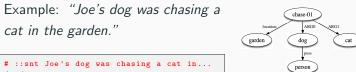
CALAMR: Component ALignment for Abstract Meaning Representation

Paul Landes, Barbara Di Eugenio Department of Computer Science University of Illinois Chicago {plande2, bdieugen}@uic.edu

Method

Scoring

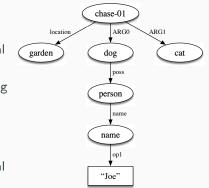

- Novel approach to aligning abstract meaning representation (AMR) graphs.
- New summarization based scoring methods for similarity of AMR subgraphs composed of one or more sentences.
- The entire reusable source code to reproduce our results.

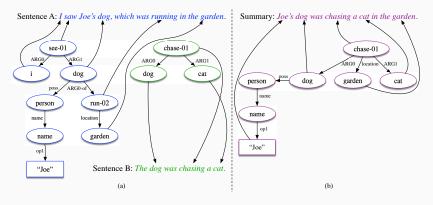
Method

Scoring

AMR captures "who is doing what to whom" as semantic representation language that describes the abstract meaning of a sentence¹.

Penman Notation Directed Acyclic Graph ¹Banarescu et al., "Abstract Meaning Representation for Sembanking" 2013 [1]


Propbank


PropBank²: verb database of word senses.

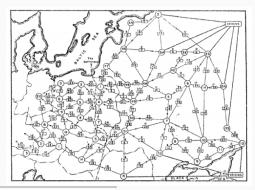
- Roleset: chase-01
- Role 0 (ARGO)
 - Description: follower
 - Function: prototypical agent
 - Concept instance: dog
- Role 1 (ARG1)
 - Description: thing followed
 - Function: prototypical patient
 - Concept instance: cat

²Kingsbury et al., "From TreeBank to PropBank" 2002 [5]

Example taken from Liu et al. 2015^3 .

³Liu et al., "Toward Abstractive Summarization Using Semantic Representations" 2015 [7]

What is a flow network?


 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ a flow network is a graph $f:\mathcal{E}
ightarrow \mathbb{R}$ a s-t flow that assigns a flow $\forall e \in \mathcal{E}, 0 \leq f(e) \leq c_e$ capacity constraint $orall v, \in \mathcal{V} \ \sum f(e) = \sum f(e)$ conservation of flow constraint e into v e leaving v

b

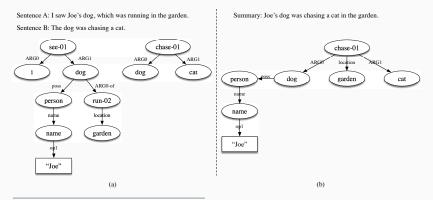
Flow Network Origins

- 1. 1930: A. N. Tolstoĭ on Soviet railroad planning⁴
- 2. 1962: Ford-Fulkerson max-cut min-flow algorithm⁵

⁴Schrijver, "On the History of the Transportation and Maximum Flow Problems" 2002 [8]
⁵Ford et al., "Flows in Networks" 1962 [3]

Method

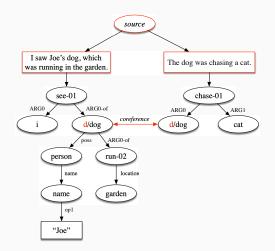
Scoring



"Graph component alignment": the process of connecting two separate components together as a connected bipartite graph.

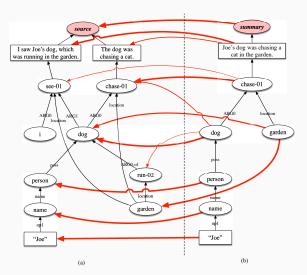
Create AMRs

Human annotated AMR graphs from the "proxy report" used⁶.



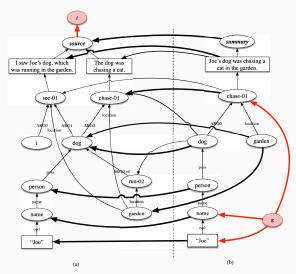
⁶Knight et al., *Abstract Meaning Representation (AMR) Annotation Release* 3.0 2021 [6]

Create Graph Components


Create source and summary components.

Add Alignment Edges

Connect the source and summary components as a bipartite graph.



14

Finalize the Flow Network

Add source and sink flow network nodes.

Compute alignment edge capacities by:

- 1. Attach graph embeddings from text-to-graph tokens and PropBank on concept verb nodes.
- 2. Compute and set alignment edge capacities.
- 3. Run the max flow algorithm.
- 4. Normalize flow-per-node.
- 5. Clamp and remove low flow alignment edges.
- 6. Go to step 3 until convergence: flow remains static.

Where do alignment edge capacities come from?

- Local:
 - PropBank entries
 - Text-to-graph alignment tokens
 - Sentence dampening
- Global:
 - Max flow algorithm
 - Subtree capacity constriction

Method

Scoring

Our flow network once again: $\mathcal{G}=(\mathcal{V},\,\mathcal{E})$

$$\forall v, \in \mathcal{V} \sum_{e \text{ into } v} f(e) = \sum_{e \text{ leaving } v} f(e)$$
(1)
$$\forall e, \in \mathcal{E}, 0 \le f(e) \le c_e, \ v(f) \triangleq f^{\text{out}}(s)$$
(2)

Using Equation 2, the value of flow exiting the source node to the sink is $C_{fc} \triangleq f^{out}(s_{source})$.

The value of flow exiting the summary node to the sink is $C_{fy} \triangleq f^{out}(s_{summary}).$

Aggregate flow:

$$C_f = 2 rac{C_{fc} \cdot C_{fy}}{C_{fc} + C_{fy}}$$

Aggregate alignment portion:

$$\widetilde{\mathbf{C}} = 2 \frac{\widetilde{\mathbf{C}}_{\mathbf{c}} \cdot \widetilde{\mathbf{C}}_{\mathbf{y}}}{\widetilde{\mathbf{C}}_{\mathbf{c}} + \widetilde{\mathbf{C}}_{\mathbf{y}}}$$

Method

Scoring

Scoring matched vs. mismatch corpus.

Corpus	С _у	Ĉ₀	C _{fy}	C _{fc}
Proxy report	86.6%	43.2%	7.21	0.67
Mismatch	35.1%	14.6%	2.61	0.2

AMR Sentence Pearson correlations (ρ) between aggregate alignment portion (\widetilde{C})ALAMR and previous scoring methods (S)MATCH and (W)LK.

Corpus	Parser	$ ho \widetilde{C}, \mathrm{S}$	$ ho \widetilde{C}, \mathrm{W}$
Biomedical	Gsii	41.2	31.8
Biomedical	Jamr	66.2	65.2
Biomedical	Spring	50.1	41.3
Little prince	Gsii	38.8	35.7
Little prince	Jamr	67.7	69.2
Little prince	Spring	41.3	47.1
Proxy report	Gsii	22.9	30.8
Proxy report	Jamr	53.2	56.2
Proxy report	Spring	37.3	48.2

Unigram (bag of words) aligned source to summary overlap of text-to-graph tokens.

Method	Precision	Recall	F1
Liu et al. [7]	51.9%	39.0%	44.3%
Dohare et al. [2]	52.4%	55.7%	51.3%
Fu et al. [4]	-	-	49.1%
CALAMR	69.0%	68.6%	68.8%

References

- Laura Banarescu et al. "Abstract Meaning Representation for Sembanking". In: Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse. Sofia, Bulgaria: Association for Computational Linguistics, Aug. 2013, pp. 178–186 (cit. on p. 5).
- Shibhansh Dohare, Harish Karnick, and Vivek Gupta. Text Summarization Using Abstract Meaning Representation. 2017. URL: http://arxiv.org/abs/1706.01678. preprint (cit. on p. 24).
- [3] Lester Randolph Ford and Delbert Ray Fulkerson. "Flows in Networks". In: Flows in Networks. Princeton Landmarks in Mathematics and Physics. Princeton University Press, 1962, p. 212. ISBN: 978-0-691-65184-2 (cit. on p. 9).
- [4] Qiankun Fu et al. "End-to-End AMR Coreference Resolution". In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). ACL-IJCNLP 2021. Online: Association for Computational Linguistics, Aug. 2021, pp. 4204–4214. DOI: 10.18653/v1/2021.acl-long.324 (cit. on p. 24).

References (cont.)

- [5] Paul Kingsbury and Martha Palmer. "From TreeBank to PropBank". In: Proceedings of the Third International Conference on Language Resources and Evaluation (LREC'02). LREC 2002. Las Palmas, Canary Islands - Spain: European Language Resources Association (ELRA), May 2002 (cit. on p. 6).
- [6] Kevin Knight et al. Abstract Meaning Representation (AMR) Annotation Release 3.0. Abacus Data Network, Sept. 3, 2021. DOI: 10.35111/44cy-bp51 (cit. on p. 12).
- [7] Fei Liu et al. "Toward Abstractive Summarization Using Semantic Representations". In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Denver, Colorado: Association for Computational Linguistics, 2015, pp. 1077–1086. DOI: 10.3115/v1/N15–1114 (cit. on pp. 7, 24).
- [8] Alexander Schrijver. "On the History of the Transportation and Maximum Flow Problems". In: Mathematical Programming 91.3 (Feb. 1, 2002), pp. 437–445. ISSN: 1436-4646. DOI: 10.1007/s101070100259 (cit. on p. 9).