Switch to: References

Add citations

You must login to add citations.
  1. On Probabilities in Biology and Physics.Joseph Berkovitz & Philippe Huneman - 2015 - Erkenntnis 80 (S3):433-456.
    This volume focuses on various questions concerning the interpretation of probability and probabilistic reasoning in biology and physics. It is inspired by the idea that philosophers of biology and philosophers of physics who work on the foundations of their disciplines encounter similar questions and problems concerning the role and application of probability, and that interaction between the two communities will be both interesting and fruitful. In this introduction we present the background to the main questions that the volume focuses on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Pluralists about Pluralism? Versions of Explanatory Pluralism in Psychiatry.Jeroen Van Bouwel - 2014 - In Thomas Uebel (ed.), New Directions in the Philosophy of Science. Cham: Springer. pp. 105-119.
    In this contribution, I comment on Raffaella Campaner’s defense of explanatory pluralism in psychiatry (in this volume). In her paper, Campaner focuses primarily on explanatory pluralism in contrast to explanatory reductionism. Furthermore, she distinguishes between pluralists who consider pluralism to be a temporary state on the one hand and pluralists who consider it to be a persisting state on the other hand. I suggest that it would be helpful to distinguish more than those two versions of pluralism – different understandings (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Interpreting Heisenberg interpreting quantum states.Simon Friederich - 2012 - Philosophia Naturalis 50 (1):85-114.
    The paper investigates possible readings of the later Heisenberg's remarks on the nature of quantum states. It discusses, in particular, whether Heisenberg should be seen as a proponent of the epistemic conception of states – the view that quantum states are not descriptions of quantum systems but rather reflect the state assigning observers' epistemic relations to these systems. On the one hand, it seems plausible that Heisenberg subscribes to that view, given how he defends the notorious "collapse of the wave (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Quantum Locality.Robert B. Griffiths - 2011 - Foundations of Physics 41 (4):705-733.
    It is argued that while quantum mechanics contains nonlocal or entangled states, the instantaneous or nonlocal influences sometimes thought to be present due to violations of Bell inequalities in fact arise from mistaken attempts to apply classical concepts and introduce probabilities in a manner inconsistent with the Hilbert space structure of standard quantum mechanics. Instead, Einstein locality is a valid quantum principle: objective properties of individual quantum systems do not change when something is done to another noninteracting system. There is (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Einstein, Incompleteness, and the Epistemic View of Quantum States.Nicholas Harrigan & Robert W. Spekkens - 2010 - Foundations of Physics 40 (2):125-157.
    Does the quantum state represent reality or our knowledge of reality? In making this distinction precise, we are led to a novel classification of hidden variable models of quantum theory. We show that representatives of each class can be found among existing constructions for two-dimensional Hilbert spaces. Our approach also provides a fruitful new perspective on arguments for the nonlocality and incompleteness of quantum theory. Specifically, we show that for models wherein the quantum state has the status of something real, (...)
    Download  
     
    Export citation  
     
    Bookmark   85 citations  
  • How to spell out the epistemic conception of quantum states.Simon Friederich - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (3):149-157.
    The paper investigates the epistemic conception of quantum states---the view that quantum states are not descriptions of quantum systems but rather reflect the assigning agents' epistemic relations to the systems. This idea, which can be found already in the works of Copenhagen adherents Heisenberg and Peierls, has received increasing attention in recent years because it promises an understanding of quantum theory in which neither the measurement problem nor a conflict between quantum non-locality and relativity theory arises. Here it is argued (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford, GB: Oxford University Press. pp. 115-142.
    Entropy is ubiquitous in physics, and it plays important roles in numerous other disciplines ranging from logic and statistics to biology and economics. However, a closer look reveals a complicated picture: entropy is defined differently in different contexts, and even within the same domain different notions of entropy are at work. Some of these are defined in terms of probabilities, others are not. The aim of this chapter is to arrive at an understanding of some of the most important notions (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Quantum bayesianism: A study.Christopher Gordon Timpson - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (3):579-609.
    The Bayesian approach to quantum mechanics of Caves, Fuchs and Schack is presented. Its conjunction of realism about physics along with anti-realism about much of the structure of quantum theory is elaborated; and the position defended from common objections: that it is solipsist; that it is too instrumentalist; that it cannot deal with Wigner's friend scenarios. Three more substantive problems are raised: Can a reasonable ontology be found for the approach? Can it account for explanation in quantum theory? Are subjective (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Is the Reality Criterion Analytic?Florian J. Boge & David Glick - 2021 - Erkenntnis 86 (6):1445-1451.
    Tim Maudlin has claimed that EPR’s Reality Criterion is analytically true. We argue that it is not. Moreover, one may be a subjectivist about quantum probabilities without giving up on objective physical reality. Thus, would-be detractors must reject QBism and other epistemic approaches to quantum theory on other grounds.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • QBism and the limits of scientific realism.David Glick - 2021 - European Journal for Philosophy of Science 11 (2):1-19.
    QBism is an agent-centered interpretation of quantum theory. It rejects the notion that quantum theory provides a God’s eye description of reality and claims instead that it imposes constraints on agents’ subjective degrees of belief. QBism’s emphasis on subjective belief has led critics to dismiss it as antirealism or instrumentalism, or even, idealism or solipsism. The aim of this paper is to consider the relation of QBism to scientific realism. I argue that while QBism is an unhappy fit with a (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Respecting One’s Fellow: QBism’s Analysis of Wigner’s Friend.John B. DeBrota, Christopher A. Fuchs & Rüdiger Schack - 2020 - Foundations of Physics 50 (12):1859-1874.
    According to QBism, quantum states, unitary evolutions, and measurement operators are all understood as personal judgments of the agent using the formalism. Meanwhile, quantum measurement outcomes are understood as the personal experiences of the same agent. Wigner’s conundrum of the friend, in which two agents ostensibly have different accounts of whether or not there is a measurement outcome, thus poses no paradox for QBism. Indeed the resolution of Wigner’s original thought experiment was central to the development of QBist thinking. The (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Quantum Revolution in Philosophy.David Wallace - 2020 - Analysis 80 (2):381-388.
    Richard Healey’s The Quantum Revolution in Philosophy is a terrific book, and yet I disagree with nearly all its main substantive conclusions.1 1 The purpose of this review is to say why the book is well worth your time if you have any interest in the interpretation of quantum theory or in the general philosophy of science, and yet why in the end I think Healey’s ambitious project fails to achieve its full goals.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum Information Versus Epistemic Logic: An Analysis of the Frauchiger–Renner Theorem.Florian J. Boge - 2019 - Foundations of Physics 49 (10):1143-1165.
    A recent no-go theorem (Frauchiger and Renner in Nat Commun 9(1):3711, 2018) establishes a contradiction from a specific application of quantum theory to a multi- agent setting. The proof of this theorem relies heavily on notions such as ‘knows’ or ‘is certain that’. This has stimulated an analysis of the theorem by Nurgalieva and del Rio (in: Selinger P, Chiribella G (eds) Proceedings of the 15th international conference on quantum physics and logic (QPL 2018). EPTCS 287, Open Publishing Association, Waterloo, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Quantum Bayesianism Assessed.John Earman - unknown - The Monist 102 (4):403-423.
    The idea that the quantum probabilities are best construed as the personal/subjective degrees of belief of Bayesian agents is an old one. In recent years the idea has been vigorously pursued by a group of physicists who fly the banner of quantum Bayesianism. The present paper aims to identify the prospects and problems of implementing QBism, and it critically assesses the claim that QBism provides a resolution of some of the long-standing foundations issues in quantum mechanics, including the measurement problem (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Ontology of Quantum Field Theory: Structural Realism Vindicated?David Glick - 2016 - Studies in History and Philosophy of Science Part A 59:78-86.
    In this paper I elicit a prediction from structural realism and compare it, not to a historical case, but to a contemporary scientific theory. If structural realism is correct, then we should expect physics to develop theories that fail to provide an ontology of the sort sought by traditional realists. If structure alone is responsible for instrumental success, we should expect surplus ontology to be eliminated. Quantum field theory (QFT) provides the framework for some of the best confirmed theories in (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A Quantum-Bayesian Route to Quantum-State Space.Christopher A. Fuchs & Rüdiger Schack - 2011 - Foundations of Physics 41 (3):345-356.
    In the quantum-Bayesian approach to quantum foundations, a quantum state is viewed as an expression of an agent’s personalist Bayesian degrees of belief, or probabilities, concerning the results of measurements. These probabilities obey the usual probability rules as required by Dutch-book coherence, but quantum mechanics imposes additional constraints upon them. In this paper, we explore the question of deriving the structure of quantum-state space from a set of assumptions in the spirit of quantum Bayesianism. The starting point is the representation (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Parts and wholes. An inquiry into quantum and classical correlations.M. P. Seevinck - unknown
    ** The primary topic of this dissertation is the study of the relationships between parts and wholes as described by particular physical theories, namely generalized probability theories in a quasi-classical physics framework and non-relativistic quantum theory. ** A large part of this dissertation is devoted to understanding different aspects of four different kinds of correlations: local, partially-local, no-signaling and quantum mechanical correlations. Novel characteristics of these correlations have been used to study how they are related and how they can be (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • In defence of non-ontic accounts of quantum states.Simon Friederich - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (2):77-92.
    The paper discusses objections against non-hidden variable versions of the epistemic conception of quantum states—the view that quantum states do not describe the properties of quantum systems but reflect, in some way to be specified, the epistemic conditions of agents assigning them. In the first half of the paper, the main motivation for the epistemic conception of quantum states is sketched, and a version of it is outlined, which combines ideas from an earlier study of it with elements of Richard (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Probabilism for stochastic theories.Jer Steeger - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66:34–44.
    I defend an analog of probabilism that characterizes rationally coherent estimates for chances. Specifically, I demonstrate the following accuracy-dominance result for stochastic theories in the C*-algebraic framework: supposing an assignment of chance values is possible if and only if it is given by a pure state on a given algebra, your estimates for chances avoid accuracy-dominance if and only if they are given by a state on that algebra. When your estimates avoid accuracy-dominance (roughly: when you cannot guarantee that other (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Is Bananaworld nonlocal?Allen Stairs - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:301-309.
    Download  
     
    Export citation  
     
    Bookmark  
  • A loose and separate certainty: Caves, Fuchs and Schack on quantum probability one.Allen Stairs - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (3):158-166.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A remark on Fuchs’ Bayesian interpretation of quantum mechanics.Veiko Palge & Thomas Konrad - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (2):273-287.
    Quantum mechanics is a theory whose foundations spark controversy to this day. Although many attempts to explain the underpinnings of the theory have been made, none has been unanimously accepted as satisfactory. Fuchs has recently claimed that the foundational issues can be resolved by interpreting quantum mechanics in the light of quantum information. The view proposed is that quantum mechanics should be interpreted along the lines of the subjective Bayesian approach to probability theory. The quantum state is not the physical (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Objective Probability and Quantum Fuzziness.U. Mohrhoff - 2009 - Foundations of Physics 39 (2):137-155.
    This paper offers a critique of the Bayesian interpretation of quantum mechanics with particular focus on a paper by Caves, Fuchs, and Schack containing a critique of the “objective preparations view” or OPV. It also aims to carry the discussion beyond the hardened positions of Bayesians and proponents of the OPV. Several claims made by Caves et al. are rebutted, including the claim that different pure states may legitimately be assigned to the same system at the same time, and the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Towards Better Understanding QBism.Andrei Khrennikov - 2018 - Foundations of Science 23 (1):181-195.
    Recently I posted a paper entitled “External observer reflections on QBism”. As any external observer, I was not able to reflect all features of QBism properly. The comments I received from one of QBism’s creators, C. A. Fuchs, were very valuable to me in better understanding the views of QBists. Some of QBism’s features are very delicate and extracting them from articles of QBists is not a simple task. Therefore, I hope that the second portion of my reflections on QBism (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Quantum Causality Relations and the Emergence of Reality from Coherent Superpositions.Holger F. Hofmann - 2020 - Foundations of Physics 50 (12):1809-1823.
    The Hilbert space formalism describes causality as a statistical relation between initial experimental conditions and final measurement outcomes, expressed by the inner products of state vectors representing these conditions. This representation of causality is in fundamental conflict with the classical notion that causality should be expressed in terms of the continuity of intermediate realities. Quantum mechanics essentially replaces this continuity of reality with phase sensitive superpositions, all of which need to interfere in order to produce the correct conditional probabilities for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A No-Go Result for QBism.Shan Gao - 2021 - Foundations of Physics 51 (5):1-6.
    In QBism the wave function does not represent an element of physical reality external to the agent, but represent an agent’s personal probability assignments, reflecting his subjective degrees of belief about the future content of his experience. In this paper, I argue that this view of the wave function is not consistent with protective measurements. The argument does not rely on the realist assumption of the ψ-ontology theorems, namely the existence of the underlying ontic state of a quantum system.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Uncomfortable bedfellows: Objective quantum Bayesianism and the von Neumann–Lüders projection postulate.Armond Duwell - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (3):167-175.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Interview with physicist Christopher Fuchs.Robert P. Crease & James Sares - 2021 - Continental Philosophy Review 54 (4):541-561.
    QBism is an interpretation of quantum mechanics that posits quantum probabilities as subjective Bayesian probabilities, whence its name. By avoiding experientially unfulfilled speculations about what exists prior to measurement, QBism seems to make a close encounter with the phenomenological method. What follows is an interview with QBism’s founder and principal champion, the physicist Christopher Fuchs.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Study on a Possible Darwinian Origin of Quantum Mechanics.C. Baladrón - 2011 - Foundations of Physics 41 (3):389-395.
    A sketchy subquantum theory deeply influenced by Wheeler’s ideas (Am. J. Phys. 51:398–404, 1983) and by the de Broglie-Bohm interpretation (Goldstein in Stanford Encyclopedia of Philosophy, 2006) of quantum mechanics is further analyzed. In this theory a fundamental system is defined as a dual entity formed by bare matter and a methodological probabilistic classical Turing machine. The evolution of the system would be determined by three Darwinian informational regulating principles. Some progress in the derivation of the postulates of quantum mechanics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Information, immaterialism, instrumentalism: Old and new in quantum information.Christopher G. Timpson - 2010 - In Alisa Bokulich & Gregg Jaeger (eds.), Philosophy of quantum information and entanglement. New York: Cambridge University Press. pp. 208--227.
    Download  
     
    Export citation  
     
    Bookmark   12 citations