Switch to: References

Add citations

You must login to add citations.
  1. Executability and Connexivity in an Interpretation of Griss.Thomas M. Ferguson - 2023 - Studia Logica 112 (1):459-509.
    Although the work of G.F.C. Griss is commonly understood as a program of negationless mathematics, close examination of Griss’s work suggests a more fundamental feature is its executability, a requirement that mental constructions are possible only if corresponding mental activity can be actively carried out. Emphasizing executability reveals that Griss’s arguments against negation leave open several types of negation—including D. Nelson’s strong negation—as compatible with Griss’s intuitionism. Reinterpreting Griss’s program as one of executable mathematics, we iteratively develop a pair of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Provable Contradictions of the Connexive Logics C and C3.Satoru Niki & Heinrich Wansing - 2023 - Journal of Philosophical Logic 52 (5):1355-1383.
    Despite the tendency to be otherwise, some non-classical logics are known to validate formulas that are invalid in classical logic. A subclass of such systems even possesses pairs of a formula and its negation as theorems, without becoming trivial. How should these provable contradictions be understood? The present paper aims to shed light on aspects of this phenomenon by taking as samples the constructive connexive logic C, which is obtained by a simple modification of a system of constructible falsity, namely (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Connexive Implications in Substructural Logics.Davide Fazio & Gavin St John - 2024 - Review of Symbolic Logic 17 (3):878-909.
    This paper is devoted to the investigation of term-definable connexive implications in substructural logics with exchange and, on the semantical perspective, in sub-varieties of commutative residuated lattices (FL ${}_{\scriptsize\mbox{e}}$ -algebras). In particular, we inquire into sufficient and necessary conditions under which generalizations of the connexive implication-like operation defined in [6] for Heyting algebras still satisfy connexive theses. It will turn out that, in most cases, connexive principles are equivalent to the equational Glivenko property with respect to Boolean algebras. Furthermore, we (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations