be reduced a lot!

32



Dynamic Programming on Denotations

Step 1:  Build a parse 

chart leading to the 

target denotation

33

Step 2:  Retrieve actual 

logical forms

Thailand



Dynamic Programming on Denotations

Step 1:  Build a parse chart to the target denotation

▸ Group logical forms based on denotations

▸ Each cell becomes (category, size, denotation)

34

(Set, 1)

Position.5th

count(Type.Row)

Venue.Germany

(Set, 1)



Dynamic Programming on Denotations

Step 1:  Build a parse chart to the target denotation

▸ Group logical forms based on denotations

▸ Each cell becomes (category, size, denotation)

35

count(Type.Row)

(Set, 1, {3})

(Set, 1, {r
1

})

(Set, 1, {3})
(Set, 1, {r

1
})

Position.5th

Venue.Germany



Dynamic Programming on Denotations

Step 1:  Build a parse chart to the target denotation

▸ Since we only care about denotations, we can 

collapse logical forms in each cell

36

{3}

(Set, 1, {3})

(Set, 1, {r
1

})

(Set, 1, {3})

{r
1

}

(Set, 1, {r
1

})



Dynamic Programming on Denotations

37

(Set, 1, {r
1

})

(Relation, 0, Time)

(Set, 2, {46.62})

Time

(Relation, 0, Time)

{46.62}

(Set, 2, {46.62})

{r
1

}

(Set, 1, {r
1

})

Step 1:  Build a parse chart to the target denotation

▸ Since we only care about denotations, we can 

collapse logical forms in each cell



Dynamic Programming on Denotations

(___, ___, {Thailand})

38



Dynamic Programming on Denotations

39

Remove paths that do not lead to 

the target denotation

Reduced from ≈ 153,000 cells to 
≈ 2,000 cells  (99% reduction!)

(___, ___, {Thailand})



Dynamic Programming on Denotations

40

Step 2:  To get the actual 

logical forms, uncollapse 

the “meta” logical forms 

by following the 

backpointers



Dynamic Programming on Denotations

41

all logical forms

= DPDconsistent

We have eliminated a lot of cells, so it is possible to 

exhaustively enumerate logical forms along the 

remaining paths up to a certain logical form size
(in most cases)



Dynamic Programming on Denotations

Experiment:  For each of 300 examples:

▸ Annotate the example with a gold logical form 

(consistent and correct)

▸ Test whether the algorithm can generate the 

gold logical form

42

consistent

beam
searchgold

consistentDPD

gold



Dynamic Programming on Denotations

43

Uninitialized beam search

Dynamic programming
on denotations



Dynamic Programming on Denotations

Uninitialized beam search

Initialized beam search

Dynamic programming
on denotations

44



Challenge 1: Enumerate Consistent LFs

Given a training example (an utterance, a world, and 

the target denotation), find all consistent logical 

forms

45

“Where did the last 1st 
place finish occur?”

Year Venue Position Time

2003 Finland 1st 47.12

2005 Germany 5th 46.62

2007 Thailand 1st 53.13

Thailand

all logical forms

consistent



Challenge 2: Prune Spurious LFs

Given the set of consistent logical forms (Task 1), 

prune out spurious logical forms

46

“Where did the last 1st 
place finish occur?”

Year Venue Position Time

2003 Finland 1st 47.12

2005 Germany 5th 46.62

2007 Thailand 1st 53.13

Thailand

all logical forms

correct

spurious



Challenge 2: Prune Spurious LFs

Given the set of consistent logical forms (Task 1), 

prune out spurious logical forms

Year Venue Position Time

2003 Finland 1st 47.12

2005 Germany 5th 46.62

2007 Thailand 1st 53.13

R[Venue].argmax(Position.1st, Index)

R[Venue].argmax(Position.1st, Time)

“Where did the last 1st place finish occur?”

47

Thailand

Thailand



Fictitious Worlds

Intuition:  Correct logical forms should give a 

correct denotation when the world slightly changes

Year Venue Position Time

2003 Thailand 1st 53.13

2005 Finland 1st 47.12

2007 Germany 5th 46.62

Finland

Thailand

Keep sorted 
columns 

sorted

Resample 
cells in other 

columns

48

“Where did the last 1st place finish occur?”

R[Venue].argmax(Position.1st, Index)

R[Venue].argmax(Position.1st, Time)



Fictitious Worlds

Generate fictitious worlds and execute the logical 

forms on them

w

z
1

Thailand

z
2

Thailand

z
3

Thailand

z
4

Thailand

z
5

Thailand

49



Fictitious Worlds

Generate fictitious worlds and execute the logical 

forms on them

w w
1

z
1

Thailand

z
2

Thailand

z
3

Thailand

z
4

Thailand

z
5

Thailand

50



Fictitious Worlds

Generate fictitious worlds and execute the logical 

forms on them

w w
1

z
1

Thailand Finland

z
2

Thailand Thailand

z
3

Thailand Finland

z
4

Thailand Finland

z
5

Thailand Germany

51



w w
1

z
1

Thailand Finland

z
2

Thailand Thailand

z
3

Thailand Finland

z
4

Thailand Finland

z
5

Thailand Germany

Human Thailand Finland

Fictitious Worlds

We can ask humans to answer the question based 

on the fictitious worlds

52



w w
1

z
1

Thailand Finland

z
2

Thailand Thailand

z
3

Thailand Finland

z
4

Thailand Finland

z
5

Thailand Germany

Human Thailand Finland

Fictitious Worlds

We can ask humans to answer the question based 

on the fictitious worlds

53



w w
1

w
2

z
1

Thailand Finland Germany

z
2

Thailand Thailand Germany

z
3

Thailand Finland Thailand

z
4

Thailand Finland Germany

z
5

Thailand Germany Finland

Human Thailand Finland Germany

Fictitious Worlds

We can ask humans to answer the question based 

on the fictitious worlds

54



w w
1

w
2

z
1

Thailand Finland Germany

z
2

Thailand Thailand Germany

z
3

Thailand Finland Thailand

z
4

Thailand Finland Germany

z
5

Thailand Germany Finland

Human Thailand Finland Germany

Fictitious Worlds

We can ask humans to answer the question based 

on the fictitious worlds

55



Fictitious Worlds

▸ Similar to test cases for programs

▸ In practice:
▹ Generate 30 fictitious worlds

▹ Choose a subset of 5 worlds that maximizes the 

expected information gained from the workers' 

answers (Details in the paper)

▹ Ask crowd workers to answer the question based on 

the chosen worlds

56



Fictitious Worlds

Results with “Ideal Worker” (emulate a human by 

executing the gold logical form)

▸ Ruled out 98.3% of spurious logical forms

57

correct

spurious

98.3%



Fictitious Worlds

Results with Actual Workers (Mechanical Turk)

▸ Pruned correct LFs in 20% of examples, many of 

which are due to semantic confusions

58

Name Birth Death

Beethoven 1756 1750

Mozart 1770 1827

Bach 1685 1791

correct

spurious



Fictitious Worlds

Results with Actual Workers (Mechanical Turk)

▸ Pruned correct LFs in 20% of examples, many of 

which are due to semantic confusions

▸ For other examples, could prune out 92.1% of 

spurious logical forms

59

correct

spurious

92.1%

Name Birth Death

Beethoven 1770 1750

Mozart 1756 1827

Bach 1685 1791



Summary

60

Learning 
from ...

Logical Forms Denotations

Size of Logical 
Form Space

Expensive to 
annotate!



Summary

61

Logical Forms Denotations

Low coverage

Size of Logical 
Form Space

Learning 
from ...



Summary

Two techniques to handle larger logical form spaces

Dynamic programming on 
denotations:
Use intermediate denotations 
to control search space

62

R[Time].

R[Time].

R[Time].

Venue.Germany

Position.5th

Index.1

R[Time]. {r
1

}



Summary

Two techniques to handle larger logical form spaces

Dynamic programming on 
denotations:
Use intermediate denotations 
to control search space

Year Venue Position Time

2003 Thailand 1st 53.13

2005 Finland 1st 47.12

2007 Germany 5th 46.62

Fictitious worlds:
Use denotations on mutated 
worlds to detect spurious 
logical forms

argmax on Index

argmax on Time

Finland

Thailand

63

R[Time].

R[Time].

R[Time].

Venue.Germany

Position.5th

Index.1

R[Time]. {r
1

}



Code, data, and reproducible results:

http://tinyurl.com/acl2016-inferring

WikiTableQuestions Dataset:

http://tinyurl.com/wikitablequestions

Thank you!
64

http://tinyurl.com/acl2016-inferring
http://tinyurl.com/acl2016-inferring
http://tinyurl.com/wikitablequestions
http://tinyurl.com/wikitablequestions

