Abstract
Categorization and memory for specific items are fundamental processes that allow us to apply knowledge to novel stimuli. This study directly compares categorization and memory using delay match to category (DMC) and delay match to sample (DMS) tasks. In DMC participants view and categorize a stimulus, maintain the category across a delay, and at the probe phase view another stimulus and indicate whether it is in the same category or not. In DMS, a standard item working memory task, participants encode and maintain a specific individual item, and at probe decide if the stimulus is an exact match or not. Constrained Principal Components Analysis was used to identify and compare activity within neural networks associated with these tasks, and we relate these networks to those that have been identified with resting state-fMRI. We found that two frontoparietal networks of particular interest. The first network included regions associated with the dorsal attention network and frontoparietal salience network; this network showed patterns of activity consistent with a role in rapid orienting to and processing of complex stimuli. The second uniquely involved regions of the frontoparietal central executive network; this network responded more slowly following each stimulus and showed a pattern of activity consistent with a general role in role in decision-making across tasks. Additional components were identified that were associated with visual, somatomotor and default mode networks