Inferring Logical Forms From Denotations

Ice Pasupat and Percy Liang Stanford University

ACL 2016 Monday, August 8, 2016

Utterance

"Where did the last 1st place finish occur?"

World

Year	Venue	Position	Time
2003	Finland	1st	47.12
2005	Germany	5th	46.62
2007	Thailand	1st	53.13

from WikiTableQuestions dataset (Pasupat & Liang, 2015); simplified

Parse utterances into executable logical forms

"Where did the last 1st place finish occur?" **R**[Venue].argmax(Position.1st, Index)

Year	Venue	Position	Time
2003	Finland	1st	47.12
2005	Germany	5th	46.62
2007	Thailand	1st	53.13

Parse utterances into executable logical forms

"Where did the last 1st place finish occur?"

R[Venue].argmax(Position.1st, Index)

Year	Venue	Position	Time
2003	Finland	1st	47.12
2005	Germany	5th	46.62
2007	Thailand	1st	53.13

Denotation

Parse utterances into executable logical forms

"Where did the last 1st place finish occur?"

R[Venue].argmax(Position.1st, Index)

Year	Venue	Position	Time
2003	Finland	1st	47.12
2005	Germany	5th	46.62
2007	Thailand	1st	53.13

Parse utterances into executable logical forms

"Where did the last 1st place finish occur?" R[Venue].argmax(Position.1st, Index)

Year	Venue	Position	Time
2003	Finland	1st	47.12
2005	Germany	5th	46.62
2007	Thailand	1st	53.13

Parse utterances into executable logical forms

"Where did the last 1st place finish occur?" **R**[Venue].argmax(Position.1st, Index)

Year	Venue	Position	Time
2003	Finland	1st	47.12
2005	Germany	5th	46.62
2007	Thailand	1st	53.13

Setting: Learn a semantic parser from denotations

Training Data

"Where did the last 1st place finish occur?"

Year	Venue	Position	Time
2003	Finland	1st	47.12
2005	Germany	5th	46.62
2007	Thailand	1st	53.13

The logical form is latent!

Thailand

Space of Logical Forms

For each input utterance and world, we can set the space of logical forms that we want the semantic parser to consider

"Where did the last 1st place finish occur?"

Year	Venue	Position	Time
2003	Finland	1st	47.12
2005	Germany	5th	46.62
2007	Thailand	1st	53.13

Restricting the Space of Logical Forms

Restrict which predicates can appear

Only allow certain logical form compositions
F(Values₁) - F(Values₂) → Values
Must have a parallel structure

Restricting the Space of Logical Forms

Restrict which predicates can appear

• Only allow certain logical form compositions $F(Values_1) - F(Values_2) \rightarrow Values$

Must have a parallel structure

- + Easier to learn
- Low coverage

(Pasupat & Liang, 2015)

Expanding the Space of Logical Forms

Less restriction on predicates

"... Germany ..." → Venue.Germany "... German ..." → Venue.Germany

Very generic logical form composition

 $\frac{\operatorname{Set}_1 \operatorname{-} \operatorname{Set}_2 \to \operatorname{Set}}{\operatorname{Anything goes!}}$

(Details in the paper)

+ Higher coverage

Expanding the Space of Logical Forms

Less restriction on predicates

"... Germany ..." → Venue.Germany "... German ..." → Venue.Germany

Very generic logical form composition

 $\operatorname{Set}_1 \operatorname{-} \operatorname{Set}_2 \to \operatorname{Set}$

(Details in the paper)

Anything goes!

- + Higher coverage
- Two new challenges ...

Space of Logical Forms

A semantic parser defines a distribution on logical forms

Consistent Logical Forms

A logical form is consistent if it executes to the target denotation

During training, a semantic parser learns to maximize the probability of consistent logical forms

Consistent Logical Forms

Challenge 1: Identifying this region of consistent logical forms during training = finding needles in a haystack

"Where did the last 1st place finish occur?"

R[Venue].argmax(Position.1st, Index)

Year	Venue	Position	Time
2003	Finland	1st	47.12
2005	Germany	5th	46.62
2007	Thailand	1st	53.13

Sometimes a consistent logical form is spurious: it gets the correct denotation for a wrong reason

"Where did the last 1st place finish occur?"

Â	R [Venue]].argmax	(Position	.1st,]	<u>Time</u>)
---	------------------	----------	-----------	---------	---------------

Year	Venue	Position	Time
2003	Finland	1st	47.12
2005	Germany	5th	46.62
2007	Thailand	1st	53.13

Challenge 2: With the expanded space of logical forms, we get even more spurious logical forms!

"Where did the last 1st place finish occur?"

R[Venue].**R**[Next].Year.avg(**R**[Year].Type.Row)

Year	Venue	Position	Time
2003	Finland	1st	47.12
2005	Germany	5th	46.62
2007	Thailand	1st	53.13

Challenge 2: With the expanded space of logical forms, we get even more spurious logical forms!

 These spurious logical forms can hurt learning since they give misleading signals

Challenge 1: Enumerate Consistent LFs

Given a training example (an utterance, a world, and the target denotation), find all consistent logical forms

Idea: Compose logical forms of increasing sizes then keep the consistent final logical forms

A cell (*c*, *s*) contains logical forms with the same category *c* and "size" *s*

Start from base predicates (size = 0)

For the sake of illustration, assume any cell / column can become a base predicate

Start from base predicates (size = 0) and compose partial logical forms of increasing sizes

To control the search space, we prune cells to a fixed beam size

Finally, collect complete logical forms that execute to the target denotation

(Set, 5)

Only generates a partial list of logical forms → Misses many consistent logical forms

Observation: Many logical forms execute to the same denotation

Index.1 Position.5th

Venue.Germany

Year	Venue	Position	Time
2003	Finland	1st	47.12
2005	Germany	5th	1662
2005	Germany	Jui	40.02

all execute to $\{r_1\}$

If we only care about denotations, these logical forms are interchangeable

R [Time].	Index.1
R[Time].	Position.5th
R [Time].	Venue.Germany

Year	Venue	Position	Time
2003	Finland	1st	47.12
2005	Germany	5th	46.62
2007	Thailand	1st	53.13

all execute to {46.62}

So if we collapse them into one "meta" logical form, the search space will be reduced

Year	Venue	Position	Time
2003	Finland	1st	47.12
2005	Germany	5th	46.62
2007	Thailand	1st	53.13

executes to {46.62}

So if we collapse them into one "meta" logical form, the search space will be reduced a lot!

Step 1: Build a parse chart leading to the target denotation

Step 2: Retrieve actual logical forms

Step 1: Build a parse chart to the target denotation

- Group logical forms based on denotations
- Each cell becomes (category, size, denotation)

Step 1: Build a parse chart to the target denotation

- Group logical forms based on denotations
- Each cell becomes (category, size, denotation)

Step 1: Build a parse chart to the target denotation

 Since we only care about denotations, we can collapse logical forms in each cell

Step 1: Build a parse chart to the target denotation

 Since we only care about denotations, we can collapse logical forms in each cell

___, __, {Thailand})

Remove paths that do not lead to the target denotation Reduced from \approx 153,000 cells to \approx 2,000 cells (99% reduction!)

Step 2: To get the actual logical forms, uncollapse the "meta" logical forms by following the backpointers

We have eliminated a lot of cells, so it is possible to exhaustively enumerate logical forms along the remaining paths up to a certain logical form size (in most cases)

all logical forms

consistent = DPD

Experiment: For each of 300 examples:

- Annotate the example with a gold logical form (consistent and correct)
- Test whether the algorithm can generate the gold logical form

★ Dynamic programming on denotations

Uninitialized beam search

- ★ Dynamic programming on denotations
 - Uninitialized beam search
 - Initialized beam search

Challenge 1: Enumerate Consistent LFs

Given a training example (an utterance, a world, and the target denotation), find all consistent logical forms

Thailand

Challenge 2: Prune Spurious LFs

Given the set of consistent logical forms (Task 1), prune out spurious logical forms

Challenge 2: Prune Spurious LFs

Given the set of consistent logical forms (Task 1), prune out spurious logical forms

"Where did the last 1st place finish occur?"

Year	Venue	Position	Time
2003	Finland	1st	47.12
2005	Germany	5th	46.62
2007	Thailand	1st	53.13

Intuition: Correct logical forms should give a correct denotation when the world slightly changes

"Where did the last 1st place finish occur?"

Keep sorted	Year	Venue	Position	Т	ime	Resa	mple
columns	2003	Thailand	1st	5	3.13	cells in	n other
sorteu	2005	Finland	1st	4	7.12	colu	imns
	2007	Germany	5th	4	6.62		
R [Venue].argmax(Position.1st, Index) Finland							
R [Venue].argmax(Position.1st, Time) Thailand					1		

Generate fictitious worlds and execute the logical forms on them

W

- z₁ Thailand
- z₂ Thailand
- z₃ Thailand
- z₄ Thailand
- z₅ Thailand

 w_1

Generate fictitious worlds and execute the logical forms on them

w			
<i>Z</i> ₁	Thailand		
<i>Z</i> 2	Thailand		
<i>Z</i> ₃	Thailand		
<i>Z</i> ₄	Thailand		
<i>Z</i> ₅	Thailand		

Generate fictitious worlds and execute the logical forms on them

	w	w_{1}
<i>Z</i> ₁	Thailand	Finland
<i>Z</i> ₂	Thailand	Thailand
<i>Z</i> ₃	Thailand	Finland
<i>Z</i> ₄	Thailand	Finland
Z_5	Thailand	Germany

	w	w_{1}
Z_1	Thailand	Finland
Z_2	Thailand	Thailand
Z ₃	Thailand	Finland
Z_4	Thailand	Finland
Z_5	Thailand	Germany
Human	Thailand	Finland

	w	w_{1}
z_1	Thailand	Finland
	Thailand	Thailand
Z_3	Thailand	Finland
Z_4	Thailand	Finland
	Thailand	Germany
Human	Thailand	Finland

	w	w_{1}	w_2
z_1	Thailand	Finland	Germany
	Thailand	Thailand	Germany
	Thailand	Finland	Thailand
Z_4	Thailand	Finland	Germany
	Thailand	Germany	Finland
Human	Thailand	Finland	Germany

	w	w_{1}	w_2
$\bigcirc z_1$	Thailand	Finland	Germany
	Thailand	Thailand	Germany
	Thailand	Finland	Thailand
$\bigcirc z_4$	Thailand	Finland	Germany
	Thailand	Germany	Finland
Human	Thailand	Finland	Germany

- Similar to test cases for programs
- In practice:
 - Generate 30 fictitious worlds
 - Choose a subset of 5 worlds that maximizes the expected information gained from the workers' answers (Details in the paper)
 - Ask crowd workers to answer the question based on the chosen worlds

Results with "Ideal Worker" (emulate a human by executing the gold logical form)

Ruled out 98.3% of spurious logical forms

correct

Results with Actual Workers (Mechanical Turk)

 Pruned correct LFs in 20% of examples, many of which are due to semantic confusions

Name	Birth	Death
Beethoven	1756	1750
Mozart	1770	1827
Bach	1685	1791

Results with Actual Workers (Mechanical Turk)

- Pruned correct LFs in 20% of examples, many of which are due to semantic confusions
- For other examples, could prune out 92.1% of spurious logical forms

Name	Birth	Death
Beethoven	1770	1750
Mozart	1756	1827
Bach	1685	1791

correct

Two techniques to handle larger logical form spaces

Dynamic programming on denotations:

Use intermediate denotations to control search space

Two techniques to handle larger logical form spaces

Dynamic programming on denotations:

Use intermediate denotations to control search space

Year	Venue	Position	Time
2003	Thailand	1st	53.13
2005	Finland	1st	47.12
2007	Germany	5th	46.62

Fictitious worlds:

Use denotations on mutated worlds to detect spurious logical forms

Code, data, and reproducible results:

CdaLab

http://tinyurl.com/acl2016-inferring

WikiTableQuestions Dataset:

http://tinyurl.com/wikitablequestions

Thank you!