
CALAMR: Component ALignment for Abstract Meaning
Representation

Implementation and Supplementary Guide

Paul Landes

1 Introduction

igraph.Graph

GraphComponent

<<has>>

DocumentGraph
Component

1

DocumentGraph

children n

1

FlowDocumentGraph
FlowDocumentGraph

Component

2

1 2

Figure 1: Class diagram. The graph component
class hierarchy.

This document explains some of the implementa-
tion details of CALAMR. The API documentation is
complete, but does not provide a high level guide
to some aspects of the code base that are less
than straightforward.

2 Graphs

The treatment of graphs is somewhat involved.
There is s class structure with a more complex
instance structure. We used igraph1 for its push-
relabel max flow algorithm [3], and for this reason,
all graph operations and data structures use this
module. The base class GraphComponent is the
super class for all graph classes and has an in-
stance of an igraph.

An instance of a DocumentGraph that rep-
resents the entire document to be aligned is
passed between components to be aligned and
inherits from GraphComponent to manage the
source and summary components as a bipartite
graph. However, it also maintains the discon-
nected source and summary graphs as instances
of DocumentGraphComponent as shown by the has a arrow with “1” to “2” as shown in Figure 1. This
makes it easy read the source and summary as individual graphs, such as alignment method iteration
methods involving capacity tightening, alignment edge removals, etc.

Initially, an AmrFeatureDocument is either read from human annotations or parsed with an abstract
meaning representation (AMR) parser such as Symmetric PaRsIng aNd Generation (SPRING) [1]. The

1https://igraph.org

https://igraph.org
https://zensols.com:22443/site/apidoc/calamr/api/zensols.calamr.html#zensols.calamr.comp.GraphComponent
https://zensols.com:22443/site/apidoc/calamr/api/zensols.calamr.html#zensols.calamr.doc.DocumentGraph
https://zensols.com:22443/site/apidoc/calamr/api/zensols.calamr.html#zensols.calamr.comp.GraphComponent
https://zensols.com:22443/site/apidoc/calamr/api/zensols.calamr.html#zensols.calamr.dcomp.DocumentGraphComponent
https://zensols.com:22443/site/apidoc/amr/api/zensols.amr.html#zensols.amr.container.AmrFeatureDocument
https://igraph.org


AmrFeatureDocument has both the natural language features and the AMR graph. It is then given to
the framework and used to create the nascent graph, which only has the disconnected components
without alignments.

igraph.Graph

DocumentGraphComponent

DocumentGraphAligner

_graph _graph

DocumentGraphComponent

components (source) components (summary)

_graph

DocumentGraph

<<populates>>

FlowDocumentGraph FlowDocumentGraph

FlowDocumentGraph
Component

FlowDocumentGraph
Component

FlowDocumentGraph
Component

FlowDocumentGraph
Component

components 
(source)

components 
(summary)

components 
(source)

components 
(summary)

children 
(reversed_source)

children 
(reversed_summary)

_graph _graph

igraph.Graph igraph.Graph

_graph _graph

_graph
_graph

FlowGraphResult

doc_graph

<<creates>>

Figure 2: Instance diagram. The graph components in memory. The blue classes make up the
nascent graph, the green make up the summary flow graph and the purple make up the source
flow graph.

The first algorithm step implemented by the DocumentGraphController component clones the
nascent graph. This object will be connected as a bipartite graph and will become the flow network.
This clones the DocumentGraph as a FlowDocumentGraph and each DocumentGraphComponent as
FlowDocumentGraphComponent instances. The FlowDocumentGraph clone with flow from the source to
the summary and another for the summary to the source are then made children of the DocumentGraph
following the GoF [2] composite pattern given in Figure 1 with the children self reference. After this step
is complete, these classes and their respective igraph graphs are shown in Figure 2.

The FlowDocumentGraph children of DocumentGraph have the same structure of components
as the nascent graph. Once these classes are created, terminal nodes are added to the
FlowDocumentGraph and the max flow algorithm is run. Afterward, flow values assigned on all edge
in the FlowDocumentGraph and FlowDocumentGraphComponent components. It is imporant to un-
derstand that all edges and nodes extend from GraphAttribute and are shared between all igraph
instances. This means the flow values and capacities are the same across all graphs, including the
nascent graph.

The flow graph children of the nascent graph will have the alignments, which is created by
DocumentGraphAligner as a FlowGraphResult. The naming of the children are reversed_source
and reversed_summary since the edges are reversed in each flow graph. Each are flow networks with
reversed_source having the flow from the summary to the source and reversed_source having the

March 16, 2024
University of Illinois Chicago

Page 2
Proprietary and Confidential

https://zensols.com:22443/site/apidoc/amr/api/zensols.amr.html#zensols.amr.container.AmrFeatureDocument
https://zensols.com:22443/site/apidoc/calamr/api/zensols.calamr.html#zensols.calamr.aligner.DocumentGraphController
https://zensols.com:22443/site/apidoc/calamr/api/zensols.calamr.html#zensols.calamr.doc.DocumentGraph
https://zensols.com:22443/site/apidoc/calamr/api/zensols.calamr.html#zensols.calamr.flow.FlowDocumentGraph
https://zensols.com:22443/site/apidoc/calamr/api/zensols.calamr.html#zensols.calamr.dcomp.DocumentGraphComponent
https://zensols.com:22443/site/apidoc/calamr/api/zensols.calamr.html#zensols.calamr.flow.FlowDocumentGraphComponent
https://zensols.com:22443/site/apidoc/calamr/api/zensols.calamr.html#zensols.calamr.flow.FlowDocumentGraph
https://zensols.com:22443/site/apidoc/calamr/api/zensols.calamr.html#zensols.calamr.doc.DocumentGraph
https://zensols.com:22443/site/apidoc/calamr/api/zensols.calamr.html#zensols.calamr.flow.FlowDocumentGraph
https://zensols.com:22443/site/apidoc/calamr/api/zensols.calamr.html#zensols.calamr.doc.DocumentGraph
https://zensols.com:22443/site/apidoc/calamr/api/zensols.calamr.html#zensols.calamr.flow.FlowDocumentGraph
https://zensols.com:22443/site/apidoc/calamr/api/zensols.calamr.html#zensols.calamr.flow.FlowDocumentGraph
https://zensols.com:22443/site/apidoc/calamr/api/zensols.calamr.html#zensols.calamr.flow.FlowDocumentGraphComponent
https://zensols.com:22443/site/apidoc/calamr/api/zensols.calamr.html#zensols.calamr.domain.GraphAttribute
https://zensols.com:22443/site/apidoc/calamr/api/zensols.calamr.html#zensols.calamr.aligner.DocumentGraphAligner
https://zensols.com:22443/site/apidoc/calamr/api/zensols.calamr.html#zensols.calamr.flow.FlowGraphResult


flow from the source to the summary.
FlowGraphResult if a container class for flow document results, which include the detailed data

as dictionaries of statistics. The data dictionaries and statistics are created by the source compo-
nent of the reversed_source flow graph and the reversed_summary of the summary component.
It work out this way since each flow graph one component has the source feeding into infinity ca-
pacity edges, which is used to facilitate the flow on the other component that yields useful val-
ues. Before the graph building algorithm is complete, the source graph flow values are saved with
SnapshotDocumentGraphController, then restored since they are overwritten by the final summary
graph iteration. For this reason, the final flow graphs have the useful flow information from their respec-
tive run of the max flow algorithm.

Abbreviations

SPRING Symmetric PaRsIng aNd Generation p. 1

Definitions

AMR (abstract meaning representation) A semantic representation language that describes the ab-
stract meaning of a sentence as a directed acyclic graph or a context free notation of Penman.
p. 1

CALAMR (Component ALignment for Abstract Meaning Representation) An Abstract Meaning Repre-
sentation Alignment Method p. 1

flow network A graph, or capacitance network, that associates a capacity and a flow with each edge
of a graph. p. 2

max flow The maximum amount of flow available to traverse an s-t flow network given the capacities
of the network. p. 1

nascent graph The initial graph with disconnected source and summary components. p. 2

References

[1] Michele Bevilacqua, Rexhina Blloshmi, and Roberto Navigli. “One SPRING to Rule Them Both:
Symmetric AMR Semantic Parsing and Generation without a Complex Pipeline”. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 35. 14. Virtual, May 18, 2021, pp. 12564–
12573 (cit. on p. 1).

[2] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software. 1st ed.
Addison-Wesley Professional, 1994. ISBN: 0-201-63361-2 (cit. on p. 2).

[3] Andrew V. Goldberg and Robert E. Tarjan. “A New Approach to the Maximum-Flow Problem”. In:
Journal of the ACM 35.4 (Oct. 1, 1988), pp. 921–940. ISSN: 0004-5411. DOI: 10.1145/48014.
61051 (cit. on p. 1).

March 16, 2024
University of Illinois Chicago

Page 3
Proprietary and Confidential

https://zensols.com:22443/site/apidoc/calamr/api/zensols.calamr.html#zensols.calamr.flow.FlowGraphResult
https://zensols.com:22443/site/apidoc/calamr/api/zensols.calamr.html#zensols.calamr.ctrl.SnapshotDocumentGraphController
https://doi.org/10.1145/48014.61051
https://doi.org/10.1145/48014.61051

	Introduction
	Graphs

