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Introductory Note 

This sixth volume of Collected Papers includes 74 papers comprising 974 pages on (theoretic and 
applied) neutrosophics, written between 2015-2021 by the author alone or in collaboration with the following 121 
co-authors from 19 countries: Mohamed Abdel-Basset, Abdel Nasser H. Zaied, Abduallah Gamal, Amir 
Abdullah, Firoz Ahmad, Nadeem Ahmad, Ahmad Yusuf Adhami, Ahmed Aboelfetouh, Ahmed Mostafa Khalil, 
Shariful Alam, W. Alharbi, Ali Hassan, Mumtaz Ali, Amira S. Ashour, Asmaa Atef, Assia Bakali, Ayoub 
Bahnasse, A. A. Azzam, Willem K.M. Brauers, Bui Cong Cuong, Fausto Cavallaro, Ahmet Çevik, Robby I. 
Chandra, Kalaivani Chandran, Victor Chang, Chang Su Kim, Jyotir Moy Chatterjee, Victor Christianto, Chunxin 
Bo, Mihaela Colhon, Shyamal Dalapati, Arindam Dey, Dunqian Cao, Fahad Alsharari, Faruk Karaaslan, 
Aleksandra Fedajev, Daniela Gîfu, Hina Gulzar, Haitham A. El-Ghareeb, Masooma Raza Hashmi, Hewayda El-
Ghawalby, Hoang Viet Long, Le Hoang Son, F. Nirmala Irudayam, Branislav Ivanov, S. Jafari, Jeong Gon Lee, 
Milena Jevtić, Sudan Jha, Junhui Kim, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, 
Songül Karabatak, Abdullah Kargın, M. Karthika, Ieva Meidute-Kavaliauskiene, Madad Khan, Majid Khan, 
Manju Khari, Kifayat Ullah, K. Kishore, Kul Hur, Santanu Kumar Patro, Prem Kumar Singh, Raghvendra Kumar, 
Tapan Kumar Roy, Malayalan Lathamaheswari, Luu Quoc Dat, T. Madhumathi, Tahir Mahmood, Mladjan 
Maksimovic, Gunasekaran Manogaran, Nivetha Martin, M. Kasi Mayan, Mai Mohamed, Mohamed Talea, 
Muhammad Akram, Muhammad Gulistan, Raja Muhammad Hashim, Muhammad Riaz, Muhammad Saeed, Rana 
Muhammad Zulqarnain, Nada A. Nabeeh, Deivanayagampillai Nagarajan, Xenia Negrea, Nguyen Xuan Thao, 
Jagan M. Obbineni, Angelo de Oliveira, M. Parimala, Gabrijela Popovic, Ishaani Priyadarshini, Yaser Saber, 
Mehmet Șahin, Said Broumi, A. A. Salama, M. Saleh, Ganeshsree Selvachandran, Dönüș Șengür, Shio Gai Quek, 
Songtao Shao, Dragiša Stanujkić, Surapati Pramanik, Swathi Sundari Sundaramoorthy, Mirela Teodorescu, 
Selçuk Topal, Muhammed Turhan, Alptekin Ulutaș, Luige Vlădăreanu, Victor Vlădăreanu, Ştefan Vlăduţescu, 
Dan Valeriu Voinea, Volkan Duran, Navneet Yadav, Yanhui Guo, Naveed Yaqoob, Yongquan Zhou, Young Bae 
Jun, Xiaohong Zhang, Xiao Long Xin, Edmundas Kazimieras Zavadskas.
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Florentin Smarandache’s Collected Papers series: 

Collected Papers, Vol. I  
(first edition 1996, second edition 2007) 
Free download: http://fs.unm.edu/CP1.pdf 

Collected Papers, Vol. II  
(Chişinău, Moldova, 1997) 
Free download: http://fs.unm.edu/CP2.pdf 

Collected Papers, Vol. III  
(Oradea, Romania, 2000) 
Free download: http://fs.unm.edu/CP3.pdf 

Collected Papers, Vol. IV (100 Collected Papers of Sciences). 
Multispace & Multistructure. Neutrosophic Transdisciplinarity 
(Hanko, Finland, 2010) 
Free download: http://fs.unm.edu/MultispaceMultistructure.pdf 

Collected Papers, Vol. V: Papers of Mathematics or Applied mathematics 
(Brussels, Belgium, 2014) 
Free download: http://fs.unm.edu/CP5.pdf 
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Abstract 

In this paper, we introduce for the first time the notions of Neutrosophic Axiom, 

Neutrosophic Axiomatic System, Neutrosophic Deducibility and Neutrosophic 

Inference, Neutrosophic Proof, Neutrosophic Tautologies, Neutrosophic Quantifiers, 

Neutrosophic Propositional Logic, Neutrosophic Axiomatic Space, Degree of 

Contradiction (Dissimilarity) of Two Neutrosophic Axioms, and Neutrosophic 

Model. A class of neutrosophic implications is also introduced. A comparison 

between these innovatory neutrosophic notions and their corresponding classical 

notions is made. Then, three concrete examples of neutrosophic axiomatic systems, 

describing the same neutrosophic geometrical model, are presented at the end of 

the paper. 

Keywords 
Neutrosophic logic, Neutrosophic Axiom, Neutrosophic Deducibility, Neutrosophic 

Inference, Neutrosophic Proof, Neutrosophic Tautologies, Neutrosophic Quantifiers, 

Neutrosophic Propositional Logic, Neutrosophic Axiomatic Space. 

1 Neutrosophic Axiom 

A neutrosophic axiom or neutrosophic postulate (α) is a partial premise, which 

is t% true (degree of truth), i% indeterminate (degree of indeterminacy), and 

f% false (degree of falsehood), where <t, i, f> are standard or nonstandard 

subsets included in the non-standard unit interval ]-0, 1+[.  

The non-standard subsets and non-standard unit interval are mostly used in 

philosophy in cases where one needs to make distinction between “absolute 

truth” (which is a truth in all possible worlds) and “relative truth” (which is a 

truth in at least one world, but not in all possible worlds), and similarly for 

Neutrosophic Axiomatic System 

Florentin Smarandache 
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distinction between “absolute indeterminacy” and “relative indeterminacy”, 

and respectively distinction between “absolute falsehood” and “relative 

falsehood”. 

But for other scientific and technical applications one uses standard subsets, 

and the standard classical unit interval [0, 1]. 

As a particular case of neutrosophic axiom is the classical axiom. In the 

classical mathematics an axiom is supposed 100% true, 0% indeterminate, and 

0% false. But this thing occurs in idealistic systems, in perfectly closed systems, 

not in many of the real world situations. 

Unlike the classical axiom which is a total premise of reasoning and without 

any controversy, the neutrosophic axiom is a partial premise of reasoning with 

a partial controversy. 

The neutrosophic axioms serve in approximate reasoning. 

The partial truth of a neutrosophic axiom is similarly taken for granting. 

The neutrosophic axioms, and in general the neutrosophic propositions, deal 

with approximate ideas or with probable ideas, and in general with ideas we 

are not able to measure exactly. That’s why one cannot get 100% true 

statements (propositions). 

In our life we deal with approximations. An axiom is approximately true, 

and the inference is approximately true either. 

A neutrosophic axiom is a self-evident assumption in some degrees of truth, 

indeterminacy, and falsehood respectively. 

2 Neutrosophic Deducing and Neutrosophic Inference 

The neutrosophic axioms are employed in neutrosophic deducing and 

neutrosophic inference rules, which are sort of neutrosophic implications, and 

similarly they have degrees of truth, indeterminacy, and respectively 

falsehood. 

3 Neutrosophic Proof 

Consequently, a neutrosophic proof has also a degree of validity, degree of 

indeterminacy, and degree of invalidity. And this is when we work with not-

well determinate elements in the space or not not-well determinate inference 

rules.  
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The neutrosophic axioms are at the foundation of various neutrosophic 

sciences. 

The approximate, indeterminate, incomplete, partially unknown, ambiguous, 

vagueness, imprecision, contradictory, etc. knowledge can be neutrosophically 

axiomized. 

4 Neutrosophic Axiomatic System 

A set of neutrosophic axioms Ω is called neutrosophic axiomatic system, where 

the neutrosophic deducing and the neutrosophic inference (neutrosophic 

implication) are used. 

The neutrosophic axioms are defined on a given space 𝑆. The space can be 

classical (space without indeterminacy), or neutrosophic space (space which 

has some indeterminacy with respect to its elements). 

A neutrosophic space may be, for example, a space that has at least one 

element which only partially belongs to the space.  Let us say the element x 

<0.5, 0.2, 0.3> that belongs only 50% to the space, while 20% its appurtenance 

is indeterminate, and 30% it does not belong to the space. 

Therefore, we have three types of neutrosophic axiomatic systems: 

[1] Neutrosophic axioms defined on classical space; 

[2] Classical axioms defined on neutrosophic space; 

[3] Neutrosophic axioms defined on neutrosophic space. 

Remark: 

The neutrosophic axiomatic system is not unique, in the sense that several 

different axiomatic systems may describe the same neutrosophic model. This 

happens because one deals with approximations, and because the 

neutrosophic axioms represent partial (not total) truths. 

5 Classification of the Neutrosophic Axioms 

[1] Neutrosophic Logical Axioms, which are neutrosophic statements 

whose truth-value is <t, i, f> within the system of neutrosophic logic. 

For example:  (𝛼 or 𝛽) neutrosophically implies 𝛽. 
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[2] Neutrosophic Non-Logical Axioms, which are neutrosophic properties 

of the elements of the space. For example: the neutrosophic 

associativity 𝑎(𝑏𝑐) = (𝑎𝑏)𝑐 , which occurs for some elements, it is 

unknown (indeterminate) for others, and does not occur for others. 

In general, a neutrosophic non-logical axiom is a classical non-logical axiom 

that works for certain space elements, is indeterminate for others, and does 

not work for others. 

6 Neutrosophic Tautologies 

A classical tautology is a statement that is universally true [regarded in a 

larger way, or lato sensu], i.e. true in all possible worlds (according to 

Leibniz’s definition of “world”). For example, “M = M” in all possible worlds.  

A neutrosophic tautology is a statement that is true in a narrow way [i.e. 

regarded in stricto sensu], or it is <1, 0, 0> true for a class of certain parameters 

and conditions, and <t, i, f> true for another class of certain parameters and 

conditions, where <t, i, f> ≠ <1, 0, 0>. I.e. a neutrosophic tautology is true in 

some worlds, and partially true in other worlds. For example, the previous 

assertation: “M = M”.  

If “M” is a number [i.e. the parameter = number], then a number is always equal 

to itself in any numeration base. 

But if “M” is a person [i.e. the parameter = person], call him Martin, then Martin 

at time t1 is the same as Martin at time t1 [i.e. it has been considered another 

parameter = time], but Martin at time t1 is different from Martin at time t2 

(meaning for example 20 years ago: hence Martin younger is different from 

Martin older). Therefore, from the point of view of parameters ‘person’ and 

‘time’, “M = M” is not a classical tautology. 

Similarly, we may have a proposition P which is true locally, but it is untrue 

non-locally. 

A neutrosophic logical system is an approximate minimal set of partially 

true/indeterminate/false propositions. 

While the classical axioms cannot be deduced from other axioms, there are 

neutrosophic axioms that can be partially deduced from other neutrosophic 

axioms. 
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7 Notations regarding the Classical Logic and Set, Fuzzy Logic 

and Set, Intuitionistic Fuzzy Logic and Set, 

and Neutrosophic Logic and Set 

In order to make distinction between classical (Boolean) logic/set, fuzzy logic/

set, intuitionistic fuzzy logic/set, and neutrosophic logic/set, we denote their 

corresponding operators (negation/complement, conjunction/ intersection, 

disjunction/union, implication/inclusion, and equivalence/equality), as it

follows: 

[1] For classical (Boolean) logic and set: 
¬      ∧       ∨      →      ↔ (1) 

[2] For fuzzy logic and set: 
¬
𝐹 

∧
𝐹

∨
𝐹

→
𝐹

↔
𝐹

(2) 

[3] For intuitionistic fuzzy logic and set: 
¬
𝐼𝐹 

∧
𝐼𝐹

∨
𝐼𝐹

→
𝐼𝐹

↔
𝐼𝐹

(3) 

[4] For neutrosophic logic and set: 
¬
𝑁 

∧
𝑁

∨
𝑁

→
𝑁

↔
𝑁

(4) 

8 The Classical Quantifiers 

The classical Existential Quantifier is the following way: 

, ( )x A P x  .  (5) 

In a neutrosophic way we can write it as: 

There exist x<1, 0, 0> in A such that P(x)<1, 0, 0>, or: 

1,0,0 , ( ) 1,0,0x A P x     .   (6) 

The classical Universal Quantifier is the following way: 

, ( )x A P x  .  (7) 

In a neutrosophic way we can write it as: 

For any x<1, 0, 0> in A one has P(x)<1, 0, 0>, or: 

1,0,0 , ( ) 1,0,0x A P x     . (8) 
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9 The Neutrosophic Quantifiers 

The Neutrosophic Existential Quantifier is in the following way: 

There exist x<tx, ix, fx> in A such that P(x)<tP, iP, fP>, or: 

, , , ( ) , ,x x x P P Px t i f A P x t i f     , (9) 

which means that:  there exists an element x which belongs to A in a 

neutrosophic degree <tx, ix, fx>, such that the proposition P has the 

neutrosophic degree of truth <tP, iP, fP>. 

The Neutrosophic Universal Quantifier is the following way: 

For any x<tx, ix, fx> in A one has P(x)<tP, iP, fP>, or: 

, , , ( ) , ,x x x P P Px t i f A P x t i f     , (10) 

which means that:  for any element x that belongs to A in a neutrosophic degree 

<tx, ix, fx>, one has the proposition P with the neutrosophic degree of truth <tP, 

iP, fP>. 

10 Neutrosophic Axiom Schema 

A neutrosophic axiom schema is a neutrosophic rule for generating infinitely 

many neutrosophic axioms.  

Examples of neutrosophic axiom schema: 

[1] Neutrosophic Axiom Scheme for Universal Instantiation. 

Let Φ(x) be a formula, depending on variable x defined on a domain D, in the 

first-order language L, and let’s substitute x for aD. Then the new formula: 

( ) ( )Nx x a    (11) 

is ,
N N N

t i f   -neutrosophically [universally] valid. 

This means the following:  if one knows that a formula Φ(x) holds <tx, ix, fx>-

neutrosophically for every x in the domain D, and for x = a the formula Φ(a) 

holds <ta, ia, fa>-neutrosophically, then the whole new formula (a) holds 

,
N N N

t i f   -neutrosophically, where t
N means the truth degree, i

N  the 

indeterminacy degree, and f
N the falsehood degree –- all resulted from the 

neutrosophic implication N . 
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[2] Neutrosophic Axiom Scheme for Existential Generalization. 

Let Φ(x) be a formula, depending on variable x defined on a domain D, in the 

first-order language L, and let’s substitute x for aD. Then the new formula: 

( ) ( )Na x x    (12) 

is ,
N N N

t i f   -neutrosophically [universally] valid. 

This means the following:  if one knows that a formula Φ(a) holds <ta, ia, fa>-

neutrosophically for a given x = a in the domain D, and for every x in the domain 

formula Φ(x) holds <tx, ix, fx>-neutrosophically, then the whole new formula (b) 

holds ,
N N N

t i f   -neutrosophically, where t
N means the truth degree, i

N  the indeterminacy degree, and f
N the falsehood degree –- all resulted 

from the neutrosophic implication
N . 

These are neutrosophic metatheorems of the mathematical neutrosophic 

theory where they are employed. 

11 Neutrosophic Propositional Logic 

We have many neutrosophic formulas that one takes as neutrosophic axioms. 

For example, as extension from the classical logic, one has the following. 

Let P<tP, iP, fP>, Q<tQ, iQ, fQ>, R<tR, iR, fR>, S<tS, iS, fS> be neutrosophic propositions, 

where <tP, iP, fP> is the neutrosophic-truth value of P, and similarly for Q, R, and 

S. Then: 

a) Neutrosophic modus ponens (neutrosophic implication elimination):

)N NP Q P  (13) 

b) Neutrosophic modus tollens (neutrosophic law of contrapositive):

(( ) )N N N N NP Q Q P     (14) 

c) Neutrosophic disjunctive syllogism (neutrosophic disjunction elimination):

(( ) )N N N NP Q P Q    (15) 

d) Neutrosophic hypothetical syllogism (neutrosophic chain argument):

(( ) ( )) ( )N N N N NP Q Q R P R     (16) 
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e) Neutrosophic constructive dilemma (neutrosophic disjunctive version of

modus ponens):

((( ) ( )) ( )) ( )N N N N N N NP Q R S P R Q S       (17) 

f) Neutrosophic distructive dilemma (neutrosophic disjunctive version of

modus tollens):

((( ) ( ))
( )) ( )

N N N N

N N N N N N N

P Q R S
Q S P R
   

      
(18) 

All these neutrosophic formulae also run as neutrosophic rules of inference. 

These neutrosophic formulas or neutrosophic derivation rules only partially 

preserve the truth, and depending on the neutrosophic implication operator 

that is employed the indeterminacy may increase or decrease.  

This happens for one working with approximations. 

While the above classical formulas in classical proportional logic are classical 

tautologies (i.e. from a neutrosophical point of view they are 100% true, 0% 

indeterminate, and 0% false), their corresponding neutrosophic formulas are 

neither classical tautologies nor neutrosophical tautologies, but ordinary 

neutrosophic propositions whose < 𝑡, 𝑖, 𝑓 >  – neutrosophic truth-value is 

resulted from the 
𝑁
→ neutrosophic implication  

𝐴 < 𝑡𝐴, 𝑖𝐴, 𝑓𝐴 >
𝑁
→𝐵 < (𝑡𝐵, 𝑖𝐵, 𝑓𝐵) >. (19) 

12 Classes of Neutrosophic Negation Operators 

There are defined in neutrosophic literature classes of neutrosophic negation 

operators as follows: if 𝐴(𝑡𝐴, 𝑖𝐴, 𝑓𝐴), then its negation is: 

¬
𝑁𝐴(𝑓𝐴, 𝑖𝐴, 𝑡𝐴), (20) 

or  
¬
𝑁𝐴(𝑓𝐴, 1 − 𝑖𝐴, 𝑡𝐴), (21) 

¬
or  𝑁𝐴(1 − 𝑡𝐴, 1 − 𝑖𝐴, 1 − 𝑓𝐴), (22) 

or  
¬
𝑁𝐴(1 − 𝑡𝐴, 𝑖𝐴, 1 − 𝑓𝐴), etc. (23) 
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13 Classes of Neutrosophic Conjunctive Operators. 

Similarly: if 𝐴(𝑡𝐴, 𝑖𝐴, 𝑓𝐴) and 𝐵(𝑡𝐵, 𝑖𝐵, 𝑓𝐵), then 

𝐴 𝑁
∧𝐵 = 〈𝑡𝐴 𝐹

∧  𝑡𝐵, 𝑖𝐴 𝐹
∨  𝑖𝐵, 𝑓𝐴 𝐹

∨  𝑓𝐵〉,  (24) 

or 𝐴 𝑁
∧𝐵 = 〈𝑡𝐴 𝐹

∧  𝑡𝐵, 𝑖𝐴 𝐹
∧  𝑖𝐵, 𝑓𝐴 𝐹

∨  𝑓𝐵〉, (25) 

or 𝐴 𝑁
∧𝐵 = 〈𝑡𝐴 𝐹

∧  𝑡𝐵, 𝑖𝐴 𝐹
∧  𝑖𝐵, 𝑓𝐴 𝐹

∧  𝑓𝐵〉 (26) 

or 𝐴 𝑁
∧𝐵 = 〈𝑡𝐴 𝐹

∧  𝑡𝐵,
𝑖𝐴+𝑖𝐵

2
, 𝑓𝐴 𝐹

∨  𝑓𝐵〉, (27) 

or 𝐴 𝑁
∧𝐵 = 〈𝑡𝐴 𝐹

∧  𝑡𝐵, 1 −
𝑖𝐴+𝑖𝐵

2
, 𝑓𝐴 𝐹

∨  𝑓𝐵〉, (28) 

or 𝐴 𝑁
∧𝐵 = 〈𝑡𝐴 𝐹

∧  𝑡𝐵, |𝑖𝐴 − 𝑖𝐵|, 𝑓𝐴 𝐹
∨  𝑓𝐵〉, etc. (29) 

14 Classes of Neutrosophic Disjunctive Operators 

And analogously, there were defined: 

𝐴 𝑁
∨𝐵 = 〈𝑡𝐴 𝐹

∨  𝑡𝐵, 𝑖𝐴 𝐹
∧  𝑖𝐵, 𝑓𝐴 𝐹

∧  𝑓𝐵〉,  (30) 

or 𝐴 𝑁
∨𝐵 = 〈𝑡𝐴 𝐹

∨  𝑡𝐵, 𝑖𝐴 𝐹
∨  𝑖𝐵, 𝑓𝐴 𝐹

∧  𝑓𝐵〉, (31) 

or 𝐴 𝑁
∨𝐵 = 〈𝑡𝐴 𝐹

∨  𝑡𝐵, 𝑖𝐴 𝐹
∨  𝑖𝐵, 𝑓𝐴 𝐹

∨  𝑓𝐵〉, (32) 

or 𝐴 𝑁
∨𝐵 = 〈𝑡𝐴 𝐹

∨  𝑡𝐵,
𝑖𝐴+𝑖𝐵

2
, 𝑓𝐴 𝐹

∧  𝑓𝐵〉, (33) 

or 𝐴 𝑁
∨𝐵 = 〈𝑡𝐴 𝐹

∨  𝑡𝐵, 1 −
𝑖𝐴+𝑖𝐵

2
 , 𝑓𝐴 𝐹

∧  𝑓𝐵〉, (34) 

or 𝐴 𝑁
∨𝐵 = 〈𝑡𝐴 𝐹

∨  𝑡𝐵, |𝑖𝐴 − 𝑖𝐵| , 𝑓𝐴 𝐹
∨  𝑓𝐵〉, etc. (35) 

15 Fuzzy Operators 

Let 𝛼, 𝛽 ∈ [0, 1]. 

15.1. The Fuzzy Negation has been defined as 𝛼 = 1 − 𝛼𝐹
¬ .  (36) 

15.2. While the class of Fuzzy Conjunctions (or t-norm) may be: 

𝛼𝐹
∧𝛽 = min{𝛼, 𝛽}, (37) 

or 𝛼𝐹
∧𝛽 = 𝛼 ∙ 𝛽, (38) 

or 𝛼𝐹
∧𝛽 = max{0, 𝛼 + 𝛽 − 1}, etc. (39) 
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15.3. And the class of Fuzzy Disjunctions (or t-conorm) may be: 

𝛼𝐹
∨𝛽 = max{𝛼, 𝛽}, (40) 

or 𝛼𝐹
∨𝛽 = 𝛼 + 𝛽 − 𝛼𝛽, (41) 

or 𝛼𝐹
∨𝛽 = min{1, 𝛼 + 𝛽}, etc. (42) 

15.4.  Examples of Fuzzy Implications 𝑥
𝐹
→ 𝑦, for 𝑥, 𝑦 ∈ [0, 1], defined below: 

 Fodor (1993): 𝐼𝐹𝐷(𝑥, 𝑦) = {
1, if 𝑥 ≤ 𝑦

max(1 − 𝑥, 𝑦) , if 𝑥 > 𝑦
(43) 

 Weber (1983): 𝐼𝑊𝐵(𝑥, 𝑦) = {
1, if 𝑥 < 𝑦 
𝑦, if 𝑥 = 1 

(44) 

 Yager (1980): 𝐼𝑌𝐺(𝑥, 𝑦) = {
1, if 𝑥 = 0 and 𝑦 = 0
𝑦𝑥, if 𝑥 > 0 or 𝑦 > 0

 (45) 

 Goguen (1969): 𝐼𝐺𝐺(𝑥, 𝑦) = {
1, if 𝑥 ≤ 𝑦
𝑦

𝑥
, if 𝑥 > 𝑦

(46) 

 Rescher (1969): 𝐼𝑅𝑆(𝑥, 𝑦) = {
1, if 𝑥 ≤ 𝑦
0, if 𝑥 > 𝑦

(47) 

 Kleene-Dienes (1938): 𝐼𝐾𝐷(𝑥, 𝑦) = max(1 − 𝑥, 𝑦) (48) 

 Reichenbach (1935): 𝐼𝑅𝐶(𝑥, 𝑦) = 1 − 𝑥 + 𝑥𝑦 (49) 

 Gödel (1932): 𝐼𝐺𝐷(𝑥, 𝑦) = {
1, if 𝑥 ≤ 𝑦
𝑦, if 𝑥 > 𝑦

(50) 

 Lukasiewicz (1923): 𝐼𝐿𝐾(𝑥, 𝑦) = min(1, 1 − 𝑥 + 𝑦), (51) 

according to the list made by Michal Baczyński and Balasubramaniam Jayaram 

(2008). 

16 Example of Intuitionistic Fuzzy Implication 

Example of Intuitionistic Fuzzy Implication 𝐴(𝑡𝐴, 𝑓𝐴)
𝐼𝐹
→𝐵(𝑡𝐵, 𝑓𝐵) is: 

𝐼𝐼𝐹 = ([(1 − 𝑡𝐴)𝐹

𝑡𝐵] F

 [(1 − 𝑓𝐵)𝐹
∨𝑓𝐴], 𝑓𝐵𝐹

∧(1 − 𝑡𝐴)), (52) 

according to Yunhua Xiao, Tianyu Xue, Zhan’ao Xue, and Huiru Cheng (2011). 
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17 Classes of Neutrosophic Implication Operators 

We now propose for the first time eight new classes of neutrosophic 

implications and extend a ninth one defined previously: 

𝐴(𝑡𝐴, 𝑖𝐴, 𝑓𝐴)
𝑁
→𝐵(𝑡𝐵, 𝑖𝐵, 𝑓𝐵), 

in the following ways: 

17.1-17.2. 𝐼𝑁1 (𝑡𝐴
𝐹/𝐼𝐹
→  𝑡𝐵, 𝑖𝐴  𝑖𝐵𝐹

∧ , 𝑓𝐴  𝑓𝐵𝐹
∧ ), (53) 

where 𝑡𝐴
𝐹/𝐼𝐹
→  𝑡𝐵  is any fuzzy implication (from above or others) or any 

intuitionistic fuzzy implication (from above or others), while  is𝐹
∧  any fuzzy

conjunction (from above or others); 

17.3-17.4. 𝐼𝑁2 (𝑡𝐴
𝐹/𝐼𝐹
→  𝑡𝐵, 𝑖𝐴  𝑖𝐵𝐹

∨ , 𝑓𝐴  𝑓𝐵𝐹
∧ ), (54) 

where  is𝐹
∨  any fuzzy disjunction (from above or others);

17.5-17.6. 𝐼𝑁3 (𝑡𝐴
𝐹/𝐼𝐹
→  𝑡𝐵,

𝑖𝐴+𝑖𝐵

2
, 𝑓𝐴  𝑓𝐵𝐹

∧ ); (55) 

17.7-17.8. 𝐼𝑁4 (𝑡𝐴
𝐹/𝐼𝐹
→  𝑡𝐵,

𝑖𝐴+𝑖𝐵

2
,
𝑓𝐴+𝑓𝐵

2
). (56) 

17.9. Now we extend another neutrosophic implication that has been defined 

by S. Broumi & F. Smarandache (2014) and it was based on the classical logical 

equivalence:  

(𝐴 → 𝐵) ↔ (¬𝐴 ∨ 𝐵). (57) 

Whence, since the corresponding neutrosophic logic equivalence: 

(𝐴
𝑁
→𝐵)

𝑁
↔ ( 𝐴𝑁

¬   𝐵𝑁
∨ ) (58) 

holds, one obtains another Class of Neutrosophic Implication Operators as: 

( 𝐴𝑁
¬   𝐵𝑁

∨ ) (59) 

where one may use any neutrosophic negation 
N
  (from above or others), and 

any neutrosophic disjunction 
N
  (from above or others).
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18 Example of Neutrosophic Implication 

Let’s see an Example of Neutrosophic Implication. 

Let’s have two neutrosophic propositions 𝐴〈0.3, 0.4, 0.2〉 and 𝐵〈0.7, 0.1, 0.4〉. 

Then 𝐴
𝑁
→𝐵 has the neutrosophic truth value of 𝐴 𝐵𝑁

∨
𝑁
¬ , i.e.:

〈0.2, 0.4, 0.3〉 〈0.7, 0.1, 0.4〉𝑁
∨ , 

or 〈max{0.2, 0.7},min{0.4, 0.1},min{0.3, 0.4}〉, 

or 〈0.7, 0.1, 0.3〉, 

where we used the neutrosophic operators defined above: 〈𝑡, 𝑖, 𝑓〉 = 〈𝑓, 𝑖, 𝑡〉𝑁
¬  

for neutrosophic negation, and 〈𝑡1, 𝑖1, 𝑓1〉 〈𝑡2, 𝑖2, 𝑓2〉𝑁
∨ =

〈max{𝑡1, 𝑡2},min{𝑖1, 𝑖2},min{𝑓1, 𝑓2}〉 for the neutrosophic disjunction. 

Using different versions of the neutrosophic negation operators and/or 

different versions of the neutrosophic disjunction operators, one obtains, in 

general, different results. Similarly as in fuzzy logic. 

18.1.  Another Example of Neutrosophic Implication. 

Let 𝐴  have the neutrosophic truth-value (𝑡𝐴, 𝑖𝐴, 𝑓𝐴) , and 𝐵  have the 

neutrosophic truth-value (𝑡𝐵, 𝑖𝐵, 𝑓𝐵), then: 

[𝐴
𝑁
→𝐵]

𝑁
↔ [( 𝐴𝑁

¬ ) 𝐵𝑁
∨ ], (60) 

where  is𝑁
¬  any of the above neutrosophic negations, while  is𝑁

∨  any of the 

above neutrosophic disjunctions. 

19 General Definition of Neutrosophic Operators 

We consider that the most general definition of neutrosophic operators shall 

be the followings: 

𝐴(𝑡𝐴, 𝑖𝐴, 𝑓𝐴) 𝐵(𝑡𝐵, 𝑖𝐵, 𝑓𝐵) = 𝐴 𝐵𝑁
⊕

𝑁
⊕ 〈𝑢(𝑡𝐴, 𝑖𝐴, 𝑓𝐴, 𝑡𝐵, 𝑖𝐵, 𝑓𝐵),

𝑣(𝑡𝐴, 𝑖𝐴, 𝑓𝐴, 𝑡𝐵, 𝑖𝐵, 𝑓𝐵), 𝑤(𝑡𝐴, 𝑖𝐴, 𝑓𝐴, 𝑡𝐵, 𝑖𝐵, 𝑓𝐵)〉 (61) 

where  is𝑁
⊕  any binary neutrosophic operator, and 

𝑢(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6), 𝑣(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6), 

𝑤(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6): [0,1]
6 → [0,1].
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Even more, the neutrosophic component functions 𝑢, 𝑣, 𝑤 may depend, on the 

top of these six variables, on hidden parameters as well, such as: ℎ1, ℎ2, … , ℎ𝑛. 

For a unary neutrosophic operator (for example, the neutrosophic negation), 

similarly: 

𝐴𝑁
⌝ (𝑡𝐴, 𝑖𝐴, 𝑓𝐴) = 〈𝑢

′(𝑡𝐴, 𝑖𝐴, 𝑓𝐴), 𝑣
′(𝑡𝐴, 𝑖𝐴, 𝑓𝐴), 𝑤

′(𝑡𝐴, 𝑖𝐴, 𝑓𝐴)〉, (62) 

where 𝑢′(𝑡𝐴, 𝑖𝐴, 𝑓𝐴), 𝑣
′(𝑡𝐴, 𝑖𝐴, 𝑓𝐴), 𝑤

′(𝑡𝐴, 𝑖𝐴, 𝑓𝐴): [0, 1]
3 → [0,1],

and even more 𝑢′, 𝑣′, 𝑤′ may depend, on the top of these three variables, of 

hidden parameters as well, such as: ℎ1, ℎ2, … , ℎ𝑛. 

{Similarly there should be for a general definition of fuzzy operators and 

general definition of intuitionistic fuzzy operators.} 

As an example, we have defined [6]: (63) 

𝐴(𝑡𝐴, 𝑖𝐴, 𝑓𝐴) 𝐵(𝑡𝐵, 𝑖𝐵, 𝑓𝐵)𝑁
∧

= 〈𝑡𝐴𝑡𝐵, 𝑖𝐴𝑖𝐵 + 𝑡𝐴𝑖𝐵 + 𝑡𝐵𝑖𝐴, 𝑡𝐴𝑓𝐵 + 𝑡𝐵𝑓𝐴 + 𝑖𝐴𝑓𝐵 + 𝑖𝐵𝑓𝐴〉 

these result from multiplying 

(𝑡𝐴 + 𝑖𝐴 + 𝑓𝐴) ⋅ (𝑡𝐵 + 𝑖𝐵 + 𝑓𝐵)  (64) 

and ordering upon the below pessimistic order: 

truth  indeterminacy  falsity, 

meaning that to the truth only the terms of 𝑡’s goes, i.e. 𝑡𝐴𝑡𝐵, 

to indeterminacy only the terms of t’s and i’s go, i.e. 𝑖𝐴𝑖𝐵 + 𝑡𝐴𝑖𝐵 + 𝑡𝐵𝑖𝐴, 

and to falsity the other terms left, i.e. 𝑡𝐴𝑓𝐵 + 𝑡𝐵𝑓𝐴 + 𝑖𝐴𝑓𝐵 + 𝑖𝐵𝑓𝐴 + 𝑓𝐴𝑓𝐵 . 

20 Neutrosophic Deductive System 

A Neutrosophic Deductive System consists of a set ℒ1 of neutrosophic logical 

axioms, and a set ℒ2  of neutrosophic non-logical axioms, and a set ℛ  of 

neutrosophic rules of inference – all defined on a neutrosophic space 𝒮 that is 

composed of many elements. 

A neutrosophic deductive system is said to be neutrosophically complete, if for 

any neutrosophic formula 𝜑 that is a neutrosophic logical consequence of ℒ1, 

i.e. ℒ1  𝜑𝑁
⊨ , there exists a neutrosophic deduction of 𝜑 from ℒ1, i.e. ℒ1  𝜑𝑁

⊢ , where

 denotes 𝑁
⊨ neutrosophic logical consequence, and   denotes𝑁

⊢  neutrosophic

deduction. 
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Actually, everything that is neutrosophically (partially) true [i.e. made 

neutrosophically (partially) true by the set ℒ1  of neutrosophic axioms] is 

neutrosophically (partially) provable. 

The neutrosophic completeness of set ℒ2 of neutrosophic non-logical axioms 

is not the same as the neutrosophic completeness of set ℒ1  of neutrosophic 

logical axioms. 

21 Neutrosophic Axiomatic Space 

The space 𝒮  is called neutrosophic space if it has some indeterminacy with 

respect to one or more of the following: 

a. Its elements;

1. At least one element 𝑥  partially belongs to the set 𝒮 , or

𝑥(𝑡𝑥, 𝑖𝑥, 𝑓𝑥) with (𝑡x, 𝑖x, 𝑓x)≠ (1, 0, 0);

2. There is at least an element 𝑦 in 𝒮 whose appurtenance to 𝒮 is

unknown. 

b. Its logical axioms;

1. At least a logical axiom 𝒜 is partially true, or 𝒜(𝑡𝐴, 𝑖𝐴, 𝑓𝐴), where

similary (𝑡𝐴, 𝑖𝐴, 𝑓𝐴) ≠ (1, 0, 0); 

2. There is at least an axiom ℬ whose truth-value is unknown.

c. Its non-logical axioms;

1. At least a non-logical axiom 𝒞  is true for some elements, and

indeterminate or false or other elements; 

2. There is at least a non-logical axiom whose truth-value is

unknown for some elements in the space. 

d. There exist at least two neutrosophic logical axioms that have some

degree of contradiction (strictly greater than zero). 

e. There exist at least two neutrosophic non-logical axioms that have

some degree of contradiction (strictly greater than zero). 
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22 Degree of Contradiction (Dissimilarity) 

of Two Neutrosophic Axioms 

Two neutrosophic logical axioms 𝒜1 and 𝒜2 are contradictory (dissimilar) if 

their semantics (meanings) are contradictory in some degree d1, while their 

neutrosophic truth values <t1, i1, f1> and <t2, i2, f2> are contradictory in a 

different degree d2 [in other words d1 ≠ d2]. 

As a particular case, if two neutrosophic logical axioms 𝒜1 and 𝒜2 have the 

same semantic (meaning) [in other words d1 = 0], but their neutrosophic truth-

values are different [in other words d2 > 0], they are contradictory. 

Another particular case, if two neutrosophic axioms 𝒜1 and 𝒜2 have different 

semantics (meanings) [in other words d1 > 0], but their neutrosophic truth 

values are the same <t1, i1, f1> =  <t2, i2, f2> [in other words d2 = 0], they are 

contradictory. 

If two neutrosophic axioms 𝒜1  and 𝒜2 have the semantic degree of 

contradiction d1, and the neutrosophic truth value degree of contradiction d2, 

then the total degree of contradiction of the two neutrosophic axioms is d = |d1 

– d2|, where |  | mean the absolute value.

We did not manage to design a formula in order to compute the semantic 

degree of contradiction d1 of two neutrosophic axioms. The reader is invited 

to explore such metric. 

But we can compute the neutrosophic truth value degree of contradiction d2. 

If 〈𝑡1, 𝑖1, 𝑓1〉  is the neutrosophic truth-value of 𝒜1  and 〈𝑡2, 𝑖2, 𝑓2〉  the 

neutrosophic truth-value of 𝒜2 , where 𝑡1, 𝑖1, 𝑓1, 𝑡2, 𝑖2, 𝑓2  are single values in 

[0, 1] , then the neutrosophic truth value degree of contradiction 𝑑2  of the 

neutrosophic axioms 𝒜1 and 𝒜2 is: 

𝑑2 =
1

3
(|𝑡1 − 𝑡2| + |𝑖1 − 𝑖2| + |𝑓1 − 𝑓2|), (65) 

whence 𝑑2 ∈ [0, 1]. 

We get 𝑑2 = 0 , when 𝒜1 is identical with 𝒜2 from the point of view of 

neutrosophical truth values, i.e. when 𝑡1 = 𝑡2, 𝑖1 = 𝑖2, 𝑓1 = 𝑓2.  And we get 𝑑2 =

1, when 〈𝑡1, 𝑖1, 𝑓1〉 and 〈𝑡2, 𝑖2, 𝑓2〉 are respectively equal to: 

〈1, 0, 0〉, 〈0, 1, 1〉; 

or 〈0, 1, 0〉, 〈1, 0, 1〉; 

or 〈0, 0, 1〉, 〈1, 1, 0〉; 

or 〈0, 0, 0〉, 〈1, 1, 1〉. 
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23 Neutrosophic Axiomatic System 

The neutrosophic axioms are used, in neutrosophic conjunction, in order to 

derive neutrosophic theorems. 

A neutrosophic mathematical theory may consist of a neutrosophic space 

where a neutrosophic axiomatic system acts and produces all neutrosophic 

theorems within the theory. 

Yet, in a neutrosophic formal system, in general, the more recurrences are done 

the more is increased the indeterminacy and decreased the accuracy. 

24 Properties of the Neutrosophic Axiomatic System 

[1] While in classical mathematics an axiomatic system is consistent, in a 

neutrosophic axiomatic system it happens to have partially inconsistent 

(contradictory) axioms. 

[2] Similarly, while in classical mathematics the axioms are independent, in a 

neutrosophic axiomatic system they may be dependent in certain degree. 

[3] In classical mathematics if an axiom is dependent from other axioms, it can 

be removed, without affecting the axiomatic system. 

[4] However, if a neutrosophic axiom is partially dependent from other 

neutrosophic axioms, by removing it the neutrosophic axiomatic system is 

affected. 

[5] While, again, in classical mathematics an axiomatic system has to be 

complete (meaning that each statement or its negation is derivable), a 

neutrosophic axiomatic system is partially complete and partially 

incomplete. It is partially incomplete because one can add extra partially 

independent neutrosophic axioms. 

[6] The neutrosophic relative consistency of an axiomatic system is referred to 

the neutrosophically (partially) undefined terms of a first neutrosophic 

axiomatic system that are assigned neutrosophic definitions from another 

neutrosophic axiomatic system in a way that, with respect to both 

neutrosophic axiomatic systems, is neutrosophically consistent. 
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25 Neutrosophic Model 

A Neutrosophic Model is a model that assigns neutrosophic meaning to the 

neutrosophically (un)defined terms of a neutrosophic axiomatic system. 

Similarly to the classical model, we have the following classification: 

[1] Neutrosophic Abstract Model, which is a neutrosophic model based on 

another neutrosophic axiomatic system. 

[2] Neutrosophic Concrete Model, which is a neutrosophic model based on real 

world, i.e. using real objects and real relations between the objects. 

In general, a neutrosophic model is a <t, i, f>-approximation, i.e. T% of accuracy, 

I% indeterminacy, and F% inaccuracy, of a neutrosophic axiomatic system. 

26 Neutrosophically Isomorphic Models 

Further, two neutrosophic models are neutrosophically isomorphic if there is a 

neutrosophic one-to-one correspondence between their neutrosophic 

elements such that their neutrosophic relationships hold. 

A neutrosophic axiomatic system is called neutrosophically categorial (or 

categorical) is any two of its neutrosophic models are neutrosophically 

isomorphic. 

27 Neutrosophic Infinite Regressions 

There may be situations of neutrosophic axiomatic systems that generate 

neutrosophic infinite regressions, unlike the classical axiomatic systems. 

28 Neutrosophic Axiomatization 

A Neutrosophic Axiomatization is referred to an approximate formulation of a 

set of neutrosophic statements, about a number of neutrosophic primitive 

terms, such that by the neutrosophic deduction one obtains various 

neutrosophic propositions (theorems). 
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29 Example of Neutrosophic Axiomatic System 

Let’s consider two neighboring countries 𝑀  and 𝑁  that have a disputed 

frontier zone 𝑍: 

Figure 1: A Neutrosophic Model. 

Let’s consider the universe of discourse U = M   Z N; this is a neutrosophic 

space since it has an indeterminate part (the disputed frontier).   

The neutrosophic primitive notions in this example are: neutrosophic point, 

neutrosophic line, and neutrosophic plane (space). 

And the neutrosophic primitive relations are: neutrosophic incidence, and 

neutrosophic parallel. 

The four boundary edges of rectangle Z belong to Z (or Z is a closed set). While 

only three boundary edges of M (except the fourth one which is common with 

Z) belong to M, and similarly only three boundaries of N (except the fourth one

which is common with Z) belong to N. Therefore M and N are neither closed 

nor open sets. 

Taking a classical point P in U, one has three possibilities: 

[1] P M (membership with respect to country M); 

[2] P  Z (indeterminate membership with respect to both 

countries); 

[3] or P N (nonmembership with respect to country M). 

Such points, that can be indeterminate as well, are called neutrosophic points. 

A neutrosophic line is a classical segment of line that unites two neutrosophic 

points lying on opposite edges of the universe of discourse U.  We may have:  

[1] determinate line (with respect to country M), that is completely 

into the determinate part M {for example (L1)};  

[2] indeterminate line, that is completely into the frontier zone {for 

example (L2)}; 

[3] determinate line (with respect to country N), that is completely 

into the determinate part N {for example (L3)};  
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[4] or mixed, i.e. either two or three of the following: partially 

determinate with respect to M, partially indeterminate with 

respect to both countries, and partially determinate with respect to 

N {for example the red line (L4)}. 

Through two neutrosophic points there may be passing: 

[1] only one neutrosophic line {for example, through G and H passes 

only one neutrosophic line (L4)}; 

[2] no neutrosophic line {for example, through A and B passes no 

neutrosophic line, since the classical segment of line AB does not 

unite points of opposite edges of the universe of discourse U}. 

Two neutrosophic lines are parallel is they have no common neutrosophic 

points. 

Through a neutrosophic point outside of a neutrosophic line, one can draw: 

[1] infinitely many neutrosophic parallels {for example, through the 

neutrosophic point C one can draw infinitely many neutrosophic 

parallels to the neutrosophic line (L1)}; 

[2] only one neutrosophic parallel {for example, through the 

neutrosophic point H that belongs to the edge (V1V2) one can draw 

only one neutrosophic parallel (i.e. V1V2) to the neutrosophic line 

(L1)}; 

[3] no neutrosophic parallel {for example, through the 

neutrosophic point H there is no neutrosophic parallel to the 

neutrosophic line (L3)}. 

For example, the neutrosophic lines (L1), (L2) and (L3) are parallel. But the 

neutrosophic line (L4) is not parallel with (L1), nor with (L2) or (L3). 

A neutrosophic polygon is a classical polygon which has one or more of the 

following indeterminacies: 

[1] indeterminate vertex; 

[2] partially or totally indeterminate edge; 

[3] partially or totally indeterminate region in the interior of the 

polygon. 

We may construct several neutrosophic axiomatic systems, for this example, 

referring to incidence and parallel. 

a) First neutrosophic axiomatic system

α1) Through two distinct neutrosophic points there is passing a single 

neutrosophic line.  
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{According to several experts, the neutrosophic truth-value of this 

axiom is <0.6, 0.1, 0.2>, meaning that having two given neutrosophic 

points, the chance that only one line (that do not intersect the 

indeterminate zone Z) passes through them is 0.6, the chance that 

line that passes through them intersects the indeterminate zone Z) 

is 0.1, and the chance that no line (that does not intersect the 

indeterminate zone Z) passes through them is 0.2.} 

α2) Through a neutrosophic point exterior to a neutrosophic line there is 

passing either one neutrosophic parallel or infinitely many neutrosophic 

parallels.  

{According to several experts, the neutrosophic truth-value of this 

axiom is <0.7, 0.2, 0.3>, meaning that having a given neutrosophic 

line and a given exterior neutrosophic point, the chance that 

infinitely many parallels pass through this exterior point is 0.7, the 

chance that the parallels passing through this exterior point 

intersect the indeterminate zone Z is 0.2, and the chance that no 

parallel passes through this point is 0.3.} 

Now, let’s apply a first neutrosophic deducibility. 

Suppose one has three non-collinear neutrosophic (distinct) points P, Q, and R 

(meaning points not on the same line, alike in classical geometry). According 

to the neutrosophic axiom (α1), through P, Q passes only one neutrosophic line 

{let’s call it (PQ)}, with a neutrosophic truth value (0.6, 0.1, 0.2). Now, according 

to axiom (α2), through the neutrosophic point R, which does not lie on (PQ), 

there is passing either only one neutrosophic parallel or infinitely many 

neutrosophic parallels to the neutrosophic line (PQ), with a neutrosophic truth 

value (0.7, 0.2, 0.3). 

Therefore, 

(α1)  
∧
𝑁

 (α2) = <0.6, 0.1, 0.2>
∧
𝑁

 <0.7, 0.2, 0.3> = <min{0.6, 0.7}, 

max{0.1, 0.2}, max{0.2, 0.3}>= <0.6, 0.2, 0.3>, (66) 

which means the following:  the chance that through the two distinct given 

neutrosophic points P and Q passes only one neutrosophic line, and through 

the exterior neutrosophic point R passese either only one neutrosophic 

parallel or  infinitely many parallels to (PQ) is (0.6, 0.2, 0.3), i.e. 60% true, 20% 

indeterminate, and 30% false. 

Herein we have used the simplest neutrosophic conjunction operator 
∧
𝑁

 of the 

form <min, max, max>, but other neutrosophic conjunction operator can be 

used as well. 
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A second neutrosophic deducibility: 

Again, suppose one has three non-collinear neutrosophic (distinct) points P, Q, 

and R (meaning points not on the same line, as in classical geometry). 

Now, let’s compute the neutrosophic truth value that through P and Q is 

passing one neutrosophic line, but through Q there is no neutrosophic parallel 

to (PQ). 

α1
∧
𝑁
(
¬
𝑁𝛼2) = <0.6, 0.1, 0.2>

∧
𝑁
(
¬
𝑁<0.7, 0.2, 0.3>) = <0.6, 0.1, 0.2>

∧
𝑁

<0.3, 

0.2, 0.7> = <0.3, 0.2, 0.7>. (67) 

b) Second neutrosophic axiomatic system

β1) Through two distinct neutrosophic points there is passing either a single 

neutrosophic line or no neutrosophic line. {With the neutrosophic truth-value 

<0.8, 0.1, 0.0>}. 

β2) Through a neutrosophic point exterior to a neutrosophic line there is 

passing either one neutrosophic parallel, or infinitely many neutrosophic 

parallels, or no neutrosophic parallel. {With the neutrosophic truth-value <1.0, 

0.2, 0.0>}. 

In this neutrosophic axiomatic system the above propositions W1 and W2: 

W1: Through two given neutrosophic points there is passing only one 

neutrosophic line, and through a neutrosophic point exterior to this 

neutrosophic line there is passing either one neutrosophic parallel or infinitely 

many neutrosophic parallels to the given neutrosophic line; and W2: Through 

two given neutrosophic points there is passing only one neutrosophic line, and 

through a neutrosophic point exterior to this neutrosophic line there is passing 

no neutrosophic parallel to the line; are not deducible. 

c) Third neutrosophic axiomatic system

γ1) Through two distinct neutrosophic points there is passing a single 

neutrosophic line. 

{With the neutrosophic truth-value <0.6, 0.1, 0.2>}. 

γ2) Through two distinct neutrosophic points there is passing no neutrosophic 

line. 

{With the neutrosophic truth-value <0.2, 0.1, 0.6>}. 

δ1) Through a neutrosophic point exterior to a neutrosophic line there is 

passing only one neutrosophic parallel.  
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{With the neutrosophic truth-value <0.1, 0.2, 0.9>}. 

δ2) Through a neutrosophic point exterior to a neutrosophic line there are 

passing infinitely many neutrosophic parallels.  

{With the neutrosophic truth-value <0.6, 0.2, 0.4>}. 

δ3) Through a neutrosophic point exterior to a neutrosophic line there is 

passing no neutrosophic parallel.  

{With the neutrosophic truth-value <0.3, 0.2, 0.7>}. 

In this neutrosophic axiomatic system we have contradictory axioms: 

- (γ1) is in 100% degree of contradiction with (γ2); 

- and similarly (δ3) is in 100% degree of contradiction with 

[(δ1) together with (δ2)]. 

Totally or partially contradictory axioms are allowed in a neutrosophic 

axiomatic systems, since they are part of our imperfect world and since they 

approximately describe models that are - in general - partially true. 

Regarding the previous two neutrosophic deducibilities one has: (68) 

γ1
∧
𝑁

 (δ1
∨
𝑁

 δ2)= <0.6, 0.1, 0.2>
∧
𝑁
(< 0.1, 0.2, 0.9 >

∨
𝑁
<

0.6, 0.2, 0.4 >) = < 0.6, 0.1, 0.2 >
∧
𝑁

<max{0.1, 0.6}, min{0.2, 0.2}, 

min{0.9, 0.4}> = < 0.6, 0.1, 0.2 >
∧
𝑁
< 0.6, 0.2, 0.4 >= <0.6, 0.2, 0.4>, 

which is slightly different from the result we got using the first neutrosophic 

axiomatic system <0.6, 0.2, 0.3>, and respectively: 

γ1
∧
𝑁

 δ3= <0.6, 0.1, 0.2>
∧
𝑁
< 0.3, 0.2, 0.7 >=<0.3, 0.2, 0.7>, (69) 

which is the same as the result we got using the first neutrosophic axiomatic 

system. 

The third neutrosophic axiomatic system is a refinement of the first and 

second neutrosophic axiomatic systems. From a deducibility point of view it is 

better and easier to work with a refined system than with a rough system. 

Florentin Smarandache (ed.) Collected Papers, VI

48



30 Conclusion 

This paper proposes a new framework to model interdependencies in project 

portfolio. NCM representation model is used for modeling relation among risks. 

In many real world situations, the spaces and laws are not exact, not perfect. 

They are inter-dependent. This means that in most cases they are not 100% 

true, i.e. not universal. For example, many physical laws are valid in ideal and 

perfectly closed systems. However, perfectly closed systems do not exist in our 

heterogeneous world where we mostly deal with approximations. Also, since 

in the real world there is not a single homogenous space, we have to use the 

multispace for any attempt to unify various theories. 

We do not have perfect spaces and perfect systems in reality. Therefore, many 

physical laws function approximatively (see [5]). The physical constants are 

not universal too; variations of their values depend from a space to another, 

from a system to another. A physical constant is t% true, i% indeterminate, 

and f% false in a given space with a certain composition, and it has a different 

neutrosophical truth value <t’, i’, f’> in another space with another 

composition. 

A neutrosophic axiomatic system may be dynamic: new axioms can be added 

and others excluded. 

The neutrosophic axiomatic systems are formed by axioms than can be 

partially dependent (redundant), partially contradictory (inconsistent), 

partially incomplete, and reflecting a partial truth (and consequently a partial 

indeterminacy and a partial falsehood) - since they deal with approximations 

of reality. 
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Abstract 

In this paper we define for the first time three neutrosophic actions and their 

properties. We then introduce the prevalence order on {𝑇, 𝐼, 𝐹} with respect to a 

given neutrosophic operator “o”, which may be subjective - as defined by the 

neutrosophic experts. And the refinement of neutrosophic entities <A>, <neutA>, 

and <antiA>. Then we extend the classical logical operators to neutrosophic literal 
logical operators and to refined literal logical operators, and we define the 
refinement neutrosophic literal space.

Keywords 

neutrosophy, neutrosophics, neutrosophic actions, prevalence order, neutrosophic 

operator, refinement of neutrosophic entities, neutrosophic literal logical operators, 

refined literal logical operators, refinement neutrosophic literal space. 

1 Introduction 

In Boolean Logic, a proposition 𝒫  is either true (T), or false (F). In 

Neutrosophic Logic, a proposition 𝒫  is either true (T), false (F), or 

indeterminate (I). 

For example, in Boolean Logic the proposition 𝒫1: 

"1+1=2 (in base 10)" 

is true, while the proposition 𝒫2: 

"1+1=3 (in base 10)" 

is false. 

Neutrosophic Actions, Prevalence Order, Refinement 
of Neutrosophic Entities, and Neutrosophic Literal 

Logical Operators 

Florentin Smarandache 
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In neutrosophic logic, besides propositions 𝒫1 (which is true) and 𝒫2 (which is 

false), we may also have proposition 𝒫3: 

"1+1= ?(in base 10)", 

which is an incomplete/indeterminate proposition (neither true, nor false). 

1.1 Remark 

All conjectures in science are indeterminate at the beginning (researchers not 

knowing if they are true or false), and later they are proved as being either true, 

or false, or indeterminate in the case they were unclearly formulated. 

2 Notations 

In order to avoid confusions regarding the operators, we note them as: 
Boolean (classical) logic: 

¬, ∧, ∨, ∨, →, ↔ 

Fuzzy logic: 
¬
𝐹 ,

∧
𝐹

 ,
∨
𝐹

 ,
∨

𝐹
 ,

→
𝐹

 ,
↔
𝐹

Neutrosophic logic: 
¬
𝑁 ,

∧
𝑁

 ,
∨
𝑁

 ,
∨

𝑁
 ,

→
𝑁

 ,
↔
𝑁

3 Three Neutrosophic Actions 

In the frame of neutrosophy, we have considered [1995] for each entity 〈A〉, its 

opposite 〈antiA〉, and their neutrality 〈neutA〉 {i.e. neither 〈A〉, nor 〈antiA〉}.  

Also, by 〈nonA〉 we mean what is not 〈A〉, i.e. its opposite 〈antiA〉, together with 

its neutral(ity) 〈neutA〉; therefore: 

〈non𝐴〉 = 〈neut𝐴〉 ∨ 〈anti𝐴〉. 

Based on these, we may straightforwardly introduce for the first time the 

following neutrosophic actions with respect to an entity <A>: 

1. To neutralize (or to neuter, or simply to neut-ize) the entity <A>.

[As a noun: neutralization, or neuter-ization, or simply neut-

ization.]  We denote it by <neutA> or neut(A). 

2. To antithetic-ize (or to anti-ize) the entity <A>.  [As a noun:

antithetic-ization, or anti-ization.]  We denote it by <antiA> ot 

anti(A).  
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This action is 100% opposition to entity <A> (strong opposition, or 

strong negation). 

3. To non-ize the entity <A>.  [As a noun: non-ization].  We denote

it by <nonA> or non(A). 

It is an opposition in a percentage between (0, 100]% to entity <A> 

(weak opposition). 

Of course, not all entities <A> can be neutralized, or antithetic-ized, or non-

ized. 

3.1 Example 

Let 

〈A〉="Phoenix Cardinals beats Texas Cowboys". 

Then, 

〈neutA〉="\"Phoenix Cardinals has a tie game with Texas 

Cowboys\""; 

〈antiA〉="\"Phoenix Cardinals is beaten by Texas Cowboys\""; 

〈nonA〉="\"Phoenix Cardinals has a tie game with Texas Cowboys," 

"or Phoenix Cardinals is beaten by Texas Cowboys\"." 

3.2 Properties of the Three Neutrosophic Actions 

neut(〈anti𝐴〉) = neut(〈neutA〉) = neut(𝐴); 

anti(〈anti𝐴〉) = 𝐴;  anti(〈neut𝐴〉) = 〈𝐴〉 or 〈anti𝐴〉;  

non(〈anti𝐴〉) = 〈𝐴〉 or 〈neut𝐴〉;  non(〈neut𝐴〉) = 〈𝐴〉 or 〈anti𝐴〉. 

4 Neutrosophic Actions’ Truth-Value Tables 

Let’s have a logical proposition P, which may be true (T), Indeterminate (I), or 

false (F) as in previous example. One applies the neutrosophic actions below. 

4.1 Neutralization (or Indetermination) of P 

neut(P) T I F 

I I I 
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4.2 Antitheticization (Neutrosophic Strong Opposition to P) 

4.3 Non-ization (Neutrosophic Weak Opposition to P): 

5 Refinement of Entities in Neutrosophy 

In neutrosophy, an entity 〈A〉 has an opposite 〈antiA〉 and a neutral 〈neutA〉. 

But these three categories can be refined in sub-entities 〈𝐴〉1, 〈𝐴〉2, … , 〈𝐴〉𝑚 , 

and respectively 〈neut𝐴〉1, 〈neut𝐴〉2, … , 〈neut𝐴〉𝑛 , and also 〈anti𝐴〉1 , 

〈anti𝐴〉2, … , 〈anti𝐴〉𝑝 , where m, n, p are integers ≥1, but 𝑚 + 𝑛 + 𝑝 ≥ 4 

(meaning that at least one of 〈A〉, 〈antiA〉 or 〈neutA〉 is refined in two or more 

sub-entities). 

For example, if 〈A〉=white color, then 

〈antiA〉=black color, 

while 〈neutA〉=colors different from white and black. 

If we refine them, we get various nuances of white color: 〈𝐴〉1, 〈𝐴〉2, …, and 

various nuances of black color: 〈anti𝐴〉1, 〈anti𝐴〉2, …, and the colors in between 

them (red, green, yellow, blue, etc.): 〈neut𝐴〉1, 〈neut𝐴〉2, … . 

Similarly as above, we want to point out that not all entities <A> and/or their 

corresponding (if any) <neutA> and <antiA> can be refined. 

6 The Prevalence Order 

Let’s consider the classical literal (symbolic) truth (T) and falsehood (F). 

In a similar way, for neutrosophic operators we may consider the literal 

(symbolic) truth (T), the literal (symbolic) indeterminacy (I), and the literal 

(symbolic) falsehood (F). 

We also introduce the prevalence order on {𝑇, 𝐼, 𝐹} with respect to a given 

binary and commutative neutrosophic operator “o”. 

anti(P) T I F 

F 𝑇 ∨ 𝐹 T 

non(P) T I F 

𝐼 ∨ 𝐹 𝑇 ∨ 𝐹 𝑇 ∨ 𝐼 
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The neutrosophic operators are: neutrosophic negation, neutrosophic 

conjunction, neutrosophic disjunction, neutrosophic exclusive disjunction, 

neutrosophic Sheffer’s stroke, neutrosophic implication, neutrosophic 

equivalence, etc. 

The prevalence order is partially objective (following the classical logic for the 

relationship between T and F), and partially subjective (when the 

indeterminacy I interferes with itself or with T or F). 

For its subjective part, the prevalence order is determined by the neutrosophic 

logic expert in terms of the application/problem to solve, and also depending 

on the specific conditions of the application/problem. 

For 𝑋 ≠ 𝑌, we write 𝑋℗𝑌, or 𝑋 ≻𝑜 𝑌, and we read X prevails to Y with respect 

to the neutrosophic binary commutative operator “o”, which means that 

𝑋𝑜𝑌 = 𝑋. 

Let’s see the below examples. We mean by “o”: conjunction, disjunction, 

exclusive disjunction, Sheffer’s stroke, and equivalence. 

7 Neutrosophic Literal Operators & 

Neutrosophic Numerical Operators 

7.1 If we mean by neutrosophic literal proposition, a proposition whose truth 

value is a letter: either T or I or F.  The operators that deal with such logical 

propositions are called neutrosophic literal operators. 

7.2 And by neutrosophic numerical proposition, a proposition whose truth 

value is a triple of numbers (or in general of numerical subsets of the interval 

[0, 1]), for examples A(0.6, 0.1, 0.4) or B([0, 0.2], {0.3, 0.4, 0.6}, (0.7, 0.8)). The 

operators that deal with such logical propositions are called neutrosophic 

numerical operators. 

8 Truth-Value Tables of Neutrosophic Literal Operators 

In Boolean Logic, one has the following truth-value table for negation: 

8.1 Classical Negation 

¬ T F 

F T 
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In Neutrosophic Logic, one has the following neutrosophic truth-value table 

for the neutrosophic negation: 

8.2 Neutrosophic Negation 

So, we have to consider that the negation of I is I, while the negations of T and 

F are similar as in classical logic. 

In classical logic, one has: 

8.3 Classical Conjunction 

In neutrosophic logic, one has: 

8.4 Neutrosophic Conjunction (𝐴𝑁𝐷𝑁), version 1 

The objective part (circled literal components in the above table) remains as 

in classical logic, but when indeterminacy I interferes, the neutrosophic expert 

may choose the most fit prevalence order.  

There are also cases when the expert may choose, for various reasons, to 

entangle the classical logic in the objective part. In this case, the prevalence 

order will be totally subjective. 

¬
N T I F 

I 

∧ T F 

T T F 

F F F 

∧N T I F 

T I 

I   I I    I 

F I 

F T 

T F 

F F 
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The prevalence order works for classical logic too. As an example, for classical 

conjunction, one has 𝐹 ≻𝑐 𝑇 , which means that 𝐹 ∧ 𝑇 = 𝐹.  While the 

prevalence order for the neutrosophic conjunction in the above tables was: 

𝐼 ≻𝑐 𝐹 ≻𝑐 𝑇, 

which means that 𝐼 ∧𝑁 𝐹 = 𝐼, and 𝐼 ∧𝑁 𝑇 = 𝐼. 

Other prevalence orders can be used herein, such as: 

𝐹
≻𝑐

𝐼 ≻𝑐 𝑇, 

and its corresponding table would be: 

8.5 Neutrosophic Conjunction (𝐴𝑁𝐷𝑁), version 2 

which means that 𝐹∧𝑁
𝐼 = 𝐹 and 𝐼∧𝑁

𝐼 = 𝐼; or another prevalence order: 

𝐹 ≻𝑐 𝑇 ≻𝑐 𝐼, 

and its corresponging table would be: 

8.6 Neutrosophic Conjunction (𝐴𝑁𝐷𝑁), version 3 

which means that 𝐹∧𝑁
𝐼 = 𝐹 and 𝑇∧𝑁

𝐼 = 𝑇. 

∧N T I F 

T I 

I   I I    F 

F F 

∧N T I F 

T T 

I  T I    F 

F F 

T F 

F F 

T F 

F F 
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If one compares the three versions of the neutrosophic literal conjunction, one 

observes that the objective part remains the same, but the subjective part 

changes. 

The subjective of the prevalence order can be established in an optimistic way, 

or pessimistic way, or according to the weights assigned to the neutrosophic 

literal components T, I, F by the experts. 

In a similar way, we do for disjunction. In classical logic, one has: 

8.7 Classical Disjunction 

In neutrosophic logic, one has: 

8.8 Classical Disjunction (𝑂𝑅𝑁) 

where we used the following prevalence order: 

𝑇 ≻𝑑 𝐹 ≻𝑑 𝐼, 

but the reader is invited (as an exercise) to use another prevalence order, such 

as: 

𝑇 ≻𝑑 𝐼 ≻𝑑 𝐹, 

Or 

 𝐼 ≻𝑑 𝑇 ≻𝑑 𝐹, etc., 

for all neutrosophic logical operators presented above and below in this paper. 

In classical logic, one has: 

∨ T F 

T T T 

F T F 

∨N T I F 

T T 

I   T I    F 

F 
F 

T T 

T F 
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8.9 Classical Exclusive Disjunction 

In neutrosophic logic, one has: 

8.10 Neutrosophic Exclusive Disjunction 

using the prevalence order 

𝑇 ≻𝑑 𝐹 ≻𝑑 𝐼. 

In classical logic, one has: 

8.11 Classical Sheffer’s Stroke 

In neutrosophic logic, one has: 

8.12 Neutrosophic Sheffer’s Stroke 

∨ T F 

T F T 

F T F 

∨N T I F 

T T 

I   T I    F 

F F 

| T F 

T F T 

F T T 

|N T I F 

T T 

I   T I    I 

F I 

F T 

T T 

F T 

T F 
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using the prevalence order 

𝑇 ≻𝑑 𝐼 ≻𝑑 𝐹. 

In classical logic, one has: 

8.13 Classical Implication 

In neutrosophic logic, one has: 

8.14 Neutrosophic Implication 

using the subjective preference that 𝐼 →N 𝑇 is true (because in the classical 

implication 𝑇 is implied by anything), and 𝐼 →N 𝐹 is false, while 𝐼 →N 𝐼 is true 

because is similar to the classical implications 𝑇 → 𝑇  and 𝐹 → 𝐹 , which are 

true. 

The reader is free to check different subjective preferences. 

In classical logic, one has: 

8.15 Classical Equivalence 

In neutrosophic logic, one has: 

→ T F 

T T F 

F T T 

→N T I F 

T I 

I   T T    F 

F T 

↔ T F 

T T F 

F F T 

T F 

T T 
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8.15 Neutrosophic Equivalence 

using the subjective preference that 𝐼 ↔N 𝐼 is true, because it is similar to the 

classical equivalences that 𝑇 → 𝑇  and 𝐹 → 𝐹  are true, and also using the 

prevalence: 

𝐼 ≻𝑒 𝐹 ≻𝑒 𝑇. 

9 Refined Neutrosophic Literal Logic 

Each particular case has to be treated individually. 

In this paper, we present a simple example. Let’s consider the following 

neutrosophic logical propositions: 

T = Tomorrow it will rain or snow. 

T is split into  

 Tomorrow it will rain. 

 Tomorrow it will snow. 

F = Tomorrow it will neither rain nor snow. 

F is split into  

 Tomorrow it will not rain. 

 Tomorrow it will not snow. 

I = Do not know if tomorrow it will be raining, nor if it will be snowing. 

I is split into  

 Do not know if tomorrow it will be raining or not. 

 Do not know if tomorrow it will be snowing or not. 

Then: 

¬N T1 T2 I1 I2 F1 F2 

𝐹1 𝐹2 𝑇1 ∨ 𝐹1 𝑇2 ∨ 𝐹2 𝑇1 𝑇2 

↔N T I F 

T I 

I   I T    I 

F I 

T F 

F T 
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It is clear that the negation of 𝑇1 (Tomorrow it will raining) is 𝐹1 (Tomorrow it 

will not be raining). Similarly for the negation of  𝑇2, which is 𝐹2. 

But, the negation of  𝐼1 (Do not know if tomorrow it will be raining or not) is 

“Do know if tomorrow it will be raining or not”, which is equivalent to “We 

know that tomorrow it will be raining” (𝑇1), or “We know that tomorrow it will 

not be raining” (𝐹1).  

Whence, the negation of 𝐼1 is 𝑇1 ∨ 𝐹1, and similarly, the negation of 𝐼2 is 𝑇2 ∨ 𝐹2. 

9.1 Refined Neutrosophic Literal Conjunction Operator 

∧N T1 T2 I1 I2 F1 F2 

T1 𝑇1 𝑇1 2 𝐼1 𝐼2 𝐹1 𝐹2 

T2 𝑇1 2 𝑇2 𝐼1 𝐼2 𝐹1 𝐹2 

I1 𝐼1 𝐼1 𝐼1 I 𝐹1 𝐹2 

I2 𝐼2 𝐼2 I 𝐼2 𝐹1 𝐹2 

F1 𝐹1 𝐹1 𝐹1 𝐹1 𝐹1 F 

F2 𝐹2 𝐹2 𝐹2 𝐹2 F 𝐹2 

where 𝑇1 2 = 𝑇1 ∧ 𝑇2 = “Tomorrow it will rain and it will snow”.  

Of course, other prevalence orders can be studied for this particular example. 

With respect to the neutrosophic conjunction, 𝐹𝑙  prevail in front of 𝐼𝑘, which 

prevail in front of 𝑇𝑗 , or 𝐹𝑙 ≻ 𝐼𝑘 ≻ 𝑇𝑗, for all 𝑙, 𝑘, 𝑗 ∈ {1, 2}. 

9.2 Refined Neutrosophic Literal Disjunction Operator 

∨N T1 T2 I1 I2 F1 F2 

T1 𝑇1 T 𝑇1 𝑇1 𝑇1 𝑇1 

T2 T 𝑇2 𝑇2 𝑇2 𝑇2 𝑇2 

I1 𝑇1 𝑇2 𝐼1 I 𝐹1 𝐹2 

I2 𝑇1 𝑇2 I 𝐼2 𝐹1 𝐹2 

F1 𝑇1 𝑇2 𝐹1 𝐹1 𝐹1 𝐹1 ∨ 𝐹2 

F2 𝑇1 𝑇2 𝐹2 𝐹2 𝐹1 ∨ 𝐹2 𝐹2 
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With respect to the neutrosophic disjunction, 𝑇𝑗  prevail in front of 𝐹𝑙 , which 

prevail in front of  𝐼𝑘 , or 𝑇𝑗 ≻ 𝐹𝑙 ≻ 𝐼𝑘, for all 𝑗, 𝑙, 𝑘 ∈ {1, 2}. 

For example, 𝑇1 ∨ 𝑇2 = 𝑇, but 𝐹1 ∨ 𝐹2 ∉ {𝑇, 𝐼 𝐹} ∪ {𝑇1, T2, 𝐼1, I2, 𝐹1, F2}. 

9.3 Refined Neutrosophic Literal Space 

The Refinement Neutrosophic Literal Space {𝑇1, 𝑇2, 𝐼1, 𝐼2, 𝐹1, 𝐹2} is not closed 

under neutrosophic negation, neutrosophic conjunction, and neutrosophic 

disjunction. The reader can check the closeness under other neutrosophic 

literal operations. 

A neutrosophic refined literal space 

𝑆𝑁 = {𝑇1, 𝑇2, … , 𝑇𝑝;  𝐼1, 𝐼2, … , 𝐼𝑟;  𝐹1, 𝐹2, … , 𝐹𝑠}, 

where 𝑝, 𝑟, 𝑠 are integers ≥ 1, is said to be closed under a given neutrosophic 

operator "𝜃𝑁", if for any elements 𝑋, 𝑌 ∈ 𝑆𝑁 one has 𝑋𝜃𝑁
𝑌 ∈ 𝑆𝑁 . 

Let’s denote the extension of 𝑆𝑁 with respect to a single 𝜃𝑁 by: 

𝑆𝑁1

𝐶 = (𝑆𝑁, 𝜃𝑁).

If 𝑆𝑁  is not closed with respect to the given neutrosophic operator 𝜃𝑁 , then 

𝑆𝑁1

𝐶 ≠ 𝑆𝑁 , and we extend 𝑆𝑁 by adding in the new elements resulted from the

operation 𝑋𝜃𝑁𝑌, let’s denote them by 𝐴1, 𝐴2, … 𝐴𝑚. 

Therefore, 

𝑆𝑁1

𝐶 ≠ 𝑆𝑁 ∪ {𝐴1, 𝐴2, … 𝐴𝑚}.

𝑆𝑁1

𝐶  encloses 𝑆𝑁.

Similarly, we can define the closeness of the neutrosophic refined literal space 

𝑆𝑁 with respect to the two or more neutrosophic operators 𝜃1𝑁
, 𝜃2𝑁

, … , 𝜃𝑤𝑁
, 

for 𝑤 ≥ 2. 

𝑆𝑁  is closed under 𝜃1𝑁
, 𝜃2𝑁

, … , 𝜃𝑤𝑁
 if for any 𝑋, 𝑌 ∈ 𝑆𝑁  and for any 𝑖 ∈

{1, 2, … , 𝑤} one has 𝑋𝜃𝑖𝑁
𝑌 ∈ 𝑆𝑁.

If 𝑆𝑁 is not closed under these neutrosophic operators, one can extend it as 

previously. 

Let’s consider: 𝑆𝑁𝑤

𝐶 = (𝑆𝑁, 𝜃1𝑁
, 𝜃2𝑁

, … , 𝜃𝑤𝑁
), which is 𝑆𝑁 closed with respect to

all neutrosophic operators 𝜃1𝑁
, 𝜃2𝑁

, … , 𝜃𝑤𝑁
, then 𝑆𝑁𝑤

𝐶  encloses 𝑆𝑁.
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10 Conclusion 

We have defined for the first time three neutrosophic actions and their 

properties. We have introduced the prevalence order on {𝑇, 𝐼, 𝐹} with respect 

to a given neutrosophic operator “o”, the refinement of neutrosophic entities 

<A>, <neutA>, and <antiA>, and the neutrosophic literal logical operators and 

refined literal logical operators, and the refinement neutrosophic literal space. 
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Keywords: Single valued neutrosophic set, bipolar neutrosophic set, single valued neutrosophic 
graph, bipolar single valued neutrosophic graphs. 

Abstract. In this paper, we first define the concept of bipolar single neutrosophic graphs as the 
generalization of bipolar fuzzy graphs, N-graphs, intuitionistic fuzzy graph, single valued 
neutrosophic graphs and bipolar intuitionistic fuzzy graphs. 

1. Introduction

Zadeh [9] coined the term ‘degree of membership’ and defined the concept of fuzzy set in order to 
deal with uncertainty. Atanassov [8] incorporated the degree of non-membership in the concept of 
fuzzy set as an independent component and defined the concept of intuitionistic fuzzy set. 
Smarandache [2] grounded the term ‘degree of indeterminacy’ as an independent component and 
defined the concept of neutrosophic set from the philosophical point of view to deal with 
incomplete, indeterminate and inconsistent information in real world. The concept of neutrosophic 
set is a generalization of the theory of fuzzy set, intuitionistic fuzzy set. Each element of a 
neutrosophic set has three membership degrees including a truth membership degree, an 
indeterminacy membership degree, and a falsity membership degree which are within the real 
standard or nonstandard unit interval ]−0, 1+[. Therefore, if their range is restrained within the real
standard unit interval [0, 1], the neutrosophic set is easily applied to engineering problems. For this 
purpose, Wang et al. [6] introduced the concept of the single-valued neutrosophic set (SVNS) as a 
subclass of the neutrosophic set. Recently, Deli et al. [7] defined the concept of bipolar 
neutrosophic, as a generalization of single valued neutrosophic set, and bipolar fuzzy graph, also 
studying some of their related properties. The neutrosophic set theory of and their extensions have 
been applied in various domains [22] (refer to the site http://fs.gallup.unm.edu/NSS/). 

When the relations between nodes (or vertices) in problems are indeterminate, the concept of 
fuzzy graphs [15] and its extensions, such as intuitionistic fuzzy graphs [11, 16], N-graphs [13], 
bipolar fuzzy graphs [11, 12, 14], bipolar intuitionistic fuzzy graphs [1] are not suitable. For this 
purpose, Smarandache [3] defined four main categories of neutrosophic graphs, two based on literal 
indeterminacy (I), calling them I-edge neutrosophic graph and I-vertex neutrosophic graph; these 
concepts are deeply studied and gained popularity among some researchers [4, 5, 19, 20, 21] due to 
their applications in the real world problems. The two others graphs are based on (t, i, f) 
components, and are called: (t, i, f)-edge neutrosophic graph and (t, i, f)-vertex neutrosophic graph; 
but these new concepts are not developed at all yet. Later on, Broumi et al. [18] introduced a third 
neutrosophic graph model. The single valued neutrosophic graph is the generalization of fuzzy 
graph and intuitionstic fuzzy graph. Also, the same authors [17] introduced neighborhood degree of 
a vertex and closed neighborhood degree of a vertex in the single valued neutrosophic graph, as a 
generalization of neighborhood degree of a vertex and closed neighborhood degree of vertex in 
fuzzy graph and intuitionistic fuzzy graph.  

An Introduction to Bipolar Single Valued 
Neutrosophic Graph Theory 

Said Broumi, Florentin Smarandache, Mohamed Talea, Assia Bakali 

Said Broumi, Florentin Smarandache, Mohamed Talea, Assia Bakali (2016). An 
Introduction to Bipolar Single Valued Neutrosophic Graph Theory. Applied Mechanics 
and Materials, 841, 148-191; DOI: 10.4028/www.scientific.net/AMM.841.184
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In this paper, motivated by the works of Deli et al. [7] and Broumi et al. [18], we introduced the 
concept of bipolar single valued neutrosophic graph and proved some propositions. 

2. Preliminaries

In this section, we mainly recall some notions, which we are also going to use in the rest of the 
paper. The readers are referred to [6, 7, 10, 11, 13, 15, 18] for further details and background. 

Definition 2.1 [6] 
Let U be an universe of a discourse; then, the neutrosophic set A is an object having the form A 

= {< x: , , >, x ∈ U}, where the functions T, I, F: U→]−0,1+[  define respectively
the degree of membership, the degree of indeterminacy, and the degree of non-membership of the 
element x ∈ U to the set A with the condition: −0 ≤ + + ≤ 3+.

Definition 2.2 [7] 
A bipolar neutrosophic set A in X is defined as an object of the form A={<x, (x), (x), 
(x), (x), (x), (x)>: x  X}, where , , :X  [1, 0] and , , : X  [-1, 0]. 

The positive membership degree (x), (x), (x) denotes the truth membership, indeterminate 
membership and false membership of an element  X corresponding to a bipolar neutrosophic set 
A, and the negative membership degree (x), (x), (x) denotes the truth membership, 
indeterminate membership and false membership of an element  X to some implicit counter-
property corresponding to a bipolar neutrosophic set A. 

Example 2.1  
Let X = { , , }; 

A =  is a bipolar neutrosophic subset of X. 

Definition 2.3 [7] 
Let  = {<x, (x), (x), (x), (x), (x), (x)>} and  = {<x, (x), (x), x), 
(x), (x), (x) >} be two bipolar neutrosophic sets. Then,  if and only if (x) 
(x) , (x) (x), (x)  (x)  and  (x) (x) , (x) (x) , (x) (x)  for all 

x  X. 
Definition 2.4 [15] 
A fuzzy graph with V as the underlying set is a pair G = (σ, μ), where σ: V → [0, 1] is a fuzzy 

subset and μ: V × V → [0, 1] is a fuzzy relation on σ such that μ(x, y)  σ(x)  σ(y) for all x, y ∈ V 
where stands for minimum. 

Definition 2.5 [13]  
By a N-graph G of a graph , we mean a pair G= ( , ) where  is an N-function in V and 

is an N-relation on E such that (u,v)  max ( (u), (v)) all u, v  V. 
Definition 2.6 [10]  
An intuitionistic fuzzy graph is of the form G = (V, E), where 
i. V = { , ,…., } such that : V  [0,1] and : V  [0,1] denoting the degree 

of membership and non-membership of the element  V, respectively, and 0≤ ( ) + 
( )) ≤ 1 for every  V, (i = 1, 2, ……. n),        (1) 

ii. E    V x V where  : VxV [0,1] and : VxV  [0,1] are such that ( , ) ≤ 
min [ ( ), ( )] and ( , )  max [ ( ), ( )] and 0 ≤ ( , ) + ( , ) ≤ 1 for 
every ( , )  E, ( i, j = 1,2, ……. n).                                                            (2) 

Definition 2.7 [11]  
Let X be a non-empty set. A bipolar fuzzy set A in X is an object having the form A = {(x, (x), 
(x)) | x  X}, where (x): X → [0, 1] and (x): X → [−1, 0] are mappings. 
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Definition 2.8 [11] 
A bipolar fuzzy graph of a graph =  (V, E)  is a pair G = (A,B), where A = ( , ) is a 

bipolar fuzzy set in V and B = ( , ) is a bipolar fuzzy set on  E V x V such that (xy) 
min{ (x), (y)} for all xy ,  (xy) min{ (x), (y)} for all xy  and (xy) = (xy) 
= 0 for all xy –E. Here A is called bipolar fuzzy vertex set of V, and B - the bipolar fuzzy edge
set of E. 

Definition 2.9 [18]  
A single valued neutrosophic graph (SVNG) of a graph = (V, E) is a pair G = (A, B), where: 
i. V = { , ,…, } such that :V [0, 1], :V [0, 1] and :V [0, 1] denote the degree

of truth-membership, degree of indeterminacy-membership and falsity-membership of the
element   V, respectively, and 0   + ( ) +  3 for every  V (i=1, 2,
…, n).  (3) 

ii. E  V x V, where :V x V [0, 1], :V x V [0, 1] and :V x V [0, 1] are such that 
 min [ , ],  max [ , ] and  max 

[ , ] and  0  + + 3, for every  E (i, j = 
1, 2,…, n).          (4) 

3. Bipolar Single Valued Neutrosophic Graphs

In this section, we firstly define the concept of a bipolar single valued neutrosophic relation. 
Definition 3.1 
Let X be a non-empty set. Then we call a mapping A = (x, (x), (x), (x), (x), (x), 
(x)):X × X → [−1, 0] × [0, 1] a bipolar single valued neutrosophic relation on X such that (x, 

y) [0, 1], (x, y)  [0, 1], (x, y)  [0, 1], and (x, y)  [−1, 0], (x, y)  [−1, 0], (x, y) 
[−1, 0]. 

Definition 3.2 
Let A = ( , ,  ,  ,  ) and B = ( , , ,  , ) be a bipolar single valued 

neutrosophic graph on a set X. If B = ( , , , , ) is a bipolar single valued 
neutrosophic relation on A = ( , , ,  ,  ) then: 

(x, y)  min( (x), (y)),   (x, y)  max( (x), (y))         (5) 
(x, y)  max( (x), (y)), (x, y)  min( (x), (y)) (6) 
(x, y)  max( (x), (y)), (x, y)  min( (x), (y)), for all x, y  X.  (7) 

A bipolar single valued neutrosophic relation B on X is called symmetric if (x, y) = (y, 
x), (x, y) = (y, x), (x, y) = (y, x) and (x, y) = (y, x), (x, y) = (y, x), (x, y) = 

(y, x), for all x, y  X.    
Definition 3.3  
A bipolar single valued neutrosophic graph of a graph  = (V, E) is a pair G = (A, B), where A 

= ( , , ,  ,  ) is a bipolar single valued neutrosophic set in V, and B = ( , , 
,  ,  ) is a bipolar single valued neutrosophic set in , such that 

(x, y)  min( ( ), ( )),      (x, y)  max( ( ), ( ))           (8) 
(x, y)  max( ( ), ( )),      (x, y)  min( ( ), ( )), and     (9) 
(x, y)  max( ( ), ( )),  (x, y)  min( ( ), ( )), for all xy .  (10) 

Notation  
An edge of BSVNG is denoted by   E or   E. 
Here, the sextuple ( , , , , ,  ) denotes the positive degree of truth-membership, 

the positive degree of indeterminacy-membership, the positive degree of falsity-membership, the 
negative degree of truth-membership, the negative degree of indeterminacy-membership, the 

negative degree of falsity- membership of the vertex .  
The sextuple (  , , ,  ,  ,  ) denotes the positive degree of truth-membership, the 

positive degree of indeterminacy-membership, the positive degree of falsity-membership, the 
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negative degree of truth-membership, the negative degree of indeterminacy-membership, the 
negative degree of falsity- membership of the edge relation  = ( , ) on V  V. 

Notes 
i. When   =  = = 0 and  =  = = 0 for some i and j, then there is no edge 

between and  . Otherwise there exists an edge between and  .
ii. If one of the inequalities is not satisfied, then G is not a BSVNG.

Fig.1: Bipolar single valued neutrosophic graph. 

Proposition 3.1 
A bipolar single valued neutrosophic graph is the generalization of the fuzzy graph. 
Proof 
Suppose G = (A, B) is a bipolar single valued neutrosophic graph. Then, by setting the positive 

indeterminacy-membership, positive falsity-membership and negative truth-membership, negative 
indeterminacy-membership, negative falsity-membership values of vertex set and edge set equals to 
zero, it reduces the bipolar single valued neutrosophic graph to a fuzzy graph. 

Example 3.1 

Fig. 2: Fuzzy graph 

Proposition 3.2 

A bipolar single valued neutrosophic graph is the generalization of the bipolar intuitionstic fuzzy 
graph. 

Florentin Smarandache (ed.) Collected Papers, VI

68



Proof 
Suppose G = (A, B) is a bipolar single valued neutrosophic graph. Then, by setting the positive 

indeterminacy-membership, negative indeterminacy-membership values of vertex set and edge set 
equals to zero, it reduces the bipolar single valued neutrosophic graph to a bipolar intuitionistic 
fuzzy graph. 

Example 3.2 

Fig.3:  Intuitionistic fuzzy graph.

Proposition 3.3 
A bipolar single valued neutrosophic graph is the generalization of the single valued 

neutrosophic graph. 
Proof 
Suppose G = (A, B) is a bipolar single valued neutrosophic graph. Then, by setting the negative 

truth-membership, negative indeterminacy-membership, negative falsity-membership values of 
vertex set and edge set equals to zero, it reduces the bipolar single valued neutrosophic graph to a 
single valued neutrosophic graph. 

Example 3.3 

Fig. 4: Single valued neutrosophic graph. 

Proposition 3.4 
A bipolar single valued neutrosophic graph is the generalization of the bipolar intuitionstic fuzzy 

graph. 

Florentin Smarandache (ed.) Collected Papers, VI

69



Proof 
Suppose G = (A, B) is a bipolar single valued neutrosophic graph. Then, by setting the positive 

indeterminacy-membership, negative indeterminacy-membership values of vertex set and edge set 
equals to zero, it reduces the bipolar single valued neutrosophic graph to a bipolar intuitionistic 
fuzzy graph. 

Example 3.4 

Fig.5: Bipolar intuitionistic fuzzy graph. 

Proposition 3.5 
A bipolar single valued neutrosophic graph is the generalization of the N-graph. 
Proof 
Suppose G = (A, B) is a bipolar single valued neutrosophic graph. Then, by setting the positive 

degree membership such truth-membership, indeterminacy-membership, falsity-membership and 
negative indeterminacy-membership, negative falsity-membership values of vertex set and edge set 
equals to zero, it reduces the single valued neutrosophic graph to a N-graph. 

Example 3.5 

Fig. 6: N-graph. 
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4. Conclusion

In this paper, we have introduced the concept of bipolar single valued neutrosophic graphs and also 
proved that the most widely used extensions of fuzzy graphs are particular cases of bipolar single 
valued neutrosophic graphs. So our future work will focus on: (1) The study of certains types of 
bipolar single valued neutrosophic graphs such as, complete bipolar single valued neutrosophic 
graphs, strong bipolar single valued neutrosophic graphs, regular bipolar single valued neutrosophic 
graphs. (2) The concept of energy of bipolar single valued neutrosophic graphs. (3) The study about 
applications, especially in traffic light problem.  
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Abstract 

Since the world is full of indeterminacy, the neutrosophics found their place into 

contemporary research. In neutrosophic set, indeterminacy is quantified explicitly 

and truth-membership, indeterminacy-membership and falsity-membership are 

independent. For that purpose, it is natural to adopt the value from the selected set 

with highest degree of truth-membership, indeterminacy membership and least 

degree of falsity-membership on the decision set. These factors indicate that a 

decision making process takes place in neutrosophic environment. In this paper, we 

introduce and study the probability of neutrosophic crisp sets. After giving the 

fundamental definitions and operations, we obtain several properties and discuss the 

relationship between them. These notions can help researchers and make great use 

in the future in making algorithms to solve problems and manage between these 

notions to produce a new application or new algorithm of solving decision support 

problems. Possible applications to mathematical computer sciences are touched upon.

Keyword 

Neutrosophic set, Neutrosophic probability, Neutrosophic crisp set, Intuitionistic 

neutrosophic set. 

1 Introduction 

Neutrosophy has laid the foundation for a whole family of new mathematical 

theories generalizing both their classical and fuzzy counterparts [1, 2, 3, 22, 23, 

24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 42] such as the neutrosophic 

set theory.  The fundamental concepts of neutrosophic set, introduced by 

Smarandache in [37, 38, 39, 40], and Salama et al. in [4, 5, 6, 7, 8, 9, 10, 11, 12, 

13, 14, 15, 16, 17, 18, 19, 20, 21], provides a natural foundation for treating 

mathematically the neutrosophic phenomena which pervasively exist in our 

real world and for building new branches of neutrosophic mathematics.  

Neutrosophic Crisp Probability Theory & Decision 
Making Process 

A. A. Salama, Florentin Smarandache 

A. A. Salama, Florentin Smarandache (2016). Neutrosophic Crisp Probability Theory & Decision 
Making Process. Critical Review, XII, 34-48  
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In this paper, we introduce and study the probability of neutrosophic crisp sets. 

After giving the fundamental definitions and operations, we obtain several 

properties, and discuss the relationship between neutrosophic crisp sets and 

others.  

2 Terminology 

We recollect some relevant basic preliminaries, and in particular, the work of 

Smarandache in [37, 38, 39, 40], and Salama et al. [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 

14, 15, 16, 17, 18, 19, 20, 21]. Smarandache introduced the neutrosophic 

components T, I, F ― which represent the membership, indeterminacy and 

non-membership values respectively, which are included into the 

nonstandard unit interval.  

2.1 Example 2.1 [37, 39] 

Let us consider a neutrosophic set, a collection of possible locations (positions) 

of particle x and let A and B two neutrosophic sets.  

One can say, by language abuse, that any particle x neutrosophically belongs to 

any set, due to the percentages of truth/indeterminacy/falsity involved, which 

varies between  1  and 0 . 

For example: x (0.5, 0.2, 0.3) belongs to A (which means a probability of 50% 

that the particle x is in A, a probability of 30% that x is not in A, and the rest is 

undecidable); or y (0, 0, 1) belongs to A (which normally means y is not for 

sure in A ); or z (0, 1, 0) belongs to A (which means one does know absolutely 

nothing about z affiliation with A). 

More general, x((0.2-0.3), (0.4—0.45) [0.50-0.51,{0.2,0.24,0.28}) belongs to 

the set, which means: with a probability in between 20-30%, the particle x is 

in a position of A (one cannot find an exact approximation because of various 

sources used); with a probability of 20% or 24% or 28%, x is not in A; the 

indeterminacy related to the appurtenance of x to A is in between 40-45% or 

between 50-51% (limits included).  

The subsets representing the appurtenance, indeterminacy, and falsity may 

overlap, and, in this case, n-sup = 30% + 51% + 28% > 100. 

Definition 2.1 [14, 15, 21] 

A neutrosophic crisp set (NCS for short) 321 ,, AAAA   can be identified to 

an ordered triple 321 ,, AAA  which are subsets on X, and every crisp set in X 

is obviously a NCS having the form 321 ,, AAA . 
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Definition 2.2 [21] 

The object having the form 321 ,, AAAA   is called 

1) Neutrosophic Crisp Set with Type I if it satisfies  21 AA ,  31 AA  

and  32 AA  (NCS-Type I for short). 

2) Neutrosophic Crisp Set with Type II  if it satisfies  21 AA ,  31 AA  

and  32 AA  and  1 2 3A A A X    (NCS-Type II for short). 

3) Neutrosophic Crisp Set with Type III  if it satisfies  321 AAA  and  

1 2 3A A A X    (NCS-Type III for short).

Definition 2.3 

1. Neutrosophic Set [7]:  Let X be a non-empty fixed set. A neutrosophic set (NS

for short) A  is an object having the form )(),(),( xxxA AAA  , where 

   xx AA  ,  and  xA  represent the degree of membership function (namely

 xA ), the degree of indeterminacy (namely  xA ), and the degree of non-

membership (namely  xA ) respectively of each element Xx  to the set A
where 

  1)(,(),(0 xxx AAA 

and 
  3)()()(0 xxx AAA  . 

2. Neutrosophic Intuitionistic Set of Type 1 [8]:  Let X be a non-empty fixed set.

A neutrosophic intuitionistic set of type 1 (NIS1 for short) set A  is an object 

having the form )(),(),( xxxA AAA  , where    xx AA  ,  and  xA  which

represent the degree of membership function (namely  xA ), the degree of 

indeterminacy (namely  xA ), and the degree of non-membership (namely

 xA ) respectively of each element Xx  to the set A  where

   1)(,(),(0 xxx AAA 

and the functions satisfy the condition 

      5.0 xxx AAA   

and 

  3)()()(0 xxx AAA  . 

3. Neutrosophic Intuitionistic Set of Type 2 [41]: Let X be a non-empty fixed set.

A neutrosophic intuitionistic set of type 2 A  (NIS2 for short) is an object having 

the form )(),(),( xxxA AAA   where    xx AA  ,  and  xA which

represent the degree of membership function (namely  xA ), the degree of 
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indeterminacy (namely  xA ), and the degree of non-membership (namely

 xA ) respectively of each element Xx  to the set A  where

)(),(),(5.0 xxx AAA   

and the functions satisfy the condition 

    ,5.0 xx AA    ,5.0)(  xx AA    ,5.0)(  xx AA   

and 

  2)()()(0 xxx AAA  . 

A neutrosophic crisp with three types the object 321 ,, AAAA   can be 

identified to an ordered triple 321 ,, AAA  which are subsets on X, and every 

crisp set in X is obviously a NCS having the form 321 ,, AAA . Every 

neutrosophic set )(),(),( xxxA AAA   on X  is obviously a NS having the 

form )(),(),( xxx AAA  . 

Salama et al in [14, 15, 21] constructed the tools for developed neutrosophic 
crisp set and introduced the NCS NN X,  in X. 

Remark 2.1 

The neutrosophic intuitionistic set is a neutrosophic set, but the neutrosophic 

set is not a neutrosophic intuitionistic set in general. Neutrosophic crisp sets 

with three types are neutrosophic crisp set. 

3 The Probability of Neutrosophic Crisp Sets 

If an experiment produces indeterminacy, that is called a neutrosophic 

experiment. Collecting all results, including the indeterminacy, we get the 

neutrosophic sample space (or the neutrosophic probability space) of the 

experiment. The neutrosophic power set of the neutrosophic sample space is 

formed by all different collections (that may or may not include the 

indeterminacy) of possible results. These collections are called neutrosophic 

events.  

In classical experimental, the probability is 










 trialsofnumber    total
occurs Aevent     timesofnumber  . 

Similarly, Smarandache in [16, 17, 18] introduced the Neutrosophic 

Experimental Probability, which is: 
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 trialsofnumber    total
occurnot    does Aevent    timesofnumber  ,

 trialsofnumber    total
occursacy  indetermin    timesofnumber  ,

 trialsofnumber    total
occurs  Aevent     timesofnumber  

Probability of NCS is a generalization of the classical probability in which the 
chance that an event 321 ,, AAAA   to occur is: 

)  false , P(A)  (A)  true, PP(A 321 ateindetermin , 

on a sample space X, or )(),(),()( 321 APAPAPANP  . 

A subspace of the universal set, endowed with a neutrosophic probability 

defined for each of its subsets, forms a probability neutrosophic crisp space. 

Definition 3.1 

Let X be a non- empty set and A be any type of neutrosophic crisp set on a space 

X, then the neutrosophic probability is a mapping  31,0: XNP , 

)(),(),()( 321 APAPAPANP  , that is the probability of a neutrosophic crisp set 

that has the property that ― 

 










  if  0
10    where

)(
321

321321

o,p,pp
,p),p,p(p

ANP ,,
 . 

Remark 3.1 

1. In case if 321 ,, AAAA  is NCS, then  

  3)()()(0 321 APAPAP . 

2. In case if 321 ,, AAAA  is NCS-Type I, then 2)()()(0 321  APAPAP . 

3. The Probability of NCS-Type II is a neutrosophic  crisp set where
  2)()()(0 321 APAPAP . 

4. The Probability of NCS-Type III is a neutrosophic crisp set where
  3)()()(0 321 APAPAP . 

Probability Axioms of NCS Axioms 

1. The Probability of neutrosophic crisp set and NCS-Type III  A on X

)(),(),()( 321 APAPAPANP  where 0)(,0)(,0)( 321  APAPAP or 

 










  if  0
10    where

)(
321

321321

o,p,pp
,p),p,p(p

ANP ,,
. 

2. The probability of neutrosophic crisp set and NCS-Type IIIs A on X

)(),(),()( 321 APAPAPANP  where   3)()()(0 321 ApApAp . 
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3. Bounding the probability of neutrosophic crisp set and NCS-Type III

)(),(),()( 321 APAPAPANP  where .0)(,0)(,0)(1 321  APAPAP  

4. Addition law for any two neutrosophic crisp sets or NCS-Type III

),()()(()( 1111 BAPBPAPBANP 

),()()(( 2222 BAPBPAP    )()()(( 3333 BAPBPAP  

if  

NBA  , then )()( NNPBANP  . 

),()()(),()()()( 222111 NN NPBNPANPNPBNPANPBANP  

).()()( 333 NNPBNPANP   

Since our main purpose is to construct the tools for developing probability of 

neutrosophic crisp sets, we must introduce the following ― 

1. Probability of neutrosophic crisp empty set with three types ( )( NNP  for 

short) may be defined as four types: 

Type 1:  1,0,0)(),(),()( XPPPNP N  ; 

Type 2:  1,1,0)(),(),()( XPXPPNP N  ; 

Type 3:  0,0,0)(),(),()(  PPPNP N ; 

Type 4:  0,1,0)(),(),()(  PXPPNP N . 

2. Probability of neutrosophic crisp universal and NCS-Type III universal sets

( )( NXNP for short) may be defined as four types ― 

Type 1:   0,0,1)(),(),()(  PPXPXNP N ; 

Type 2:  0,1,1)(),(),()( PXPXPXNP N ; 

Type 3:  1,1,1)(),(),()( XPXPXPXNP N ; 

Type 4:  1,0,1)(),(),()( XPPXPXNP N   . 

Remark 3.2 

,1)( NNXNP  NN ONP )( , where NN O,1  are in Definition 2.1 [6], or equals 

any type for N1 . 

Definition 3.2 (Monotonicity) 

Let X  be a non-empty set, and NCSS A  and B  in the form 321 ,, AAAA  ,

321 ,, BBBB   with 

)(),(),()( 321 APAPAPANP  , )(),(),()( 321 BPBPBPBNP  , 
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then we may consider two possible definitions for subsets ( BA ) ― 

Type1:  

)()P(  and  )()(),()()()( 332211 BPABPAPBPAPBNPANP  , 

or Type2: 

)()P(  and  )()(),()()()( 332211 BPABPAPBPAPBNPANP  . 

Definition 3.3 

Let X be a non-empty set, and NCSs A  and B  in the form 321 ,, AAAA  ,

321 ,, BBBB   be NCSs. 

Then ― 

1. )( BANP   may be defined  two types as ―

Type1: 

)(),(),()( 332211 BAPBAPBAPBANP  , or 

Type2: 

)(),(),()( 332211 BAPBAPBAPBANP  . 

2. )( BANP   may be defined two types as:

Type1: 

)(),(),()( 332211 BAPBAPBAPBANP  , 

or Type 2: 

)(),(),()( 332211 BAPBAPBAPBANP  . 

3. )( cANP may be defined by three types: 

Type1: 

)(),(),()( 321
cccc APAPAPANP  =  )1(),1(),1( 321 AAA

or Type2: 

)(),(),()( 123 APAPAPANP cc 

or Type3: 

)(),(),()( 123 APAPAPANP c  . 
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Proposition 3.1 

Let A  and B in the form 321 ,, AAAA  , 321 ,, BBBB  be NCSs on a non-

empty set X.   

Then ― 

 1 ,1 ,1()()( ANPANP c  or NNXNP 1)(  , or = any type of N1 . 

),()((),()(()( 222111 BAPAPBAPAPBANP 

 )()(( 333 BAPAP  





)(

)(
,

)(
)(,

)(
)()(

33

3

22

2

11

1

BANP
ANP

BANP
ANP

BANP
ANPBANP . 

Proposition 3.1 

Let A  and B in the form 321 ,, AAAA  , 321 ,, BBBB  are NCSs on a non-

empty set X and p  , Np  are NCSs. 

Then 

)(
1,

)(
1,

)(
1)(

XnXnXn
pNP  ; 

)(
11,

)(
1,0)(

XnXn
pNP N  . 

Example 3.1 

1. Let  dcbaX ,,,  and A , B are two neutrosophic crisp events on X defined

by      dccbaA ,,,, ,      ccabaB ,,,, ,      dcap ,, then see that 

,5.0,5.0,25.0)( ANP ,25.0,5.0,5.0)( BNP ,25.0,25.0,25.0)( pNP one 

can compute all probabilities from definitions. 

2. If       ,,, cbA  and       ,, dB   are neutrosophic crisp sets on X. 

Then ― 

      ,, BA   and NBANP 00,0,0)(  ,  

      ,,,, dcbBA  and NBANP 00,75.0,0)(  . 

Example 3.2 

Let },,,,,{ fedcbaX  , 

}{},{},,,,{ fedcbaA  , },{},,{},,{ dfcebaD   be a NCS-Type 2, 
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}{},{},,,{ edcbaB   be a NCT-Type I but not NCS-Type II, III, 

},,{},,{},,{ afedcbaC   be a NCS-Type III, but not NCS-Type I, II, 

,},,{},,{},,,,,{ afedcedcbaE   

},,,,,{,},,,,,{ bcdafeedcbaF  .

We can compute the probabilities for NCSs by the following: 

,
6
1,

6
1,

6
4)( ANP

,
6
2,

6
2,

6
2)( DNP  

,
6
1,

6
1,

6
3)( BNP

,
6
3,

6
2,

6
2)( CNP  

,
6
3,

6
2,

6
4)( ENP  

5( ) ,0, .
6

NP F   

Remark 3.3 

The probabilities of a neutrosophic crisp set are neutrosophic sets. 

Example 3.3 

Let },,,{ dcbaX  , }{},{},,{ dcbaA  , },{},{},{ bdcaB   are NCS-Type I on X 

and },{},,{},,{1 dadcbaU  , }{},{},,,{2 dccbaU  are NCS-Type III on X; then 

we can find the following operations ― 

1. Union, intersection, complement, difference and its probabilities.

a) Type1: },{},{},{ bdcaBA  , }5.0,25.0,25.0)(  BANP  and 

Type 2,3: },{},{},{ bdcaBA  ,  }5.0,25.0,25.0)(  BANP . 

2. )( BANP  may be equals.

Type1:  0,0,25.0)( BANP ,  Type 2:  0,0,25.0)( BANP , 

Type 3:  0,0,25.0)( BANP ,   

b) Type 2: }{},{},,{ dcbaBA  , }25.0,25.0,5.0)(  BANP and 

Type 2: }{},{},.{ dcbaBA  }25.0,25.0,5.0)(  BANP . 
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c) Type1: cA },,{},,,{,},{ cbadbadc NCS-Type III set on X, 

75.0,75.0,5.0)( cANP . 

 Type2: },{},,,{,}{ badbadAc   NCS-Type III on X,  

5.0,75.0,25.0)( cANP . 

 Type3: },{},{,}{ bacdAc   NCS-Type III on X,  

5.0,75.0,75.0)( cANP . 

d) Type 1: cB },{},,,{},,,{ cadbadcb be NCS-Type III on X , 

)( cBNP 5.0,75.0,75.0

Type 2: cB }{},{},,{ acdb NCS-Type I on X, and )( cBNP

25.0,25.0,5.0 . 

Type 3: cB }{},,,{},,{ adbadb NCS-Type III on X and )( cBNP

25.0,75.0,5.0 . 

e) Type 1: ,},{},,{},,,{21 dadccbaUU  NCS-Type III, 

,5.0,5.0,75.0{)( 21 UUNP  

Type 2: ,},{},{},,,{21 daccbaUU   1( ) {0.75,0.25,0.5 .NP U U   

f) Type1: ,},{},,{},,{21 dadcbaUU   NCS-Type III, 

,5.0,5.0,5.0)( 21 UUNP  

Type2: ,},{},{},,{21 dacbaUU   NCS-Type III, and

,5.0,25.0,5.0)( 21 UUNP  

g) Type 1: },{},,{},,{1 bcbadcU c
 , NCS-Type III and

5.0,5.0,5.0)( 1 
cUNP

Type 2: },{},,{},,{1 badcdaU c
 , NCS-Type III and 

5.0,5.0,5.0)( 1 
cUNP

Type3: },{},,{},,{1 babadaU c
 , NCS-Type III and 

5.0,5.0,5.0)( 1 
cUNP . 

h) Type1: },,{},,,{},{2 cbadbadU c
  NCS-Type III and

75.0,75.0,25.0)( 2 
cUNP , Type2: },,{},{},{2 cbacdU c 

NCS-Type III and 75.0,25.0,25.0)( 2 
cUNP , Type3:

},,{},,,{},{2 cbadbadU c   NCS-Type III. 75.0,75.0,25.0)( 2 
cUNP . 
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3. Probabilities for events.

25.0,25.0,5.0)( ANP , 5.0,25.0,25.0)( BNP , 5.0,5.0,5.0)( 1 UNP , 

25.0,25.0,75.0)( 2 UNP

5.0,5.0,5.0)( 1 
cUNP , 75.0,75.0,25.0)( 2 

cUNP . 

e)  cBA )( },{},,,{},,,{ cadbadcb  be a NCS-Type III.

25.0,75.0,75.0)(  cBANP  be a neutrosophic set. 

f) 75.0,75.0,5.0)()(  cc BNPANP , 

5.0,75.0,75.0)()(  cc BNPANP

g) )()()()( BANPBNPANPBANP  }25.0,25.0,5.0

h) 25.0,25.0,5.0)( ANP , 75.0,75.0,5.0)( cANP , 

5.0,25.0,25.0)( BNP , 5.0,75.0,75.0)( cBNP

4. Probabilities for Products. The product of two events given by ―

)},(),,{()},,{()},,(),,{( bdddccabaaBA  , 

and 16
2

16
1

16
2 ,,)(  BANP

)},(),,{()},,{()},,(),,{( dbddccbaaaAB 

and 16
2

16
1

16
2 ,,)(  ABNP

)},(),,{()},,(),,{()},,(),,(),,(),,{(1 addddcccbbbaabaaUA  , 

and 16
2

16
2

16
4

1 ,,)( UANP

)},(),,{()},,(),,{()},,(),,(),,(),,(),,(),,{(21 daddcdcccbcabbbaabaaUU 

and 16
2

16
2

16
6

21 ,,)( UUNP . 

Remark 3.4 

The following diagram represents the relation between neutrosophic crisp 

concepts and neutrosphic sets:    

Probability of Neutrosophic Crisp Sets 

Generalized Neutrosophic Set Intuitionistic Neutrosophic Set 

        Neutrosophic Set 
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Abstract—In this article, we extend the concept of 
neutrosophic graph-based multicriteria decision making method 
(NGMCDM) to the case of interval valued neutrosophic graph 
theory. The new concept is called interval valued neutrosophic 
graph-based multicriteria decision making method 
(IVNGMCDM for short). Finally, an illustrative example is given 
and a comparison analysis is conducted between the proposed 
approach and other existing methods, to verify the feasibility and 
effectiveness of the developed approach. 

Keywords—interval valued neutrosophic set; interval valued 
neutrosophic graph; influence coefficient; decision making 
problem 

I. INTRODUCTION 
The Neutrosophic Set (NS), proposed by Smarandache [1, 

2] as a generalization of fuzzy sets theory [3], intuitionistic
fuzzy set [4, 5], interval-valued fuzzy set [6] and interval-
valued intuitionistic fuzzy set [7], is a powerful mathematical 
tool for dealing with incomplete, indeterminate and 
inconsistent information in real world. The neutrosophic sets 
are characterized by a truth-membership function (t), an 
indeterminacy-membership function (i) and a falsity-
membership function (f) independently, which are within the 
real standard or nonstandard unit interval ]−0, 1+[. In order to 
conveniently apply NS in real life applications, Wang et al. [8] 
introduced the concept of single-valued neutrosophic set 
(SVNS), a subclass of the neutrosophic sets. The same authors 
[9] also introduced the concept of interval valued neutrosophic 
set (IVNS), which is more precise and more flexible than the 
single valued neutrosophic set. The IVNS is a generalization 
of the single valued neutrosophic set, in which three 
membership functions are independent, and their value belong 
to the unit interval [0, 1]. 

The theory of single valued neutrosophic set and interval 
valued neutrosophic set have been applied in a wide diversity 
of fields [10, 11, 12, 13, 14, 15, 16]. Multi-criteria decision 
making attempts to handle problems with imprecise goals, 
referring to a number of individual criteria by a set of 
alternatives at choice. Many scholars have begun to study the 
practical application of neutrosophic sets and interval valued 
neutrosophic sets in multi-attribute decision-making problems. 
[17] 

Graph theory has now become a major branch of applied 
mathematics and it is generally regarded as a branch of 
combinatorics. The graph is a widely used tool for solving 
combinatorial problems in different areas, such as geometry, 
algebra, number theory, topology, optimization and computer 
science. When the relations between nodes (or vertices) in 
problems are indeterminate, the fuzzy graphs and their 
extensions [18, 19, 20, 21, 22] fail. For this purpose, 
Smarandache [23, 24, 25] defined four main categories of 
neutrosophic graphs. Two of them, called I-edge neutrosophic 
graph and I-vertex neutrosophic graph, are based on literal 
indeterminacy (I); these concepts are deeply studied and 
gained popularity among the researchers due to applications 
via real world problems [26, 27, 28, 29]. The two other 
categories of graphs, called (t, i, f)-Edge neutrosophic graph 
and (t, i, f)-vertex neutrosophic graph, are based on (t, i, f) 
components, but they not at all developed. Later on, Broumi et 
al. [30, 31] introduced a third neutrosophic graph model, 
called single valued neutrosophic graph (SVNG), and 
investigated some of its properties. This model allows the 
attachment of truth-membership (t), indeterminacy–
membership (i) and falsity-membership(f) degrees both to 
vertices and edges. The single valued neutrosophic graph is a 
generalization of fuzzy graph and intuitionistic fuzzy graph. 
Also, the same authors [32] introduced neighborhood degree 
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of a vertex and closed neighborhood degree of a vertex in 
single valued neutrosophic graph, as a generalization of 
neighborhood degree of a vertex and closed neighborhood 
degree of a vertex in fuzzy graph and intuitionistic fuzzy 
graph. Moreover, Broumi et al. [33] introduced the concept of 
interval valued neutrosophic graph as a generalization fuzzy 
graph, intuitionistic fuzzy graph, interval valued fuzzy graph, 
interval valued intuitionistic fuzzy graph and single valued 
neutrosophic graph, discussing some properties with proofs 
and examples. In addition, Broumi et al. [34] proposed some 
operations - such as Cartesian product, composition, union and 
join - on interval valued neutrosophic graphs, and investigated 
some properties. Withal, Broumi et al. [35] discussed a sub 
class of interval valued neutrosophic graph, called strong 
interval valued neutrosophic graph, and introduced as well 
some operations - such as Cartesian product, composition and 
join of two strong interval valued neutrosophic graph - with 
proofs. Recently, Broumi et al. [36, 37] propounded the 
concept of bipolar single valued neutrosophic graph as a 
generalization of fuzzy graph, intuitionistic fuzzy graph, N-
graph [38], bipolar fuzzy graph [39] and single valued 
neutrosophic graph, and studied some properties. In this paper, 
we extend the concept of neutrosophic graph-based 
multicriteria decision making (NGMADM) method, 
introduced by Shain [40] to solve MCDM problems with 
interval valued neutrosophic information. 

The paper is organized as follows: in the 2nd section, we 
give all the basic definitions to be employed in later sections, 
related to single valued neutrosophic graph and interval valued 
neutrosophic graph; in the 3rd section, we present the 
neutrosophic graph-based multicriteria decision making 
(NGMCDM) method; in the 4thsection, we present an 
application of interval valued neutrosophic graphs in decision 
making; in the 5th section, an illustrative example is given, and 
then a comparison analysis is conducted between the proposed 
approach and other existing methods, in order to verify its 
feasibility and effectiveness. Finally, the conclusions are 
drawn in the 7th section. 

II. PRELIMINARIES

In this section, we mainly recall some notions related to 
neutrosophic sets, single valued neutrosophic sets, interval 
valued neutrosophic sets, single valued neutrosophic graphs 
and interval valued neutrosophic graphs, relevant to the 
present paper. The readers are referred to [1, 8, 9, 14, 30, 31]. 

Definition 2.1 [1]. Let X be a space of points (objects) 
with generic elements in X denoted by x; then, the 
neutrosophic set A (NS A) is an object having the form A = 
{< x: T(x), I(x), F(x)>, x ∈ X}, where the functions T, I, 
F: X→]−0,1+[  define respectively a truth-membership 
function, an indeterminacy-membership function, and a 
falsity-membership function of the element x ∈ X to the set A, 
with the condition: 

−0 ≤ T(x)+ I(x)+ F(x)≤ 3+.   (1)   

The functions T(x), I(x) and F(x) are real standard or 
nonstandard subsets of ]−0,1+[. 

Since it is difficult to apply NSs to practical problems, 
Wang et al. [8] introduced the concept of a SVNS, which is an 
instance of a NS and can be used in real scientific and 
engineering applications. 

Definition 2.2 [8]. Let X be a space of points (objects) 
with generic elements in X denoted by x. A single valued 
neutrosophic set A (SVNS A) is characterized by a truth-
membership function T(x) , an indeterminacy-membership 
function I(x), and a falsity-membership function F(x). For 
each point x in X,T(x), I(x), F(x) ∈	[0, 1]. 

A SVNS A can be written as 

A = {< x: T(x), I(x), F(x)>, x ∈	X}. (2) 

Definition 2.3 [9]. Let X be a universe of discourse and Int 
[0,1] be the set of all closed subsets of [0,1]. Then, an interval 
neutrosophic set is defined as: A = ሼ〈x, T(x), I(x), F(x)〉: x ∈ Xሽ,     (3) 

Where T: X → Int[0,1] , I: X → Int[0,1] and F: X →Int[0,1]  with 0 ≤ supT(x) + sup I(x) + sup F(x) ≤ 3 , 
for all x ∈ X. 

The intervals T(x), I(x)  and F(x)  denote the truth-
membership degree, the indeterminacy-membership degree 
and the falsity membership degree of xto A, respectively. 

For convenience, if T(x) = ൣT(x), T(x)൧ , I(x) =ൣI(x), I(x)൧and F(x) = ൣF(x), F(x)൧, then: A = ൛〈x, ൣT(x), T(x)൧, ൣI(x), I(x)൧, ൣI(x), I(x)൧〉: x ∈ Xൟ,
   (4) 

with the condition, 0 ≤ supT(x) + sup I(x) +sup F(x) ≤ 3, for all x ∈ X. 

Definition 2.4 [14]. Let ߙ = ,ݐ]〉 ,[௨ݐ [݅, ݅௨], [݂, ݂௨]〉 be 
an interval neutrosophic number; a score function ܵ  of the 
interval valued neutrosophic number can be defined by S(α) = ଶା୲ౢା୲౫ିଶ୧ౢିଶ୧౫ିౢି౫ସ  (5) 

whereܵ(ߙ) ∈ [−1,1]. 
Definition 2.5 [30]. Let A = ( ܶ, ܫ, ܨ) and B = ( ܶ, ܫ, ܨ) be single valued neutrosophic sets on a set X. 

If A = ( ܶ, ܫ, ܨ) is a single valued neutrosophic relation 
on a set X, then A =( ܶ ܫ , ܨ , ) is called a single valued 
neutrosophic relation on B = ( ܶ, ܫ, ܨ), if: T(x, y) ≤ min(T(x),T(y))  I(x, y) ≥ max(I(x),I(y))  
and F(x, y) ≥ max(Fx),F(y)), for all x, y ∈ X.    (6) 

A single valued neutrosophic relation A on Xis called 
symmetric, if: 

ܶ(x, y) = ܶ(y, x), ܫ(x, y) = ܫ(y, x), ܨ(x, y) = ܨ(y, x), ܶ(x, y) = ܶ(y, x), ܫ(x, y) = ܫ(y, x) and  ܨ(x, y) = ܨ(y, x),  
for all x, y ∈X. 
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Definition 2.6 [30]. A single valued neutrosophic graph 
(SVN-graph) with underlying set V is defined to be a pair G= 
(A, B) where: 

1) The functions ܶ:V→[0, 1], ܫ:V→[0, 1] and ܨ:V→[0,
1] denote the degree of truth-membership, degree of
indeterminacy-membership and falsity-membership of the 
element ݒ ∈ V, respectively, and 

0≤ ܶ(ݒ) + ܫ(ݒ) +ܨ(ݒ) ≤3 for all  ݒ ∈ V (i=1, 2, …, n).
         (7) 

2) The functions ܶ : E ⊆ V x V →[0, 1], ܫ :E ⊆ V x V→[0, 1] and ܨ: E ⊆ V x V →[0, 1] are defined by ܶ(ݒ, (ݒ ≤ min [ ܶ(ݒ), ܶ(ݒ)],ܫ(ݒ, (ݒ ≥ max [ܫ(ݒ), ܫ(ݒ)], and    ܨ(ݒ, (ݒ ≥ max [ܨ(ݒ), ܨ(ݒ)] 
(8) 

denoting the degree of truth-membership, indeterminacy-
membership and falsity-membership of the edge (ݒ  ) ∈ Eݒ,
respectively, where: 

0≤ ܶ(ݒ, ,ݒ)ܫ + (ݒ ,ݒ)ܨ +(ݒ (ݒ ≤3, for all  (ݒ, (ݒ ∈ E 
(i, j = 1, 2,…, n)                                                            (9) 

they called A the single valued neutrosophic vertex set of 
V, B the single valued neutrosophic edge set of E, 
respectively; note that B is a symmetric single valued 
neutrosophic relation on A. 

Example 2.7 [30] Figure 1 is an example for SVNG, 
G=(A, B) defined on a graph ܩ∗ = (V, E)  such that V = {vଵ, vଶ,	vଷ,vସ}, E = {vଵvଶ, vଶvଷ, vଷvସ,	vସvଵ}, A is single valued 
neutrosophic set of V 

A={ < vଵ,(0.5, 0.1 ,0.4)>, <vଶ, (0.6, 0.3,0.2) >, <vଷ, (0.2, 0.3 
,0.4) >, < vସ , (0.4, 0.2 ,0.5)>}, and B single valued 
neutrosophic set of  E ⊆ V x V 
B={ < vଵvଶ,(0.5, 0.4 ,0.5)>, <vଶvଷ, (0.2, 0.3,0.4) >, <vଷvସ, 
(0.2, 0.4 ,0.5) >, <vସvଵ, (0.4, 0.3 ,0.6)>} 

Fig. 1. Single valued neutrosophic graph 

Definition 2.8 [30]. A single valued neutrosophic graph 
G=(A, B) of ܩ∗ = (V, E) is called strong single valued 
neutrosophic graph, if: 

ܶ(ݒ, (ݒ = min [ ܶ(ݒ),  ܶ(ݒ)],  ܫ(ݒ, (ݒ = max [ܫ(ݒ),  ܫ(ݒ)],  ܨ(ݒ, (ݒ = max [ܨ(ݒ), ܨ(ݒ)], for all (ݒ, (ݒ ∈ 
E.                                   (10) 
Definition 2.9 [30].  A single valued neutrosophic graph 

G= (A, B) is called complete, if: 

ܶ(ݒ, (ݒ = min [ ܶ(ݒ),  ܶ(ݒ)], ܫ(ݒ, (ݒ = max [ܫ(ݒ),  ܫ(ݒ)] and  ܨ(ݒ, (ݒ = max [ܨ(ݒ), ܨ(ݒ)], for all ݒ, ݒ ∈ 
V.                                     (11) 

Definition 2.10 [31]. By an interval-valued neutrosophic 
graph of a graph G∗  = (V, E) we mean a pair G = (A, B), 
where A =< [T, T], [I, I], [F, F]> is an interval-
valued neutrosophic set on V, and B =<[T, T], [I, I], 
[F, F]> is an interval-valued neutrosophic relation on E 
satisfying the following condition: 

1) V= {ݒଵ, ݒଶ ,…,ݒ} such that ܶ:V→[0, 1], ܶ:V→[0,
 ,:V→[0ܨ ,:V→[0, 1]ܨ :V→[0, 1], andܫ ,:V→[0, 1]ܫ ,[1
1] denote the degree of truth-membership, the degree of
indeterminacy-membership and falsity-membership of the 
element ݕ ∈ V, respectively,  and 

0≤ ܶ(ݒ) + ܫ(ݒ) +ܨ(ݒ) ≤3 for all  ݒ ∈ V (i=1, 2,  …, n).
         (12) 

2) The functions  ܶ:V x V →[0, 1], ܶ:V x V →[0, 1],ܫ:V x V →[0, 1], ܫ:V x V →[0, 1] andܨ:V x V →[0,1], ܨ:V x V →[0, 1] are such that: ܶ(ݒ, (ݒ ≤  min [ ܶ(ݒ) , ܶ(ݒ) ],  ܶ(ݒ, (ݒ ≤  min 
[ ܶ(ݒ), ܶ(ݒ)] ,         ܫ(ݒ, (ݒ ≥  max [ (ݒ)ܫ (ݒ)ܫ , ,ݒ)ܫ ,[ (ݒ ≥ 
max[ܫ(ݒ), ܫ(ݒ)]  and ܨ(ݒ, (ݒ ≥ max [ܨ(ݒ), ܨ(ݒ)], ܨ(ݒ, (ݒ ≥ 

max[ܨ(ݒ), ܨ(ݒ)]                                           (13) 
denoting the degree of truth-membership, indeterminacy-

membership and falsity-membership of the edge (ݒ  ) ∈ Eݒ,
respectively, where: 

0≤ ܶ(ݒ, ,ݒ)ܫ + (ݒ ,ݒ)ܨ +(ݒ (ݒ ≤3, for all (ݒ, (ݒ ∈ E 
(i, j = 1, 2,…, n).                                                       (14) 

They called A the interval valued neutrosophic vertex set 
of V, and B the interval valued neutrosophic edge set of E, 
respectively; note that B is a symmetric interval valued 
neutrosophic relation on A. 

Fig. 2. Interval valued neutrosophic graph 

Example 2.11 [33] Figure 2 is an example for IVNG, 
G=(A, B) defined on a graph G∗ = (V, E) such that V= {vଵ, vଶ,	vଷ}, E= {vଵvଶ, vଶvଷ, vଷvସ,	vସvଵ}, A is an interval valued 
neutrosophic set of V 

A={ < vଵ ,([0.3, 0.5], [0.2, 0.3],[0.3, 0.4])>, <vଶ , ([0.2, 
0.3], [0.2, 0.3],[0.1, 0.4]) >, <vଷ, ([0.1, 0.3], [0.2, 0.4],[0.3, 
0.5]) >}, and B an interval valued neutrosophic set of  E ⊆ V 
x V 
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B={ < vଵvଶ ,( [0.1, 0.2], [0.3, 0.4],[0.4, 0.5])>, <vଶvଷ , 
([0.1, 0.3], [0.4, 0.5],[0.4, 0.5]) >, <vଷvଵ , ([0.1, 0.2], [0.3, 
0.5],[0.4, 0.6]) >} 

Remark 2.12: -The underlying set V is vertex set of usual 
graph that we use it in neutrosophic graph as vertex. 

- G*=(V,E) denoted a usual graph where a neutrosophic 
graphs obtained from it that truth –membership, indeterminacy 
–membership and non-membership values are 0 to 1.

III. NEUTROSOPHIC GRAPH-BASED MULTICRITERIA 
DECISION MAKING (NGMCDM) METHOD 

Shain [40] proposed a procedure for the decision-maker to 
select the best choice with neutrosophic information. The 
method implies the following steps: 

Step1.Compute the influence coefficient between the 
criteria ߙ and ߙ(݅, ݆ = 1,2, … , ݊) in decision process by ݆݅ߦ=௧ೕା	(ଵ–	ೕ)(ଵ	–ೕ	)	ଷ  , (15) 

Where ߮= (ݐ , ݅ , ݂)is the neutrosophic neutrosophic 
edge between the vertexes ߙand ߙ(݅, ݆ = 1,2, … , ݊). We 
have ݅ߦi = 1 and ݆݅ߦ =݆݅ߦ	for ݅ = ݆. 

The (t, i, f) is a neutrosophic number. Because truth degree 
prove a positive impact while indeterminacy degree and falsity 
degree prove a negative impact in the relationship. If this 
relationship has maximum i.e., (t, i, f)=(1,0,0) then we should 
have the biggest impact, ξ୧୨ = 1. If two criteria are 
independent, this relationships should be (0,1,1) i.e., ξ୧୨ =0 

Step 2. Obtain the overall criterion value of the alternative  (݇ = 1,2, … , ݉) by =∑ ωୀଵ ൫∑ ݁ξୀଵ ൯,   (16) 
Where ݁ = ( ݐ  , ݅  , ݂  ) is clearly a neutrosophic 

number. 

Step 3: Compute the score value of the alternative   (݇ = 
1,2, … , ݉) which is defined by: ݏ() = ଵା௧ሚିଶప̃ିሚଶ .  (17) 

Step 4. Rank all the alternatives  (݇ = 1,2, …, ݉) and 
select the best one(s) in concordance with ݏ(). 

Step5. End. 

IV. DECISION-MAKING METHOD BASED ON THE INTERVAL 
VALUED NEUTROSOPHIC GRAPH 

The interval valued neutrosophic set proposed by Wang et 
al. [9] is independently characterized by the truth-
membership, the indeterminacy-membership and the falsity-
membership, which is a powerful tool to deal with incomplete, 
indeterminate and inconsistent information. Recently, the 
interval valued neutrosophic set became an interesting topic 
research and attracted wide attention. The interval valued 
neutrosophic graph can well describe the uncertainly in real-
life world. Therefore, we will extend the NGMCDM method 
introduced by Shain [40] to solve MCDM problems with 
interval valued neutrosophic information. The new model to 
solve the decision-making problems is called interval valued 

neutrosophic graph-based multicriteria decision making 
(IVNGMCDM) method. 

We firstly describe the decision making problem. 

Suppose that ܲ = {ଵ ଶ ,  } is a collection of , … ,
alternatives, ܤ = {ߙଵ, ߙଶ, … , ߙ} is a collection of criteria, 
which weight vector is ߱ =(ωଵ, ωଶ,…	, ω)்satisfying ݓ ∈ 
[0, 1], ∑ ωୀଵ = 1. If the decision maker provide a 
neutrosophic value for the alternative  (݇ = 1,2, … , ݉) 
under the criteria ߙ  (݆ = 1,2, … , ݊), these values can be 
characterized as an IVNN ݁ ݐ]}=  ௨ݐ,  ], [ ݅  , ݅௨ ], [ ݂  
, ݂௨ ]}(݆ = 1,2, … , ݊; ݇ =1,2, … , ݉). Assume that ܧ = [݁]×is the decision matrix, where ݁ is expressed by an 
interval valued neutrosophic element. If there exists an 
interval valued neutrosophic relation between two criteria ߙ = 〈[ݐ,ݐ௨], [݅,݅௨], [ ݂, ݂௨]〉 and ߙ = 〈[ݐ, ݐ௨], [ ݅, ݅௨], [ ݂, ݂௨]〉, 
we denote the interval valued neutrosophic relation as ߮  = 
ݐ]} ௨ݐ,  ], [݅  ,݅௨ ], [ ݂  , ݂௨]},with the properties: ݐ  ≤ min(ݐ , ݐ),  ݐ௨  ≤ min(ݐ௨ , ݐ௨), ݅ ≥ max(݅ , ݅),  ݅௨ ≥max (݅௨ , ݅௨), ݂ ≥ max( ݂ , ݂),  ݂௨ ≥ max( ݂௨ , ݂௨), 

for all (݅, ݆ = 1,2, … , ݉); otherwise, ߮ = 〈[0, 0], [1, 1], 
[1, 1]〉. 

On the basis of the developed graph structure, we can 
propose a procedure for the decision-maker to select the best 
choice with interval valued neutrosophic information. 

The method is described by the following steps: 

Step 1. Compute the influence coefficient between the 
criteria ߙ and ߙ (݅, ݆ = 1,2, …, ݊) in decision process by ξ =(࢚ 	ା࢛࢚ )ା	(	–	( ା࢛ ))(	–	(ࢌ ା࢛ࢌ )) ,   (18) 

Where ߮ = {[ݐ ௨ݐ,  ], [݅  ,݅௨ ], [ ݂  , ݂௨]} is the interval 
valued neutrosophic edge between the vertexes ߙ and ߙ(݅, ݆ 

= 1,2, … , ݊). We have ݅ߦi = 1and ݆݅ߦ = ݆݅ߦfor ݅ = ݆. 
Step 2. Obtain the overall criterion value of the alternative  (݇ = 1,2, … , ݉) by  =∑ ωୀଵ ൫∑ ݁ξୀଵ ൯,  (19) 
Where ݁ ݐ]> =  ௨ݐ,  ], [݅  ,݅௨ ], [ ݂  , ݂௨ ]>is clearly an 

interval valued neutrosophic number. 

Step 3.Compute the score value of the alternative  (݇ = 
1,2, … , ݉), which is defined by: ݏ() = ଶା௧ሚା௧ሚೠିଶప̃ିଶప̃ೠିሚିሚೠସ (20) 

Step 4. Rank all the alternatives  (݇ = 1,2, … , ݉)and 
select the best one(s) in concordance with ݏ() 

Step 5. End. 

V. AN ILLUSTRATIVE EXAMPLE 
In this section, an example for an IVNGMCDM problem 

with interval-valued neutrosophic information is used to prove 
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the application and effectiveness of the proposed decision-
making method. 

Let us consider the decision-making problem adapted from 
Zhao et al. [41]. 

Example 5.1. An investment company wants to invest a 
sum of money in the best option. There is a panel with four 
possible alternatives in which to invest the money: (1) ଵis a 
car company, (2) ଶ is a food company, (3) ଷ is a computer 
company, and (4) ସis an armament company. The investment 
company must take a decision according to three criteria: (1) ߙଵ is the risk analysis; (2) ߙଶ is the growth analysis, and (3) ߙଷ  is the environmental impact analysis. Then, the weight 
vector of the criteria is given by ω = (0.2, 0.25, 0.55). The 
four possible alternatives are to be evaluated under these three 
criteria and presented in the form of interval valued 
neutrosophic information by decision maker, consistent to 
criteria ߙ (݆ = 1, 2, 3) and the information evaluation on the 
alternative (݇ = 1, 2, 3, 4) under the factors ߙ (݆ = 1, 2, 3); 
it results the interval valued valued neutrosophic decision 
matrix ܦ :ܦ = 

൦⟨[0.4, 0.5]	, [0.2, 0.3], [0.3, 0.4]⟩ ⟨[0.4, 0.6]	, [0.1, 0.3], [0.2, 0.4]⟩ ⟨[0.4, 0.5]	, [0.2, 0.3], [0.7, 0.9]⟩⟨[0.6, 0.7]	, [0.1, 0.2], [0.2, 0.3]⟩ ⟨[0.6, 0.7]	, [0.1, 0.2], [0.2, 0.3]⟩ ⟨[0.8, 0.9]	, [0.3, 0.5], [0.3, 0.6]⟩⟨[0.3, 0.6]	, [0.2, 0.3], [0.3, 0.4]⟩ ⟨[0.5, 0.6]	, [0.2, 0.3], [0.3, 0.4]⟩ ⟨[0.7, 0.9]	, [0.2, 0.4], [0.4, 0.5]⟩⟨[0.7, 0.8]	, [0.0, 0.1], [0.1, 0.2]⟩ ⟨[0.6, 0.7]	, [0.1, 0.2], [0.1, 0.3]⟩ ⟨[0.8, 0.9]	, [0.3, 0.4], [0.6, 0.7]⟩൪

Fig. 3. The graph relationship among the criteria 

Moreover, we assume that the relationships among the 
factors ߙ (݆ = 1,2,3) can be described by a complete graph ܩ 
 {ଷߙଶߙ ,ଷߙଵߙ ,ଶߙଵߙ} = ܧ and {ଷߙ ,ଶߙ ,ଵߙ} = ܣ where ,(ܧ ,ܣ) =
(see Fig. 3). Employing Eq. (18), we can obtain all influence 
coefficients to quantify the relationships among the criteria. 

Suppose that the neutrosophic edges denoting the 
connection among the criteria are described as follows: ݁ଵଶ= 〈[ݐଵଶ ଵଶ௨ݐ, ], [݅ଵଶ ,݅ଵଶ௨ ], [ ଵ݂ଶ , ଵ݂ଶ௨ ]〉 = ⟨[0.3, 0.4] ,[0.3, 0.5], 
[0.4, 0.5]⟩, ݁ଵଷ= 〈[ݐଵଷ ଵଷ௨ݐ, ], [݅ଵଷ ,݅ଵଷ௨ ], [ ଵ݂ଷ , ଵ݂ଷ௨ ]〉= ⟨[0.2, 0.3] ,[0.4, 0.5], [0.5, 
0.6]⟩, ݁ଶଷ= 〈[ݐଶଷ ଶଷ௨ݐ, ], [݅ଶଷ ,݅ଶଷ௨ ], [ ଶ݂ଷ , ଶ݂ଷ௨ ]〉 = ⟨[0.4, 0.6] ,[0.3, 0.4], 
[0.4, 0.5]⟩. 

Note that (ܧ ,ܣ) = ܩ describes an interval valued 
neutrosophic graph according to the relationship among 
criteria for each alternative. 

To get the best alternative(s), the following steps are 
involved: 

Step 1. We apply all computations only in the alternative ଵ. Others can be similarly proved. 

The influence coefficients between criteria was computed 
as follows: ξଵଶଵ =(௧భమ ା௧భమೠ )ା	(ଶ	–	(భమ ାభమೠ ))(ଶ	–	(భమ ାభమೠ ))	  

=(.ଷା.ସ)ା	(ଶ	–(.ଷା.ହ)(ଶ	–(.ସା.ହ))  = 0.337, ξଵଷଵ =(௧భయ ା௧భయೠ )ା	(ଶ	–	(భయ ାభయೠ ))(ଶ	–	(భయ ାభయೠ ))	  

=(.ଶା.ଷ)ା	(ଶ	–(.ସା.ହ)(ଶ	–(.ହା.)) =0.248, ξଶଷଵ =(௧మయ ା௧మయೠ )ା	(ଶ	–	(మయ ାమయೠ ))(ଶ	–	(మయ ାమయೠ ))	  

=(.ସା.)ା	(ଶ	–(.ଷା.ସ)(ଶ	–(.ସାହ)) = 0.405. 
Step 2. By applying Eq.(19) we can obtain the overall 

criterion value of the alternative ଵ as follows: ଵ= ݓଵ × (݁ଵଵξଵଵ + ݁ଵଶξଶଵ + ݁ଵଷξଷଵ) + ݓଶ × (݁ଵଵξଵଶ + ݁ଵଶξଶଶ + ݁ଵଷξଷଶ) + ݓଷ × (݁ଵଵξଵଷ + ݁ଵଶξଶଷ + ݁ଵଷξଷଷ)= 0.2 × 
(⟨[0.4, 0.5]	, [0.2, 0.3], [0.3, 0.4]⟩ + 0.337 × ⟨[0.4, 0.6]	, [0.1, 0.3], [0.2, 0.4]⟩+ 0.248 × ⟨[0.4, 0.5]	, [0.2, 0.3], [0.7, 0.9]⟩)+0.25 × (0.337 × ⟨[0.4, 0.5]	, [0.2, 0.3], [0.3, 0.4]⟩+ ⟨[0.4, 0.6]	, [0.1, 0.3], [0.2, 0.4]⟩ + 0.405 × ⟨[0.4, 0.5]	, [0.2, 0.3], [0.7, 0.9]⟩)+0.55 × (0.248 × 
(⟨[0.4, 0.5]	, [0.2, 0.3], [0.3, 0.4]⟩ + 0.405 × ⟨[0.4, 0.6]	, [0.1, 0.3], [0.2, 0.4]⟩+ ⟨[0.4, 0.5]	, [0.2, 0.3], [0.7,  .<ଵ=<[0.6718, 0.8937], [0.2819, 0.5038], [0.7373, 1.0311] ((⟨[0.9
Similarly, ଶ<[1.1514, 1.3193], [0.3117, 0.5515], [0.4077, 0.7194]>,  ଷ = <[0.8993,1.2232], [0.3359, 0.5757], [0.5757, 0.7436]> 
and ସ = <[1.1934,1.3614], [0.2696, 0.4375], [0.5272, 0.7792]>. 

Step 3. By applying Eq.(20) we can obtain s(p୧) (i=1,  2, 
3, 4) as follows: 

s(ଵ)=0.0564, s(ଶ ) = 0.4043, s(ଷ ) = 0.2450 and s(ସ ) 
=0.4660. 

Step 4.Since s(pସ ) >s(pଶ )>  s(pଷ )>  s(pଵ ), the ranking 
order of four alternatives is pସ > pଶ > pଷ > pଵ. Therefore, we 
can see that the alternative pସ is the best choice among all the 
alternatives 

VI. COMPARISON ANALYSIS

In order to verify the feasibility and effectiveness of the 
proposed decision-making approach, a comparison analysis 
with interval valued neutrosophic decision method, used by 
Zhao et al. [41], is given, based on the same illustrative 
example. 

Clearly, the ranking order results are consistent with the 
result obtained in [41]; however, the best alternative is the 
same as Aସ. because the ranking principle is different, these 
two methods produced the same best and worst alternatives. 
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VII. CONCLUSION

The interval neutrosophic set, as a concept combining 
single valued neutrosophic set and interval fuzzy set, provides 
additional capability to deal with uncertainty, inconsistent, 
incomplete and imprecise information by including a truth-
membership interval, an indeterminacy-membership interval 
and a falsity membership interval. Therefore, it plays a 
significant role in the uncertainty system. An Interval valued 
neutrosophic models provide more precision, flexibility and 
compatibility to the system in comparison to classic, fuzzy 
models and neutrosophic model. In this study, we consider the 
importance of relationships among criteria in decision process, 
we developed a new model, called interval valued 
neutrosophic graph-based multicriteria decision making 
(IVNGMADM) method, to solve complex problems within 
the interval valued neutrosophic information. That is, the 
relationships among criteria for each alternative are included 
by this method in the decision process. In this case, we can 
select the alternative(s) according to the overall criteria values 
resulting from the model. Finally, an illustrative example was 
given to prove the application of proposed method. The 
developed method is more suitable to handle indeterminate 
information and inconsistent information in complex decision 
making problems with interval valued neutrosophic 
information. 
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Abstract 

The notion of interval valued neutrosophic sets is a generalization of fuzzy sets, 

intuitionistic fuzzy sets, interval valued fuzzy sets, interval valued intuitionstic fuzzy 

sets and single valued neutrosophic sets. We apply for the first time to graph theory 

the concept of interval valued neutrosophic sets, an instance of neutrosophic sets. We 

introduce certain types of interval valued neutrosophc graphs (IVNG) and investigate 

some of their properties with proofs and examples.

Keyword 

Interval valued neutrosophic set, Interval valued neutrosophic graph, Strong  interval 

valued neutrosophic graph, Constant interval valued neutrosophic graph, Complete 

interval valued neutrosophic graph, Degree of interval valued neutrosophic graph. 

1 Introduction 

Neutrosophic sets (NSs) proposed by Smarandache [13, 14] are powerful  

mathematical tools for dealing with incomplete, indeterminate and 

inconsistent information in real world. They are a generalization of fuzzy sets 

[31], intuitionistic fuzzy sets [28, 30], interval valued fuzzy set [23] and 

interval-valued intuitionistic fuzzy sets theories [29].  

The neutrosophic sets are characterized by a truth-membership function (t), 

an indeterminacy-membership function (i) and a falsity-membership function 

(f) independently, which are within the real standard or nonstandard unit 

interval ]−0, 1+[. In order to conveniently practice NS in real life applications, 

Smarandache [53] and Wang et al. [17] introduced the concept of single-valued 

neutrosophic set (SVNS), a subclass of the neutrosophic sets.  

Interval Valued Neutrosophic Graphs 

Said Broumi, Mohamed Talea, Assia Bakali, Florentin Smarandache 

Said Broumi, Mohamed Talea, Assia Bakali, Florentin Smarandache (2016). Interval Valued 
Neutrosophic Graphs. Critical Review, X, 5-34 
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The same authors [16, 18] introduced as well the concept of interval valued 

neutrosophic set (IVNS), which is more precise and flexible than the single 

valued neutrosophic set. The IVNS is a generalization of the single valued 

neutrosophic set, in which three membership functions are independent, and 

their values included into the unit interval [0, 1].  

More on single valued neutrosophic sets, interval valued neutrosophic sets 

and their applications may be found in [3, 4, 5,6, 19, 20, 21, 22, 24, 25, 26, 27, 

39, 41, 42,  43, 44, 45, 49]. 

Graph theory has now become a major branch of applied mathematics and it 

is generally regarded as a branch of combinatorics. Graph is a widely used tool 

for solving a combinatorial problem in different areas, such as geometry, 

algebra, number theory, topology, optimization or computer science. Most 

important thing which is to be noted is that, when we have uncertainty 

regarding either the set of vertices or edges, or both, the model becomes a 

fuzzy graph.  

The extension of fuzzy graph [7, 9, 38] theory have been developed by several 

researchers, including intuitionistic fuzzy graphs [8, 32, 40], considering the 

vertex sets and edge sets as intuitionistic fuzzy sets. In interval valued fuzzy 

graphs [33, 34], the vertex sets and edge sets are considered as interval valued 

fuzzy sets. In interval valued intuitionstic fuzzy graphs [2, 48], the vertex sets 

and edge sets are regarded as interval valued intuitionstic fuzzy sets. In bipolar 

fuzzy graphs [35, 36], the vertex sets and edge sets are considered as bipolar 

fuzzy sets. In m-polar fuzzy graphs [37], the vertex sets and edge sets are 

regarded as m-polar fuzzy sets.  

But, when the relations between nodes (or vertices) in problems are 

indeterminate, the fuzzy graphs and their extensions fail. In order to overcome 

the failure, Smarandache [10, 11, 12, 51] defined four main categories of 

neutrosophic graphs: I-edge neutrosophic graph, I-vertex neutrosophic graph 

[1, 15, 50, 52], (t, i, f)-edge neutrosophic graph and (t, i, f)-vertex neutrosophic 

graph. Later on, Broumi et al. [47] introduced another neutrosophic graph 

model. This model allows the attachment of truth-membership (t), 

indeterminacy –membership (i) and falsity-membership (f) degrees both to 

vertices and edges. A neutrosophic graph model that generalizes the fuzzy 

graph and intuitionstic fuzzy graph is called single valued neutrosophic graph  

(SVNG). Broumi [46] introduced as well the neighborhood degree of a vertex 

and closed neighborhood degree of a vertex in single valued neutrosophic 

graph, as generalizations of neighborhood degree of a vertex and closed 

neighborhood degree of a vertex in fuzzy graph and intuitionistic fuzzy graph. 

In this paper, we focus on the study of interval valued neutrosophic graphs. 
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2 Preliminaries

In this section, we mainly recall some notions related to neutrosophic sets, 

single valued neutrosophic sets, interval valued neutrosophic sets, fuzzy graph, 

intuitionistic fuzzy graph, single valued neutrosophic graphs, relevant to the 

present work. See especially [2, 7, 8, 13, 18, 47] for further details and 

background.

Definition 2.1 [13] 

Let X  be a space of points (objects) with generic elements in X denoted by x;  

then the neutrosophic set A (NS A) is an object having the form A = {< x: TA(x), 

IA(x), FA(x)>, x ∈ X}, where the functions T, I, F: X→]−0,1+[  define respectively 

the a truth-membership function, an indeterminacy-membership function, 

and a falsity-membership function of the element x ∈ X to the set A with the 

condition: 

−0 ≤ TA(x)+ IA(x)+ FA(x)≤ 3+.              

The functions TA(x), IA(x) and FA(x) are real standard or nonstandard subsets 

of ]−0,1+[. 

Since it is difficult to apply NSs to practical problems, Wang et al. [16] 

introduced the concept of a SVNS, which is an instance of a NS and can be used 

in real scientific and engineering applications. 

Definition 2.2 [17] 

Let X be a space of points (objects) with generic elements in X denoted by x. A 

single valued neutrosophic set A (SVNS A) is characterized by truth-

membership function TA(x) , an indeterminacy-membership function IA(x) , 

and a falsity-membership function FA(x). For each point x in X  TA(x), IA(x), 

FA(x) ∈ [0, 1]. A SVNS A can be written as  

A = {< x: TA(x), IA(x), FA(x)>, x ∈ X} 

Definition 2.3 [7] 

A fuzzy graph is a pair of functions G = (σ, µ) where σ is a fuzzy subset of a non- 

empty set V and  μ  is a symmetric fuzzy relation on σ. i.e  σ : V → [ 0,1] and  μ: 

VxV→[0,1], such that μ(uv) ≤ σ(u) ⋀ σ(v)  for all u, v ∈ V where uv denotes the 

edge between u and v and σ(u) ⋀ σ(v) denotes the minimum of σ(u) and σ(v). 

σ is called the fuzzy vertex set of V and μ is called the fuzzy edge set of E. 
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Figure 1: Fuzzy Graph 

Definition 2.4 [7]  

The fuzzy subgraph H = (τ, ρ) is called a fuzzy subgraph of G = (σ, µ), if τ(u) ≤ 

σ(u) for all u ∈ V and ρ(u, v) ≤  μ(u, v) for all u, v ∈ V. 

Definition 2.5 [8]  

An Intuitionistic fuzzy graph is of the form G =(V, E ), where 

i. V={v1, v2,…., vn} such that 𝜇1: V→ [0,1] and 𝛾1: V → [0,1] denote the

degree of membership and nonmembership of the element vi ∈ V,

respectively, and 0 ≤ 𝜇1(vi) + 𝛾1(vi)) ≤ 1 , for every vi ∈ V, (i = 1, 2,

……. n);

ii. E   ⊆  V x V where  𝜇2: VxV→[0,1] and  𝛾2: VxV→ [0,1] are such that

𝜇2(vi, vj) ≤ min [𝜇1(vi), 𝜇1(vj)] and 𝛾2(vi, vj) ≥ max [𝛾1(vi), 𝛾1(vj)] 

and 0 ≤ 𝜇2(vi, vj) + 𝛾2(vi, vj) ≤ 1 for every (vi, vj) ∈ E, ( i, j = 1,2, ……. n) 

Figure 2: Intuitionistic Fuzzy Graph 

Definition 2.6 [2]  

An interval valued intuitionistic fuzzy graph with underlying set V is defined 

to be a pair G= (A, B), where  
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1) The functions 𝑀𝐴 : V→ D [0, 1]  and 𝑁𝐴 : V→ D [0, 1] denote the degree of

membership and non-membership of the element x ∈ V, respectively, such that 

0≤𝑀𝐴(x)+ 𝑁𝐴(x) ≤ 1 for all x ∈ V. 

2) The functions 𝑀𝐵 : E ⊆ 𝑉 × 𝑉 → D [0, 1]  and 𝑁𝐵 : : E ⊆ 𝑉 × 𝑉 → D [0, 1] are

defined by: 

𝑀𝐵𝐿(𝑥, 𝑦))≤min (𝑀𝐴𝐿(𝑥), 𝑀𝐴𝐿(𝑦)), 

𝑁𝐵𝐿(𝑥, 𝑦)) ≥max (𝑁𝐴𝐿(𝑥), 𝑁𝐴𝐿(𝑦)), 

𝑀𝐵𝑈(𝑥, 𝑦))≤min (𝑀𝐴𝑈(𝑥), 𝑀𝐴𝑈(𝑦)), 

𝑁𝐵𝑈(𝑥, 𝑦)) ≥max (𝑁𝐴𝑈(𝑥), 𝑁𝐴𝑈(𝑦)), 

such that 

0≤𝑀𝐵𝑈(𝑥, 𝑦))+ 𝑁𝐵𝑈(𝑥, 𝑦)) ≤ 1, for all (𝑥, 𝑦) ∈ E. 

Definition 2.7 [47] 

Let A = (𝑇𝐴,  𝐼𝐴, 𝐹𝐴) and B = (𝑇𝐵,  𝐼𝐵, 𝐹𝐵)  be single valued neutrosophic sets on a 

set X. If A = (𝑇𝐴,  𝐼𝐴, 𝐹𝐴) is a single valued neutrosophic relation on a set X, then 

A =(𝑇𝐴,  𝐼𝐴, 𝐹𝐴) is called a single valued neutrosophic relation on B = (𝑇𝐵,  𝐼𝐵, 𝐹𝐵), 

if 

TB(x, y) ≤ min(TA(x), TA(y)), 

IB(x, y) ≥ max(IA(x), IA(y)), 

FB(x, y) ≥ max(FAx), FA(y)), 

for all x, y ∈ X.  

A single valued neutrosophic relation A on X is called symmetric if 

𝑇𝐴(x, y) = 𝑇𝐴(y, x), 𝐼𝐴(x, y) = 𝐼𝐴(y, x), 𝐹𝐴(x, y) = 𝐹𝐴(y, x) 

𝑇𝐵(x, y) = 𝑇𝐵(y, x), 𝐼𝐵(x, y) = 𝐼𝐵(y, x) 

𝐹𝐵(x, y) = 𝐹𝐵(y, x), 

for all x, y ∈ X. 

Definition 2.8 [47]  

A single valued neutrosophic graph (SVN-graph) with underlying set V is 

defined to be a pair G = (A,  B), where  

1) The functions TA:V→[0, 1], IA:V→[0, 1] and FA:V→[0, 1] denote the degree

of truth-membership, degree of indeterminacy-membership and falsity-

membership of the element 𝑣𝑖 ∈ V, respectively,  and 

0≤ TA(vi) + IA(vi) +FA(vi) ≤3, 

for all  𝑣𝑖 ∈ V (i=1, 2, …, n). 

Florentin Smarandache (ed.) Collected Papers, VI

99



2) The functions   TB: E ⊆ V x V →[0, 1],  IB:E ⊆ V x V →[0, 1] and FB: E ⊆ V x V

→[0, 1] are defined by 

TB({vi, vj}) ≤ min [TA(vi), TA(vj)], 

IB({vi, vj}) ≥ max [IA(vi), IA(vj)], 

FB({vi, vj}) ≥ max [FA(vi), FA(vj)], 

denoting  the degree of truth-membership, indeterminacy-membership and 

falsity-membership of the edge (𝑣𝑖 , 𝑣𝑗) ∈ E respectively, where 

 0≤ 𝑇𝐵({𝑣𝑖 , 𝑣𝑗}) + 𝐼𝐵({𝑣𝑖 , 𝑣𝑗})+ 𝐹𝐵({𝑣𝑖 , 𝑣𝑗}) ≤3, 

for all  {𝑣𝑖 , 𝑣𝑗} ∈ E (i, j = 1, 2, …, n). 

We call A the single valued neutrosophic vertex set of V, and B the single valued 

neutrosophic edge set of E, respectively. Note that B is a symmetric single 

valued neutrosophic relation on A. We use the notation (𝑣𝑖 , 𝑣𝑗) for an element 

of E. Thus, G = (A, B) is a single valued neutrosophic graph of G∗= (V, E) if  

𝑇𝐵(𝑣𝑖 , 𝑣𝑗) ≤ min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)], 

𝐼𝐵(𝑣𝑖 , 𝑣𝑗) ≥ max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)], 

𝐹𝐵(𝑣𝑖 , 𝑣𝑗) ≥ max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)] ,   

for all  (𝑣𝑖 , 𝑣𝑗) ∈ E. 

           Figure 3: Single valued neutrosophic graph 

Definition 2.9 [47] 

A partial SVN-subgraph of SVN-graph G= (A, B) is a SVN-graph H = ( 𝑽′, 𝑬′) 

such that  

(i) 𝑽′ ⊆ 𝑽, where  𝑻𝑨
′ (𝒗𝒊) ≤ 𝑻𝑨(𝒗𝒊),  𝑰𝑨

′ (𝒗𝒊) ≥ 𝑰𝑨(𝒗𝒊),  𝑭𝑨
′ (𝒗𝒊) ≥

𝑭𝑨(𝒗𝒊),   for all  𝒗𝒊 ∈ 𝑽. 

(ii) 𝑬′ ⊆ 𝑬, where 𝑻𝑩
′ (𝒗𝒊, 𝒗𝒋) ≤ 𝑻𝑩(𝒗𝒊, 𝒗𝒋),  𝐈𝑩𝒊𝒋

′  ≥ 𝑰𝑩(𝒗𝒊, 𝒗𝒋), 𝑭𝑩
′ (𝒗𝒊, 𝒗𝒋)

≥ 𝑭𝑩(𝒗𝒊, 𝒗𝒋),  for all (𝒗𝒊 𝒗𝒋) ∈ 𝑬. 
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Definition 2.10 [47] 

A SVN-subgraph of SVN-graph G= (V, E) is a SVN-graph H = ( 𝑽′, 𝑬′) such that 

(i) 𝑽′ = 𝑽, where  𝑻𝑨
′ (𝒗𝒊) = 𝑻𝑨(𝒗𝒊),  𝑰𝑨

′ (𝒗𝒊) = 𝑰𝑨(𝒗𝒊),  𝑭𝑨
′ (𝒗𝒊) =

𝑭𝑨(𝒗𝒊)for all  𝒗𝒊 in the vertex set of   𝑽′.

(ii) 𝑬′ = 𝑬, where  𝑻𝑩
′ (𝒗𝒊, 𝒗𝒋) = 𝑻𝑩(𝒗𝒊, 𝒗𝒋),   𝑰𝑩

′ (𝒗𝒊, 𝒗𝒋) = 𝑰𝑩(𝒗𝒊, 𝒗𝒋),

𝑭𝑩
′ (𝒗𝒊, 𝒗𝒋) = 𝑭𝑩(𝒗𝒊, 𝒗𝒋) for every (𝒗𝒊 𝒗𝒋) ∈ 𝑬 in the edge set of  𝑬′.

Definition 2.11 [47] 

Let G= (A, B) be a single valued neutrosophic graph. Then the degree of any 

vertex v is the sum of degree of truth-membership, sum of degree of 

indeterminacy-membership and sum of degree of falsity-membership of all 

those edges which are incident on vertex v denoted by d(v) = ( 𝑑𝑇(𝑣) , 

𝑑𝐼(𝑣), 𝑑𝐹(𝑣)), where  

𝑑𝑇(𝑣)=∑ 𝑇𝐵(𝑢, 𝑣)𝑢≠𝑣  denotes degree of truth-membership vertex, 

 𝑑𝐼(𝑣)=∑ 𝐼𝐵(𝑢, 𝑣)𝑢≠𝑣  denotes degree of indeterminacy-

membership vertex, 

𝑑𝐹(𝑣)=∑ 𝐹𝐵(𝑢, 𝑣)𝑢≠𝑣  denotes degree of falsity-membership vertex. 

Definition 2.12 [47] 

A single valued neutrosophic graph G=(A, B) of 𝐺∗= (V, E) is called  strong 

single valued neutrosophic graph, if  

𝑇𝐵(𝑣𝑖 , 𝑣𝑗) = min [𝑇𝐴(𝑣𝑖),  𝑇𝐴(𝑣𝑗)], 

 𝐼𝐵(𝑣𝑖 , 𝑣𝑗) = max [𝐼𝐴(𝑣𝑖),  𝐼𝐴(𝑣𝑗)], 

 𝐹𝐵(𝑣𝑖 , 𝑣𝑗) = max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)], 

for all (𝑣𝑖 , 𝑣𝑗) ∈ E. 

Definition 2.13 [47] 

A single valued neutrosophic graph G = (A, B) is called complete if  

𝑇𝐵(𝑣𝑖 , 𝑣𝑗) = min [𝑇𝐴(𝑣𝑖),  𝑇𝐴(𝑣𝑗)], 

 𝐼𝐵(𝑣𝑖 , 𝑣𝑗) = max [𝐼𝐴(𝑣𝑖),  𝐼𝐴(𝑣𝑗)], 

 𝐹𝐵(𝑣𝑖 , 𝑣𝑗) = max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)], 

 for all 𝑣𝑖 , 𝑣𝑗 ∈ V. 
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Definition 2.14 [47] 

The complement of a single valued neutrosophic graph G (A, B) on  𝐺∗  is a 

single valued neutrosophic graph �̅� on 𝐺∗, where: 

1. �̅� =A

2. 𝑇𝐴
̅̅̅(𝑣𝑖)= 𝑇𝐴(𝑣𝑖),  𝐼�̅�(𝑣𝑖)= 𝐼𝐴(𝑣𝑖),  𝐹𝐴

̅̅ ̅(𝑣𝑖) = 𝐹𝐴(𝑣𝑖), for all 𝑣𝑗 ∈ V.

3. 𝑇𝐵
̅̅ ̅(𝑣𝑖 , 𝑣𝑗)= min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)] −  𝑇𝐵(𝑣𝑖 , 𝑣𝑗)

𝐼�̅�(𝑣𝑖 , 𝑣𝑗)= max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)]   − 𝐼𝐵(𝑣𝑖 , 𝑣𝑗), and

𝐹𝐵
̅̅ ̅(𝑣𝑖 , 𝑣𝑗)= max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)]   − 𝐹𝐵(𝑣𝑖 , 𝑣𝑗),

for all (𝑣𝑖 , 𝑣𝑗) ∈ E. 

Definition 2.15 [18] 

Let X  be a space of points (objects) with generic elements in X denoted by x. 

An interval valued neutrosophic set (for short IVNS A) A in X is characterized 

by truth-membership function TA(x) , indeterminacy-membership function 

IA(x) and falsity-membership function  FA(x). For each point x in X, we have 

that TA(x)= [𝑇𝐴𝐿(x), 𝑇𝐴𝑈(x)], IA(x) = [𝐼𝐴𝐿(𝑥), 𝐼𝐴𝑈(𝑥)], FA(x) = [𝐹𝐴𝐿(𝑥), 𝐹𝐴𝑈(𝑥)] ⊆ 

[0, 1]  and  0 ≤  TA(x) + IA(x) + FA(x) ≤ 3. 

Definition 2.16 [18] 

An IVNS A is contained in the IVNS B, A ⊆ B, if and only if  𝑇𝐴𝐿(x) ≤ 𝑇𝐵𝐿(x),  

𝑇𝐴𝑈(x) ≤ 𝑇𝐵𝑈(x),  𝐼𝐴𝐿(x) ≥ 𝐼𝐵𝐿(x), 𝐼𝐴𝑈(x) ≥ 𝐼𝐵𝑈(x), 𝐹𝐴𝐿(x) ≥ 𝐹𝐵𝐿(x) and 𝐹𝐴𝑈(x) ≥ 

𝐹𝐵𝑈(x) for any x in X. 

Definition 2.17 [18] 

The union of two interval valued neutrosophic sets A and B is an interval 

neutrosophic set C, written as C = A ∪  B, whose truth-membership, 

indeterminacy-membership, and false membership are related to A and B by 

TCL(x) =  max (TAL(x),  TBL(x)) 

TCU(x) =  max (TAU(x),  TBU(x)) 

ICL(x) =  min (IAL(x),  IBL(x)) 

ICU(x) =  min (IAU(x),  IBU(x)) 

FCL(x) =  min (FAL(x),  FBL(x)) 

FCU(x) =  min (FAU(x),  FBU(x))  

for all x in X. 
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Definition 2.18 [18] 

Let X and Y be two non-empty crisp sets. An interval valued neutrosophic 

relation R(X, Y) is a subset of product space X × Y, and is characterized by the 

truth membership function TR(x, y), the indeterminacy membership function 

IR(x, y), and the falsity membership function FR(x, y), where x ∈ X and y ∈ Y 

and TR(x, y), IR(x, y), FR(x, y) ⊆ [0, 1]. 

3 Interval Valued Neutrosophic Graphs

Throughout this paper, we denote 𝐺∗ = (V, E) a crisp graph, and G = (A, B) an 

interval valued neutrosophic graph. 

Definition 3.1 

By an interval-valued neutrosophic graph of a graph G∗ = (V, E) we mean a pair 

G = (A, B), where A =< [TAL,TAU], [IAL, IAU], [FAL, FAU]> is an interval-valued 

neutrosophic set on V; and B =< [TBL, TBU], [IBL, IBU], [FBL, FBU]> is an interval-

valued neutrosophic relation on E satisfying the following condition: 

1) V = { 𝑣1 ,  𝑣2  ,…,  𝑣𝑛 }, such that 𝑇𝐴𝐿 :V → [0, 1],  𝑇𝐴𝑈 :V → [0, 1], 𝐼𝐴𝐿 :V → [0,

1], 𝐼𝐴𝑈:V→[0, 1] and 𝐹𝐴𝐿:V→[0, 1],  𝐹𝐴𝑈:V→[0, 1] denote the degree of truth-

membership, the degree of  indeterminacy-membership and falsity-

membership of the element 𝑦 ∈ V, respectively,  and

0≤ 𝑇𝐴(𝑣𝑖) + 𝐼𝐴(𝑣𝑖) +𝐹𝐴(𝑣𝑖) ≤3, 

for all  𝑣𝑖 ∈ V (i=1, 2, …,n) 

2) The functions  𝑇𝐵𝐿:V x V →[0, 1],  𝑇𝐵𝑈:V x V →[0, 1],  𝐼𝐵𝐿:V x V →[0, 1], 𝐼𝐵𝑈:V x V

→[0, 1]  and 𝐹𝐵𝐿:V x V →[0,1],  𝐹𝐵𝑈:V x V →[0, 1] are such that 

𝑇𝐵𝐿({𝑣
𝑖
, 𝑣𝑗}) ≤ min [𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)],

𝑇𝐵𝑈({𝑣
𝑖
, 𝑣𝑗}) ≤ min [𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)],

𝐼𝐵𝐿({𝑣
𝑖
, 𝑣𝑗}) ≥ max[𝐼𝐵𝐿(𝑣𝑖), 𝐼𝐵𝐿(𝑣𝑗)],

𝐼𝐵𝑈({𝑣
𝑖
, 𝑣𝑗}) ≥ max[𝐼𝐵𝑈(𝑣𝑖), 𝐼𝐵𝑈(𝑣𝑗)],

𝐹𝐵𝐿({𝑣𝑖 , 𝑣𝑗}) ≥ max[𝐹𝐵𝐿(𝑣𝑖), 𝐹𝐵𝐿(𝑣𝑗)], 

𝐹𝐵𝑈({𝑣𝑖 , 𝑣𝑗}) ≥ max[𝐹𝐵𝑈(𝑣𝑖), 𝐹𝐵𝑈(𝑣𝑗)], 

denoting the degree of truth-membership, indeterminacy-membership and 

falsity-membership of the edge (𝑣𝑖 , 𝑣𝑗) ∈ E respectively, where 

 0≤ 𝑇𝐵({𝑣𝑖 , 𝑣𝑗}) + 𝐼𝐵({𝑣𝑖 , 𝑣𝑗})+ 𝐹𝐵({𝑣𝑖 , 𝑣𝑗}) ≤3  

for all  {𝑣𝑖 , 𝑣𝑗} ∈ E (i, j = 1, 2,…, n). 
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We call A the interval valued neutrosophic vertex set of V, and B the interval 

valued neutrosophic edge set of E, respectively. Note that B is a symmetric 

interval valued neutrosophic relation on A. We use the notation (𝑣𝑖 , 𝑣𝑗) for an 

element of E. Thus, G = (A, B) is an interval valued neutrosophic graph of G∗= 

(V, E) if  

𝑇𝐵𝐿(𝑣𝑖 , 𝑣𝑗) ≤ min[𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)], 

𝑇𝐵𝑈(𝑣𝑖, 𝑣𝑗) ≤ min[𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)], 

𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗) ≥ max[𝐼𝐵𝐿(𝑣𝑖), 𝐼𝐵𝐿(𝑣𝑗)],  

𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗) ≥ max[𝐼𝐵𝑈(𝑣𝑖), 𝐼𝐵𝑈(𝑣𝑗)],  

𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗) ≥ max[𝐹𝐵𝐿(𝑣𝑖), 𝐹𝐵𝐿(𝑣𝑗)], 

𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗) ≥ max[𝐹𝐵𝑈(𝑣𝑖), 𝐹𝐵𝑈(𝑣𝑗)] — for all  (𝑣𝑖 , 𝑣𝑗) ∈ E. 

Example 3.2 

Consider a graph 𝐺∗, such that V = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, E = {𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣4𝑣1}.

Let A be a interval valued neutrosophic subset of V and B a interval valued 

neutrosophic subset of E, denoted by  

Figure 4: G: Interval valued neutrosophic graph 

𝑣1 𝑣2 𝑣3 v1v2 𝑣2𝑣3 𝑣3𝑣1 

𝑇𝐴𝐿 0.3 0.2 0.1 𝑇𝐵𝐿 0.1 0.1 0.1 

𝑇𝐴𝑈 0.5 0.3 0.3 𝑇𝐵𝑈 0.2 0.3 0.2 

𝐼𝐴𝐿 0.2 0.2 0.2 𝐼𝐵𝐿 0.3 0.4 0.3 

𝐼𝐴𝑈 0.3 0.3 0.4 𝐼𝐵𝑈 0.4 0.5 0.5 

𝐹𝐴𝐿 0.3 0.1 0.3 𝐹𝐵𝐿 0.4 0.4 0.4 

𝐹𝐴𝑈 0.4 0.4 0.5 𝐹𝐵𝑈 0.5 0.5 0.6 
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In Figure 4, 

(i)   (v1 , <[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]>) is an interval valued neutrosophic 

vertex or IVN-vertex. 

(ii) (v1v2, <[0.1, 0.2], [ 0.3, 0.4], [0.4, 0.5]>) is an interval valued neutrosophic 

edge or IVN-edge. 

(iii) (v1, <[0.3, 0.5], [ 0.2, 0.3], [0.3, 0.4]>) and (v2, <[0.2, 0.3],[ 0.2, 0.3],[0.1, 

0.4]>) are interval valued neutrosophic adjacent vertices. 

(iv) (v1v2, <[0.1, 0.2], [ 0.3, 0.4], [0.4, 0.5]>)  and (v1v3, <[0.1, 0.2],[ 0.3, 0.5], 

[0.4, 0.6]>)   are  an interval valued neutrosophic adjacent edge. 

Remarks 

(i) When  𝑇𝐵𝐿(𝑣𝑖 , 𝑣𝑗)  = 𝑇𝐵𝑈(𝑣𝑖 , 𝑣𝑗)  = 𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗)  = 𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = 𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗)  = 

𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗) for some i and j, then there is no edge between vi and vj . Otherwise 

there exists an edge between vi and vj . 

(ii) If one of the inequalities is not satisfied in (1) and (2), then G is not an IVNG. 

The interval valued neutrosophic graph G depicted in Figure 3 is represented 

by the following adjacency matrix 𝑴𝑮  — 

𝑴𝑮 = 

[

< [𝟎. 𝟑, 𝟎. 𝟓], [ 𝟎. 𝟐, 𝟎. 𝟑], [𝟎. 𝟑, 𝟎. 𝟒] > < [𝟎. 𝟏 , 𝟎. 𝟐], [𝟎. 𝟑 , 𝟎. 𝟒], [𝟎. 𝟒 , 𝟎. 𝟓] > < [𝟎. 𝟏 , 𝟎. 𝟐], [𝟎. 𝟑 , 𝟎. 𝟓], [𝟎. 𝟒 , 𝟎. 𝟔] >

< [𝟎. 𝟏 , 𝟎. 𝟐], [𝟎. 𝟑 , 𝟎. 𝟒], [𝟎. 𝟒 , 𝟎. 𝟓] > < [𝟎. 𝟐 , 𝟎. 𝟑], [𝟎. 𝟐 , 𝟎. 𝟑], [𝟎. 𝟏 , 𝟎. 𝟒] > < [𝟎. 𝟏 , 𝟎. 𝟑], [𝟎. 𝟒 , 𝟎. 𝟓], [𝟎. 𝟒 , 𝟎. 𝟓] >

< [𝟎. 𝟏 , 𝟎. 𝟐], [𝟎. 𝟑 , 𝟎. 𝟓], [𝟎. 𝟒 , 𝟎. 𝟔] > < [𝟎. 𝟏 , 𝟎. 𝟑], [𝟎. 𝟒 , 𝟎. 𝟓], [𝟎. 𝟒 , 𝟎. 𝟓] > < [𝟎. 𝟏 , 𝟎. 𝟑], [𝟎. 𝟐 , 𝟎. 𝟒], [𝟎. 𝟑 , 𝟎. 𝟓] >

]

Definition 3.3 

A partial IVN-subgraph of IVN-graph G= (A, B) is an IVN-graph H = ( 𝑽′, 𝑬′) such 

that — 

(i)  𝑽′ ⊆  𝑽 , where  𝑻𝑨𝑳
′ (𝒗𝒊)  ≤  𝑻𝑨𝑳(𝒗𝒊) , 𝑻𝑨𝑼

′ (𝒗𝒊)  ≤  𝑻𝑨𝑼(𝒗𝒊) ,   𝑰𝑨𝑳
′ (𝒗𝒊)  ≥

𝑰𝑨𝑳(𝒗𝒊),  𝑰𝑨𝑼
′ (𝒗𝒊) ≥ 𝑰𝑨𝑼(𝒗𝒊), 𝑭𝑨𝑳

′ (𝒗𝒊) ≥ 𝑭𝑨𝑳(𝒗𝒊), 𝑭𝑨𝑼
′ (𝒗𝒊) ≥ 𝑭𝑨𝑼(𝒗𝒊),   for all

𝒗𝒊 ∈ 𝑽. 

(ii)  𝑬′ ⊆  𝑬 , where  𝑻𝑩𝑳
′ (𝒗𝒊, 𝒗𝒋) ≤  𝑻𝑩𝑳(𝒗𝒊, 𝒗𝒋) , 𝑻𝑩𝑼

′ (𝒗𝒊, 𝒗𝒋) ≤  𝑻𝑩𝑼(𝒗𝒊, 𝒗𝒋) ,

𝑰𝑩𝑳
′ (𝒗𝒊, 𝒗𝒋)  ≥ 𝑰𝑩𝑳(𝒗𝒊, 𝒗𝒋), 𝑰𝑩𝑼

′ (𝒗𝒊, 𝒗𝒋)  ≥ 𝑰𝑩𝑼(𝒗𝒊, 𝒗𝒋),  𝑭𝑩𝑳
′ (𝒗𝒊, 𝒗𝒋)  ≥ 𝑭𝑩𝑳(𝒗𝒊, 𝒗𝒋),

𝐅𝐁𝐔
′ (𝒗𝒊, 𝒗𝒋) ≥ 𝑭𝑩𝑼(𝒗𝒊, 𝒗𝒋),   for all (𝒗𝒊 𝒗𝒋) ∈ 𝑬.

Definition 3.4 

An IVN-subgraph of IVN-graph G= (V, E) is an IVN-graph H = ( 𝑽′, 𝑬′) such that  

(i)  𝑻𝑨𝑳
′ (𝒗𝒊) = 𝑻𝑨𝑳(𝒗𝒊), 𝑻𝑨𝑼

′ (𝒗𝒊) = 𝑻𝑨𝑼(𝒗𝒊),   𝑰𝑨𝑳
′ (𝒗𝒊) = 𝑰𝑨𝑳(𝒗𝒊), 𝑰𝑨𝑼

′ (𝒗𝒊) =

𝑰𝑨𝑼(𝒗𝒊), 𝑭𝑨𝑳
′ (𝒗𝒊) = 𝑭𝑨𝑳(𝒗𝒊), 𝑭𝑨𝑼

′ (𝒗𝒊) = 𝑭𝑨𝑼(𝒗𝒊),  for all  𝒗𝒊 in the vertex set of

𝑽′. 

(ii) 𝑬′ =  𝑬 , where  𝑻𝑩𝑳
′ (𝒗𝒊, 𝒗𝒋) =  𝑻𝑩𝑳(𝒗𝒊, 𝒗𝒋) , 𝑻𝑩𝑼

′ (𝒗𝒊, 𝒗𝒋) =  𝑻𝑩𝑼(𝒗𝒊, 𝒗𝒋) ,
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𝑰𝑩𝑳
′ (𝒗𝒊, 𝒗𝒋)  =  𝑰𝑩𝑳(𝒗𝒊, 𝒗𝒋) , 𝑰𝑩𝑼

′ (𝒗𝒊, 𝒗𝒋)   = 𝑰𝑩𝑼(𝒗𝒊, 𝒗𝒋) ,  𝑭𝑩𝑳
′ (𝒗𝒊, 𝒗𝒋)  =  𝑭𝑩𝑳(𝒗𝒊, 𝒗𝒋) ,

𝐅𝐁𝐔
′ (𝒗𝒊, 𝒗𝒋) =  𝑭𝑩𝑼(𝒗𝒊, 𝒗𝒋), for every (𝒗𝒊 𝒗𝒋) ∈ 𝑬 in the edge set of  𝑬′.

Example 3.5 

𝐆𝟏 in Figure 5   is an IVN-graph, 𝐇𝟏 in Figure 6 is a partial IVN-subgraph and  𝐇𝟐 

in Figure 7  is a  IVN-subgraph of 𝐆𝟏. 

 

Figure 5: G1, an interval valued neutrosophic graph 

 

 

Figure 6: H1, a partial IVN-subgraph of  G1 

Figure 7: H2, an IVN-subgraph of  G1 

Definition 3.6 

The two vertices are said to be adjacent in an interval valued neutrosophic  

graph  G= (A,  B) if  — 

𝑇𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = min[𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)], 

𝑇𝐵𝑈(𝑣𝑖, 𝑣𝑗) = min[𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)], 

𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = max[𝐼𝐴𝐿(𝑣𝑖), 𝐼𝐴𝐿(𝑣𝑗)] 

𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = max[𝐼𝐴𝑈(𝑣𝑖), 𝐼𝐴𝑈(𝑣𝑗)]  

𝑣3 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.2],[ 0.3, 0.4],[0.4, 0.5]> 

𝑣1 
𝑣2 

<[0.1, 0.3],[ 0.4, 0.5],[0.4, 0.5]> <[0.1, 0.2],[ 0.3, 0.5],[0.4, 0.6]> 

𝑣3 

<[0.2, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 
<[0.2, 0.3],[ 0.3, 0.4],[0.3, 0.6]> 

<[0.1, 0.2],[ 0.3, 0.4],[0.4, 0.6]> 

<[0.1, 0.2],[ 0.4, 0.5],[0.4, 0.6]> 

𝑣1 
𝑣2 

<[0.1, 0.2],[ 0.5, 0.6],[0.4, 0.7]> 
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 𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = max[𝐹𝐴𝐿(𝑣𝑖), 𝐹𝐴𝐿(𝑣𝑗)] 

𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = max[𝐹𝐴𝑈(𝑣𝑖), 𝐹𝐴𝑈(𝑣𝑗)] 

In this case, 𝑣𝑖 and 𝑣𝑗 are said to be neighbours and (𝑣𝑖 , 𝑣𝑗) is incident at 𝑣𝑖 and 

𝑣𝑗 also. 

Definition 3.7 

A path P in an interval valued neutrosophic  graph G= (A, B) is a sequence of 

distinct vertices 𝑣0, 𝑣1, 𝑣3,… 𝑣𝑛 such that   𝑇𝐵𝐿(𝑣𝑖−1, 𝑣𝑖)  > 0,  𝑇𝐵𝑈(𝑣𝑖−1, 𝑣𝑖)  > 0,  

𝐼𝐵𝐿(𝑣𝑖−1, 𝑣𝑖)  > 0, 𝐼𝐵𝑈(𝑣𝑖−1, 𝑣𝑖)  > 0  and 𝐹𝐵𝐿(𝑣𝑖−1, 𝑣𝑖)  > 0, 𝐹𝐵𝑈(𝑣𝑖−1, 𝑣𝑖)  > 0      

for  0 ≤i ≤ 1. Here n ≥ 1 is called the length of the path P. A single node or 

vertex 𝑣𝑖 may also be considered as a path. In this case, the path is of the length 

([0, 0], [0, 0], [0, 0]). The consecutive pairs (𝑣𝑖−1, 𝑣𝑖)  are called edges of the 

path. We call P a cycle if 𝑣0= 𝑣𝑛 and n≥3. 

Definition 3.8 

An interval valued neutrosophic graph G= (A, B) is said to be connected if every 

pair of vertices has at least one interval valued neutrosophic path between 

them, otherwise it is disconnected. 

Definition 3.9 

A vertex vj ∈ V of interval valued neutrosophic graph G= (A, B) is said to be an 

isolated vertex if there is no effective edge incident at vj. 

Figure 8. Example of interval valued neutrosophic graph 

In Figure 8, the interval valued neutrosophic vertex v4 is an isolated vertex. 

Definition 3.10 

A vertex in an interval valued neutrosophic G = (A, B) having exactly one 

neighbor is called a pendent vertex. Otherwise, it is called non-pendent vertex. 

An edge in an interval valued neutrosophic graph incident with a pendent 

vertex is called a pendent edge. Otherwise it is called non-pendent edge. A 

𝑣3 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.2],[ 0.3, 0.4],[0.4, 0.5]> 

𝑣1 
𝑣2 

<[0.1, 0.3],[ 0.4, 0.5],[0.4, 0.5]> <[0.1, 0.2],[ 0.3, 0.5],[0.4, 0.6]> 

𝑣4 

<[0.1, 0.4],[ 0.2, 0.3],[0.4, 0.5]> 
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vertex in an interval valued neutrosophic graph adjacent to the pendent vertex 

is called a support of the pendent edge. 

Definition 3.11 

An interval valued neutrosophic graph G = (A, B) that has neither self-loops 

nor parallel edge is called simple interval valued neutrosophic graph. 

Definition 3.12 

When a vertex 𝐯𝐢 is end vertex of some edges (𝐯𝐢, 𝐯𝐣)  of any IVN-graph  G = (A, 

B). Then  𝐯𝐢 and (𝐯𝐢, 𝐯𝐣) are said to be incident to each other. 

Figure 9.  Incident IVN-graph. 

In this graph v2v1, v2v3 and  v2v4 are incident on v2. 

Definition 3.13 

Let G = (A, B) be an interval valued neutrosophic graph. Then the degree of any 

vertex v is sum of degree of truth-membership, sum of degree of 

indeterminacy-membership and sum of degree of falsity-membership of all 

those edges which are incident on vertex v denoted by ― 

d(v)= ([𝑑𝑇𝐿(𝑣), 𝑑𝑇𝑈(𝑣)], [𝑑𝐼𝐿(𝑣), 𝑑𝐼𝑈(𝑣)], [𝑑𝐹𝐿(𝑣), 𝑑𝐹𝑈(𝑣)]), 

where: 

𝑑𝑇𝐿(𝑣)=∑ 𝑇𝐵𝐿(𝑢, 𝑣)𝑢≠𝑣  denotes the degree of lower truth-membership vertex; 

𝑑𝑇𝑈(𝑣) = ∑ 𝑇𝐵𝑈(𝑢, 𝑣)𝑢≠𝑣  denotes the degree of upper truth-membership 

vertex; 

 𝑑𝐼𝐿(𝑣) = ∑ 𝐼𝐵𝐿(𝑢, 𝑣)𝑢≠𝑣  denotes the degree of lower indeterminacy-

membership vertex; 

𝑑𝐼𝑈(𝑣) = ∑ 𝐼𝐵𝑈(𝑢, 𝑣)𝑢≠𝑣  denotes the degree of upper indeterminacy-

membership vertex; 

𝑑𝐹𝐿(𝑣) = ∑ 𝐹𝐵𝐿(𝑢, 𝑣)𝑢≠𝑣  denotes the degree of lower falsity-membership 

vertex; 

𝑑𝐹𝑈(𝑣) = ∑ 𝐹𝐵𝑈(𝑢, 𝑣)𝑢≠𝑣  denotes the degree of upper falsity-membership 

vertex. 

𝑣3 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.2],[ 0.3, 0.4],[0.4, 0.5]> 

𝑣1 
𝑣2 

<[0.1, 0.3],[ 0.4, 0.5],[0.4, 0.5]> <[0.1, 0.2],[ 0.3, 0.5],[0.4, 0.6]> 

𝑣4 

<[0.1, 0.4],[ 0.2, 0.3],[0.4, 0.5]> 

<[0.1, 0.2],[ 0.3, 0.4],[0.4, 0.5]> 
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Example 3.14 

Let us consider an interval valued neutrosophic graph  G = (A, B) of  𝐺∗ = (V, E) 

where V = {v1, v2, v3, v4} and E = {v1v2, v2v3, v3v4 , v4v1}.  

Figure 10: Degree of vertex of interval valued neutrosophic graph 

We have the degree of each vertex as follows: 

𝑑(v1)= ([0.3, 0.6], [0.5, 0.9], [0.5, 0.9]), 𝑑(v2)= ([0.4, 0.6], [0.5, 1.0], [0.4, 0.8]), 

𝑑(v3)= ([0.4, 0.6], [0.6, 0.9], [0.4, 0.8]), 𝑑(v4)= ([0.3, 0.6], [0.6, 0.8], [0.5, 0.9]). 

Definition 3.15 

An interval valued neutrosophic graph G= (A, B) is called constant if degree of 

each vertex is k =([𝑘1𝐿 , 𝑘1𝑈], [𝑘2𝐿 , 𝑘2𝑈], [𝑘3𝐿 , 𝑘3𝑈]). That is d(𝑣) =([𝑘1𝐿 , 𝑘1𝑈], 

[𝑘2𝐿 , 𝑘2𝑈], [𝑘3𝐿 , 𝑘3𝑈]), for all 𝑣 ∈ V.  

Example 3.16 

Consider an interval valued neutrosophic graph G such that V = {v1, v2, v3, v4} 

and E = {v1v2, v2v3, v3v4 , v4v1}.  

   

Figure 11. Constant IVN-graph. 

𝑣4 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.3],[ 0.3, 0.4],[0.2, 0.4]> 

𝑣3 

<[0.3, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

<[
0

.1
, 0

.3
],

[ 
0

.3
, 0

.4
],

[0
.3

, 0
.5

]>
 

<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]><[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 

𝑣1 

<[0.2, 0.3],[ 0.2, 0.5],[0.2, 0.4]> 

𝑣2

<[
0

.2
, 0

.3
],

[ 
0

.3
, 0

.5
],

[0
.2

, 0
.4

]>
 

𝑣4 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.3],[ 0.2, 0.5],[0.2, 0.4]> 

𝑣3 

<[0.3, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

<[
0

.2
, 0

.3
],

[ 
0

.2
, 0

.5
],

[0
.2

, 0
.4

]>
 

<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]> <[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 

𝑣1 

<[0.2, 0.3],[ 0.2, 0.5],[0.2, 0.4]> 

𝑣2 

<[
0

.2
, 0

.3
],

[ 
0

.2
, 0

.5
],

[0
.2

, 0
.4

]>
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Clearly, G is constant IVN-graph since the degree of  𝒗𝟏, 𝒗𝟐, 𝒗𝟑 and 𝒗𝟒 is ([0.4, 

0.6], [0.4, 1], [0.4, 0.8]) 

Definition 3.17 

An interval valued neutrosophic graph G = (A, B) of 𝐺∗= (V, E) is called strong  

interval valued neutrosophic graph if 

𝑇𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = min[𝑇𝐴𝐿(𝑣𝑖),  𝑇𝐴𝐿(𝑣𝑗)], 𝑇𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = min[𝑇𝐴𝑈(𝑣𝑖),  

𝑇𝐴𝑈(𝑣𝑗)] 

 𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = max[𝐼𝐴𝐿(𝑣𝑖),  𝐼𝐴𝐿(𝑣𝑗)],  𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = max[𝐼𝐴𝑈(𝑣𝑖),  

𝐼𝐴𝑈(𝑣𝑗)]  

 𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = max[𝐹𝐴𝐿(𝑣𝑖), 𝐹𝐴𝐿(𝑣𝑗)],  𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = max[𝐹𝐴𝑈(𝑣𝑖), 

𝐹𝐴𝑈(𝑣𝑗)],    for all (𝑣𝑖 , 𝑣𝑗) ∈ E. 

Example 3.18 

Consider  a graph 𝐺∗ such that V = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, E = {𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣4𝑣1}.

Let A be an interval valued neutrosophic subset of V and let B an interval 

valued neutrosophic subset of E denoted by: 

𝑣1 𝑣2 𝑣3 𝑣1𝑣2 𝑣2𝑣3 𝑣3𝑣1 

𝑇𝐴𝐿 0.3 0.2 0.1 𝑇𝐵𝐿 0.2 0.1 0.1 

𝑇𝐴𝑈 0.5 0.3 0.3 𝑇𝐵𝑈 0.3 0.3 0.3 

𝐼𝐴𝐿 0.2 0.2 0.2 𝐼𝐵𝐿 0.2 0.2 0.2 

𝐼𝐴𝑈 0.3 0.3 0.4 𝐼𝐵𝑈 0.3 0.4 0.4 

𝐹𝐴𝐿 0.3 0.1 0.3 𝐹𝐵𝐿 0.3 0.3 0.3 

𝐹𝐴𝑈 0.4 0.4 0.5 𝐹𝐵𝑈 0.4 0.4 0.5 

Figure 12. Strong IVN-graph. 

𝑣3 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.2, 0.3],[ 0.2, 0.3],[0.3, 0.4]> 

𝑣1 
𝑣2 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.4]> <[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 
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By routing computations, it is easy to see that G is a strong interval valued 

neutrosophic of 𝐺∗. 

Proposition 3.19 

An interval valued neutrosophic graph is the generalization of interval valued 

fuzzy graph 

Proof 

Suppose G = (V, E) be an interval valued neutrosophic graph. Then by setting 

the indeterminacy-membership and falsity-membership values of vertex set 

and edge set equals to zero reduces the interval valued neutrosophic graph to 

interval valued fuzzy graph. 

Proposition 3.20 

An interval valued neutrosophic graph is the generalization of interval valued 

intuitionistic fuzzy graph 

Proof 

Suppose G = (V, E) is an interval valued neutrosophic graph. Then by setting 

the indeterminacy-membership  values of vertex set and edge set equals to 

zero reduces the interval valued neutrosophic graph to interval valued 

intuitionistic fuzzy graph. 

Proposition 3.21 

An interval valued neutrosophic graph is the generalization of intuitionistic 

fuzzy graph. 

Proof 

Suppose G = (V, E) is an interval valued neutrosophic graph. Then by setting 

the indeterminacy-membership, upper truth-membership and upper falsity-

membership values of vertex set and edge set equals to zero reduces the 

interval valued neutrosophic graph to intuitionistic fuzzy graph. 

Proposition 3.22 

An interval valued neutrosophic graph is the generalization of single valued 

neutrosophic graph. 

Proof 

Suppose G = (V, E) is an interval valued neutrosophic graph. Then by setting 

the upper truth-membership equals lower truth-membership, upper 
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indeterminacy-membership equals lower indeterminacy-membership and 

upper falsity-membership equals lower falsity-membership values of vertex 

set and edge set reduces the interval valued neutrosophic graph to single 

valued neutrosophic graph. 

Definition 3.23 

The complement of an interval valued neutrosophic graph G (A, B) on  𝐺∗ is 

an interval valued neutrosophic graph �̅� on 𝐺∗ where: 

1. �̅� =A

2. 𝑇𝐴𝐿
̅̅ ̅̅ (𝑣𝑖)= 𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝑈

̅̅ ̅̅̅(𝑣𝑖)= 𝑇𝐴𝑈(𝑣𝑖), 𝐼𝐴𝐿
̅̅ ̅̅ (𝑣𝑖)= 𝐼𝐴𝐿(𝑣𝑖), 𝐼𝐴𝑈

̅̅ ̅̅ (𝑣𝑖)=

𝐼𝐴𝑈(𝑣𝑖),  𝐹𝐴𝐿
̅̅ ̅̅ (𝑣𝑖) = 𝐹𝐴𝐿(𝑣𝑖), 𝐹𝐴𝑈

̅̅ ̅̅ ̅(𝑣𝑖) = 𝐹𝐴𝑈(𝑣𝑖),

for all 𝑣𝑗 ∈ V. 

3. 𝑇𝐵𝐿
̅̅ ̅̅ (𝑣𝑖 , 𝑣𝑗)= min [𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)]  − 𝑇𝐵𝐿(𝑣𝑖, 𝑣𝑗),

𝑇𝐵𝑈
̅̅ ̅̅ ̅(𝑣𝑖 , 𝑣𝑗)= min [𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)] -𝑇𝐵𝑈(𝑣𝑖 , 𝑣𝑗),

𝐼𝐵𝐿
̅̅ ̅̅ (𝑣𝑖 , 𝑣𝑗)= max [𝐼𝐴𝐿(𝑣𝑖), 𝐼𝐴𝐿(𝑣𝑗)]  −

𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗), 𝐼𝐵𝑈
̅̅ ̅̅ (𝑣𝑖 , 𝑣𝑗)= max [𝐼𝐴𝑈(𝑣𝑖), 𝐼𝐴𝑈(𝑣𝑗)]  -𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗),

and 

𝐹𝐵𝐿
̅̅ ̅̅̅(𝑣𝑖 , 𝑣𝑗)= max [𝐹𝐴𝐿(𝑣𝑖), 𝐹𝐴𝐿(𝑣𝑗)]  - 𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗),

𝐹𝐵𝑈
̅̅ ̅̅ ̅(𝑣𝑖 , 𝑣𝑗)= max [𝐹𝐴𝑈(𝑣𝑖), 𝐹𝐴𝑈(𝑣𝑗)]  - 𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗),

for all (𝑣𝑖 , 𝑣𝑗) ∈ E 

Remark 3.24 

If G = (V, E) is an interval valued neutrosophic graph on  𝐺∗. Then from above 

definition, it follow that �̅� ̅ is given by the interval valued neutrosophic graph

G̅ ̅ = (V̅ ̅, E̅ ̅) on G∗ where V̅ ̅=V and ―

TBL
̅̅ ̅̅̅̅̅ ̅̅̅(vi, vj)= min [TAL(vi), TA(vj)]-TBL(vi, vj),

TBU
̅̅ ̅̅ ̅̅̅ ̅̅ ̅(vi, vj)= min [TAU(vi), TA(vj)]-TBU(vi, vj),

IBL
̅̅ ̅̅̅̅ ̅̅ (vi, vj)= max [IAL(vi), IAL(vj)]-IBL(vi, vj),

IBU
̅̅ ̅̅̅̅ ̅̅ (vi, vj)= max [IAU(vi), IAU(vj)]-IBU(vi, vj),

and 

FBL
̅̅ ̅̅̅̅̅ ̅̅̅(vi, vj) = max [FAL(vi), FAL(vj)]-FBL(vi, vj), FBU

̅̅ ̅̅ ̅̅̅ ̅̅ ̅(vi, vj)

= max [FAU(vi), FAU(vj)]-FBU(vi, vj), For all (vi, vj) ∈ E. 
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Thus  𝑇𝐵𝐿
̅̅ ̅̅̅̅ ̅̅  =𝑇𝐵𝐿 , 𝑇𝐵𝑈

̅̅ ̅̅ ̅̅̅ ̅̅ ̅ =𝑇𝐵𝑈𝐿 ,  𝐼𝐵𝐿
̅̅ ̅̅̅̅ ̅̅  =𝐼𝐵𝐿 , 𝐼𝐵𝑈

̅̅ ̅̅̅̅ ̅̅  =𝐼𝐵𝑈 , and 𝐹𝐵𝐿
̅̅ ̅̅̅̅̅̅̅̅ =𝐹𝐵𝐿 ,  𝐹𝐵𝑈

̅̅ ̅̅ ̅̅̅ ̅̅ ̅ =𝐹𝐵𝑈  on V,

where E =( [𝑇𝐵𝐿, 𝑇𝐵𝑈],  [𝐼𝐵𝐿 , 𝐼𝐵𝑈], [𝐹𝐵𝐿 , 𝐹𝐵𝑈]) is the interval valued neutrosophic 

relation on V. For any interval valued neutrosophic graph G, �̅�  is strong 

interval valued neutrosophic graph and  G ⊆ �̅�. 

Proposition 3.25 

G= �̅� ̅ if and only if G is a strong interval valued  neutrosophic graph. 

Proof 

It is obvious. 

Definition 3.26 

A strong interval valued neutrosophic graph G is called self complementary if 

G≅ �̅�, where �̅� is the complement of interval valued neutrosophic graph G. 

Example 3.27 

Consider a graph 𝐺∗ = (V, E) such that V ={v1, v2, v3, v4}, E={v1v2, v2v3, v3v4,

v1v4}. Consider an interval valued  neutrosophic graph G. 

Figure 13. G: Strong IVN- graph 

Figure 14. �̅� Strong IVN- graph 
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Figure  15. �̅� ̅ Strong IVN- graph

Clearly, G≅ �̅� ̅, hence G is self complementary.

Proposition 3.26 

Let G=(A, B) be a strong interval valued neutrosophic graph. If ― 

𝑇𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = min [𝑇𝐴𝐿(𝑣𝑖),  𝑇𝐴𝐿(𝑣𝑗)] 

𝑇𝐵𝑈(𝑣𝑖, 𝑣𝑗) = min [𝑇𝐴𝑈(𝑣𝑖),  𝑇𝐴𝑈(𝑣𝑗)] 

 𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = max [𝐼𝐴𝐿(𝑣𝑖),  𝐼𝐴𝐿(𝑣𝑗)]  

𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = max [𝐼𝐴𝑈(𝑣𝑖),  𝐼𝐴𝑈(𝑣𝑗)] 

 𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = max [𝐹𝐴𝐿(𝑣𝑖), 𝐹𝐴𝐿(𝑣𝑗)] 

𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = max [𝐹𝐴𝑈(𝑣𝑖), 𝐹𝐴𝑈(𝑣𝑗)] 

for all 𝑣𝑖 , 𝑣𝑗 ∈ V, then G is self complementary. 

Proof 

Let G = (A, B) be a strong interval valued neutrosophic graph such that ― 

𝑇𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = min [𝑇𝐴𝐿(𝑣𝑖),  𝑇𝐴𝐿(𝑣𝑗)]; 

𝑇𝐵𝑈(𝑣𝑖, 𝑣𝑗) = min [𝑇𝐴𝑈(𝑣𝑖),  𝑇𝐴𝑈(𝑣𝑗)]; 

 𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = max [𝐼𝐴𝐿(𝑣𝑖),  𝐼𝐴𝐿(𝑣𝑗)]; 

𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = max [𝐼𝐴𝑈(𝑣𝑖),  𝐼𝐴𝑈(𝑣𝑗)]; 

 𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = max [𝐹𝐴𝐿(𝑣𝑖), 𝐹𝐴𝐿(𝑣𝑗)]; 

𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = max [𝐹𝐴𝑈(𝑣𝑖), 𝐹𝐴𝑈(𝑣𝑗)], 

for all 𝑣𝑖 , 𝑣𝑗 ∈ V, then G≈ �̅� ̅under the identity map I: V →V, hence G is self

complementary. 

𝑣4 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.3],[ 0.2, 0.4],[0.2, 0.3]> 

𝑣3 

<[0.3, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

<[
0

.3
, 0

.5
],

[ 
0

.2
, 0

.3
],

[0
.2

, 0
.4

]>
 

<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]> <[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 

𝑣1 

<[0.4, 0.6],[ 0.1, 0.3],[0.2, 0.4]> 

𝑣2 

<[
0

.2
, 0

.3
],

[ 
0

.2
, 0

.4
,[

0
.2

, 0
.3

]>
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Proposition 3.27 

Let G be a self complementary interval valued neutrosophic graph. Then ― 

∑ 𝑇𝐵𝐿(𝑣𝑖 , 𝑣𝑗)𝑣𝑖≠𝑣𝑗
 = 

1

2
∑ min [𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)]𝑣𝑖≠𝑣𝑗

∑ 𝑇𝐵𝑈(𝑣𝑖, 𝑣𝑗)𝑣𝑖≠𝑣𝑗
 = 

1

2
∑ min [𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)]𝑣𝑖≠𝑣𝑗

∑ 𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗)𝑣𝑖≠𝑣𝑗
 = 

1

2
∑ max [𝐼𝐴𝐿(𝑣𝑖), 𝐼𝐴𝐿(𝑣𝑗)]𝑣𝑖≠𝑣𝑗

∑ 𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗)𝑣𝑖≠𝑣𝑗
 = 

1

2
∑ max [𝐼𝐴𝑈(𝑣𝑖), 𝐼𝐴𝑈(𝑣𝑗)]𝑣𝑖≠𝑣𝑗

∑ 𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗)𝑣𝑖≠𝑣𝑗
 = 

1

2
∑ max [𝐹𝐴𝐿(𝑣𝑖), 𝐹𝐴𝐿(𝑣𝑗)]𝑣𝑖≠𝑣𝑗

∑ 𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗)𝑣𝑖≠𝑣𝑗
 = 

1

2
∑ max [𝐹𝐴𝑈(𝑣𝑖), 𝐹𝐴𝑈(𝑣𝑗)]𝑣𝑖≠𝑣𝑗

. 

Proof 

If G be a self complementary interval valued neutrosophic graph. Then there 

exist an isomorphism  f: 𝑉1 → 𝑉1 satisfying   

𝑇𝑉1
̅̅ ̅̅ (𝑓(𝑣𝑖)) = 𝑇𝑉1

(𝑓(𝑣𝑖))  =  𝑇𝑉1
(𝑣𝑖)

𝐼𝑉1
̅̅ ̅(𝑓(𝑣𝑖)) = 𝐼𝑉1

(𝑓(𝑣𝑖))  =  𝐼𝑉1
(𝑣𝑖)

𝐹𝑉1
̅̅ ̅̅̅̅ ̅̅ (𝑓(𝑣𝑖)) = 𝐹𝑉1

(𝑓(𝑣𝑖))  =  𝐹𝑉1
(𝑣𝑖)

for all 𝑣𝑖 ∈ 𝑉1, and ― 

𝑇𝐸1
̅̅ ̅̅ (𝑓(𝑣𝑖), 𝑓(𝑣𝑗)) =𝑇𝐸1

(𝑓(𝑣𝑖), 𝑓(𝑣𝑗)) =𝑇𝐸1
(𝑣𝑖 , 𝑣𝑗)

𝐼𝐸1
̅̅̅̅ (𝑓(𝑣𝑖), 𝑓(𝑣𝑗)) =𝐼𝐸1

(𝑓(𝑣𝑖), 𝑓(𝑣𝑗)) =𝐼𝐸1
(𝑣𝑖 , 𝑣𝑗)

𝐹𝐸1
̅̅ ̅̅ (𝑓(𝑣𝑖), 𝑓(𝑣𝑗)) =𝐹𝐸1

(𝑓(𝑣𝑖), 𝑓(𝑣𝑗)) =𝐹𝐸1
(𝑣𝑖 , 𝑣𝑗)

for all (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸1. 

We have  

𝑇𝐸1
̅̅ ̅̅ (𝑓(𝑣𝑖), 𝑓(𝑣𝑗)) = min [𝑇𝑉1

̅̅ ̅̅ (𝑓(𝑣𝑖)), 𝑇𝑉1
̅̅ ̅̅ (𝑓(𝑣𝑗))] −  𝑇𝐸1

(𝑓(𝑣𝑖), 𝑓(𝑣𝑗))

i.e,  𝑇𝐸1
(𝑣𝑖 , 𝑣𝑗) = min [𝑇𝑉1

(𝑣𝑖), 𝑇𝑉1
(𝑣𝑗)] −  𝑇𝐸1

(𝑓(𝑣𝑖), 𝑓(𝑣𝑗))

𝑇𝐸1
(𝑣𝑖 , 𝑣𝑗) = min [𝑇𝑉1

(𝑣𝑖), 𝑇𝑉1
(𝑣𝑗)] − 𝑇𝐸1

(𝑣𝑖 , 𝑣𝑗).

That is ― 

∑ 𝑇𝐸1
(𝑣𝑖, 𝑣𝑗)𝑣𝑖≠𝑣𝑗

 +∑ 𝑇𝐸1
(𝑣𝑖, 𝑣𝑗)𝑣𝑖≠𝑣𝑗

= ∑ min [𝑇𝑉1
(𝑣𝑖), 𝑇𝑉1

(𝑣𝑗)]𝑣𝑖≠𝑣𝑗
 

∑ 𝐼𝐸1
(𝑣𝑖 , 𝑣𝑗)𝑣𝑖≠𝑣𝑗

 +∑ 𝐼𝐸1
(𝑣𝑖 , 𝑣𝑗)𝑣𝑖≠𝑣𝑗

= ∑ max [𝐼𝑉1
(𝑣𝑖), 𝐼𝑉1

(𝑣𝑗)]𝑣𝑖≠𝑣𝑗
 

∑ 𝐹𝐸1
(𝑣𝑖 , 𝑣𝑗)𝑣𝑖≠𝑣𝑗

 +∑ 𝐹𝐸1
(𝑣𝑖 , 𝑣𝑗)𝑣𝑖≠𝑣𝑗

= ∑ max [𝐹𝑉1
(𝑣𝑖), 𝐹𝑉1

(𝑣𝑗)]𝑣𝑖≠𝑣𝑗
 

Florentin Smarandache (ed.) Collected Papers, VI

115



2 ∑ 𝑇𝐸1
(𝑣𝑖, 𝑣𝑗)𝑣𝑖≠𝑣𝑗

 =  ∑ min [𝑇𝑉1
(𝑣𝑖), 𝑇𝑉1

(𝑣𝑗)]𝑣𝑖≠𝑣𝑗
 

2 ∑ 𝐼𝐸1
(𝑣𝑖 , 𝑣𝑗)𝑣𝑖≠𝑣𝑗

 =  ∑ max [𝐼𝑉1
(𝑣𝑖), 𝐼𝑉1

(𝑣𝑗)]𝑣𝑖≠𝑣𝑗
 

2∑ 𝐹𝐸1
(𝑣𝑖 , 𝑣𝑗)𝑣𝑖≠𝑣𝑗

 =  ∑ max [𝐹𝑉1
(𝑣𝑖), 𝐹𝑉1

(𝑣𝑗)]𝑣𝑖≠𝑣𝑗
. 

From these equations, Proposition 3.27 holds. 

Proposition 3.28 

Let 𝐺1  and 𝐺2  be strong interval valued neutrosophic graph, 𝐺1
̅̅ ̅  ≈  𝐺2

̅̅ ̅

(isomorphism). 

Proof 

Assume that 𝐺1 and 𝐺2 are isomorphic, there exists a bijective map  f: 𝑉1 → 𝑉2 

satisfying  

𝑇𝑉1
(𝑣𝑖) =𝑇𝑉2

(𝑓(𝑣𝑖)),

𝐼𝑉1
(𝑣𝑖) =𝐼𝑉2

(𝑓(𝑣𝑖)),

𝐹𝑉1
(𝑣𝑖) =𝐹𝑉2

(𝑓(𝑣𝑖)),

for all 𝑣𝑖 ∈ 𝑉1, and 

𝑇𝐸1
(𝑣𝑖 , 𝑣𝑗) =𝑇𝐸2

(𝑓(𝑣𝑖), 𝑓(𝑣𝑗)),

𝐼𝐸1
(𝑣𝑖 , 𝑣𝑗) =𝐼𝐸2

(𝑓(𝑣𝑖), 𝑓(𝑣𝑗)),

𝐹𝐸1
(𝑣𝑖 , 𝑣𝑗) = 𝐹𝐸2

(𝑓(𝑣𝑖), 𝑓(𝑣𝑗)),

for all (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸1. 

By Definition 3.21, we have  

𝑇𝐸1
̅̅ ̅̅ (𝑣𝑖 , 𝑣𝑗)= min [𝑇𝑉1

(𝑣𝑖), 𝑇𝑉1
(𝑣𝑗)] −𝑇𝐸1

(𝑣𝑖 , 𝑣𝑗)

= min [𝑇𝑉2
(𝑓(𝑣𝑖)),  𝑇𝑉2

(𝑓(𝑣𝑗))] −𝑇𝐸2
(𝑓(𝑣𝑖), 𝑓(𝑣𝑗)),

= 𝑇𝐸2
̅̅ ̅̅ (𝑓(𝑣𝑖), 𝑓(𝑣𝑗)),

𝐼𝐸1
̅̅̅̅ (𝑣𝑖 , 𝑣𝑗)= max [𝐼𝑉1

(𝑣𝑖),  𝐼𝑉1
(𝑣𝑗)] −𝐼𝐸1

(𝑣𝑖 , 𝑣𝑗)

= max[𝐼𝑉2
(𝑓(𝑣𝑖)), 𝐼𝑉2

(𝑓(𝑣𝑗))] −𝐼𝐸2
(𝑓(𝑣𝑖), 𝑓(𝑣𝑗)),

= 𝐼𝐸2
̅̅̅̅ (𝑓(𝑣𝑖), 𝑓(𝑣𝑗)),

𝐹𝐸1
̅̅ ̅̅ (𝑣𝑖 , 𝑣𝑗)= min [𝐹𝑉1

(𝑣𝑖), 𝐹𝑉1
(𝑣𝑗)] −𝐹𝐸1

(𝑣𝑖 , 𝑣𝑗)

= min [𝐹𝑉2
(𝑓(𝑣𝑖)), 𝐹𝑉2

(𝑓(𝑣𝑗))] −𝐹𝐸2
(𝑓(𝑣𝑖), 𝑓(𝑣𝑗)), 

= 𝐹𝐸2
̅̅ ̅̅ (𝑓(𝑣𝑖), 𝑓(𝑣𝑗)),

for all (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸1, hence 𝐺1
̅̅ ̅ ≈ 𝐺2

̅̅ ̅. The converse  is straightforward.
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4 Complete Interval Valued Neutrosophic Graphs

Definition 4.1 

An interval valued neutrosophic graph G= (A, B) is called complete if 

𝑇𝐵𝐿 ( 𝑣𝑖 , 𝑣𝑗) = min( 𝑇𝐴𝐿(𝑣𝑖 ), 𝑇𝐴𝐿(𝑣𝑗 )), 𝑇𝐵𝑈 ( 𝑣𝑖 , 𝑣𝑗) = min( 𝑇𝐴𝑈(𝑣𝑖 ), 

𝑇𝐴𝑈(𝑣𝑗)), 

 𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = max(𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)),   𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = max(𝐼𝐴𝑈(𝑣𝑖), 𝐼𝐴𝑈(𝑣𝑗)), 

and 

𝐹𝐵𝐿 ( 𝑣𝑖 , 𝑣𝑗) = max( 𝐹𝐴(𝑣𝑖 ), 𝐹𝐴(𝑣𝑗 )),  𝐹𝐵𝑈 ( 𝑣𝑖 , 𝑣𝑗) = max( 𝐹𝐴𝑈(𝑣𝑖 ), 

𝐹𝐴𝑈(𝑣𝑗)),  

for all 𝑣𝑖 , 𝑣𝑗 ∈ V. 

Example 4.2 

Consider a graph 𝐺∗ = (V, E) such that V = {v1, v2, v3, v4}, E = {v1v2, v1v3 , v2v3,

v1v4, v3v4 , v2v4}, then  G = (A, B) is a complete interval valued  neutrosophic 

graph of 𝐺∗. 

 

 

    Figure17: Complete interval valued neutrosophic graph 

Definition 4.3 

The complement of a complete interval valued neutrosophic graph G = (A, B) 

of   𝐺∗= (V, E) is an interval valued neutrosophic complete graph �̅�= (�̅�, �̅�) on 

𝐺∗= (𝑉, �̅�),  where 

1. �̅� =V

2. 𝑇𝐴𝐿
̅̅ ̅̅ (𝑣𝑖)= 𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝑈

̅̅ ̅̅̅(𝑣𝑖)= 𝑇𝐴𝑈(𝑣𝑖), 𝐼𝐴𝐿
̅̅ ̅̅ (𝑣𝑖)= 𝐼𝐴𝐿(𝑣𝑖), 𝐼𝐴𝑈

̅̅ ̅̅ (𝑣𝑖)=

𝐼𝐴𝑈(𝑣𝑖),  𝐹𝐴𝐿
̅̅ ̅̅ (𝑣𝑖) = 𝐹𝐴𝐿(𝑣𝑖), 𝐹𝐴𝑈

̅̅ ̅̅ ̅(𝑣𝑖) = 𝐹𝐴𝑈(𝑣𝑖), for all 𝑣𝑗 ∈ V.

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.4]> 

𝑢4 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

𝑢3 

<[0.3, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

<[
0

.3
, 0

.5
],

[ 
0

.2
, 0

.3
],

[0
.2

, 0
.4

]>
 

<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]> <[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 

𝑢1 

<[0.4, 0.5],[ 0.1, 0.3],[0.2, 0.4]> 

𝑢2 

<[
0

.2
, 0

.3
],

[ 
0

.2
, 0

.4
,[

0
.2

, 0
.3

]>
 

<[0.2, 0.3],[ 0.2, 0.4],[0.2, 0.3]> 
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3. 𝑇𝐵𝐿
̅̅ ̅̅ (𝑣𝑖 , 𝑣𝑗)= min [𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)]  − 𝑇𝐵𝐿(𝑣𝑖, 𝑣𝑗),

𝑇𝐵𝑈
̅̅ ̅̅ ̅(𝑣𝑖 , 𝑣𝑗)= min [𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)]  − 𝑇𝐵𝑈(𝑣𝑖 , 𝑣𝑗),

𝐼𝐵𝐿
̅̅ ̅̅ (𝑣𝑖 , 𝑣𝑗)= max [𝐼𝐴𝐿(𝑣𝑖), 𝐼𝐴𝐿(𝑣𝑗)]   − 𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗),

𝐼𝐵𝑈
̅̅ ̅̅ (𝑣𝑖 , 𝑣𝑗)= max [𝐼𝐴𝑈(𝑣𝑖), 𝐼𝐴𝑈(𝑣𝑗)] − 𝐼𝐵𝑈(𝑣𝑖, 𝑣𝑗),

and 

𝐹𝐵𝐿
̅̅ ̅̅̅(𝑣𝑖 , 𝑣𝑗)= max [𝐹𝐴𝐿(𝑣𝑖), 𝐹𝐴𝐿(𝑣𝑗)]   − 𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗),

𝐹𝐵𝑈
̅̅ ̅̅ ̅(𝑣𝑖 , 𝑣𝑗)= max [𝐹𝐴𝑈(𝑣𝑖), 𝐹𝐴𝑈(𝑣𝑗)]   − 𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗),

for all (𝑣𝑖 , 𝑣𝑗) ∈ E. 

Proposition 4.4 

The complement of complete IVN-graph is a IVN-graph with no edge. Or if G 

is a complete, then in �̅� the edge is empty.

Proof 

Let G = (A, B) be a complete IVN-graph. So 

𝑇𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = min(𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)), 𝑇𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = min(𝑇𝐴𝑈(𝑣𝑖), 

𝑇𝐴𝑈(𝑣𝑗)),   𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = max (𝐼𝐴𝐿(𝑣𝑖), 𝐼𝐴𝐿(𝑣𝑗)), 𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = max 

(𝐼𝐴𝑈(𝑣𝑖), 𝐼𝐴𝑈(𝑣𝑗))  and 𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗) = max (𝐹𝐴𝐿(𝑣𝑖), 𝐹𝐴𝐿(𝑣𝑗)), 

𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗) = max (𝐹𝐴𝑈(𝑣𝑖), 𝐹𝐴𝑈(𝑣𝑗)), for all 𝑣𝑖 , 𝑣𝑗 ∈ V 

Hence in �̅�, 

�̅�𝐵𝐿(𝑣𝑖 , 𝑣𝑗)= min(𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)) − 𝑇𝐵𝐿(𝑣𝑖 , 𝑣𝑗)  for all i, j, ..., n 

        = min(𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)) − min(𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)) for all i, j, …, n 

       = 0      for all i, j, ..., n 

�̅�𝐵𝑈(𝑣𝑖 , 𝑣𝑗)= min(𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)) − 𝑇𝐵𝑈(𝑣𝑖 , 𝑣𝑗)  for all i, j, ..., n 

        = min(𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)) − min(𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)) for all i, j, ..., n 

       = 0      for all i, j, .., n. 

and 

 𝐼�̅�𝐿(𝑣𝑖 , 𝑣𝑗)= max(𝐼𝐴𝐿(𝑣𝑖), 𝐼𝐴𝐿(𝑣𝑗)) − 𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗)  for all i, j, ..., n 

        = max(𝐼𝐴𝐿(𝑣𝑖), 𝐼𝐴𝐿(𝑣𝑗)) − max(𝐼𝐴𝐿(𝑣𝑖), 𝐼𝐴𝐿(𝑣𝑗)) for all i, j, …, n 

       = 0      for all i, j, .., n 
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𝐼�̅�𝑈(𝑣𝑖 , 𝑣𝑗)= max(𝐼𝐴𝑈(𝑣𝑖), 𝐼𝐴𝑈(𝑣𝑗)) − 𝐼𝐵𝑈(𝑣𝑖 , 𝑣𝑗)  for all i, j, .., n 

        = max(𝐼𝐴𝑈(𝑣𝑖), 𝐼𝐴𝑈(𝑣𝑗)) − max(𝐼𝐴𝑈(𝑣𝑖), 𝐼𝐴𝑈(𝑣𝑗)) for all i, j, …, n 

       = 0      for all i, j, ..., n. 

Also 

�̅�𝐵𝐿(𝑣𝑖 , 𝑣𝑗)= max(𝐹𝐴𝐿(𝑣𝑖), 𝐹𝐴𝐿(𝑣𝑗)) − 𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗)  for all i, j, ..., n. 

        = max(𝐹𝐴𝐿(𝑣𝑖), 𝐼𝐴𝐿(𝑣𝑗)) − max(𝐹𝐴𝐿(𝑣𝑖), 𝐹𝐴𝐿(𝑣𝑗)) for all i, j, …, n 

       = 0,     for all i, j, ..., n. 

�̅�𝐵𝑈(𝑣𝑖 , 𝑣𝑗)= max(𝐹𝐴𝑈(𝑣𝑖), 𝐹𝐴𝑈(𝑣𝑗)) − 𝐹𝐵𝑈(𝑣𝑖 , 𝑣𝑗)  for all i, j, ..., n 

        = max(𝐹𝐴𝑈(𝑣𝑖), 𝐹𝐴𝑈(𝑣𝑗)) − max(𝐹𝐴𝑈(𝑣𝑖), 𝐹𝐴𝑈(𝑣𝑗)) for all i, j, ...,n 

       = 0,      for all i, j, ..., n. 

Thus 

([ �̅�𝐵𝐿(𝑣𝑖 , 𝑣𝑗), �̅�𝐵𝑈(𝑣𝑖 , 𝑣𝑗)],  [ 𝐼�̅�𝐿(𝑣𝑖 , 𝑣𝑗), 𝐼�̅�𝑈(𝑣𝑖 , 𝑣𝑗)],  

[ �̅�𝐵𝐿(𝑣𝑖 , 𝑣𝑗), �̅�𝐵𝑈(𝑣𝑖 , 𝑣𝑗)]) = ([0, 0], [0, 0], [0, 0]). 

Hence, the edge set of �̅� is empty if G is a complete IVN-graph. 

5 Conclusion

Interval valued neutrosophic sets is a generalization of the notion of fuzzy sets, 

intuitionistic fuzzy sets, interval valued fuzzy sets, interval valued intuitionstic 

fuzzy sets and single valued neutrosophic sets.  

Interval valued neutrosophic model gives more precisions, flexibility and 

compatibility to the system as compared to the classical, fuzzy, intuitionistic 

fuzzy and single valued neutrosophic models.  

In this paper, we have defined for the first time certain types of interval valued 

neutrosophic graphs, such as strong interval valued neutrosophic graph, 

constant interval valued neutrosophic graph and complete interval valued 

neutrosophic graphs.  

In future study, we plan to extend our research to regular interval valued 

neutrosophic graphs and irregular interval valued neutrosophic. 
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Abstract 

The interval valued neutrosophic graphs are generalizations of the fuzzy graphs, 

interval fuzzy graphs, interval valued intuitionstic fuzzy graphs, and single valued 

neutrosophic graphs. Previously, several results have been proved on the isolated 

graphs and the complete graphs. In this paper, a necessary and sufficient condition 

for an interval valued neutrosophic graph to be an isolated interval valued 

neutrosophic graph is proved.

Keyword 

interval valued neutrosophic graphs, complete interval valued neutrosophic graphs, 

isolated interval valued neutrosophic graphs. 

1 Introduction 

To express indeterminate and inconsistent information which exists in real 

world, Smarandache [9] originally proposed the concept of the neutrosophic 

set from a philosophical point of view. The concept of the neutrosophic set 

(NS) is a generalization of the theories of fuzzy sets [14], intuitionistic fuzzy 

sets [15], interval valued fuzzy set [12] and interval-valued intuitionistic fuzzy 

sets [14].  

The neutrosophic sets are characterized by a truth-membership function (t), 

an indeterminacy-membership function (i) and a falsity-membership function 

(f) independently, which are within the real standard or nonstandard unit 

interval ]−0, 1+[.  

An Isolated Interval Valued Neutrosophic Graph 

Said Broumi, Assia Bakali, Mohamed Talea, Florentin Smarandache 

Said Broumi, Assia Bakali, Mohamed Talea, Florentin Smarandache (2016). 
An Isolated Interval Valued Neutrosophic Graph. Critical Review, XIII, 67-80 
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Further on, Wang et al. [10] introduced the concept of a single-valued 

neutrosophic sets (SVNS), a subclass of the neutrosophic sets. The same 

authors [11] introduced the interval valued neutrosophic sets (IVNS), as a 

generalization of the single valued neutrosophic sets, in which three 

membership functions are independent and their value belong to the unit 

interval [0, 1]. Some more work on single valued neutrosophic sets, interval 

valued neutrosophic sets, and their applications, may be found in [1, 5, 7,8, 29, 

30, 31, 37, 38]. 

Graph theory has become a major branch of applied mathematics, and it is 

generally regarded as a branch of combinatorics. Graph is a widely-used tool 

for solving combinatorial problems in different areas, such as geometry, 

algebra, number theory, topology, optimization and computer science. Most 

important thing which is to be noted is that, when we have uncertainty 

regarding either the set of vertices, or edges, or both, the model becomes a 

fuzzy graph.  

In the literature, many extensions of fuzzy graphs have been deeply studied by 

several researchers, such as intuitionistic fuzzy graphs, interval valued fuzzy 

graphs, interval valued intuitionistic fuzzy graphs [2, 3, 16, 17, 18, 19, 20, 21, 

22, 34].  

But, when the relations between nodes (or vertices) in problems are 

indeterminate and inconsistent, the fuzzy graphs and their extensions fail. To 

overcome this issue Smarandache [5, 6, 7, 37] have defined four main 

categories of neutrosophic graphs: two are based on literal indeterminacy (I), 

(the I-edge neutrosophic graph and the I-vertex neutrosophic graph, [6, 36]), 

and the two others graphs are based on (t, i, f) components (the (t, i, f)-edge 

neutrosophic graph and the (t, i, f)-vertex neutrosophic graph, not developed 

yet).  

Later, Broumi et al. [23] presented the concept of single valued neutrosophic 

graphs by combining the single valued neutrosophic set theory and the graph 

theory, and defined different types of single valued neutrosophic graphs 

(SVNG) including the strong single valued neutrosophic graph, the constant 

single valued neutrosophic graph, the complete single valued neutrosophic 

graph, and investigated some of their properties with proofs and suitable 

illustrations.  

Concepts like size, order, degree, total degree, neighborhood degree and 

closed neighborhood degree of vertex in a single valued neutrosophic graph 

are introduced, along with theoretical analysis and examples, by Broumi al. in 

[24]. In addition, Broumi et al. [25] introduced the concept of isolated single 

valued neutrosophic graphs. Using the concepts of bipolar neutrosophic sets, 

Broumi et al. [32] also introduced the concept of bipolar single neutrosophic 

graph, as the generalization of the bipolar fuzzy graphs, N-graphs, 
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intuitionistic fuzzy graph, single valued neutrosophic graphs and bipolar 

intuitionistic fuzzy graphs. Same authors [33] proposed different types of 

bipolar single valued neutrosophic graphs, such as bipolar single valued 

neutrosophic graphs, complete bipolar single valued neutrosophic graphs, 

regular bipolar single valued neutrosophic graphs, studying some of their 

related properties. Moreover, in [26, 27, 28], the authors introduced the 

concept of interval valued neutrosophic graph as a generalization of fuzzy 

graph, intuitionistic fuzzy graph and single valued neutrosophic graph, and 

discussed some of their properties with examples. 

The aim of this paper is to prove a necessary and sufficient condition for an 

interval valued neutrosophic graph to be an isolated interval valued 

neutrosophic graph.  

2 Preliminaries

In this section, we mainly recall some notions related to neutrosophic sets, 

single valued neutrosophic sets, fuzzy graph, intuitionistic fuzzy graph, single 

valued neutrosophic graphs and interval valued neutrosophic graph, relevant 

to the present work. See especially [2, 9, 10, 22, 23, 26] for further details and 

background. 

Definition 2.1 [9] 

Let X  be a space of points (objects) with generic elements in X denoted by x;  

then the neutrosophic set A (NS A) is an object having the form A = {< x: TA(x), 

IA(x), FA(x)>, x ∈ X}, where the functions T, I, F: X→]−0,1+[  define respectively 

the a truth-membership function, an indeterminacy-membership function, 

and a falsity-membership function of the element x ∈ X to the set A with the 

condition: 

−0 ≤ TA(x)+ IA(x)+ FA(x)≤ 3+.              (1) 

The functions TA(x), IA(x) and FA(x) are real standard or nonstandard subsets 

of ]−0,1+[. 
Since it is difficult to apply NSs to practical problems, Wang et al. [10] 

introduced the concept of a SVNS, which is an instance of a NS, and can be used 

in real scientific and engineering applications. 

Definition 2.2 [10] 

Let X  be a space of points (objects) with generic elements in X denoted by x. A 

single valued neutrosophic set A (SVNS A) is characterized by the truth-

membership function TA(x) , an indeterminacy-membership function IA(x) , 
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and a falsity-membership function FA(x). For each point x in X,  TA(x), IA(x), 

FA(x) ∈ [0, 1]. A SVNS A can be written as  

A = {< x: TA(x), IA(x), FA(x)>, x ∈ X}                  (2) 

Definition 2.3 [2] 

A fuzzy graph is a pair of functions G = (σ, µ) where σ is a fuzzy subset of a non-

empty set V and  μ  is a symmetric fuzzy relation on σ, i.e.  σ : V → [ 0,1] and μ: 

V x V → [0,1] such that  μ(uv) ≤ σ(u) ⋀ σ(v), for all u, v ∈ V, where uv denotes 

the edge between u and v and σ(u) ⋀ σ(v) denotes the minimum of σ(u) and 

σ(v). σ is called the fuzzy vertex set of V and μ is called the fuzzy edge set of E. 

Figure 1. Fuzzy Graph. 

Definition 2.4 [2] 

The fuzzy subgraph H = (τ, ρ) is called a fuzzy subgraph of G = (σ, µ) if τ(u) ≤ σ(u) 
for all u ∈ V and ρ(u, v) ≤  μ(u, v)  for all u, v ∈ V. 

Definition 2.5 [22] 

An intuitionistic fuzzy graph is of the form G = (V, E), where: 

i. V={v1, v2,…., vn} such that 𝜇1: V→ [0,1] and 𝛾1: V → [0,1] denote the
degree of membership and nonmembership of the element vi  ∈  V,
respectively, and 0 ≤ 𝜇1(vi) + 𝛾1(vi)) ≤ 1 for every vi ∈ V, (i = 1, 2, ...,
n);

ii. E   ⊆  V x V where  𝜇2: VxV→[0,1] and  𝛾2: VxV→ [0,1] are such that
𝜇2(vi, vj) ≤ min [𝜇1(vi), 𝜇1(vj)] and 𝛾2(vi, vj) ≥ max [𝛾1(vi), 𝛾1(vj)] and
0 ≤ 𝜇2(vi, vj) + 𝛾2(vi, vj) ≤ 1 for every (vi, vj) ∈ E, ( i, j = 1, 2, ..., n).
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Figure 2. Intuitionistic Fuzzy Graph. 

Definition 2.5 [23] 

Let A = (𝑇𝐴,  𝐼𝐴, 𝐹𝐴) and B = (𝑇𝐵,  𝐼𝐵, 𝐹𝐵) be two single valued neutrosophic sets on
a set X. If A = (𝑇𝐴,  𝐼𝐴, 𝐹𝐴) is a single valued neutrosophic relation on a set X, then
A = (𝑇𝐴,  𝐼𝐴, 𝐹𝐴) is called a single valued neutrosophic relation on B = (𝑇𝐵,  𝐼𝐵, 𝐹𝐵)
if 

TB(x, y) ≤ min(TA(x), TA(y)), (3) 

IB(x, y) ≥ max(IA(x), IA(y)), (4) 

FB(x, y) ≥ max(FAx), FA(y)), (5) 

for all x, y ∈ X. 
A single valued neutrosophic relation A on X  is called symmetric if 𝑇𝐴(x, y) = 𝑇𝐴(y,
x), 𝐼𝐴(x, y) = 𝐼𝐴(y, x), 𝐹𝐴(x, y) = 𝐹𝐴(y, x) and 𝑇𝐵(x, y) = 𝑇𝐵(y, x), 𝐼𝐵(x, y) = 𝐼𝐵(y, x)
and 𝐹𝐵(x, y) = 𝐹𝐵(y, x), for all x, y ∈ X.

Definition 2.6 [23] 

A single valued neutrosophic graph (SVN-graph) with underlying set V is defined 
to be a pair G = (A, B), where: 
1. The functions 𝑇𝐴:V→[0, 1], 𝐼𝐴:V→[0, 1] and 𝐹𝐴:V→[0, 1] denote the degree of
truth-membership, degree of indeterminacy-membership and falsity-membership 
of the element 𝑣𝑖 ∈ V, respectively, and:

0≤ 𝑇𝐴(𝑣𝑖) + 𝐼𝐴(𝑣𝑖) +𝐹𝐴(𝑣𝑖) ≤3      (6)

for all  𝑣𝑖 ∈ V (i = 1, 2, …,n).
2. The functions   𝑇𝐵: E ⊆ V x V →[0, 1],  𝐼𝐵:E ⊆ V x V →[0, 1] and 𝐹𝐵: E ⊆ V x
V →[0, 1] are defined by: 

𝑇𝐵({𝑣𝑖 , 𝑣𝑗}) ≤ min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)], (7) 
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𝐼𝐵({𝑣𝑖 , 𝑣𝑗}) ≥ max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)], (8) 

𝐹𝐵({𝑣𝑖 , 𝑣𝑗}) ≥ max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)], (9) 

denoting  the degree of truth-membership, indeterminacy-membership and falsity-
membership of the edge (𝑣𝑖, 𝑣𝑗) ∈ E respectively, where:

0≤ 𝑇𝐵({𝑣𝑖 , 𝑣𝑗}) + 𝐼𝐵({𝑣𝑖 , 𝑣𝑗})+ 𝐹𝐵({𝑣𝑖 , 𝑣𝑗}) ≤3  for all  {𝑣𝑖 , 𝑣𝑗} ∈ E (i,
j = 1, 2,…, n)        (10) 

We have A - the single valued neutrosophic vertex set of V, and B - the single 
valued neutrosophic edge set of E, respectively. Note that B is a symmetric single 
valued neutrosophic relation on A. We use the notation (𝑣𝑖 , 𝑣𝑗) for an element of E.
Thus, G = (A, B) is a single valued neutrosophic graph of G∗= (V, E) if:

𝑇𝐵(𝑣𝑖 , 𝑣𝑗) ≤ min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)], (11) 

𝐼𝐵(𝑣𝑖 , 𝑣𝑗) ≥ max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)], (12) 

𝐹𝐵(𝑣𝑖 , 𝑣𝑗) ≥ max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)], (13) 

for all  (𝑣𝑖 , 𝑣𝑗) ∈ E.

Figure 3. Single valued neutrosophic graph. 

Definition 2.7 [23] 

A single valued neutrosophic graph G= (A, B) is called complete if: 

TB(vi, vj) = min [TA(vi),  TA(vj)] (14) 

 IB(vi, vj) = max [IA(vi),  IA(vj)] (15) 

 FB(vi, vj) = max [FA(vi), FA(vj)] (16) 

 for all vi, vj ∈ V. 
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Definition 2.8 [23] 

The complement of a single valued neutrosophic graph G (A, B) on  G∗  is a 

single valued neutrosophic graph G̅ on G∗, where: 

1. A̅ =A. (17) 

2. TA
̅̅ ̅(vi)= TA(vi),  IA̅(vi)= IA(vi),  FA

̅̅ ̅(vi) = FA(vi), (18) 

for all vj ∈ V. 

3. TB
̅̅ ̅(vi, vj)= min [TA(vi), TA(vj)] −  TB(vi, vj), (19) 

IB̅(vi, vj)= max [IA(vi), IA(vj)]   − IB(vi, vj), (20) 

FB
̅̅ ̅(vi, vj)= max [FA(vi), FA(vj)]   − FB(vi, vj), (21) 

for all (vi, vj) ∈ E. 

Definition 2.9 [26] 

By an interval-valued neutrosophic graph of a graph G∗ = (V, E) we mean a pair 

G = (A,  B), where A = < [TAL, TAU], [IAL, IAU], [FAL, FAU]> is an interval-valued 

neutrosophic set on V and B =< [TBL, TBU], [IBL, IBU], [FBL, FBU]> is an interval 

valued neutrosophic relation on E, satisfying the following condition: 

1. V = { v1 ,  v2  ,…,  vn } such that TAL :V → [0, 1],  TAU :V → [0, 1], IAL :V → [0,

1], IAU:V→[0, 1] and FAL:V→[0, 1],  FAU:V→[0, 1], denoting the degree of truth-

membership, the degree of  indeterminacy-membership and falsity-member-

ship of the element y ∈ V, respectively,  and: 

0≤ TA(vi) + IA(vi) +FA(vi) ≤3, (22) 

for all  vi ∈ V (i=1, 2, …,n) 

2. The functions  TBL:V x V →[0, 1],  TBU:V x V →[0, 1],  IBL:V x V →[0, 1], IBU:V x

V →[0, 1]  and FBL:V x V →[0,1],  FBU:V x V →[0, 1] are such that: 

TBL({vi, vj}) ≤ min [TAL(vi), TAL(vj)], (23) 

TBU({vi, vj}) ≤ min [TAU(vi), TAU(vj)],    (24) 

IBL({vi, vj}) ≥ max[IBL(vi), IBL(vj)], (25) 

IBU({vi, vj}) ≥ max[IBU(vi), IBU(vj)], (26) 

FBL({vi, vj}) ≥ max[FBL(vi), FBL(vj)], (27) 

FBU({vi, vj}) ≥ max[FBU(vi), FBU(vj)], (28) 

denoting the degree of truth-membership, indeterminacy-membership and 

falsity-membership of the edge (vi, vj) ∈ E respectively, where: 
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 0≤ TB({vi, vj}) + IB({vi, vj})+ FB({vi, vj}) ≤3,  (29) 

for all  {vi, vj} ∈ E (i, j = 1, 2, …, n). 

We have A - the interval valued neutrosophic vertex set of V, and B - the 

interval valued neutrosophic edge set of E, respectively. Note that B is a 

symmetric interval valued neutrosophic relation on A. We use the notation 

(vi, vj) for an element of E. Thus, G = (A, B) is an interval valued neutrosophic 

graph of G∗= (V, E), if:  

TBL(vi, vj) ≤ min [TAL(vi), TAL(vj)], (30) 

TBU(vi, vj) ≤ min [TAU(vi), TAU(vj)],   (31) 

IBL(vi, vj) ≥ max [IBL(vi), IBL(vj)], (32) 

IBU(vi, vj) ≥ max [IBU(vi), IBU(vj)], (33) 

FBL(vi, vj) ≥ max [FBL(vi), FBL(vj)], (34) 

FBU(vi, vj) ≥ max [FBU(vi), FBU(vj)],   (35) 

for all  (vi, vj) ∈ E. 

Figure 4. Interval valued neutrosophic graph. 

Definition 2.10 [26] 

The complement of a complete interval valued neutrosophic graph G = (A, B) 

of   G∗= (V, E) is a complete interval valued neutrosophic graph G̅= (A̅, B̅) = 

(A, B̅) on G∗= (V, E̅), where: 

1. V̅ =V (36) 

2. TAL
̅̅ ̅̅̅(vi)= TAL(vi), (37) 

TAU
̅̅ ̅̅ ̅(vi)= TAU(vi), (38) 

IAL
̅̅ ̅̅ (vi)= IAL(vi), (39) 

IAU
̅̅ ̅̅ (vi)= IAU(vi), (40) 

𝑣3 
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FAL
̅̅ ̅̅ ̅(vi) = FAL(vi), (41) 

FAU
̅̅ ̅̅ ̅(vi) = FAU(vi), (42) 

for all vj ∈ V. 

3. TBL
̅̅ ̅̅̅(vi, vj)= min [TAL(vi), TAL(vj)]  − TBL(vi, vj), (43) 

TBU
̅̅ ̅̅ ̅(vi, vj)= min [TAU(vi), TAU(vj)] − TBU(vi, vj), (44) 

IBL
̅̅ ̅̅ (vi, vj)= max [IAL(vi), IAL(vj)]   − IBL(vi, vj), (45) 

IBU
̅̅ ̅̅ (vi, vj)= max [IAU(vi), IAU(vj)]   − IBU(vi, vj), (46) 

FBL
̅̅ ̅̅̅(vi, vj)= max [FAL(vi), FAL(vj)]   − FBL(vi, vj), (47) 

FBU
̅̅ ̅̅ ̅(vi, vj)= max [FAU(vi), FAU(vj)]   − FBU(vi, vj), (48) 

for all (vi, vj) ∈ E. 

Definition 2.11 [26] 

An interval valued neutrosophic graph G= (A, B) is called complete, if:  

TBL(vi, vj) = min(TAL(vi), TAL(vj)),  (49) 

TBU(vi, vj) = min(TAU(vi), TAU(vj)), (50) 

 IBL(vi, vj) = max (IA(vi), IA(vj)),   (51) 

IBU(vi, vj) = max (IAU(vi), IAU(vj)),  (52) 

FBL(vi, vj) = max (FA(vi), FA(vj)),  (53) 

FBU(vi, vj) = max (FAU(vi), FAU(vj)), (54) 

for all vi, vj ∈ V. 

3 Main Result

Theorem 3.1: 

An interval valued neutrosophic graph G = (A, B) is an isolated interval valued 
neutrosophic graph if and only if its complement is a complete interval valued 
neutrosophic graph. 

Proof 

Let G= (A, B) be a complete interval valued neutrosophic graph. 

Therefore: 
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TBL(vi, vj) = min(TAL(vi),  TAL(vj)), (55) 

TBU(vi, vj) = min(TAU(vi), TAU(vj)),   (56) 

IBL(vi, vj) = max (IAL(vi), IAL(vj)),  (57) 

IBU(vi, vj) = max (IAU(vi), IAU(vj)),  (58) 

FBL(vi, vj) = max (FAL(vi), FAL(vj)),  (59) 

FBU(vi, vj) = max (FAU(vi), FAU(vj)), (60) 

for all vi, vj ∈ V. 

Hence in G̅, 

 T̅BL(vi, vj)= min(TAL(vi), TAL(vj)) − TBL(vi, vj) (61) 

for all i, j, ..., n. 

= min(TAL(vi), TAL(vj)) − min(TAL(vi), TAL(vj)) (62) 

for all i, j, ..., n. 

= 0      (63) 

for all i, j, ..., n. 

T̅BU(vi, vj)= min(TAU(vi), TAU(vj)) − TBU(vi, vj) (64) 

for all i, j, ..., n. 

= min(TAU(vi), TAU(vj)) − min(TAU(vi), TAU(vj)) (65) 

for all i, j, ..., n. 

= 0      (66) 

for all i, j, ..., n. 

And: 

IB̅L(vi, vj)= max (IAL(vi), IAL(vj)) − IBL(vi, vj) (67) 

for all i, j, ..., n. 

= max(IAL(vi), IAL(vj)) − max(IAL(vi), IAL(vj)) (68) 

for all i, j, ..., n. 

= 0     (69) 

 for all i, j, ..., n. 

IB̅U(vi, vj)= max(IAU(vi), IAU(vj)) − IBU(vi, vj) (70) 

for all i, j, ..., n. 

= max(IAU(vi), IAU(vj)) − max(IAU(vi), IAU(vj)) (71) 
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for all i, j, ..., n. 

= 0     (72) 

for all i, j, ..., n. 

Also: 

 F̅BL(vi, vj)= max(FAL(vi), FAL(vj)) − FBL(vi, vj)    (73) 

for all i, j, ..., n. 

= max(FAL(vi), FAL(vj)) − max(FAL(vi), FAL(vj))   (74) 

for all i, j, ..., n. 

= 0              (75) 

for all i, j, ..., n. 

F̅BU(vi, vj)= max(FAU(vi), FAU(vj)) − FBU(vi, vj)    (76) 

for all i, j, ..., n. 

= max(FAU(vi), FAU(vj)) − max(FAU(vi), FAU(vj))   (77) 

for all i, j, ..., n. 

= 0              (78) 

for all i, j, ..., n. 

Thus,  

([ T̅BL(vi, vj), T̅BU(vi, vj)],  [ IB̅L(vi, vj), IB̅U(vi, vj)],  [ F̅BL(vi, vj), F̅BU(vi, vj)]) =

       = ([0, 0], [0, 0], [0, 0]).        (79) 

Hence, G = (𝐴, 𝐵) is an isolated interval valued neutrosophic graph. 

4 Conclusions

In this paper, we extended the concept of isolated single valued neutrosophic 

graph to an isolated interval valued neutrosophic graph. In future works, we plan 

to study the concept of isolated bipolar single valued neutrosophic graph.  
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Abstract

Conditions for the P-intersection and P-intersection of falsity-external
(resp. indeterminacy-external and truth-external) neutrosophic cubic
sets to be an falsity-external (resp. indeterminacy-external and truth-
external) neutrosophic cubic set are provided. Conditions for the P-
union and the P-intersection of two truth-external (resp. indeterminacy-
external and falsity-external) neutrosophic cubic sets to be a truth-
internal (resp. indeterminacy-internal and falsity-internal) neutrosophic
cubic set are discussed.

1 Introduction

The concept of neutrosophic set (NS) developed by Smarandache ([3, 4])
is a more general platform which extends the concepts of the classic set
and fuzzy set, intuitionistic fuzzy set and interval valued intuitionistic fuzzy
set. Neutrosophic set theory is applied to various part (refer to the site
http://fs.gallup.unm.edu/ neutrosophy.htm). Jun et al. [2] extended the
concept of cubic sets to the neutrosophic sets. They introduced the notions
of truth-internal (indeterminacy-internal, falsity-internal) neutrosophic cubic
sets and truth-external (indeterminacy-external, falsity-external) neutrosophic
cubic sets, and investigate related properties. Generally, the P-intersection

Key Words: Truth-internal (indeterminacy-internal, falsity-internal)
neutrosophic cu-bic set, truth-external (indeterminacy-external, falsity-
external) neutrosophic cubic set, P-union, P-intersection.
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of falsity-external (resp. indeterminacy-external and truth-external) neutro-
sophic cubic sets may not be a falsity-external (resp. indeterminacy-external
and truth-external) neutrosophic cubic set (see [2]). As a continuation of
the paper [2], we provide a condition for the P-intersection of falsity-external
(resp. indeterminacy-external and truth-external) neutrosophic cubic sets to
be a falsity-external (resp. indeterminacy-external and truth-external) neu-
trosophic cubic set. We provide examples to show that the P-union of falsity-
external (resp. indeterminacy-external and truth-external) neutrosophic cubic
sets may not be a falsity-external (resp. indeterminacy-external and truth-
external) neutrosophic cubic set. We consider a condition for the P-union
of truth-external (resp. indeterminacy-external and falsity-external) neutro-
sophic cubic sets to be a truth-external (resp. indeterminacy-external and
falsity-external) neutrosophic cubic set. We also give a condition for the P-
intersection of two neutrosophic cubic sets to be both a truth-internal (resp.
indeterminacy-internal and falsity-internal) neutrosophic cubic set and a truth-
external (resp. indeterminacy-external and falsity-external) neutrosophic cu-
bic set. Generally, the P-union of two truth-external (resp. indeterminacy-
external and falsity-external) neutrosophic cubic sets may not be a truth-
internal (resp. indeterminacy-internal and falsity-internal) neutrosophic cu-
bic set. We provide conditions for the P-union and the P-intersection of
two truth-external (resp. indeterminacy-external and falsity-external) neu-
trosophic cubic sets to be a truth-internal (resp. indeterminacy-internal and
falsity-internal) neutrosophic cubic set.

2 Preliminaries

Jun et al. [1] have defined the cubic set as follows:
Let X be a non-empty set. A cubic set in X is a structure of the form:

C = {(x,A(x), λ(x)) | x ∈ X}

where A is an interval-valued fuzzy set in X and λ is a fuzzy set in X.
Let X be a non-empty set. A neutrosophic set (NS) in X (see [3]) is a

structure of the form:

Λ := {〈x;λT (x), λI(x), λF (x)〉 | x ∈ X}

where λT : X → [0, 1] is a truth membership function, λI : X → [0, 1] is an
indeterminate membership function, and λF : X → [0, 1] is a false membership
function.
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Let X be a non-empty set. An interval neutrosophic set (INS) in X (see
[5]) is a structure of the form:

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}

where AT , AI and AF are interval-valued fuzzy sets in X, which are called
an interval truth membership function, an interval indeterminacy membership
function and an interval falsity membership function, respectively.

Jun et al. [2] considered the notion of neutrosophic cubic sets as an exten-
sion of cubic sets.

Let X be a non-empty set. A neutrosophic cubic set (NCS) in X is a
pair A = (A,Λ) where A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X} is an inter-
val neutrosophic set in X and Λ := {〈x;λT (x), λI(x), λF (x)〉 | x ∈ X} is a
neutrosophic set in X.

Definition 2.1 ([2]). Let X be a non-empty set. A neutrosophic cubic set
A = (A,Λ) in X is said to be

• truth-internal (briefly, T-internal) if the following inequality is valid

(∀x ∈ X)
(
A−

T (x) ≤ λT (x) ≤ A+
T (x)

)
, (2.1)

• indeterminacy-internal (briefly, I-internal) if the following inequality is
valid

(∀x ∈ X)
(
A−

I (x) ≤ λI(x) ≤ A+
I (x)

)
, (2.2)

• falsity-internal (briefly, F-internal) if the following inequality is valid

(∀x ∈ X)
(
A−

F (x) ≤ λF (x) ≤ A+
F (x)

)
. (2.3)

Definition 2.2 ([2]). Let X be a non-empty set. A neutrosophic cubic set
A = (A,Λ) in X is said to be

• truth-external (briefly, T-external) if the following inequality is valid

(∀x ∈ X)
(
λT (x) /∈ (A−

T (x), A+
T (x))

)
, (2.4)

• indeterminacy-external (briefly, I-external) if the following inequality is
valid

(∀x ∈ X)
(
λI(x) /∈ (A−

I (x), A+
I (x))

)
, (2.5)

• falsity-external (briefly, F-external) if the following inequality is valid

(∀x ∈ X)
(
λF (x) /∈ (A−

F (x), A+
F (x))

)
. (2.6)
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3 P-union and P-intersection of neutrosophic cubic sets

Note that P-intersection of F-external (resp. I-external and T-external) neu-
trosophic cubic sets may not be an F-external (resp. I-external and T-external)
neutrosophic cubic set (see [2]). We provide a condition for the P-intersection
of F-external (resp. I-external and T-external) neutrosophic cubic sets to be
an F-external (resp. I-external and T-external) neutrosophic cubic set.

Theorem 3.1. Let A = (A,Λ) and B = (B,Ψ) be T-external neutrosophic
cubic sets in X such that

max
{

min{A+
T (x), B−

T (x)},min{A−
T (x), B+

T (x)}
}
< (λT ∧ ψT )(x)

≤ min
{

max{A+
T (x), B−

T (x)},max{A−
T (x), B+

T (x)}
} (3.1)

for all x ∈ X. Then the P-intersection A ∩P B = (A ∩B,Λ ∧Ψ) is a T-
external neutrosophic cubic set in X.

Proof. For any x ∈ X, let

ax := min
{

max{A+
T (x), B−

T (x)},max{A−
T (x), B+

T (x)}
}

and

bx := max
{

min{A+
T (x), B−

T (x)},min{A−
T (x), B+

T (x)}
}
.

Then ax = A−
T (x), ax = B−

T (x), ax = A+
T (x), or ax = B+

T (x). It is possible to
consider the cases ax = A−

T (x) and ax = A+
T (x) only because the remaining

cases are similar to these cases. If ax = A−
T (x), then

B−
T (x) ≤ B+

T (x) ≤ A−
T (x) ≤ A+

T (x).

Thus bx = B+
T (x), and so

B−
T (x) = (AT ∩BT )−(x) ≤ (AT ∩BT )+(x)

= B+
T (x) = bx < (λT ∧ ψT )(x).

Hence (λT ∧ψT )(x) /∈ ((AT ∩BT )−(x), (AT ∩BT )+(x)). If ax = A+
T (x), then

B−
T (x) ≤ A+

T (x) ≤ B+
T (x) and thus bx = max{A−

T (x), B−
T (x)}. Suppose that

bx = A−
T (x). Then

B−
T (x) ≤ A−

T (x) < (λT ∧ ψT )(x) ≤ A+
T (x) ≤ B+

T (x). (3.2)

It follows that

B−
T (x) ≤ A−

T (x) < (λT ∧ ψT )(x) < A+
T (x) ≤ B+

T (x) (3.3)
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or

B−
T (x) ≤ A−

T (x) < (λT ∧ ψT )(x) = A+
T (x) ≤ B+

T (x). (3.4)

The case (3.3) induces a contradiction. The case (3.4) implies that

(λT ∧ ψT )(x) /∈
(
(AT ∩BT )−(x), (AT ∩BT )+(x)

)
since (λT ∧ ψT )(x) = A+

T (x) = (AT ∩BT )+(x). Now, if bx = B−
T (x), then

A−
T (x) ≤ B−

T (x) < (λT ∧ ψT )(x) ≤ A+
T (x) ≤ B+

T (x). (3.5)

Hence we have

A−
T (x) ≤ B−

T (x) < (λT ∧ ψT )(x) < A+
T (x) ≤ B+

T (x) (3.6)

or

A−
T (x) ≤ B−

T (x) < (λT ∧ ψT )(x) = A+
T (x) ≤ B+

T (x). (3.7)

The case (3.6) induces a contradiction. The case (3.7) induces

(λT ∧ ψT )(x) /∈
(
(AT ∩BT )−(x), (AT ∩BT )+(x)

)
.

Therefore the P-intersection A ∩P B = (A ∩B,Λ ∧Ψ) is a T-external neu-
trosophic cubic set in X.

Similarly, we have the following theorems.

Theorem 3.2. Let A = (A,Λ) and B = (B,Ψ) be I-external neutrosophic
cubic sets in X such that

max
{

min{A+
I (x), B−

I (x)},min{A−
I (x), B+

I (x)}
}
< (λI ∧ ψI)(x)

≤ min
{

max{A+
I (x), B−

I (x)},max{A−
I (x), B+

I (x)}
} (3.8)

for all x ∈ X. Then the P-intersection A ∩P B = (A ∩B,Λ ∧Ψ) is an
I-external neutrosophic cubic set in X.

Theorem 3.3. Let A = (A,Λ) and B = (B,Ψ) be F-external neutrosophic
cubic sets in X such that

max
{

min{A+
F (x), B−

F (x)},min{A−
F (x), B+

F (x)}
}
< (λF ∧ ψF )(x)

≤ min
{

max{A+
F (x), B−

F (x)},max{A−
F (x), B+

F (x)}
} (3.9)

for all x ∈ X. Then the P-intersection A ∩P B = (A ∩B,Λ ∧Ψ) is an
F-external neutrosophic cubic set in X.
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Corollary 3.4. Let A = (A,Λ) and B = (B,Ψ) be external neutrosophic
cubic sets in X. Then the P-intersection of A = (A,Λ) and B = (B,Ψ) is
an external neutrosophic cubic set in X when the conditions (3.1), (3.8) and
(3.9) are valid.

The following example shows that the P-union of F-external (resp. I-
external and T-external) neutrosophic cubic sets may not be an F-external
(resp. I-external and T-external) neutrosophic cubic set.

Example 3.5. (1) Let A = (A,Λ) and B = (B,Ψ) be neutrosophic cubic sets
in X = [0, 1] with the tabular representations in Tables 1 and 2, respectively.

Table 1: Tabular representation of A = (A,Λ)

X A(x) Λ(x)

0 ≤ x < 0.5 ([0.25, 0.26], [0.2, 0.3], [0.15, 0.25]) (0.25, 0.15, 0.5x+ 0.5)
0.5 ≤ x ≤ 1 ([0.5, 0.7], [0.5, 0.6], [0.6, 0.7]) (0.55, 0.75, 0.30)

Table 2: Tabular representation of B = (B,Ψ)

X B(x) Ψ(x)

0 ≤ x < 0.5 ([0.25, 0.26], [0.2, 0.3], [0.8, 0.9]) (0.25, 0.15, 0.40)
0.5 ≤ x ≤ 1 ([0.5, 0.7], [0.5, 0.6], [0.1, 0.2]) (0.55, 0.75, x)

Then A = (A,Λ) and B = (B,Ψ) are F-external neutrosophic cubic sets in
X = [0, 1], and the P-union A ∪P B = (A ∪B,Λ ∨Ψ) of A = (A,Λ) and
B = (B,Ψ) is given by Table 3.

Table 3: Tabular representation of A ∪P B = (A ∪B,Λ ∨Ψ)

X (A ∪B)(x) (Λ ∨Ψ)(x)

0 ≤ x < 0.5 ([0.25, 0.26], [0.2, 0.3], [0.8, 0.9]) (0.25, 0.15, 0.5x+ 0.5)
0.5 ≤ x ≤ 1 ([0.5, 0.7], [0.5, 0.6], [0.6, 0.7]) (0.55, 0.75, x)
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Then

(λF ∨ ψF )(0.67) = 0.67 ∈ (0.6, 0.7)

=
(
(AF ∪BF )−(0.67), (AF ∪BF )+(0.67)

)
,

and so the P-union A ∪P B = (A ∪B,Λ ∨Ψ) is not an F-external neutro-
sophic cubic set in X = [0, 1].

(2) Let A = (A,Λ) and B = (B,Ψ) be neutrosophic cubic sets in X =
[0, 1] with the tabular representations in Tables 4 and 5, respectively.

Table 4: Tabular representation of A = (A,Λ)

X A(x) Λ(x)

0 ≤ x ≤ 0.3 ([0.3, 0.6], [0.3, 0.5], [0.6, 1]) (x+ 0.6, 0.15, 12x+ 1
2 )

0.3 < x ≤ 1 ([0.4, 0.9], [0.5, 0.6], [0.6, 0.7]) (− 2
5x+ 0.4, 0.75, 0.30)

Table 5: Tabular representation of B = (B,Ψ)

X B(x) Ψ(x)

0 ≤ x ≤ 0.3 ([0.4, 0.8], [0.2, 0.3], [0.8, 0.9]) ( 1
2x+ 0.8, 0.15, 0.40)

0.3 < x ≤ 1 ([0.3, 0.5], [0.5, 0.6], [0.1, 0.2]) ( 1
3x+ 0.5, 0.75, x)

Then A = (A,Λ) and B = (B,Ψ) are T-external neutrosophic cubic sets in
X = [0, 1]. Note that

(AT ∪BT )−(x) =

{
[0.4, 0.8] if 0 ≤ x ≤ 0.3,
[0.4,0.9] if 0.3 < x ≤ 1,

(λT ∨ ψT )(x) =

{
1
2x+ 0.8 if 0 ≤ x ≤ 0.3,
1
3x+ 0.5 if 0.3 < x ≤ 1,

and so the P-union A ∪P B = (A ∪B,Λ ∨Ψ) is not a T-external neutrosophic
cubic set in X = [0, 1] since

(λT ∨ ψT )(0.6) = 0.7 ∈ (0.4, 0.9) =
(
(AT ∪BT )−(0.6), (AT ∪BT )+(0.6)

)
.

(3) Let A = (A,Λ) and B = (B,Ψ) be neutrosophic cubic sets in X =
[0, 1] with the tabular representations in Tables 6 and 7, respectively.
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Table 6: Tabular representation of A = (A,Λ)

X A(x) Λ(x)

0 ≤ x ≤ 0.5 ([0.3, 0.6], [0.2, 0.7], [0.6, 1.0]) (0.4, 15x+ 0.7, 12x+ 1
2 )

0.5 < x ≤ 1 ([0.4, 0.9], [0.3, 1.0], [0.6, 0.7]) (0.3,− 1
10x+ 0.3, 0.30)

Table 7: Tabular representation of B = (B,Ψ)

X B(x) Ψ(x)

0 ≤ x ≤ 0.5 ([0.4, 0.8], [0.3, 0.8], [0.8, 0.9]) (0.3,− 1
5x+ 0.3, 0.40)

0.5 < x ≤ 1 ([0.3, 0.5], [0.5, 0.9], [0.1, 0.2]) (0.5,− 1
10x+ 1.0, x)

It is routine to verify that A = (A,Λ) and B = (B,Ψ) are I-external neutro-
sophic cubic sets in X = [0, 1], but their P-union is not an I-external neutro-
sophic cubic sets in X = [0, 1] since

(λI ∨ ψI)(0.7) = 0.93 ∈ (0.5, 1.0) =
(
(AI ∪BI)−(0.7), (AI ∪BI)+(0.7)

)
.

We consider a condition for the P-union of T-external (resp. I-external
and F-external) neutrosophic cubic sets to be a T-external (resp. I-external
and F-external) neutrosophic cubic set.

Theorem 3.6. Let A = (A,Λ) and B = (B,Ψ) be F-external neutrosophic
cubic sets in X such that

max
{

min{A+
F (x), B−

F (x)},min{A−
F (x), B+

F (x)}
}
≤ (λF ∨ ψF )(x)

< min
{

max{A+
F (x), B−

F (x)},max{A−
F (x), B+

F (x)}
} (3.10)

for all x ∈ X. Then the P-union A ∪P B = (A ∪B,Λ ∨Ψ) is an F-external
neutrosophic cubic set in X.

Proof. For any x ∈ X, let

ax := min
{

max{A+
F (x), B−

F (x)},max{A−
F (x), B+

F (x)}
}

and

bx := max
{

min{A+
F (x), B−

F (x)},min{A−
F (x), B+

F (x)}
}
.
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Then ax = A−
F (x), ax = B−

F (x), ax = A+
F (x), or ax = B+

F (x). It is possible to
consider the cases ax = A−

F (x) and ax = A+
F (x) only because the remaining

cases are similar to these cases. If ax = A−
F (x), then

B−
F (x) ≤ B+

F (x) ≤ A−
F (x) ≤ A+

F (x),

and so bx = B+
F (x). Thus

(AF ∪BF )−(x) = A−
F (x) = ax > (λF ∨ ψF )(x),

and hence (λF ∨ ψF )(x) /∈ ((AF ∪BF )−(x), (AF ∪BF )+(x)). If ax = A+
F (x),

then B−
F (x) ≤ A+

F (x) ≤ B+
F (x) and thus bx = max{A−

F (x), B−
F (x)}. Suppose

that bx = A−
F (x). Then

B−
F (x) ≤ A−

F (x) ≤ (λF ∨ ψF )(x) < A+
F (x) ≤ B+

F (x), (3.11)

and so

B−
F (x) ≤ A−

F (x) < (λF ∨ ψF )(x) < A+
F (x) ≤ B+

F (x) (3.12)

or

B−
F (x) ≤ A−

F (x) = (λF ∨ ψF )(x) < A+
F (x) ≤ B+

F (x). (3.13)

The case (3.12) induces a contradiction. The case (3.13) implies that

(λF ∨ ψF )(x) /∈
(
(AF ∪BF )−(x), (AF ∪BF )+(x)

)
since (λF ∨ ψF )(x) = A−

F (x) = (AF ∪BF )−(x). Now, if bx = B−
F (x), then

A−
F (x) ≤ B−

F (x) ≤ (λF ∨ ψF )(x) ≤ A+
F (x) ≤ B+

F (x). (3.14)

Hence we have

A−
F (x) ≤ B−

F (x) < (λF ∨ ψF )(x) ≤ A+
F (x) ≤ B+

F (x) (3.15)

or

A−
F (x) ≤ B−

F (x) = (λF ∨ ψF )(x) ≤ A+
F (x) ≤ B+

F (x). (3.16)

The case (3.15) induces a contradiction. The case (3.16) induces

(λF ∨ ψF )(x) /∈
(
(AF ∪BF )−(x), (AF ∪BF )+(x)

)
.

Therefore the P-union A ∪P B = (A ∪B,Λ ∨Ψ) is an F-external neutrosophic
cubic set in X.
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Similarly, we have the following theorems.

Theorem 3.7. Let A = (A,Λ) and B = (B,Ψ) be T-external neutrosophic
cubic sets in X such that

max
{

min{A+
T (x), B−

T (x)},min{A−
T (x), B+

T (x)}
}
≤ (λT ∨ ψT )(x)

< min
{

max{A+
T (x), B−

T (x)},max{A−
T (x), B+

T (x)}
} (3.17)

for all x ∈ X. Then the P-union A ∪P B = (A ∪B,Λ ∨Ψ) is a T-external
neutrosophic cubic set in X.

Theorem 3.8. Let A = (A,Λ) and B = (B,Ψ) be I-external neutrosophic
cubic sets in X such that

max
{

min{A+
I (x), B−

I (x)},min{A−
I (x), B+

I (x)}
}
≤ (λI ∨ ψI)(x)

< min
{

max{A+
I (x), B−

I (x)},max{A−
I (x), B+

I (x)}
} (3.18)

for all x ∈ X. Then the P-union A ∪P B = (A ∪B,Λ ∨Ψ) is an I-external
neutrosophic cubic set in X.

We give a condition for the P-intersection of two neutrosophic cubic sets
to be both a T-internal (resp. I-internal and F-internal) neutrosophic cubic
set and a T-external (resp. I-external and F-external) neutrosophic cubic set.

Theorem 3.9. If neutrosophic cubic sets A = (A,Λ) and B = (B,Ψ) X
satisfy the following condition

min
{

max{A+
F (x), B−

F (x)},max{A−
F (x), B+

F (x)}
}

= (λF ∧ ψF )(x)

= max
{

min{A+
F (x), B−

F (x)},min{A−
F (x), B+

F (x)}
} (3.19)

for all x ∈ X, then the P-intersection of A = (A,Λ) and B = (B,Ψ) is both
an F-internal neutrosophic cubic set and an F-external neutrosophic cubic set
in X.

Proof. For any x ∈ X, take

ax := min
{

max{A+
F (x), B−

F (x)},max{A−
F (x), B+

F (x)}
}

and

bx := max
{

min{A+
F (x), B−

F (x)},min{A−
F (x), B+

F (x)}
}
.

Then ax is one of A−
F (x), B−

F (x), A+
F (x) and B+

F (x). We consider ax = A−
F (x)

or ax = A+
F (x) only. For remaining cases, it is similar to these cases. If

ax = A−
F (x), then

B−
F (x) ≤ B+

F (x) ≤ A−
F (x) ≤ A+

F (x)
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and thus bx = B+
F (x). This implies that

A−
F (x) = ax = (λF ∧ ψF )(x) = bx = B+

F (x).

Hence B−
F (x) ≤ B+

F (x) = (λF ∧ψF )(x) = A−
F (x) ≤ A+

F (x), which implies that

(λF ∧ ψF )(x) = B+
F (x) = (AF ∩BF )+(x).

Hence (λF ∧ ψF )(x) /∈ ((AF ∩BF )−(x), (AF ∩BF )+(x)) and

(AF ∩BF )−(x) ≤ (λF ∧ ψF )(x) ≤ (AF ∩BF )+(x).

If ax = A+
F (x), then B−

F (x) ≤ A+
F (x) ≤ B+

F (x) and thus

(λF ∧ ψF )(x) = A+
F (x) = (AF ∩BF )+(x).

Hence (λF ∧ ψF )(x) /∈ ((AF ∩BF )−(x), (AF ∩BF )+(x)) and

(AF ∩BF )−(x) ≤ (λF ∧ ψF )(x) ≤ (AF ∩BF )+(x).

Consequently, the P-intersection of A = (A,Λ) and B = (B,Ψ) is both an
F-internal neutrosophic cubic set and an F-external neutrosophic cubic set in
X.

Similarly, we get the following theorems.

Theorem 3.10. If neutrosophic cubic sets A = (A,Λ) and B = (B,Ψ) X
satisfy the following condition

min
{

max{A+
I (x), B−

I (x)},max{A−
I (x), B+

I (x)}
}

= (λI ∧ ψI)(x)

= max
{

min{A+
I (x), B−

I (x)},min{A−
I (x), B+

I (x)}
} (3.20)

for all x ∈ X, then the P-intersection of A = (A,Λ) and B = (B,Ψ) is both
an I-internal neutrosophic cubic set and an I-external neutrosophic cubic set
in X.

Theorem 3.11. If neutrosophic cubic sets A = (A,Λ) and B = (B,Ψ) X
satisfy the following condition

min
{

max{A+
T (x), B−

T (x)},max{A−
T (x), B+

T (x)}
}

= (λT ∧ ψT )(x)

= max
{

min{A+
T (x), B−

T (x)},min{A−
T (x), B+

T (x)}
} (3.21)

for all x ∈ X, then the P-intersection of A = (A,Λ) and B = (B,Ψ) is both
a T-internal neutrosophic cubic set and a T-external neutrosophic cubic set in
X.

Florentin Smarandache (ed.) Collected Papers, VI

147



Corollary 3.12. If neutrosophic cubic sets A = (A,Λ) and B = (B,Ψ) X
satisfy conditions 3.19, 3.20 and 3.21, then the P-intersection of A = (A,Λ)
and B = (B,Ψ) is both an internal neutrosophic cubic set and an external
neutrosophic cubic set in X.

Given two neutrosophic cubic sets A = (A,Λ) and B = (B,Ψ) in X where

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X},
Λ := {〈x;λT (x), λI(x), λF (x)〉 | x ∈ X},
B := {〈x;BT (x), BI(x), BF (x)〉 | x ∈ X},
Ψ := {〈x;ψT (x), ψI(x), ψF (x)〉 | x ∈ X},

we try to exchange Λ and Ψ, and make new neutrosophic cubic sets A ∗ :=
(A,Ψ) and B∗ := (B,Λ) in X. Under these circumstances, we have questions.

Question. 1. If two neutrosophic cubic sets A = (A,Λ) and B = (B,Ψ) in
X are T-external (resp., I-external and F-external), then are the new neutro-
sophic cubic sets A ∗ := (A,Ψ) and B∗ := (B,Λ) T-internal (resp., I-internal
and F-internal) neutrosophic cubic sets in X?

2. If two neutrosophic cubic sets A = (A,Λ) and B = (B,Ψ) in X are
T-external (resp., I-external and F-external), then are the new neutrosophic
cubic sets A ∗ := (A,Ψ) and B∗ := (B,Λ) T-external (resp., I-external and
F-external) neutrosophic cubic sets in X?

The answer to the question above is negative as seen in the following ex-
ample.

Example 3.13. (1) Let A = (A,Λ) and B = (B,Ψ) be neutrosophic cubic
sets in [0, 1] where

A = {〈x; [0.6, 0.7], [0.5, 0.7], [0.3, 0.5]〉 | x ∈ [0, 1]},
Λ = {〈x; 0.8, 0.4, 0.8〉 | x ∈ [0, 1]},
B = {〈x; [0.3, 0.4], [0.4, 0.7], [0.7, 0.9]〉 | x ∈ [0, 1]},
Ψ = {〈x; 0.2, 0.3, 0.4〉 | x ∈ [0, 1]}.

Then A = (A,Λ), and B = (B,Ψ) are both T-external and F-external neu-
trosophic cubic sets in [0, 1]. It is easy to verify that A ∗ := (A,Ψ) and
B∗ := (B,Λ) are F-internal neutrosophic cubic sets in [0, 1], but not T-internal
neutrosophic cubic sets in [0, 1].

(2) For X = {a, b}, let A = (A,Λ), and B = (B,Ψ) be neutrosophic cubic
sets in X with the tabular representations in Tables 8 and 9, respectively.
Then A = (A,Λ) and B = (B,Ψ) are I-external neutrosophic cubic sets in
X, and A ∗ := (A,Ψ) and B∗ := (B,Λ) are represented as Tables 10 and 11,
respectively,
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Table 8: Tabular representation of A = (A,Λ)

X A(x) Λ(x)

a ([0.3, 0.6], [0.2, 0.3], [0.2, 0.5]) (0.25, 0.15, 0.40)
b ([0.5, 0.7], [0.5, 0.6], [0.3, 0.4]) (0.55, 0.75, 0.35)

Table 9: Tabular representation of B = (B,Ψ)

X B(x) Ψ(x)

a ([0.3, 0.7], [0.4, 0.5], [0.1, 0.5]) (0.35, 0.95, 0.60)
b ([0.5, 0.8], [0.7, 0.9], [0.2, 0.5]) (0.45, 0.35, 0.30)

Table 10: Tabular representation of A ∗ := (A,Ψ)

X A(x) Ψ(x)

a ([0.3, 0.6], [0.2, 0.3], [0.2, 0.5]) (0.35, 0.95, 0.60)
b ([0.5, 0.7], [0.5, 0.6], [0.3, 0.4]) (0.45, 0.35, 0.30)

Table 11: Tabular representation of B∗ := (B,Λ)

X B(x) Λ(x)

a ([0.3, 0.7], [0.4, 0.5], [0.1, 0.5]) (0.25, 0.15, 0.40)
b ([0.5, 0.8], [0.7, 0.9], [0.2, 0.5]) (0.55, 0.75, 0.35)

which are not I-internal neutrosophic cubic sets in X.
(3) For X = {a, b, c}, let A = (A,Λ), and B = (B,Ψ) be neutrosophic

cubic sets in X with the tabular representations in Tables 12 and 13, respec-
tively.
Then A = (A,Λ), and B = (B,Ψ) are F-external neutrosophic cubic sets in
X. Note that A ∗ := (A,Ψ) and B∗ := (B,Λ) are represented as Tables 14
and 15, respectively,
and they are not F-internal neutrosophic cubic sets in X.
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Table 12: Tabular representation of A = (A,Λ)

X A(x) Λ(x)

a ([0.2, 0.3], [0.3, 0.5], [0.31, 0.51]) (0.35, 0.25, 0.75)
b ([0.4, 0.7], [0.1, 0.4], [0.22, 0.41]) (0.35, 0.50, 0.65)
c ([0.6, 0.9], [0.0, 0.2], [0.33, 0.42]) (0.50, 0.60, 0.75)

Table 13: Tabular representation of B = (B,Ψ)

X B(x) Ψ(x)

a ([0.3, 0.7], [0.3, 0.5], [0.61, 0.81]) (0.25, 0.25, 0.35)
b ([0.5, 0.8], [0.5, 0.6], [0.25, 0.55]) (0.45, 0.30, 0.10)
c ([0.4, 0.9], [0.4, 0.7], [0.71, 0.85]) (0.35, 0.10, 0.40)

Table 14: Tabular representation of A ∗ := (A,Ψ)

X A(x) Ψ(x)

a ([0.2, 0.3], [0.3, 0.5], [0.31, 0.51]) (0.25, 0.25, 0.35)
b ([0.4, 0.7], [0.1, 0.4], [0.22, 0.41]) (0.45, 0.30, 0.10)
c ([0.6, 0.9], [0.0, 0.2], [0.33, 0.42]) (0.35, 0.10, 0.40)

Table 15: Tabular representation of B∗ := (B,Λ)

X B(x) Λ(x)

a ([0.3, 0.7], [0.3, 0.5], [0.61, 0.81]) (0.35, 0.25, 0.75)
b ([0.5, 0.8], [0.5, 0.6], [0.25, 0.55]) (0.35, 0.50, 0.65)
c ([0.4, 0.9], [0.4, 0.7], [0.71, 0.85]) (0.50, 0.60, 0.75)

Generally, the P-union of two T-external (resp. I-external and F-external)
neutrosophic cubic sets may not be a T-internal (resp. I-internal and F-
internal) neutrosophic cubic set.

Example 3.14. Consider the F-external neutrosophic cubic sets A = (A,Λ)
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and B = (B,Ψ) in Example 3.13(3). The P-union A ∪P B = (A ∪B,Λ ∨Ψ)
of A = (A,Λ) and B = (B,Ψ) is represented by Table 16, and it is not an
F-internal neutrosophic cubic set in X.

Table 16: Tabular representation of A ∪P B = (A ∪B,Λ ∨Ψ)

X (A ∪B)(x) (Λ ∨Ψ)(x)

a ([0.3, 0.7], [0.3, 0.5], [0.61, 0.81]) (0.35, 0.25, 0.75)
b ([0.5, 0.8], [0.5, 0.6], [0.25, 0.55]) (0.45, 0.50, 0.65)
c ([0.6, 0.9], [0.4, 0.7], [0.71, 0.85]) (0.50, 0.60, 0.75)

We provide conditions for the P-union of two T-external (resp. I-external
and F-external) neutrosophic cubic sets to be a T-internal (resp. I-internal
and F-internal) neutrosophic cubic set.

Theorem 3.15. For any T-external neutrosophic cubic sets A = (A,Λ) and
B = (B,Ψ) in X, if A ∗ := (A,Ψ) and B∗ := (B,Λ) are T-internal neu-
trosophic cubic sets in X, then the P-union A ∪P B = (A ∪B,Λ ∨Ψ) of
A = (A,Λ) and B = (B,Ψ) is a T-internal neutrosophic cubic set in X.

Proof. Assume that A ∗ := (A,Ψ) and B∗ := (B,Λ) are T-internal neutro-
sophic cubic sets in X for any T-external neutrosophic cubic sets A = (A,Λ)
and B = (B,Ψ) in X. Then

λT (x) /∈
(
A−

T (x), A+
T (x)

)
, ψT (x) /∈

(
B−

T (x), B+
T (x)

)
,

B−
T (x) ≤ λT (x) ≤ B+

T (x), A−
T (x) ≤ ψT (x) ≤ A+

T (x)

for all x ∈ X. We now consider the following cases.

(1) λT (x) ≤ A−
T (x) ≤ ψT (x) ≤ A+

T (x) and ψT (x) ≤ B−
T (x) ≤ λT (x) ≤

B+
T (x).

(2) A−
T (x) ≤ ψT (x) ≤ A+

T (x) ≤ λT (x) and B−
T (x) ≤ λT (x) ≤ B+

T (x) ≤
ψT (x).

(3) λT (x) ≤ A−
T (x) ≤ ψT (x) ≤ A+

T (x) and B−
T (x) ≤ λT (x) ≤ B+

T (x) ≤
ψT (x).

(2) A−
T (x) ≤ ψT (x) ≤ A+

T (x) ≤ λT (x) and ψT (x) ≤ B−
T (x) ≤ λT (x) ≤

B+
T (x).
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First case implies that ψT (x) = A−
T (x) = B−

T (x) = λT (x). Since A ∗ :=
(A,Ψ) and B∗ := (B,Λ) are T-internal neutrosophic cubic sets in X, we have
ψT (x) ≤ A+

T (x) and λT (x) ≤ B+
T (x). It follows that

(AT ∪BT )−(x) = max{A−
T (x), B−

T (x)} = (λT ∨ ψT )(x)

≤ max{A+
T (x), B+

T (x)} = (AT ∪BT )+(x)

for all x ∈ X. Therefore the P-union A ∪P B = (A ∪B,Λ ∨Ψ) is a T-internal
neutrosophic cubic set in X. We can prove the other cases by the similar to
the first case.

Similarly, we have the following theorems.

Theorem 3.16. For any I-external neutrosophic cubic sets A = (A,Λ) and
B = (B,Ψ) in X, if A ∗ := (A,Ψ) and B∗ := (B,Λ) are I-internal neu-
trosophic cubic sets in X, then the P-union A ∪P B = (A ∪B,Λ ∨Ψ) of
A = (A,Λ) and B = (B,Ψ) is an I-internal neutrosophic cubic set in X.

Theorem 3.17. For any F-external neutrosophic cubic sets A = (A,Λ) and
B = (B,Ψ) in X, if A ∗ := (A,Ψ) and B∗ := (B,Λ) are F-internal neu-
trosophic cubic sets in X, then the P-union A ∪P B = (A ∪B,Λ ∨Ψ) of
A = (A,Λ) and B = (B,Ψ) is a F-internal neutrosophic cubic set in X.

We provide conditions for the P-intersection of two T-external (resp. I-
external and F-external) neutrosophic cubic sets to be a T-internal (resp.
I-internal and F-internal) neutrosophic cubic set.

Theorem 3.18. For any T-external (resp., I-external and F-external) neu-
trosophic cubic sets A = (A,Λ) and B = (B,Ψ) in X, if A ∗ := (A,Ψ)
and B∗ := (B,Λ) are T-internal (resp., I-internal and F-internal) neutro-
sophic cubic sets in X, then the P-intersection A ∩P B = (A ∩B,Λ ∧Ψ) of
A = (A,Λ) and B = (B,Ψ) is a T-internal (resp., I-internal and F-internal)
neutrosophic cubic set in X.

Proof. It is similar to the proof of Theorem 3.15.

Corollary 3.19. For any external neutrosophic cubic sets A = (A,Λ) and
B = (B,Ψ) in X, if A ∗ := (A,Ψ) and B∗ := (B,Λ) are internal neutrosophic
cubic sets in X, then the P-intersection A ∩P B = (A ∩B,Λ ∧Ψ) of A =
(A,Λ) and B = (B,Ψ) is an internal neutrosophic cubic set in X.
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ABSTRACT 
This paper describes the importance of Neutrosophy Theory in 
order to find a method that could solve the uncertainties arising 
on discursive analysis. The aim of this pilot study is to find a 
procedure to diminish the uncertainties from public discourse 
induced, especially, by humans (politicians, journalists, etc.). 
We consider that Neutrosophy Theory is a sentiment analysis 
specific case regarding processing of the three states: positive, 
negative, and neutral. The study is intended to identify a 
method to answer to uncertainties solving in order to support 
politician's staff, NLP specialists, artificial intelligence 
researchers and generally the electors. 

KEYWORDS 
neutrosophy,   sentiment   analysis,   communication,   true, 
false, uncertainty. 

1. INTRODUCTION
This study is the first step of a research that points out the 

uncertainties solving in discursive analysis.  The research is 
based on Neutrosophy Theory1  (Smarandache,  2005),  which 
studies the neutrality as an essentially disputed concept with a 
generous applicability in sciences, like artificial intelligence 
(Vlădăreanu et al., 2014). This article explains the role of 
neutrality starting from the political context and the voters' 
decision. 

In fact, the novelty of neutrosophy2 consists of approaching 
the indeterminacy status that we can associate to neutral class of 
sentiment analysis (SA) (Gîfu and Scutelnicu, 2013), usually 
ignored.  Moreover, some researchers associate neutral class 
with objective class in SA, but they consider it being less in- 
formative, preferring subjective class. SA, known as opinion 
mining (Pang and Lee, 2008), is a very important task of Natural 
Language Processing (NLP), the most known SA classification 
of texts is a binary one: subjective and objective (Pang and Lee, 
2002), most often more difficult to undertake than polarity 
classification (Mihalcea et al., 2007). For other researchers  the  

1 This theory was revealed by Smarandache in 1995 (published 
in 1998) it also was defined the neutrosophic set. Smarandache 
has coined the words “neutrosophy” and “neutrosophic”. 
2 The etymology of Neutrosophy [in French, neutre and Latin, 
neuter - neutral, and in Greek, sophia - skill/wisdom] means 
knowledge of neutral thought. 

neutrality is determined the first one and sentiment polarity is 
determined the second one (Wilson et al., 2005). 

We  believe  that  Neutrosophy  Theory  seen  as  SA  model 
would be useful for NLP specialists, linguistics, journalists, 
politicians, PR, and other scientists interested to find a method 
of uncertainties solving. 

The paper is structured as follows: after a brief introduction, 
section 2 describes the background related to neutrosophy 
applicability; section 3 discusses the annotations regarding 
Neutrosophy Theory described in transposed algebraic structures 
and algorithms, section 4 introduces the relation between 
neutrosophy and sentiment analysis and finally, section 5 depicts 
some conclusions and directions for the future work. 

2. BACKGROUND
According to the Neutrosophy Theory (NT), the neutral (un- 

certainty) instances can be analyzed and accordingly, reduced. 
There are some spectacular results of applying neutrosophy in 
practical application such as artificial intelligence (Gal et al., 
2011). Extending these results, neutrosophy theory can be 
applied for solving uncertainty on other domains; in Robotics 
there are confirmed results of neutrosophics logics applied to 
make decisions when appear situations of uncertainty (Okuyama 
el al., 2013; Smarandache, 2011). 

The real-time adaptive networked control of rescue robots is 
another project that used neutrosophic logic to control the robot 
movement in a surface with uncertainties (Smarandache, 2014). 
Starting with this point, we are confident that Neutrosophy The- 
ory can help to analyse, evaluate and make the right decision in 
discursive analysis taking into account all sources that can gen- 
erate uncertainty, of not informed voters, lack of information in 
candidates’ politic campaign,  not a strong candidate’s propa- 
ganda, etc. 

3. FUNDAMENTALS 
OF 

THE
 NEUTROSOPHY

The specialty literature reveals Zadeh introduced the degree 
of membership/truth (t), so the rest would be (1-t) equal 
to f, their sum being 1, and he defined the fuzzy set in 1965. 

In 1986, Atanassov introduced the degree of nonmember- 
ship/falsehood (f) and defined the intuitionistic fuzzy set. 

Neutrosophy, a Sentiment Analysis Model 

Florentin Smarandache, Mirela Teodorescu, Daniela Gîfu 
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if 

and 
0<= t+f <= 1 

0<= 1-t-f 

Statically T, I, F are subsets, but dynamically the 
components T, I, F are set-valued vector functions/operators 
depend- ing on many parameters, such as: time, space, etc. 
(some of them are hidden parameters, i.e. unknown parameters): 

T(t, s, …), I(t, s, …), 

would be interpreted as indeterminacy 

t + f <= 1 
where 

F(t, s, …) 

t = time, s = space … 

Why was it necessary to extend the fuzzy logic? 

The indeterminacy state, as proposition, cannot be described in 
fuzzy logic, is missing the uncertainty state; the neutrosophic 
logic helps to make a distinction between a ‘relative truth’ and 
an ‘absolute truth’, while fuzzy logic does not. 

As novelty to previous theory, Smarandache introduced and 
defined explicitly the degree of indeterminacy/neutrality (i) as 
independent component, where: 

0<= t+i+f <= 3 

that is why the neutrosophic logic can be used also in quantum 
physics. If the Dynamic Neutrosophic Calculus can be used in 
discursive analysis, neutrosophics tries to reflect the dynamics 
of things and ideas. 
We try to show an example of neutrosophic set from socio- 
human sciences. 

Example: During an election process with 2 candidates C1 and 
C2, we have the following options: 

E = {E1, E2, E3, E4} where we define: 
a) if

t+i+f < 1 E1 – Poll voting candidate C1; 
we have incomplete information; 

b) if
t+i+f =1 

we have complete information (thus we get intuitionistic fuzzy 
set); 

c) if
t+i+f > 1 

we have paraconsistente information (contradictory). 

In neutrosophy set, the three components t, i, f are 
independent because it is possible from a source to get (t), from 
another independent source to get (i) and from the third source 
to get (f). Smarandache goes further; he refined the range 
(Smarandache, 1995). 

If there are some dependent sources (or respectively some 
dependent subcomponents), we can treat those dependent 
subcomponents  together. 

E2 – Poll voting candidate C2; 
E3 – Hesitant Poll who generates uncertainties; 
E4 – Absent poll. 

The initial neutrosophic space looks like (see Figure 1): 

E1- represents the poll voting the candidate C1: 
E1 = (t11, i11, f11) => (28.65, 0, 0) 

E2- represents the poll voting the candidate C2: 
E2 = (t21, i21, f21) => (18.7, 0, 0) 

E3- represents the hesitant, neutral, uncertainty poll: 
E3 = (t31, i31, f31) => (0, 11.3, 0) 

E4- represents the absent poll from election process: 
E4 = (t41, i41, f41) => (10.1, 15.4, 15.3) – they can vote both C1 
candidate and C2 candidate, but also can be undecided; we 
exclude this aggregate from discussion. 

YSIS 
Participants Rate % 

E1-Poll voting candidate C1 28.65 

Poll Structure 

E1-Pol l voting candidate C1, 

A logic in which each proposition is estimated to have the 
percentage of truth in a subset T, the percentage of indetermina- 
cy in a subset I, and the percentage of falsity in a subset F, 
where T,  I,  F are defined above, is called Neutrosophic Logic. 

Similarly sentiment analysis defines states as positive, nega- 

E2-Poll voting candidate C2 18.7 

E3-Hesitant poll 11.3 

E4-Absent poll 41.35 

E4-Abs e nt poll,… 

E3-He s itant poll, 

11.3 

28.65 

E2-Pol l voting candidate C2, 

18.7 

tive and neutral. 

NT SA 

T positive 
I neutral 
F negative 

E1-Poll voting candidate C1    E2-Poll voting candidate C2 

E3-Hesitant poll E4-Absent poll 

Figure 1. Initial Poll Structure 
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NT C1 C2 SA
T 28.65 18.7 positive
I 7.2 4.1 neutral
F 18.7 28.65 positive

Analyzing these data, it can be summarized: 

Refined Poll Structure after voting process 

Black Vote, 
4.35 

The purpose of neutrosophy is to investigate the uncertain- 
ties. In our case, the space generating uncertainties is E3 with its 
subset (t31, i31, f31). Our purpose is to reduce the rate of “i31” and 
to increase rate of “f31” and “t31”, minimizing the uncertainties, 
this means a refining method for the process. Taking into ac- 
count that we analyze a socio-human process belonging to poli- 

Participants  Rate % 
E1-Poll for candidate C1 59.51 
E2-Poll for candidate C2 36.15 
Black Vote  4.35 

E2-Poll for candidate 
C2, 36.15 

 

E1-Pol l for candidate 
C1, 59.51 

tics communication, the applied techniques are methods of per- 
suasion and conviction belonging to involved actors. 

Through elective process we got data from ballot pa- 
per after refining uncertainties (see Figure 2): 

electors  ballot paper  vote 

C1   C2 

E1N  (t12, i12, f12) 

Y  (59.51, 0, 0) 

C1   C2 

E2N  (t22, i22, f22) 

Y  (36.15, 0, 0) 

C1   C2 

E3N  (t32, i32, f32) 

N   N  (4.35, 0, 0) 

Figure 2. Elective process by ballot paper 

Analyzing the process: 

E1N(t12 =59.51, i12 =0, f12=0) means that elector E1N voted 
only candidate C1 in rate of 59.51%; 

E2N(t22=36.15, i22 =0, f22=0) means that elector E2N voted 
only candidate C2 in rate of 36.15%; 

E3N(t32 =4.35, i32=0.5, f32=0) means that elector E3N gave a 
blind vote both for candidate C1 and C2 in rate of 4.35%. 

In an election process, uncertainties reveal not only the null 
votes, blind votes, but also not participating voters to election 
process, because we cannot interpret their decision. There are 
situations when the percentage of this part of elector is high. 
The refined process proved that is possible to modify the rate of 
uncertainties, neutral status. We find the data in T and F as 
stable status (see Figure 3). 

E1-Poll for candidate C1      E2-Poll for candidate C2      Black Vote 

Figure 3. Refined Process 

5. CONCLUSIONS AND FUTURE WORK
In this paper, it is presented a way of correcting the uncertainties 
arising in discursive analysis applying Neutrosophy Theory in 
relation with sentiment analysis. The Neutrosophy Theory could 
be considered a sentiment analysis model for solving the uncer- 
tainty (neutral), extended in IT applications, logistics, and hu- 
man resource. 

In the future work we will be oriented to find an algorithm to 
achieve the objectives to improve the percentage of stable 
statuses, by evaluation and interpret the neutrality/uncertainty 
state, in order to reduce it. 
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Abstract. The aim of this manuscript is to propose a new extension of the 
MULTIMOORA method adapted for usage with a neutrosophic set. By using single valued 
neutrosophic sets, the MULITIMOORA method can be more efficient for solving complex 
problems whose solving requires assessment and prediction, i.e. those problems associated 
with inaccurate and unreliable data. The suitability of the proposed approach is presented 
through an example.

Key words: neutrosophic set, single valued neutrosophic set, MULTIMOORA, MCDM.

1. Introduction

The MULTIMOORA (Multi-Objective Optimization by a Ratio Analysis plus the Full

Multiplicative Form) was proposed by Brauers and Zavadskas (2010).

The ordinary MULTIMOORA method has been proposed for usage with crisp

numbers. In order to enable its use in solving a larger number of complex decision-

making problems, several extensions have been proposed, out of which only the most

prominent are mentioned: Brauers et al. (2011) proposed a fuzzy extension of the

MULTIMOORA method; Balezentis and Zeng (2013) proposed an interval-valued fuzzy

extension; Balezentis et al. (2014) proposed an intuitionistic fuzzy extension and Zavad-

skas et al. (2015) proposed an interval-valued intuitionistic extension of the MULTI-

MOORA method.

A Neutrosophic Extension of the MULTIMOORA Method 

Dragisa Stanujkic, Edmundas Kazimieras Zavadskas, Florentin Smarandache, 
Willem K.M. Brauers, Darjan Karabasevic  

Dragisa Stanujkic, Edmundas Kazimieras Zavadskas, Florentin Smarandache, Willem K.M. Brauers, 
Darjan Karabasevic (2017). A Neutrosophic Extension of the MULTIMOORA Method. Informatica, 
28(1), 181–192. DOI: 10.15388/Informatica.2017.125 

Florentin Smarandache (ed.) Collected Papers, VI

158



The MULTIMOORA method has been applied for the purpose of solving a wide range

of problems.

As some of the most cited, the studies that consider different problems in economics

(Brauers and Zavadskas, 2010, 2011; Brauers, 2010), personnel selection (Balezentis et

al., 2012a, 2012b), construction (Kracka et al., 2015), risk management (Liu et al., 2014a)

and waste treatment (Liu et al., 2014b) can be mentioned.

As some of the newest studies in which the MULTIMOORA method is used for solv-

ing various decision-making problems, the following ones can be mentioned: material

selection (Hafezalkotob and Hafezalkotob, 2016; Hafezalkotob et al., 2016) and the CNC

machine tool evaluation (Sahu et al., 2016).

A significant approach in solving complex decision-making problems was formed by

adapting the multiple criteria decision-making methods for the purpose of using fuzzy

numbers, proposed by Zadeh in the fuzzy set theory (Zadeh, 1965).

Based on the fuzzy set theory, some extensions are also proposed, such as: interval-

valued fuzzy sets (Turksen, 1986), intuitionistic fuzzy sets (Atanassov, 1986) and interval-

valued intuitionistic fuzzy sets (Atanassov and Gargov, 1989).

In addition to the membership function proposed in fuzzy sets, Atanassov (1986) intro-

duced the non-membership function that expresses non-membership to a set, thus having

created the basis for solving a much larger number of decision-making problems.

The intuitionistic fuzzy set is composed of membership (the so-called truth-

membership) TA(x) and non-membership (the so-called falsity-membership) FA(x),

which satisfies the conditions TA(x),FA(x) ∈ [0,1] and 0 6 TA(x) + FA(x)6 1. There-

fore, intuitionistic fuzzy sets are capable of operating with incomplete pieces of informa-

tion, but do not include intermediate and inconsistent information (Li et al., 2016).

In intuitionistic fuzzy sets, indeterminacy πA(x) is 1 − TA(x) − FA(x) by default.

Smarandache (1998, 1999) further extended intuitionistic fuzzy sets by proposing Neu-

trosophic, also introducing independent indeterminacy-membership.

Such a proposed neutrosophic set is composed of three independent membership

functions named the truth-membership TA(x), the falsity-membership FA(x) and the

indeterminacy-membership IA(x) functions.

Smarandache (1999) and Wang et al. (2010) further proposed a single valued neu-

trosophic set, by modifying the conditions TA(x), IA(x) and FA(x) ∈ [0,1] and 0 6

TA(x) + IA(x) + FA(x) 6 3, which are more suitable for solving scientific and engi-

neering problems (Li et al., 2016).

Compared with the fuzzy set and its extensions, the single valued neutrosophic set

can be identified as more flexible, for which reason an extension of the MULTIMOORA

method adapted for the purpose of using the single valued neutrosophic set is proposed in

this approach.

Therefore, the rest of this paper is organized as follows: in Section 2, some basic defi-

nitions related to the single valued neutrosophic set are given. In Section 3, the ordinary

MULTIMOORA method is presented, whereas in Section 4, the Single Valued Neutro-

sophic Extension of the MULTIMOORA method is proposed. In Section 5, an example is

considered with the aim to explain in detail the proposed methodology. The conclusions

are presented in the final section.

Florentin Smarandache (ed.) Collected Papers, VI

159



2. The Single Valued Neutrosophic Set

Definition 1. (See Smarandache, 1999.) Let X be the universe of discourse, with a

generic element in X denoted by x . Then, the Neutrosophic Set (NS) A in X is as fol-

lows:

A =
{

x
〈

TA(x), IA(x),FA(x)
〉 ∣

∣x ∈ X
}

, (1)

where TA(x), IA(x) and FA(x) are the truth-membership function, the indeterminacy-

membership function and the falsity-membership function, respectively,

TA, IA,FA : X →]−0,1
+[ and −

0 6 TA(x) + IA(x) + FA(x)6 3
+.

Definition 2. (See Smarandache, 1999; Wang et al., 2010.) Let X be the universe of

discourse. The Single valued neutrosophic set (SVNS) A over X is an object having the

following form:

A =
{

x
〈

TA(x), IA(x),FA(x)
〉 ∣

∣x ∈ X
}

, (2)

where TA(x), IA(x) and FA(x) are the truth-membership function, the intermediacy-

membership function and the falsity-membership function, respectively,

TA, IA,FA : X → [0,1] and 0 6 TA(x) + IA(x) + FA(x)6 3.

Definition 3. (See Smarandache, 1999.) For an SVNS A in X, the triple 〈tA, iA, fA〉 is

called the single valued neutrosophic number (SVNN).

Definition 4. Let x1 = 〈t1, i1, f1〉 and x2 = 〈t2, i2, f2〉 be two SVNNs and λ > 0; then

the basic operations are defined as follows:

x1 + x2 = 〈t1 + t2 − t1t2, i1i2, f1f2〉, (3)

x1 · x2 = 〈t1t2, i1 + i2 − i1i2,f1 + f2 − f1f2〉, (4)

λx1 =
〈

1 − (1 − t1)
λ, iλ

1
, f λ

1

〉

, (5)

xλ
1

=
〈

tλ
1
,1 − (1 − i1)

λ,1 − (1 − f1)
λ
〉

. (6)

Definition 5. (See Sahin, 2014.) Let x = 〈tx , ix, fx〉 be an SVNN; then the score function

sx of x can be as follows:

sx = (1 + tx − 2ix − fx)/2, (7)

where sx ∈ [−1,1].
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Definition 6. Let x1 = 〈t1, i1, f1〉 and x2 = 〈t2, i2, f2〉 be two SVNNs. Then the maxi-

mum distance between x1 and x2 is as follows:

dmax(x1, x2) =

{

|t1 − t2|, x1, x2 ∈ �max,

|f1 − f2|, x1, x2 ∈ �min.
(8)

Definition 7. (See Sahin, 2014.) Let Aj = 〈tj , ij , fj 〉 be a collection of SVNSs and

W = (w1,w2, . . . ,wn)
T be an associated weighting vector. Then the Single Valued Neu-

trosophic Weighted Average (SVNWA) operator of Aj is as follows:

SVNWA(A1,A2, . . . ,An)

=

n
∑

j=1

wjAj =

(

1 −

n
∏

j=1

(1 − tj )
wj ,

n
∏

j=1

(ij )
wj ,

n
∏

j=1

(fj )
wj

)

. (9)

where: wj is the element j of the weighting vector, wj ∈ [0,1] and
∑n

j=1
wj = 1.

Definition 8. (See Sahin, 2014.) Let Aj = 〈tj , ij , fj 〉 be a collection of SVNSs and

W = (w1,w2, . . . ,wn)
T be an associated weighting vector. Then the Single Valued Neu-

trosophic Weighted Geometric (SVNWG) operator of Aj is as follows:

SVNWG(A1,A2, . . . ,An)

=

n
∏

j=1

(Aj )
wj =

(

n
∏

j=1

(tj )
wj ,1 −

n
∏

j=1

(1 − ij )
wj ,1 −

n
∏

j=1

(1 − fj )
wj

)

. (10)

where: wj is the element j of the weighting vector, wj ∈ [0,1] and
∑n

j=1
wj = 1.

3. The MULTIMOORA Method

The MULTIMOORA method consists of three approaches named as follows: the Ratio

System (RS) Approach, the Reference Point (RP) Approach and the Full Multiplicative

Form (FMF).

The considered alternatives are ranked based on all three approaches and the final

ranking order and the final decision is made based on the theory of dominance. In other

words, the alternative with the highest number of appearances in the first positions on all

ranking lists is the best-ranked alternative.

The ratio system approach. In this approach, the overall importance of the alternative i

can be calculated as follows:

yi = y+
i − y−

i , (11)
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with:

y+
i =

∑

j∈�max

wj rij , and (12)

y−
i =

∑

j∈�min

wj rij , (13)

rij =
xij

√

∑n
i=1

x2

ij

, (14)

where: yi denotes the overall importance of the alternative i , obtained on the basis of all

the criteria; y+
i and y−

i denote the overall importance of the alternative i , obtained on the

basis of the benefit and cost criteria, respectively; rij denotes the normalized performance

of the alternative i with respect to the criterion j ; xij denotes the performance of the

alternative i to the criterion j ; �max and �min denote the sets of the benefit cost criteria,

respectively; i = 1,2, . . . ,m; m is the number of the alternatives, j = 1,2, . . . , n; n is the

number of the criteria.

In this approach, the compared alternatives are ranked based on yi in descending order

and the alternative with the highest value of yi is considered to be the best-ranked.

The reference point approach. The optimization based on this approach can be shown as

follows:

dmax

i = max
j

(

wj

∣

∣r∗
j − rij

∣

∣

)

, (15)

where: dmax

i denotes the maximum distance of the alternative i to the reference point and

r∗
j denotes the coordinate j of the reference point as follows:

r∗
j =







max
i

rij , j ∈ �max,

min
i

rij , j ∈ �min.
(16)

In this approach, the compared alternatives are ranked based on dmax

i in ascending order

and the alternative with the lowest value of dmax

i is considered the best-ranked.

The full multiplicative form. In the FMF, the overall utility of the alternative i can be

determined in the following manner:

ui =
ai

bi

, (17)

with:

ai =
∏

j∈�max

wj rij , (18)
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bi =
∏

j∈�min

wj rij , (19)

where: ui denotes the overall utility of the alternative i , ai denotes the product of the

weighted performance ratings of the benefit criteria and bi denotes the product of the

weighted performance ratings of the cost criteria of the alternative i .

As in the RSA, the compared alternatives are ranked based on their ui in descending

order and the alternative with the highest value of ui is considered the best-ranked.

The final ranking of alternatives based on the MULTIMOORA method. As a result of

evaluation by applying the MULTIMOORA method, three ranking lists of the considered

alternatives are obtained. Based on Brauers and Zavadskas (2011), the final ranking order

of the alternatives is determined based on the theory of dominance.

4. An Extension of the MULTIMOORA Method Based on Single Valued

Neutrosophic Numbers

For an MCDM problem involving m alternatives and n criteria, whereby the performances

of the alternatives are expressed by using SVNS, the calculation procedure of the extended

MULTIMOORA method can be expressed as follows:

Step 1. Determine the ranking order of the alternatives based on the RS approach.

The ranking of the alternatives and the selection of the best one based on this ap-

proach in the proposed extension of the MULTIMOORA method can be expressed

through the following sub steps:

Step 1.1. Calculate Y+
i and Y−

i by using the SVNWA operator, as follows:

Y+
i =

(

1 −
∏

j∈�max

(1 − tj )
wj ,

∏

j∈�max

(ij )
wj ,

∏

j∈�max

(fj )
wj

)

, (20)

Y−
i =

(

1 −
∏

j∈�min

(1 − tj )
wj ,

∏

j∈�min

(ij )
wj ,

∏

j∈�min

(fj )
wj

)

, (21)

where: Y+
i and Y−

i denote the importance of the alternative i obtained based on the

benefit and cost criteria, respectively; Y+
i and Y−

i are SVNNs.

Step 1.2. Calculate y+
i and y−

i by using the Score Function, as follows:

y+
i = s

(

Y+
i

)

, (22)

y−
i = s

(

Y−
i

)

. (23)

Step 1.3. Calculate the overall importance for each alternative, as follows:

yi = y+
i − y−

i . (24)
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Step 1.4. Rank the alternatives and select the best one. The ranking of the alterna-

tives can be performed in the same way as in the RS approach of the ordinary

MULTIMOORA method.

Step 2. Determine the ranking order of the alternatives based on the RP approach.

The ranking of the alternatives and the selection of the best one, based on the RP

approach, can be expressed through the following substeps:

Step 2.1. Determine the reference point. In this approach, each coordinate of the refer-

ence point r∗ = {r∗
1
, r∗

2
, . . . , r∗

n } is an SVNN, r∗
j = 〈t∗j , i∗j , f ∗

j 〉, whose values are

determined as follows:

r∗
j =







〈

max
i

tij ,min
i

iij ,min
i

fij

〉

, j ∈ �max,
〈

min
i

tij ,min
i

iij ,max
i

fij

〉

, j ∈ �min,
(25)

where: r∗
j denotes the coordinate j of the reference point.

For the sake of simplicity, r∗
j could be determined as follows:

r∗
j =

{

〈1,0,0〉, j ∈ �max,

〈0,0,1〉, j ∈ �min.
(25a)

Step 2.2. Determine the maximum distance from each alternative to all the coordinates

of the reference point as follows:

dmax

ij = dmax

(

rij , r∗
j

)

wj , (26)

where dmax

ij denotes the maximum distance of the alternative i obtained based on

the criterion j determined by Eq. (8).

Step 2.3. Determine the maximum distance of each alternative, as follows:

dmax

i = max
j

dmax

ij . (27)

Step 2.4. Rank the alternatives and select the best one. At this step, the ranking of

the alternatives can be done in the same way as in the RPA of the ordinary

MULTIMOORA method.

Step 3. Determine the ranking order of the alternatives and select the best one based

on the FMF. The ranking of the alternatives and the selection of the best one can

be expressed through the following sub steps:

Step 3.1. Calculate Ai and Bi as follows:

Ai =

(

∏

j∈�max

(tj )
wj ,1 −

∏

j∈�max

(1 − ij )
wj ,1 −

∏

j∈�max

(1 − fj )
wj

)

, (28)

Bi =

(

∏

j∈�min

(tj )
wj ,1 −

∏

j∈�min

(1 − ij )
wj ,1 −

∏

j∈�min

(1 − fj )
wj

)

, (29)

where: Ai = 〈tAi, iAi , fAi〉 and Bi = 〈tBi , iBi , fBi〉 are SVNNs.
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Step 3.2. Calculate ai and bi by using the Score Function as follows:

ai = s(Ai), (30)

bi = s(Bi). (31)

Step 3.3. Determine the overall utility for each alternative as follows:

ui =
ai

bi

. (32)

Sep 3.4. Rank the alternatives and select the best one. The ranking of the alternatives

can be performed in the same way as in the FMF of the ordinary MULTIMOORA

method.

Step 4. Determine the final ranking order of the alternatives. The final ranking order

of the alternatives can be determined as in the case of the ordinary MULTIMOORA

method, i.e. based on the dominance theory.

5. A Numerical Example

In order to demonstrate the applicability and efficiency of the proposed approach, an ex-

ample has been adopted from Stanujkic et al. (2015). In order to briefly demonstrate the

advantages of the proposed methodology, this example has been slightly modified.

Suppose that a mining and smelting company has to build a new flotation plant, for

which reason an expert has been engaged to evaluate the three Comminution Circuit De-

signs (CCDs) listed below:

– A1, the CCDs based on the combined use of rod mills and ball mills;

– A2, the CCDs based on the use of ball mills; and

– A3, the CCDs based on the use of semi-autogenous mills.

For the purpose of conducting an evaluation, the following criteria have been chosen:

– C1, Grinding efficiency;

– C2, Economic efficiency;

– C3, Technological reliability;

– C4, Capital investment costs; and

– C5, Environmental impact.

The ratings obtained from the expert are shown in Table 1.

The ranking based on the RS approach. The ranking results and the ranking order of

the alternatives obtained based on the RS approach, i.e. by applying Eqs. (19) to (23), are

accounted for in Table 2.

The ranking based on the RPA. The ranking of the alternatives based on the RP approach

begins by determining the reference point, as it is shown in Table 3.
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Table 1

The ratings of the three generic CCDs obtained from an expert.

C1 C2 C3 C4 C5

A1 〈0.9,0.1,0.2〉 〈0.7,0.2,0.3〉 〈0.9,0.1,0.2〉 〈0.9,0.1,0.2〉 〈0.9,0.1,0.2〉

A2 〈0.8,0.1,0.3〉 〈0.8,0.1,0.3〉 〈0.8,0.1,0.3〉 〈0.9,0.1,0.2〉 〈0.8,0.1,0.3〉

A3 〈1.0,0.1,0.3〉 〈0.9,0.1,0.2〉 〈0.9,0.1,0.2〉 〈0.7,0.2,0.5〉 〈0.7,0.2,0.3〉

Table 2

The ranking orders of the alternatives obtained on the basis of the RS approach.

Y
+
i Y

−
i y

+
i y

−
i yi Rank

A1 〈0.73,0.25,0.38〉 〈0.55,0.45,0.57〉 0.425 0.045 0.380 2

A2 〈0.65,0.22,0.46〉 〈0.51,0.45,0.60〉 0.372 0.006 0.366 3

A3 〈1.0,0.22,0.39〉 〈0.34,0.57,0.73〉 0.583 −0.263 0.845 1

Table 3

The reference point.

C1 C2 C3 C4 C5

r∗
j

〈1.0,0.1,0.3〉 〈0.9,0.2,0.3〉 〈0.9,0.1,0.3〉 〈0.7,0.1,0.2〉 〈0.7,0.1,0.2〉

Table 4

The ranking order of the alternatives obtained based on the RP approach.

I II III IV V VI VII VI

r∗
1

r∗
2

r∗
3

r∗
4

r∗
5

dmax

i
Rank

A1 0.02 0.03 0.00 0.00 0.00 0.034 1

A2 0.05 0.02 0.02 0.00 0.01 0.048 2

A3 0.00 0.00 0.00 0.06 0.01 0.063 3

Table 5

The ranking order of the alternatives obtained based on the FMF.

Ai Bi ai bi ui Rank

A1 〈0.89,0.25,0.15〉 〈0.96,0.45,0.08〉 0.618 0.498 1.242 3

A2 〈0.86,0.22,0.21〉 〈0.95,0.45,0.09〉 0.605 0.481 1.258 2

A3 〈0.96,0.22,0.16〉 〈0.88,0.57,0.18〉 0.674 0.283 2.379 1

The maximum distances from each alternative to the coordinate j of the reference

point obtained by using Eq. (25) and the maximum distance of each alternative obtained

by using Eq. (26) are presented in Table 4. The ranking order of the alternatives is also

presented in Table 4.

The ranking based on the FMF. The ranking results and the ranking order of the alter-

natives obtained on the basis of the FMF approach, i.e. by applying Eqs. (27) to (31), are

demonstrated in Table 5.
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Table 6

The final ranking order of the alternatives according

to the MULTIMOORA method.

RS RP FMF Rank

A1 2 1 3 3

A2 3 2 2 2

A3 1 3 1 1

The final ranking order of the alternatives which summarizes the three different ranks

provided by the respective parts of the MULTIMOORA method is shown in Table 6.

As it can be seen from Table 6, all three approaches, integrated in the MULTIMOORA,

have resulted in different ranking orders, for which reason the final ranking order is deter-

mined based on the dominance theory.

6. Conclusion

The MULTIMOORA method has been proven in solving different decision-making prob-

lems. In order to enable its application in the solving of a larger number of complex

decision-making problems, numerous extensions have been proposed for the MULTI-

MOORA method.

Compared to crisp, fuzzy, interval-valued and intuitionistic fuzzy numbers, the neu-

trosophic set provides significantly greater flexibility, which can be conducive to solving

decision-making problems associated with uncertainty, estimations and predictions.

Therefore, an extension of the MULTIMOORA method enabling the use of single

valued neutrosophic numbers is proposed in this paper.

The usability and efficiency of the proposed extension is presented in the example of

the comminution circuit design selection.

Finally, it should be noted that the proposed extension of the MULTIMOORA method

can be used for solving a much larger number of complex decision-making problems.

A number of real-world decision making problems which have to be solved is based on

the data acquired from respondents can be identified as one of the areas where the proposed

extension of the MULTIMOORA method can reach its advantages.
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Abstract—In this research paper, a new approach is proposed 
for computing the shortest path length from source node to 
destination node in a neutrosophic environment. The edges of the 
network are assigned by trapezoidal fuzzy neutrosophic 
numbers. A numerical example is provided to show the 
performance of the proposed approach. 

Keywords—neutrosophic sets; trapezoidal neutrosophic sets; 
shortest path problem; score function 

I. INTRODUCTION 
Smarandache [1] proposed the concept of neutrosophic 

sets (in short NSs) as a means of expressing the 
inconsistencies and indeterminacies that exists in most real-
life problems. The proposed concept generalized fuzzy sets 
and intuitionistic fuzzy set theory [3, 4]. The notion of NSs is 
described with three functions: truth, an indeterminacy and a 
falsity, where the functions are totally independent, the three 
functions are inside the unit interval  ]−0, 1+[. To practice NSs 
in real life situations efficiently. A new version of NSs named 
Single valued Neutrosophic Sets (in short SVNSs) was 
defined by Smarandache in [1]. Subsequently Wang et al. [5] 
defined various operations and operators for the SVNS model. 
Additional literature on single valued neutrosophic sets can be 
found in [6-14, 16]. Also later on, Smarandache extended the 
neutrosophic set to neutrosophic overset, underset, and offset 
[15]. Ye [17] presented the concept of trapezoidal fuzzy 
neutrosophic set (in short TrFNSs) and studied some 
interesting results with proofs and examples. In TrFNSs, the 
truth, the indeterminate and the false membership degrees are 
expressed with Trapezoidal Fuzzy Numbers (TrFN) instead of 
real numbers. Smarandache and Kandasamy [25, 28-29] 
introduced the concept of neutrosophic graph based on the 
indeterminacy component (I). Later on, in [18-23, 26-27] 
Broumi et al. introduced different types of neutrosophic graph 
based on the neutrosophic values (T, I, F) including single 
valued neutrosophic graphs, interval valued neutrosophic 
graphs and bipolar neutrosophic graphs. In graph theory, the 
shortest path problems (in short SPP) is one of the known 

famous problems studied in the numerous discipline including 
operation research, computer science, communication network 
and so on. In the literature, many research papers have been 
focused seriously on fuzzy shortest path problems and their 
extensions [30-39]. Till now, few research papers deal with 
shortest path problems in neutrosophic environment. In [40-
44], Broumi et al. presented some algorithms for solving the 
shortest path problems in neutrosophic environment. All these 
algorithms are based on the score functions. In this paper, the 
addition operation and the order relation have been given by 
Ye [17]. In this research paper, our main objective is to 
solving the shortest path problems in a network, where the 
edges weight are represented by trapezoidal fuzzy 
neutrosophic numbers. 

This paper is constructed as follows: In Section 2, some 
basic definitions of neutrosophic sets, SVN-sets and 
trapezoidal fuzzy neutrosophic sets are introduced. In section 
3, a new proposed algorithm for computing the trapezoidal 
fuzzy neutrosophic shortest path problem on a network is 
presented. In Section 4, a numerical example is given for 
computing the shortest path and shortest distance from the 
source node to destination node. We conclude the paper in 
Section 5. 

II. PRELIMINARIES

In this section, some definitions related to the concept of 
neutrosophic sets, single valued neutrosophic and trapezoidal 
fuzzy neutrosophic sets are taken from [2, 5, 17] 

Definition 2.1 [2] Let ζ   be a universal set. The 
neutrosophic set A on the universal set ζ  categorized into 

three membership functions called the true ( )AT x , 

indeterminate ( )AI x  and false ( )AF x contained in real 
standard or non–standard subset of  ]-0, 1+[ respectively and 
denoted as following 

A= {<x: ( )AT x , ( )AI x , ( )AF x > x ζ∈ }        (1)

Shortest Path Problem under Trapezoidal Neutrosophic 
Information  

Said Broumi, Mohamed Talea, Assia Bakali, Florentin Smarandache 

Said Broumi, Mohamed Talea, Assia Bakali, Florentin Smarandache (2017). Shortest Path 
Problem under Trapezoidal Neutrosophic Information. Computing Conference 2017, 18-20 July 
2017, London, UK, IEEE Access, 142-148 
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Definition 2.2 [5]  Let ζ   be a universal set. The single 
valued neutrosophic sets (in short SVNS) A on the universal 
is denoted as following: 

A= {<x: ( )AT x , ( )AI x , ( )AF x >, x ζ∈ }        (2)

The function ( )AT x ∈   [0, 1], ( )AI x   ∈  [0, 1]   and 

( )AI x  ∈  [0, 1] are named “degree of truth, indeterminacy 
and falsity membership of x in A”, satisfy the following 
condition: 

0≤  ( )AT x + ( )AI x + (x)AF ≤ 3     (3) 

Definition 2.3 [17]. Let ζ  be a universal set and  ψ  [0, 
1] be the sets of all trapezoidal fuzzy numbers on [0, 1]. The
trapezoidal fuzzy neutrosophic sets ( in short TrFNSs) A


 on

the universal is denoted as following: 

A


= {<x: ( )AT x


, ( )AI x


, ( )AF x


>, x ζ∈ }        (4) 

Where [ ](x) : 0,1AT ζ ψ→


,  [ ](x) : 0,1AI ζ ψ→


and 
[ ](x) : 0,1AF ζ ψ→


. The trapezoidal fuzzy numbers 

(x)AT


= ( 1T ( )A x , 2T ( )A x , 3T ( )A x , 4T ( )A x ),        (5) 

( )AI x


= ( 1 (x)AI , 2 (x)AI , 3 (x)AI , 4 (x)AI ) and            (6) 

( )AF x


= ( 1(x)AF , 2 (x)AF , 3 (x)AF , 4 (x)AF ), respectively 
denotes   degree of truth, indeterminacy and falsity 
membership  of x in A


   x ζ∀ ∈ . 

   0 ≤ 4T ( )A x + 4 ( )AI x + 4 ( )AF x ≤ 3.     (7) 

For notational convenience, the trapezoidal fuzzy 
neutrosophic value (TrFNV) A  is denoted by

1 2 3 4 1 2 3 4 1 2 3 4( , , , ), ( , , , ),( , , , )A t t t t i i i i f f f f=


where,

( 1T (x)A , 2T (x)A , 3T (x)A , 4T (x)A ) = 1 2 3 4( , , , )t t t t ,        (8) 

( 1 (x)AI , 2 (x)AI , 3 (x)AI , 4 (x)AI ) = 1 2 3 4( , , , )i i i i , and    (9) 

( 1 (x)AF , 2 (x)AF , 3 (x)AF , 4 (x)AF ) = 1 2 3 4( , , , )f f f f      (10) 

with 1 2 3 4t t t t≤ ≤ ≤ , 1 2 3 4i i i i≤ ≤ ≤   and 

1 2 3 4f f f f≤ ≤ ≤  

where, the truth membership function is given as bellow: 

1
1 2

2 1

2 3

1
3 4

2 1

1
( )

0

A

x t t x t
t t

t x t
T x

x t t x t
t t

otherwise

− ≤ ≤ −
≤ ≤

=  − ≤ ≤
 −




   (11) 

The indeterminacy membership  is given as below: 

1
1 2

2 1

2 3

4
3 4

4 3

1
(x)

0

A

x i i x i
i i

i x i
I

i x i x i
i i

otherwise

− ≤ ≤ −
≤ ≤

=  − ≤ ≤
 −




  (12) 

And the falsity membership function is given as below: 

1
1 2

2 1

2 3

4
3 4

4 3

1
( )

0

A

x f f x f
f f

f x f
F x

f x f x f
f f

otherwise

− ≤ ≤ −
≤ ≤

=  − ≤ ≤
 −




         (13) 

Definition 2.4 [17].  The trapezoidal fuzzy neutrosophic 
number 1 2 3 4 1 2 3 4 1 2 3 4( , , , ), ( , , , ),( , , , )A t t t t i i i i f f f f=


 is said 

to be trapezoidal fuzzy neutrosophic zero if and only if 

1 2 3 4( , , , )t t t t =  (0, 0, 0, 0),  1 2 3 4( , , , )i i i i  = ( 1, 1, 1, 1) and 

1 2 3 4( , , , )f f f f =( 1, 1, 1, 1)         (14) 

Definition 2.5 [17]. Let 1A


  and  2A


 two TrFNVs defined 
on the set of real numbers,  denoted as : 

1 1 2 3 4 1 2 3 4 1 2 3 4( , , , ), ( , , , ), (c , , , )A a a a a b b b b c c c=


 and 

2 1 2 3 4 1 2 3 4 1 2 3 4( , , , ), ( , , , ), ( , , , )A e e e e f f f f g g g g=


 and 0η > . 
Hence , the operations rules are defined as following: 

(i) 

1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

1 2 1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

( ), ( ),
,

( ), ( )
((b ), (b ), (b ), (b )),
( ), ( ), ( ), ( ))

a e a e a e a e
a e a e a e a e

A A f f f f
c g c g c g c g

+ − + − 
 + − + − 

⊕ =
  (15) 
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 (ii) 

1 1 2 2 3 3 4 4

1 1 1 1 2 2 2 2
1 2

3 3 3 3 4 4 4 4

1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

( , , , ),
( ) , (b ),

,
( ), (b )

( ), (c ),
( ), (c )

a e a e a e a e
b f b f f b f

A A
b f b f f b f

c g c g g c g
c g c g g c g

+ − + − 
⊗ =  + − + − 

+ − + − 
 + − + − 

    (16) 

(iii) 
1 2

3 4

1 2 3 4 1 2 3 4

(1 (1 ) ),(1 (1 ) ),

(1 (1 ) ), (1 (1 ) )

( , , , ), ( ,c ,c ,c )

a a

A a a

b b b b c

η η

η η

η η η η η η η η

η

 − − − − 
 = − − − − 


    (17) 

(iv) ( )
( )

1 2 3 4

1 2 3 41

1 2 3 4

( , , , ),

(1 (1 ) ), (1 (1 ) ),(1 (1 ) ),1 (1 ) ) ,

(1 (1 ) ), (1 (1 ) ),(1 (1 ) )), (1 (1 ) )

a a a a

A b b b b

c c c c

η η η η

η η η η η

η η η η

= − − − − − − − −

− − − − − − − −

  

where 0η >  (18) 

Ye [17] gave the definition of score function 1( )s A


 and 

accuracy  function 1( )H A


to compare the grades of TrFNS. 
These functions shows that greater is the value, the greater is 
the TrFNS and by using these concept paths can be ranked. 

Definition 2.6. Let 1A


  be  a TrFNV denoted as 

1 1 2 3 4 1 2 3 4 1 2 3 4( , , , ), ( , , , ), ( , , , )A t t t t i i i i f f f f=


 Hence , the 
score function and  the  accuracy function   of  TrFNV are 
denoted as  below: 

(i) 1 2 3 4 1 2 3 4
1

1 2 3 4

8 ( ) ( )1( )
( )12

t t t t i i i i
s A

f f f f
+ + + + − + + + 

=  − + + + 


 (19) 

(ii) 1 1 2 3 4 1 2 3 4
1( ) ( ) ( )
4

H A t t t t f f f f= + + + − + + +  


     (20) 

In order to make a comparisons between two TrFNV, Ye 
[17], presented the order relations between two TrFNVs. 

Definition 2.7 Let 1A


   and 2A


 be  two  TrFNV defined 
on the set of real numbers ,  denoted as 

1 1 2 3 4 1 2 3 4 1 2 3 4( , , , ), ( , , , ), ( , , , )A t t t t i i i i f f f f=


 and

2 1 2 3 4 1 2 3 4 1 2 3 4( , , , ), ( , , , ), ( , , , )A p p p p q q q q r r r r=


. Hence , the 
ranking method  is  defined as follows: 

1) If 1 2( ) ( )s A s A
 
 , then 1A


 is greater than 2A


, that is, 1A



is superior to 2A


, denoted by 1 2A A
 
  

2) If  1 2( ) ( )s A s A=
 

, and  1 2( ) (A )H A H
 
 then 1A


 is 

greater than 2A


, that is, 1A


is superior to 2A


, denoted by 
1 2A A
 
 .        

III. TRFN- SHORTEST PATH PROBLEM

In this section, the edge length in a network is considered 
to be trapezoidal fuzzy neutrosophic number. To find the 

shortest path in a network , where the edges are characterized 
by trapezoidal fuzzy neutrosophic number. We present the 
following procedure: 

Step 1 Suppose 1d = <(0, 0, 0, 0) (1, 1, 1, 1), (1, 1, 1, 1)>

and label the source node1 as [ 1d = < (0, 0, 0, 0),(1, 1, 1,1), (1,
1, 1, 1)>, -] 

Let  n is the destination node. 

Step 2:   Select jd
= min { i ijd d⊕ 

} for all j= 2,3,…,n. 

Step 3:  If the minimum provided correspond to one value 
of i  then label node j as [ jd , i]. If the minimum provided
correspond to several values of i, then it indicate that there 
exist more than one TrFN-path between the source node and 
the node j. Hence the TrFN-distance along path is jd , so
select any value of  i. 

Step 4: Set the destination node n be labeled as  [ nd ,l],
then the TrFN-shortest path distance from source node to 
destination node is nd .

Step 5:  Since the destination node n is labeled [ nd , l]. In
order to find the TrFN-shortest path connecting the source 
node and the destination node, identify the label of the node l. 
Set it as [ ld ,p], Repeat step 2 and step 3 until the node 1 is
obtained. 

Step 6: To obtain the TrFN-shortest path, we should 
joining  all the nodes provided by the step 5. 

IV. ILLUSTRATIVE EXAMPLE

Consider a small network shown in the following figure 1 
in which each edge length is represented by a trapezoidal 
fuzzy neutrosophic number (see table 1). This network 
includes 6 nodes and 8 directed edges. This problem is to 
compute the shortest path between source node and 
destination node in the given network. 

Fig. 1. Trapezoidal fuzzy neutrosophic network 

The edges weight of the trapezoidal fuzzy neutrosophic 
network are represented by trapezoidal fuzzy neutrosophic 
numbers. 

1

3 4 
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2 
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TABLE I. THE EDGES WEIGHT OF THE TRAPEZOIDAL FUZZY 
NEUTROSOPHIC GRAPHS 

Edges Trapezoidal fuzzy neutrosophic distance 
1-2 <(0.1, 0.2, 0.3, 0.5), (0.2, 0.3, 0.5, 0.6), (0.4, 0.5, 0.6, 0.8)> 
1-3 <(0.2, 0.4, 0.5, 0.7), (0.3, 0.5, 0.6, 0.9), (0.1, 0.2, 0.3, 0.4)> 
2-3 <(0.3, 0.4, 0.6, 0.7), (0.1, 0.2, 0.3, 0.5), (0.3, 0.5, 0.7, 0.9)> 
2-5 <(0.1, 0.3, 0.4, 0.5), (0.3, 0.4, 0.5, 0.7), (0.2, 0.3, 0.6, 0.7)> 
3-4 <(0.2, 0.3, 0.5, 0.6), (0.2, 0.5, 0.6, 0.7), (0.4, 0.5, 0.6, 0.8)> 
3-5 <(0.3, 0.6, 0.7, 0.8), (0.1, 0.2, 0.3, 0.4), (0.1, 0.4, 0.5, 0.6)> 
4-6 <(0.4, 0.6, 0.8, 0.9), (0.2, 0.4, 0.5, 0.6), (0.1, 0.3, 0.4, 0.5)> 

5-6 <(0.2, 0.3, 0.4, 0.5), (0.3, 0.4, 0.5, 0.6), (0.1, 0,3, 0.5, 0.6)> 

Using the algorithm proposed in section 2, we can 
determine the shortest path between any two nodes. Let node 
1 is the source node and node 6 is the destination node. 

Suppose  1d  = <(0, 0, 0, 0), (1, 1, 1, 1), (1, 1, 1, 1)> and
label the source node 1 as [<(0, 0, 0, 0), (1, 1, 1, 1), (1, 1, 1, 
1)> ,-],  the value 2d , 3d , 4d , 5d and 5d  can be computed
following the iterations described below: 

Iteration1: The node 2 has on predecessor, which is node 
2. Following the step 2 in the proposed algorithm, we put
i=1and j=2, hence the value of   2d  can be computed as
follows: 

2d = min{ 1 12d d⊕  } = min{<(0, 0, 0), (1, 1, 1), (1, 1, 1)>
⊕  <(0.1, 0.2, 0.3, 0.5), (0.2, 0.3, 0.5, 0.6), (0.4, 0.5, 0.6, 
0.8)>= <(0.1, 0.2, 0.3, 0.5), (0.2, 0.3, 0.5, 0.6), (0.4, 0.5, 0.6, 
0.8)> 

So, the minimum provided  correspond to the node 
1.Hence, the node 2 is labeled as

[<(0.1, 0.2, 0.3, 0.5), (0.2, 0.3, 0.5, 0.6), (0.4, 0.5, 0.6, 
0.8)>, 1] 

2d = <(0.1, 0.2, 0.3, 0.5), (0.2, 0.3, 0.5, 0.6), (0.4, 0.5, 0.6,
0.8)> 

Iteration 2: The node 3 has two predecessors, which are 
node 1 and node 2. Following the step 2 in the proposed 
algorithm, we put i=1, 2and j=3, hence the value of  3d   can
be computed as follows: 

3d =min { 1 13 2 23,d d d d⊕ ⊕    }= min {<((0, 0, 0, 0), (1, 1, 1, 
1), (1, 1, 1, 1)> ⊕  <(0.2, 0.4, 0.5, 0.7), (0.3, 0.5, 0.6, 0.9), 
(0.1, 0.2, 0.3, 0.4)> , <(0.1, 0.2, 0.3, 0.5), (0.2, 0.3, 0.5, 0.6), 
(0.4, 0.5, 0.6, 0.8)>⊕  <(0.3, 0.4, 0.6, 0.7), (0.1, 0.2, 0.3, 0.5), 
(0.3, 0.5, 0.7, 0.9)>} = min{<(0.2, 0.4, 0.5, 0.7), (0.3, 0.5, 0.6, 
0.9), (0.1, 0.2, 0.3, 0.4)> ,  <(0.37, 0.52, 0.72, 0.85), (0.02, 
0.06, 0.15, 0.3), (0.12, 0.25, 0.42, 0.72)>} 

S (<(0.2, 0.4, 0.5, 0.7), (0.3, 0.5, 0.6, 0.9), (0.1, 0.2, 0.3, 
0.4)>) using Eq.19, we have 

1 2 3 4 1 2 3 4
1

1 2 3 4

8 ( ) ( )1( )
( )12

t t t t i i i i
s A

f f f f
+ + + + − + + + 

=  − + + + 
 =0.54 

S (<(0.37, 0.52, 0.72, 0.85), (0.02, 0.06, 0.15,0.3), (0.12, 
0.25, 0.42, 0.72)>) = 0.70 

Since S (<(0.2, 0.4, 0.5, 0.7), (0.3, 0.5, 0.6, 0.9), (0.1, 0.2, 
0.3, 0.4)>) < S (<(0.37, 0.52, 0.72, 0.85), (0.02, 0.06, 
0.15,0.3), (0.12, 0.25, 0.42, 0.72)>) 

So, min{<(0.2, 0.4, 0.5, 0.7), (0.3, 0.5, 0.6, 0.9), (0.1, 0.2, 
0.3, 0.4)> ,  <(0.37, 0.52, 0.72, 0.85), (0.02, 0.06, 0.15, 0.3), 
(0.12, 0.25, 0.42, 0.72)>} 

3d  = <(0.2, 0.4, 0.5, 0.7), (0.3, 0.5, 0.6, 0.9), (0.1, 0.2, 0.3,
0.4)> 

So, the minimum provided correspond to the node 
1.Hence, the node 3 is labeled as [(<(0.2, 0.4, 0.5, 0.7), (0.3,
0.5, 0.6, 0.9), (0.1, 0.2, 0.3, 0.4)>) , 1] 

3d = <(0.2, 0.4, 0.5, 0.7), (0.3, 0.5, 0.6, 0.9), (0.1, 0.2, 0.3,
0.4)> 

Iteration 3: The node 4 has one predecessor, which is 
node 3. Following the step 2 in the proposed algorithm, we put 
i=1and j=4, hence the value of  4d    can be computed as
follows: 

4d = min{ 3 34d d⊕  }= min {<(0.2, 0.4, 0.5, 0.7), (0.3, 0.5,
0.6, 0.9), (0.1, 0.2, 0.3,0.4)> ⊕  <(0.2, 0.3, 0.5, 0.6), (0.2, 0.5, 
0.6, 0.7), (0.4, 0.5, 0.6, 0.8 )>} = <(0.36, 0.58, 0.75, 0.88), 
(0.06, 0.25, 0.36, 0.63), (0.04, 0.1, 0.18, 0.32)> 

So min{<(0.2, 0.4, 0.5, 0.7), (0.3, 0.5, 0.6, 0.9), (0.1, 0.2, 
0.3,0.4)> ⊕  <(0.2, 0.3, 0.5, 0.6), (0.2, 0.5, 0.6, 0.7), (0.4, 0.5, 
0.6, 0.8 )>}= <(0.36, 0.58, 0.75, 0.88), (0.06, 0.25, 0.36, 0.63), 
(0.04, 0.1, 0.18, 0.32)> 

So, the minimum provided correspond to the node 
3.Hence, the node 4 is labeled as [<(0.36, 0.58, 0.75, 0.88),
(0.06, 0.25, 0.36, 0.63), (0.04, 0.1, 0.18, 0.32)> ,3] 

4d =<(0.36, 0.58, 0.75, 0.88), (0.06, 0.25, 0.36, 0.63),
(0.04, 0.1, 0.18, 0.32)> 

Iteration 4: The node 5 has two predecessors, which are 
node 2 and node 3. Following the step 2 in the proposed 
algorithm, we put i=2, 3 and j=5, hence the value of 5d   can
be computed as follows: 

5d = min{ 2 25 3 35,d d d d⊕ ⊕    } = min{<(0.1, 0.2, 0.3, 0.5),
(0.2, 0.3, 0.5, 0.6), (0.4, 0.5, 0.6, 0.8)>⊕  <(0.1, 0.3, 0.4, 0.5), 
(0.3, 0.4, 0.5, 0.7), (0.2, 0.3, 0.6, 0.7)>,   <(0.2, 0.4, 0.5, 0.7), 
(0.3, 0.5, 0.6, 0.9), (0.1, 0.2, 0.3, 0.4)> ⊕  <(0.3, 0.6, 0.7, 0.8), 
(0.1, 0.2, 0.3, 0.4), (0.1, 0.4, 0.5, 0.6)>} = 

min{<(0.19, 0.44, 0.58, 0.75), (0.06, 0.12, 0.25, 0.42), 
(0.02, 0.06, 0.18, 0.56)> , <(0.44, 0.76, 0.85, 0.94), (0.03, 0.1, 
0.18, 0.36), (0.01, 0.08, 0.15, 0.42)>} 

S (<(0.19, 0.44, 0.58, 0.75), (0.06, 0.12, 0.25, 0.42), (0.02, 
0.06, 0.18, 0.56)>) = 0.69 

S (<(0.44, 0.76, 0.85, 0.94), (0.03, 0.1, 0.18, 0.36), (0.01, 
0.08, 0.15, 0.42)>) = 0.81 
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Since S (<(0.19, 0.44, 0.58, 0.75), (0.06, 0.12, 0.25, 0.42), 
(0.02, 0.06, 0.18, 0.56)>)  S (<(0.44, 0.76, 0.85, 0.94), (0.03, 
0.1, 0.18, 0.36), (0.01, 0.08, 0.15, 0.42)>) 

min{<(0.19, 0.44, 0.58, 0.75), (0.06, 0.12, 0.25, 0.42), 
(0.02, 0.06, 0.18, 0.56)> , <(0.44, 0.76, 0.85, 0.94), (0.03, 0.1, 
0.18, 0.36), (0.01, 0.08, 0.15, 0.42)>} 

= <(0.19, 0.44, 0.58, 0.75), (0.06, 0.12, 0.25, 0.42), (0.02, 
0.06, 0.18, 0.56)> 

So, the minimum provided correspond to the node 
2.Hence, the node 5 is labeled as [<(0.19, 0.44, 0.58, 0.75),
(0.06, 0.12, 0.25, 0.42), (0.02, 0.06, 0.18, 0.56)>, 2] 

5d = <(0.19, 0.44, 0.58, 0.75), (0.06, 0.12, 0.25,0.42),
(0.02, 0.06, 0.18, 0.56)> 

Iteration 5: The node 6 has two predecessors, which are 
node 4 and node 5. Following the step 2 in the proposed 
algorithm, we put i=4, 5 and j=6, hence the value of  6d can be
computed as follows: 

6d = min{ 4 46 5 56,d d d d⊕ ⊕    }= min{<(0.36, 0.58,
0.75,0.88), (0.06, 0.25, 0.36, 0.63), (0.04, 0.1, 0.18, 0.32)>⊕  
<(0.4, 0.6, 0.8, 0.9), (0.2, 0.4, 0.5, 0.6), (0.1, 0.3, 0.4, 0.5)>, 
<(0.19, 0.44, 0.58, 0.75), (0.06, 0.12, 0.25, 0.42), (0.02, 0.06, 
0.18, 0.56)> ⊕  <(0.2, 0.3, 0.4, 0.5), (0.3, 0.4, 0.5, 0.6), (0.1, 
0.5,0.3, 0.6)>} = min{<(0.616, 0.832, 0.95, 0.98), (0.012, 0.1, 
0.18, 0.37), (0.004, 0.03, 0.072, 0.16)>, <(0.352, 0.608, 0.748, 
0.88), (0.018, 0.048, 0.125, 0.25), (0.002, 0.03, 0.054, 0.34)> 
} 

S ( <(0.616, 0.832, 0.95, 0.98), (0.012, 0.1, 0.18, 0.37), 
(0.004, 0.03, 0.072, 0.16)> ) = 0.87 

S (<(0.352, 0.608, 0.748, 0.88), (0.018, 0.048, 0.125, 
0.25), (0.002, 0.03, 0.054, 0.34)> ) = 0.81 

Since S (<(0.352, 0.608, 0.748, 0.88), (0.018, 0.048, 0.125, 
0.25), (0.002, 0.03, 0.054, 0.34)>) <  S (<(0.616, 0.832, 0.95, 
0.98), (0.012, 0.1, 0.18, 0.37), (0.004, 0.03, 0.072, 0.16)>) 

min{<(0.616, 0.832, 0.95, 0.98), (0.012, 0.1, 0.18, 0.37), 
(0.004, 0.03, 0.072, 0.16)>, <(0.352, 0.608, 0.748, 0.88), 
(0.018, 0.048, 0.125, 0.25), (0.002, 0.03, 0.054, 0.34)> }= 
<(0.352, 0.608, 0.748, 0.88), (0.018, 0.048, 0.125, 0.25), 
(0.002, 0.03, 0.054, 0.34)> 

6d = <(0.352, 0.608, 0.748, 0.88), (0.018, 0.048, 0.125,
0.25), (0.002, 0.03, 0.054, 0.34)> 

So, the minimum provided correspond to the node 
5.Hence, the node 6 is labeled as [<(0.352, 0.608, 0.748, 0.88),
(0.018, 0.048, 0.125, 0.25), (0.002, 0.03, 0.054, 0.34)>, 5] 

Since the destination node of the proposed network is the 
node 6. Hence, the TrFN- shortest distance between source 
node 1 and destination node is  <(0.352, 0.608, 0.748, 0.88), 
(0.018, 0.048, 0.125, 0.25), (0.002, 0.03, 0.054, 0.34)> 

So, the TrFN-shortest path between the source node 1 and 
the destination node 6 can be determined using the following 
method: 

The node 6 takes the label [<(0.352, 0.608, 0.748, 0.88), 
(0.018, 0.048, 0.125, 0.25), (0.002, 0.03, 0.054, 0.34)>, 5], 
which indicate that we are moving from node 5. The node 5 
takes the label [<(0.19, 0.44, 0.58, 0.75), (0.06, 0.12, 
0.25,0.42), (0.02, 0.06, 0.18, 0.56)>, 2] , which indicate that 
we are moving from node 2. The node 2 takes the label [<(0.1, 
0.2, 0.3, 0.5), (0.2, 0.3, 0.5, 0.6), (0.4, 0.5, 0.6, 0.8)>, 1] which 
indicate that we are moving from node 1.So,  joining all the 
provided nodes, we get the TrFN-shortest path between the 
source node 1 and the destination node 6. Hence the TrFN-
shortest path is given as follows: 1 2 5 6→ → →  

Following the algorithm described in section 2, the 
computational results for finding the TrFN-shortest path from 
source node 1 to destination node  6 are summarized in table 
2. 

TABLE II. SUMMARIZE OF TRAPEZOIDAL FUZZY NEUTROSOPHIC 
DISTANCE AND SHORTEST PATH 

N
od
e  

id
shortest path 
between the i-th 
and 1st node 

2 <(0.1, 0.2, 0.3, 0.5), (0.2, 0.3, 0.5, 0.6), (0.4, 0.5, 
0.6, 0.8)> 1 2→  

3 <(0.2, 0.4, 0.5), (0.3, 0.5, 0.6), (0.1, 0.2, 0.3)> 1 3→  

4 
<(0.36, 0.58, 0.75, 0.88), (0.06, 0.25, 0.36, 0.63), 
(0.04, 0.1, 0.18, 0.32)> 1 3 4→ →  

5 
<(0.19, 0.44, 0.58, 0.75), (0.06, 0.12, 0.25,0.42), 
(0.02, 0.06, 0.18, 0.56)> 1 2 5→ →  

6 <(0.352, 0.608, 0.748, 0.88), (0.018, 0.048, 
0.125, 0.25), (0.002, 0.03, 0.054, 0.34)> 

1 2 5 6→ → →

Fig. 2. TrFN-shortest path from source node 1 to destination node 6 

V. CONCLUSION 
In this research paper, a new algorithm based on 

trapezoidal fuzzy neutrosophic numbers is presented for 
finding the shortest path problem in a network where the 
edges weight are represented by TrFNN. A numerical example 
is introduced to show the efficacy of the proposed algorithm. 
So in the next work, we plan to implement this approach 
practically. 
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Abstract— The Critical Path Method (CPM) is one of several 
related techniques for planning and managing of complicated 
projects in real world applications. In many situations, the data 
obtained for decision makers are only approximate, which gives 
rise of neutrosophic critical path problem. In this paper, the 
proposed method has been made to find the critical path in 
network diagram, whose activity time uncertain. The vague 
parameters in the network are represented by triangular 
neutrosophic numbers, instead of crisp numbers. At the end of 
paper, two illustrative examples are provided to validate the 
proposed approach. 

Keywords— Neutrosophic Sets, Project Management, CPM, Score 
and Accuracy Functions. 

I. INTRODUCTION 

   Project management is concerned with selecting, planning, 
execution and control of projects in order to meet or exceed 
stakeholders' need or expectation from project. Two techniques 
of project management, namely Critical Path Method (CPM) 
and Program Evaluation and Review Technique (PERT) where 
developed in 1950s. [1] The successful implementation of CPM 
requires clear determined time duration for each activity.  
Steps involved in CPM include [2]:  

1. Develop Work Breakdown Structure of a project,
estimate the resources needed and establish precedence
relationship among activities.

2. Translate the activities into network.
3. Carry out network computation and prepare schedule of

the activities.
In CPM the main problem is wrongly calculated activity 
durations, of large projects that have many activities. The 
planned value of activity duration time may change under 
certain circumstances and may not be presented in a precise 
manner due to the error of the measuring technique or 
instruments etc.  It has been obvious that neutrosophic set 
theory is more appropriate to model uncertainty that is 

associated with parameters such as activity duration time and 
resource availability in CPM.  
This paper is organized as follows: 
In section 2, the basic concepts neutrosophic sets are briefly 
reviewed. In section 3, the mathematical model of neutrosophic 
CPM and the proposed algorithm is presented. In section 4, two 
numerical examples are illustrated. Finally section 5 concludes 
the paper with future work.  

II. PRELIMINARIES

   In this section, the basic definitions involving neutrosophic 
set, single valued neutrosophic sets, triangular neutrosophic 
numbers and operations on triangular neutrosophic numbers are 
outlined. 
Definition 1. [3,5-7] Let 𝑋 be a space of points (objects) and 
𝑥∈𝑋. A neutrosophic set 𝐴 in 𝑋 is defined by a truth-membership 
function 𝑇𝐴(𝑥), an indeterminacy-membership function 𝐼𝐴(𝑥)
and a falsity-membership function 𝐹𝐴(𝑥). 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and
𝐹𝐴(𝑥) are real standard or real nonstandard subsets of ]-0, 1+[.
That is 𝑇𝐴(𝑥):𝑋→]-0, 1+[, 𝐼𝐴(𝑥):𝑋→]-0, 1+[ and 𝐹𝐴(𝑥):𝑋→]-0,
1+[. There is no restriction on the sum of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and𝐹𝐴(𝑥),
so  0− ≤ sup 𝑇𝐴(𝑥)+ sup 𝐼𝐴(𝑥) + sup 𝐹𝐴(𝑥) ≤3+.  

Definition 2. [3,7] Let 𝑋 be a universe of discourse. A single 
valued neutrosophic set 𝐴 over 𝑋 is an object having the form 
𝐴={〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉:𝑥∈𝑋}, where 𝑇𝐴(𝑥):𝑋→[0,1],
𝐼𝐴(𝑥):𝑋→[0,1] and 𝐹𝐴(𝑥):𝑋→[0,1] with 0≤ 𝑇𝐴(𝑥)+ 𝐼𝐴(𝑥)+
𝐹𝐴(𝑥)≤3 for all 𝑥∈𝑋. The intervals 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥)
denote the truth-membership degree, the indeterminacy-
membership degree and the falsity membership degree of 𝑥 to 𝐴, 
respectively. For convenience, a SVN number is denoted by 𝐴= 
(𝑎, b, c), where 𝑎, 𝑏, 𝑐∈ [0, 1] and 𝑎+𝑏+𝑐≤3. 

Definition 3. [4,5] Let  �̃� ,�̃�, 
�̃�
 𝜖[0,1] and 𝑎1, 𝑎2, 𝑎3𝜖 𝑹 such

that 𝑎1 ≤ 𝑎2 ≤ 𝑎3 . Then a single valued triangular
neutrosophic number, �̃�=〈(𝑎1, 𝑎2, 𝑎3);�̃� , �̃�,�̃�〉 is a special
neutrosophic set on the real line set 𝑹, whose truth-membership, 
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indeterminacy-membership, and falsity-membership functions 
are given as follows: 

𝑇�̃� (𝑥)

=

{
 
 

 
  �̃� (

𝑥 − 𝑎1
𝑎2 − 𝑎1

)   𝑖𝑓 𝑎1 ≤ 𝑥 ≤ 𝑎2

 �̃�  𝑖𝑓 𝑥 =  𝑎2  (1)       

 �̃� (
𝑎3 − 𝑥

𝑎3 − 𝑎2
)   𝑖𝑓 𝑎2 < 𝑥 ≤ 𝑎3 

  0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               

 

𝐼�̃�(𝑥)

=

{
  
 

  
 
(𝑎2 − 𝑥 +  �̃�(𝑥 − 𝑎1)) 

(𝑎2 − 𝑎1)
 𝑖𝑓 𝑎1 ≤ 𝑥 ≤ 𝑎2                       

 �̃�  𝑖𝑓 𝑥 =  𝑎2  (2) 
(𝑥 − 𝑎2 +  �̃�(𝑎3 − 𝑥))

(𝑎3 − 𝑎2)
 𝑖𝑓 𝑎2 < 𝑥 ≤ 𝑎3       

 1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   

 

𝐹�̃�(𝑥)  

=

{
  
 

  
 (𝑎2 − 𝑥 + 

 �̃�
(𝑥 − 𝑎1)) 

(𝑎2 − 𝑎1)
 𝑖𝑓 𝑎1 ≤ 𝑥 ≤ 𝑎2                                                       

 �̃�  𝑖𝑓 𝑥 =  𝑎2  (3) 

(𝑥 − 𝑎2 + 
 �̃�
 (𝑎3 − 𝑥))

(𝑎3 − 𝑎2)
 𝑖𝑓 𝑎2 < 𝑥 ≤ 𝑎3      

 1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                      

 

Where �̃� ,�̃� and 
�̃�
 denote the maximum truth-membership

degree, minimum indeterminacy-membership degree and 
minimum falsity-membership degree respectively. A single 
valued triangular neutrosophic number 
�̃�=〈(𝑎1, 𝑎2, 𝑎3);�̃� , �̃�, �̃�〉 may express an ill-defined quantity
about 𝑎,which is approximately equal to 𝑎. 

Definition 4. [4] Let �̃�=〈(𝑎1, 𝑎2, 𝑎3);�̃� , �̃�, �̃�〉 and �̃� 
= 〈(𝑏1, 𝑏2, 𝑏3 );  �̃� , �̃�, �̃�〉 be two single valued triangular
neutrosophic numbers and ≠ 0 be any real number. Then, 

�̃�+ �̃� =〈(𝑎1 + 𝑏1 , 𝑎2 + 𝑏2, 𝑎3 + 𝑏3);  �̃� ˄  �̃�,   �̃�˅  �̃�,   �̃� ˅ �̃�〉

�̃� −  �̃� =〈(𝑎1 − 𝑏3 , 𝑎2 − 𝑏2 , 𝑎3 − 𝑏1);  �̃� ˄  �̃� ,   �̃�˅  �̃� ,   �̃� ˅ �̃�〉 

�̃��̃� =

{
  
 

  
 
〈(𝑎1𝑏1 , 𝑎2𝑏2, 𝑎3𝑏3);  �̃� ˄  �̃� ,   �̃�˅  �̃� ,   �̃� ˅ �̃�〉  

𝑖𝑓 (𝑎3 > 0, 𝑏3 > 0)  
〈(𝑎1𝑏3 , 𝑎2𝑏2, 𝑎3𝑏1);  �̃� ˄  �̃� ,   �̃�˅  �̃� ,   �̃� ˅ �̃�〉

  𝑖𝑓  (𝑎3 < 0, 𝑏3 > 0 )    
〈(𝑎3𝑏3, 𝑎2𝑏2, 𝑎1𝑏1);  �̃� ˄  �̃� ,   �̃�˅  �̃� ,   �̃� ˅ �̃�〉  

 𝑖𝑓 (𝑎3 < 0, 𝑏3 < 0 )    

�̃�

�̃�
=

{
 
 

 
 〈(

𝑎1
𝑏3
,
𝑎2
𝑏2
,
𝑎3
𝑏1
) ; �̃� ˄  �̃� ,   �̃�˅  �̃� ,   �̃� ˅ �̃�〉   𝑖𝑓(𝑎3 > 0, 𝑏3 > 0)       

〈(
𝑎3
𝑏3
,
𝑎2
𝑏2
,
𝑎1
𝑏1
) ;  �̃� ˄  �̃� ,   �̃�˅  �̃� ,   �̃� ˅ �̃�〉   𝑖𝑓(𝑎3 < 0, 𝑏3 > 0 )        

〈(
𝑎3
𝑏1
,
𝑎2
𝑏2
,
𝑎1
𝑏3
) ;  �̃� ˄  �̃� ,   �̃�˅  �̃� ,   �̃� ˅ �̃�〉    𝑖𝑓(𝑎3 < 0, 𝑏3 < 0)  

 

�̃� = {
〈(𝑎1, 𝑎2, 𝑎3); �̃� ,  �̃� , �̃�〉  𝑖𝑓(  > 0)
〈( 𝑎3, 𝑎2, 𝑎1); �̃� ,  �̃� , �̃�〉 𝑖𝑓 (  < 0)

�̃�−1 = 〈(
1

𝑎3
,
1

𝑎2
,
1

𝑎1
) ;�̃� , �̃� ,�̃�〉,    Where (�̃� ≠ 0)

III. CRITICAL PATH METHOD IN NEUTROSOPHIC 
ENVIRONMENT AND THE PROPOSED ALGORITHM  

  Project network is a set of activities that must be performed 
according to precedence constraints determining which activities 
must start after the completion of specified other activities. Let 
us define some terms used in drawing network diagram of CPM: 

1. Activity: It is any portion of a project that has a
definite beginning and ending and may use some
resources such as time, labor, material, equipment,
etc.

2. Event or Node: Beginning and ending points of
activities denoted by circles are called nodes or
events.

3. Critical Path: Is the longest path in the network.
The problems of determining critical activities, events and paths 
are easy ones in a network with deterministic (crisp) duration 
of activities and for this reason; in this section we convert the 
neutrosophic CPM to its equivalent crisp model. 
The CPM in neutrosophic environment takes the following 
form: 
A network N= 〈𝐸, 𝐴, �̃�〉, being a project model, is given. E is 
asset of events (nodes) and A⊂ 𝐸 × 𝐸  is a set of activities. �̃� is 
a triangular neutrosophic number and stand for activity 
duration.  

To obtain crisp model of neutrosophic CPM we should use the 
following equations: 
We defined a method to compare any two single valued 
triangular neutrosophic numbers which is based on the score 
function and the accuracy function. Let �̃� =
〈(𝑎1, 𝑏1, 𝑐1 ),�̃�, �̃�,�̃� 〉 be a single valued triangular
neutrosophic number, then 

𝑆(�̃�) =
1

16
[𝑎1 + 𝑏1 + 𝑐1] × (2 + �̃� − �̃� − 

�̃�
)  (4) 

And 
𝐴(�̃�) =

1

16
[𝑎1 + 𝑏1 + 𝑐1] × (2 + �̃� − �̃� + 

�̃�
)   (5) 

Is called the score and accuracy degrees of  �̃�, respectively. The 
neutrosophic CPM model can be represented by a crisp model 
using truth membership, indeterminacy membership, and 
falsity membership functions and the score and accuracy 
degrees of  ã , using equations (1), (2), (3) and (4), (5) 
respectively.  

Then the CPM with crisp activity times becomes: 
A network N= 〈𝐸, 𝐴, 𝑇〉, being a project model, is given. E is 
asset of events (nodes) and A⊂ 𝐸 × 𝐸  is a set of activities. The 
set E={1,2, … , 𝑛}  is labeled in such a way that the following 
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condition holds: (i, j )∈ 𝐴 and i< j. The activity times in the 
network are determined by 𝑇𝑖𝑗.
Notations of CPM solution:  
𝑇𝑖
𝑒=Earliest occurrence time of predecessor event i,
𝑇𝑖
𝑙= Latest occurrence time of predecessor event i,
𝑇𝑗
𝑒=Earliest occurrence time of successor event j,
𝑇𝑗
𝑙= Latest occurrence time of successor event j,
𝑇𝑖𝑗
𝑒/Start= Earliest start time of an activity ij,
𝑇𝑖𝑗
𝑒/Finisht=Earliest finish time of an activity ij,
𝑇𝑖𝑗
𝑙 /Start=Latest start time of an 𝑇𝑖𝑙activity ij,
𝑇𝑖𝑗
𝑙 /Finisht= Latest finish time of an activity ij,
𝑇𝑖𝑗 = Duration time of activity ij,
Earliest and Latest occurrence time of an event: 
𝑇𝑗
𝑒=maximum (𝑇𝑗𝑒 + 𝑇𝑖𝑗), calculate all 𝑇𝑗𝑒 for jth event, select

maximum value. 
𝑇𝑖
𝑙=minimum (𝑇𝑗𝑙 − 𝑇𝑖𝑗), calculate all 𝑇𝑖𝑙 for ith event, select

minimum value. 
𝑇𝑖𝑗
𝑒/Start=𝑇𝑖𝑒,
𝑇𝑖𝑗
𝑒/Finisht=𝑇𝑖𝑒 + 𝑇𝑖𝑗  ,
𝑇𝑖𝑗
𝑙 /Finisht=𝑇𝑗𝑙 ,
𝑇𝑖𝑗
𝑙 /Start=𝑇𝑗𝑙 − 𝑇𝑖𝑗 ,

Critical path is the longest path in the network. At critical path, 
𝑇𝑖
𝑒=𝑇𝑖𝑙, for all i.

Slack or Float is cushion available on event/ activity by which 
it can be delayed without affecting the project completion time. 
Slack for ith event = 𝑇𝑖𝑙 − 𝑇𝑖𝑒, for events on critical path, slack
is zero. 
  From the previous steps we can conclude the proposed 
algorithm as follows: 

1. To deal with uncertain, inconsistent and incomplete
information about activity time, we considered activity
time of CPM technique as triangular neutrosophic
number.

2. Calculate membership functions of each triangular
neutrosophic number, using equation 1, 2 and 3.

3. Obtain crisp model of neutrosophic CPM using
equation (4) and (5) as we illustrated previously.

4. Draw CPM network diagram.
5. Determine floats and critical path, which is the longest

path in network.
6. Determine expected project completion time.

IV. ILLUSTRATIVE EXAMPLES

 To explain the proposed approach in a better way, we solved 
two numerical examples and steps of solution are determined 
clearly.  

A. NUMERICAL EXAMPLE 1 

An application deals with the realization of a road connection 
between two famous cities in Egypt namely Cairo and Zagazig. 
Linguistics terms such as "approximately between" and 
"around" can be properly represented by approximate reasoning 
of neutrosophic set theory. Here triangular neutrosophic 

numbers are used to describe the duration of each task of 
project. As a real time application of this model, the following 
example is considered. The project manager wishes to construct 
a possible route from Cairo (s) to Zagazig (d). Given a road map 
of Egypt on which the times taken between each pair of 
successive intersection are marked, to determine the critical 
path from source vertex (s) to the destination vertex (d). 
Activities and their neutrosophic durations are presented in 
table 1. 

TABLE 1.  INPUT DATA FOR NEUTROSOPHIC CPM. 

Activity Neutrosophic Activity 
Time(days) 

Immediate 
predecessors 

A About 2 days 
(1,2,3;0.8,0.5,0.3) 

- 

B About 3 days 
(2,3,8;0.6,0.3,0.5) 

- 

C About 3 days 
(1,3,10;0.9,0.7,0.6) 

A 

D About 2 days 
(1,2,6;0.5,0.6,0.4) 

B 

E About 5 days 
(2,5,11;0.8,0.6,0.7) 

B 

F About 4 days 
(1,4,8;0.4,0.6,0.8) 

C 

G About 5 days 
(3,5,20;0.8,0.3,0.2) 

C 

H About 6 days 
(4,6,10;0.8,0.5,0.3) 

D 

I About 7 days 
(5,7,15;0.3,0.5,0.4) 

F,E 

J About 5 days 
(3,5,7;0.8,0.5,0.7) 

H,G 

Step 1: Neutrosophic model of project take the following form: 
N= 〈𝐸, 𝐴, �̃�〉, where E is asset of events (nodes) and A⊂ 𝐸 × 𝐸  
is a set of activities. �̃� is a triangular neutrosophic number and 
stand for activity time. 
Step 2: Obtaining crisp model of problem by using equations 
(4) and (5). Activities and their crisp durations are presented in 
table 2. 

TABLE 2.  INPUT DATA FOR CRISP CPM. 

Activity  Activity 
Time(days) 

Immediate 
predecessors 

A 2 - 
B 1 - 
C 1 A 
D 1 B 
E 2 B 
F 1 C 
G 4 C 
H 3 D 
I 2 F,E 
J 1 H,G 
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Step 3: Draw network diagram of CPM.  
Network diagram of CPM using Microsoft Project 2010 
presented in Fig.1. 

   Fig. 1.  Network of activities with critical path 

Step 4: Determine critical path, which is the longest path in the 
network. 
From Fig.1, we find that the critical path is A-C-G-J and is 
denoted by red line.  
Step 5: Calculate project completion time. 
The expected project completion time = 𝑡𝐴 + 𝑡𝐶 + 𝑡𝐺 + 𝑡𝐽 = 8
days. 

B. NUMERICAL EXAMPLE 2 

Let us consider neutrosophic CPM and try to obtain crisp model 
from it. Since you are given the following data for a project. 

TABLE 3.  INPUT DATA FOR NEUTROSOPHIC CPM. 

Activity Neutrosophic Activity 
Time(days) 

Immediate 
predecessors 

A 2̃ - 
B 4̃ A 
C 5̃ A 
D 8̃ B 
E 6̃ C 
F 10̃ D,E 

Time in the previous table considered as a triangular 
neutrosophic numbers. 
Let, 
2̃ = 〈(0,2,4); 0.8,0.6,0.4〉, 8̃ = 〈(4,8,15);   0.2,0.3,0.5〉,  
4̃ = 〈(1,4,12); 0.2,0.5,0.6〉,6̃ = 〈(2,6,18); 0.5,0.4,0.9〉,  
5̃ = 〈(1,5,10); 0.8,0.2,0.4〉, 10̃ = 〈(2,10,22); 0.7,0.2,0.5〉.

To obtain crisp values of each triangular neutrosophic number, 
we should calculate score function of each neutrosophic 
number using equation (4). 
The expected time of each activity are presented in table 4. 

TABLE4. INPUT DATA FOR CRISP CPM. 
Activity Immediate 

Predecessors 
Activity 

Time(days) 
A - 1 
B A 1 
C A 2 
D B 2 
E C 2 
F D,E 4 

After obtaining crisp values of activity time we can solve the 
critical path method easily, and determine critical path 
efficiently. 
To draw network of activities with critical path we used 
Microsoft project program.   

Fig. 2.  Network of activities with critical path 

From Fig.2, we find that the critical path is A-C-E-F and is 
denoted by red line.  
The expected project completion time = 𝑡𝐴 + 𝑡𝐶 + 𝑡𝐸 + 𝑡𝐹 = 9
days. 
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V. CONCLUSION 

   Neutrosophic set is a generalization of classical set, fuzzy set 
and intuitionistic fuzzy set because it not only considers the 
truth-membership and falsity- membership but also an 
indeterminacy function which is very obvious in real life 
situations. In this paper, we have considered activity time of 
CPM as triangular neutrosophic numbers and we used score 
function to obtain crisp values of activity time. In future, the 
research will be extended to deal with different project 
management techniques. 

[3] F. Smarandache,. “A geometric interpretation of the neutrosophic set-“,A 
generalization of the intuitionistic fuzzy set. ArXiv preprint 
math/0404520, 2004. 

[4] D., Irfan, & S., Yusuf..” Single valued neutrosophic numbers and their 
applications to multicriteria decision making problem”,2014.

[5] I. M. Hezam, M. Abdel-Baset, F. Smarandache”Taylor Series 
Approximation to Solve Neutrosophic Multiobjective Programming 
Problem”,Neutrosophic Sets and Systems An International Journal in 
Information Science and Engineering Vol.10 pp.39-45,2015. 

[6] N . El-Hefenawy,  M.  Metwally, Z. Ahmed,&,I . El-Henawy.“A Review 
on the Applications of Neutrosophic Sets”. Journal of Computational and 
Theoretical Nanoscience, 13(1), 936-944, 2016. 
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Programming”. Neutrosophic Sets & Systems, 11,2016. 
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Abstract—The aim of this paper is to provide a contribution
to Natural Logic and Neutrosophic Theory. This paper considers
lattice structures built on noun phrases. Firstly, we present some
new negations of intersective adjectival phrases and their set-
theoretic semantics such as non-red non-cars and red non-cars.
Secondly, a lattice structure is built on positive and negative
nouns and their positive and negative intersective adjectival
phrases. Thirdly, a richer lattice is obtained from previous one
by adding neutrosophic prefixes neut and anti to intersective
adjectival phrases. Finally, the richest lattice is constructed via
extending the previous lattice structures by private adjectives
(fake, counterfeit). We call these lattice classes Neutrosophic
Linguistic Lattices (NLL).

Keywords: Logic of natural languages; neutrosophy;
pre-orders, orders and lattices; adjectives; noun phrases;
negation

I. INTRODUCTION

One of the basic subfields of the foundations of mathematics
and mathematical logic, lattice theory, is a powerful tool
of many areas such as linguistics, chemistry, physics, and
information science. Especially, with a set theoretical view,
lattice applications of mathematical models in linguistics are
a common occurrence.

Fundamentally, Natural Logic [1], [2] is a human reasoning
discipline that explores inference patterns and logics in natural
language. Those patterns and logics are constructed on rela-
tions between syntax and semantics of sentences and phrases.
In order to explore and identify the entailment relations among
sentences by mathematical structures, it is first necessary to
determine the relations between words and clauses themselves.
We would like to find new connections between natural logic
and neutrosophic by discovering the phrases and neutrosophic
clauses. In this sense, we will associate phrases and negated
phrases to neutrosophic concepts.

Recently, a theory called Neutrosophy, introduced by
Smarandache [4], [6], [5] has widespread mathematics, phi-
losophy and applied sciences coverage. Mathematically, it
offers a system which is an extension of intuitionistic fuzzy
system. Neutrosophy considers an entity, “A” in relation to its

opposite, “anti − A” and that which is not A, “non − A”,
and that which is neither “A” nor “anti − A”, denoted by
“neut−A”.

Up to section 3.3, we will obtain various negated ver-
sions of phrases (intersective adjectival) because Neutrosophy
considers opposite property of concepts and we would like
to associate the phrases and Neutrosophic phrases. We will
present the first NLL in section 3.3. Notice that all models and
interpretations of phrases will be finite throughout the paper.

II. NEGATING INTERSECTIVE ADJECTIVAL PHRASES

Phrases such as “red cars” can be interpreted the intersection
of the set of red things with the set of cars and get the
set of “red cars”. In the sense of model-theoretic semantics,
the interpretation of a phrase such as red cars would be the
intersection of the interpretation of cars with a set of red
individuals (the region b in Figure 1). Such adjectives are
called intersective adjectives or intersecting adjectives. As to
negational interpretation, Keenan and Faltz told that “similarly,
intersective adjectives, like common nouns, are negatable by
non-: non-Albanian (cf. non-student) ”in their book [7]. In
this sense, non-red cars would interpret the intersection of the
of non-red things and the set of cars. Negating intersective
adjectives without nouns (red things) would be complements
of the set of red things, in other words, non-red things. We
mean by non-red things are which the things are which are
not red. Remark that non-red things does not guarantee that
those individuals have to have a colour property or something
else. It is changeable under incorporating situations but we
will might say something about it in another paper. On the
other hand, negating nouns (cars) would be complements of
the set of cars, in other words, non-cars. We mean by non-cars
that the things are which are not cars. Adhering to the spirit of
intersective adjectivity, we can explore new meanings and their
interpretations from negated intersective adjectival phrases by
intersecting negated (or not) adjectives with negated (or not)
nouns. As was in the book, non-red cars is the intersection
the set of things that are not red with cars. In other words,

A Lattice Theoretic Look: A Negated Approach to Adjectival 
(Intersective, Neutrosophic and Private) Phrases 

Selçuk Topal, Florentin Smarandache 
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Fig. 1: An example of cars and red in a discourse universe

non-red cars are the cars but not red (the region c in Figure
1). Another candidate for the negated case, non-red non-cars
refers to intersect the set of non-red things (things that are not
red) with non-cars (the region d in Figure 1). The last one, red
non-cars has meaning that is the set of intersection of the set
of red things and the set of non-cars (the region a in Figure 1).

red
−
x is called noun level partially semantic complement.

−
redx

is called adjective level partially semantic complement.
−
red

−
x

is called full phrasal semantic complement. In summary, we
obtain non-red cars, red non-cars and non-red non-cars from
red cars we already had.

The intersective theory and conjunctives suits well into
boolean semantics [7], [8] which proposes very close relation-
ship between and and or in natural language, as conjunction
and disjunction in propositional and predicate logics that
have been applied to natural language semantics. In these
logics, the relationship between conjunction and disjunction
corresponds to the relationship between the set-theoretic no-
tions of intersection and union [9], [10]. On the other hand,
correlative conjunctions might help to interpret negated in-
tersective adjectival phrases within boolean semantics because
the conjunctions are paired conjunctions (neither/nor, either/or,
both/and,) that link words, phrases, and clauses. We might
reassessment those negated intersective adjectival phrases in
perspective of correlative conjunctions. “neither A nor B
” and “both non-A and non-B can be used interchangeably
where A is an intersective adjective and B is a noun. Therefore,
we say “neither red (things) nor pencils ”and “both non-red
(things) and non-pencils ”equivalent sentences. An evidence
for the interchangeability comes from equivalent statements in
propositional logic, that is, ¬(R ∨ C) is logically equivalent
to ¬R∧¬C [11]. Other negated statements would be ¬R∧C
and R∧¬C. Semantically, ¬R∧¬C is full phrasal semantic
complement of R ∨ C, and also ¬R ∧ C and R ∧ ¬C are
partially semantic complements of R ∨ C.

We will explore full and partially semantic complements
of several adjectival phrases. We will generally negate the
phrases and nouns by adding prefix “non”, “anti” and “neut”.
We will use interpretation function [[ ]] from set of phrases
(Ph) to power set of universe (P(M)) (set of individuals) to
express phrases with understanding of a set-theoretic view-

point. Hence, [[p]] ⊆M for every p ∈ Ph. For an adjective a
(negated or not ) and a plural noun n (negated or not ) , a n
will be interpreted as [[a]]∩[[n]]. If n is a positive plural noun,
non−n will be interpreted as [[non−n]] = [[

−
n]] = M \ [[n]].

Similarly, if a is a positive adjective, non − a will be
interpreted as [[non−a]] = [[

−
a]] = M\[[a]]. While we will add

non to both nouns and adjectives as prefix, “anti” and “neut”
will be added in front of only adjectives. Some adjectives
themselves have negational meaning such as fake. Semantics
of phrases with anti, neut and fake will be mentioned in next
sections.

III. LATTICE THEORETIC LOOK

We will give some fundamental definitions before we start
to construct lattice structures from those adjectival phrases.

A lattice is an algebraic structure that consists of a partially
ordered set in which every two elements have a unique
supremum (a least upper bound or join) and a unique infimum
(a greatest lower bound or meet) [12]. The most classical
example is on sets by interpreting set intersection as meet and
union as join. For any set A, the power set of A can be ordered
via subset inclusion to obtain a lattice bounded by A and the
empty set. We will give two new definitions in subsection 3.2
to start constructing lattice structures.

Remark 3.1: We will use the letter a and red for intersective
adjectives, and the letter x, n and cars for common plural nouns
in the name of abbreviation and space saving throughout the
paper.

A. Individuals

Each element of [[ax]] and [[
−
ax]] is a distinct individual and

belongs to [[x]]. It is already known that [[a x]] ∩ [[
−
a x]] = ∅

and [[ax]]
?⋃
[[
−
a x]] = [[x]]. It means that no common elements

exist in [[a x]] and [[
−
a x]]. Hence, every element of those sets

can be considered as individual objects such as Larry, John,
Meg,.. etc. Uchida and Cassimatis [13] already gave a lattice
structure on power set of all of individuals (a domain or a
universe).

B. Lattice LIA

Intersective adjectives (red) provide some properties for
nouns (cars). Excluding (complementing) a property from
an intersective adjective phrase also provide another prop-
erty for nouns. In this direction, “red” is an property for
a noun, “non − red” is another property for the noun as
well. red and non − red have discrete meaning and sets as
can be seen in Figure 1. Naturally, every set of restricted
objects with a property (red cars) is a subset of those ob-

jects without the properties (cars). [[red x]] and [[
−
red x]]

are always subsets of [[x]]. Neither [[red x]] ≤? [[
−
red x]]

nor [[
−
red x]] ≤? [[red x]] since [[red x]] ∩ [[

−
red x]] by

assuming [[
−
red x]] 6= ∅ and [[red x]] 6= ∅. Without loss of

generality, for negative (complement) of the noun x and the
intersective adjective red (positive and negative) are

−
x, red

−
x
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Fig. 2: Lattice on cars and red

and
−
red

−
x. [[red

−
x]] and [[

−
red

−
x]] are always subsets of [[

−
x]].

Neither [[red
−
x]] ≤? [[

−
red

−
x]] nor [[

−
red

−
x] ≤? [[red

−
x]]

since [[red
−
x]] ∩ [[

−
red

−
x]] by assuming [[

−
red

−
x]] 6= ∅ and

[[red
−
x]] 6= ∅. On the other hand, [[x]] ∩ [[

−
x]] = ∅ and

[[x]]
?⋃
[[
−
x]] = M (M is the universe of discourse) and also

[[red x]], [[
−
red x]], [[red

−
x]] and [[

−
red

−
x]] are by two discrete.

We do not allow [[red x]]
?⋃
[[
−
red x]] and [[red x]]

?⋃
[[
−
red

−
x]]

and [[
−
red x]]

?⋃
[[red

−
x]] and [[

−
red x]]

?⋃
[[
−
red

−
x]] to take places

in the lattice in Figure 2 because we try to build the lattice
from phrases only in our language. To do this, we define a set

operation
?⋃

and an order relation ≤? as the follows:

Definition 3.2: We define a binary set operator
?⋃

for our
languages as the follow: Let S be a set of sets and A, B ∈ S.

A
?⋃
B = C :⇔ C is the smallest set which includes both

A and B, and also C ∈ S.
Definition 3.3: We define a partial order ≤? on sets as the

follow:
A ≤? B if B = A

?⋃
B

A ≤? B if A = A
⋂

B

Example 3.4: Let A = {1, 2}, B = {2, 3}, C =
{1, 2, 4}, D = {1, 2, 3, 4} and S = {A,B,C,D}.
A

?⋃
A = A, A

?⋃
C = C, A

?⋃
B = D, B

?⋃
C = D,

C
?⋃
D = D.

C ≤? C, A ≤? C, A ≤? D, B ≤? D, C ≤? D

Notice that ≤? is a reflexive, transitive relation (pre-order)

and
?⋃

is a reflexive, symmetric relation.
Figure 3 illustrates a diagram on cars and red. The diagram

does not contain sets {b, d}, {a, b}, {a, c} and {c, d} because
the sets do not represent linguistically any phrases in the

language. Because of this reason, {a}
?⋃
{c} and {a}

?⋃
{b} and

{d}
?⋃
{c} and {d}

?⋃
{b} are {a, b, c, d} = M . This structure

builds a lattice up by
?⋃

and
⋂

that is the classical set
intersection operation.

LIA = (L, ∅,
⋂
,
?⋃
) is a lattice where L =

Fig. 3: Hasse Diagram of lattice of LIA = (L, ∅,
⋂
,
?⋃
)

Fig. 4: The Lattice LN
IA

{M, x,
−
x, red x, red

−
x,

−
red x,

−
red

−
x}. Remark that

LIA = (L, ∅,
⋂
,
?⋃
) = (L, ∅, ≤?). We call this lattice

briefly LIA.

C. Lattice LN
IA

In this section, we present first NLL. Let A be the color
white. Then, non−A = {black, red, yellow, blue, ...}, anti−
A points at black, and neut−A = {red, yellow, blue, ...}. In

our interpretation base, anti − black cars (
a

black cars) is a
specific set of cars which is a subset of set non− black cars

(
−

black cars). neut − black cars (
n

black cars) is a subset of
−

black cars which is obtained by excluding sets black cars

and
a

black cars from
−

black cars. Similarly, anti− black cars

(
a

black
−

cars) is a specific set of
−

cars which is a subset of

set non− black non− cars (
−

black
−

cars). neut− black
−

cars

(
n

black
−

cars) is a subset of
−

black
−

cars which is obtained by

excluding sets of black
−

cars and
a

black
−

cars from
−

black
−

cars.
The new structure represents an extended lattice equipped with
≤? as can be seen in Figure 4. We call this lattice LN

IA.

D. Lattice LN
IA(F )

Another NLL is an extended version of LN
IA by private ad-

jectives. Those adjectives have negative effects on nouns such
fake and counterfeit. The adjectives are representative elements
of, called private, a special class of adjectives [14], [15], [16].
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Fig. 5: The lattice LN
IA(F )

Chatzikyriakidis and Luo treated transition from the adjectival
phrase to noun as Private Adj(N) ⇒ ¬N in inferential
base. Furthermore, they gave an equivalence “real gun(g) iff
¬ fake gun(g)” where [|g is a real gun|] = real gun(g)
and [|f is not a real gun|] = ¬ real gun(f) in order to
constitute a modern type-theoretical setting. In light of these
facts, fake car is not a car (real) and plural form: fake cars are
not cars. Hence, set of fake cars is a subset of set of non-cars
in our treatment.

On the one hand, compositions with private adjectives and
intersective adjectival phrases do not effect the intersective
adjectives negatively but nouns as usual. Then, interpretation
of “fake red cars” would be intersection of set of red things
and set of non− cars.

Applying “non” to private adjectival phrases, non −
fake cars are cars (real), [[non − fake cars]] = [[cars]]
whereas [[fake cars]] ⊆ [[non−cars]]. non−fake cars will
be not given a place in the lattice. Remark that phrase “non-
fake non-cars” is ambiguous since fake is not a intersective
adjective. We will not consider this phrase in our lattice.

f
x is incomparable both

−
black x and

−
black

−
x except

−
x as

can be seen in Figure 5. So, we can not determine that set of
fake cars is a subset or superset of a set of any adjectival
phrases. But we know that [[fake cars]] ⊆ [[non − cars]].
Then, we can see easily [[fake black cars]]] ⊆ [[blacks non−
cars]] by using [[fake cars]]

⋂
[[black things]] ⊆

[[
−

cars]]
⋂

[[black things]].
Without loss of generality, set of fake black cars is a

subset of set black non − cars and also set of fake non −
black cars is a subset of set non−black non−cars. Continu-
ing with neut and anti, set of fake neut black cars is a subset
of set of neut black non−cars and also fake anti black cars
is a subset of set of anti black non − cars. Those phrases
build the lattice LN

IA(F ) in Figure 5.
Notice that when M and empty set are removed from

lattices will construct, the structures lose property of lat-
tice. The structures will be hold neither join nor meet
semi-lattice property as well. On the other hand, set of

{
n

black
f
x,

−
black

f
x,

n

black
−
x,

−
black

−
x} equipped with ≤? is the

only one sub-lattice of LN
IA(F ) without using M and empty

set.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have proposed some new negated versions
of set and model theoretical semantics of intersective adjectival
phrases (plural). After we first have obtained the lattice struc-
ture LIA, two lattices LN

IA and LN
IA(F ) have been built from

the proposed phrases by adding ‘neut’, ‘anti’ and ‘fake’ step
by step.

It might be interesting that lattices in this paper can be
extended with incorporating coordinates such as light red cars
and red cars. One might work on algebraic properties as filters
and ideals of the lattices considering the languages. Some
decidable logics might be investigated by extending syllogistic
logics with the phrases. Another possible work in future, this
idea can be extended to complex neutrosophic set, bipolar
neutrosophic set, interval neutrosophic set [17], [18], [19],
[20].

We hope that linguists, computer scientists and logicians
might be interested in results in this paper and the results will
help with other results in several areas.

Florentin Smarandache (ed.) Collected Papers, VI

183



[17] M. Ali, and F. Smarandache, Complex Neutrosophic Set, Neural Com-
puting and Applications, Vol. 25, (2016),1-18. DOI: 10.1007/s00521-015-
2154-y.

[18] I. Deli, M. Ali, and F. Smarandache, Bipolar Neutrosophic Sets And
Their Application Based On Multi-Criteria Decision Making Problems.
(Proceeding of the 2015 International Conference on Advanced Mecha-
tronicSystems, Beijing, China, August 22-24, 2015. IEEE Xplore, DOI:
10.1109/ICAMechS.2015.7287068.

[19] M. Ali, I. Deli, F. Smarandache, The Theory of Neutrosophic Cubic Sets
and Their Applications in Pattern Recognition, Journal of Intelligent and
Fuzzy Systems, vol. 30, no. 4, pp. 1957-1963, 2016, DOI:10.3233/IFS-
151906.

[20] N. D. Thanh, M. Ali, L. H. Son, A Novel Clustering Algorithm on
Neutrosophic Recommender System for Medical Diagnosis, Cognitive
Computation. 2017, pp 1-19, 10.1007/s12559-017-9462-8.

REFERENCES

[1] L. S. Moss, Natural logic and semantics. In Logic, Language and
Meaning (pp. 84-93), Springer Berlin Heidelberg, 2010

[2] J. F. van Benthem, A brief history of natural logic, College Publications,
2008.

[3] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neu-
trosophy, Neutrosophic Set, Neutrosophic Probability: Neutrsophic Logic.
Neutrosophy, Neutrosophic Set, Neutrosophic Probability. Infinite Study,
2005.

[4] F. Smarandache, Matter, antimatter, and unmatter. CDS-CERN (pp. 173-
177). EXT-2005-142, 2004.

[5] F. Smarandache, Neutrosophic Actions, Prevalence Order, Refinement of
Neutrosophic Entities, and Neutrosophic Literal Logical Operators, A
Publication of Society for Mathematics of Uncertainty, 11, Volum 10,
pp. 102-107, 2015.

[6] F. Smarandache, Neutrosophy: Neutrosophic Probability, Set, and Logic:
Analytic Synthesis & Synthetic Analysis, 1998.

[7] E. L. Keenan and L. M. Faltz, Boolean semantics for natural language,
Vol. 23, Springer Science & Business Media, 2012.

[8] Y. Winter and J. Zwarts, On the event semantics of nominals and adjec-
tives: The one argument hypothesis, Proccedings fo Sinn and Bedeutung,
16, 2012.

[9] F. Roelofsen, Algebraic foundations for the semantic treatment of inquis-
itive content, Synthese, 190(1), 79-102, 2013.

[10] L. Champollion, Ten men and women got married today: Noun coordi-
nation and the intersective theory of conjunction, Journal of Semantics,
ffv008, 2015.

[11] G. M. Hardegree, Symbolic logic: A first course, McGraw-Hill, 1994.
[12] B. A. Davey and H. A. Priestley, Introduction to lattices and order,

Cambridge University Press, 2002.
[13] H. Uchida and N. L. Cassimatis, Quantifiers as Terms and Lattice-Based

Semantics, 2014.
[14] S. Chatzikyriakidis and Z. Luo, Adjectives in a modern type-theoretical

setting, In Formal Grammar, Springer Berlin Heidelberg, 159-174, 2013.
[15] B. Partee, Compositionality and coercion in semantics: The dynamics

of adjective meaning, Cognitive foundations of interpretation, 145-161,
2007.

[16] P. C. Hoffher and O. Matushansky, Adjectives: formal analyses in syntax
and semantics, Vol. 153, John Benjamins Publishing, 2010.

Florentin Smarandache (ed.) Collected Papers, VI

184



Abstract— In this paper, motivated by the notion of 
generalized single valued neutrosophic graphs of first type, we 
defined a new neutrosophic graphs named generalized interval 
valued neutrosophic graphs of first type (GIVNG1) and 
presented a matrix representation for it and studied few 
properties of this new concept. The concept of GIVNG1 is an 
extension of generalized fuzzy graphs (GFG1) and generalized 
single valued neutrosophic of first type (GSVNG1).  

Keywords— Interval valued neutrosophic graph; Generalized 
Interval valued neutrosophic graphs of first type; Matrix 
representation. 

I. Introduction 
Smarandache [7] grounded the concept of neutrosophic set 
theory (NS) from philosophical point of view by incorporating 
the degree of indeterminacy or neutrality as independent 
component to deal with problems involving imprecise, 
indeterminate and inconsistent information. The concept of 
neutrosophic set theory  is  a generalization of the theory of 
fuzzy set [17], intuitionistic fuzzy sets [14, 15], interval-
valued fuzzy sets [13] and interval-valued intuitionistic fuzzy 
sets [16]. In neutrosophic set every element has three 
membership degrees including a true membership degree T, 
an indeterminacy membership degree I and a falsity 
membership degree F independently, which are within the real 
standard or nonstandard unit interval ]−0, 1+[. Therefore, if 
their range is restrained within the real standard unit interval 
[0, 1], Nevertheless, NSs are hard to be apply in practical 
problems since the values of the functions of truth, 
indeterminacy and falsity lie in]−0, 1+[.The single valued 
neutrosophic set was introduced for the first time by 
Smarandache in his  book [7] . Later on, Wang et al.[10] 
studied some properties related to single valued neutrosophic 
sets. In fact sometimes the degree of truth-membership, 
indeterminacy-membership and falsity- membership about a 
certain statement cannot be defined exactly in the real 

situations, but expressed by several possible interval values. 
So the interval valued neutrosophic set (IVNS) was required. 
For this purpose, Wang et al.[11] introduced the concept of 
interval valued neutrosophic set (IVNS for short), which is 
more precise and more flexible than the single valued 
neutrosophic set. The interval valued neutrosophic sets 
(IVNS) is a generalization of the concept of single valued 
neutrosophic set, in which three membership (T, I, F) 
functions are independent, and their values belong to the unite 
interval [0 , 1]. Some more literature about neutrosophic sets, 
interval valued neutrosophic sets and their applications in 
various fields can be found in [32, 34, 46]. 
Graphs are the most powerful and handful tool used in 
representing information involving relationship between 
objects and concepts. In a crisp graphs two vertices are either 
related or not related to each other, mathematically, the degree 
of relationship is either 0 or 1. While in fuzzy graphs, the 
degree of relationship takes values from [0, 1].The concept 
fuzzy graphs, intuitionistic fuzzy graphs and their extensions 
such interval valued fuzzy graphs [2, 3, 12, 20],  interval 
valued intuitionitic fuzzy graphs [41], and so on, have been 
studied deeply  in over hundred  papers. All these types of 
graphs have a common property that each edge must have a 
membership value less than or equal to the minimum 
membership of the nodes it connects. 
  In 2016, Samanta et al [37] proposed a new concept called 
the generalized fuzzy graphs (GFG) and studied some major 
properties such as completeness and regularity with proved 
results. The authors classified the GFG into two type. The first 
type is called generalized fuzzy graphs of first type (GFG1). 
The second is called generalized fuzzy graphs of second type 
2 (GFG2).  Each type of GFG are represented by matrices 
similar to fuzzy graphs. The authors have claimed that fuzzy 
graphs defined by several researches are limited to represent 
for some systems such as social network. 
When description of the object or their relations or both is 
indeterminate and inconsistent, it cannot be handled by fuzzy, 
intuitionistic fuzzy, interval valued fuzzy and interval valued 
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intuitionstic fuzzy graphs . So, for this purpose, Smaranadache 
[9] proposed the concept of neutrosophic graphs based on 
literal indeterminacy (I) to deal with such situations. Many 
book on neutrosophic graphs based on literal indeterminacy (I) 
was completed by Smarandache and Vandasamy  [45]. Later 
on, Smarandache [5, 6] gave another definition for neutrosphic 
graph theory using the neutrosophic truth-values (T, I, F) 
without and constructed three structures of neutrosophic 
graphs: neutrosophic edge graphs, neutrosophic vertex graphs 
and neutrosophic vertex-edge graphs. Later on Smarandache 
[8] proposed new version of neutrosophic graphs such as 
neutrosophic offgraph, neutrosophic bipolar/tripola/ 
multipolar graph. In a short period of time, few  authors have 
focused deeply on the study of neutrosophic vertex-edge 
graphs and explored diverse types of different neutrosophic 
graphs. 
In 2016, using the concepts of single valued neutrosophic sets, 
Broumi et al.[27] introduced  the concept of single valued 
neutrosophic graphs, and introduced certain types of single 
valued neutrosophic graphs (SVNG) such as strong single 
valued neutrosophic graph, constant single valued 
neutrosophic graph, complete single valued neutrosophic 
graph and investigate some of their properties with proofs and 
examples. Later on, Broumi et al.[28] also introduced 
neighborhood degree of a vertex and closed neighborhood 
degree of vertex in single valued neutrosophic graph as a 
generalization of neighborhood degree of a vertex and closed 
neighborhood degree of vertex in fuzzy graph and 
intuitionistic fuzzy graph. In addition, Broumi et al.[29] 
proved a necessary and sufficient condition for a single valued 
neutrosophic graph to be an isolated single valued 
neutrosophic graph. The same authors [35] defined the 
concept of bipolar single neutrosophic graphs as the 
generalization of bipolar fuzzy graphs, N-graphs, intuitionistic 
fuzzy graph, single valued neutrosophic graphs and bipolar 
intuitionistic fuzzy graphs. In addition, the same authors [36] 
proposed different types of bipolar single valued neutrosophic 
graphs such as bipolar single valued neutrosophic graphs, 
complete bipolar single valued neutrosophic graphs, regular 
bipolar single valued neutrosophic graphs and investigate 
some of their related properties. In [30, 31, 47], the authors 
initiated the idea of interval valued neutrosophic graphs and 
the concept of strong interval valued neutrosophic graph, 
where different operations such as union, join, intersection and 
complement have been investigated. 
Nasir et al. [22, 23] proposed a new type of graph called 
neutrosophic soft graphs and have established a link between 
graphs and neutrosophic soft sets. The authors also, defined 
some basic operations of neutrosophic soft graphs  such as 
union, intersection and complement.  
Akram et al.[18] proposed a new type of single valued 
neutrosophic graphs different that the concepts proposed in [ 
22,27] and presented some  fundamental operations on single-
valued neutrosophic graphs. Also, the authors presented some 
interesting properties of single-valued neutrosophic graphs by 
level graphs.  

In [19] Malik and Hassan introduced the concept of single 
valued neutrosophic trees and studied some of their properties. 
Also, Hassan et Malik [1] proposed some classes of bipolar 
single valued neutrosophic graphs and investigated some of 
their properties. 
Dhavaseelan et al. [26] introduced the   concept of strong 
neutrosophic graph and studied some interesting properties of 
strong neutrosophic graphs. P. K. Singh [24] has discussed 
adequate analysis of uncertainty and vagueness in medical 
data set using the properties of three-way fuzzy concept lattice 
and neutrosophic graph introduced by Broumi et al. [27]. 
Fathhi et al.[43] computed the dissimilarity between two 
neutrosophic graphs based on the concept of Haussdorff 
distance. 
Ashraf et al.[40], proposed some novels concepts of edge 
regular, partially edge regular and full edge regular single 
valued neutrosophic graphs and investigated some of their 
properties. Also the authors, introduced the notion of single 
valued neutrosophic digraphs (SVNDGs) and presented an 
application of  SVNDG in multi-attribute decision making. 
Mehra and Singh [39] introduced the concept of single valued 
neutrosophic signed graphs and examined the properties of 
this concept with examples. Ulucay et al.[44] introduced the 
concept of neutrosophic soft expert graph and have established 
a link between graphs and neutrosophic soft expert sets [21] 
and studies some basic operations of neutrosophic soft experts 
graphs such as union, intersection and complement.  
Recently,  Naz et al. [42] defined  basic operations on SVNGs 
such as direct product, Cartesian product, semi-strong product, 
strong product, lexicographic product, union, ring sum and 
join and provided an application of single valued neutrosophic 
digraph (SVNDG) in travel time. 
Similar to the interval valued fuzzy graphs and interval valued 
intuitionistic fuzzy graphs, which have a common property 
that each edge must have  a membership value  less than or 
equal to the minimum membership of the nodes it connects. 
Also, the interval valued neutrosophic graphs presented in the 
literature [30, 31] have a common property, that edge 
membership value is less than the minimum of it’s end vertex 
values.  Whereas the edge indeterminacy-membership value is 
less  than the maximum of it’s end vertex values or is greater 
than the maximum of its’s end vertex values. And the  edge 
non-membership value is less  than the minimum of it’s end 
vertex values  or is greater than the maximum of its’s end 
vertex values.  
Broumi et al [38] have discussed the removal of the edge 
degree restriction of single valued neutrosophic graphs and 
presented a new class of single valued neutrosophic graph 
called generalized single valued neutrosophic graph type1, 
which is a is an extension of generalized fuzzy graph type1 
[37]. with the following  
Based on generalized single valued neutrosophic graph of 
type1(GSVNG1) introduced in [38]. The main objective of 
this paper is to extend the concept of generalized single valued 
neutrosophic graph of first type to interval valued 
neutrosophic graphs first type (GIVNG1) to model systems 
having an indeterminate information and introduced a matrix 
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 A= {(்ߩሺݔሻ,	்ߩሺݕሻ) |	்߱(x, y)  0}, 
 B= {(ߩூሺݔሻ,	ߩூሺݕሻ) |	߱ூ(x, y)  0}, 
 C= {(ߩிሺݔሻ,	ߩிሺݕሻ) |	߱ி(x, y)  0}, 
 We have considered 	்߱, 	߱ூ and 	߱ி  0 for all set A,B, C , 
since its is possible to have edge degree = 0 (for T, or I, or F). 
The triad (V,	ߩ, ߱) is defined to be generalized single valued 
neutrosophic graph of first type (GSVNG1) if there are 
functions 
→A:ߙ ሾ	0, 1ሿ , ߚ:B→ ሾ	0, 1ሿ and ߜ:C→ ሾ	0, 1ሿ such that  
்߱ሺݔ,  ((ሻݕሺ்ߩ	,ሻݔሺ்ߩ))ߙ	= ሻݕ
߱ூሺݔ,   ((ሻݕூሺߩ	,ሻݔூሺߩ))ߚ	= ሻݕ
߱ிሺݔ,  ((ሻݕிሺߩ	,ሻݔிሺߩ))ߜ	= ሻݕ
Where x, y∈ V.   
Here ߩሺݔሻ=(	்ߩሺݔሻ, ߩூሺݔሻ, ߩிሺݔሻ), x∈ V are the membership, 
indeterminacy and non-membership of the vertex x and 
߱ሺݔ, )=ሻݕ 	்߱ሺݔ, ሻݕ , ߱ூሺݔ, ሻݕ , ߱ிሺݔ, ሻݕ ), x, y∈  V are the 
membership, indeterminacy and non-membership values of 
the edge (x, y).  

III. Generalized Interval Valued Neutrosophic
Graph of First Type 

In this section, based on the generalized single valued 
neutrosophic  graphs  of first type proposed by Broumi et 
al.[38], the definition of generalized interval valued 
neutrosophic graphs first type  is defined as follow: 
Definition 3.1. Let V be a non-void set. Two function are 
considered as follows: 
்ߩሾ)=ߩ  → ிሿ):Vߩ	,ிߩூሿ, ሾߩ	,ூߩሿ, ሾ்ߩ	, ሾ	0, 1ሿଷand 
 ߱=(	ሾ்߱

 ,	்߱
ሿ, ሾ߱ூ

,	߱ூ
ሿ, ሾ߱ி

 ,	߱ி
ሿ):VxV → ሾ	0, 1ሿଷ . We 

suppose 
 A= {(ሾ்ߩሺݔሻ,	்ߩሺݔሻሿ,	ሾ்ߩሺݕሻ,	்ߩሺݕሻሿ) |்߱

 (x, y)  0 and 
்߱
(x, y) 	0 }, 

 B= {(ሾߩூሺݔሻ,	ߩூሺݔሻሿ,	ሾߩூሺݕሻ,	ߩூሺݕሻሿ) |߱ூ
(x, y)  0 and 

߱ூ
(x, y) 	0}, 

 C= {(ሾߩிሺݔሻ,	ߩிሺݔሻሿ,	ሾߩிሺݕሻ,	ߩிሺݕሻሿ) |߱ி
(x, y)  0 and 

߱ி
(x, y) 	0}, 

 We have considered ்߱
 , ்߱

,	߱ூ
, ߱ூ

, ߱ி
, ߱ி

  0 for all set 
A, B, C , since its is possible to have edge degree = 0 (for T, 
or I, or F). 
The triad (V,	ߩ, ߱) is defined to be generalized interval valued 
neutrosophic graph of first type (GIVNG1) if there are 
functions 
→A:ߙ ሾ	0, 1ሿ , ߚ:B→ ሾ	0, 1ሿ and ߜ:C→ ሾ	0, 1ሿ such that  
்߱
ሺݔ, ்߱ ,((ሻݕሺ்ߩ	,ሻݔሺ்ߩ))ߙ	= ሻݕ

ሺݔ,   ,((ሻݕሺ்ߩ	,ሻݔሺ்ߩ))ߙ	= ሻݕ
߱ூ
ሺݔ, ூ߱  ,((ሻݕூሺߩ	,ሻݔூሺߩ))ߚ	= ሻݕ

ሺݔ,   ,((ሻݕூሺߩ	,ሻݔூሺߩ))ߚ	= ሻݕ
߱ி
ሺݔ, ி߱ ,((ሻݕிሺߩ	,ሻݔிሺߩ))ߜ	= ሻݕ

ሺݔ,   ((ሻݕிሺߩ	,ሻݔிሺߩ))ߜ	= ሻݕ
Where x, y∈ V.   
Here ߩሺݔሻ=( ሻݔሺ்ߩ	 ሻݔூሺߩ , ሻݔிሺߩ , ), x∈  V are the  interval 
membership, interval indeterminacy and  interval non-
membership of the vertex x and ߱ሺݔ, ,ݔ்߱ሺ	ሻ=(ݕ ,ݔሻ, ߱ூሺݕ  ,ሻݕ
߱ிሺݔ, ሻݕ ), x, y∈  V are the interval membership, interval 
indeterminacy membership and interval non-membership 
values of the edge (x, y).  
Example 3.2  : Let the vertex set be V={x, y, z, t} and edge 
set be E={(x, y),(x, z),(x, t),(y, t)} 

x y z t 
ሾ்ߩ

 ,  ሿ [0.5, 0.6] [0.9 , 1] [0.3, 0.4] [0.8, 0.9]்ߩ
ሾߩூ

,  ூሿ [0.3, 0.4] [0.2, 0.3] [0.1, 0.2] [0.5, 0.6]ߩ
ሾߩி

,  ிሿ [0.1, 0.2] [0.6, 0.7] [0.8, 0.9] [0.4, 0.5]ߩ

     Table 1:  interval membership, interval indeterminacy and 
interval non-membership  of the vertex set. 
Let us consider functions ߙሺ݉, ݊ሻ= m ∨ m=	ߚሺ݉, ݊ሻ=	ߜሺ݉, ݊ሻ 
Here, A={([0.5, 0.6], [0.9, 1]), ([0.5, 0.6], [0.3, 0.4]), ([0.5, 
0.6], [0.8, 0.9]), ([0.9, 1.0], [0.8, 0.9])} 
   B = {([0.3, 0.4], [0.2, 0.3]), ([0.3, 0.4], [0.1, 0.2]), ([0.3, 
0.4], [0.5, 0.6]), ([0.2, 0.3], [0.5, 0.6])} 
   C = {([0.1, 0.2], [0.6, 0.7]), ([0.1, 0.2], [0.8, 0.9]), ([0.1, 
0.2], [0.4, 0.5]), ([0.6, 0.7], [0.4, 0.5])}.Then 

߱ ሺݔ, ,ݔሻ ሺݕ ,ݔሻ ሺݖ ,ݕሻ ሺݐ  ሻݐ
ሾ்߱

 , ்߱
ሿ [0.9, 1] [0.5, 0.6] [0.8,0.9] [0.9,1 ] 

ሾ߱ூ
, ߱ூ

ሿ [0.3,0.4] [0.3,0.4] [0.5,0.6] [0.5, 0.6] 
ሾ߱ி

 , ߱ி
ሿ [0.6, 0.7] [0.8,0.9] [0.4,0.5] [0.6,0.7] 

Table 2: membership, indeterminacy and non-membership 
of the edge set. 
The corresponding generalized single valued neutrosophic 
graph is shown in Fig.2 

Fig 2.GIVNG of first type. 
 The easier way to represent any graph is to use the matrix 
representation. The adjacency matrices, incident matrices are 
the widely matrices used.  In the following section GIVNG1 is 
represented by adjacency matrix. 

IV. Matrix Representation of Generalized
Interval Valued Neutrosophic Graph of First 

Type 
Because Interval membership, interval indeterminacy 
membership and interval non-membership of the vertices are 
considered independents. In this section, we extended the 
representation matrix of generalized single valued 
neutrosophic  graphs first type  proposed  in [38] to the case of 
generalized interval valued neutrosophic graphs of first type. 
The generalized interval valued neutrosophic graph 
(GIVNG1) has one property that edge membership values (T, 
I, F) depends on the membership values (T, I, F)  of adjacent 

<[0.9,1], [0.3,0.4], [0.6,0.7]> 

z<[0.3,0.4], [0.1,0.2], [0.8,0.9]> 

<[0.5,0.6], [0.3,0.4], [0.8,0.9]>

<[0.9,0.1], [0.5,0.6], [0.6,0.7]>

x<[0.5,0.6], [0.3,0.4], [0.1,0.2]> t<[0.8,0.9], [0.5,0.6], [0.4,0.6]> 

y<[0.9,1], [0.2,0.3], [0.6,0.7]> 
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vertices . Suppose ߦ=(V, ߩ,	߱) is a GIVNG1 where vertex set 
V={ݒଵ,	ݒଶ,…,	ݒ}. The functions 
→A:	ߙ  ሺ	0, 1ሿ is taken such that  
்߱
ሺݔ, ்߱ ,((ሻݕሺ்ߩ	,ሻݔሺ்ߩ))ߙ	= ሻݕ

ሺݔ,  ,((ሻݕሺ்ߩ	,ሻݔሺ்ߩ))ߙ	= ሻݕ
 Where x, y∈ V and A= {(ሾ்ߩሺݔሻ,	்ߩሺݔሻሿ,	ሾ்ߩሺݕሻ,	்ߩሺݕሻሿ) 
|்߱

 (x, y)  0 and ்߱
(x, y) 	0 } 

,  
→B:	ߚ ሺ	0, 1ሿ is taken such that 
߱ூ
ሺݔ, ூ߱ ,((ሻݕூሺߩ	,ሻݔூሺߩ))ߚ	= ሻݕ

ሺݔ,    ,((ሻݕூሺߩ	,ሻݔூሺߩ))ߚ	= ሻݕ
 Where x, y∈ V and B= {(ሾߩூሺݔሻ,	ߩூሺݔሻሿ,	ሾߩூሺݕሻ,	ߩூሺݕሻሿ) 
|߱ூ

(x, y)  0 and ߱ூ
(x, y) 	0 } 

and 
→C:	ߜ ሺ	0, 1ሿ is taken such that 
߱ி
ሺݔ, ி߱ ,((ሻݕிሺߩ	,ሻݔிሺߩ))ߜ	= ሻݕ

ሺݔ,    ,((ሻݕிሺߩ	,ሻݔிሺߩ))ߜ	= ሻݕ
 Where x, y∈ V and C= {(ሾߩிሺݔሻ,	ߩிሺݔሻሿ,	ሾߩிሺݕሻ,	ߩிሺݕሻሿ) 
|߱ி

 (x, y)   0 and ߱ி
 (x, y) 	0 }. The GIVNG1 can be 

represented by (n+1) x (n+1) matrix ீܯభ
்,ூ,ி=[்ܽ,ூ,ி (i, j)] as

follows: 
The interval membership (T), interval indeterminacy-
membership (I) and the interval non-membership (F) values of 
the vertices are provided in the first row and first column. The 
(i+1, j+1)- th-entry are the membership (T), indeterminacy-
membership (I) and the non-membership (F) values of the 
edge (ݔ,	ݔ), i, j=1,…,n if i്j. 
The (i, i)-th entry is ߩሺݔሻ=(	்ߩሺݔሻ, ߩூሺݔሻ, ߩிሺݔ )), where 
i=1,2,…,n. The interval membership (T), interval 
indeterminacy-membership (I) and the interval non-
membership (F) values of the edge can be computed easily 
using the functions ߚ ,ߙ and	ߜ which are in (1,1)-position of 
the matrix. The matrix representation of GIVNG1, denoted by 
భீܯ
்,ூ,ி, can be written as three matrix representation ீܯభ

் భீܯ ,
ூ

and ீܯభ
ி . For convenience representation ݒ(்ߩሺݒሻሻ =[்ߩሺݒሻ, 

்ߩ
ሺݒሻ],  for i=1, …., n 

The  ீܯభ
்  can be represented as follows 

 ሻሻݒሺ்ߩ)ݒ ଶሻሻݒሺ்ߩ)ଶݒ ଵሻሻݒሺ்ߩ)ଵݒ ߙ

,ଵሻݒሺ்ߩ)ߙ (ଶሻݒሺ்ߩ	,ଵሻݒሺ்ߩ)ߙ [ଵሻݒሺ்ߩ ,ଵሻݒሺ்ߩ] ଵሻሻݒሺ்ߩ)ଵݒ  (ሻݒሺ்ߩ
	(ଵሻݒሺ்ߩ	,ଶሻݒሺ்ߩ)ߙ ଶሻሻݒሺ்ߩ)ଶݒ ,ଶሻݒሺ்ߩ)ߙ [ଶሻݒሺ்ߩ ,ଶሻݒሺ்ߩ]  (ଶሻݒሺ்ߩ

… …. … … 
 [ሻݒሺ்ߩ ,ሻݒሺ்ߩ] (ଶሻݒሺ்ߩ	,ሻݒሺ்ߩ)ߙ (ଵሻݒሺ்ߩ	,ሻݒሺ்ߩ)ߙ ሻሻݒሺ்ߩ)ݒ

       Table3.    Matrix representation of T-GIVNG1 

The  ீܯభ
ூ  can be represented as follows 

 ሻሻݒூሺߩ)ݒ ଶሻሻݒூሺߩ)ଶݒ ଵሻሻݒூሺߩ)ଵݒ ߚ

,ଵሻݒூሺߩ)ߚ (ଶሻݒூሺߩ	,ଵሻݒூሺߩ)ߚ [ଵሻݒூሺߩ ,ଵሻݒூሺߩ] ଵሻሻݒூሺߩ)ଵݒ  (ሻݒூሺߩ

	(ଵሻݒூሺߩ	,ଶሻݒூሺߩ)ߚ ଶሻሻݒூሺߩ)ଶݒ ,ଶሻݒூሺߩ)ߚ [ଶሻݒூሺߩ ,ଶሻݒூሺߩ]  (ଶሻݒூሺߩ

… …. … …

 [ሻݒூሺߩ ,ሻݒூሺߩ] (ଶሻݒூሺߩ	,ሻݒሺ்ߩ)ߚ (ଵሻݒூሺߩ	,ሻݒூሺߩ)ߚ ሻሻݒூሺߩ)ݒ

 Table4.   Matrix representation of I-GIVNG1 

The  ீܯభ
ூ  can be represented as follows 

 ሻሻݒிሺߩ)ݒ ଶሻሻݒிሺߩ)ଶݒ ଵሻሻݒிሺߩ)ଵݒ ߜ

,ଵሻݒிሺߩ)ߜ (ଶሻݒிሺߩ	,ଵሻݒிሺߩ)ߜ [ଵሻݒிሺߩ ,ଵሻݒிሺߩ] ଵሻሻݒிሺߩ)ଵݒ  (ሻݒிሺߩ
,ଶሻݒிሺߩ)ߜ ଶሻሻݒிሺߩ)ଶݒ (ଵሻݒிሺߩ ,ଶሻݒிሺߩ)ߜ [ଶሻݒிሺߩ ,ଶሻݒிሺߩ]  (ଶሻݒிሺߩ

… …. … … 
,ሻݒிሺߩ)ߜ ሻሻݒிሺߩ)ݒ  [ሻݒிሺߩ ,ሻݒிሺߩ] (ଶሻݒிሺߩ	,ሻݒிሺߩ)ߜ (ଵሻݒிሺߩ

 Table5.  Matrix representation of F-GIVNG1 

Remark1 : if ߩூሺݔሻ=	ߩூሺݔሻ=0  and ߩிሺݔሻ=	ߩிሺݔሻ ൌ 0  the 
generalized interval valued neutrosophic graphs type 1 is 
reduced to generalized fuzzy graphs type 1 (GFG1). 
Remark 2: if ሻݔሺ்ߩ = ்ߩ	

ሺݔሻ ሻݔூሺߩ ,  = ூߩ	
ሺݔሻ   and 

=ሻݔிሺߩ ,ሻݔிሺߩ	  the generalized interval valued neutrosophic 
graphs type 1 is reduced to generalized single valued graphs 
type 1 (GSVNG1). 

Here the generalized Interval valued neutrosophic graph of 
first type (GIVNG1) can be represented by the matrix 
representation depicted in table 9. The matrix representation 
can be written as three interval matrices one containing the 
entries as T, I, F (see table 6, 7 and 8).  

ߙ = max(x, y) x([0.5,0.6]) y([0.9,1]) z(0.3,0.4]) t([0.8,0.9]) 

x([0.5,0.6]) [0.5,0.6] [0.9, 1.0] [0.5, 0.6] [0.8,0.9]

y([0.9,1]) [0.9, 1.0] [0.9,1] [0, 0] [0.9,1.0]

z([0.3,0.4]) [0.5, 0.6] [0, 0] [0.3,0.4] [0, 0]

t([0.8,0.9]) [0.8, 0.9] [0.9, 1.0] [0, 0] [0.8,0.9]

        Table 6:Lower and upper Truth- matrix representation 
 of GIVNG1 

ߚ = max(x, y) x([0.3,0.4]) y([0.2,0.3]) z([0.1,0.2]) t([0.5,0.6]) 

x([0.3,0.4]) [0.3,0.4] [0.3,0.4] [0.3,0.4] [0.5,0.6]

y([0.2,0.3]) [0.3,0.4] [0.2,0.3] [0, 0] [0.5,0.6]

z([0.1,0.2]) [0.3,0.4] [0, 0] [0.1,0.2] [0, 0]

t([0.5,0.6]) [0.5,0.6] [0.5,0.6] [0, 0] [0.5,0.6]

  Table 7: lower and upper Indeterminacy- matrix 
representation of GIVNG1 

 max(x, y) x([0.1,0.2]) y([0.6,0.7]) z([0.8,0.9]) t([0.4,0.6]) =ߜ

x([0.1,0.2]) [0.1,0.2] [0.6,0.7] [0.8,0.9] [0.4,0.6]

y([0.6,0.7]) [0.6,0.7] [0.6,0.7] [0, 0] [0.6,0.7]

z([0.8,0.9]) [0.8,0.9] [0, 0] [0.8,0.9] [0, 0]

t([0.4,0.6]) [0.4,0.6] [0.6,0.7] [0, 0] [0.4,0.6]

        Table 8:  Lower and upper Falsity- matrix 
representation of GIVNG1 
The matrix representation of GIVNG1 can be represented as 
follows: 
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 x(0.5,0.3,0.1) y(0.9,0.2,0.6) z(0.3,0.1,0.8) t(0.8,0.5,0.4) (ߜ	,ߚ	,ߙ)

x([0.5,0.6], 
[0.3,0.4], 
[0.1,0.2]) 

<[0.5,0.6], 
[0.3,0.4], 
[0.1,0.2]> 

<[0.9,1.0], 
[0.3,0.4], 
[0.6,0.7]> 

<[0.5,0.6], 
[0.3,0.4], 
[0.8,0.9]> 

<[0.8,0.9], 
[0.5,0.6], 
[0.4,0.6]> 

y( [0.9, 1.0], 
[0.2, 0.3], 
[0.6, 0.7]) 

<[0.9,1.0], 
[0.3,0.4], 
[0.6,0.7]> 

<[0.9, 1.0], 
[0.2, 0.3], 
[0.6, 0.7]> 

<[0, 0], 
[0, 0], 
[0, 0]> 

<[0.9,  1.0], 
[0.5, 0.6], 
[0.6, 0.7]> 

z([0.3,0.4], 
[0.1,0.2], 
[0.8,0.9]) 

<[0.5,0.6], 
[0.3,0.4], 
[0.8,0.9]> 

<[0, 0], 
[0, 0], 
[0, 0]> 

<[0.3,0.4], 
[0.1,0.2], 
[0.8,0.9]> 

<[0, 0], 
[0, 0], 
[0, 0]> 

t([0.8,0.9], 
[0.5,0.6], 
[0.4,0.6]) 

<[0.8,0.9], 
[0.5,0.6], 
[0.4,0.6]> 

<[0.9,1.0], 
[0.5,0.6], 
[0.6,0.7]> 

<[0, 0], 
[0, 0], 
[0, 0]> 

<[0.8,0.9], 
[0.5,0.6], 
[0.4,0.6]> 

 Table 9: Matrix representation of GIVNG1. 

Theorem 1. Let ீܯభ
்  be  matrix representation of T-GIVNG1, 

then the degree of vertex  ்ܦሺݔሻ  =[∑ ்ܽሺ݇  1, ݆ 
ୀଵ,ஷ

1ሻ,	∑ ்ܽ
ሺ݇  1, ݆  1ሻ

ୀଵ,ஷ ሿ,	ݔ ∈ V or 
ሻݔሺ்ܦ   = ሾ∑ ்ܽ ሺ݅  1,   1ሻ

ୀଵ,ஷ , ∑ ்ܽ
ሺ݅  1,  

ୀଵ,ஷ

1ሻ	ݔ ∈ V. 

Proof :is similar as in theorem 1  of [37]. 

Theorem 2. Let ீܯభ
ூ  be  matrix representation of I-GIVNG1, 

then the degree of vertex  ܦூሺݔሻ  =[∑ ܽூሺ݇  1, ݆ 
ୀଵ,ஷ

1ሻ,	∑ ܽூ
ሺ݇  1, ݆  1ሻ

ୀଵ,ஷ ሿ,	ݔ ∈ V 
or  ܦூሺݔሻ =ሾ∑ ܽூ

ሺ݅  1,   1ሻ
ୀଵ,ஷ ,∑ ܽூ

ሺ݅  1,  
ୀଵ,ஷ

1ሻ	ݔ ∈ V. 
Proof :is similar as in theorem 1  of [37]. 

Theorem 3. Let ீܯభ
ி  be matrix representation of F-GIVNG1, 

then the degree of vertex  
ሻݔிሺܦ   =[∑ ܽிሺ݇  1, ݆  1ሻ

ୀଵ,ஷ , 	∑ ܽி
ሺ݇  1, ݆ 

ୀଵ,ஷ

1ሻሿ,	ݔ ∈ V or 
ሻݔிሺܦ   = ሾ∑ ܽிሺ݅  1,   1ሻ

ୀଵ,ஷ , ∑ ܽி
ሺ݅  1,  

ୀଵ,ஷ

1ሻ	ݔ ∈ V. 

Proof :is similar as in theorem 1  of [37]. 

Theorem4. Let ீܯభ
்,ூ,ி  be matrix representation of GIVNG1,

then the degree of vertex  D(ݔ) =(்ܦሺݔሻ,	ܦூሺݔሻ,	ܦிሺݔሻ) 
where 
ሻݔሺ்ܦ  =[ ∑ ்ܽሺ݇  1, ݆  1ሻ

ୀଵ,ஷ , ∑ ்ܽ
ሺ݇  1, ݆ 

ୀଵ,ஷ

1ሻ	ሿ	ݔ ∈ V. 
ሻݔூሺܦ  ==[∑ ܽூ

ሺ݇  1, ݆  1ሻ
ୀଵ,ஷ , ∑ ܽூ

ሺ݇  1, ݆ 
ୀଵ,ஷ

1ሻ	ሿ	ݔ ∈ V. 
ሻݔிሺܦ  ==[∑ ܽிሺ݇  1, ݆  1ሻ

ୀଵ,ஷ , ∑ ܽி
ሺ݇  1, ݆ 

ୀଵ,ஷ

1ሻ	ሿ	ݔ ∈ V. 
Proof: the proof is obvious. 

V. CONCLUSION 

In this article, we have extended the concept of generalized 
single valued neutrosophic graph type 1 (GSVNG1) to 
generalized  interval valued neutrosophic graph type 1 
(GIVNG1) and presented a matrix representation of it. In the 
future works, we plan to study the concept of completeness, 
the concept of regularity and to define the concept of 
generalized interval valued neutrosophic graphs type 2. 
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Abstract—The paper presents the research undertaken for 
extending the functionality of a regular fuzzy multi-input decision 
support system through the application of basic neutrosophy 
principles. The application is designed and simulated using tools 
already available for the fuzzy implementation, adapted to the 
requirements of the neutrosophic extension. The results show an 
increase in the decision classification index, while improving the 
environmental accuracy of the considered model. 

Keywords—robotics, neutrosophic set, intelligent control 
systems, decision making, computational intelligence 

I.  INTRODUCTION 
The paper presents a proposed solution for the 

implementation of a generalized neutrosophic inference system 
(NSIS) by extending the already available tools for the 
implementation of fuzzy logic, amended to the particularities of 
neutrosophic logic. The end result is a neutrosophic logic 
controller (NSLC). As will be discussed in the appropriate 
section, its implementation can function either on the original 
neutrosophic principles (T-norms and T-conorms), or on a 
fuzzy-T2 schema, which can also be seen as a subset of 
neutrosophic logic. That is to say, the uncertainty dimension can 
be either used in the original formulae, or directly as a 
determinant of the fuzzy degree of membership. 

The history of fuzzy logic starts with the paper published in 
1965 by L.A. Zadeh, entitled ‘Fuzzy sets’, in which the author 
introduces his new approach to set theory. Essentially, a fuzzy 
set is an extension of a classical bivalent (crisp) set with ‘a 
membership function which assigns to each object a grade of 
membership between 0 and 1 [1]. Subsequent detailed 
investigations made by Mamdani [2] and Takagi and Sugeno [3] 
have led to Fuzzy Logic becoming an increasingly appealing 
alternative to classical control for an array of systems [4]. 

Fuzzy Logic has long been used in academia and in industry 
and is one of the more palpable staples of artificial intelligence 
in use in the world today. Fuzzy logic controllers have been 

proven to be robust, relatively easy to design [5] and, although a 
unified algorithm for parameter selection and optimization is 
still sought after [6, 7], they seem to suffer from no one major 
flaw while providing a number of important benefits (expert 
knowledge emulation being perhaps chief among them). There 
are a number of implementations of various algorithms for the 
optimization of fuzzy inference systems’ parameters, such as 
genetic algorithms and neural networks. 

Neutrosophy extends fuzzy logic by adding the dimension of 
uncertainty to the considered model. This is especially useful in 
information fusion dealing with multiple sources of sensor data. 
While still in its beginning, neutrosophy enjoys remarkable 
interest from world-wide research teams due to a proven record 
of improving inference system models [8, 9]. With applications 
in artificial intelligence, business, marketing, planning, control 
theory and image processing, it is one of the fastest developing 
new fields of study in the world today. Neutrosophic reasoning 
components work very well with database expert systems and 
provide a large boost to the current knowledge in decision 
support systems [10], making them particularly well suited for 
robotic applications. 

In order to determining the angular error of the actuator drive 
control loop in the robot joints is known the Vladareanu-
Smarandache method for hybrid force-position robot control 
[11] by applying Neutroscopic logic.  

The generalized area where a robot works can be defined in 
a constraint space with six degrees of freedom (DOF), with 
position constrains along the normal force of this area and force 
constrains along the tangents. On the basis of these two 
constrains there is described the general scheme of hybrid 
position and force control in figure 1. Variables XC and FC 
represent the Cartesian position and the Cartesian force exerted 
onto the environment. Considering XC and FC expressed in 
specific frame of coordinates, the selection matrices Sx and Sf 
can be determined, which are diagonal matrices with 0 and 1 
diagonal elements, and which satisfy relation: Sx  +  Sf  = Id , 
where Sx and Sf are methodically deduced from kinematics 
constrains imposed by the working environment [16-18]. 
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Control (RNC) 

In order to determine the control relations in this situation, 
DXP – the measured deviation of Cartesian coordinate command 
system is split in two sets: DXF corresponds to force controlled 
component and DXP corresponds to position control with axis 
actuating in accordance with the selected matrixes Sf and Sx. If 
there is considered only positional control on the directions 
established by the selection matrix Sx there can be determined 
the desired end - effector differential motions that correspond to 
position control in the relation: DXP  = KP DXP , where KP is the 
gain matrix, respectively desired motion joint on position 
controlled axis: Dq P  =  J-1(q)  ·  DXP [19 - 21].    

Now taking into consideration the force control on the 
other directions left, the relation between the desired joint 
motion of end-effector and the force error DXF is given by the 
relation:  Dq F  =  J-1(q)  ·  DXF , where the position error due to 
force DXF  is the motion difference between DXF– current 
position deviation measured by the control system that generates 
position deviation for force controlled axis and DXD – position 
deviation because of desired residual force. Noting the given 
desired residual force as FD and the physical rigidity KW there is 
obtained the relation: DXD = KW

-1 · FD .   
Thus, DXF can be calculated from the relation: DXF  = KF 

(DXF – DXD), where KF is the dimensionless ratio of the stiffness 
matrix. Finally, the motion variation on the robot axis matched 
to the motion variation of the end-effectors is obtained through 
the relation: Dq J-1(q) DXF  +  J-1q) DXP. Starting from this 
representation the architecture of the hybrid position – force 
control system was developed with the corresponding 
coordinate transformations applicable to systems with open 
architecture and a distributed and decentralized structure. 

This paper presents a robot position control application on a 
single axis, as hybrid force-position control may be developed 
in future works by generalizing neutrosophic logic to bi-
dimensional space. Respectively for hybrid force-position 
control on n degrees of freedom (n DOF) by generalizing NSL 
to 2n-dimensional space. 

The designed system is tested on a controller application for 
the position control of a simple direct current motor, 
representing the position actuator for one joint of a small robot. 
The inputs to the motor are the voltage demand used to control 
the system and the value of the load applied to the motor, which 
will be a negative value in this layout. The outputs are the speed 
of the motor, which will later be fed into an Integral block in 

order to obtain position control, and the value of the armature 
current. This will be sunk into a scope which allows for 
monitoring the armature current. 

 The implementation is done using coded functions and 
classes, but is also shown in a schematic diagram for purposes 
of visualization. It should be noted that both coded versions take 
little time to run, while the models will of course take longer, 
especially for the double fuzzy version. Both versions of the 
code draw heavily from the existing fuzzy logic 
implementations in the Matlab / Octave environment. The 
opportunity for actual practical implementation of both versions 
is discussed in the conclusions section. 

The rest of the paper is divided as follows. Chapter 2 presents 
the generalized neutrosophic model with a focus on the elements 
required for the present application. Chapter 3 outlines the 
controller logic, NSLC implementation and its functionality, 
while also discussing an experimental application of the 
controller and details the actual use-case simulation. Chapter 4 
discusses the obtained results and attempts to draw conclusion 
for the present and future research involving neutrosophic 
models and decision support systems. 

II. NEUTROSOPHIC MODEL

The operating algorithm for a FLC consists of three 
stages: Fuzzification, Inference and Defuzzification. All FLCs 
used for the simulations have a set input and output range of ±1 
which is then adjusted to fit the particulars of the system being 
controlled. Therefore, the FLC is preceded and succeeded by 
input and output scaling, respectively. Fuzzification is the 
process of mapping the inputs to ‘linguistic variables’ (fuzzy 
sets) and determine the degree of membership for each 
respective set [12]. This membership value is of course entirely 
dependent upon the shape and layout of the MFs. 

The Fuzzy Inference System (FIS) is the key point of fuzzy 
logic, which is designed to mimic human reasoning [7]. It 
connects the fuzzified inputs with the fuzzified outputs through 
a set of “IF – THEN” rules using the previously defined 
linguistic variables. A ‘rule base’ is merely a table representation 
of the rules used within a FIS. A number of rule bases are 
employed depending on the number of inputs, desired controller 
performance, controller and process particulars and are the 
defining characteristic of the respective FLCs they are used in.  

The FIS rules use and and or operators to connect the various 
inputs (linguistic variables) to a prescribed output fuzzy set (also 
a linguistic variable).The degree of support for each rule and 
therefore for its respective output fuzzy set is to be found among 
the degrees of support for the input linguistic variables that are 
part of that rule. When the and operator is used, the minimum of 
all degrees of support from the input will be used as the degree 
of support for the output, while the or operator will determine 
the maximum of those values to be used. 

The overlapping of MFs means that more than one rule will be 
used (‘fired’). This leads to a number of output fuzzy sets, which 
must then be aggregated into a final output fuzzy set. While there 
are other methods for aggregation, the ‘max’ method is the 
general standard and as such it was used in all simulations for 
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this paper. It implies mapping the resulted output sets onto the 
output range and taking the maximum value in areas where they 
overlap.  

Figure 2. FLC implementation diagram 

Fuzzy set theory expands conventional (‘crisp’) sets with a 
‘membership value’ (between 0 and 1) which expresses the 
degree to which a certain element belongs to a set. The relation 
between a value that is part of a set and its membership value is 
called a Membership Function (MF). The MFs for a given input 
must cover the entire universe of discourse [12] and they can and 
do overlap. Fuzzy Logic Controllers (FLCs) use fuzzy logic to 
mimic the way an experienced operator would go about 
controlling the process. A diagram of the implementation of a 
FLC is shown in Figure 2 [12]. 

 By contrast, neutrosophy allows for an increase in the 
dimensionality of each input parameter, providing more 
information that can be coherently modelled and input to the 
inference system [10]. 

Neutrosophy is meant to be a unifying theory for the design 
and implementation of decision support systems. As such, it is a 
generalization of fuzzy logic. A neutrosophic logic statement 
includes values for truth, falsehood and indeterminacy, where 
the appropriate memberships are real values. Similarly to fuzzy 
logic and in contrast to probability theory, there are no 
restrictions placed on the sum of the resulting components – in 
probability theory the sum of all possible outcomes must be 1. 
The truth and falsehood parameters tie neutrosophy to the 
existing treatment of decision support problems, to which is 
added support for modelling the indeterminacy, which expresses 
the percentage of unknown parameters or states [13]. 

Inside a universe of discourse U and with respect to a set M 
included in U, and element x is noted as x(T,I,F), with the 
following properties [14,15]: 

- x has a value of truth t of belonging to the set M 

- x has a value of indeterminacy i of belonging to the set M 

- x has a value of falsehood f of belonging to the set M 

The transformation from a standard operating model using 
fuzzy logic to a neutrosophic model is done using the formulae 
set forth in the Dezert-Smarandache Theory (DSmT) [14]. Let 
𝜃 = {𝜃1, 𝜃2, … , 𝜃𝑛} be a finite set made up of n exhaustive
elements (this can be assumed without loss of generality, see 
[14]). The DSmT hyper-power set DΘ is then defined as the set 
of all composite propositions built from those elements using the 
reunion and intersection operators. This means that 

∅, 𝜃1, … , 𝜃𝑛 ∈ 𝐷𝜃

∀𝐴, 𝐵 ∈ 𝐷𝜃 → 𝐴 ∩ 𝐵 ∈ 𝐷𝜃 , 𝐴 ∪ 𝐵 ∈ 𝐷𝜃

By defining an application 𝑚(. ): 𝐷𝜃 → [0,1] within this set,
there results 𝑚(∅) = 0 and  ∑ 𝑚(𝐴) = 1𝐴∈𝐷𝜃 , where m(A) is
the generalized basic belief assignment of A [14,15]. 

In working with multiple sources of information, the DSm 
rule of combination states: 

∀𝐶 ∈ 𝐷𝜃 , 𝑚𝑀𝑇(𝜃)(𝐶) ≡ 𝑚(𝐶) = ∑ 𝑚1(𝐴) ∙ 𝑚2(𝐵)

𝐴,𝐵⊂𝐷𝜃

𝐴∩𝐵=𝐶

With 𝐷𝜃 closed under the set operators of reunion and
intersection, the DSm rule of combination results in m(.) being 
a proper belief mass, with 𝑚(. ): 𝐷𝜃 → [0,1], being
commutative, associative and extendable to an unlimited 
number of sources [14,15]. 

 Alternatively, the transformation can be done using fuzzy-
T2 style operators, whereby the third dimension is actually the 
fuzzification of the fuzzy degree of membership (i.e. the second 
dimension). This relates well to applications where the 
uncertainty specifically models the reliability of a sensor 
network or input device, which can be statically estimated and 
traced to each individual output [13]. 

 This can be exemplified in the test application model, where 
feedback inputs are sampled from a Gaussian distribution with 
an appropriate variance for each for the inputs. This allows the 
model to incorporate the uncertainty normally found in such 
practical applications. It is also completely feasible that such 
values should be known and traced back individually to their 
respective field equipment. The exact expression of the third 
dimension of each tuple need not be specifically the variance, as 
long as it correctly models the uncertainty in the system. 
However, this is a possible topic for future research and is 
outside the scope of the current application. 

III. SIMULATION AND TESTING / IMPLEMENTATION

The implementation of the proposed generalized model is 
achieved by using the packages already available for fuzzy 
implementations in a Matlab / Octave environment, both for 
visualization and coding. 

Each input value maps to an object of a class defined to 
handle the multiple dimensions as properties, thereby forming 
and coherently expressing the tuple needed. This representation 
was also chosen for its ease of expansion, as may be the case 
with future research – neutrosophic logic systems can be 
extended to four- or five- dimensional logic sets [13]. The coded 
functions which create the neutrosophic logic objects are 
implemented to be a parallel representation of those already 
existing as part of the fuzzy logic toolbox or package, where 
possible. The second implementation version, using the double-
fuzzy style operators, particularly makes full use of the existing 
evalfis, readfis, etc. functions. As such, the fuzzy-logic-toolkit 
package and fuzzy logic toolbox can be considered dependencies 
for the Octave and, respectively, Matlab environments. 

The controller schematic implementation is shown in Figure 
4. The chosen test application is the position control of a simple
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direct current motor representing a robotic joint actuator. The 
two input feeds are the position error and its derivative, 
calculated independently. This is possible because the derivative 
of the position is actually the motor speed and is in fact a more 
accurate representation of an actual practical application, with 
available date from both types of transducers. The third 
dimension of indeterminacy takes into account the standard 
reliability of position and speed sensors along the feedback path. 

 With a view to making the simulations as realistic as 
possible, the effects of disturbance and noise along the circuit, 
integrator windup and maximum armature current demand are 
included. The system is subjected to a step input of value RV 
(Reference Value). Also included in the simulation are the 
Disturbance (Ds), Noise (N) along the feedback path, Load (TL) 
and the time at which the load occurs (TLs) which can be found 
in the Load Block, and the sample time (Ts) in the case of digital 
systems. These are all declared as global variables and only need 
to be updated once at the beginning of each session. 

Figure 3. General stable system response 

The overall transfer function of a DC Motor is 

𝑃′(𝑠) =
𝐾

𝐿𝐽𝑠2+(𝑅𝐽+𝐵𝐿)𝑠+𝑅𝐵+𝐾2

for speed control, which is then divided by s for position 
control. In the end, the transfer function of the system will be  

𝑃(𝑠) =
𝐾

𝐿𝐽𝑠3+(𝑅𝐽+𝐵𝐿)𝑠2+(𝑅𝐵+𝐾2)𝑠
. 

All of the parameters are declared within the environment as 
global variables and are initiated once at the start of the session. 

Figure 4. Controller schematics / native norm 

After a simulation is run, the transient system response is 
investigated based on the following performance metrics: 
overshoot, rise time, settling time and steady state error. Figure 
3 shows a random stable system response to a step input for 30 
seconds, indicating those characteristics. 

Figure 5. Controller schematics / fuzzy style norm 

 The actual implementation of the controller schematics is 
hard coded using the described functions and classes for the 
neutrosophic logic model. For visualization purposes, Figures 4 
and 5 show the controller schematics in Matlab/Simulink for the 
native norm version and the fuzzy-T2 style version, respectively. 

Figure 6. Use-case diagram 
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It is worth noting the similarities and discrepancies between the 
two implementation versions. For both, the position and speed 
feedbacks are resampled using a Gaussian function form with 
the expected variance of an actual field transducer. In a practical 
implementation, the actual values for this are parameterized and 
can be adjusted according to the known specifications provided 
by the manufacturer. This allows us to introduce uncertainty into 
the simulation in a way that corresponds to actual practical 
scenarios.  

The difference between the two versions mainly 
consists in the treatment of the third dimension, uncertainty, as 
discussed in the theoretical approach. The known variance of 
sensor inputs is inserted directly into the coded function in the 
first version (notice the m-function interpreter block that acts as 
the central controller of the design). In the second, they are a 
direct expression of the degree of membership of the second 
dimension values (which models fuzziness). Each input is 
treated separately together with its own reliability rating and 
fuzzified, the output of which is then re-fuzzified into the final 
FLC controller. 

The use-case diagram shown in Figure 6 describes the 
generalized algorithm for the decision making process. 

As much as possible, the implementation is parameterized to 
allow for a wide array of re-application and future development. 

 It is clear from the onset of neutrosophic theory that, as with 
fuzzy, various norms and applications can be defined over the 
considered set and universe of discourse. These can be passed as 
user-defined functions to the object creator of the neutrosophic 
class, if needed, and could be the object of future research 
scenarios for different decision support systems and controllers. 

IV. CONCLUSIONS

The paper shows an inference system application using 
neutrosophic logic for the control of a small direct current motor 
used as a robotic actuator. The theoretical aspects of 
neutrosophy and the practical considerations of decision support 
systems and controllers are explored, with the application 
providing a practical demonstration of the proof of concept. 
Standard controller concerns and design parameters are 
explained and discussed briefly, so as to give context to the 
implementation. 

Also of note is the programming framework for neutrosophic 
applications which is implemented, with a view toward 
generalization, parameterization and reusability. The code 
builds upon the existing libraries and toolboxes available for 
fuzzy logic, of which neutrosophy can be seen as a generalized, 
unifying theory. 

As with the more traditional fuzzy controllers, the 
neutrosophic logic controller needs to be tuned for the particular 
application and context it is working in. There is currently no 
single algorithm guaranteed to find the best configuration among 
the many different options that would map to search space 
dimensions in an optimization problem. 

A possible solution is to use an evolutionary algorithm to 
tune the scaling gains of the input membership functions, the 

fuzzy rule base, or both. While there are a number of authors, 
such as Byrne who look at GA – tuned fuzzy structures, papers 
using a PSO algorithm are few and far between. Both these 
approaches provide intriguing options for the future of both 
fuzzy and neutrosophic logic control, as well as further 
theoretical and applicative research. 

The uniqueness of neutrosophic theory allows possibilities 
for further increasing the dimensionality of the neutrosophic 
object. It could be used, for example, for modelling the general 
noise and disturbance within the system. This would be 
particularly useful for industrial applications, in which such 
factors rise in importance considerably. 
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Abstract—  In this article,  we present an algorithm method 
for finding the shortest path length between a paired nodes on a 
network where  the edge weights are characterized by single 
valued triangular neutrosophic numbers. The proposed 
algorithm gives the shortest path length from source node to 
destination node based on a ranking method. Finally a numerical 
example is presented to illustrate the efficiency of the proposed 
approach. 

Keywords— Single valued triangular neutrosophic number; Score 
function;   Network; Shortest path problem. 

I. INTRODUCTION  
In 1995, the concept of the neutrosophic sets (NS for short) 
and neutrosophic logic were introduced  by Smarandache in 
[1, 2] in order to efficiently  handle the indeterminate and 
inconsistent information  which exist in real world. Unlike 
fuzzy sets  which associate to each member of the set a degree 
of membership T  and intuitionstic fussy sets which associate 
a degree of membership T and a degree of non-membership F, 
T, F   [0, 1], Neutrosophic sets characterize each member x 
of the set with a truth-membership function ( )AT x , an 

indeterminacy-membership function ( )AI x and a falsity- 

membership function ( )AF x each of which belongs to the 
non-standard unit interval ]−0, 1+[. Thus, although in some 
case intuitionstic fuzzy sets consider a particular 
indeterminacy or hesitation margin, 1 T F     .
Neutrosophic set has the ability of handling uncertainty in a 
better way since in case of neutrosophic set indeterminacy is 
taken care of separately.  Neutrosophic sets is a generalization 
of the theory of fuzzy set [3], intuitionistic fuzzy sets [4], 
interval-valued fuzzy sets [5] and interval-valued intuitionistic 

fuzzy sets [6]. However, the neutrosophic theory is difficult to 
be directly applied in real scientific and engineering areas. To 
easily use it in science and engineering areas, in 2005, Wang 
et al. [7] proposed the concept of SVNS, which differ from 
neutrosophic sets only in the fact that in the former’s case, the 
of truth, indeterminacy and falsity membership functions 
belongs to [0, 1]. Recent research works on neutrosophic set 
theory and its applications in various fields are progressing 
rapidly [8]. Very recently Subas et al.[9] presented the concept 
of triangular and trapezoidal neutrosophic numbers and 
applied to multiple-attribute decision making problems. Then, 
Biswas et al. [10] presented a special case of trapezoidal 
neutrosophic numbers including triangular fuzzy numbers 
neutrosophic sets and applied to multiple-attribute decision 
making problems by introducing the cosine similarity 
measure. Deli and Subas [11] presented the single valued 
triangular neutrosophic numbers (SVN-numbers) as a 
generalization of the intuitionistic triangular fuzzy numbers 
and proposed a methodology for solving multiple-attribute 
decision making problems with SVN-numbers.  
The shortest path problem (SPP) which concentrates on 
finding a shortest path  from a source node to other node, is a 
fundamental network optimization problem that has been 
appeared in  many domain including, road networks 
application, transportation, routing in communication channels 
and scheduling problems and various fields. The main 
objective of the shortest path problem is to find a path with 
minimum length between starting node and terminal node 
which exist in a given network. The edge (arc) length (weight) 
of the network may represent the real life quantities such as, 
cost, time, etc. In conventional shortest path, the distances of 
the edge between different nodes of a network  are assumed to 
be certain. In the literature, many algorithms have been 
developed with the weights on edges on network being  fuzzy 
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numbers, intuitionistic fuzzy numbers, type-2 fuzzy numbers 
vague numbers [12-17].  
In more recent times, Broumi et al. [18-24] presented the 
concept of neutrosophic graphs, interval valued neutrosophic 
graphs and bipolar single valued neutrosophic graphs and 
studied some of their related properties. Also, Smarandache 
[25-26] proposed another variant of neutrosophic graphs based 
on literal indeterminacy. Up to date, few papers dealing with 
shortest path problem in neutrosophic environment have been 
developed. The paper proposed by Broumi et al. [27] is one of 
the first on this subject. The authors proposed an algorithm for 
solving neutrosophic shortest path problem based on score 
function. The same authors [28] proposed another algorithm 
for solving shortest path problem in a bipolar neutrosophic 
environment. Also, in [29] they proposed the shortest path 
algorithm in a network with its edge lengths as interval valued 
neutrosophic numbers.  However, till now, single valued 
triangular neutrosophic numbers have not been applied to 
shortest path problem. The main objective of this paper is to 
propose an approach for solving shortest path problem in 
anetwork where the edge weights are represented by single 
valued triangular neutrosophic numbers.  

In order to do, the paper is organized as follows: In Section 2, 
we firstly review some basic concepts about neutrosophic sets, 
single valued neutrosophic sets and single valued triangular 
neutrosophic sets. In Section 3, we propose some modified 
operations of single valued triangular neutrosophic numbers. 
In Section 5, we propose an algorithm for finding the shortest 
path and shortest distance in single valued triangular 
neutrosophic graph. In section 6, we presented an hypothetical 
example which is solved by the proposed algorithm. Finally, 
some concluding remarks are presented in section 7.  

II. PRELIMINARIES

 In this section, some basic concepts and definitions on 
neutrosophic sets, single valued neutrosophic sets and single 
valued triangular neutrosophic sets are reviewed from the 
literature.  

Definition 2.1 [1]. Let X  be a space of points (objects) with 
generic elements in X denoted by x;  then the neutrosophic set 
A (NS A) is an object having the form A = {< x: ( )AT x , 

( )AI x , ( )AF x >, x   X}, where the functions T, I, F: 
X→]−0,1+[define respectively the truth-membership function, 
an indeterminacy-membership function, and a falsity-
membership function of the element x   X to the set A with 
the condition: 

   −0 ≤ ( )AT x + ( )AI x + ( )AF x ≤ 3+.              (1)      

The functions ( )AT x , ( )AI x  and ( )AF x  are real standard or 
nonstandard subsets of ]−0,1+[. 
Since it is difficult to apply NSs to practical problems, Wang 
et al. [7] introduced the concept of a SVNS, which is an 
instance of a NS and can be used in real scientific and 
engineering applications. 

Definition 2.2 [7]. Let X  be a space of points (objects) with 
generic elements in X denoted by x. A single valued 
neutrosophic set A (SVNS A) is characterized by truth-
membership function ( )AT x , an indeterminacy-membership 

function ( )AI x , and a falsity-membership function ( )AF x . 

For each point x in X ( )AT x , ( )AI x , ( )AF x   [0, 1]. A 
SVNS A can be written as 

 A = {< x: ( )AT x , ( )AI x , ( )AF x >, x X}        (2) 

Definition 2.3 [11].  A single valued triangular neutrosophic 
number (SVTrN-number) 1 1 1(a , , ); , I ,Fa a aa b c T  is a special 
neutrosophic set on the real number set R, whose truth 
membership, indeterminacy-membership, and a falsity-
membership are given as follows 

1
1 11 1

1

1
1 11 1

( ) ( )( )
( )

( )
( ) ( )( )
0

a

a
a
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x a T a x bb a
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F x b

F x
c F c x b x cc b

otherwise

     


 
    




 (5) 

Where  0≤ aT ≤ 1; 0≤ aI ≤ 1; 0≤ aF ≤ 1 and 

0≤ aT + aI + aF ≤ 3; 1 1 1a , ,b c R

Definition 2.4 [11]. Let 1 1 2 3 1 1 1(a , , ); , I ,FA a a T  and 

2 1 2 3 2 2 2( , , ); , I ,FA b b b T  be two single valued triangular 
neutrosophic numbers. Then, the operations for SVTrN-
numbers are defined as below; 
(i) 

1 2 1 1 2 2 3 3 1 2 1 2 1 2(a ,a ,a );min( , ),max(I , I ),max(F ,F )A A b b b T T      

   (6) 
(ii) 

1 2 1 1 2 2 3 3 1 2 1 2 1 2(a ,a ,a );min( , ),max(I , I ),max(F ,F ))A A b b b T T  

(7) 
(iii) 

1 1 2 3 1 2 1 2 1 2( a , a , a );min( , ), max(I , I ), max(F , F )A T T    

(8) 
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  A convenient method for comparing two single valued 
triangular neutrosophic numbers is by using of score function 
and accuracy function. 
Definition 2.5[11]. Let 1 1 2 3 1 1 1(a , , ); , I ,FA a a T   be a single 
valued triangular neutrosophic number. Then, the score 
function 1( )s A and accuracy function 1( )a A  of a SVTrN-
numbers are defined as follows: 

(i)  1 1 2 3 1 1 1
1( ) 2 2

12
s A a a a T I F          

 
  (9) 

(ii)  1 1 2 3 1 1 1
1( ) 2 2

12
a A a a a T I F          

 
   (10)                                              

Definition 2.6 [11]. Let 1A  and 2A be two SVTrN-numbers 

the ranking of 1A  and 2A   by score function and accuracy 
function are defined as follows : 
(i) If 1 2( ) ( )s A s A   then     1 2A A 

(ii) If 1 2( ) ( )s A s A   and if

(1)  1 2a( ) ( )A a A    then  1 2A A 

(2)  1 2a( ) ( )A a A    then  1 2A A 

(3)  1 2a( ) ( )A a A 
  then  1 2A A 

III.ARITHMETIC OPERATIONS BETWEEN TWO SV-
TRIANGULAR NEUTROSOPHIC NUMBERS

 In this subsection, a slight modification  has been made on 
some operations between two single valued triangular 
neutrosophic numbers proposed by Deli and Subas [11], 
required for the proposed algorithm. 
Let 1 1 2 3 1 1 1(a , , ); , I ,FA a a T  and 2 1 2 3 2 2 2( , , ); , I ,FA b b b T  are 
two  single valued triangular neutrosophic numbers,. Then the 
operations for SVTrNNs are defined ad below: 
(i) 1 2 1 1 2 2 3 3 1 2 1 2 1 2 1 2(a ,a ,a ); , I I ,F FA A b b b T T T T        

 (11) 
(ii) 1 2 1 1 2 2 3 3 1 2 1 2 1 2 1 2 1 2(a ,a ,a ); , I I I I ,F F F F )A A b b b T T       

        (12)  
(iii) 1 1 2 3 1 1 1( a , a , a );1 (1 ) ), I , )A T F           (13)

IV. NETWORK TERMINOLOGY
Consider a directed network G = (V, E) consisting of a finite 
set of nodes V={1, 2,…,n} and a set of m directed edges 
E V x V.  Each edge is denoted by an ordered pair (i, j) 
where i, j   V and i j . In this network, we specify two 
nodes, denoted by  s and t, which are the source node and the 
destination node, respectively. We define a path 

ijP ={i= 1i , 1 2( , )i i , 2i ,…, 1li  , 1( , )l li i , li =j}as sequence that 
joins two nodes of edges. The existence of at least one path 

siP in G (V, E) is assumed for every i V-{s}. 

ijd  denotes a single valued triangular neutrosophic number 
associated with the edge (i ,j), corresponding to the length 
necessary to traverse (i, j) from i to j. In real problems, the 

lengths correspond to the cost, the time, the distance, etc. 
Then, neutrosophic distance along the path P is denoted as 
d(P) is defined as  

 d(P)= 
(i, j P)

ijd

  (14) 

Remark : A node i is said to be predecessor node of node j if 
(i) Node i is directly connected to node j. 
(ii) The direction of path connecting node i and j from i to j. 
V . SINGLE VALUED TRIANGULAR NEUTROSOPHIC

PATH PROBLEM
In this section, motivated by the work of Kumar [15], an 
algorithm is presented for finding the shortest path between 
the source node (i) and the destination node (j) in a network 
where the edges weight are characterized by a single valued 
triangular neutrosophic numbers.  
 The steps of  the algorithm are: 

Step1: Assume 1 (0,0,0);0,1,1d    and label the source

node (say node1) as [ 1 (0,0,0);0,1,1d   ,-]. The label
indicating that the node has no predecessor. 
Step 2:  Find jd = minimum{ i ijd d  };j=2,3,…,n.
Step 3:If minimum occurs corresponding to unique value of i 
i.e., i= r then label node j as [ jd ,r]. If minimum occurs
corresponding to more than one values of i then it represents 
that there are more than one single valued triangular 
neutrosophic path between source node and node j but single 
valued triangular neutrosophic distance along path is jd , so
choose any value of  i. 
Step 4:Let the destination node (node n) be labeled as [ nd , l],

then the single valued triangular neutrosophic shortest 
distance between source node and destination node is nd .

Step 5: Since destination node is labeled as [ nd ,l], so, to find
the single valued triangular neutrosophic shortest path 
between source node and destination node, check the label of 
node l. Let it be [ ld , p], now check the label of node p and so
on. Repeat the same procedure until node 1 is obtained. 
Step 6: Now the single valued triangular neutrosophic shortest 
path can be obtained by combining all the nodes obtained by 
the step 5. 
Remark 5.1 Let iA ; i =1, 2,…, n be a set of single valued 

triangular neutrosophic numbers, if S( kA ) < S( iA ), for all i,
the single valued triangular neutrosophic number  is the 
minimum of kA . 
After describing the proposed algorithm, in next section, an 
hypothetical example is presented and the proposed method is 
explained completely.  

VI.ILLUSTRATIVE EXAMPLE 
In this section an hypothetical example is introduced to verify 
the proposed. Consider  the network shown in figure 1; we 
want to obtain the shortest path from node 1 to node 6 where 
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edges have a single valued triangular neutrosophic numbers. 
Let us now apply the proposed algorithm to the network given 
in figure 1.  

Fig. 1. A network with single valued triangular neutrosophic 
edges 

In this network each edge have been assigned to single valued 
triangular neutrosophic number as follows: 

Edges  Single valued triangular 
neutrosophic distance  

1-2    <(1, 2,3);0.4,0.6,0.7> 
1-3    <(2,5,7);0.2,0.3,0.4> 
2-3    <(3,7,8);0.1,0.4,0.6> 
2-5    <(1,5,7);0.7,0.6,0.8> 
3-4    <(2,4,8);0.5,0.3,0.1> 
3-5    <(3, 4,5);0.3,0.4,0.7> 
4-6    <(7, 8,9);0.3,0.2,0.6> 
5-6     <(2,4,5);0.6,0.5,0.3> 

  Table 1.  Weights of the graphs 

The calculations for this problem are as follows: 
since node 6 is the destination node, so n= 6. 
Assume  1 0,  0,  0 ;  0,  1,  1d   and label the source node (

say node 1) as [  0,  0,  0 ;  0,  1,  1  ,-], the value of  jd ; j=
2, 3, 4, 5 ,6 can be obtained as follows: 

Iteration1:  Since only node 1 is the predecessor node of node 
2, so putting i=1 and j= 2  in step of the proposed algorithm, 
the value of 2d  is

2d = minimum{ 1 12d d  }=minimum{<(0, 0, 0); 0, 1, 1>
<(1, 2, 3); 0.4, 0.6, 0.7>= <(1, 2, 3); 0.4, 0.6, 0.7> 
Since minimum occurs corresponding to i=1, so label node 2 
as [<(1, 2, 3); 0.4, 0.6, 0.7>, 1] 

2d = <(1, 2, 3); 0.4, 0.6, 0.7>
Iteration 2:The predecessor node of node 3 are node 1 and 
node 2, so putting i= 1, 2 and j= 3 in step 2 of the proposed 
algorithm, the value of 3d  is

3d =minimum{ 1 13 2 23,d d d d     }=minimum{<(0, 0, 0); 0, 1,
1>  <(2, 5, 7); 0.2, 0.3, 0.4>, <(1, 2, 3); 0.4, 0.6, 0.7>  
<(3, 7, 8); 0.1, 0.4, 0.6>}= minimum{<(2, 5, 7); 0.2, 0.3, 0.4> 
, <(4, 9, 11); 0.46, 0.24, 0.42>} 
Using Eq.9, we have 

S ({<(2, 5, 7); 0.2, 0.3, 0.4>) 

=  1 2 3 1 1 1
1 2 2

12
a a a T I F          

 
=2.38 

S (<(4, 9, 11); 0.46, 0.24, 0.42>) =4.95 
Since S ({<(2, 5, 7); 0.2, 0.3, 0.4>)   S (<(4, 9, 11); 0.46, 
0.24, 0.42>) 
So minimum{<(2, 5, 7); 0.2, 0.3, 0.4> , <(4, 9, 11); 0.46, 0.24, 
0.42>} = <(2, 5, 7); 0.2, 0.3, 0.4> 
Since minimum occurs corresponding to i=1, so label node 3  
as  [<(2, 5, 7); 0.2, 0.3, 0.4>, 1] 

3d =<(2, 5, 7); 0.2, 0.3, 0.4>
Iteration 3: The predecessor node of node 4 is node 3, so 
putting i= 3 and j= 4 in step 2 of the proposed algorithm, the 
value of 4d  is 4d =minimum { 3 34d d  }=minimum{<(2, 5,
7); 0.2, 0.3, 0.4>,   <(2, 4, 8); 0.5, 0.3, 0.1> }=<(4, 9, 15,); 
0.6, 0.09, 0.04> 
So minimum {<(2, 5, 7); 0.2, 0.3, 0.4>,   <(2, 4, 8); 0.5, 0.3, 
0.1> }= <(4, 9, 15); 0.6, 0.09, 0.04> 
Since minimum occurs corresponding to i=3, so label node 4 
as   [<(4, 9, 15); 0.6, 0.09, 0.04>,3] 

4d =<(4, 9, 15); 0.6, 0.09, 0.04>
Iteration 4:The predecessor node of node 5 are node 2 and 
node 3, so putting i= 2, 3and j= 5 in step 2 of the proposed 
algorithm, the value of  5d  is

5d =minimum{ 2 25 3 35,d d d d     }=minimum{<(1, 2, 3); 0.4,
0.6, 0.7>  <(1, 5, 7); 0.7, 0.6, 0.8>, <(2, 5, 7); 0.2, 0.3, 
0.4>  <(3, 4, 5); 0.3, 0.4, 0.7>}=  
minimum{<(2, 7, 10); 0.82, 0.36, 0.56>, <(5, 9, 12); 0.44, 
0.12, 0.28>} 
Using Eq.9, we have 
S (<(2, 7, 10); 0.82, 0.36, 0.56>) =4.12 
S (<(5, 9, 12); 0.44, 0.12, 0.28>) =5.13 
Since S (<(2, 7, 10); 0.82, 0.36, 0.56>)   S (<(5, 9, 12); 0.44, 
0.12, 0.28>) 
minimum{<(2, 7, 10); 0.82, 0.36, 0.56>, <(5, 9, 12); 0.44, 
0.12, 0.28>} 
= <(2, 7, 10); 0.82, 0.36, 0.56> 

5d = <(2, 7, 10); 0.82, 0.36, 0.56>
Since minimum occurs corresponding to i=2, so label node 5  
as [<(2, 7, 10); 0.82, 0.36, 0.56>, 2] 
Iteration 5:The predecessor node of node 6 are node 4 and 
node 5, so putting i= 4, 5and j= 6 in step 2 of the proposed 
algorithm, the value of 6d  is

6d =minimum{ 4 46 5 56,d d d d     }=minimum{<(4, 9, 15);
0.6, 0.09, 0.04>  <(7, 8, 9); 0.3, 0.2, 0.6>, <(2, 7, 10); 0.82, 
0.36, 0.56>  <(2, 4, 5); 0.6, 0.5, 0.3>}= minimum{<(11, 17, 
24); 0.72, 0.018, 0.024>,  <(4, 11, 15); 0.93, 0.18, 0.17>} 
Using Eq.9, we have  
S (<(11, 17, 24); 0.72, 0.018, 0.024>) =15.40 
S (<(4, 11, 15); 0.93, 0.18, 0.17>) =8.82 

<(1,2,3) ; 0.4,0.6, 0.7> 

<(3,7,8) ; 0.1,0.4, 0.6> 
<(3,4,5) ; 0.3,0.4, 0.7> 

<(2,4,5) ; 0.6,0.5, 0.3>

<(7,8,9) ; 0.3,0.2, 0.6>

<(2,4,8) ; 0.5,0.3, 0.1> 

<(2,5,7) ; 0.2,0.3, 0.4> 

  2 

1

3 4 

2 
5 

6

<(1,5,7) ; 0.7,0.6, 0.8> 
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Since S (<(4, 11, 15); 0.93, 0.18, 0.17>)   S (<(11, 17, 24); 
0.72, 0.018, 0.024>) 
So minimum {<(11, 17, 24); 0.72, 0.018, 0.024>,  <(4, 11, 
15); 0.93, 0.18, 0.17>} 
= <(4, 11, 15); 0.93, 0.18, 0.17> 

6d =<(4, 11, 15); 0.93, 0.18, 0.17>
Since minimum occurs corresponding to i= 5, so label node 6 
as    [<(4, 11, 15); 0.93, 0.18, 0.17>, 5] 
Since node 6 is the destination node of the given network, so 
the single valued triangular neutrosophic shortest distance 
between node 1 and node 6 is  <(4, 11, 15); 0.93, 0.18, 0.17>. 
Now the single valued triangular neutrosophic shortest path 
between node 1 and node 6 can be founded  by using the 
following procedure: 
Since node 6 is labeled by [<(4, 11, 15); 0.93, 0.18, 0.17>, 5], 
which represents that we are coming from node 5. Node 5 is 
labeled by [<(2, 7, 10); 0.82, 0.36, 0.56>, 2],  which  represent 
that we are coming from node 2.  Node 2 is labeled by 
 [<(1, 2, 3); 0.4, 0.6, 0.7>, 1], which represents that we are 
coming from node 1. Now the single valued triangular 
neutrosophic shortest path between node 1 and node 6 is 
obtaining by joining  all the obtained nodes. Hence the single 
valued triangular neutrosophic shortest path1 2 5 6   . 
The single valued triangular neutrosophic shortest distance 
and the single valued triangular neutrosophic shortest path of 
all nodes from node 1 is depicted in the table 2 and the 
labeling of each node is shown in figure 2. 

Node 
No.(j) id Single valued triangular 

Neutrosophic shortest path 
between jth and 1st node 

2 <(1, 2, 3); 0.4, 0.6, 0.7> 1 2
3 <(2, 5, 7); 0.2, 0.3, 0.4> 1 3  
4 <(4, 9, 15); 0.6, 0.09, 

0.04> 
1 3 4   

5 <(2, 7, 10); 0.82, 0.36, 0.56> 1 2 5 
6 <(4, 11, 15); 0.93, 0.18, 

0.17> 
1 2 5 6  

Table 2. Tabular representation of different single valued 
triangular neutrosophic shortest paths 

 

FIG 2. Network with single valued triangular neutrosophic 
shortest distance of each node from node 1 

VI. CONCLUSION

In this article, an algorithm  has been developed for solving 
shortest path problem on a network where the edges weight 
are characterized by a neutrosophic numbers called single 
valued triangular neutrosophic numbers. To show the 
performance of the proposed methodology for the shortest 
path problem, an hypothetical example was introduced. In 
future works, we studied the shortest path problem in a single 
valued trapezoidal neutrosophic environment and we will 
research the application of this algorithm. 

[<(0, 0, 0) ; 0,1, 1>, -] 

[<(2, 5, 7) ; 0.2,0.3, 0.4>, 1] 
[<(4, 9, 15) ; 0.6,0.09, 0.04>, 3] 

[<(4, 11, 15) ; 0,93, 0.18,0.17>, 5] 

[<(2,7, 10) ; 0.82,0.36, 0.56>, 2] [<(1, 2, 3) ; 0.4,0.6, 0.7>, 1] 

<(1,2,3) ; 0.4,0.6, 0.7> 

<(3,7,8) ; 0.1,0.4, 0.6> 
<(3,4,5) ; 0.3,0.4, 0.7> 

<(2,4,5) ; 0.6,0.5, 0.3>

<(7,8,9) ; 0.3,0.2, 0.6>

<(2,4,8) ; 0.5,0.3, 0.1> 

<(2,5,7) ; 0.2,0.3, 0.4> 

  2 

1

3 4 

2 
5 

6

<(1,5,7) ; 0.7,0.6, 0.8> 
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Abstract—In this paper, we introduced a new neutrosophic 
graphs called complex neutrosophic graphs of type1 (CNG1) 
and presented a matrix representation for it and studied some 
properties of this new concept. The concept of CNG1 is an 
extension of generalized fuzzy graphs of type 1 (GFG1) and 
generalized single valued neutrosophic graphs of type 1 
(GSVNG1). 

Keywords complex neutrosophic set; Complex neutrosophic 
graph; Matrix representation. 

I. Introduction 
Smarandache [7] in 1998, introduced a new theory called 
Neutrosophic, which is basically a branch of philosophy that 
focus on the origin, nature, and scope of neutralities and their 
interactions with different ideational spectra. On the basis of 
neutrosophy, Smarandache defined the concept of neutrosophic 
set which is characterized by a degree of truth membership T, a 
degree of indeterminacy membership I and a degree falsehood 
membership F. The concept of neutrosophic set theory 
generalizes the concept of classical sets, fuzzy sets [14], 
intuitionistic fuzzy sets [13], interval-valued fuzzy sets [12]. In 
fact this mathematical tool is used to handle problems like 
imprecision, indeterminacy and inconsistency of data. 
Specially, the indeterminacy presented in the neutrosophic sets 
is independent on the truth and falsity values. To easily apply 
the neutrosophic sets to real scientific and engineering areas, 
Smarandache [7] proposed the single valued neutrosophic sets 
as subclass of neutrosophic sets. Later on, Wang et al. [11] 
provided the set-theoretic operators and various properties of 
single valued neutrosophic sets. The concept of neutrosophic 
sets and their particular types have been applied successfully in 
several fields [40]  
Graphs are the most powerful and handful tool used in 
representing information involving relationship between 
objects and concepts. In a crisp graphs two vertices are either 
related or not related to each other, mathematically, the degree 
of relationship is either 0 or 1. While in fuzzy graphs, the degree 
of relationship takes values from [0, 1]. Later on Atanassov [2] 

defined intuitionistic fuzzy graphs (IFGs) using five types of 
Cartesian products. The concept fuzzy graphs and their 
extensions have a common property that each edge must have 
a membership value less than or equal to the minimum 
membership of the nodes it connects. 
When description of the object or their relations or both is 
indeterminate and inconsistent, it cannot be handled by fuzzy 
intuitionistic fuzzy, bipolar fuzzy, vague and interval valued 
fuzzy graphs. So, for this reason, Smarandache [10] proposed 
the concept of neutrosophic graphs based on literal 
indeterminacy (I) to deal with such situations. Then, 
Smarandache [4, 5] gave another definition for neutrosophic 
graph theory using the neutrosophic truth-values (T, I, F) and 
constructed three structures of neutrosophic graphs: 
neutrosophic edge graphs, neutrosophic vertex graphs and 
neutrosophic vertex-edge graphs. Later on Smarandache [9] 
proposed new version of neutrosophic graphs such as 
neutrosophic offgraph, neutrosophic bipolar/tripola/ multipolar 
graph. Presently, works on neutrosophic vertex-edge graphs 
and neutrosophic edge graphs are progressing rapidly. Broumi 
et al.[24] combined the concept of single valued neutrosophic 
sets and graph theory, and introduced certain types of single 
valued neutrosophic graphs (SVNG) such as strong single 
valued neutrosophic graph, constant single valued neutrosophic 
graph, complete single valued neutrosophic graph and 
investigate some of their properties with proofs and examples. 
Also, Broumi et al. [25] also introduced neighborhood degree 
of a vertex and closed neighborhood degree of vertex in single 
valued neutrosophic graph as a generalization of neighborhood 
degree of a vertex and closed neighborhood degree of vertex in 
fuzzy graph and intuitionistic fuzzy graph. In addition, Broumi 
et al.[26] proved a necessary and sufficient condition for a 
single valued neutrosophic graph to be an isolated single valued 
neutrosophic graph. After Broumi, the studies on the single 
valued neutrosophic graph theory have been studied 
increasingly [1, 16-20, 27-34, 36-38]. 
Recently, Smarandache [8] initiated the idea of removal of the 
edge degree restriction of fuzzy graphs, intuitionistic fuzzy 
graphs and single valued neutrosophic graphs. Samanta et al 
[35] proposed a new concept named the generalized fuzzy 
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graphs (GFG) and defined two types of GFG, also the authors 
studied some major properties such as completeness and 
regularity with proved results. In this paper, the authors claims 
that fuzzy graphs and their extension defined by many 
researches are limited to represent for some systems such as 
social network. Later on Broumi et al. [34] have discussed the 
removal of the edge degree restriction of single valued 
neutrosophic graphs and presented a new class of single valued 
neutrosophic graph called generalized single valued 
neutrosophic graph of type1, which is a is an extension of 
generalized fuzzy graph of type1 [35]. Since complex fuzzy sets 
was introduced by Ramot [3], few extension of complex fuzzy 
set have been widely discussed [22, 23]. Ali and Smarandache 
[15] proposed the concept of complex neutrosophic set which 
is a generalization of complex fuzzy set and complex 
intuitionstic fuzzy sets. The concept of complex neutrosophic 
set is defined by a complex-valued truth membership function, 
complex-valued indeterminate membership function, and a 
complex-valued falsehood membership function. Therefore, a 
complex-valued truth membership function is a combination of 
traditional truth membership function with the addition of an 
extra term.  

Similar to the fuzzy graphs, which have a common property that 
each edge must have a membership value less than or equal to 
the minimum membership of the nodes it connects. Also, 
complex fuzzy graphs presented in [21] have the same property. 
Until now, to our best knowledge, there is no research on 
complex neutrosophic graphs.  
The main objective of this paper is to introduce the concept of 
complex neutrosophic graph of type 1 and introduced a matrix 
representation of CNG1.  

The remainder of this paper is organized as follows. In 
Section 2, we review some basic concepts about neutrosophic 
sets, single valued neutrosophic sets, complex neutrosophic sets 
and generalized single valued neutrosophic graphs of type 1. In 
Section 3, the concept of complex neutrosophic graphs of type 
1 is proposed with an illustrative example.  In section 4 a 
representation matrix of complex neutrosophic graphs of type 1 
is introduced. Finally, Section 5outlines the conclusion of this 
paper and suggests several directions for future research. 

II. Preliminaries

In this section, we mainly recall some notions related to 
neutrosophic sets, single valued neutrosophic sets, single valued 
neutrosophic graphs and generalized fuzzy graphs relevant to 
the present work. See especially [7,11, 15, 34] for further details 
and background. 

Definition 2.1 [7]. Let X  be a space of points  and let x   X.
A neutrosophic set A in X is characterized by a truth 
membership function T, an indeterminacy membership 
function I, and a falsity membership function F. T, I, F are real 
standard or nonstandard subsets of ]−0,1+[, and T, I, F: 
X→]−0,1+[. The neutrosophic set can be represented as 

A={(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)): 𝑥 ∈ 𝑋}  (1) 

There is no restriction on the sum of T, I, F, So 
−0 ≤TA(x)+ IA(x)+FA(x)≤ 3+.      (2)

From philosophical point of view, the neutrosophic set takes the 
value from real standard or non-standard subsets of  ]−0,1+[. 
Thus it is necessary to take the interval [0, 1] instead of ]−0,1+[. 
For technical applications. It is difficult to apply ]−0,1+[ in the 
real life applications such as engineering and scientific 
problems. 
Definition 2.2 [11]. Let X  be a space of points (objects) with 
generic elements in X denoted by x. A single valued 
neutrosophic set A (SVNS A) is characterized by truth-
membership function ( )AT x , an indeterminacy-membership 

function ( )AI x , and a falsity-membership function ( )AF x . 

For each point x in X, ( )AT x , ( )AI x , ( )AF x ∈ [0, 1]. A 
SVNS A can be written as 

A={(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)): 𝑥 ∈ 𝑋} (3)
 Definition 2.3 [15] 
A complex neutrosophic set A defined on a universe of 
discourse X, which is characterized by a truth membership 
function  TA(x), an indeterminacy membership function  IA(x),
and a falsity membership function  FA(x)  that assigns a
complex-valued grade of  TA(x), IA(x), and FA(x) in A for any
x X. The values TA(x), IA(x), and  FA(x)and their sum may
all within the unit circle in the complex plane and so is of the 
following form, 
TA(x)= pA(x).ejμA(x),   IA(x)= qA(x).ejvA(x)   and
FA(x)= rA(x).ejωA(x)

Where, pA(x), qA(x), rA(x) and μA(x), vA(x), ωA(x) are
respectively, real valued and pA(x), qA(x), rA(x)  ∈ [0, 1]
such that  

0 ≤ pA(x)+ qA(x) + rA(x)≤ 3
   The complex neutrosophic set A can be represented in set 
form as 

  , ( ) , ( ) , ( ) :A T A I A FA x T x a I x a F x a x X    

where    𝑇𝐴: 𝑋 → {𝑎𝑇: 𝑎𝑇 ∈ 𝐶, |𝑎𝑇| ≤ 1},
𝐼𝐴: 𝑋 → {𝑎𝐼: 𝑎𝐼 ∈ 𝐶, |𝑎𝐼| ≤ 1},
𝐹𝐴: 𝑋 → {𝑎𝐹: 𝑎𝐹 ∈ 𝐶, |𝑎𝐹| ≤ 1} and

|𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥)| ≤ 3.
Definition 2.4 [15] The union of two complex neutrosophic sets 
as follows: 
Let A and B be two complex neutrosophic sets in X, where  

A={(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)): 𝑥 ∈ 𝑋}  and
B={(𝑥, 𝑇𝐵(𝑥), 𝐼𝐵(𝑥), 𝐹𝐵(𝑥)): 𝑥 ∈ 𝑋}.

Then, the union of A and B is denoted as 𝐴 ∪𝑁 𝐵 and is given
as  

𝐴 ∪𝑁 𝐵={(𝑥, TA∪B(x), IA∪B(x), FA∪B(x)): 𝑥 ∈ 𝑋}

Where the truth membership function TA∪B(x) , the
indeterminacy membership function IA∪B(x)  and the
falsehood membership function FA∪B(x) is defined by
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TA∪B(x)= [(pA(x) ∨ pB(x))].ej.μTA∪B
(x),

IA∪B(x)= [(qA(x) ∧ qB(x))].ej.μIA∪B
(x),

FA∪B(x)= [(rA(x) ∧ rB(x))].ej.μFA∪B
(x)

Where∨ and ∧ denotes the max and min operators respectively. 
The phase term of complex truth membership function, 
complex indeterminacy membership function and complex 
falsity membership function belongs to (0,2 )  and, they are 
defined as follows: 

a) Sum: 
μA∪B(x) = μA(x) + μB(x),
νA∪B(x) = νA(x) + νB(x),

ωA∪B(x) = ωA(x) + ωB(x).
b) Max: 

μA∪B(x) = max(μA(x), μB(x)),
νA∪B(x) = max(νA(x), νB(x)),
ωA∪B(x) = max(ωA(x), ωB(x)).

c) Min: 
μA∪B(x) = min(μA(x), μB(x)),
νA∪B(x) = min(νA(x), νB(x)),
ωA∪B(x) = min(ωA(x), ωB(x)).

d)  “The game of winner, neutral, and loser”: 

 
( )
( )

A A B
A B

B B A

x if p p
x

x if p p
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( )
( )

A A B
A B

B B A

x if q q
x

x if q q
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)
)

A A B
A B

B B A

x if r r
x

x if r r
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The game of winner, neutral, and loser  is the generalization of 
the concept “winner take all” introduced by Ramot et al. in [3] 
for the union of phase terms. 
Definition 2.5 [15] intersection of complex neutrosophic sets 
Let A and B be two complex neutrosophic sets in X, 
A={(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)): 𝑥 ∈ 𝑋}  and
B={(𝑥, 𝑇𝐵(𝑥), 𝐼𝐵(𝑥), 𝐹𝐵(𝑥)): 𝑥 ∈ 𝑋}.
Then the intersection of A and B is denoted as 𝐴 ∩𝑁 𝐵 and is
define as  

𝐴 ∩𝑁 𝐵={(𝑥, TA∩B(x), IA∩B(x), FA∩B(x)): 𝑥 ∈ 𝑋}

Where the truth membership function TA∩B(x) , the
indeterminacy membership function IA∩B(x)  and the
falsehood membership function FA∩B(x) is given as:

TA∩B(x)= [(pA(x) ∧ pB(x))].ej.μTA∩B
(x),

IA∩B(x)= [(qA(x) ∨ qB(x))].ej.μIA∩B
(x),

FA∩B(x)= [(rA(x) ∨ rB(x))].ej.μFA∩B
(x)

Where∨  and ∧  denotes denotes the max and min operators 
respectively 
The phase terms  e

j.μTA∩B
(x) , ej.μIA∩B

(x)  and ej.μFA∩B
(x)  was

calculated on the same lines by winner, neutral, and loser game. 

Definition 2.6 [34]. Let V be a non-void set. Two function are 
considered as follows: 
𝜌=(𝜌𝑇, 𝜌𝐼, 𝜌𝐹):V → [ 0, 1]3and
𝜔= (𝜔𝑇, 𝜔𝐼, 𝜔𝐹):VxV → [ 0, 1]3 . We suppose
A= {(𝜌𝑇(𝑥),𝜌𝑇(𝑦)) | 𝜔𝑇(x, y) ≥ 0},

B= {(𝜌𝐼(𝑥),𝜌𝐼(𝑦)) |𝜔𝐼(x, y) ≥ 0},
C= {(𝜌𝐹(𝑥),𝜌𝐹(𝑦)) |𝜔𝐹(x, y) ≥ 0},

We have considered 𝜔𝑇,  𝜔𝐼 and  𝜔𝐹 ≥ 0 for all set A,B, C ,
since its is possible to have edge degree = 0 (for T, or I, or F). 
The triad (V, 𝜌, 𝜔) is defined to be generalized single valued 
neutrosophic graph of  type 1 (GSVNG1) if there are functions 
𝛼:A→ [ 0, 1] , 𝛽:B→ [ 0, 1] and 𝛿:C→ [ 0, 1] such that  
𝜔𝑇(𝑥, 𝑦) = 𝛼((𝜌𝑇(𝑥),𝜌𝑇(𝑦)))
𝜔𝐼(𝑥, 𝑦) = 𝛽((𝜌𝐼(𝑥),𝜌𝐼(𝑦)))
𝜔𝐹(𝑥, 𝑦) = 𝛿((𝜌𝐹(𝑥),𝜌𝐹(𝑦)))  where x, y∈ V.
Here 𝜌(𝑥) = ( 𝜌𝑇(𝑥) , 𝜌𝐼(𝑥) , 𝜌𝐹(𝑥) ), x ∈  V are the truth- 
membership, indeterminate-membership and false-membership 
of the vertex x and 𝜔(𝑥, 𝑦)=(𝜔𝑇(𝑥, 𝑦), 𝜔𝐼(𝑥, 𝑦), 𝜔𝐹(𝑥, 𝑦)), x,
y∈ V are the truth-membership, indeterminate-membership and 
false-membership values of the edge (x, y). 

III. Complex Neutrosophic Graph of Type 1

By using the concept of complex neutrosophic sets [15] and the 
concept of generalized single valued neutrosophic graph of type 
1 [34], we define the concept of complex neutrosophic graph of 
type 1 as follows:  
Definition 3.1. Let V be a non-void set. Two functions are 
considered as follows: 
𝜌=( 𝜌𝑇, 𝜌𝐼, 𝜌𝐹):V → [ 0, 1]3and
𝜔=( 𝜔𝑇, 𝜔𝐼, 𝜔𝐹):VxV → [ 0, 1]3 . We suppose
A= {(𝜌𝑇(𝑥), 𝜌𝑇(𝑦)) | 𝜔𝑇(x, y) ≥ 0},
B= {(𝜌𝐼(𝑥), 𝜌𝐼(𝑦)) | 𝜔𝐼(x, y) ≥ 0},
C= {(𝜌𝐹(𝑥), 𝜌𝐹(𝑦)) | 𝜔𝐹(x, y) ≥ 0},
We have considered 𝜔𝑇,  𝜔𝐼 and  𝜔𝐹 ≥ 0 for all set A,B, C ,
since its is possible to have edge degree = 0 (for T, or I, or F). 
The triad (V, 𝜌, 𝜔) is defined to be complex neutrosophic graph 
of type 1 (CNG1) if there are functions 
𝛼:A→ [ 0, 1] , 𝛽:B→ [ 0, 1] and  𝛿:C→ [ 0, 1] such that  
𝜔𝑇(𝑥, 𝑦) = 𝛼((𝜌𝑇(𝑥), 𝜌𝑇(𝑦)))
𝜔𝐼(𝑥, 𝑦) = 𝛽((𝜌𝐼(𝑥), 𝜌𝐼(𝑦)))
𝜔𝐹(𝑥, 𝑦) = 𝛿((𝜌𝐹(𝑥), 𝜌𝐹(𝑦)))
Where x, y ∈ V.   
Here 𝜌(𝑥)=( 𝜌𝑇(𝑥), 𝜌𝐼(𝑥), 𝜌𝐹(𝑥)), x∈ V are the complex truth-
membership, complex indeterminate-membership and complex 
false-membership of the vertex x and 𝜔(𝑥, 𝑦) =(  𝜔𝑇(𝑥, 𝑦) ,
𝜔𝐼(𝑥, 𝑦) , 𝜔𝐹(𝑥, 𝑦) ), x, y ∈  V are the complex truth-
membership, complex indeterminate-membership and complex 
false-membership values of the edge (x, y).  
Example 3.2: Let the vertex set be V={x, y, z, t} and edge set 
be E={(x, y),(x, z),(x, t),(y, t)} 
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x y z t 
𝜌𝑇 0.5 𝑒𝑗.0.8 0.9 𝑒𝑗.0.9 0.3 𝑒𝑗.0.3 0.8 𝑒𝑗.0.1 
𝜌𝐼 0.3 𝑒𝑗.

3𝜋

4 0.2 𝑒𝑗.
𝜋

4 0.1𝑒𝑗.2𝜋 0.5 𝑒𝑗.𝜋 
𝜌𝐹 0.1 𝑒𝑗.0.3 0.6 𝑒𝑗.0.5 0.8 𝑒𝑗.0.5 0.4 𝑒𝑗.0.7 

     Table 1: Complex truth-membership, complex 
indeterminate-membership and complex false-membership 
of the vertex set. 
Let us consider the functions 𝛼(𝑚, 𝑛)= ( 𝑚𝑇 ∨ 𝑛𝑇). ej.μTm∪n ,
𝛽(𝑚, 𝑛)=( 𝑚𝐼 ∧ 𝑛𝐼). ej.μIm∪n    and  𝛿(𝑚, 𝑛)= ( 𝑚𝐹 ∧

𝑛𝐹). ej.μFm∪n .
Here, A={(0.5 𝑒𝑗.0.8, 0.9 𝑒𝑗.0.9), (0.5 𝑒𝑗.0.8, 0.3 𝑒𝑗.0.3), (0.5 
𝑒𝑗.0.8, 0.8 𝑒𝑗.0.1), (0.9 𝑒𝑗.0.9, 0.8 𝑒𝑗.0.1)} 

B = {(0.3 𝑒𝑗.
3𝜋

4 , 0.2 𝑒𝑗.
𝜋

4), (0.3 𝑒𝑗.
3𝜋

4 , 0.1 𝑒𝑗.2𝜋), (0.3 𝑒𝑗.
3𝜋

4 , 0.5 
𝑒𝑗.𝜋), (0.2 𝑒𝑗.

𝜋

4, 0.5 𝑒𝑗.𝜋)} 
   C = {(0.1 𝑒𝑗.0.3, 0.6 𝑒𝑗.0.5), (0.1 𝑒𝑗.0.3, 0.8 𝑒𝑗.0.5), (0.1 𝑒𝑗.0.3, 
0.4 𝑒𝑗.0.7), (0.6 𝑒𝑗.0.5, 0.4 𝑒𝑗.0.7)}.Then 

𝜔 (𝑥, 𝑦) (𝑥, 𝑧) (𝑥, 𝑡) (𝑦, 𝑡) 
𝜔𝑇 0.9 𝑒𝑗.0.9 0.5 𝑒𝑗.0.8 0.8 𝑒𝑗.0.8 0.9 𝑒𝑗.0.9 
𝜔𝐼 0.2 𝑒𝑗.

3𝜋

4 0.1 𝑒𝑗.2𝜋 0.3𝑒𝑗.𝜋 0.2 𝑒𝑗.𝜋 
𝜔𝐹 0.1 𝑒𝑗.0.5 0.1 𝑒𝑗.0.5 0.1 𝑒𝑗.0.7 0.4 𝑒𝑗.0.7 

   Table 2: Complex truth-membership, complex 
indeterminate-membership and complex false-membership   of 
the edge set. 
The corresponding  complex neutrosophic graph is shown in 
Fig.2 
 

Fig 2.CNG of type 1. 
 The easier way to represent any graph is to use the matrix 
representation. The adjacency matrices, incident matrices are 
the widely matrices used.  In the following section CNG1 is 
represented by adjacency matrix. 

IV. Matrix Representation of Complex
Neutrosophic Graph of Type 1

In this section, complex truth-membership, complex 
indeterminate-membership, and complex false-membership are 
considered independent. So, we adopted the representation 
matrix of generalized single valued neutrosophic graphs 
presented  in [34]. 
The complex neutrosophic graph (CNG1) has one property that 
edge membership values (T, I, F) depend on the membership 
values (T, I, F)  of adjacent vertices. Suppose 𝜉 = (V, 𝜌, 𝜔) is a 
CNG1 where vertex set V={𝑣1, 𝑣2,…, 𝑣𝑛}. The functions:
𝛼 :A→ ( 0, 1] is taken such that 𝜔𝑇(𝑥, 𝑦) = 𝛼((𝜌𝑇(𝑥), 𝜌𝑇(𝑦)))

where x, y∈ V and A= {(𝜌𝑇(𝑥), 𝜌𝑇(𝑦)) | 𝜔𝑇(x, y) ≥ 0},
𝛽 :B→ ( 0, 1] is taken such that 𝜔𝐼(𝑥, 𝑦) = 𝛽((𝜌𝐼(𝑥), 𝜌𝐼(𝑦)))
where x, y∈ V and B= {(𝜌𝐼(𝑥), 𝜌𝐼(𝑦)) | 𝜔𝐼(x, y) ≥ 0}, and
𝛿 :C→ ( 0, 1] is taken such that 𝜔𝐹(𝑥, 𝑦) = 𝛿((𝜌𝐹(𝑥), 𝜌𝐹(𝑦)))
where x, y∈ V and C= {(𝜌𝐹(𝑥), 𝜌𝐹(𝑦)) | 𝜔𝐹(x, y) ≥ 0}.
The CNG1 can be represented by a (n+1)x(n+1) matrix 
𝑀𝐺1

𝑇,𝐼,𝐹=[𝑎𝑇,𝐼,𝐹(i, j)] as follows:
complex truth-membership (T), complex indeterminate-
membership (I) and complex false-membership (F) values of 
the vertices are provided in the first row and first column.  
The (i+1, j+1)-th entry are the complex truth-membership (T), 
complex indeterminate-membership (I), and complex false-
membership (F) values of the edge (𝑥𝑖, 𝑥𝑗), i, j=1,…,n if i≠j.
The (i, i)-th entry is 𝜌(𝑥𝑖)=(  𝜌𝑇(𝑥𝑖) , 𝜌𝐼(𝑥𝑖), 𝜌𝐹(𝑥𝑖 )), where
i=1,2,…,n. The Complex truth-membership (T), complex 
indeterminate-membership (I) and complex false-membership 
(F) values of the edge can be computed easily using the 
functions 𝛼, 𝛽 and 𝛿 which are in (1,1)-position of the matrix. 
The matrix representation of CNG1, denoted by 𝑀𝐺1

𝑇,𝐼,𝐹, can be
written as three matrix representation 𝑀𝐺1

𝑇 , 𝑀𝐺1
𝐼  and 𝑀𝐺1

𝐹 .

The  𝑀𝐺1
𝑇  can be represented as follows

𝛼 𝑣1(𝜌𝑇(𝑣1)) 𝑣2(𝜌𝑇(𝑣2)) 𝑣𝑛(𝜌𝑇(𝑣𝑛)) 

𝑣1(
𝜌𝑇(𝑣1)) 

𝜌𝑇(𝑣1) 𝛼(𝜌𝑇(𝑣1), 𝜌𝑇(𝑣2)
) 

𝛼(𝜌𝑇(𝑣1), 𝜌𝑇(𝑣𝑛)
) 

𝑣2(
𝜌𝑇(𝑣2)) 

𝛼(𝜌𝑇(𝑣2), 𝜌𝑇(𝑣1)
) 

𝜌𝑇(𝑣2) 𝛼(𝜌𝑇(𝑣2), 𝜌𝑇(𝑣2)
) 

… …. … … 
𝑣𝑛(

𝜌𝑇(𝑣𝑛)) 
𝛼(𝜌𝑇(𝑣𝑛), 𝜌𝑇(𝑣1)
) 

𝛼(𝜌𝑇(𝑣𝑛), 𝜌𝑇(𝑣2)
) 

𝜌𝑇(𝑣𝑛) 

    Table3.    Matrix representation of  T-CNG1 

The  𝑀𝐺1
𝐼  can be represented as follows

𝛽 𝑣1(𝜌𝐼(𝑣1)) 𝑣2(𝜌𝐼(𝑣2)) 𝑣𝑛(𝜌𝐼(𝑣𝑛)) 

𝑣1(𝜌𝐼(𝑣1)) 𝜌𝐼(𝑣1) 𝛽(𝜌𝐼(𝑣1), 𝜌𝐼(𝑣2)) 𝛽(𝜌𝐼(𝑣1), 𝜌𝐼(𝑣𝑛)) 

𝑣2(𝜌𝐼(𝑣2)) 𝛽(𝜌𝐼(𝑣2), 𝜌𝐼(𝑣1)) 𝜌𝐼(𝑣2) 𝛽(𝜌𝐼(𝑣2), 𝜌𝐼(𝑣2)) 

… …. … … 

𝑣𝑛(𝜌𝐼(𝑣𝑛)) 𝛽(𝜌𝐼(𝑣𝑛), 𝜌𝐼(𝑣1)) 𝛽(𝜌𝑇(𝑣𝑛), 𝜌𝐼(𝑣2)) 𝜌𝐼(𝑣𝑛) 

  Table4.   Matrix representation of I-CNG1 

<0.5 𝒆𝒋.𝟎.𝟖, 0.1 𝒆𝒋.2𝜋, 0.1𝒆𝒋.𝟎.𝟓> 

<0
.9

 𝒆
𝒋.

𝟎
.𝟗

, 0
.2

 𝒆
𝒋.

3
𝜋 4
, 0

.1
 𝒆

𝒋.
𝟎

.𝟓
> 

y<0.9 𝒆𝒋.𝟎.𝟗, 0.2 𝒆𝒋.
𝜋
4, 0.6 𝒆𝒋.𝟎.𝟓>

<0.9 𝒆𝒋.𝟎.𝟗, 0.2 𝒆𝒋.𝜋, 0.4 𝒆𝒋.𝟎.𝟕> 

<0.8 𝒆𝒋.𝟎.𝟖, 0.3𝒆𝒋.𝝅, 0.1 𝒆𝒋.𝟎.𝟕> 
x<0.5 𝒆𝒋.𝟎.𝟖, 0.3 𝒆𝒋.

3𝜋

4 , 0.1 𝒆𝒋.𝟎.𝟑>
> 

t<0.8 𝒆𝒋.𝟎.𝟏, 0.5 𝒆𝒋.𝝅, 0.4 𝒆𝒋.𝟎.𝟕>

z   <0.3 𝒆𝒋.𝟎.𝟑, 0.1 𝒆𝒋.2𝜋, 0.8𝒆𝒋.𝟎.𝟓> 
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The  𝑀𝐺1
𝐼  can be represented as follows

𝛿 𝑣1(𝜌𝐹(𝑣1)) 𝑣2(𝜌𝐹(𝑣2)) 𝑣𝑛(𝜌𝐹(𝑣𝑛)) 

𝑣1(
𝜌𝐹(𝑣1)) 

𝜌𝐹(𝑣1) 𝛿(𝜌𝐹(𝑣1), 𝜌𝐹(𝑣2)
) 

𝛿(𝜌𝐹(𝑣1), 𝜌𝐹(𝑣𝑛)
) 

𝑣2(
𝜌𝐹(𝑣2)) 

𝛿(𝜌𝐹(𝑣2), 𝜌𝐹(𝑣1)
) 

𝜌𝐹(𝑣2) 𝛿(𝜌𝐹(𝑣2), 𝜌𝐹(𝑣2)
) 

… …. … … 
𝑣𝑛(

𝜌𝐹(𝑣𝑛)) 
𝛿(𝜌𝐹(𝑣𝑛), 𝜌𝐹(𝑣1)
) 

𝛿(𝜌𝐹(𝑣𝑛), 𝜌𝐹(𝑣2)
) 

𝜌𝐹(𝑣𝑛) 

     Table5.  Matrix representation of  F-CNG1 

Remark 1 : If  the complex indeterminacy-membership and 
complex non-membership values of vertices equals zero, and 
phase term of complex truth membership of vertices equals 0, 
the complex neutrosophic graphs  of type 1 is reduced to 
generalized fuzzy graphs type 1 (GFG1). 
Remark 2: If the phase term of complex truth membership, 
complex indeterminacy membership and complex falsity 
membership values of vertices equals 0, the complex 
neutrosophic graphs  of type 1 is reduced to generalized single 
valued neutrosophic graphs of type 1 (GSVNG1). 
Here the complex neutrosophic graph of type 1 (CNG1) can be 
represented by the matrix representation depicted in table 9. 
The matrix representation can be written as three matrices one 
containing the entries as T, I, F (see table 6, 7 and 8).  

𝛼  x(0.5 
𝑒𝑗.0.8) 

y(0.9 
𝑒𝑗.0.9) 

z(0.3 
𝑒𝑗.0.3) 

t(0.8 
𝑒𝑗.0.1) 

x(0.5 𝑒𝑗.0.8) 0.5 𝑒𝑗.0.8 0.9 𝑒𝑗.0.9 0.5 
𝑒𝑗.0.8 

0.8 
𝑒𝑗.0.8 

y(0.9 𝑒𝑗.0.9) 0.9 𝑒𝑗.0.9 0.9 𝑒𝑗.0.9 0 0.9 
𝑒𝑗.0.9 

z(0.3 𝑒𝑗.0.3) 0.5 𝑒𝑗.0.8 0 0.3 
𝑒𝑗.0.3 

0 

t(0.8 𝑒𝑗.0.1) 0.8 𝑒𝑗.0.8 0.9 𝑒𝑗.0.9 0 0.8 
𝑒𝑗.0.1 

        Table 6: Complex truth-matrix representation of CNG1 

𝛽 x(0.3 𝑒𝑗.
3𝜋

4 ) y(0.2 
𝑒𝑗.

𝜋

4) 
z(0.1 
𝑒𝑗.2𝜋) 

t(0.5 
𝑒𝑗.2𝜋) 

x(0.3 𝑒𝑗.
3𝜋

4 ) 0.3 𝑒𝑗.
3𝜋

4
0.2 
𝑒𝑗.

3𝜋

4

0.1 
𝑒𝑗.2𝜋 

0.3 
𝑒𝑗.2𝜋 

y(0.2 𝑒𝑗.
𝜋

4) 0.2 𝑒𝑗.
3𝜋

4 0.2 𝑒𝑗.
𝜋

4 0 0.2 
𝑒𝑗.2𝜋 

z(0.1 𝑒𝑗.2𝜋) 0.1 𝑒𝑗.2𝜋 0 0.1 
𝑒𝑗.2𝜋 

0 

t(0.5 𝑒𝑗.2𝜋) 0.3 𝑒𝑗.2𝜋 0.2 
𝑒𝑗.2𝜋 

0 0.5 
𝑒𝑗.2𝜋 

  Table 7: Complex indeterminate- matrix representation of 
CNG1. 

𝛿 x(0.1 𝑒𝑗.0.3) y(0.6 
𝑒𝑗.0.5) 

z(0.8 
𝑒𝑗.0.5) 

t(0.8 
𝑒𝑗.0.7) 

x(0.1 𝑒𝑗.0.3) 0.1 𝑒𝑗.0.3 0.1 
𝑒𝑗.0.6 

0.1 
𝑒𝑗.0.3 

0.1 𝑒𝑗.0.8 

y(0.6 𝑒𝑗.0.5) 0.1 𝑒𝑗.0.5 0.6 
𝑒𝑗.0.5 

0 0.6 𝑒𝑗.0.7 

z(0.8 𝑒𝑗.0.5) 0.1 𝑒𝑗.0.5 0 0.8 
𝑒𝑗.0.5 

0 

t(0.8 𝑒𝑗.0.7) 0.1 𝑒𝑗.0.7 0.6 
𝑒𝑗.0.7 

0 0.8 𝑒𝑗.0.7 

         Table 8: Complex falsity- matrix representation of 
CNG1 
The matrix representation of CNG1 can be represented as 
follows: 

(𝛼, 𝛽, 𝛿) x(0.5 𝒆𝒋.𝟎.𝟖, 
0.3 𝒆𝒋.

3𝜋

4 , 
0.1 𝒆𝒋.𝟎.𝟑) 

y(0.9 𝒆𝒋.𝟎.𝟗, 
0.2 𝒆𝒋.

𝜋

4 , 
0.6 𝒆𝒋.𝟎.𝟓) 

z(0.3 𝒆𝒋.𝟎.𝟑, 
0.1 𝒆𝒋.2𝜋, 
0.8 𝒆𝒋.𝟎.𝟓) 

t(0.8 𝒆𝒋.𝟎.𝟏, 
0.5 𝒆𝒋.1𝜋, 
0.4 𝒆𝒋.𝟎.𝟕) 

x(0.5 𝒆𝒋.𝟎.𝟖, 
0.3 𝒆𝒋.

3𝜋

4 , 
0.1 𝒆𝒋.𝟎.𝟑) 

(0.5 𝒆𝒋.𝟎.𝟖, 
0.3 𝒆𝒋.

3𝜋

4 , 
0.1 𝒆𝒋.𝟎.𝟑) 

(0.9 𝒆𝒋.𝟎.𝟗, 
0.2 𝒆𝒋.

3𝜋

4 , 
0.1 𝒆𝒋.𝟎.𝟓) 

(0.5 𝒆𝒋.𝟎.𝟖, 
0.1 𝒆𝒋.2𝜋, 
0.1 𝒆𝒋.𝟎.𝟓) 

(0.8 𝒆𝒋.𝟎.𝟖, 
0.3 𝒆𝒋.1𝜋, 
0.1 𝒆𝒋.𝟎.𝟕) 

y(0.9 𝒆𝒋.𝟎.𝟗, 
0.2 𝒆𝒋.

𝜋

4 , 
0.6 𝒆𝒋.𝟎.𝟓) 

(0.9 𝒆𝒋.𝟎.𝟗, 
0.2 𝒆𝒋.

3𝜋

4 , 
0.1 𝒆𝒋.𝟎.𝟓) 

(0.9 𝒆𝒋.𝟎.𝟗, 
0.2 𝒆𝒋.

𝜋

4 , 
0.6 𝒆𝒋.𝟎.𝟓) 

(0,0,0) (0.9 𝒆𝒋.𝟎.𝟗, 
0.2 𝒆𝒋.1𝜋, 
0.4 𝒆𝒋.𝟎.𝟕) 

z(0.3 𝒆𝒋.𝟎.𝟑, 
0.1 𝒆𝒋.2𝜋, 
0.8 𝒆𝒋.𝟎.𝟓) 

(0.5 𝒆𝒋.𝟎.𝟖, 
0.1 𝒆𝒋.2𝜋, 
0.1 𝒆𝒋.𝟎.𝟓) 

(0,0,0) (0.3 𝒆𝒋.𝟎.𝟑, 
0.1 𝒆𝒋.2𝜋, 
0.8 𝒆𝒋.𝟎.𝟓) 

(0,0,0) 

t(0.8 𝒆𝒋.𝟎.𝟏, 
0.5 𝒆𝒋.1𝜋, 
0.4 𝒆𝒋.𝟎.𝟕) 

(0.8 𝒆𝒋.𝟎.𝟖, 
0.3 𝒆𝒋.

3𝜋

4 , 
0.1 𝒆𝒋.𝟎.𝟕) 

(0.9 𝒆𝒋.𝟎.𝟖, 
0.2 𝒆𝒋.2𝜋, 
0.4 𝒆𝒋.𝟎.𝟓) 

(0,0,0) (0.8 𝒆𝒋.𝟎.𝟏, 
0.5 𝒆𝒋.1𝜋, 
0.4 𝒆𝒋.𝟎.𝟕) 

  Table 9: Matrix representation of CNG1. 

Theorem 1. Let 𝑀𝐺1
𝑇  be a matrix representation of complexT-

CNG1, then the degree of vertex  𝐷𝑇(𝑥𝑘) =∑ 𝑎𝑇(𝑘 +𝑛
𝑗=1,𝑗≠𝑘

1, 𝑗 + 1), 𝑥𝑘 ∈ V or  𝐷𝑇(𝑥𝑝) =∑ 𝑎𝑇(𝑖 + 1, 𝑝 + 1)𝑛
𝑖=1,𝑖≠𝑝 , 𝑥𝑝 ∈

V. 

Proof: It is similar as in theorem 1 of [34]. 

Theorem 2. Let 𝑀𝐺1
𝐼  be a matrix representation of complex I-

CNG1, then the degree of vertex  𝐷𝐼(𝑥𝑘)  =∑ 𝑎𝐼(𝑘 +𝑛
𝑗=1,𝑗≠𝑘

1, 𝑗 + 1), 𝑥𝑘 ∈ V or  𝐷𝐼(𝑥𝑝) =∑ 𝑎𝐼(𝑖 + 1, 𝑝 + 1)𝑛
𝑖=1,𝑖≠𝑝 , 𝑥𝑝 ∈

V. 

Proof: It is similar as in theorem 1 of [34]. 

Theorem 3. Let 𝑀𝐺1
𝐹  be a matrix representation of complex F-

CNG1, then the degree of vertex  𝐷𝐹(𝑥𝑘) =∑ 𝑎𝐹(𝑘 +𝑛
𝑗=1,𝑗≠𝑘

1, 𝑗 + 1), 𝑥𝑘 ∈ V or  𝐷𝐹(𝑥𝑝) =∑ 𝑎𝐹(𝑖 + 1, 𝑝 + 1)𝑛
𝑖=1,𝑖≠𝑝 , 𝑥𝑝 ∈

V. 

Proof: It is similar as in theorem 1  of [34]. 

Theorem4. Let 𝑀𝐺1

𝑇,𝐼,𝐹 be matrix representation of CNG1, then 
the degree of vertex  D(𝑥𝑘) =(𝐷𝑇(𝑥𝑘), 𝐷𝐼(𝑥𝑘), 𝐷𝐹(𝑥𝑘))  where
𝐷𝑇(𝑥𝑘) =∑ 𝑎𝑇(𝑘 + 1, 𝑗 + 1)𝑛

𝑗=1,𝑗≠𝑘 , 𝑥𝑘 ∈ V.
𝐷𝐼(𝑥𝑘) =∑ 𝑎𝐼(𝑘 + 1, 𝑗 + 1)𝑛

𝑗=1,𝑗≠𝑘 , 𝑥𝑘 ∈ V.
𝐷𝐹(𝑥𝑘) =∑ 𝑎𝐹(𝑘 + 1, 𝑗 + 1)𝑛

𝑗=1,𝑗≠𝑘 , 𝑥𝑘 ∈ V
Proof: the proof is obvious. 
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In this article, we presented a new concept of neutrosophic 
graph called complex neutrosophic graphs of type 1 and 
presented a matrix representation of it. The concept of complex 
neutrosophic graph of type 1 (CNG1) can be applied to the case 
of bipolar complex neutrosophic graphs (BCNG1). In the future 
works, we plan to study the concept of completeness, the 
concept of regularity and to define the concept of complex 
neutrosophic graphs of type 2. 
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Abstract— Neutrosophic sets have been introduced as a
generalization of crisp sets, fuzzy sets, and intuitionistic fuzzy 
sets to represent uncertain, inconsistent and incomplete 
information about real world problems. Elements of 
neutrosophic set are characterized by a truth-membership, 
falsity-membership and indeterminacy membership functions. 
For the first time, this paper attempts to introduce the 
mathematical representation of Program Evaluation and Review 
Technique (PERT) in neutrosophic environment. Here the 
elements of three-times estimates of PERT are considered as 
neutrosophic elements. Score and accuracy functions are used to 
obtain crisp model of problem. The proposed method has been 
demonstrated by a suitable numerical example.

Keywords— Neutrosophic Sets, Project, Project Management,
Gantt chart, CPM, PERT, Three-Time Estimate. 

I. INTRODUCTION

  A project is a one time job that has a definite starting and 
ending dates, a clearly specified objective, a scope of work to 
be performed and a predefined budget. Each part of project 
have an effect on overall project execution time, so project 
completion on time depends on rightly scheduled plan. The 
main problem here is wrongly calculated activity durations 
due to lack of knowledge and experience. Lewis [1] defines 
project management as "the planning, scheduling and 
controlling of project activities to achieve project objectives-
performance, cost and time for a given scope of work". The 
most popularly used techniques for project management are 
Gantt chart, Program Evaluation and Review Technique 
(PERT) and Critical Path Method (CPM). Gantt chart is an 
early technique of planning and controlling projects. Gantt 
charts are simple to construct, easy to understand and change. 
They can show plan and actual progress. However, it does not 

show interrelationships of activities. To overcome the 
limitation of Gantt chart, two project planning techniques-
PERT and CPM were developed in 1950s. Both use a network 
and graphical model of a project, showing the activities, their 
interrelationships and starting and ending dates. In case of 
CPM, activity time can be estimated accurately and it does not 
vary much. In recent years, by depending on the fuzzy set 
theory for managing projects there were different PERT 
methods. However, the existing methods of fuzzy PERT have 
some drawbacks [2]: 

 Cannot find a critical path in a fuzzy project network.
 The increasing of the possible critical paths, which is

the higher risk path.
 Can't determine indeterminacy, which exist in real

life situations.
In case of PERT, time estimates vary significantly [3][4]. Here 
three time estimates which are optimistic  pessimistic
and most likely  are used. In practice, a question often 
arises as to how obtain good estimates of  , and . The 
person who responsible for determining values of  , 
and  often face real problem due to uncertain, inconsistent 
and incomplete information about real world.  It is obvious 
that neutrosophic set theory is more appropriate than fuzzy set 
in modeling uncertainty that is associated with parameters 
such as activity duration time and resource availability in 
PERT. By using neutrosophic set theory in PERT technique, 
we can also overcome the drawbacks of fuzzy PERT methods. 
This paper is organized as follows: 

In section 2, the basic concepts neutrosophic sets are briefly 
reviewed. In section 3, the mathematical model of neutrosophic 
PERT and the proposed algorithm is presented. In section 4, a 
suitable numerical example is illustrated. Finally section 5 
concludes the paper with future work . 
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II. PRELIMINARIES
In this section, the basic definitions involving neutrosophic 

set, single valued neutrosophic sets, trapezoidal neutrosophic 
numbers and operations on trapezoidal neutrosophic numbers 
are outlined. 

Definition 1. [5] Let 𝑋 be a space of points (objects) and 𝑥∈𝑋. 
A neutrosophic set 𝐴 in 𝑋 is defined by a truth-membership 
function (𝑥), an indeterminacy-membership function 
and a falsity-membership function  (𝑥),  and 

 are real standard or real nonstandard subsets of ]-0, 1+[. 
That is (𝑥):𝑋→]-0, 1+[, :𝑋→]-0, 1+[ and :𝑋→]-0,
1+[. There is no restriction on the sum of (𝑥), 
and , so  0− ≤ sup (𝑥)+ sup  + sup  ≤3+. 

Definition 2. [5] Let 𝑋 be a universe of discourse. A single 
valued neutrosophic set 𝐴 over 𝑋 is an object having the form 
𝐴={〈𝑥, (𝑥), , 〉:𝑥∈𝑋}, where (𝑥):𝑋→[0,1], 

:𝑋→[0,1] and :𝑋→[0,1] with 0≤ (𝑥)+ + 
≤3 for all 𝑥∈𝑋. The intervals (𝑥),  and 

denote the truth-membership degree, the indeterminacy-
membership degree and the falsity membership degree of 𝑥 to 
𝐴, respectively. For convenience, a SVN number is denoted by 
𝐴= (𝑎,b,c), where 𝑎,𝑏,𝑐∈[0,1] and 𝑎+𝑏+𝑐≤3. 

Definition 3. [6] Let  , ,  and 
such that  . Then a single valued 
trapezoidal neutrosophic number, 

=  is a special neutrosophic set on 
the real line set  whose truth-membership, indeterminacy-
membership, and falsity-membership functions are given as 
follows[8]: 

 

Where  , ,  denote the maximum truth-membership 
degree, minimum indeterminacy-membership degree and 
minimum falsity-membership degree respectively. A single 
valued trapezoidal neutrosophic number 

=  may express an ill-defined 
quantity about which is approximately equal to [ ]. 

Definition 4. [7] Let =  and  
=  be two single valued 
trapezoidal neutrosophic numbers and   be any real 
number [9]. Then, 

+ =

 - = 

  = 

Where

III. PERT IN NEUTROSOPHIC ENVIRONMENT AND THE
PROPOSED MODEL

Like CPM, PERT uses network model. However, PERT has 
been traditionally used in new projects which have large 
uncertainty in respect of design, technology and construction. 
To take care of associated uncertainties, we adopts 
neutrosophic environment for PERT activity duration. 
The three time estimates for activity duration are: 

1. Optimistic time ( ): it is the minimum time needed to
complete the activity if everything goes well. 

2. Pessimistic time  : it is the maximum time needed
to complete the activity if one encounters problems 
at every turn. 

3. Most likely time, i.e. Mode ( : it is the time
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required to complete the activity in normal 
circumstances. 

Where ,  are single valued trapezoidal neutrosophic 
numbers. 

Based on three time estimates ( , , , expected time and 
standard deviation of each  activity should be calculated , and 
to do this we should first obtain crisp values of three time 
estimates. 

To obtain crisp values of three time estimates, we should use 
score functions and accuracy functions as follows: 
Let =  );  , , be a single valued 
trapezoidal neutrosophic number; then  

1. Score function

2. accuracy function

After obtaining crisp values of each time estimate by using 
score function, the expected time and standard deviation of 
each activity calculated as follows; 

And 

Where, 
  are crisp values of optimistic, most likely and 

pessimistic time respectively, 

= Expected time of  activity and 
  Standard deviation of  activity. 

Once the expected time and standard deviation of each activity 
are calculated, PERT network is treated like CPM network for 
the purpose of calculation of network parameters like 
earliest/latest occurrence time of activity, critical path and 
floats. 

 Let a network N= , being a project model, is given. E 
is asset of events (nodes) and A  is a set of activities. 
The set E=  is labeled in such a way that the 
following condition holds: (i, j)  and i< j. The activity 
times in the network are determined by 
Notations of network solution and its calculations as follows: 

=Earliest occurrence time of predecessor event i, 
= Latest occurrence time of predecessor event i, 
=Earliest occurrence time of successor event j, 
= Latest occurrence time of successor event j, 

Start= Earliest start time of an activity , 
Finish=Earliest finish time of an activity , 
Start=Latest start time of an  activity , 
Finish= Latest finish time of an activity , 

 Duration time of activity , 
Earliest and Latest occurrence time of an event: 

=maximum ( calculate all  for jth event, select 
maximum value. 

=minimum (  calculate all  for ith event, select 
minimum value. 

Start= , 
Finish= , 
Finish=  
Start=  , 

Critical path is the longest path in the network. At critical 
path, = , for all i. 
Slack or Float is cushion available on event/ activity by which 
it can be delayed without affecting the project completion 
time. 
Slack for ith event = , for events on critical path, slack 
is zero. 
The expected time of critical path (  and its variance 
( calculated as follows; 

 for all  on critical path. 
 for all  on critical path. 

From the previous steps we can conclude the proposed 
algorithm as follows: 

1. To deal with uncertain, inconsistent and incomplete
information about activity time, we considered three
time estimates of PERT technique as a single valued
trapezoidal neutrosophic numbers.

2. Calculate membership functions of each single
valued trapezoidal neutrosophic number, using
equation 1, 2 and 3.

3. Obtain crisp model of PERT three time estimates
using score function equation as we illustrated
previously.

4. Use crisp values of three time estimates to calculate
expected time and standard deviation of each activity.

5. Draw PERT network diagram.
6. Determine floats and critical path, which is the

longest path in network as we illustrated previously
with details.

7. Calculate expected time and variance of critical path.
8. Determine expected project completion time.

IV.  ILLUSTRATIVE EXAMPLE

  Let us consider neutrosophic PERT and try to obtain crisp 
model from it. Since you are given the following data for a 
project: 
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TABLE 1. INPUT dATA FOR NEUTROSOPHIC PERT. 
Activity Immediate Predecessors Time (days) 

A ------ 

B ------ 

C A 

D A 

E B 

F C,D 

G D,E 

H F,G 

In the previous table ,  and  are optimistic, most likely 
and pessimistic time in neutrosophic environment, and 
considered as a single valued trapezoidal neutrosophic 
numbers. 

Let, 
,

, ,
, ,
,
,

, 

Step 1: To obtain crisp values of each single valued 
trapezoidal neutrosophic number, we should calculate score 
function as follows: 

Step 2: By putting score functions values as crisp values of 
each time estimate, we can calculate the expected time and 
variance of each activity as we illustrated with equations in the 
previous section. The expected time of each activity has been 
calculated and presented in table 2. 
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TABLE 2. THE EXPECTED TIME OF EACH ACTIVITY 
IN THE PROJECT. 

Activity Immediate Predecessors Expected Time(days) 

A ------ 1 

B ------ 2 

C A 3 

D A 4 

E B 4 

F C,D 8 

G D,E 6 

H F,G 5 

Step 3: Draw the network diagram by using Microsoft Project 
2010. 

Fig. 1. Network of activities with critical path 

From figure 1, we find that the critical path is A-D-F-H and is 
denoted by red line. The expected project completion time = 

 = 18 days. 

V.  CONCLUSION 

Neutrosophic set is a generalization of classical set, fuzzy set 
and intuitionistic fuzzy set because it not only considers the 

truth-membership and falsity- membership but also an 
indeterminacy membership which is very obvious in real life 
situations. In this paper, we have considered the three time 
estimates of PERT as a single valued trapezoidal neutrosophic 
numbers and we used score function to obtain crisp values of 
three time estimates. In future, the research will be extended to 
deal with different project management techniques.
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Abstract 

Neutrosophic sets, as the generalization of many types of sets, including classical and fuzzy 
sets, are becoming more and more important for solving a number of complex decision-
making problems. On the other hand, the reliability of the information used to solve a 
problem also has an impact on the selection of the most appropriate solution. Therefore, in 
this paper, an approach for assessing the reliability of information contained in single valued 
neutrosophic numbers has been proposed. The usability of the proposed approach is 
considered in the case of determining customer satisfaction of users of traditional Serbian 
restaurants in the city of Zajecar. 

Keywords: neutrosophy, SVNN, estimating data reliability 

Introduction 

In order to provide methodology for solving complex decision-making problems, Zadeh 
(1965) introduced fuzzy set theory. Based on the fuzzy set theory, a number of extensions of 
this theory was proposed.  

The membership function to the set, introduced in the fuzzy set theory, in the case of solving 
some complex decision-making problems has not been sufficient, or its determination was 
difficult. Therefore, some extensions of the fuzzy set theory are proposed. 

For example, Atanassov (1986) proposed intuitionistic fuzzy sets by introducing non-
membership function. After that, Atanassov and Gargov, (1989) proposed the moreefficient 
use of the intuitionistic fuzzy set theory by introducing more flexible approach for 
determining boundaries of membership function, or more precisely said, they introduced the 
usage of intervals for determining boundaries of membership function and so they made 
intuitionistic fuzzy setsmore flexible and practical for solving complex decision-making 
problems. 

The lack of non-membership function, identified in fuzzy set theory, has been successfully 
solved in anintuitionistic set theory. However, the lack of a measure that would show a gap 
between membership and non-membership functions remains present in intuitionistic set 
theory, where it is determined as difference between membership functions. 
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Finally, Smarandache (1998) introduced the neutrosophic set as generalization the concepts of 
the classical sets, fuzzy sets and other fuzzy sets based theories, and so provide very flexible 
approach for dealing with membership, non-membership and indeterminacy 
functions.Smarandache(1998) and Wanget al. (2010) further introduced the single valued 
neutrosophic sets that are more suitable for solving many real-world decision-making 
problems. 

However, various types of fuzzy numbers, including neutrosophic numbers, are becoming 
more and more complex compared to crisp numbers. It is certain that the mentioned types of 
numbers have their advantages. However, the use of such numbers can become rather 
complex in the case of data collection, especially when data are collected by interviewing 
respondents who are not pre-prepared for the use of such numbers. 

In the past period, many researchers are dedicated to the use of neutrosophic numbers for 
solving a number of different problems, while problems related to data collection and 
assessment of their reliability are marginalized. 

Therefore, the rest of the manuscript is organized as follows: in Section 2, the basic elements 
of neutrosophic sets are considered and in Section 3, a procedure for estimating data 
reliabilityis proposed. Section 4 presents a new innovative procedure for evaluating 
alternatives whereas in Section 5 its usability is demonstrated in numerical illustration. Finally, 
the conclusion are given. 

Preliminaries 

Definition 1. Neutrosophic set. Let Xbe the universe of discourse, with a generic element in X 
denoted by x. Then, the neutrosophic set A in X is as follows(Smarandache, 1999): 

,  (1) 

WhereTA(x), IA(x) and FA(x) are the truth-membership function, the indeterminacy-
membership function and the falsity-membership function, respectively, 

and TA(x)+IA(x)+UA(x) . 

Definition 2.Single valued neutrosophicset.Let X be the universe of discourse. The Single 
Valued Neutrosophic Set(SVNS) A over X is an object having the form(Smarandache, 1998, 
Wang et al. 2010): 

, (2) 

whereTA(x), IA(x) and FA(x) are the truth-membership function, the intermediacy-membership 
function and the falsity-membership function, respectively, and 
TA(x)+IA(x)+UA

Definition 3.Single valued neutrosophic number.For an SVNS A in X, the triple is 
called the single valued neutrosophic number (SVNN)(Smarandache, 1999). 

Definition 4. Basic operations onSVNNs. Let and 2222 , ,  be two SVNNs 
and ; then, the basic operations are defined as follows: 
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. (3) 

. (4) 

. (5) 

. (6) 

Definition 6.Single valued neutrosophic average.Let  be a collection of SVNNs 
and be an associated weighting vector. Then the Single Valued 
Neutrosophic Weighted Average (SVNWA)operatorofajis as follows(Smarandache, 2014): 

, (7) 

where: wj is the element j of the weighting vector,  and . 

Procedure for estimating data reliability 

In this section, an approach for estimating reliability of SVNN, as well as thecollection of 
SVNNs, is introduced. 

Definition7. Reliability of information contained in a SVNN. Let  be a SVNN. 
Then, the reliability of information contained in SVNN x is as follows: 

(8) 

where:  and indicates the lack of the reliability of the information contained 

inx. 

Example. Let x=<0.80, 0.10, 0.30> be a SVNN. Thenr(x)is 0.45 forn=1. For higher values of 
n, such as: 2, 3, 4, 5 and 10, r(x) is as follows: 0.38, 0.34, 0.31 and 0.28. 
It is evident that by increasing the value of parameter n the value of r decreases, which could 
be very successful for analyzing different decision-making scenarios. 

Definition 8. Reliability of information contained in a collection of SVNNs.Let 
be a collection of SVNNs. Then, the average reliability of collection xiis as follows: 

L

l
xx ii

r
L

ra
1

)()(

1
(9) 

whereL denotes the number of elements of the collection. 

Example. Let xibe a collection of SVNNs. The collection xi and the values of their rand ra 
functions are accounted for in Table 1, 
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Table 1: The reliability and overall reliability of the collection of SVNNs 
ri 

x1 <0.80, 0.10, 0.30> 0.45 
x2 <0.70, 0.10, 0.20> 0.45 
x3 <0.70, 0.10, 0.10> 0.55 

ra.. 0.48 

Procedure for assessing the reliability of the information contained in an evaluation matrix 
can be precisely described by the following steps: 

Step 1. Determine the reliability of data contained in each element of the evaluation matrix, 
using Eq. (8). 

Step 2. Determine the reliability of data contained in the evaluation matrix, or its rows or 
columns, using Eq. (9). 

A new innovative procedure for evaluating alternatives 

A group multiple criteria decision-making procedure usually begins with a team of experts 
and / or decision-makers who will perform the evaluation. At the very beginning they define 
goal, or goals, that should be reached by the evaluation, define a set of evaluation criteria and 
identify available alternatives. By this time, they also determine the significances, often called 
weights, of criteria. 

The remaining part of the evaluation procedure can be precisely described by the following 
steps: 
- Evaluate alternatives in relation to the select of evaluation criteria. In this step each expert 

and / or decision-maker forms its individual evaluation matrix, which elements are 
SVNNs. 

- Check the data reliability. In this step, based on the procedure for estimating data 
reliability, reliability of each expert and/or decision-maker is calculated. If the reliability 
of any evaluation matrix is under minimally acceptable level, it should be reconsidered or 
omitted from further calculations. 
Construct a group evaluation matrix. The group evaluation matrix is formed on the basis 
of evaluation matrix formed by using Eq. (8). 
Calculate the overall rating for each alternative by using Eq (9). 
Determine the ideal point. 
Determine the Hamming distance of each alternative to the ideal point. 
Rank the alternatives according to their distances to the ideal point and select the most 
appropriate ones. In this approach, the alternative with least distance to the ideal point is 
the most appropriate one. 

Numerical Illustration 

In this section, the usability of the proposed approach is demonstrated on the basis of a 
numerical illustration adopted Stanujkic et al. (2016). In this numerical illustration, three 
traditional restaurants were evaluated based on the following criteria:  

C1: the interior of the building and the friendly atmosphere, 
C2: the helpfulness and friendliness of the staff, 
C3: the variety of traditional food and drinks, 
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C4: the quality and the taste of the food and drinks, including the manner of serving them, 
and 
C5: the appropriate price for the quality of the services provided. 

In order to explain the proposed approach, three completed surveys have been selected. The 
ratings of the evaluated alternativesobtained on the basis of the three surveys are given in 
Tables 2 to 4. 

Table 2: The ratings obtained from the first of three respondents expressed in the form of 
SVNN 

C1 C2 C3 C4 C5 
A1 <0.80, 0.10, 0.30> <0.70, 0.20, 0.20> <0.80, 0.10, 0.10> <1.00, 0.01, 0.01> <0.80, 0.10, 0.10> 
A2 <0.70, 0.10, 0.20> <1.00, 0.10, 0.10> <1.00, 0.20, 0.10> <1.00, 0.01, 0.01> <0.80, 0.10, 0.10> 
A3 <0.70, 0.10, 0.10> <1.00, 0.10, 0.10> <0.70, 0.10, 0.10> <0.90, 0.20, 0.01> <0.90, 0.10, 0.10> 

Source: 

Table 3: The ratings obtained from the second of three respondents expressed in the form of 
SVNN 

C1 C2 C3 C4 C5 
A1 <0.80, 0.10, 0.40> <0.90, 0.15, 0.30> <0.90, 0.20, 0.20> <0.85, 0.10, 0.25> <1.00, 0.10, 0.20> 
A2 <0.90, 0.15, 0.30> <0.90, 0.15, 0.20> <1.00, 0.30, 0.20> <0.70, 0.20, 0.10> <0.80, 0.20, 0.30> 
A3 <0.60, 0.15, 0.30> <0.55, 0.20, 0.30> <0.55, 0.30, 0.30> <0.60, 0.30, 0.20> <0.70, 0.20, 0.30> 

Source: 

Table 4: The ratings obtained from the third of three respondents expressed in the form of 
SVNN 

C1 C2 C3 C4 C5 
A1 <1.00, 0.10, 0.10> <0.90, 0.15, 0.20> <1.00, 0.20, 0.10> <0.80, 0.10, 0.10> <0.90, 0.10, 0.20> 
A2 <0.80, 0.15, 0.30> <0.90, 0.15, 0.20> <1.00, 0.20, 0.20> <0.70, 0.20, 0.10> <0.80, 0.20, 0.30> 
A3 <0.60, 0.15, 0.30> <0.55, 0.20, 0.30> <0.55, 0.30, 0.30> <0.60, 0.30, 0.20> <0.70, 0.20, 0.30> 

Source: 

The reliabilityof the data obtained from the first respondent are accounted for in Table 5. 

Table 5: The reliability data obtained from the first of three respondents  
C1 C2 C3 C4 C5 Reliability 

A1 0.45 0.42 0.98 0.64 0.62 0.45 
A2 0.45 0.82 0.98 0.64 0.73 0.45 
A3 0.55 0.82 0.74 0.73 0.68 0.55 

Reliability 0.48 0.68 0.90 0.67 0.00 0.48 
Overall reliability 0.68 

Source: 

The reliability of the data obtained from three respondents is accounted for in Table 6. 

Table 6:The reliability data obtained from three respondents  
Reliability 

E1 0.68 

E2 0.45 

E3 0.49 

Average reliability 0.54 

Source: 
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For the presented evaluation it was decided that the achieved level of data reliability is 
satisfactory, which is why it was continued with the evaluation. Contrary, in cases when the 
achieved level of data reliability is not satisfactory surveys with lower values of data 
reliability must be done again or omitted from the further calculations. 

In the next step the group decision matrix is formed by using Eq. (7). The group decision 
matrix is shown in Table 7. 

Table 7: The group ratings of alternatives 
C1 C2 C3 C4 C5 

wj 0.17 0.17 0.19 0.23 0.24 

A1 <1.00, 0.10, 0.28> <0.86, 0.17, 0.23> <1.00, 0.17, 0.13> <1.00, 0.07, 0.13> <1.00, 0.10, 0.17> 

A2 <0.82, 0.13, 0.27> <1.00, 0.13, 0.17> <1.00, 0.23, 0.17> <1.00, 0.14, 0.07> <0.80, 0.17, 0.24> 

A3 <0.64, 0.13, 0.24> <1.00, 0.17, 0.24> <0.61, 0.24, 0.24> <0.75, 0.27, 0.14> <0.79, 0.17, 0.24> 

Source: 

Table 6 also shows the weights of the criteria. The overall ratings of the alternatives 
calculated by using Eq. (7) are shown in Table 8.  

Table 8: The ranking order of alternatives 
Overall ratings Distance Rank 

A1 <1.00, 0.11, 0.17> 0.00 1 

A2 <1.00, 0.16, 0.16> 0.02 2 

A3 <1.00, 0.19, 0.21> 0.04 3 

Ideal point <1.00, 0.11, 0.16> 

Source: 

Table 8 also shows the ideal point, distances of alternatives to the ideal point, as well as the 
ranking order of alternatives. 

As it can be seen from Table 8, the best placed alternative is alternative denoted as A1. 

Conclusion 

In this article, an innovative multiple criterion decision making approach for evaluating 
alternatives based on the use of single valued neutrosophic numbers is presented. The main 
advantage of this approach is the use of a procedure for estimating the reliability of the 
collected data, which can be especially useful when the data is collected by the survey. 

Using the proposed procedure for estimating data reliability, respondents who inadequately 
filled out surveys can be identified and further they can be asked to fill out surveys again or 
their surveys can be omitted from further calculations. 

As the second significant characteristic of the proposed approach is the use of Hamming 
distance to the ideal point for ranking alternatives. 

The usability and efficiency of the proposed approach is successfully demonstrated on an 
example of evaluating customer satisfaction in traditional Serbian restaurants in city of 
Zajecar. 

Finally, developing the similar procedure for estimating data reliability of bipolarneutrosophic 
number can be identified as a continuation of this research. 
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Abstract

The beginning of transition in former command economies was characterised by deep 
recession and numerous structural imbalances. Some of transition economies have overcome 
these problems relatively fast and some of them are still struggling to find their way to growth 
and development. One of the key drivers of economic expansion in advanced transition 
economieswereFDI. Foreign investors had different motives for investment. In accordance 
with them and business environment characteristics in these countries they chose the location 
of their investment. Having in mind that FDI are still very important generator of economic 
growth, the growing number of authors is dealing with the development of most efficient 
decision making method for FDI location choice. This paper presents a single valued 
neutrosophic numbers approach for selecting the most suitable country for investment. The 
effectiveness and usability of the proposed approach were demonstrated in the case of non-
EU Balkan countries, bearing in mind that these countries are still lagging behind CEE 
economies in terms of growth and development. 

Introduction 

The internationalization of businesses is one of the most important global trends in 
contemporary business conditions and one of the biggest challenges for MNEs Aleksandruk 
and Forte (2016).Investing money in new projects, as well as selecting a country for new 
investment, are real problems that deserve great attention, especially in the case of long-term 
investments, as in a case of FDI.Because of that, special attention is devoted to these 
problems in scientific and professional literature. As a proof of that, from numerous published 
articles, some of the most cited articles are listed: Yiu et al. (2007), Beim and Levesque 
(2006), Moen et al. (2004), Manigart, et al. (2002), Chung and Enderwick (2001), Wells et al. 
(1990). 

Motives of foreign investors are different, but most of authors categorized them in these 
groups: market-seeking, efficiency-seeking, resource-seeking, strategic asset seeking 
Aleksandruk and Forte (2016), Maza and Villaverde (2015), Estrin and Uvalic (2014), 
Altomonte and Guagliano (2003), Tampakoudis et al. (2017). Having in mind that mentioned 
groups of investors have different investment aims, they also have different preferences about 
characteristics of business environmentin CEE countries. The mostly cited determinants of 
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FDI in transition countries are: market size and attractiveness, institutional environment, 
political risk, transaction costs,  bilateral exports, transition progress, financial market 
development, infrastructure, macroeconomic stability, administrative procedures, tax system, 
labor market and regulations, knowledge resources, natural resources, trade opennessDauti 

 Hengel, E. (2010), Tampakoudis 
et al. (2017), Wach and Wojciechowski (2016) .Bearing in mind all these criteria, it can be 
concluded that evaluation of any investment project location involves at least three mutually 
opposite criteria. So, problem of selecting the most appropriate investment projects can be 
expressed as follows: How to achieve as much as possible revenue in as is possible shorter 
period of time with as is possible smaller investments? Of course, the risk of investment 
should not be ignored here. Therefore, any investment project can be considered as a multiple 
criteria decision-making problem, and as some evidence for such an approach, the following: 

 et al
Zubrecovas (2009), Dimova et al.  (2006), Tzeng and Teng (1993), and so on. 

In order to enable solving of complex problems of decision-making problems, Zadeh (1965) 
introduced fuzzy set theory. Based on the fuzzy set theory, a number of authors lather 
proposed some its extensions as follows: intuitionistic (Atanassov, 1986), interval-valued 
(Turksen 1986) and interval-valued intuitionistic (Atanassov and Gergov, 1989) fuzzy set 
theory. Further, Smarandache (1998) introduced the neutrosophic set as general framework 
generalizing the concepts of the classical, and all above mentioned fuzzy theories.In addition 
to the membership function, or the so-called truth-membership TA(x), proposed in fuzzy sets, 
Atanassov (986) introduced the non-membership function, or the so-called falsity-
membership FA(x), which expresses non-membership to a set, thus creating the basis for the 
solving of a much larger number of decision-making problems. Finally, Smarandache (1999) 
introduced independent indeterminacy-membership , thus making the neutrosopic sets 
most suitable for solving some complex decision-making problems. In the next step, 
Smarandache (1998) and Wanget al. (2010) further introduced the single valued neutrosophic 
sets that are more suitable for solving many real-world decision-making problems. 

Therefore, the rest of the manuscript is organized as follows: in Section 2, the basic elements 
of neutrosophic sets are considered and in Section 3, a procedure for evaluating investment 
projects is proposed. In Section 4, its usability is demonstrated. Finally, the conclusion is 
given. 

Preliminaries 

Definition 1. Neutrosophic set. Let Xbe the universe of discourse, with a generic element in X 
denoted by x. Then, the neutrosophic set A in X is as follows(Smarandache, 1999): 

, (1) 

whereTA(x), IA(x) and FA(x) are the truth-membership function, the indeterminacy-
membership function and the falsity-membership function, respectively, 

and TA(x)+IA(x)+UA(x) . 

Definition 2. Single valued neutrosophic set.Let X be the universe of discourse. The Single 
Valued Neutrosophic Set(SVNS) A over X is an object having the form (Smarandache, 1998, 
Wang et al. 2010): 

}|)(),(),({ XxxFxIxTxA AAA , (2) 
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whereTA(x), IA(x) and FA(x) are the truth-membership function, the intermediacy-membership 
function and the falsity-membership function, respectively, 
TA(x)+IA(x)+UA

Definition 3. Single valued neutrosophic number.For an SVNS A in X, the triple is 
called the single valued neutrosophic number (SVNN) (Smarandache, 1999). 

Definition 4. SVNNs. Let and  be two SVNNs and ; then, the 
basic operations are defined as follows: 

. (3) 
. (4) 

1111 ,,)1(1 fitx . (5) 

. (6) 

Definition 5. Score function. Let  be a SVNN, then the score function s(x) of x is as 
follows (Smarandache, 1998): 

, (7) 
where . 

Definition 6. Single valued neutrosophic average.Let  be a collection of SVNNs 
and be an associated weighting vector. Then the Single Valued 
Neutrosophic Weighted Average (SVNWA) operator of aj is as follows(Smarandache, 2014): 

, (8) 

where: wj is the element j of the weighting vector,  and . 

Framework for evaluating the strategies 

Many complex decision-making problems require the participation of more experts and/or 
decision-makers in selection of the most appropriate alternative. Therefore, in this section, a 
framework for the evaluation of countries for new investment, based on group decision-
making and the SVNNs method, is considered. 

The selection process involving m alternatives that are evaluated on the basis of n criteria by 
K decision maker can be presented in detail using the following steps: 

Step 1. Form a team of experts and / or decision-makers who will evaluate potential countries. 

Step 2. Define the objectives that need to be achieved by the investment objectives. In this 
steep, the team of experts and / or decision-makers define the objectives to be achieved. 

Step 3. Identify the possible countries. In this step, the team of experts and / or decision-
makers identify countries - potential candidates for investment. 
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Step 4. Form a set of evaluation criteria. In this step, the team of experts and / or decision-
makers selects the set of criteria on which basis the evaluation will be carried out. 

Step 5. Determine the significance of the criteria. In the literature, many techniques for 
determining the weights of criteria are proposed, such as pair-wise comparisons (Saaty, 1977), 
SWARA (Kersulieneet al. 2010), Best-worst method (Rezaei, 2015), PIPRECIA (Stanujkic et 
al., 2017).  

In this approach, each expert and / or decision-maker evaluates the criteria by applying one of 
the above-mentioned techniques, after which the group weights are determined as follows: 

,  (11) 

where  denotes the weight of criterion j obtained from expert / decision-maker k. 

Step 6. Evaluate the strategies in relation to the set of criteria. In this step, each expert forms 
his / her decision matrix, whose elements are SVNNs. 

Step 7. Evaluate alternatives. The selection procedure can be described as follows: 
Form a group decision matrix, based on individual decision-making matrices formed by 
experts, using Eq. (8). 
Calculate the overall performance of each alternative, based on the group decision matrix, 
also using Eq. (8) 

Determine the value of the Score function for each alternative using Eq, (7). 
Rank the alternatives in relation to the value of the Score function, where the alternative 
with the highest value of the Score function is the most appropriate alternative. 

Numerical Illustration 

In order to present the usability of the SVNNs for solving different decision-making problems 
in the economics, a numerical illustration is presented below.In this numerical illustration, 
five Balkan countries, which are not members of the European Union, have been evaluated 
from the point of view of potential investors with different motives for investment. 

At the very beginning of the evaluation, a team of three experts was formed. Based on the FDI 
determinants shown in Table 1, as well as their experiences and motives for investment, the 
experts performed out the evaluation the alternatives in relation to the selected set of 
evaluation criteria. 
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Table 1: FDI determinants of the business environment 
FDI Determinants 

Market 
Size 

(GDP) 

Average 
Salary 

Rent 
Tax 
Rate 

Property 
Protection 

% 
A1 Albania 4538 390 2 37.3 54.0 
A2 Bosnia 5181 440 1.1 23.7 41.2 
A3 Macedonia 5443 377 1.5 13.0 67.0 
A4 Montenegro 7670 512 0.8 22.1 58.0 
A5 Serbia 5900 459 1.5 39.7 50.3 

Source: 

In the performed evaluation, the first of the three experts carried out evaluation from the 
market seeking investor point of view, while the second and third experts were made 
evaluations from the point of view of resource-seeking and efficiency-seeking, respectively. 

The performances of the alternative in relation to the evaluation criteria, as well as the weight 
of the criteria, obtained from a team of three experts are shown in Tables 2 to 4, whereby they 
evaluated the alternatives using a five-pointLikert scale, after which these values, for the 
purpose of further calculation, are transformed to the corresponding values in the interval [0, 
1]. 

Table 2: The ratings and weights obtained from the first of three experts 
C1 C2 C3 C4 C5 

wj 0.25 0.19 0.13 0.21 0.21 
t i f t i f t i f t i f t i f 

A1 2.00 0.00 0.00 3.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.10 3.00 0.00 0.10 
A2 3.00 0.00 0.00 4.00 0.00 0.00 1.00 0.00 0.00 2.00 0.00 0.00 2.00 0.00 0.00 
A3 3.00 0.00 1.00 3.00 0.00 0.00 1.00 0.00 0.00 4.00 0.00 0.00 5.00 0.00 0.00 
A4 5.00 0.00 2.00 4.00 0.00 1.00 1.00 0.00 0.00 2.00 0.00 0.10 4.00 0.00 0.00 
A5 4.00 0.00 0.00 4.00 0.00 2.00 1.00 0.00 0.00 1.00 0.00 0.00 3.00 0.00 0.00 

Source: 

The ratings of alternatives obtained from the first of three experts, expressed using the SVNN, 
are shown in Table 5, while the overall ratings, the values of score function, as well as the 
ranking order of alternatives are shown in table 6. 

Table 3: The ratings and weights obtained from the second of three experts 
C1 C2 C3 C4 C5 

wj 0.08 0.13 0.38 0.26 0.15 
t i f t i f t i f t i f t i f 

A1 0.00 0.00 0.00 5.00 0.00 0.00 2.00 0.00 0.00 2.00 0.00 1.00 3.00 0.00 2.00 
A2 0.00 0.00 0.00 4.00 0.00 0.00 4.00 0.00 2.00 3.00 0.00 0.00 1.00 0.00 0.00 
A3 0.00 0.00 0.00 5.00 0.00 0.00 3.00 0.00 0.00 4.00 0.00 0.00 4.00 0.00 0.00 
A4 0.00 0.00 0.00 3.00 0.00 1.00 5.00 0.00 0.00 3.00 0.00 0.00 3.00 0.00 0.00 
A5 0.00 0.00 0.00 4.00 0.00 2.00 3.00 0.00 2.00 2.00 0.00 1.00 2.00 0.00 0.00 

Source: 
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Table 4: The ratings and weights obtained from the third of three experts 
C1 C2 C3 C4 C5 

wj 0.09 0.43 0.08 0.29 0.12 
t i f t i f t i f t i f t i f 

A1 1.00 0.00 0.00 5.00 0.00 0.00 1.00 0.00 0.00 3.00 0.00 0.00 3.00 0.00 1.00 
A2 2.00 0.00 0.00 4.00 2.00 2.00 3.00 0.00 0.00 4.00 0.00 0.00 1.00 0.00 1.00 
A3 2.00 0.00 0.00 5.00 0.00 0.00 2.00 0.00 0.00 5.00 0.00 0.00 5.00 0.00 0.00 
A4 3.00 0.00 0.00 2.00 0.00 0.00 4.00 0.00 1.00 4.00 0.00 1.00 4.00 0.00 1.00 
A5 2.00 0.00 0.00 3.00 0.00 2.00 2.00 0.00 0.50 2.00 0.00 0.00 2.00 0.00 0.00 

Source: 

Table 5: The ratings obtained from the first of three experts expressed in the form of SVNN 
C1 C2 C3 C4 C5 

0.25 0.19 0.13 0.21 0.21 
A1 <0.4,0.0,0.0> <0.6,0.0,0.0> <0.2,0.0,0.0> <0.2,0.0,0.0> <0.6,0.0,0.0> 
A2 <0.6,0.0,0.0> <0.8,0.0,0.0> <0.2,0.0,0.0> <0.4,0.0,0.0> <0.4,0.0,0.0> 
A3 <0.6,0.0,0.2> <0.6,0.0,0.0> <0.2,0.0,0.0> <0.8,0.0,0.0> <1.0,0.0,0.0> 
A4 <1.0,0.0,0.4> <0.8,0.0,0.2> <0.2,0.0,0.0> <0.4,0.0,0.0> <0.8,0.0,0.0> 
A5 <0.8,0.0,0.0> <0.8,0.0,0.4> <0.2,0.0,0.0> <0.2,0.0,0.0> <0.6,0.0,0.0> 

Source: 

Table 6: The overall ratings, the values of score function, and the ranking order of 
alternatives obtained on the basis of responses of the first of three experts 

Overall Si Rank 
A1 Albania <0.4,0.0,0.0> 0.718 5 
A2 Bosnia <0.5,0.0,0.0> 0.772 4 
A3 Macedonia <1.0,0.0,0.0> 0.999 1 
A4 Montenegro <1.0,0.0,0.0> 0.999 1 
A5 Serbia <0.6,0.0,0.0> 0.813 3 

Source: 

As it can bee seen from Table 6, the most appropriate alternatives for market-seeking 
investors are alternatives denotes as A3 and A4. 

The values of score function, as well as appropriate ranking order of alternatives obtained 
from three experts, are accounted for in Table 7. 

Table 7: The ranking orders obtained from three experts 
E1 E2 E3 

Si Rank Si Rank Si Rank 
A1 Albania 0.718 5 0.999 1 0.999 1 
A2 Bosnia 0.772 4 0.816 4 0.862 3 
A3 Macedonia 0.999 1 0.999 1 0.999 1 
A4 Montenegro 0.999 1 0.999 1 0.830 4 
A5 Serbia 0.813 3 0.749 5 0.747 5 

Source: 

As previously mentioned, alternatives denoted as A3 and A4 are the most appropriate for 
market-seeking investors, while alternatives denoted as A1, A3 and A4 are more suitable for 
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resources-seeking investors. Finally, alternatives denoted as A1 andA3 and most suitable for 
efficiency-seeking investors. 

The group ratings of considered alternatives, obtained by using Eq. (10), are encountered for 
in Table 8, whereby the experts, as well as potential investors, had the following 
weights:w1=0.45, w2=0.25 and w3=0.30. 

Table 8: The overall ratings and weights obtained from three experts 
C1 C2 C3 C4 C5 

0.14 0.25 0.20 0.22 0.16 
A1 <0.2,0.0,0.0> <1.0,0.0,0.0> <0.2,0.0,0.0> <0.3,0.0,0.0> <0.6,0.0,0.0> 
A2 <0.4,0.0,0.0> <0.8,0.0,0.0> <0.5,0.0,0.0> <0.6,0.0,0.0> <0.2,0.0,0.0> 
A3 <0.4,0.0,0.0> <1.0,0.0,0.0> <0.3,0.0,0.0> <1.0,0.0,0.0> <1.0,0.0,0.0> 
A4 <1.0,0.0,0.0> <0.6,0.0,0.0> <1.0,0.0,0.0> <0.6,0.0,0.0> <0.7,0.0,0.0> 
A5 <0.5,0.0,0.0> <0.7,0.0,0.4> <0.3,0.0,0.0> <0.3,0.0,0.0> <0.5,0.0,0.0> 

Source: 

The final ranking order of considered alternatives is accounting for in Table 9. 

Table 9: The final ranking order of alternatives 
Overall Si Rank 

A1 Albania <1.0,0.0,0.0> 0.999 1 
A2 Bosnia <0.5,0.0,0.0> 0.796 4 
A3 Macedonia <1.0,0.0,0.0> 0.999 1 
A4 Montenegro <1.0,0.0,0.0> 0.999 1 
A5 Serbia <0.5,0.0,0.0> 0.766 5 

Source: 

As it can be from Table 9, the most suitable business environment for investment is the three 
Balkan countries: Albania, Macedonia and Montenegro, with Bosnia and Herzegovina ranked 
at fourth position and Serbia ranked in the fifth position. 

Conclusion

In this article, an easy-to-use multiple criteria decision-making approach for evaluating 
potential investment countries is considered. The proposed approach is based on the use of 
single valued neutrosophic numbers, which should provide easier expression of the 
preferences, doubt and uncertainty of the information on which basis the evaluation should be 
carried out. 

The considered example of the investment country selection is characterized by a low level of 
doubt and uncertainty, that is, it is a rather well-structured investment decision-making 
problem, and it is chosen with the aim of easier presenting usability and efficiency of the 
proposed approach. Certainly, the mentioned approach can be also used for solving similar 
problems with greater imprecision and unreliability of the available information, in which 
case a more complex ranking procedure should be used. 

Finally, the ranking results obtained in the presented evaluation indicate that Serbia is in 
unfavorable position in comparison to other considered countries and that something should 
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be undertaken to improve, or at least mitigate some negative characteristic of the existing 
business environment in Serbia, first of all to reform tax system and to improve and enforce 
implementation of regulation in the area of property protection.However, it should be 
mentioned that some characteristics of business environment are unfavorable for foreign 
investors, but favorable for wellbeing of citizens and economy as a whole, and that 
contributed to such position of Serbia in final rankings. Namely, investors prefer to pay low 
wages in order to lower their labor costs, but lowering wages will lead to lowering of living 
standard in the country. In addition, high rents on natural resources is also something that is 
not in favor of foreign investors, but it prevents the exploitation of natural resources for the 
needs of foreign companies and leave it for future generations in country. At the very end, it 
should be said that in this case small number of FDI determinants are taken into account and 
rankings will be certainly somewhat different if more of them are considered, so in the future 
researches authors will present more characteristics of business environment to foreign 
investors in order to let them know more about observed countries, as a potential location for 
their investments. 
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Abstract: Neutrosophic sets and soft sets are two different mathematical tools for representing
vagueness and uncertainty. We apply these models in combination to study vagueness and uncertainty
in K-algebras. We introduce the notion of single-valued neutrosophic soft (SNS) K-algebras and
investigate some of their properties. We establish the notion of (∈,∈ ∨q)-single-valued neutrosophic
soft K-algebras and describe some of their related properties. We also illustrate the concepts with
numerical examples.

Keywords: K-algebras; single-valued neutrosophic soft K-algebras; (∈,∈ ∨q)-single-valued neutrosophic
soft K-algebras

1. Introduction

The notion of a K-algebra (G, ·,�, e) was first introduced by Dar and Akram [1] in 2003 and
published in 2005. A K-algebra is an algebra built on a group (G, ·, e) by adjoining an induced
binary operation � on G, which is attached to an abstract K-algebra (G, ·,�, e). This system is,
in general, non-commutative and non-associative with a right identity e, if (G, ·, e) is non-commutative.
For a given group G, the K-algebra is proper if G is not an elementary abelian two-group. Thus,
a K-algebra is abelian, and being non-abelian purely depends on the base group G. In 2004, Dar and
Akram [2] further renamed a K-algebra on a group G as a K(G)-algebra due to its structural basis G.
The K(G)-algebras have been characterized by their left and right mappings in [2] when the group is
abelian. The K-algebras have also been characterized by their left and right mappings in [3] when the
group is non-abelian. In 2007, Dar and Akram [4] also studied K-homomorphisms of K-algebras.

Logic is an essential tool for giving applications in mathematics and computer science, and it is also
a technique for laying a foundation. Non-classical logic takes advantage of the classical logic to handle
information with various facts of uncertainty, including the fuzziness and randomness. In particular,
non-classical logic has become a formal and useful tool for computer science to deal with fuzzy
information and uncertain in formation. Among all kinds of uncertainties, the incomparability is the
most important one that is frequently encountered in our daily lives. Fuzzy set theory, a generalization
of classical set theory introduced by Zadeh [5], has drawn the attention of many researchers who have
extended the fuzzy sets to intuitionistic fuzzy sets [6], interval-valued intuitionistic fuzzy sets [6],
and so on, which are also applied to some decision-making process. On the other hand, Molodtsov [7]
initiated the concept of soft set theory as a new mathematical tool for dealing with uncertainties. In soft
set theory, the problem of setting the membership function does not arise, which makes the theory easily
applied to many different fields, including game theory, operations research, Riemann integration
and Perron integration. In 1998, Smarandache [8] proposed the idea of neutrosophic sets. He mingled
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tricomponent logic, non-standard analysis and philosophy. It is a branch of philosophy that studies
the origin, nature and scope of neutralities, as well as their interactions with different ideational
spectra. For convenient and advantageous usage of neutrosophic sets in science and engineering,
Wang et al. [9] proposed the single-valued neutrosophic sets, whose three independent components
have values in the standard unit interval.

Garg and Nancy [10–12] developed a hybrid aggregation operator by using the two instances
of the neutrosophic sets, single-valued neutrosophic sets and interval-valued neutrosophic sets.
They introduced the concept of some new linguistic prioritized aggregation operators to deal with
uncertainty in linguistic terms. To aggregate single-valued neutrosophic information, they developed
some new operators to resolve the multi-criteria decision-making problems such as the Muirhead
mean, the single-valued neutrosophic prioritized Muirhead mean and the single-valued neutrosophic
prioritized Muirhead dual. Maji in [13] initiated the concept of neutrosophic soft sets. Certain notions
of fuzzy K-algebras have been studied in [14–18]. Recently, Akram et al. [19,20] introduced
single-valued neutrosophic K-algebras and single-valued neutrosophic topological K-algebras. In this
paper, we introduce the notion of single-valued neutrosophic soft K-algebras and investigate some of
their properties. We establish the notion of (∈,∈ ∨q)-single-valued neutrosophic soft K-algebras
and describe some of their related properties. We also illustrate the concepts with numerical
examples. The remaining research article is arranged as follows. Section 2 consists of some basic
definitions related to K-algebras and single-valued neutrosophic soft sets. In Section 3, the notion
of single-valued neutrosophic soft K-algebras is proposed. To have a generalized viewpoint of
single-valued neutrosophic soft K-algebras, Section 4 poses the concept of (∈,∈ ∨q)-single-valued
neutrosophic K-algebras with some examples. Finally, some concluding remarks are given in Section 5.

2. Preliminaries

Definition 1 ([1]). Let (G, ·, e) be a group such that each non-identity element is not of order two. Let a binary
operation � be introduced on the group G and defined by �(s, t) = s� t = st−1 for all s, t ∈ G. If e is the
identity of the group G, then:

(1) e takes the shape of the right �-identity and not that of the left �-identity.
(2) Each non-identity element (s 6= e) is �-involutionary because s� s = ss−1 = e.
(3) G is �-nonassociative because (s� t)� u = s� (u� t−1) 6= s� (t� u) for all s, y, u ∈ G.
(4) G is �-noncommutative since s� t 6= t� s for all s, t ∈ G.
(5) If G is an elementary Abelian two-group, then s� t = s · t.

Definition 2 ([1]). A K-algebra is a structure (G, ·,�, e) on a group G, where � : G× G → G is defined by
�(s, t) = s� t = s.t−1, if it satisfies the following axioms:

(i) ((s� t)� (s� u)) = (s� (u−1 � t−1)� s),
(ii) (s�(s�t)) = ((s�t−1)�s),

(iii) s� s = e,
(iv) s� e = s,
(v) e� s = s−1 for all s, t, u ∈ G.

Definition 3 ([1]). Let K be a K-algebra, and letH be a nonempty subset of K. Then,H is called a subalgebra
of K if u� v ∈ H for all u, v ∈ H.

Definition 4 ([1]). Let K1 and K2 be two K-algebras. A mapping f : K1 → K2 is called a homomorphism if it
satisfies the following condition:

• f (u� v) = f (u)� f (v) for all u, v ∈ K.
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Definition 5 ([7]). Let Z be an initial universe, and let R be a universe of parameters. Then, (ζ,M) is called
a soft set (SS), where M ⊂ R, P(Z) is the power set of Z and ζ is a set-valued function, which is defined as
ζ : M→ P(Z).

Definition 6 ([7]). Let for two soft sets (ζ,M) and (η,N) over the common universe Z; the pair (ζ,M) is a
soft subset of (η,N), denoted by (ζ,M) ⊆ (η,N) if it satisfies the following conditions:

(a) M ⊆ N,
(b) ζ(θ) ⊆ η(θ) for any θ ∈M.

Definition 7 ([9]). Let Z be a universal set of objects. A single-valued neutrosophic set (SNS) A in Z is
characterized by three membership functions, i.e., the (TA)-truth membership function, (IA)-indeterminacy
membership function and (FA)-falsity membership function, where TA(s), IA(s),FA(s) ∈ [0, 1] for all s ∈ Z.
There is no restriction on the sum of these three components. Therefore, 0 ≤ TA(s) + IA(s) +FA(s) ≤ 3.

Definition 8. A single-valued neutrosophic set A in a non-empty set Z is called a single-valued neutrosophic
point if:

TA(v)=
{

α ∈ (0, 1], if v = u
0, otherwise,

IA(v)=
{

β ∈ (0, 1], if v = u
0, otherwise,

FA(v)=
{

γ ∈ [0, 1), if v = u
0, otherwise,

with support u and value (α, β, γ), denoted by u(α, β, γ). This single-valued neutrosophic point is said to
“belong to” a single-valued neutrosophic set A, written as u(α, β, γ) ∈ A if TA(u) ≥ α, IA(u) ≥ β,FA(u) ≤
γ and said to be “quasicoincident with” a single-valued neutrosophic set A, written as u(α, β, γ) q A if
TA(u) + α > 1, IA(u) + β > 1,FA(u) + γ < 1.

Definition 9 ([19]). Let K be a K-algebra, and let A be a single-valued neutrosophic set in K such that
A = (TA, IA,FA). Then, A is called a single-valued neutrosophic K-subalgebra of K if the following
conditions hold:

(1) TA(e) ≥ TA(s), IA(e) ≥ IA(s), FA(e) ≤ FA(s) for all s 6= e ∈ K.
(2) TA(s� t) ≥ min{TA(s), TA(t)},

IA(s� t) ≥ min{IA(s), IA(t)},
FA(s� t) ≤ max{FA(s),FA(t)} for all s, t ∈ K.

Definition 10 ([19]). A single-valued neutrosophic setA = (TA,IA,FA) inK is called an (ã, b̃)-single-valued
neutrosophic K-subalgebra of K if it satisfies the following condition:

• u(α1,β1,γ1)
ã A, v(α2,β2,γ2)

ã A ⇒ (u� v)(min(α1,α2),min(β1,β2),max(γ1,γ2))
b̃ A,

for all u, v ∈ G, α1, α2 ∈ (0, 1], β1, β2 ∈ (0, 1], γ1, γ2 ∈ [0, 1) and ã, b̃ ∈ {∈, q,∈ ∨q,∈ ∧q}.

Definition 11 ([19]). A single-valued neutrosophic setA = (TA,IA,FA) in a K-algebra K is called an (∈,∈
∨q)-single-valued neutrosophic K-subalgebra of K if it satisfies the following conditions:

(a) e(α,β,γ) ∈ A ⇒ (u)(α,β,γ) ∈ ∨q A,
(b) u(α1,β1,γ1)

∈ A, v(α2,β2,γ2)
∈ A ⇒ (u� v)(min(α1,α2),min(β1,β2),max(γ1,γ2)

∈ ∨q A,
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for all u, v ∈ G, α, α1, α2 ∈ (0, 1], β, β1, β2 ∈ (0, 1], γ, γ1, γ2 ∈ [0, 1).

Example 1. Consider a K-algebra K = (G, ·,�, e), where G = {e, x, x2, x3, x4, x5, x6, x7} is the cyclic group
of order eight and Caley’s table for � is given as:

� e x x2 x3 x4 x5 x6 x7

e e x7 x6 x5 x4 x3 x2 x
x x e x7 x6 x5 x4 x3 x2

x2 x2 x e x7 x6 x5 x4 x3

x3 x3 x2 x e x7 x6 x5 x4

x4 x4 x3 x2 x e x7 x6 x5

x5 x5 x4 x3 x2 x e x7 x6

x6 x6 x5 x4 x3 x2 x e x7

x7 x7 x6 x5 x4 x3 x2 x e

We define a single-valued neutrosophic set A = (TA, IA,FA) in K as follows:

TA(s)=
{

0.9 if s = e
0.7 for all s 6= e ∈ G,

IA(s)=
{

0.8 if s = e
0.6 for all s 6= e ∈ G,

FA(s)=
{

0 if s = e
0.4 for all s 6= e ∈ G.

We take

α = 0.3, α1 = 0.6, α2 = 0.3,
β = 0.4, β1 = 0.5, β2 = 0.3,
γ = 0.5, γ1 = 0.5, γ2 = 0.6,
where α, α1, α2 ∈ (0, 1], β, β1, β2 ∈ (0, 1], γ, γ1, γ2 ∈ [0, 1).

By direct calculations, it is easy to see thatA is an (∈,∈ ∨q)-single-valued neutrosophic K-subalgebra of K.

Theorem 1. Let A = (TA, IA,FA) be a single-valued neutrosophic set in K. Then, A is an (∈,∈
∨q)-single-valued neutrosophic K-subalgebra of K if and only if:

(i) TA(u) ≥ min(TA(e), 0.5),

IA(u) ≥ min(IA(e), 0.5),

FA(u) ≤ max(FA(e), 0.5).

(ii) TA(u� v) ≥ min(TA(u), TA(v), 0.5),

IA(u� v) ≥ min(IA(u), IA(v), 0.5),

FA(u� v) ≤ max(FA(u),FA(v), 0.5) for all u, v ∈ G.

Definition 12 ([13]). Suppose an initial universe Z and a universe of parameters R. A single-valued
neutrosophic soft set (SNSS) is a pair (ζ,M), where M ⊂ R, ζ is a set-valued function defined as ζ : M→ P(Z).
P(Z) is a set containing all single-valued neutrosophic (SN) subsets of Z. Each parameter in R is considered as
a neutrosophic word or a sentence containing a neutrosophic word.
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Definition 13 ([13]). Let (ζ,M) and (η,N) be two single-valued neutrosophic soft sets over a common universe
Z, then the pair (ζ,M) is a single-valued neutrosophic soft subset of (η,N), denoted by (ζ,M) ⊆ (η,N), if it
satisfies the following conditions:

(a) Parametric set M is a subset of parametric set N,
(b) ζ(θ) is a subset of η(θ), for any θ ∈M.

Definition 14 ([13]). Let (ζ,M) and (η,N) be two SNSSs over Z, then the extended intersection is denoted
by (ζ,M) ∩ex (η,N) = (ϑ,Q), where Q = M∪N and defined as:

ϑ(θ) =


ζ(θ) if θ ∈M−N,

η(θ) if θ ∈ N−M,

ζ(θ) ∩ η(θ) if θ ∈M∩N for all θ ∈ Q.

Definition 15 ([13]). Let (ζ,M) and (η,N) be two SNSSs over Z. We denote their extended union by (ζ,M)

∪ex (η,N) = (ϑ,Q), where Q = M∪N and defined as:

ϑ(θ) =


ζ(θ) if θ ∈M−N,

η(θ) if θ ∈ N−M,

ζ(θ) ∪ η(θ) if θ ∈M∩N for all θ ∈ Q.

Definition 16 ([13]). Let (ζ,M) and (η,N) be two SNSSs over Z; the restricted intersection is an SNSS over
Z and denoted by (ϑ,M∩N) with M∩N 6= ∅, where (ϑ,M∩N) = (ζ,M)∩ (η,N) and ϑ(θ) = ζ(θ)∩ η(θ)

for all θ ∈M∩N.

Definition 17 ([13]). Let (ζ,M) and (η,N) be two SNSSs over Z, then their restricted union is an SNSS over
Z and denoted by (ϑ,M∩N) with M∩N 6= ∅, where (ζ,M) ∪ (η,N) = (ϑ,Q) and ϑ(θ) = ζ(θ) ∪ η(θ) for
all θ ∈M∩N.

Definition 18 ([13]). Let (ζ,M) and (η,N) be two SNSSs over Z; the “AND” operation is denoted by (ζ,M)

AND (η,N)= (ζ,M)∧ (η,N) = (ϑ,M× N), where for all (l, m) ∈ M× N, ϑ(l, m) = ζ(l) ∩ η(m), and
the truth-membership, indeterminacy-membership and falsity-membership of ϑ(l, m) are defined as Tϑ(l,m) =

min{Tϑ(l), Tϑ(m)}, Iϑ(l,m) = min{Iϑ(l), Iϑ(m)},Fϑ(l,m) = max{Fϑ(l),Fϑ(m)}, for all l ∈ M and for all
m ∈ N.

Definition 19 ([13]). Let (ζ,M) and (η,N) be two SNSSs over Z; the “OR” operation is denoted by (ζ,M)

OR (η,N)= (ζ,M)∨ (η,N) = (ϑ,M× N), where for all (l, m) ∈ M× N, ϑ(l, m) = ζ(l) ∪ η(m), and
the truth-membership, indeterminacy-membership and falsity-membership of ϑ(l, m) are defined as Tϑ(l,m) =

max{Tϑ(l), Tϑ(m)}, Iϑ(l,m) = max{Iϑ(l), Iϑ(m)},Fϑ(l,m) = min{Fϑ(l),Fϑ(m)}, for all l ∈ M and for all
m ∈ N.

3. Single-Valued Neutrosophic Soft K-Algebras

Definition 20. Let (ζ,M) be a single-valued neutrosophic soft set (SNSS) over K. The pair (ζ,M) is called
a single-valued neutrosophic soft K-subalgebra of K if the following conditions are satisfied:

(i) Tζθ
(s� t) ≥ min{Tζθ

(s), Tζθ
(t)},

(ii) Iζθ
(s� t) ≥ min{Iζθ

(s), Iζθ
(t)},

(iii) Fζθ
(s� t)≤ max{Fζθ

(s),Fζθ
(t)} for all s, t ∈ G.
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A single-valued neutrosophic soft K-algebra also satisfies the following properties:

Tζθ
(e) ≥ Tζθ

(s),

Iζθ
(e) ≥ Iζθ

(s),

Fζθ
(e) ≤ Fζθ

(s) for all s 6= e ∈ G.

Example 2. Consider a K-algebra K = (G, ·,�, e), where G is the cyclic group of order nine given as
G = {e, w, w2, w3, w4, w5, w6, w7, w8}. Consider the following Cayley’s table:

� e w w2 w3 w4 w5 w6 w7 w8

e e w8 w7 w6 w5 w4 w3 w2 w
w w e w8 w7 w6 w5 w4 w3 w2

w2 w2 w e w8 w7 w6 w5 w4 w3

w3 w3 w2 w e w8 w7 w6 w5 w4

w4 w4 w3 w2 w e w8 w7 w6 w5

w5 w5 w4 w3 w2 w e w8 w7 w6

w6 w6 w5 w4 w3 w2 w e w8 w7

w7 w7 w6 w5 w4 w3 w2 w e w8

w8 w8 w7 w6 w5 w4 w3 w2 w e

Consider a set of parameters M = {l1, l2, l3, } and a set-valued function ζ : M → P(G), where the
membership, indeterminacy-membership and non-membership values of the elements of G at parameters l1, l2, l3
are given as:

(i) Tζl1
(e) = 0.9, Iζl1

(e) = 0.3, Fζl1
(e) = 0.3,

Tζl1
(s) = 0.6, Iζl1

(s) = 0.2 , Fζl1
(s) = 0.4,

(ii) Tζl2
(e) = 0.8, Iζl2

(e) = 0.7 , Fζl2
(e) = 0.4,

Tζl2
(s) = 0.7, Iζl2

(s) = 0.6 , Fζl2
(s) = 0.5,

(iii) Tζl3
(e) = 0.9, Iζl3

(e) = 0.6 , Fζl3
(e) = 0.6,

Tζl3
(s) = 0.8, Iζl3

(s) = 0.5 , Fζl3
(s) = 0.7

for all s 6= e ∈ G. The function ζ is defined as:

ζ(l1) = {(e, 0.9, 0.3, 0.3), (w, 0.6, 0.2, 0.4), (w2, 0.6, 0.2, 0.4), (w3, 0.6, 0.2, 0.4),

(w4, 0.6, 0.2, 0.4), (w5, 0.6, 0.2, 0.4), (w6, 0.6, 0.2, 0.4),

(w7, 0.6, 0.2, 0.4), (w8, 0.6, 0.2, 0.4)},

ζ(l2) = {(e, 0.8, 0.7, 0.4), (w, 0.7, 0.6, 0.5), (w2, 0.7, 0.6, 0.5), (w3, 0.7, 0.6, 0.5),

(w4, 0.7, 0.6, 0.5), (w5, 0.7, 0.6, 0.5), (w6, 0.7, 0.6, 0.5),

(w7, 0.7, 0.6, 0.5), (w8, 0.7, 0.6, 0.5)},

ζ(l3) = {(e, 0.9, 0.6, 0.6), (w, 0.8, 0.5, 0.7), (w2, 0.8, 0.5, 0.7), (w3, 0.8, 0.5, 0.7),

(w4, 0.8, 0.5, 0.7), (w5, 0.8, 0.5, 0.7), (w6, 0.8, 0.5, 0.7),

(w7, 0.8, 0.5, 0.7), (w8, 0.8, 0.5, 0.7)}.
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Consider a set N = {l1, l2} of parameters and a set-valued function η : N→ P(G), where the membership,
indeterminacy-membership and non-membership values of the elements of G at parameters l1, l2 are defined as:

(i) Tηl1
(e) = 0.9, Iηl1

(e) = 0.8, Fηl1
(e) = 0.2,

Tηl1
(s) = 0.5, Iηl1

(s) = 0.2, Fηl1
(s) = 0.5,

(ii) Tηl2
(e) = 0.3, Iηl2

(e) = 0.5, Fηl2
(e) = 0.6,

Tηl2
(s) = 0.1, Iηl2

(s) = 0.4, Fηl2
(s) = 0.8

for all s 6= e ∈ G. The function η is defined as:

η(l1) = {(e, 0.9, 0.8, 0.2), (w, 0.5, 0.2, 0.5), (w2, 0.5, 0.2, 0.5), (w3, 0.5, 0.2, 0.5),

(w4, 0.5, 0.2, 0.5), (w5, 0.5, 0.2, 0.5), (w6, 0.5, 0.2, 0.5),

(w7, 0.5, 0.2, 0.5), (w8, 0.5, 0.2, 0.5)},
η(l2) = {(e, 0.3, 0.5, 0.6), (w, 0.1, 0.4, 0.8), (w2, 0.1, 0.4, 0.8), (w3, 0.1, 0.4, 0.8),

(w4, 0.1, 0.4, 0.8), (w5, 0.1, 0.4, 0.8), (w6, 0.1, 0.4, 0.8),

(w7, 0.1, 0.4, 0.8), (w8, 0.1, 0.4, 0.8)}.

Evidently, the set (ζ,M) and the set (η,N) comprises SNSSs. Since ζ(θ), η(θ) are single-valued neutrosophic
K-subalgebras for all θ ∈ M and θ ∈ N. It is concluded that the pairs (ζ,M), (η,N) are single-valued
neutrosophic soft K-subalgebras.

Example 3. Consider K-algebra on dihedral group D4 given as G = {e, a, b, c, w, x, y, z},
where c = ab, w = a2, x = a3, y = a2b, z = a3b, and Caley’s table for � is given as:

� e a b c w x y z
e e x b c w a y z
a a e c y x w z b
b b c e x y z w a
c c y a e z b x w
w w a y z e x b c
x x w z b a e c y
y y z w a b c e x
z z b x w c y a e

Consider a set of parameters M = {l1, l2, l3, } and a set-valued function ζ : M → P(G), where the
membership, indeterminacy-membership and non-membership values of the elements of G at parameters l1, l2, l3
are given as:

(i) Tζl1
(e) = 0.7, Iζl1

(e) = 0.7, Fζl1
(e) = 0.3,

Tζl1
(s) = 0.5, Iζl1

(s) = 0.2, Fζl1
(s) = 0.7,

(ii) Tζl2
(e) = 0.9, Iζl2

(e) = 0.8, Fζl2
(e) = 0.4,

Tζl2
(s) = 0.2, Iζl2

(s) = 0.2, Fζl2
(s) = 0.9,

(iii) Tζl3
(e) = 0.5, Iζl3

(e) = 0.5, Fζl3
(e) = 0.3,

Tζl3
(s) = 0.1, Iζl3

(s) = 0.3, Fζl3
(s) = 0.8
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for all s 6= e ∈ G. The function ζ is defined as:

ζ(l1) = {(e, 0.7, 0.7, 0.3), (a, 0.5, 0.2, 0.7), (b, 0.5, 0.2, 0.7), (c, 0.5, 0.2, 0.7),

(w, 0.5, 0.2, 0.7), (x, 0.5, 0.2, 0.7), (y, 0.5, 0.2, 0.7), (z, 0.5, 0.2, 0.7)},

ζ(l2) = {(e, 0.9, 0.8, 0.4), (a, 0.2, 0.2, 0.9), (b, 0.2, 0.2, 0.9), (c, 0.2, 0.2, 0.9),

(w, 0.2, 0.2, 0.9), (x, 0.2, 0.2, 0.9), (y, 0.2, 0.2, 0.9), (z, 0.2, 0.2, 0.9)},

ζ(l3) = {(e, 0.5, 0.5, 0.3), (a, 0.1, 0.3, 0.8), (b, 0.1, 0.3, 0.8), (c, 0.1, 0.3, 0.8),

(w, 0.1, 0.3, 0.8), (x, 0.1, 0.3, 0.8), (y, 0.1, 0.3, 0.8), (z, 0.1, 0.3, 0.8)}.

Consider a set N = {l1, l2} of parameters and a set-valued function η : N → P(G), where the truth,
indeterminacy and falsity membership values of the elements of G at parameters l1, l2 are defined as:

(i) Tηl1
(e) = 0.8, Iηl1

(e) = 0.8, Fηl1
(e) = 0.2,

Tηl1
(s) = 0.6, Iηl1

(s) = 0.3, Fηl1
(s) = 0.7,

(ii) Tηl2
(e) = 0.6, Iηl2

(e) = 0.4, Fηl2
(e) = 0.3,

Tηl2
(s) = 0.5, Iηl2

(s) = 0.4, Fηl2
(s) = 0.9

for all s 6= e ∈ G. The function η is defined as:

η(l1) = {(e, 0.8, 0.8, 0.2), (a, 0.6, 0.3, 0.7), (b, 0.6, 0.3, 0.7), (c, 0.6, 0.3, 0.7),

(w, 0.6, 0.3, 0.7), (x, 0.6, 0.3, 0.7), (y, 0.6, 0.3, 0.7), (z, 0.6, 0.3, 0.7)},

η(l2) = {(e, 0.6, 0.4, 0.3), (a, 0.5, 0.4, 0.9), (b, 0.5, 0.4, 0.9), (c, 0.5, 0.4, 0.9),

(w, 0.5, 0.4, 0.9), (x, 0.5, 0.4, 0.9), (y, 0.5, 0.4, 0.9), (z, 0.5, 0.4, 0.9)}.

Obviously, the set (ζ,M) and (η,N) comprises SNSSs. Since for θ ∈ M and θ ∈ N, the sets ζ(θ), η(θ)

are single-valued neutrosophic K-subalgebras. This concludes that the pair (ζ,M) and (η,N) are single-valued
neutrosophic soft K-subalgebras.

Proposition 1. Let (ζ,M) and (η,N) be two single-valued neutrosophic soft K-subalgebras. Then, the extended
intersection of (ζ,M) and (η,N) is a single-valued neutrosophic soft K-subalgebra.

Proof. For any θ ∈ Q, the following three cases arise.

First case: If θ ∈ M−N, then ϑ(θ) = ζ(θ) and ζ(θ) being single-valued neutrosophic K-subalgebra
implies that ϑ(θ) is also a single-valued neutrosophic K-subalgebra since (ζ,M) is an SNS
K-subalgebra.

Second case: If θ ∈ N − M, then ϑ(θ) = η(θ) and η(θ) being single-valued neutrosophic
K-subalgebra implies that ϑ(θ) is a single-valued neutrosophic K-subalgebra since (η,N) is
an SNS K-subalgebra.

Third case: Now, if θ ∈M∩N, then ϑ(θ) = ζ(θ) ∩ η(θ), which is again a single-valued neutrosophic
K-subalgebra of K. Thus, in any case, ϑ(θ) is a single-valued neutrosophic K-subalgebra.
Consequently, (ζ,M) ∩ex (η,N) is a K-subalgebraover K.

Proposition 2. If (ζ,M) and (η,N) are two SNS K-subalgebras over K, then (ζ,M) ∧ (η,N) is an SNS
K-subalgebra.
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Proof. Let (l, m) ∈ Q, ζ(l), ζ(m) be single-valued neutrosophic K-subalgebras ofK, where Q = M×N,
which implies that ϑ(l, m) = ζ(l) ∩ η(m) is also a single-valued neutrosophic K-subalgebra over K.
Hence, (ζ,M) ∧ (η,N) is an SNS K-subalgebra of K.

Proposition 3. If (ζ,M) and (η,N) are two SNS K-subalgebras and ζ(l) ⊆ η(l) for all l ∈ M, then (ζ,M)

is an SNS K-subalgebra of (η,N).

Proof. Since (ζ,M) and (η,N) are SNS K-subalgebras and ζ(l), η(l) are two single-valued neutrosophic
K-subalgebras, also ζ(l) ⊆ η(l). Therefore, (ζ,M) is an SNS K-subalgebra of (η,N).

Proposition 4. Let (ζ,M), (η,N) be two SNS K-subalgebras. If M ∩ N = ∅, then (ζ,M) ∪ex (η,N) is
an SNS K-subalgebra over K.

Proof. The proof follows from Definition 15.

Theorem 2. If (ζ,M) is an SNS K-subalgebra, then for a non-empty collection {(ϑi,Ni) | i ∈ Ω} of SNS
K-subalgebras of (ζ,M), the following results hold:

(i)
⋂

i∈Ω
ex(ϑi,Ni) is an SNS K-subalgebra of (ζ,M).

(ii)
∧

i∈Ω is an SNS K-subalgebra of
∧

i∈Ω(ζ,M).
(iii) For the disjoint intersection of two parametric sets Ni,Nj, ∀i, j ∈ Ω,

∨
i∈Ω

ex(ϑi,Ni) is an SNS

K-subalgebra of
∨

i∈Ω
(ζ,M).

Definition 21 ([13]). Let (ζ,M) be a single-valued neutrosophic soft set over Z. Then, for each α, β, γ ∈ [0, 1],
the set (ζ,M)(α,β,γ) = (ζ(α,β,γ),M) is called an (α, β, γ)-level soft set of (ζ,M) and defined as:
ζ
(α,β,γ)
θ = {Tζθ

≥ α, Iζθ
≥ β,Fζθ

≤ γ}, for all θ ∈M.

Theorem 3. If (ζ,M) is a single-valued neutrosophic soft set over K, then (ζ,M) is a single-valued
neutrosophic soft K-subalgebra if and only if (ζ,M)(α,β,γ) is a soft K-subalgebra for all α, β, γ ∈ [0, 1].

Proof. Consider that (ζ,M) is an SNS K-subalgebra. Then, for all α, β, γ ∈ [0, 1], θ ∈M and u1, u2 ∈
ζθ

(α,β,γ), Tζθ
(u1) ≥ α, Tζθ

(u2) ≥ α, Iζθ
(u1) ≥ β, Iζθ

(u2) ≥ β,Fζθ
(u1) ≤ γ,Fζθ

(u2) ≤ γ. It follows
that Tζθ

(u1� u2) ≥ min(Tζθ
(u1), Tζθ

(u2)) ≥ α, Iζθ
(u1� (u2)) ≥ min(Iζθ

(u1), Iζθ
(u2)) ≥ β, Fζθ

(u1�
(u2)) ≤ max(Fζ θ(u1),Fζθ

(u2)) ≤ γ; which implies that u1 � u2 ∈ ζθ
(α,β,γ). Hence, ζθ

(α,β,γ) is a soft
K-subalgebra for all α, β, γ ∈ [0, 1]. The converse part is obvious.

Definition 22. Let ϕ and ρ be two functions, where ϕ : S1 → S2 and ρ : M→ N and M and N are subsets
of the universe of parameters R from S1 and S2, respectively. The pair (ϕ, ρ) is said to be a single-valued
neutrosophic soft function from S1 to S2.

Definition 23. Let the pair (ϕ, ρ) be a single-valued neutrosophic soft function from K1 into K2, then the pair
(ϕ, ρ) is called a single-valued neutrosophic soft homomorphism if ϕ is a homomorphism from K1 to K2 and is
said to be a single-valued neutrosophic soft bijective homomorphism if ϕ is an isomorphism from K1 to K2 and ρ

is an injective map from M to N.

Definition 24 ([13]). Let (ζ,M) and (η,N) be two single-valued neutrosophic soft sets over G1 and G2,
respectively, and let (ϕ, ρ) be an SNS function from G1 into G2. Then, under the single-valued neutrosophic
soft function (ϕ, ρ), the image of (ζ,M) is a single-valued neutrosophic soft set on K2, denoted by (ϕ, ρ)(ζ,M)

and defined as: for all l ∈ ρ(M) and v ∈ G2, (ϕ, ρ)(ζ,M) = (ϕ(ζ), ρ(M)), where:

Tϕ(ζ)l
(v) =

{ ∨
ϕ(u)=v

∨
ρ(a)=l ζa(u) if u ∈ ρ−1(v),

1, otherwise,
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Iϕ(ζ)l
(v) =

{ ∨
ϕ(u)=v

∨
ρ(a)=l ζa(u) if u ∈ ρ−1(v),

1, otherwise,

Fϕ(ζ)l
(v) =

{ ∧
ϕ(u)=v

∧
ρ(a)=l ζa(u) if u ∈ ρ−1(v),

0, otherwise.

Under the single-valued neutrosophic soft function (ϕ, ρ), the preimage of (η,N) is denoted as
(ϕ, ρ)−1(η,N) and defined as for all a ∈ ρ−1(N) and for all u ∈ G1, (ϕ, ρ)−1(η,N) = (ϕ−1(η), ρ−1(N)),
where:

Tϕ−1(η)a
(u) = Tηρ(a)(ϕ(u)),

Iϕ−1(η)a
(u) = Iηρ(a)(ϕ(u)),

Fϕ−1(η)a
(u) = Fηρ(a)(ϕ(u)).

Theorem 4. Let (ϕ, ρ) be a single-valued neutrosophic soft homomorphism from K1 to K2 and (η,N) be
a single-valued neutrosophic soft K-subalgebra on K2. Then, (ϕ, ρ)−1(η,N) is an SNS K-subalgebra on K1.

Proof. Assume that u1, u2 ∈ K1, then we have:

ϕ−1(Tηθ
)(u1 � u2) = Tηρ(θ)

(ϕ(u1 � u2)) = Tηρ(θ)
(ϕ(u1)� ϕ(u1))

ϕ−1(Tηθ
)(u1 � u2) ≥ min{Tηρ(θ)

(ϕ(u1)), Tηρ(θ)
(ϕ(u2))}

ϕ−1(Tηθ
)(u1 � u2) ≥ min{ϕ−1(Tηθ

)(u1), ϕ−1(Tηθ
)(u2)},

ϕ−1(Iηθ
)(u1 � u2) = Iηρ(θ)

(ϕ(u1 � u2)) = Iηρ(θ)
(ϕ(u1)� ϕ(u1))

ϕ−1(Iηθ
)(u1 � u2) ≥ min{Iηρ(θ)

(ϕ(u1)), Iηρ(θ)
(ϕ(u2))}

ϕ−1(Iηθ
)(u1 � u2) ≥ min{ϕ−1(Iηθ

)(u1), ϕ−1(Iηθ
)(u2)},

ϕ−1(Fηθ
)(u1 � u2) = Fηρ(θ)

(ϕ(u1 � u2)) = Fηρ(θ)
(ϕ(u1)� ϕ(u1))

ϕ−1(Fηθ
)(u1 � u2) ≤ max{Fηρ(θ)

(ϕ(u1)),Fηρ(θ)
(ϕ(u2))}

ϕ−1(Fηθ
)(u1 � u2) ≤ max{ϕ−1(Fηθ

)(u1), ϕ−1(Fηθ
)(u2)}.

Therefore, (ϕ, ρ)−1(η,N) is an SNS K-subalgebra over K1.

Remark 1. Let (ζ,M) be a single-valued neutrosophic soft K-subalgebra, and let (ϕ, ρ) be a single-valued
neutrosophic soft homomorphism from K1 into K2. Then, (ϕ, ρ)(ζ,M) may not be a single-valued neutrosophic
soft K-subalgebra over K2.

4. (∈,∈ ∨q)-Single-Valued Neutrosophic Soft K-Algebras

Definition 25. Suppose K is a K-algebra. Let (ζ,M) be a single-valued neutrosophic soft set. The pair (ζ,M)

is called an (∈,∈ ∨q)-single-valued neutrosophic soft K-subalgebra if ζ(θ) is an (∈,∈ ∨q)-single-valued
neutrosophic K-subalgebra of K for all θ ∈M.

Example 4. Consider two cyclic groups G1 = {< u >: u6 = e} and G2 = {< v >: v2 = e}, where
G = G1 × G2 = {(e, e), (e, v), (u, e), (u, v), (u2, e), (u2, v), (u3, e), (u3, v), (u4, e), (u4, v), (u5, e), (u5, v)}
is a group. Consider a K-algebra K on G = {e, x́1, x́2, x́3, x́4, x́5, x́6, x́7, x́8, x́9, x́10, x́11}, where e = (e, e), x́1 =

(e, v), x́2 = (u, e), x́3 = (u, v), x́4 = (u2, e), x́5 = (u2, v), x́6 = (u3, e), x́7 = (u3, v), x́8 = (u4, e), x́9 =

(u4, v), x́10 = (u5, e), x́11 = (u5, v) and � is defined by Caley’s table as:
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� e x́1 x́2 x́3 x́4 x́5 x́6 x́7 x́8 x́9 x́10 x́11

e e x́1 x́10 x́11 x́8 x́9 x́6 x́7 x́4 x́5 x́2 x́3

x́1 x́1 e x́11 x́10 x́9 x́8 x́7 x́6 x́5 x́4 x́3 x́2

x́2 x́2 x́3 e x́1 x́10 x́11 x́8 x́9 x́6 x́7 x́4 x́5

x́3 x́3 x́2 x́1 e x́11 x́10 x́9 x́8 x́7 x́6 x́5 x́4
x́4 x́4 x́5 x́2 x́3 e x́1 x́10 x́11 x́8 x́9 x́6 x́7

x́5 x́5 x́4 x́3 x́2 x́1 e x́11 x́10 x́9 x́8 x́7 x́6

x́6 x́6 x́7 x́4 x́5 x́2 x́3 e x́1 x́10 x́11 x́8 x́9

x́7 x́7 x́6 x́5 x́4 x́3 x́2 x́1 e x́11 x́10 x́9 x́8

x́8 x́8 x́9 x́6 x́7 x́4 x́5 x́2 x́3 e x́1 x́10 x́11
x́9 x́9 x́8 x́7 x́6 x́5 x́4 x́3 x́2 x́1 e x́11 x́10
x́10 x́10 x́11 x́8 x́9 x́6 x́7 x́4 x́5 x́2 x́3 e x́1
x́11 x́11 x́10 x́9 x́8 x́7 x́6 x́5 x́4 x́3 x́2 x́1 e

Let M = {l1, l2} be a set of parameters and ζ : M→ P(G) be a set-valued function defined as follows:

ζ(l1) = {(e, 0.9, 0.8, 0.5), (x́1, 0.5, 0.8, 0.5), (x́2, 0.5, 0.8, 0.5), (x́3, 0.5, 0.8, 0.5),

(x́4, 0.5, 0.8, 0.5), (x́5, 0.5, 0.8, 0.5), (x́6, 0.5, 0.8, 0.5), (x́7, 0.5, 0.8, 0.5),

(x́8, 0.5, 0.8, 0.5), (x́9, 0.5, 0.8, 0.5), (x́10, 0.5, 0.8, 0.5), (x́11, 0.5, 0.8, 0.5)},

ζ(l2) = {(e, 0.7, 0.8, 0.4), (x́1, 0.6, 0.5, 0.5), (x́2, 0.6, 0.5, 0.5), (x́3, 0.6, 0.5, 0.5),

(x́4, 0.6, 0.5, 0.5), (x́5, 0.6, 0.5, 0.5), (x́6, 0.6, 0.5, 0.5), (x́7, 0.6, 0.5, 0.5),

(x́8, 0.6, 0.5, 0.5), (x́9, 0.6, 0.5, 0.5), (x́10, 0.6, 0.5, 0.5), (x́11, 0.6, 0.5, 0.5)}.

We can see that (ζ,M) is an SNSS over K. By Theorem 1, it is evident that ζ(θ) is an (∈,∈
∨q)-single-valued neutrosophic K-subalgebra for all θ ∈ M. Since TA(u) ≥ min(TA(e), 0.5), IA(u) ≥
min(IA(e), 0.5), FA(u) ≤ max(FA(e), 0.5) and TA(u � v) ≥ min(TA(u), TA(v), 0.5), IA(u � v) ≥
min(IA(u), IA(v), 0.5) and FA(u � v) ≤ max(FA(u),FA(v), 0.5), for all u, v ∈ G. This implies that
(ζ,M) is an (∈,∈ ∨q)-single-valued neutrosophic soft K-subalgebra of K.

Theorem 5. If the pair (ζ,M) and (η,N) are two (∈,∈ ∨q)-single-valued neutrosophic soft K-subalgebras,
then (ζ,M) ∧ (η,N) is also an (∈,∈ ∨q)-single-valued neutrosophic soft K-subalgebra of K.

Proof. Consider a K-algebra K. Let for any (l, m) ∈ Q, ζ(l) and η(m) be two (∈,∈ ∨q)-single-valued
neutrosophic K-subalgebras, where Q = M × N. This implies that ϑ(l, m) = ζ(l) ∩ η(m) is
an (∈,∈ ∨q)-single-valued neutrosophic K-subalgebra of K. Hence, (ζ,M) ∧ (η,N) is an (∈,∈
,∨q)-single-valued neutrosophic soft K-subalgebra over K.

Example 5. Consider a K-algebra K = (G, ·,�, e), where G is the cyclic group of order nine given as
G = {e, w, w2, w3, w4, w5, w6, w7, w8}, and Cayley’s table for � is given in Example 2.
Consider a set of parameters M = {l1, l2} and a set-valued function ζ : M→ P(G) defined as:

ζ(l1) = {(e, 0.9, 0.3, 0.3), (w, 0.6, 0.3, 0.4), (w2, 0.6, 0.3, 0.4), (w3, 0.6, 0.3, 0.4),

(w4, 0.6, 0.3, 0.4), (w5, 0.6, 0.3, 0.4), (w6, 0.6, 0.3, 0.4),

(w7, 0.6, 0.3, 0.4), (w8, 0.6, 0.3, 0.4)},

ζ(l2) = {(e, 0.9, 0.8, 0.4), (w, 0.8, 0.5, 0.5), (w2, 0.8, 0.5, 0.5), (w3, 0.8, 0.5, 0.5),

(w4, 0.8, 0.5, 0.5), (w5, 0.8, 0.5, 0.5), (w6, 0.8, 0.5, 0.5),

(w7, 0.8, 0.5, 0.5), (w8, 0.8, 0.5, 0.5)},
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Now, consider a set N = {t1, t2} of parameters and a set-valued function η : N→ P(G) defined as:

η(t1) = {(e, 0.9, 0.8, 0.3), (w, 0.6, 0.7, 0.4), (w2, 0.6, 0.7, 0.4), (w3, 0.6, 0.7, 0.4),

(w4, 0.6, 0.7, 0.4), (w5, 0.6, 0.7, 0.4), (w6, 0.6, 0.7, 0.4),

(w7, 0.6, 0.7, 0.4), (w8, 0.6, 0.7, 0.4)},
η(t2) = {(e, 0.7, 0.7, 0.5), (w, 0.5, 0.6, 0.3), (w2, 0.5, 0.6, 0.3), (w3, 0.5, 0.6, 0.3),

(w4, 0.5, 0.6, 0.3), (w5, 0.5, 0.6, 0.3), (w6, 0.5, 0.6, 0.3),

(w7, 0.5, 0.6, 0.3), (w8, 0.5, 0.6, 0.3)}.

Clearly, the set (ζ,M) and the set (η,N) comprises (∈,∈ ∨q)-single-valued neutrosophic soft K-algebras.
By Theorem 1, the sets ζ(l), η(t) are (∈,∈ ∨q)-single-valued neutrosophic K-subalgebras for all l ∈ M and
for all t ∈ N. For all (l, t) ∈M×N, (ζ,M) AND (η,N)= (ζ,M)∧ (η,N) = (ϑ,M×N), where a set-valued
function ϑ : M×N→ P(G) is defined as:

ϑ(l1, t1) = {(e, 0.9, 0.3, 0.3), (w, 0.6, 0.3, 0.4), (w2, 0.6, 0.3, 0.4), (w3, 0.6, 0.3, 0.4),

(w4, 0.6, 0.3, 0.4), (w5, 0.6, 0.3, 0.4), (w6, 0.6, 0.3, 0.4),

(w7, 0.6, 0.3, 0.4), (w8, 0.6, 0.3, 0.4)},

ϑ(l2, t2) = {(e, 0.7, 0.7, 0.5), (w, 0.5, 0.5, 0.5), (w2, 0.5, 0.5, 0.5), (w3, 0.5, 0.5, 0.5),

(w4, 0.5, 0.5, 0.5), (w5, 0.5, 0.5, 0.5), (w6, 0.5, 0.5, 0.5),

(w7, 0.5, 0.5, 0.5), (w8, 0.5, 0.5, 0.5)},

ϑ(l1, t2) = {(e, 0.7, 0.3, 0.5), (w, 0.5, 0.3, 0.4), (w2, 0.5, 0.3, 0.4), (w3, 0.5, 0.3, 0.4),

(w4, 0.5, 0.3, 0.4), (w5, 0.5, 0.3, 0.4), (w6, 0.5, 0.3, 0.4),

(w7, 0.5, 0.3, 0.4), (w8, 0.5, 0.3, 0.4)},

ϑ(l2, t1) = {(e, 0.9, 0.8, 0.4), (w, 0.6, 0.5, 0.5), (w2, 0.6, 0.5, 0.5), (w3, 0.6, 0.5, 0.5),

(w4, 0.6, 0.5, 0.5), (w5, 0.6, 0.5, 0.5), (w6, 0.6, 0.5, 0.5),

(w7, 0.6, 0.5, 0.5), (w8, 0.6, 0.5, 0.5)}.

Clearly, (ϑ,M × N) = ϑ(l, t) = ζ(l) ∩ η(t)for all (l, t) ∈ M × N is an (∈,∈ ∨q)-single-valued
neutrosophic soft K-algebras.

Theorem 6. If (ζ,M) and (η,N) are two (∈,∈ ∨q)-single-valued neutrosophic soft K-subalgebras of K with
M∩N 6= ∅, then (ζ,M)∩(ζ,N) is an (∈,∈ ∨q)-single-valued neutrosophic soft K-subalgebras over K.

Proof. By Definition 16, for any l ∈ Q, both ζ(l) and η(l) are (∈,∈ ∨q)-single-valued neutrosophic
K-subalgebras since (ζ,M) and (η,N) are (∈,∈ ∨q)-single-valued neutrosophic soft K-subalgebras.
Therefore, ϑ(l) = ζ(l) ∩ η(l) is an (∈,∈ ∨q)-single-valued neutrosophic K-subalgebra. Consequently,
(ζ,M)∩(η,N) is an (∈,∈ ∨q)-single-valued neutrosophic soft K-subalgebra of K.

Example 6. Consider a K-algebra K = (G, ·,�, e), where G is the cyclic group of order nine given as
G = {e, w, w2, w3, w4, w5, w6, w7, w8}, and Cayley’s table for � is given in Example 2. Consider a set of
parameters M = {l1, l2} and set-valued function ζ : M → P(G) and a set of parameters N = {t1, t2} with
set-valued functions η : N→ P(G), which are defined in Example 5.

We show that if M ∩ N 6= ∅, then (ζ,M)∩(ζ,N) is an (∈,∈ ∨q)-single-valued neutrosophic soft
K-subalgebra over K. Now, if M = {l1, l2}, N = {t1, t2}, M ∩ N 6= ∅, (ζ,M)∩(η,N) = (ϑ,Q) and
ϑ : Q→ P(Z) is a set-valued function, where Q = M∩N, then the following cases can be considered.
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(i) Q = M∩N = {l1}, whenever t1 = l1 or t2 = l1.
(ii) Q = M∩N = {l2}, whenever t1 = l2 or t2 = l2.

(iii) Q = M∩N = {t1}, whenever l1 = t1 or l2 = t1.
(iv) Q = M∩N = {t2}, whenever l1 = t2 or l2 = t2.

Now, in each case, set-valued function ϑ is defined as:

ϑ(l1) = ζ(l1) ∩ η(t1) = ϑ(t1) = {(e, 0.9, 0.3, 0.3), (w, 0.6, 0.3, 0.4), (w2, 0.6, 0.3, 0.4), (w3, 0.6, 0.3, 0.4),
(w4, 0.6, 0.3, 0.4), (w5, 0.6, 0.3, 0.4), (w6, 0.6, 0.3, 0.4), (w7, 0.6, 0.3, 0.4), (w8, 0.6, 0.3, 0.4)},
where t1 = l1 or l1 = t1,

ϑ(l2) = ζ(l2) ∩ η(t1) = {(e, 0.9, 0.8, 0.4), (w, 0.6, 0.5, 0.5), (w2, 0.6, 0.5, 0.5), (w3, 0.6, 0.5, 0.5),
(w4, 0.6, 0.5, 0.5), (w5, 0.6, 0.5, 0.5), (w6, 0.6, 0.5, 0.5), (w7, 0.6, 0.5, 0.5), (w8, 0.6, 0.5, 0.5)}, where t1 = l2,

ϑ(t2) = ζ(l1) ∩ η(t2) = {(e, 0.7, 0.3, 0.5), (w, 0.5, 0.3, 0.4), (w2, 0.5, 0.3, 0.4), (w3, 0.5, 0.3, 0.4),
(w4, 0.5, 0.3, 0.4), (w5, 0.5, 0.3, 0.4), (w6, 0.5, 0.3, 0.4), (w7, 0.5, 0.3, 0.4), (w8, 0.5, 0.3, 0.4)}, where l1 = t2.

Clearly ϑ(θ), is an (∈,∈ ∨q)-single-valued neutrosophic K-subalgebra for all θ ∈ Q, which implies that
(ϑ,Q) is an (∈,∈ ∨q)-single-valued neutrosophic soft K-subalgebra of K, where Q = M∩N.

Theorem 7. If (ζ,M) is an (∈,∈ ∨q) K-subalgebra of K, then for a non-empty collection {(ϑi,Ni) | i ∈ Ω}
of (∈,∈ ∨q)-single-valued neutrosophic soft K-subalgebras of (ζ,M), the following results hold:

(i)
⋂

i∈Ω
ex (ϑi,Ni) is an (∈,∈ ∨q)-single-valued neutrosophic soft K-subalgebra of (ζ,M).

(ii)
∧

i∈Ω(ϑi,Ni) is an (∈,∈ ∨q)-single-valued neutrosophic soft K-subalgebra of
∧

i∈Ω
(ζ,M).

(iii) For the disjoint intersection of two parametric sets Ni,Nj, ∀i, j ∈ Ω,
∨

i∈Ω
ex(ϑi,Ni) is an (∈,∈

∨q)-single-valued neutrosophic K-subalgebra of
∨

i∈Ω
(ζ,M).

Proof. The proof follows from Definitions 14, 18 and 19.

Theorem 8. Let (ζ,M) and (η,N) be two (∈,∈ ∨q)-single-valued neutrosophic soft K-subalgebras,
then (ζ,M) ∩ex (η,N) is an (∈,∈ ∨q)-single-valued neutrosophic soft K-subalgebra of K.

Proof. By Definition 14, let for any l ∈ Q the following three conditions arise:

(1) If l ∈ M−N, then ϑ(l) = ζ(l) is an (∈,∈,∨q)-single-valued neutrosophic K-subalgebra since
(ζ,M) is an (∈,∈,∨q)-single-valued neutrosophic soft K-subalgebra of K.

(2) If l ∈ N−M, then we have ϑ(l) = η(l), which is an (∈,∈,∨q)-single-valued neutrosophic
K-subalgebra since (η,N) is an (∈,∈,∨q)-single-valued neutrosophic soft K-subalgebra of K.

(3) Now, if l ∈ M ∩ N, then ϑ(l) = ζ(l) ∩ η(l), which is also an (∈,∈,∨q)-single-valued
neutrosophic K-subalgebra of K. Therefore, in each case, ϑ(l) is an (∈,∈,∨q)-single-valued
neutrosophic K-subalgebra. Consequently, (ζ,M) ∩ex (η,N) is an (∈,∈,∨q)-single-valued
neutrosophic soft K-subalgebras of K.

Example 7. Consider a K-algebra K = (G, ·,�, e), where G is the cyclic group of order nine given as
G = {e, w, w2, w3, w4, w5, w6, w7, w8}, and Cayley’s table for � is given in Example 2. Consider a set of
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parameters M = {l1, l2}, set-valued function ζ : M → P(G) and a set of parameters N = {t1, t2} with
set-valued functions η : N→ P(G), where ζ at parameters l1, l2 and η at parameters t1, t2 are defined as:

ζ(l1) = {(e, 0.9, 0.3, 0.3), (w, 0.6, 0.3, 0.4), (w2, 0.6, 0.3, 0.4), (w3, 0.6, 0.3, 0.4),

(w4, 0.6, 0.3, 0.4), (w5, 0.6, 0.3, 0.4), (w6, 0.6, 0.3, 0.4),

(w7, 0.6, 0.3, 0.4), (w8, 0.6, 0.3, 0.4)},

ζ(l2) = {(e, 0.9, 0.8, 0.4), (w, 0.8, 0.5, 0.5), (w2, 0.8, 0.5, 0.5), (w3, 0.8, 0.5, 0.5),

(w4, 0.8, 0.5, 0.5), (w5, 0.8, 0.5, 0.5), (w6, 0.8, 0.5, 0.5),

(w7, 0.8, 0.5, 0.5), (w8, 0.8, 0.5, 0.5)},

and

η(t1) = {(e, 0.9, 0.8, 0.3), (w, 0.6, 0.7, 0.4), (w2, 0.6, 0.7, 0.4), (w3, 0.6, 0.7, 0.4),

(w4, 0.6, 0.7, 0.4), (w5, 0.6, 0.7, 0.4), (w6, 0.6, 0.7, 0.4),

(w7, 0.6, 0.7, 0.4), (w8, 0.6, 0.7, 0.4)},
η(t2) = {(e, 0.7, 0.7, 0.5), (w, 0.5, 0.6, 0.3), (w2, 0.5, 0.6, 0.3), (w3, 0.5, 0.6, 0.3),

(w4, 0.5, 0.6, 0.3), (w5, 0.5, 0.6, 0.3), (w6, 0.5, 0.6, 0.3),

(w7, 0.5, 0.6, 0.3), (w8, 0.5, 0.6, 0.3)}.

Clearly, by Example 5, (ζ,M) and (η,N) are (∈,∈ ∨q)-single-valued neutrosophic soft K-subalgebras.
Now, to show that (ζ,M) ∩ex (η,N) = (ϑ,Q) is an (∈,∈ ∨q)-single-valued neutrosophic soft K-subalgebra of
K, where Q = M∪N = {l1, l2, t1, t2}, then by Definition 14, the following conditions can be considered:

(i) If θ ∈M−N, then θ = {l1, l2} and set-valued function ϑ at parameters l1, l2 is defined as:
ϑ(l1) = ζ(l1) = {(e, 0.9, 0.3, 0.3), (w, 0.6, 0.3, 0.4), (w2, 0.6, 0.3, 0.4), (w3, 0.6, 0.3, 0.4),

(w4, 0.6, 0.3, 0.4), (w5, 0.6, 0.3, 0.4), (w6, 0.6, 0.3, 0.4), (w7, 0.6, 0.3, 0.4), (w8, 0.6, 0.3, 0.4)},
ϑ(l2) = ζ(l2) = {(e, 0.9, 0.8, 0.4), (w, 0.8, 0.5, 0.5), (w2, 0.8, 0.5, 0.5), (w3, 0.8, 0.5, 0.5),

(w4, 0.8, 0.5, 0.5), (w5, 0.8, 0.5, 0.5), (w6, 0.8, 0.5, 0.5), (w7, 0.8, 0.5, 0.5), (w8, 0.8, 0.5, 0.5)}.
Since ζ(θ) is an (∈,∈ ∨q)-single-valued neutrosophic K-subalgebra, therefore ϑ(θ) is also an
(∈,∈ ∨q)-single-valued neutrosophic K-subalgebra of K, for all θ ∈M−N.

(ii) If θ ∈ N−M, then θ = {t1, t2} and set-valued function ϑ at parameters t1, t2 is defined as:
ϑ(t1) = η(t1) = {(e, 0.9, 0.8, 0.3), (w, 0.6, 0.7, 0.4), (w2, 0.6, 0.7, 0.4), (w3, 0.6, 0.7, 0.4),

(w4, 0.6, 0.7, 0.4), (w5, 0.6, 0.7, 0.4), (w6, 0.6, 0.7, 0.4), (w7, 0.6, 0.7, 0.4), (w8, 0.6, 0.7, 0.4)},
ϑ(t2) = η(t2) = {(e, 0.7, 0.7, 0.5), (w, 0.5, 0.6, 0.3), (w2, 0.5, 0.6, 0.3), (w3, 0.5, 0.6, 0.3),

(w4, 0.5, 0.6, 0.3), (w5, 0.5, 0.6, 0.3), (w6, 0.5, 0.6, 0.3), (w7, 0.5, 0.6, 0.3), (w8, 0.5, 0.6, 0.3)}.
Since η(θ) is an (∈,∈ ∨q)-single-valued neutrosophic K-subalgebra, therefore ϑ(θ) is also an
(∈,∈ ∨q)-single-valued neutrosophic K-subalgebra of K, for all θ ∈ N−M.

(iii) Now, if θ ∈ M ∩ N, then ϑ(θ) = ζ(θ) ∩ η(θ). By Example 6, it follows that ϑ(θ) is an (∈
,∈ ∨q)-single-valued neutrosophic K-subalgebra of K, for all θ ∈ M ∩ N. Therefore, (ζ,M) ∩ex

(η,N) = (ϑ,Q) is an (∈,∈ ∨q)-single-valued neutrosophic soft K-subalgebra of K.

Theorem 9. Let (ζ,M), (η,N) be two (∈,∈ ∨q)-single-valued neutrosophic soft K-subalgebras with M∩N =

∅, then (ζ,M) ∪ex (η,N) is an (∈,∈ ∨q)-single-valued neutrosophic soft K-subalgebra of K.

Proof. The proof follows from Definition 15.

We denote the set of all (∈,∈ ∨q)-single-valued neutrosophic soft K-algebras of K by N(G,R).
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Theorem 10. Under the ordering relation ⊂, (SN(G,R),∪ex,∩) is a complete distributive lattice.

Proof. Suppose that (ζ,M), (η,N) ∈ SN(G,R), (ζ,M) ∪ex (η,N) ∈ SN(G,R) and (ζ,M) ∩ (η,N) ∈
SN(G,R). Consider {(ζ,M), (η,N)} are an arbitrary collection of (SN(G,R),∪ex,∩), since (ζ,M) ∪ex

(η,N) is the supremum of (ζ,M) and (ζ,M) ∩ (η,N) the infimum of (η,N), which shows that
(SN(G,R),∪ex,∩) is a complete lattice.

In order to show that it is a complete distributive lattice, i.e., for all (ζ,M), (η,N), (ϑ,Q) ∈ SN(G,R),
(ζ,M) ∩ ((η,N) ∪ex (ϑ,Q)) = ((ζ,M) ∩ (η,N)) ∪ex ((ζ,M) ∩ (ϑ,Q)); let us suppose that (ζ,M) ∩
((η,N) ∪ex (ϑ,Q)) = (I,M ∩ (N ∪Q)), ((ζ,M) ∩ (η,N)) ∪ex ((ζ,M) ∩ (ϑ,Q)) = (J, (M ∩N) ∪ (M ∩
Q)) = (J,M∩ (N∪Q)). For any θ ∈M∩ (N∪Q), θ ∈M and θ ∈ N∪Q, the following cases arise:

(i) θ ∈M, θ /∈ N and θ ∈ Q. Then, K(θ) = ζ(θ) ∩ ϑ(θ) = J(θ),
(ii) θ ∈M, θ ∈ N and θ /∈ Q. Then, K(θ) = ζ(θ) ∩ η(θ) = J(θ),

(iii) θ ∈M, θ ∈ N and θ ∈ Q. Then, K(θ) = ζ(θ) ∩ (η(θ) ∪ ϑ(θ))

= (ζ(θ) ∩ η(θ)) ∪ (ζ(θ) ∩ ϑ(θ)) = J(θ).

Both J and K being the same operators implies that (ζ,M) ∩ ((η,N) ∪ex (ϑ,Q)) = ((ζ,M) ∩
(η,N)) ∪ex ((ζ,M) ∩ (ϑ,Q)). This completes the proof.

Definition 26. The extended product of two single-valued neutrosophic soft sets is denoted by (ζ,M) �.
(η,N) = (ζ ◦ η,Q), where Q = M ∪N and (ζ,M) and (η,N) are two single-valued neutrosophic soft sets
over Z, defined as for all θ ∈ Q.

(ζ ◦ η)(θ) =


ζ(θ) if θ ∈M−N,

η(θ) if θ ∈ N−M,

ζ(θ) ◦ η(θ) if θ ∈M∩N.

Here, ζ(θ) ◦ η(θ) is the product of two single-valued neutrosophic sets.

Lemma 1. (ζ1,M), (ζ2,M), (η1,N), (η2,N) are two SNSSs over K such that (ζ1,M) ⊂ (ζ2,M) and
(η1,N) ⊂ (η2,N). Then:

(a) (ζ1,M)�. (η1,N) ⊂(ζ2,M)�. (η2,N),
(b) (ζ1,M) ∩ (η1,N) ⊂(ζ2,M) ∩ (η2,N),
(c) (ζ1,M) ∩ex (η1,N)⊂(ζ2,M) ∩ex (η2,N),
(d) (ζ1,M) ∪ (η1,N) ⊂(ζ2,M) ∪ (η2,N),
(e) (ζ1,M) ∪ex (η1,N)⊂(ζ2,M) ∪ex (η2,N).

Lemma 2. Let (ζ,M), (η,N) and (ϑ,Q) be SNSSs over K. Then, (ζ,M)�. ((η,N)�. (ϑ,Q)) =

((ζ,M)�. (η,N))�. (ϑ,Q), where �. is the operation of the product of SNSSs over K.

Theorem 11. xxx Let K be a K-algebra. If (ζ,M) and (η,N) are (∈,∈,∨q)-single-valued neutrosophic soft
K-subalgebras, then (ζ,M) �. (η,N) is an (∈,∈ ∨q)-single-valued neutrosophic soft K-subalgebras of K.

Proof. The proof follows from Definition 26.

Example 8. Consider a K-algebra K = (G, ·,�, e), where G is the cyclic group of order nine given as
G = {e, w, w2, w3, w4, w5, w6, w7, w8}, and Cayley’s table for � is given in Example 2. Consider a set of
parameters M = {l1, l2} and a set-valued function ζ : M→ P(G) defined as:

ζ(l1) = {(e, 0.9, 0.3, 0.3), (s, 0.6, 0.3, 0.4)}, for all s 6= e ∈ G.
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ζ(l2) = {(e, 0.9, 0.8, 0.4), (s
′
, 0.8, 0.5, 0.5)}, for all s

′ 6= e ∈ G.
Now, we consider a set N = {t1, t2} of parameters and a set-valued function η : N → P(G), which is

defined as:

η(t1) = {(e, 0.9, 0.8, 0.3), (w, 0.6, 0.7, 0.4)}, for all w 6= e ∈ G.

η(t2) = {(e, 0.7, 0.7, 0.5), (w
′
, 0.5, 0.6, 0.3)}, for all w

′ 6= e ∈ G.

Clearly, the set (ζ,M) and the set (η,N) is an (∈,∈ ∨q)-single-valued neutrosophic soft K-subalgebra
for all l1, l2 ∈ M and t1, t2 ∈ N. Now, we show that (ζ,M) �. (η,N) = (ζ ◦ η,Q), where Q = M ∪N is
an (∈,∈ ∨q)-single-valued neutrosophic soft K-subalgebra of K. By Definition 26, the following conditions can
be considered:

(i) If θ ∈ M− N, then θ = {l1, l2} and (ζ ◦ η)(θ) = ζ(θ). Since ζ(θ) is an (∈,∈ ∨q)-single-valued
neutrosophic K-subalgebra, therefore (ζ ◦ η) is also an (∈,∈ ∨q)-single-valued neutrosophic
K-subalgebra of K, for all θ ∈M−N.

(ii) If θ ∈ N −M, then θ = {t1, t2} and (ζ ◦ η)(θ) = η(θ). Therefore, (ζ ◦ η) is also an (∈,∈
∨q)-single-valued neutrosophic K-subalgebra ofK since η(θ) is an (∈,∈ ∨q)-single-valued neutrosophic
K-subalgebra for all θ ∈ N−M.

(iii) If θ ∈ M ∩N, then (ζ ◦ η)(θ) = ζ(θ) ◦ η(θ), where ζ(θ) ◦ η(θ) is the product of two single-valued
neutrosophic sets at parameter θ. Then, by Example 6, four conditions can be considered since θ ∈M∩N
and corresponding to each condition product can be calculated as:
(ζ ◦ η)(l1) = ζ(l1) ◦ η(t1) =

{
〈(e, e), 0.9, 0.3, 0.3〉, 〈(e, w), 0.6, 0.3, 0.4〉, 〈(s, e), 0.6, 0.3, 0.4〉,

〈(s, w), 0.6, 0.3, 0.4〉
}

,
(ζ ◦ η)(l2) = ζ(l2) ◦ η(t1) =

{
〈(e, e), 0.9, 0.8, 0.4〉, 〈(e, w), 0.6, 0.7, 0.4〉, 〈(s′ , e), 0.8, 0.5, 0.5〉,

〈(s′ , w), 0.6, 0.5, 0.5〉
}

,
(ζ ◦ η)(t2) = ζ(l1) ◦ η(t2) =

{
〈(e, e), 0.7, 0.3, 0.5〉, 〈(e, w

′
), 0.5, 0.3, 0.3〉, 〈(s, e), 0.6, 0.3, 0.5〉,

〈(s, w
′
), 0.5, 0.3, 0.4〉

}
.

Clearly, (ζ ◦ η)(θ) is an (∈,∈ ∨q)-single-valued neutrosophic K-subalgebra of K, for all θ ∈ M ∩N,
which shows that (ζ,M) �. (η,N) is an (∈,∈ ∨q)-single-valued neutrosophic soft K-subalgebra of K.

Theorem 12. LetK be a K-algebra. Then, under the ordering relation⊂, (SN(G,R),�,∩) is a complete lattice.

Proof. The proof is straightforward.

5. Conclusions

The world of science and its related fields have accomplished such complicated processes
for which consistent and complete information is not always conceivable. For the last few
decades, a number of theories and postulates have been introduced by many researchers to handle
indeterminate constituents in science and technologies. These theories include the theory of probability,
interval mathematics, fuzzy set theory, intuitionistic fuzzy set theory, neutrosophic set theory, etc.
Among all these theories, a powerful mathematical tool to deal with indeterminate and inconsistent
data is the neutrosophic set theory introduced by Smarandache in 1998. This theory provides a
mathematical model to cope up with executions having complex phenomena towards uncertainty.
In 1999, Molodtsov introduced the concept of soft set theory to deal with the problems involving
indeterminacy without setting the membership function. This theory provides a parameterized
consideration to uncertainties. We have applied these mathematical representations in collaboration
to scrutinize the factor of uncertainty in K-algebras. A K-algebra is a new kind of non-classic
logical algebra. We have introduced the notion of single-valued neutrosophic soft K-algebras and
studied related properties. To give a generalized point of view of single-valued neutrosophic soft
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K-algebras, we have proposed the concept of (∈,∈ ∨q)-single-valued neutrosophic soft K-algebras
and investigated various conclusive results with some numerical examples. In our opinion, the future
study of K-algebras can be connected with: (1) K-modules and single-valued neutrosophic K-modules;
(2) rough K-algebras and single-valued neutrosophic rough K-algebras; (3) hyper-K-algebras and
single-valued neutrosophic K-algebras.
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Abstract: In this paper we provide an application of neutrosophic bipolar fuzzy sets in daily
life’s problem related with HOPE foundation that is planning to build a children hospital, which
is the main theme of this paper. For it we first develop the theory of neutrosophic bipolar fuzzy
sets which is a generalization of bipolar fuzzy sets. After giving the definition we introduce some
basic operation of neutrosophic bipolar fuzzy sets and focus on weighted aggregation operators in
terms of neutrosophic bipolar fuzzy sets. We define neutrosophic bipolar fuzzy weighted averaging
(N BFWA) and neutrosophic bipolar fuzzy ordered weighted averaging (N BFOWA) operators.
Next we introduce different kinds of similarity measures of neutrosophic bipolar fuzzy sets. Finally
as an application we give an algorithm for the multiple attribute decision making problems under
the neutrosophic bipolar fuzzy environment by using the different kinds of neutrosophic bipolar
fuzzy weighted/fuzzy ordered weighted aggregation operators with a numerical example related
with HOPE foundation.

Keywords: neutrosophic set; bipolar fuzzy set; neutrosophic bipolar fuzzy set; neutrosophic bipolar
fuzzy weighted averaging operator; similarity measure; algorithm; multiple attribute decision
making problem

1. Introduction

Zadeh [1] started the theory of fuzzy set and since then it has been a significant tool in learning logical
subjects. It is applied in many fields, see [2]. There are numbers of over simplifications/generalization of
Zadeh’s fuzzy set idea to interval-valued fuzzy notion [3], intuitionistic fuzzy set [4], L-fuzzy notion [5],
probabilistic fuzzy notion [6] and many others. Zhang [7,8], provided the generality of fuzzy sets as
bipolar fuzzy sets. The extensions of fuzzy sets with membership grades from [−1, 1], are the bipolar
fuzzy sets. The membership grade [−1, 0) of a section directs in bipolar fuzzy set that the section
fairly fulfils the couched stand-property, the membership grade ]0, 1] of a section shows that the
section fairly fulfils the matter and the membership grade 0 of a section resources that the section is
unrelated to the parallel property. While bipolar fuzzy sets and intuitionistic fuzzy sets aspect parallel
to one another, they are really distinct sets (see [3]). When we calculate the place of an objective
in a universe, positive material conveyed for a collection of thinkable spaces and negative material
conveyed for a collection of difficult spaces [9]. Naveed et al. [10–12], discussed theoretical aspects of
bipolar fuzzy sets in detail. Smarandache [13], gave the notion of neutrosophic sets as a generalization
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of intutionistic fuzzy sets. The applications of Neutrosophic set theory are found in many fields
(see http://fs.gallup.unm.edu/neutrosophy.htm). Recently Zhang et al. [14], Majumdar et al. [15],
Liu et al. [16,17], Peng et al. [18] and Sahin et al. [19] have discussed various uses of neutrosophic set
theory in deciding problems. Now a days, neutrosophic sets are very actively used in applications
and MCGM problems. Bausys and Juodagalviene [20], Qun et al. [21], Zavadskas et al. [22], Chan and
Tan [23], Hong and Choi [24], Zhan et al. [25] studied the applications of neutrosophic cubic sets in
multi-criteria decision making in different directions. Anyhow, these approaches use the maximum,
minimum operations to workout the aggregation procedure. This leads to subsequent loss of data and,
therefore, inaccurate last results. How ever this restriction can be dealt by using famous weighted
averaging (WA) operator [26] and the ordered weighted averaging (OWA) operator [27]. Medina
and Ojeda-Aciego [28], gave t-notion lattice as a set of triples related to graded tabular information
explained in a non-commutative fuzzy logic. Medina et al. [28] introduces a new frame work for
the symbolic representation of informations which is called to as signatures and given a very useful
technique in fuzzy modelling. In [29], Nowaková et al., studied a novel technique for fuzzy medical
image retrieval (FMIR) by vector quantization (VQ) with fuzzy signatures in conjunction with fuzzy
S-trees. In [30] Kumar et al., discussed data clustering technique, Fuzzy C-Mean algorithem and
moreover Artificial Bee Colony (ABC) algorithm. In [31] Scellato et al.,discuss the rush of vehicles in
urban street networks. Recently Gulistan et al. [32], combined neutrosophic cubic sets and graphs and
gave the concept of neutrosophic cubic graphs with practical life applications in different areas. For
more application of neutrosophic sets, we refer the reader to [33–37]. Since, the models presented in
literature have different limitations in different situations. We mainly concern with the following tools:

(1) Neutrosophic sets are the more summed up class by which one can deal with uncertain
informations in a more successful way when contrasted with fuzzy sets and all other versions
of fuzzy sets. Neutrosophic sets have the greater adaptability, accuracy and similarity to the
framework when contrasted with past existing fuzzy models.

(2) And bipolar fuzzy sets are proved to very affective in uncertain problems which can characterized
not only the positive characteristics but also the negative characteristics of a certain problem.

We try to blend these two concepts together and try to develop a more powerful tool in the form
of neutrosophic bipolar fuzzy sets. In this work we initiate the study of neutrosophic bipolar fuzzy
sets which are the generalization of bipolar fuzzy sets and neutrosophic sets. After introducing the
definition we give some basic operations, properties and applications of neutrosophic bipolar fuzzy
sets. And the rest of the paper is structured as follows; Section 2 provides basic material from the
existing literature to understand our proposal. Section 3 consists of the basic notion and properties of
neutrosophic bipolar fuzzy set. Section 4 gives the role of weighted aggregation operator in terms of
neutrosophic bipolar fuzzy sets. We define neutrosophic bipolar fuzzy weighted averaging operator
(N BFWA) and neutrosophic bipolar fuzzy ordered weighted averaging

(
N BFOWA

)
operators.

Section 5 includes different kinds of similarity measures. In Section 6, an algorithm for the multiple
attribute decision making problems under the neutrosophic bipolar fuzzy environment by using the
different kinds of similarity measures of neutrosophic bipolar fuzzy sets and neutrosophic bipolar
fuzzy weighted/fuzzy ordered weighted aggregation operators is proposed. In Section 7, we provide
a daily life example related with HOPE foundation, which shows the applicability of the algorithm
provided in Section 6. In Section 8, we provide a comparison with the previous existing methods. In
Section 9, we discuss conclusion and some future research directions.
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2. Preliminaries

Here we provide some basic material from the literature for subsequent use.

Definition 1. Let Y be any nonempty set. Then a bipolar fuzzy set [7,8], is an object of the form

B = 〈u, 〈µ+(u), µ−(u)〉 : u ∈ Y〉,

and µ+ (u) : Y → [0, 1] and µ− (u) : Y → [−1, 0], µ+(u) is a positive material and µ−(u) is a negative
material of u ∈ Y . For simplicity, we donate the bipolar fuzzy set as B = 〈µ+, µ−〉 in its place of B =

〈u, 〈µ+(u), µ−(u)〉 : u ∈ Y〉.

Definition 2. Let B1 = 〈µ+
1 , µ−1 〉 and B2 = 〈µ+

2 , µ−2 〉 be two bipolar fuzzy sets [7,8], on Y . Then we define
the following operations.

(1) B
′
1 =

{
〈1− µ+

1 (u) ,−1− µ−1 (u)〉
}

;
(2) B1 ∪ B2 = 〈max(µ+

1 (u) , µ+
2 (u)), min(µ−1 (u) , µ−2 (u))〉;

(3) B1 ∩ B2 = 〈min(µ+
1 (u) , µ+

1 (u)), max(µ−1 (u) , µ−2 (u))〉.

Definition 3. A neutrosophic set [13], is define as:

L = {〈x, TruL(x), IndL(x), FalL(x)〉 : x ∈ X} ,

where X is a universe of discoveries and L is characterized by a truth-membership function TruL : X →]0−, 1+[,
an indtermency-membership function IndL : X →]0−, 1+[ and a falsity-membership function FalL : X →
]0−, 1+[ such that 0 ≤ TruL(x) + IndL(x) + FalL(x) ≤ 3.

Definition 4. A single valued neutrosophic set [16], is define as:

L = {〈x, TruL(x), IndL(x), FalL(x)〉 : x ∈ X} ,

where X is a universe of discoveries and L is characterized by a truth-membership function TruL : X → [0, 1],
an indtermency-membership function IndL : X → [0, 1] and a falsity-membership function FalL : X → [0, 1]
such that 0 ≤ TruL(x) + IndL(x) + FalL(x) ≤ 3.

Definition 5. Let [16]
L = {〈x, TruL(x), IndL(x), FalL(x)〉 : x ∈ X} ,

and
B = {〈x, TruB(x), IndB(x), FalB(x)〉 : x ∈ X} ,

be two single valued neutrosophic sets. Then

(1) L ⊂ B if and only if TruL(x) ≤ TruB(x), IndL(x) ≤ IndB(x), FalL(x) ≥ FalB(x).
(2) L = B if and only if TruL(x) = TruB(x), IndL(x) = IndB(x), FalL(x) = FalB(x), for any x ∈ X.
(3) The complement of L is denoted by Lc and is defined by

Lc = {〈x, FalL(x), 1− IndL(x), TruL(x)〉 /x ∈ X} .

(4) The intersection

L ∩ B = {〈x, min {TruL(x), TruB(x)} , max {IndL(x), IndB(x)} , max {FalL(x), FalB(x)}〉 : x ∈ X} .

Florentin Smarandache (ed.) Collected Papers, VI

251



(5) The Union

L ∪ B = {〈x, max {TruL(x), TruB(x)} , min {IndL(x), IndB(x)} , min {FalL(x), FalB(x)}〉 : x ∈ X} .

Definition 6. Let Ã1 = 〈Tru1, Ind1, Fal1〉 and Ã2 = 〈Tru2, Ind2, Fal2〉 be two single valued neutrosophic
number [16]. Then, the operations for NNs are defined as below:

(1) λÃ =
〈

1− (1− Tru1)
λ, Indλ

1 , Falλ
1

〉
;

(2) Ãλ
1 =

〈
Truλ

1 , 1− (1− Ind1)
λ, 1− (1− Fal1)

λ
〉

;

(3) Ã1 + Ã2 = 〈Tru1 + Tru2 − Tru1Tru2, Ind1 Ind2, Fal1Fal2〉;
(4) Ã1 Ã2 = 〈Tru1Tru2, Ind1 + Ind2− Ind1 Ind2, Fal1 + Fal2 − Fal1Fal2〉 where λ > 0.

Definition 7. Let Ã1 = 〈Tru1, Ind1, Fal1〉 be a single valued neutrosophic number [16]. Then, the score
function s(Ã1),accuracy function L(Ã1), and certainty function c(Ã1), of an NNs are define as under:

(1) s(Ã1) =
(Tru1+1−Ind1+1−Fal1)

3 ;
(2) L(Ã1) = Tru1 − Fal1;
(3) c(Ã1) = Tru1.

3. Neutrosophic Bipolar Fuzzy Sets and Operations

In this section we apply bipolarity on neutrosophic sets and initiate the notion of neutrosophic
bipolar fuzzy set with the help of Section 2, which is the generalization of bipolar fuzzy set. We also
study some basic operation on neutrosophic bipolar fuzzy sets.

Definition 8. A neutrosophic bipolar fuzzy set is an object of the form N B = (N B+,N B−) where

N B+ = 〈u, 〈TruN B+ , IndN B+ , FalN B+〉 : u ∈ Y〉,
N B− = 〈u, 〈TruN B− , IndN B− , FalN B−〉 : u ∈ Y〉,

where TruN B+ , IndN B+ , FalN B+ : Y → [0, 1] and TruN B− , IndN B− , FalN B− : Y → [−1, 0].

Note: In the Definition 8, we see that a neutrosophic bipolar fuzzy sets N B = (N B+,N B−),
consists of two parts, positive membership functions N B+ and negative membership functions N B−.
Where positive membership function N B+ denotes what is desirable and negative membership
function N B− denotes what is unacceptable. Desirable characteristics are further characterize as:
TruN B+ denotes what is desirable in past, IndN B+ denotes what is desirable in future and FalN B+
denotes what is desirable in present time. Similarly TruN B− denotes what is unacceptable in
past, IndN B− denotes what is unacceptable in future and FalN B− denotes what is unacceptable
in present time.

Definition 9. Let N B1 = (N B+1 ,N B−1 ) and N B2 = (N B+2 ,N B−2 ) be two neutrosophic bipolar fuzzy sets.
Then we define the following operations:

(1) N Bc

1 =
{〈

1− TruNB+
1

, 1− IndNB+
1

,−1− FalNB+
1

and 1− TruNB−
1

, 1− IndNB−
1

,−1− FalNB−
1

〉}
;

(2)

N B1 ∪N B2 =

〈
max(TruN B+

1
, TruN B+

2
), max(IndN B+

1
, IndN B+

2
), min(FalN B+

1
, FalN B+2

),

max(TruN B−
1

, TruN B−2
), max(IndN B−

1
, IndN B−

2
), min(FalN B−

1
, FalN B−

2
)

〉
;
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(3)

N B1 ∩N B2 =

〈
min(TruN B+

1
, TruN B+

2
), min(IndN B+

1
, IndN B+

2
), max(FalN B+

1
, FalN B+2

),

min(TruN B−
1

, TruN B−2
), min(IndN B−

1
, IndN B−

2
), max(FalN B−

1
, FalN B−

2
).

〉
.

Definition 10. Let N B1 = (N B+1 ,N B−1 ) and N B2 = (N B+2 ,N B−2 ) be two neutrosophic bipolar fuzzy sets.
Then we define the following operations:

(1)

N B+1 ⊕N B+2 =

〈
TruN B+

1
+ TruN B+

2
− TruN B+

1
· TruN B+

2
, IndN B+

1
+ IndN B+

2
− IndN B+

1
· IndN B+

2
,

−(
∣∣∣FalN B+

1

∣∣∣ · ∣∣∣FalN B+
2

∣∣∣)
〉

,

and

N B−1 ⊕N B−2 =

〈
TruN B−

1
+ TruN B−

2
− TruN B−

1
· TruN B−

2
, IndN B−

1
+ IndN B−

2
− IndN B−

1
· IndN B−

2
,

−(
∣∣∣FalN B−

1

∣∣∣ · ∣∣∣FalN B−
2

∣∣∣)
〉

;

(2)

N B+1 ⊗N B+2 =
〈

TruN B+
1
· TruN B+

2
, IndN B+

1
· IndN B+

2
, FalN B+

1
+ FalN B+

2
− (
∣∣∣FalN B+

1

∣∣∣ · ∣∣∣FalN B+
2

∣∣∣)〉 ,

and

N B−1 ⊗N B−2 =
〈

TruN B−
1
· TruN B−

2
, IndN B−

1
· IndN B−

2
, FalN B−

1
+ FalN B−

2
− (
∣∣∣FalN B−

1

∣∣∣ · ∣∣∣FalN B−
2

∣∣∣)〉 ;

(3)

N B+1 −N B+2 =
〈

min(TruN B+
1

, TruN B+
2

), min(IndN B+
1

, IndN B+
2

), max(FalN B+
1

, FalN B+
2

)
〉

,

and

N B−1 −N B−2 =
〈

min(TruN B−
1

, TruN B−
2

), min(IndN B−
1

, IndN B−
2

), max(FalN B−
1

, FalN B−
2

)
〉

.

Definition 11. Let N B = (N B+,N B−) be a neutrosophic bipolar fuzzy set and λ m 0. Then,

(1)

λN B+ = 〈1− (1− TruN B+)
λ, 1− (1− IndN B+)

λ,− |FalN B+ |
λ〉,

λN B− = 〈1− (1− TruN B−)
λ, 1− (1− IndN B−)

λ,− |FalN B− |
λ〉.

(2)

N B+λ
= 〈(TruN B+)

λ , (IndN B+)
λ,−1 + |−1 + FalN B+ |

λ〉,
N B−λ = 〈(TruN B−)

λ, (IndN B−)
λ,−1 + |−1 + FalN B−(u)|

λ〉.

Theorem 1. Let N B1 = (N B+1 ,N B−1 ), N B2 = (N B+2 ,N B−2 ) and N B3 = (N B+3 ,N B−3 ) be neutrosophic
bipolar fuzzy sets. Then, the following properties hold:

(1) Complementary law: (N Bc
1 )c = N B1 .
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(2) Idempotent law:

(i) N B1 ∪N B1 = N B1 ,

(ii) N B1 ∩N B1 = N B1 .

(3) Commutative law:

(i) N B1 ∪N B2 = N B2 ∪N B1 ,

(ii) N B1 ∩N B2 = N B2 ∩N B1 ,

(iii) N B1 ⊕N B2 = N B2 ⊕N B1 ,

(iv) N B1 ⊗N B2 = N B2 ⊗N B1 .

(4) Associative law:

(i) (N B1 ∪N B2 ) ∪N B3 = N B1 ∪ (N B2 ∪N B3 ),

(ii) (N B1 ∩N B2 ) ∩N B3 = N B1 ∩
(
N B2 ∩N B3

)
,

(iii) (N B1 ⊕N B2 )⊕N B3 = N B1 ⊕ (N B2 ⊕N B3 ),

(iv) (N B1 ⊗N B2 )⊗N B3 = N B1 ⊗ (N B2 ⊗N B3 ).

(5) Distributive law:

(i) N B1 ∪ (N B2 ∩N B3 ) = (N B1 ∪N B2 ) ∩ (N B1 ∪N B3 ),

(ii) N B1 ∩ (N B2 ∪N B3 ) = (N B1 ∩N B2 ) ∪ (N B1 ∩N B3 ),

(iii) N B1 ⊕ (N B2 ∪N B3 ) = (N B1 ⊕N B2 ) ∪ (N B1 ⊕N B3 ),

(iv) N B1 ⊕ (N B2 ∩N B3 ) = (N B1 ⊕N B2 ) ∩ (N B1 ⊕N B3 ),

(v) N B1 ⊗ (N B2 ∪N B3 ) = (N B1 ⊗N B2 ) ∪ (N B1 ⊗N B3 ),

(vi) N B1 ⊗ (N B2 ∩N B3 ) = (N B1 ⊗N B2 ) ∩ (N B1 ⊗N B3 ).

(6) De Morgan
′
s laws:

(i) (N B1 ∪N B2 )
c

= N Bc
1 ∩N Bc

2 ,

(ii)
(
N B1 ∩N B2

)c
= N Bc

1 ∪N Bc
2 ,

(iii) (N B1 ⊕N B2 )
c 6= N Bc

1 ⊗N Bc
2 ,

(iv)
(
N B1 ⊗N B2

)c
6= N Bc

1 ⊕N Bc
2 .

Proof. Straightforward.

Theorem 2. Let N B1 = (N B+1 ,N B−1 ) and N B2 = (N B+2 ,N B−2 ) be two neutrosophic bipolar fuzzy sets
and let N B3 = N B1 ⊕N B2 and N B4 = λN B1 (λ > 0). Then both N B3 and N B4 are also neutrosophic bipolar
fuzzy sets.

Proof. Straightforward.

Theorem 3. Let N B1 = (N B+1 ,N B−1 ) and N B2 = (N B+2 ,N B−2 ) be two neutrosophic bipolar fuzzy sets,
λ, λ1, λ2 > 0. Then, we have:
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(i) λ(N B1 ⊕N B2 ) = λN B1 ⊕ λN B2 ,

(ii) λ1N B1 ⊕ λ2N B2 = (λ1 ⊕ λ2)N B1 .

Proof. Straightforward.

4. Neutrosophic Bipolar Fuzzy Weighted/Fuzzy Ordered Weighted Aggregation Operators

After defining neutrosophic bipolar fuzzy sets and some basic operations in Section 3. We in
this section as applications point of view we focus on weighted aggregation operator in terms of
neutrosophic bipolar fuzzy sets. We define (N BFWA) and

(
N BFOWA

)
operators.

Definition 12. LetN Bj = (N B+j ,N B−j ) be the collection of neutrosophic bipolar fuzzy values. Then we define

N BFWA as a mapping N BFWAk : Ωn → Ω by

N BFWAk

(
N B1 ,N B2 , ...,N Bn

)
= k1N B1 ⊕ k2N B2 ⊕, ...,⊕knN Bn .

If k =
(

1
n , 1

n , ..., 1
n

)
then the N BFWA operator is reduced to

N BFA
(
N B1 ,N B2 , ...,N Bn

)
=

1
n

(
N B1 ⊕N B2 ⊕, ...,⊕N Bn

)
.

Theorem 4. Let N Bj = (N B+j ,N B−j ) be the collection of neutrosophic bipolar fuzzy values. Then

N BFWAk

(
N B+1 ,N B+2 , ...,N B+j

)
=



1−Πn
j=1

(
1− TruN B+

j

)kj

,

1−Πn
j=1

(
1− IndN B+

j

)kj

,

−Πn
j=1

∣∣∣∣∣
(

FalN B+
j

)kj
∣∣∣∣∣



N BFWAk

(
N B−1 ,N B−2 , ...,N B−j

)
=



1−Πn
j=1

(
1− TruN B−

j

)kj

,

1−Πn
j=1

(
1− IndN B−

j

)kj

,

−Πn
j=1

∣∣∣∣∣
(

FalN B−
j

)kj
∣∣∣∣∣





. (1)

Proof. Let N Bj = (N B+j ,N B−j ) be a collection of neutrosophic bipolar fuzzy values. We first prove
the result for n = 2. Since

k1N B+L =

[
1−

(
1− TruN B+L

)k1
, 1−

(
1− IndN B+L

)k1
,−(

∣∣∣FalN B+
L

∣∣∣)k1

]
,

k1N B−L =

[
1−

(
1− TruN B−

L

)k1
, 1−

(
1− IndN B−L

)k1
,−(

∣∣∣FalN B−L

∣∣∣)k1

]
,

k1N B+b =

[
1−

(
1− TruN B+b

)k2
, 1−

(
1− IndN B+b

)k2
,−(

∣∣∣FalN B+b

∣∣∣)k2

]
,

k1N B+b =

[
1−

(
1− TruN B−b

)k2
, 1−

(
1− IndN B−b

)k2
,−(

∣∣∣FalN B−b

∣∣∣)k2

]
,
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then

N BFWAk

(
N BL ,N Bb

)
= k1N B1 ⊕ k2N B2 ,

N BFWAk

(
N B+L ,N B+b

)
= k1N B+1 ⊕ k2N B+2 ,

N BFWAk

(
N B−L ,N B−b

)
= k1N B−1 ⊕ k2N B−2 ,

N BFWAk

(
N B+L ,N B+b

)
=



2−
(

1− TruN B+L

)k1 −
(

1− TruN B+b

)k2 −
(

1−
(

1− TruN B+L

)k1
)

×
(

1−
(

1− TruN B+b

)k2
)

,

2−
(

1− IndN B+L

)k1 −
(

1− IndN B+b

)k2 −
(

1−
(

1− IndN B+L

)k1
)

×
(

1−
(

1− IndN B+b

)k2
)

,

−(
∣∣∣FalN B+

L

∣∣∣)k1 (
∣∣∣FalN B+b

∣∣∣)k2


,

N BFWAk

(
N B+L ,N B+b

)
=

 1−
(

1− TruN B+L

)k1
(

1− TruN B+b

)k2
, 1−

(
1− IndN B+L

)k1
(

1− IndN B+b

)k2
,

−(
∣∣∣FalN B+

L

∣∣∣)k1 (
∣∣∣FalN B+b

∣∣∣)k2

 ,

N BFWAk

(
N B−L ,N B−b

)
= k1N B−1 ⊕ k2N B−2 ,

N BFWAk

(
N B−L ,N B−b

)
=



2−
(

1− TruN B−
L

)k1 −
(

1− TruN B−b

)k2 −
(

1−
(

1− TruN B−
L

)k1
)

×
(

1−
(

1− TruN B−b

)k2
)

,

2−
(

1− IndN B−L

)k1 −
(

1− IndN B−b

)k2 −
(

1−
(

1− IndN B−L

)k1
)

×
(

1−
(

1− IndN B−b

)k2
)

,

−(
∣∣∣FalN B−

L

∣∣∣)k1 (
∣∣∣FalN B−b

∣∣∣)k2


,

N BFWAk

(
N B−L ,N B−b

)
=

 1−
(

1− TruN B−
L

)k1
(

1− TruN B−b

)k2
, 1−

(
1− IndN B−

L

)k1
(

1− IndN B−b

)k2
,

−(
∣∣∣FalN B−

L

∣∣∣)k1 (
∣∣∣FalN B−b

∣∣∣)k2

 .

So N BFWAk
(
N BL ,N Bb

)
= k1N B1 ⊕ k2N B2 . If result is true for n = k, that is

N BFWAk

(
N B+1 ,N B+2 , ...,N B+j

)
=


1−Πk

j=1

(
1− TruN B+

J

)kj
,

1−Πk
j=1

(
1− IndN B+J

)kj
,

−Πk
j=1

∣∣∣∣∣
(

FalN B+
j

)kj
∣∣∣∣∣


,

N BFWAk

(
N B−1 ,N B−2 , ...,N B−j

)
=


1−Πk

j=1

(
1− TruN B−

J

)kj
,

1−Πk
j=1

(
1− IndN B−

J

)kj
,

−Πk
j=1

∣∣∣∣∣
(

FalN B−
j

)kj
∣∣∣∣∣


,
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then, when k + 1, we have

N BFWAk

(
N B+1 ,N B+2 , ...,N B+j

)
=



1−Πk
j=1

(
1− TruN B+

j

)kj
+

(
1−

(
1− TruN B+

k+1

)kk+1
)

−(1−Πk
j=1

(
1− TruN B+

j

)kj
)×

(
1−

(
1− TruN B+k+1

)kk+1
)

,

1−Πk
j=1

(
1− IndN B+

j

)kj
+

(
1−

(
1− IndN B+

k+1

)kk+1
)

−(1−Πk
j=1

(
1− IndN B+

j

)kj
)×

(
1−

(
1− IndN B+k+1

)kk+1
)

,

−Πk+1
j=1

∣∣∣∣∣
(

FalN B+
j

)kj
∣∣∣∣∣



=


1−Πk+1

j=1

(
1− TruN B+

j

)kj
,

1−Πk+1
j=1

(
1− IndN B+

j

)kj
,

−Πk+1
j=1

∣∣∣∣∣
(

FalN B+
j

)kj
∣∣∣∣∣


,

N BFWAk

(
N B−1 ,N B−2 , ...,N B−j

)
=



1−Πk
j=1

(
1− TruN B−

j

)kj
+

(
1−

(
1− TruN B−

k+1

)kk+1
)

−(1−Πk
j=1

(
1− TruN B+

j

)kj
)×

(
1−

(
1− TruN B−

k+1

)kk+1
)

,

1−Πk
j=1

(
1− IndN B−

j

)kj
+

(
1−

(
1− IndN B−

k+1

)kk+1
)

−(1−Πk
j=1

(
1− IndN B+

j

)kj
)×

(
1−

(
1− IndN B−

k+1

)kk+1
)

,

−Πk+1
j=1

∣∣∣∣∣
(

FalN B−
j

)kj
∣∣∣∣∣



=


1−Πk+1

j=1

(
1− TruN B−

j

)kj
,

1−Πk+1
j=1

(
1− IndN B−

j

)kj
,

−Πk+1
j=1

∣∣∣∣∣
(

FalN B−
j

)kj
∣∣∣∣∣


.

So result holds for n = k + 1.

Theorem 5. Let N Bj = (N B+j ,N B−j ) be the collection of neutrosophic bipolar fuzzy values and k =

(k1, k2, ..., kn)
T is the weight vector of N Bj (j = 1, 2, ..., n), with k j ∈ [0, 1] and Σn

j=1k j = 1. Then we have
the following:

(1) (Idempotency): If all N B∼j (j = 1, 2, ..., n) are equal, i.e.,N Bj = N Bj , for all j, then

N BFWAk

(
N B1 ,N B2 , ...,N Bn

)
= N B .

(2) (Boundary):
N B− ≤ N BFWAk

(
N B1 ,N B2 , ...,N Bn

)
≤ N B+ , for every k.

(3) (Monotonicity) If TruN B+
j
≤ TruN B+∗

j
, IndN B+

j
≤ IndN B+∗

j
and FalN B−

j
≥ FalN B−∗

j
, for all j, then

N BFWAk

(
N B1 ,N B2 , ...,N Bn

)
≤ N BFWAk

(
N B1∗ ,N B2∗ , ...,N Bn∗

)
, for every k.
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Definition 13. LetN Bj = (N B+j ,N B−j ) be theN BFWA be a collection of neutrosophic bipolar fuzzy values.

An neutrosophic bipolar fuzzy OWA(N BFOWA) operator of dimension is a mapping N BFOWA : Ωn →
Ω defined by

N BFOWAk

(
N B+1 ,N B+2 , ...,N B+n

)
= k1N B+σ(1) ⊕ k2N B+σ(2)⊕, ...,⊕knN B+σ(n),

N BFOWAk

(
N B−1 ,N B−2 , ...,N B−n

)
= k1N B−σ(1) ⊕ k2N B−σ(2)⊕, ...,⊕knN B−σ(n),

where (σ (1) , σ (2) , ..., σ (n)) is a permutation of (1, 2, ..., n) such that N Bσ(j−1) ≥ N
B
σ(j) for all j. If k =(

1
n , 1

n , ..., 1
n

)T
then BFOWA operator is reduced to BFA operator having dimension n.

Theorem 6. Let N Bj = (N B+j ,N B−j ) be the collection of neutrosophic bipolar fuzzy values. Then

N BFOWAk

(
N B+1 ,N B+2 , ...,N B+n

)
=



1−Πn
j=1

(
1− TruN B+

(σ(j))

)kj

,

1−Πn
j=1

(
1− IndN B+

(σ(j))

)kj

,

−Πn
j=1

∣∣∣∣∣
(

TruN B+
(σ(j))

)kj
∣∣∣∣∣


,

N BFOWAk

(
N B+1 ,N B+2 , ...,N B+n

)
=



1−Πn
j=1

(
1− TruN B−

(σ(j))

)kj

,

1−Πn
j=1

(
1− IndN B−

(σ(j))

)kj

,

−Πn
j=1

∣∣∣∣∣
(

TruN B−
(σ(j))

)kj
∣∣∣∣∣


,



, (2)

where
k = (k1, k2, ..., kn)

T ,

is the weight vector of N BFOWA operator with k j ∈ [0, 1] and Σn
j=1k j = 1, for all j = 1, 2, ..., n, i.e., all

N B∼j (j = 1, 2, ..., n), are reduced to the following form:

N BFOWAk

(
N B+1 ,N B+2 , ...,N B+n

)
= 1−Πn

j=1

(
1− TruN B+

(σ(j))

)kj

,

N BFOWAk

(
N B−1 ,N B−2 , ...,N B−n

)
= 1−Πn

j=1

(
1− TruN B−

(σ(j))

)kj

.

Theorem 7. LetN B∼j = 〈N B+NB∼j
,N B−

NB∼j
〉 (j = 1, 2, ..., n) be a collection of neutrosophic bipolar fuzzy values and

k = (k1, k2, ..., kn)
T ,

is the weighting vector of N BFOWA operator with k j ∈ [0, 1] and Σn
j=1k j = 1; then we have the following.

(1) Idempotency: If all N Bj (j = 1, 2, ..., n) are equal, i.e., N Bj = N B , for all j, then

N BFOWAk

(
N B1 ,N B2 , ...,N Bn

)
= N B .

(2) Boundary:
N B− ≤ N BFOWAk

(
N B1 ,N B2 , ...,N Bn

)
≤ N B+ ,
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for where k, where N Bj = (N B+j ,N B−j ) be the N BFWA N B+j = 〈TruN B+
j

, IndN B+
j

, FalN B+
j
〉

(j = 1, 2, ..., n) andN B−j = 〈TruN B−
j

, IndN B−
j

, FalN B−
j
〉 (j = 1, 2, ..., n) be a collection of neutrosophic

bipolar fuzzy values

N B− =

[
min

j

(
TruN B−

j

)
, min

j

(
IndN B−

j

)
,−max

j

(
FalN B−

j

)]
,

N B+ =

[
max

j

(
TruN B+

j

)
, max

j

(
IndN B+

j

)
,−min

j

(
FalN B+

j

)]
.

(3) Monotonicity: Let N B+∗j and N B−∗j (j = 1, 2, ..., n) be a collection of neutrosophic bipolar fuzzy values.
If TruN B+

j
≤ TruN B+∗

j
, IndN B+

j
≤ IndN B+∗

j
and FalN B−

j
≥ FalN B−∗

j
, for all j, then

N BFOWAk

(
N B1 ,N B2 , ...,N Bn

)
≤ BFWLk

(
N B1∗ ,N B2∗ , ...,N Bn∗

)
, for every k.

(4) Commutativity: Let N Bj = (N B+j ,N B−j ) be a collection of neutrosophic bipolar fuzzy values. Then

BFOWLk

(
N B1 ,N B2 , ...,N Bn

)
= BFOWLk

(
N B′1 ,N B

′

2 , ...,N B′n

)
,

for every w, where
(
N B′1 ,N B

′

2 , ...,N B′n

)
is any permutation of

(
N B1 ,N B2 , ...,N Bn

)
.

Theorem 8. Let N Bj = (N B+j ,N B−j ) be a collection of neutrosophic bipolar fuzzy values

k = (k1, k2, ..., kn)
T ,

is the weighting vector of N BFOWA operator with

k j ∈ [0, 1] and Σn
j=1k j = 1;

then we have the following:

(1) If k = (1, 0, ..., 0)T , then

N BFOWAk

(
N B1 ,N B2 , ...,N Bn

)
= max

j

(
N Bj

)
.

(2) If k = (0, 0, ..., 1)T , then

N BFOWAk

(
N B1 ,N B2 , ...,N Bn

)
= min

j

(
N Bj

)
.

(3) If k j = 1, ki = 0, and i 6= j, then

BFOWAk

(
N B∼1 ,N B∼2 , ...,N B∼n

)
= N B∼σ(j),

where N B
σ(j) is the largest of N Bi (i = 1, 2, ..., n) .

5. Similarity Measures of Neutrosophic Bipolar Fuzzy Sets

In Section 4 we define different aggregation operators with the help of operations defined in
Section 3. Next in this section we are aiming to define some similarity measures which will be used
in the next Section 6. A comparisons of several different fuzzy similarity measures as well as their
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aggregations have been studied by Beg and Ashraf [38,39]. Theoretical and computational properties
of the measures was further investigated with the relationships between them [15,40–42]. A review, or
even a listing of all these similarity measures is impossible. Here in this section we define different
kinds of similarity measures of neutrosophic bipolar fuzzy sets.

5.1. Neutrosophic Bipolar Fuzzy Distance Measures

Definition 14. A function E : N BFSs (X)→ [0, 1] is called an entropy for N BFSs (X) ,

(1) E
(
N B

)
= 1⇔ N B is a crisp set.

(2) E
(
N B

)
= 0⇔

TruN B+
1

(x) = −TruN B−
1

(x), IndN B+
1

(x) = −IndN B−
1

(x), FalN B+
1

(x) = −FalN B−
1

(x) ∀ x ∈ X.

(3) E
(
N B

)
= E

(
N Bc) for each ∀N B ∈ BFSs (X).

(4) E
(
N B1

)
≤ E

(
N B2

)
if N B1 is less than N B2 , that is,

TruN B+1
(x) ≤ TruN B+

2
(x) ,IndN B+1

(x) ≤ IndN B+
2

(x), FalN B+
1

(x) ≥ FalN B+2
(x),

TruN B−1
(x) ≤ TruN B−

2
(x) ,IndN B−1

(x) ≤ IndN B−
2

(x), FalN B−
1

(x) ≥ FalN B−2
(x),

for TruN B+
2

(x) ≤
∣∣∣TruN B−

2
(x)
∣∣∣

or TruN B+1
(x) ≥ TruN B+

2
(x), IndN B+1

(x) ≥ IndN B+
2

(x),

and
FalN B−

1
(x) ≤ FalN B−2

(x) ≤ N B−B2
(x) for TruN B+1

(x) ≥ FalN B−2
(x).

Definition 15. Let X = {x1, x2, ..., xn} and N B = (N B+,N B−) be an N BFS. The entropy of N BFS is
denoted by E(N B+,N B−) and given by

E(N B+) = 1
n ∑n

i=1

min((TruNB+1
(́x)),min(IndNB+1

(́x)),
∣∣∣∣FalNB+1

(́x)
∣∣∣∣)

max((TruNB+1
(́x)),max(IndNB+1

(́x)),
∣∣∣∣FalNB+1

(x)
∣∣∣∣)

E(N B−) = 1
n ∑n

i=1

min((TruNB−1
(́x)),min(IndNB−1

(́x)),
∣∣∣∣FalNB−1

(́x)
∣∣∣∣)

max((TruNB−1
(́x)),max(IndNB−1

(́x)),
∣∣∣∣FalNB−1

(x)
∣∣∣∣)


, (3)

and for a neutrosophic bipolar fuzzy number N B = 〈N B+L ,N B−L 〉, the bipolar fuzzy entropy is given by

E(N B+L ) =
min((TruL+1

(́x),min(IndL+1
(x)́),

∣∣∣∣FalL+1
(x)́
∣∣∣∣)

max(TruL+1
(x)́),max(IndL+1

(x)́),
∣∣∣∣FalL+1

(́x)
∣∣∣∣)

E(N B−L ) =
min((TruL−1

(́x),min(IndL−1
(x)́),

∣∣∣∣FalL−1
(x)́
∣∣∣∣)

max(TruL−1
(x)́),max(IndL−1

(x)́),
∣∣∣∣FalL−1

(́x)
∣∣∣∣)


. (4)

Definition 16. Let X = {x1, x2, ..., xn}. We define the Hamming distance between N B1 and N B2 belonging to
N BFSs(X) defined as follows:
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(1) The Hamming distance:

d(N B+1 ,N B+2 ) = 1
2 ∑n

j=1(|TruN B+
1

(xj)− TruN B+
2

(xj)|
+|IndN B+

1
(xj)− IndN B+

2
(xj)|

+||FalN B+
1

(xj)− FalN B+
1

(xj)||)
Hamming distance for positive neutrosophic bipolar sets

d(N B−1 ,N B−2 ) = 1
2 ∑n

j=1(|TruN B−
1

(xj)− TruN B−
2

(xj)|
+|IndN B−

1
(xj)− IndN B−

2
(xj)|

+||FalN B−
1

(xj)− FalN B−
1

(xj)||)
Hamming distance for negative neutrosophic bipolar sets



. (5)

(2) The normalized Hamming distance:

d(N B+1 ,N B+2 ) = 1
2n ∑n

j=1(|TruN B+
1

(xj)− TruN B+
2

(xj)|
+|IndN B+

1
(xj)− IndN B+

2
(xj)|

+||FalN B+
1

(xj)− FalN B+
1

(xj)||)
normalized Hamming distance for positive neutrosophic bipolar sets

d(N B−1 ,N B−2 ) = 1
2n ∑n

j=1(|TruN B+
1

(xj)− TruN B+
2

(xj)|
+|IndN B+

1
(xj)− IndN B+

2
(xj)|

+||FalN B+
1

(xj)− FalN B+
1

(xj)||)
normalized Hamming distance for negative neutrosophic bipolar sets



. (6)

(3) The Euclidean distance:

d(N B+1 ,N B+2 ) =

√√√√√√√
1
2 ∑n

j=1(TruN B+
1

(xj)− TruN B+
2

(xj))
2

+(IndN B+
1

(xj)− IndN B+
2

(xj))
2

+(FalN B+
1

(xj)− FalN B+
1

(xj))
2

d(N B−1 ,N B−2 ) =

√√√√√√√
1
2 ∑n

j=1(TruN B−
1

(xj)− TruN B−
2

(xj))
2

+(IndN B−
1

(xj)− IndN B−
2

(xj))
2

+(FalN B−
1

(xj)− FalN B−
1

(xj))
2


. (7)

(4) The normalized Euclidean distance:

d(N B+1 ,N B+2 ) =

√√√√√√√
1

2n ∑n
j=1(TruN B+

1
(xj)− TruN B+

2
(xj))

2

+(IndN B+
1

(xj)− IndN B+
2

(xj))
2

+(FalN B+
1

(xj)− FalN B+
1

(xj))
2

d(N B−1 ,N B−2 ) =

√√√√√√√
1

2n ∑n
j=1(TruN B−

1
(xj)− TruN B−

2
(xj))

2

+(IndN B−
1

(xj)− IndN B−
2

(xj))
2

+(FalN B−
1

(xj)− FalN B−
1

(xj))
2


. (8)
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(5) Based on the geometric distance formula, we have

d(N B+1 ,N B+2 ) =


1
2 ∑n

j=1(TruN B+
1

(xj)− TruN B+
2

(xj))
L

+(IndN B+
1

(xj)− IndN B+
2

(xj))
L

+(FalN B+
1

(xj)− FalN B+
1

(xj))
L


1
α

d(N B−1 ,N B−2 ) =


1
2 ∑n

j=1(TruN B−
1

(xj)− TruN B−
2

(xj))
L

+(IndN B−
1

(xj)− IndN B−
2

(xj))
L

+(FalN B−
1

(xj)− FalN B−
1

(xj))
L


1
α


. (9)

(6) Normalized geometric distance formula:

d(N B+1 ,N B+2 ) =


1

2n ∑n
j=1(TruN B+

1
(xj)− TruN B+

2
(xj))

L

+(IndN B+
1

(xj)− IndN B+
2

(xj))
L

+(FalN B+
1

(xj)− FalN B+
1

(xj))
L


1
α

d(N B−1 ,N B−2 ) =


1

2n ∑n
j=1(TruN B−

1
(xj)− TruN B−

2
(xj))

L

+(IndN B−
1

(xj)− IndN B−
2

(xj))
L

+(FalN B−
1

(xj)− FalN B−
1

(xj))
L


1
α


, (10)

where α > 0.

(i) If α = 1, then Equations (9) and (10), reduce to Equations (5) and (6).
(ii) If α = 2, then Equations (9) and (10), reduce to Equations (7) and (8).

(iii) We define a weighted distance as follows:

d(N B+1 ,N B+2 ) =

 1
2 ∑n

j=1 k j


∣∣∣(TruN B+

1
(xj)− TruN B+

2
(xj))

∣∣∣L
+
∣∣∣(IndN B+

1
(xj)− IndN B+

2
(xj))

∣∣∣L
+
∣∣∣(FalN B+

1
(xj)− FalN B+

1
(xj))

∣∣∣L



1
α

d(N B−1 ,N B−2 ) =

 1
2 ∑n

j=1 k j


∣∣∣(TruN B−

1
(xj)− TruN B−

2
(xj))

∣∣∣L
+
∣∣∣(IndN B−

1
(xj)− IndN B−

2
(xj))

∣∣∣L
+
∣∣∣(FalN B−

1
(xj)− FalN B−

1
(xj))

∣∣∣L



1
α



, (11)

where k = (k1, k2, ..., kn)T is the weight vector of xj(j = 1, 2, ..., n), and α > 0.

(i) Especially, if α = 1, then Equation (11) is reduced as

d(N B+1 ,N B+2 ) =

 1
2 ∑n

j=1 k j


∣∣∣(TruN B+

1
(xj)− TruN B+

2
(xj))

∣∣∣
+
∣∣∣(IndN B+

1
(xj)− IndN B+

2
(xj))

∣∣∣
+
∣∣∣(FalN B+

1
(xj)− FalN B+

1
(xj))

∣∣∣




d(N B−1 ,N B−2 ) =

 1
2 ∑n

j=1 k j


∣∣∣(TruN B+

1
(xj)− TruN B+

2
(xj))

∣∣∣
+
∣∣∣(IndN B+

1
(xj)− IndN B+

2
(xj))

∣∣∣
+
∣∣∣(FalN B+

1
(xj)− FalN B+

1
(xj))

∣∣∣





. (12)
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If k = ( 1
n , 1

n , ..., 1
n )

T , then Equation (11) goes to Equation (10), and Equation (12) goes to
Equation (6).

(ii) If α = 2, then Equation (11) is reduced to the as:

d(N B+1 ,N B+2 ) =

√√√√√√√
1
2 ∑n

j=1(TruN B+
1

(xj)− TruN B+
2

(xj))
2

+(IndN B+
1

(xj)− IndN B+
2

(xj))
2

+(FalN B+
1

(xj)− FalN B+
1

(xj))
2

d(N B−1 ,N B−2 ) =

√√√√√√√
1
2 ∑n

j=1(TruN B−
1

(xj)− TruN B−
2

(xj))
2

+(IndN B−
1

(xj)− IndN B−
2

(xj))
2

+(FalN B−
1

(xj)− FalN B−
1

(xj))
2


. (13)

If k = ( 1
n , 1

n , ..., 1
n )

T , then Equation (13) is reduced to Equation (8).

5.2. Similarity Measures of Neutrosophic Bipolar Fuzzy Set

Definition 17. Let ŝ be a mapping ŝ : Ω(X)2 → [0, 1], then the degree of similarity betweenN B1 ∈ Ω(X) and
N B2 ∈ Ω(X) is defined as ŝ(N B1 ,N B2 ), which satisfies the following properties: [43,44].

(1) 0 ≤ ŝ(N B1 ,N B2 ) ≤ 1;
(2) ŝ(N B1 ,N B2 ) = 1 if N B1 = N B2 ;
(3) ŝ(N B1 ,N B2 ) = ŝ(N B2 ,N B1 );
(4) If ŝ(N B1 ,N B2 ) = 0 and ŝ(N B1 ,N B3 ) = 0, N B3 ∈ Ω(X), then ŝ(N B2 ,N B3 ) = 0. We define a similarity

measure of N B1 and N B2 as:

ŝ(N B+1 ,N B+2 ) = 1−


1

2n ∑n
j=1(TruN B+

1
(xj)− TruN B+

2
(xj))

L

+(IndN B+
1

(xj)− IndN B+
2

(xj))
L

+(FalN B+
1

(xj)− FalN B+
1

(xj))
L


1
α

ŝ(N B−1 ,N B−2 ) = 1−


1

2n ∑n
j=1(TruN B−

1
(xj)− TruN B−

2
(xj))

L

+(IndN B−
1

(xj)− IndN B−
2

(xj))
L

+(FalN B−
1

(xj)− FalN B−
1

(xj))
L


1
α


, (14)

where α > 0, and ŝ(N B1 ,N B2 ) is the degree of similarity of N B1 and N B2 . Now by considering the weight
of every element we have,

ŝ(N B+1 ,N B+2 ) = 1−

 1
2 ∑n

j=1 k j


∣∣∣(TruN B+

1
(xj)− TruN B+

2
(xj))

∣∣∣L
+
∣∣∣(IndN B+

1
(xj)− IndN B+

2
(xj))

∣∣∣L
+
∣∣∣(FalN B+

1
(xj)− FalN B+

1
(xj))

∣∣∣L



1
α

d(N B−1 ,N B−2 ) = 1−

 1
2 ∑n

j=1 k j


∣∣∣(TruN B−

1
(xj)− TruN B−

2
(xj))

∣∣∣L
+
∣∣∣(IndN B−

1
(xj)− IndN B−

2
(xj))

∣∣∣L
+
∣∣∣(FalN B−

1
(xj)− FalN B−

1
(xj))

∣∣∣L



1
α



. (15)
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If we give equal importance to every member then Equation (15) is reduced to Equation (14). Similarly we
may use

ŝ(N B+1 ,N B+2 ) = 1−



∑n
j=1(

∣∣∣(TruN B+
1

(xj)− TruN B+
2

(xj))
∣∣∣α

+
∣∣∣(IndN B+

1
(xj)− IndN B+

2
(xj))

∣∣∣L
+
∣∣∣(FalN B+

1
(xj)− FalN B+

1
(xj))

∣∣∣L
∑n

j=1(
∣∣∣(TruN B+

1
(xj)− TruN B+

2
(xj))

∣∣∣α
+
∣∣∣(IndN B+

1
(xj)− IndN B+

2
(xj))

∣∣∣L
+
∣∣∣(FalN B+

1
(xj)− FalN B+

1
(xj))

∣∣∣L)



1
α

ŝ(N B−1 ,N B−2 ) = 1−



∑n
j=1(

∣∣∣(TruN B−
1

(xj)− TruN B−
2

(xj))
∣∣∣α

+
∣∣∣(IndN B−

1
(xj)− IndN B−

2
(xj))

∣∣∣L
+
∣∣∣(FalN B−

1
(xj)− FalN B−

1
(xj))

∣∣∣L
∑n

j=1(
∣∣∣(TruN B−

1
(xj)− TruN B−

2
(xj))

∣∣∣α
+
∣∣∣(IndN B−

1
(xj)− IndN B−

2
(xj))

∣∣∣L
+
∣∣∣(FalN B−

1
(xj)− FalN B−

1
(xj))

∣∣∣L)



1
α



. (16)

Now by considering the weight of every element we have

ŝ(N B+1 ,N B+2 ) = 1−



∑n
j=1 k j(

∣∣∣(TruN B+
1

(xj)− TruN B+
2

(xj))
∣∣∣α

+
∣∣∣(IndN B+

1
(xj)− IndN B+

2
(xj))

∣∣∣L
+
∣∣∣(FalN B+

1
(xj)− FalN B+2

(xj))
∣∣∣L

∑n
j=1 k j(

∣∣∣(TruN B+
1

(xj)− TruN B+
2

(xj))
∣∣∣α

+
∣∣∣(IndN B+

1
(xj)− IndN B+

2
(xj))

∣∣∣L
+
∣∣∣(FalN B+

1
(xj)− FalN B+

2
(xj))

∣∣∣L)



1
α

ŝ(N B−1 ,N B−2 ) = 1−



∑n
j=1 k j(

∣∣∣(TruN B−
1

(xj)− TruN B−
2

(xj))
∣∣∣α

+
∣∣∣(IndN B−

1
(xj)− IndN B−

2
(xj))

∣∣∣L
+
∣∣∣(FalN B−

1
(xj)− FalN B−

2
(xj))

∣∣∣L
∑n

j=1 k j(
∣∣∣(TruN B−

1
(xj)− TruN B−

2
(xj))

∣∣∣α
+
∣∣∣(IndN B−

1
(xj)− IndN B−

2
(xj))

∣∣∣L
+
∣∣∣(FalN B−

1
(xj)− FalN B−

2
(xj))

∣∣∣L)



1
α



. (17)

If we give equal importance to every member, then Equation (17) is reduced to Equation (16).

Florentin Smarandache (ed.) Collected Papers, VI

264



5.3. Similarity Measures Based on the Set-Theoretic Approach

Definition 18. Let N B1 ∈ Ω(X) and N B2 ∈ Ω(X). Then, we define a similarity measure N B1 and N B2 from
the point of set-theoretic view as:

ŝ(N B+1 ,N B+2 ) =

∑n
j=1〈min(TruN B+

1
(xj), TruN B+

2
(xj))

+min(IndN B+
1

(xj), IndN B+
2

(xj))

+min(|FalN B+
1

(xj)|, |FalN B+
2

(xj)|)

∑n
j=1〈max(TruN B+

1
(xj), TruN B+

2
(xj))

+max(IndN B+
1

(xj), IndN B+
2

(xj))

+max(|FalN B+
1

(xj)|, |FalN B+
2

(xj)|))

ŝ(N B−1 ,N B−2 ) =

∑n
j=1〈min(TruN B−

1
(xj), TruN B−

2
(xj))

+min(IndN B−
1

(xj), IndN B−
2

(xj))

+min(|FalN B−
1

(xj)|, |FalN B−
2

(xj))|))

∑n
j=1〈max(TruN B−

1
(xj), TruN B−

2
(xj))

+max(IndN B−
1

(xj), IndN B−
2

(xj))

+max(|FalN B−
1

(xj)|, |FalN B−
2

(xj)|))



. (18)

Now by considering the weight of every element we have

ŝ(N B+1 ,N B+2 ) =

∑n
j=1 k j(min(TruN B+

1
(xj), TruN B+

2
(xj)) + min(IndN B+

1
(xj),

IndN B+
2

(xj)) + min(|FalN B+
1

(xj)|, |FalN B+
2

(xj)|))

∑n
j=1 k j(max(TruN B+

1
(xj), TruN B+

2
(xj)) + max(IndN B+

1
(xj),

IndN B+
2

(xj) + max(|FalN B+
1

(xj)|, |FalN B+
2

(xj)|))

ŝ(N B−1 ,N B−2 ) =

∑n
j=1 k j(min(TruN B−

1
(xj), TruN B−

2
(xj)) + min(IndNN B−

1
(xj),

IndN B−
2

(xj)) + min(|FalN B−
1

(xj)|, |FalN B−
2

(xj)|))

∑n
j=1 k j(max(TruN B+

1
(xj), TruN B+

2
(xj)) + max(IndN B+

1
(xj),

IndN B+
2

(xj) + max(|FalN B−
1

(xj)|, |FalN B−
2

(xj)|))



. (19)

If we give equal importance to every member, then Equation (19) is reduced to Equation (18).

5.4. Similarity Measures Based on the Matching Functions

We cover the matching function to agreement through the similarity measure of N BFSs.

Definition 19. Let N B1 ∈ Ω(X) and N B2 ∈ Ω(X), formerly we explain the degree of similarity of N B1 and
N B2 based on the matching function as:

ŝ(N B+1 ,N B+2 ) =
∑n

j=1((Tru
NNB+1

(xj).TruNB+2
(xj))+(IndNB+1

(xj).IndNB+2
(xj))+|FalNB+1

(xj)|.|FalNB+2
(xj)|)

max〈∑n
j=1((TruN B+

1
)2(xj) + (IndN B+

1
)2(xj) + (FalN B+

1
)2(xj)),

∑n
j=1 k j((TruN B+

2
)2(xj) + (IndN B+

2
)2(xj) + (FalN B+

2
)2(xj)))

ŝ(N B−1 ,N B−2 ) =
∑n

j=1((TruNB−1
(xj).TruNB−2

(xj))+(IndNB−1
(xj).IndNB−2

(xj))+|FalNB−1
(xj)|.|FalNB−2

(xj)|)

max〈∑n
j=1((TruN B−

1
)2(xj) + (IndN B−

1
)2(xj) + (FalN B−

1
)2(xj)),

∑n
j=1 k j((TruN B−

2
)2(xj) + (IndN B−

2
)2(xj) + (FalN B−

2
)2(xj)))


. (20)
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Now by considering the weight of every element we have

ŝ(N B+1 ,N B+2 ) =
∑n

j=1 kj(TruNB+1
(xj).TruNB+2

(xj))+(IndNB+1
(xj).IndNB+2

(xj))+|FalNB+1
(xj)|.|FalNB+2

(xj)|)

max〈∑n
j=1 k j((TruN B+

1
)2(xj) + (IndN B+

1
)2(xj) + (FalN B+

1
)2(xj)),

∑n
j=1 k j((TruN B+

2
)2(xj) + (IndN B+

2
)2(xj) + (FalN B+

2
)2(xj)))

ŝ(N B−1 ,N B−2 ) =
∑n

j=1 kj((TruNB−1
(xj).TruNB−2

(xj))+(IndNB−1
(xj).IndNB−2

(xj))+|FalNB−1
(xj)|.|FalNB−2

(xj)|)

max〈∑n
j=1((TruN B−

1
)2(xj) + (IndN B−

1
)2(xj) + (FalN B−

1
)2(xj)),

∑n
j=1 k j((TruN B−

2
)2(xj) + (IndN B−

2
)2(xj) + (FalN B−

2
)2(xj)))


. (21)

(1) If we give equal importance to every member, then Equation (21) is reduced to Equation (20).
(2) If the value of ŝ(N B1 ,N B2 ) is larger then its mean N B1 and N B2 are more closer to each other.

6. Application

In this Section 5 after defining some similarity measures we proceed towards the main section
namely application of the developed model. In this section we provide an algorithm for solving
a multiatribute decision making problem related with the HOPE foundation with the help of
neutrosophic bipolar fuzzy aggregation operators, neutrosophic bipolar similarity measures under the
neutrosophic bipolar fuzzy sets. For detail see [13,42].

Definition 20. Let L = {L1, L2, ..., Lm} consists of alternatives, and let P = {P1, P2, ..., Pn} containing the
attributes and k = (k1, k2, ..., kn)T be the weight vector that describe the importance of attributes such that
k j ∈ [0, 1] and ∑n

j=1 k j = 1. Let us use the neutrosophic bipolar fuzzy sets for Li as under:

L+
i = {〈Pj, (Tru)+Li(Pj), (Ind)+Li(Pj), (Fal)+Li

(
Pj
)
〉|Pj ∈ P}, i = 1, 2, 3, ..., m

L−i = {〈Pj, (Tru)−Li(Pj), (Ind)−LiPj), (Fal)−Li
(

Pj
)
〉|Pj ∈ P}, i = 1, 2, 3, ..., m

}
. (22)

such that

(Tru)+Li(Pj) ∈ [0, 3], (Ind)+Li(Pj) ∈ [0, 3], (Fal)+Li
(

Pj
)
∈ [0, 3],

0 ≤ (Tru)+Li(Pj), (Ind)+LiPj), (Fal)+Li
(

Pj
)
〉 ≤ 3.

(Tru)−Li(Pj) ∈ [−3, 0], (Ind)−Li(Pj) ∈ [−3, 0], (Fal)−Li
(

Pj
)
∈ [−3, 0],

−3 ≤ (Tru)−Li(Pj), (Ind)−LiPj), (Fal)−Li
(

Pj
)
〉 ≤ 0.

Now we define the positive and negative ideal solutions as under:

L+
i = {〈Pj, (Tru)+L+(Pj), (Ind)+L+(Pj), (Fal)+L+(Pj)〉|Pj ∈ P}}

L−i = {〈Pj, (Tru)−L+(Pj), (Ind)−L+(Pj), (Fal)−L+(Pj)〉|Pj ∈ P}}

}
, (23)

and
L+ = {〈Pj, (Tru)+L−(Pj), (Ind)+L−(Pj), (Fal)+L−(Pj)〉|Pj ∈ P}}
L− = {〈Pj, (Tru)−L−(Pj), (Ind)−L−(Pj), (Fal)−L−(Pj)〉|Pj ∈ P}}

}
, (24)

where

(Tru)+L+(Pj) = max
i
{(Tru)+Li(Pj), (Tru)−L+(Pj)} = min

i
{(Tru)+Li(Pj)}, (Tru)−Li(Pj)

= max
i
{(Tru)−Li(Pj), (Tru)+L+(Pj)} = min

i
{(Tru)−Li(Pj)}(Ind)+L+(Pj)

= max
i
{(Ind)+Li(Pj), (Ind)−L+(Pj)} = min

i
{(Ind)+Li(Pj)}(Ind)−L+(Pj)

= max
i
{(Ind)−Li(Pj), (Ind)+L+(Pj)} = min

i
{(Ind)+Li(Pj)}.
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(Fal)+Li
(

Pj
)

= min
i
{(Fal)+Li

(
Pj
)

, (Fal)−L+(Pj)} = max
i
{ (Fal)+Li

(
Pj
)
}.

(Fal)−Li
(

Pj
)

= min
i
{(Fal)−Li

(
Pj
)

, (Fal)+L+(Pj)} = max
i
{ (Fal)−Li

(
Pj
)
}.

Now using Equation (15), we find the degree of similarity for L+, Li, and L−, Li, as under:

ŝ1(L+, L+
i ) = 1−


1
2 ∑n

j=1 k j(|(Tru)+L+(xj)− (Tru)+Li(xj)|α

+|(Ind)+L+(xj)− (Ind)+Li(xj)|α
+|(Fal)+L+(xj)− (Fal)+Li(xj)|α)


1
α

ŝ1(L+, L−i ) = 1−


1
2 ∑n

j=1 k j(|(Tru)−L+(xj)− (Tru)−Li(xj)|α

+|(Ind)−L+(xj)− (Ind)−Li(xj)|α
+|(Fal)−L+(xj)− (Fal)−Li(xj)|α)


1
α


, (25)

and

ŝ1(L−, L+
i ) = 1−


1
2 ∑n

j=1 k j(|(Tru)+L−(xj)− (Tru)+Li(xj)|α

+|(Ind)+L−(xj)− (Ind)+Li(xj)|α
+|(Fal)+L−(xj)− (Fal)+Li(xj)|α)


1
α

ŝ1(L−, L−i ) = 1−


1
2 ∑n

j=1 k j(|(Tru)−L−(xj)− (Tru)−Li(xj)|α

+|(Ind)−L−(xj)− (Ind)−Li(xj)|α
+|(Fal)−L−(xj)− (Fal)−Li(xj)|α)


1
α


. (26)

Using Equations (25) and (26), calculate di of Li as under:

d+i =
s1(L+ ,L+

i )

s1(L+ ,L+
i )+s1(L− ,L+

i )
, i = 1, 2, ..., n.

d−i =
s1(L+ ,L−i )

s1(L+ ,L−i )+s1(L− ,L−i )
, i = 1, 2, ..., n.

 . (27)

If the value of di is greater, then the alternative Li is better.
Also using Equations (17), (19) and (21), we find the degree of similarity for L+, Li, and L−, Li,

as under:

(1) Based on Equation (17), we define the following: We define the following:

ŝ1(L+, L+
i ) = 1−



∑n
j=1 k j(

∣∣∣(TruL+(xj)− TruL+
i
(xj))

∣∣∣α
+
∣∣∣(IndL+(xj)− IndL+

i
(xj))

∣∣∣L
+
∣∣∣(FalL+(xj)− FalL+

i
(xj))

∣∣∣L
∑n

j=1 k j(
∣∣∣(TruL+(xj)− TruL+

i
(xj))

∣∣∣α
+
∣∣∣(IndL+(xj)− IndL+

i
(xj))

∣∣∣L
+
∣∣∣(FalL+(xj)− FalL+

i
(xj))

∣∣∣L)



1
α

ŝ3(L+, L−i ) = 1−



∑n
j=1 k j(

∣∣∣(TruL−(xj)− TruL−i
(xj))

∣∣∣α
+
∣∣∣(IndL−(xj)− IndL−i

(xj))
∣∣∣L

+
∣∣∣(FalL−(xj)− FalL−i

(xj))
∣∣∣L

∑n
j=1 k j(

∣∣∣(TruL−(xj)− TruL−i
(xj))

∣∣∣α
+
∣∣∣(IndL−(xj)− IndL−i

(xj))
∣∣∣L

+
∣∣∣(FalL−(xj)− FalL−i

(xj))
∣∣∣L)



1
α



. (28)
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(2) Based on Equation (19), we define the following: We define the following:

ŝ2(L+, L+
i ) =

∑n
j=1 kj(min(TruL+ (xj),TruL+i

(xj))+min(IndL+ (xj),IndL+i
(xj))+min(|FalL+ (xj)|,|FalL+i

(xj)|))

∑n
j=1 kj(max(TruL+ (xj),TruL+i

(xj))+max(IndL+ (xj),IndL+i
(xj)+max(|FalL+ (xj)|,|FalL+i

(xj)|))

ŝ2(L−, L−i ) =

∑n
j=1 k j(min(TruL−(xj), TruL−i

(xj))

+min(IndL−(xj), IndL−i
(xj))

+min(|FalL−(xj)|, |FalL−i
(xj)|))

∑n
j=1 k j(max(TruL−(xj), TruL−i

(xj))

+max(IndL−(xj), IndL−i
(xj)

+max(|FalL−(xj)|, |FalL−i
(xj)|))



. (29)

(3) Based on Equation (21), we define the following: We define the following:

ŝ3(L+, L+
i ) =

∑n
j=1 k j(min((Tru)+L+(xj), (Tru)+Li(xj))

+min((Ind)+L+(xj), (Ind)+Li(xj))

+min(|(Fal)+L+(xj)|, |(Fal)+Li(xj)|))
∑n

j=1 k j(max((Tru)+L+(xj), (Tru)+Li(xj))

+(max((Ind)+L+(xj), (Ind)+Li(xj))

+max(|(Fal)+L+(xj)|, |(Fal)+Li(xj)|)

ŝ3(L+, L−i ) =

∑n
j=1 k j(min((Tru)−L+(xj), (Tru)−Li(xj))

+min((Ind)−L+(xj), (Ind)−Li(xj))

+min(|(Fal)−L+(xj)|, |(Fal)−Li(xj)|))
∑n

j=1 k j(max((Tru)−L+(xj), (Tru)−Li(xj))

+(max((Ind)−L+(xj), (Ind)−Li(xj))

+max(|(Fal)−L+(xj)|, |(Fal)−Li(xj)|)



. (30)

Then use (27).

7. Numerical Example

Now we provide a daily life example which shows the applicability of the algorithm provided in
Section 6.

Example 1. The HOPE foundation is an international organization which provides the financial support to
the health sector of children of many families in round about 22 different countries in southwest Missouri.
This organization provides the support when other organization does not play their role. Every day a child is
diagnosed with a severe illness, sustains a debilitating injury, and a family loses the battle with an illness. With
these emergencies come unexpected expenses. Here we discuss a problem related with HOPE foundation as:

HOPE foundation is planning to build a children hospital and they are planning to fit a suitable air
conditioning system in the hospital. Different companies offers them different systems. Companies offer three
feasible alternatives Li = (i = 1, 2, 3), by observing the hospital’ physical structures. Assume that P1 and
P2, are the two attributes which are helpful in the installation of air conditioning system with the weight
vector as k = (0.4, 0.6)T for the attributes. Now using neutrosophic bipolar fuzzy sets for the alternatives
Li = (i = 1, 2, 3) by examining the different characteristics as under:

L+
1 = {〈P1, 0.3, 0.4, 0.7〉, 〈P2, 0.8, 0.8, 0.6〉},

L−1 = {〈P1,−0.3,−0.2,−0.1〉, 〈P2,−0.4,−0.6,−0.8〉}.

L+
2 = {〈P1, 0.4, 0.6, 0.2〉, 〈P2, 0.3, 0.9, 0.2〉},

L−2 = {〈P1,−0.1,−0.3,−0.4〉, 〈P2,−0.8,−0.7,−0.1〉}.
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L+
3 = {〈P1, 0.3, 0.5, 0.7〉, 〈P2, 0.2, 0.30.6〉},

L−3 = {〈P1,−0.5,−0.1,−0.4〉, 〈P2,−0.3,−0.2,−0.8〉}.

where L+
1 = {〈P1, 0.3, 0.4, 0.7〉, 〈P2, 0.8, 0.8, 0.6〉} means that the alternative L1 has the positive preferences

which is desirable: 0.3, 0.8 as a truth function for past, 0.4, 0.8 as a indeterminacy function for future and 0.7, 0.6
as a falsity function for present time with respect to the attributes P1 and P2 respectively.

Similarly L−1 = {〈P1,−0.3,−0.2,−0.1〉, 〈P2,−0.4,−0.6,−0.8〉}means that the alternative L1 has
the negative preferences which is unacceptable: −0.3,−0.4 as a truth function for past, −0.2,−0.6 as a
indeterminacy function for future and −0.1,−0.8 as a falsity function for present time with respect to
the attributes P1 and P2 respectively.

(1) By Equations (23) and (24) we first calculate L+ and L− of the alternatives Li = (i = 1, 2, 3), as

L+ = {〈P1, 0.4, 0.6, 0.7〉, 〈P2, 0.5, 0.9, 0.6〉},
L− = {〈P1, 0.3, 0.4, 0.2〉, 〈P2, 0.2, 0.3, 0.2〉},

and

L+ = {〈P1,−0.1,−0.1,−0.1〉, 〈P2,−0.3,−0.2,−0.1〉},
L− = {〈P1,−0.5,−0.3,−0.4〉, 〈P2,−0.8,−0.7,−0.8〉}.

Then by using Equations (25)–(27), (suppose that α = 2 and k = 1), we have

ŝ1(L+, L+
1 ) = 0.8267, ŝ1(L+, L+

2 ) = 0.775, ŝ1(L+, L+
3 ) = 0.5152,

ŝ1(L+, L−1 ) = −0.5732, ŝ1(L+, L−2 ) = −0.8721, ŝ1(L+, L−3 ) = −0.7776.

ŝ1(L−, L+
1 ) = 0.3876, ŝ1(L−, L+

2 ) = 0.5, ŝ1(L−, L+
3 ) = 0.5417,

ŝ1(L−, L−1 ) = −0.1038, ŝ1(L−, L−2 ) = −0.2449, ŝ1(L−, L−3 ) = −0.1119,

and

ŝ1(L+, L+
1 ) = −0.2609, ŝ1(L+, L+

2 ) = −0.1157, ŝ1(L+, L+
3 ) = −0.2439,

ŝ1(L+, L−1 ) = −0.1485, ŝ1(L+, L−2 ) = −0.075, ŝ1(L+, L−3 ) = −0.0243.

ŝ1(L−, L+
1 ) = −0.6229, ŝ1(L−, L+

2 ) = −0.7146, ŝ1(L−, L+
3 ) = −0.7958,

ŝ1(L−, L−1 ) = 0.6062, ŝ1(L−, L−2 ) = 0.3636, ŝ1(L−, L−3 ) = 0.4803.

Now by Equation (27), we have

d+1 = 0.7207, d+2 = 0.1393, d+3 = 0.9093,
L1 > L2 > L3

}
, (31)

d−1 = −0.3244, d−2 = −0.2598, d−3 = −0.0532,
L3 > L1 > L2

}
, (32)

and
d+1 = 0.2813, d+2 = 0.4031, d+3 = 0.4728,

L3 > L2 > L1

}
, (33)
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d−1 = 0.06184, d−2 = 0.1190, d−3 = 0.1942,
L3 > L2 > L1

}
. (34)

(2) Now by Equations (28) and (29) (suppose that α = 3), we have

ŝ2(L+, L+
1 ) = 0.9051, ŝ2(L+, L+

2 ) = 0.7283, ŝ2(L+, L+
3 ) = 0.6873,

ŝ2(L+, L−1 ) = −1.9845, ŝ2(L+, L−2 ) = −2.338, ŝ2(L+, L−3 ) = −1.3894.

ŝ2(L−, L+
1 ) = 0.6940, ŝ2(L−, L+

2 ) = 0.4952, ŝ2(L−, L+
3 ) = 0.577,

ŝ2(L−, L−1 ) = −1.0988, ŝ2(L−, L−2 ) = −1.0717, ŝ2(L−, L−3 ) = −1.004,

and

ŝ2(L+, L+
1 ) = −0.6210, ŝ2(L+, L+

2 ) = −0.6086, ŝ2(L+, L+
3 ) = −0.4944,

ŝ2(L+, L−1 ) = 0.3714, ŝ2(L+, L−2 ) = 0.5139, ŝ2(L+, L−3 ) = 0.3358.

ŝ2(L−, L+
1 ) = −2.3840, ŝ2(L−, L+

2 ) = −1.968, ŝ2(L−, L+
3 ) = −2.2632,

ŝ2(L−, L−1 ) = 0.6972, ŝ2(L−, L−2 ) = 0.5752, ŝ2(L−, L−3 ) = 0.6691.

Now again using Equation (27), we have

d+1 = 0.5660, d+2 = 0.5952, d+3 = 0.5436,
L2 > L1 > L3

}
, (35)

d−1 = 0.6436, d−2 = 0.6856, d−3 = 0.5805,
L2 > L1 > L3

}
, (36)

and
d+1 = 0.2066, d+2 = 0.2362, d+3 = 0.179,

L2 > L1 > L3

}
, (37)

d−1 = 0.3475, d−2 = 0.4719, d−3 = 0.3341,
L2 > L1 > L3

}
. (38)

(3) Thus, by Equations (27), (30) and (31), we have

ŝ3(L+, L+
1 ) = 0.4285, ŝ3(L+, L+

2 ) = 0.5675, ŝ3(L+, L+
3 ) = 0.7027,

ŝ3(L+, L−1 ) = −0.6468, ŝ3(L+, L−2 ) = −0.6486, ŝ3(L+, L−3 ) = −0.6316,

and

ŝ3(L−, L+
1 ) = 0.4848, ŝ3(L−, L+

2 ) = 0.1538, ŝ3(L−, L+
3 ) = 0.6153,

ŝ3(L−, L−1 ) = −1.375, ŝ3(L−, L−2 ) = −1.0625, ŝ2(L−, L−3 ) = −1.4375.

By Equations (30)–(32) we have

ŝ3(L+, L+
1 ) = −0.2727, ŝ3(L+, L+

2 ) = −0.3913, ŝ3(L+, L+
3 ) = −0.3461,

ŝ3(L+, L−1 ) = 2.6666, ŝ3(L+, L−2 ) = 2.6666, ŝ3(L+, L−3 ) = 2.5555.
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ŝ3(L−, L+
1 ) = −1.060, ŝ3(L−, L+

2 ) = −1.3461, ŝ3(L−, L+
3 ) = −1.4000,

ŝ3(L−, L−1 ) = 1.4585, ŝ3(L−, L−2 ) = 1.7500, ŝ3(L−, L−3 ) = 5217.

By Equations (30)–(32), we have

d+1 = 0.4691, d+2 = 0.7868, d+3 = 0.5331,
L2 > L3 > L1

}
, (39)

d−1 = 0.3199, d−2 = 0.3790, d−3 = 0.3018,
L2 > L1 > L3

}
, (40)

and
d+1 = 0.2046, d+2 = 0.2252, d+3 = 0.1982,

L2 > L1 > L3

}
, (41)

d−1 = 0.3475, d−2 = 0.6037, d−3 = 0.6267,
L2 > L3 > L1

}
. (42)

From the Equations (35)–(42), we have that the alternative L2 (feasible alternative) is the best one
obtained by all the similarity measures. Thus we conclude that air-conditioning system L2 is better to
installed in the hospital after considering its negative and the positive preferences for past, future and
present time.

8. Comparison Analysis

There are a lot of different techniques used so for in decision making problems. For example
Chen et al. [23] used fuzzy sets, Atanassov [26] used intutionistic fuzzy sets, Dubios et al. [9], used
bipolar fuzzy sets, Zavadskas et al. [37] used neutrosophic sets, Zhan et al. [25], used neutrosophic
cubic sets, Ali et al. [33] used bipolar neutrosophic soft sets and so many others discuss decision
making problems with respect to the different versions of fuzzy sets. Beg et al., and Xu [38,39,41]
discussed similarity measures for fuzzy sets, intutionistic fuzzy sets respectively. In this paper by
applying bipolarity to neutrosophic sets allow us to distinguish between the negative and the positive
preferences with respect to the past, future and present time which is the unique future of our model.
Negative preferences denote what is unacceptable while positive preferences are less restrictive and
express what is desirable with respect to the past, future and present time. If we consider only one
time frame from the set {past, future and present} one can see our model coincide with bipolar fuzzy
sets in decision making as Dubios et al. [9] and Xu [41].

9. Conclusions

We define neutrosophic bipolar fuzzy sets, aggregation operators for neutrosophic bipolar fuzzy
sets, similarity measures for neutrosophic bipolar fuzzy sets and produce a real life application in
decision making problems. This model can easily used in many directions such as,

(1) Try to solve traffic optimization in transport networks based on local routing using neutrosophic
bipolar fuzzy sets.

(2) A hybrid clustering method based on improved artificial bee colony and fuzzy C-Means algorithm
using neutrosophic bipolar fuzzy sets.

(3) Hybrid multiattribute group decision making based on neutrosophic bipolar fuzzy sets
information and GRA method.

(4) Signatures theory by using neutrosophic bipolar fuzzy sets.
(5) Risk analysis using neutrosophic bipolar fuzzy sets.
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Abstract: The Internet has brought almost limitless possibilities for the 

promotion of services and products and thereby caused a significant change 

in the world. It also allowed beginners to get more important information 

about their future jobs. Based on this idea, the research and writing of this 

work began. In this paper, we investigate how much IT companies' websites 

provide information on company products, used technology and relationships 

with employees. The paper presents a multicriteria model for evaluating IT 

companies' websites from the point of view of young IT experts. 

Evaluation of Websites of IT Companies 
from the Perspective of IT Beginners
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1. INTRODUCTION

The website can help you in gaining information about the company, 
products and services. However, the existence of a website does not 
automatically provide a competitive advantage. So, there is one important 
question: How much website actually meets the requirements of its users and 
how to measure its quality? 

In the literature, numerous studies have been devoted to the evaluation of web 
site quality. Boyd Collins developed the first formal approach to the 
evaluation of websites in late 1995. His model, intended for librarians, has 
been based on six criteria, developed by combining evaluation criteria for 
printed media, and considering what was relevant for websites (Merwe & 
Bekker, 2003). The model contains the following criteria: contents, authority, 
organizations, searchability, graphic design and innovation use. 

Studies that are intended for the identification of key evaluation criteria, and / 
or their significances, are still actual. For example, Dumitrache (2010) gives 
an overview of criteria used for evaluation of e-Commerce sites in Romania, 
during the period 2006 and 2009. As very important criteria it defines 
Response Time, Navigability, Personalization, Tele-presence and Security. 
Davidaviciene and Tolvaisas (2011) identify the list of criterions for quality 
evaluation of e-Commerce website. They also provide a comprehensive 
overview of the criteria that have been recently proposed by different authors. 
In accordance with (Davidaviciene & Tolvaisas, 2011) criteria: Easy to use, 
Navigation, Security assurance, Help (real time) and Design have been 
discussed by numerous authors, such as (Loiacono et al., 2007; Parasuraman 
et al., 2007; Cao et al., 2005). 

Compared to different types of e-commerce, the IT companies have its own 
peculiarities. Therefore, for the evaluation of IT companies’ websites, we
must use the appropriate set of criteria, and their significances. 
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The Internet has also brought significant opportunities for many less known 
IT companies.  

In many countries, the development IT industry is often mentioned as one of 
the priority directions of development. A similar situation exists in Serbia, 
which has a number of attractive but also almost unknown IT companies. 

After selecting certain IT companies, we probably want to learn more about 
them. Here, some questions arise:  How much website of these IT companies 
provide the necessary information? To what extent IT companies use the 
benefits that the Internet provides? What information is provided to interested 
young IT experts? 

The answer to the above questions we get with measuring the quality of 
websites of some IT companies that are located in Serbia. 

Therefore, the rest of the paper is organized as follows: In the second section 
of the paper, some basic definitions related to the SVNS are given. In the 
third section of the paper, is proposed the criteria for evaluating websites 
from the standpoint of the new it professionals. In the fourth section is 
proposed the procedure for evaluating websites based on the use of adapted 
SWARA method and SVNS. In the fifth section, the proposed model has 
been applied to the evaluation of five IT companies that are in Serbia. At the 
end of the paper, the conclusions are presented. 

2. SINGLE VALUED NEUTROSOPHIC SET AND NUMBERS

Definition. Single valued neutrosophic set (SVNS). Let X be the universe of 
discourse (Wang et al., 2010). The SVNS A over X is an object having the 
form 

}|)(),(),({ XxxFxIxTxA AAA 
, (1)

where TA(x), IA(x) and FA(x) are the truth-membership function, the 
intermediacy-membership function and the falsity-membership function, 

respectively, ]1,0[:,, XFIT AAA and 
  3)()()(0 xFxIxT AAA . 
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Definition. Single valued neutrosophic number. For the SVNS A in X the 

triple  AAA fit ,,  is called the single valued neutrosophic number (SVNN)

(Smarandache, 1999). 

Definition. Basic operations on SVNNs. Let  1111 , , fitx  and 

 2222 , , fitx  be two SVNNs, then additive and multiplication operations 

are defined as follows (Smarandache, 1998): 

 2121212121 ,, ffiittttxx
,  (2)

 2121,21212121 , ffffiiiittxx
. (3) 

Definition. Scalar multiplication. Let  xx fitx , , x be a SVNN and 

0 , then scalar multiplication is defined as follows (Smarandache, 1998):

  1111 ,,)1(1 fitx .  (4) 

Definition. Power. Let  xx fitx , , x be a SVNN and 0 , then power is

defined as follows: 

  )1(1,, 1111 fitx . (5) 

Definition. Score function. Let  xx fitx , , x  be a SVNN, then the score 

function sx of x can be as follows (Smarandache, 1998): 

2/)21( xxxx fits  , (6) 

where ]1 ,1[
x
s . 

Definition. Single Valued Neutrosophic Weighted Average Operator. Let 

 jjj fitA , , j  be a collection of SVNSs and T

nwwwW ),...,,( 21 is an 

associated weighting vector. Then, the Single Valued Neutrosophic Weighted 
Average (SVNWA) operator of Aj is as follows (Sahin, 2014): 
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where wj is the element j of the weighting vector, ]1 ,0[jw  and 11  
n
j jw . 

3. THE CRITERIA FOR EVALUATING WEBSITES FROM THE

STANDPOINT OF THE NEW IT PROFESSIONALS 

In the literature, numerous studies have been devoted to the evaluation of 
website quality. As a result, a number of criteria have been proposed for the 
evaluation of websites. 

However, it should be taken into account that these studies were designed for 
the evaluation of different types of websites. 

Therefore, in this case, a set of criteria that realistically reflects the goals of 
the IT beginners is selected. Due to the use of SVNN, a set of the evaluation 
criteria that containing a smaller number of criteria more complex was 
selected, as follows: 
 C1 - About Us,
 C2 - Products and Services,
 C3 - Technologies,
 C4 - Carrier and benefits,

where: 

 the criterion C1 includes general information about a company that can
serve to assess its relevance in the IT industry; 

 the criterion C2 more precisely defines the scope of the company's
business; and 

 criteria C3 and C4 indicates IT technologies that used in a company, as
well as the possibility of advancement, which can be very important for 
new IT beginners. 

4. THE PROCEDURE FOR EVALUATING WEBSITES BASED ON

THE USE OF ADAPTED SWARA METHOD AND SVNS 

In each multiple criteria evaluation process, the following three important 
activities could be identified: 
 determining the importance of the evaluation criteria,
 evaluation, where the alternatives are evaluated in relation to the selected

set of evaluation criteria, and  
 aggregation and ranking alternatives.

In this approach an adaptation of the SWARA method is accepted for 
determining criteria weights. The SWARA method is proposed by Keršuliene 
et al. (2010), and this method can be considered as efficient and easy to use. 
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Therefore, this method is used to solve a number of decision-making 
problems. Unfortunately, the computational procedure of the SWARA 
method is based on the usage of an ordered list of evaluation criteria, 
presorted according to their expected significances, which can be a real 
limitation when it is necessary to collect the real attitudes of in advice 
unprepared respondents. Therefore, Stanujkic et al. (2017) proposed an 
extension of the SWARA method that does not require the use of a pre-sorted 
list of evaluation criteria, on which basis the weight of the criteria are 
determined in this approach. 

However, the use of a large number of criteria can lead to forming a more 
complex MCDM models that could be less practical for the use in the cases 
when researches are based on gathering real attitudes of in-advice unprepared 
respondents. Therefore, this approach is based on the use of a smaller number 
of criteria that are evaluated using SVNN. 

Finally, for the aggregation phase, a procedure based on the application of the 
SVNWA operator and the Score function is selected. 

5. A NUMERICAL ILLUSTRATION

In order to explain the proposed approach in detail, below is considered an 
example of evaluation of the websites of five IT companies'. 

In the conducted research, the evaluation of the websites of the following IT 
companies was carried out: 
- Comtrade, available at: https://www.comtrade.com/; 
- Levi Nine, available at: https://www.levi9.com/; 
- NIRI IC, available at: www.niri-ic.com/; 
- AB Soft, available at: www.absoft.rs/; and 
- Informatika AD, available at: www.informatika.com/. 

It should be stated here that the aim of this article is not to promote any of the 
above listed companies, because of which the order of the alternatives in the 
presented example does not correspond to the order of the above companies. 

The responses obtained from the first of three considered respondents, and 
weights of criteria, obtained by using extended SWARA method, are 
encountered in Table 1. 

The attitudes obtained from the three examinees, as well as the appropriate 
weights and group criteria weights, are presented in Table 2 as well. 

Florentin Smarandache (ed.) Collected Papers, VI

279

https://www.comtrade.com/
https://www.levi9.com/


Table 1. The responses and weights of the criteria obtained from the first of 
three evaluated respondents 

Criteria sj kj qj wj 
C1 About Us 1 1 0.22 
C2 Products and Services 0.90 1.10 0.91 0.20 
C3 Technologies 1.20 0.80 1.14 0.25 
C4 Carrier and benefits 0.60 1.40 0.81 0.18 

∑ 5.27 1.00 

Table 2. The attitudes and weights obtained from the three examinees 
E1 E2 E3 

sj wj sj wj sj wj wj 

C1 0.19 0.05 0.19 0.14 
C2 1.20 0.24 1.80 0.27 1.20 0.23 0.25 
C3 1.15 0.28 0.80 0.23 1.10 0.26 0.25 
C4 1.05 0.29 1.50 0.45 1.20 0.32 0.36 

The following are the responses obtained from the three examinees regarding 
the evaluation of the websites. 

Table 3. The ratings obtained from the first of the three examinees 
C1 C2 C3 C4 

A1 <0.5,0,0.2> <0.7,0,0> <0.7,0,0> <0.8,0,0> 
A2 <0.7,0,0.5> <0.8,0,0> <0.9,0,0> <0.9,0,0> 
A3 <0.15,0,0.2> <0.3,0,0.15> <0.2,0,0.3> <0.1,0,0.4> 
A4 <0.25,0,0.3> <0.2,0,0> <0.15, 0,0.2> <0.05,0,0.3> 
A5 <0.2,0,0.4> <0.4,0,0> <0.1, 0, 0.5> <0.05,0,0.2> 

Table 4. The ratings obtained from the second of the three examinees 

C1 C2 C3 C4 
A1 <0.8, 0, 0.2> <0.9, 0, 0> <0.8, 0, 0> <0.8, 0, 0> 
A2 <0.5, 0, 0.6> <0.8, 0, 0> <0.6, 0, 0> <0.7, 0, 0> 
A3 <0.1, 0, 0.8> <0.3, 0, 0> <0.35, 0,0.8> <0.2, 0, 0> 
A4 <0.2, 0, 0.6> <0.2, 0, 0> <0.3, 0, 0> <0.1, 0, 0> 
A5 <0.6, 0, 0.3> <0.1, 0, 0.9> <0.2, 0, 0> <0.1, 0, 0> 

Table 5. The ratings obtained from the third of the three examinees 

C1 C2 C3 C4 
A1 <1, 0, 0.1> <0.5, 0, 0> <0.9, 0, 0.1> <0.8,0.1,0.1> 
A2 <0.5,0.1,0.3> <0.4, 0, 0> <1, 0, 0> <0.8,0.1,0.1> 
A3 <0.4, 0, 0> <0.4, 0, 0.1> <0.4, 0.1, 1> <0.4,0.3,0.2> 
A4 <0.2,0.2,0.2> <0.1, 0, 0> <0.3,0.3,0.1> <0.1, 0, 0.4> 
A5 <0.5,0.2,0.1> <0.1,0.2,0.1> <0, 0.3, 0.5> <0.1, 0, 0.4> 
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The group ratings and overall ratings, shown in Table 6 and Table 7, are 
obtained by using SVNWA operator, or more precisely by using Eq. (7). 

Table 6. The group ratings 

C1 C2 C3 C4 

A1 <1,0, 0.16> <0.75, 0, 0> <0.82, 0, 0> <0.8, 0, 0> 

A2 <0.58,0,0.45> <0.71, 0, 0> <1, 0, 0> <0.82, 0, 0> 

A3 <0.23,0,0.03> <0.34,0,0.01> <0.32,0,0.62> <0.24,0,0.02> 

A4 <0.22,0,0.33> <0.17, 0, 0> <0.25,0,0.01> <0.08,0,0.02> 

A5 <0.46,0,0.23> <0.21,0,0.02> <0.1,0,0.03> <0.08,0,0.02> 

The ranking order of considered alternatives, obtained based on the values of 
the score function, calculated by using Eq. (6), is also presented in Table 7. 

Table 7. The overall ratings 

Overall ratings Si Rank 

A1 <1, 0, 0> 0.9992 2 
A2 <1, 0, 0> 0.9993 1 
A3 <0.29, 0, 0.04> 0.6207 3 
A4 <0.17, 0,0 .01> 0.5807 4 
A5 <0.19, 0, 0.03> 0.5767 5 

As it can be concluded on the basis of the data presented in Table 7, the most 
promising company from the perspective of an IT beginner is the company 
labelled as A2, which is somewhat more promising than a company 
designated as A1. 

6. CONCLUSION

This paper proposes a simple but also effective framework, which can be 
used for measuring the quality of IT companies’ websites from the
perspective of IT beginners.  

 The proposed procedure for evaluating websites based on the use of adapted 
SWARA method and SVNS has been successfully applied to the evaluation 
of five IT companies. 

Using this procedure, the managers of IT companies, can evaluate their and 
competing websites and compare them. This would continually influence the 
improvement of the quality of the websites and thus make it easier for 
youngsters to get to the desired information about the IT company. 
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Abstract: It is an interesting direction to study rough sets from a multi-granularity perspective.
In rough set theory, the multi-particle structure was represented by a binary relation. This paper
considers a new neutrosophic rough set model, multi-granulation neutrosophic rough set
(MGNRS). First, the concept of MGNRS on a single domain and dual domains was proposed.
Then, their properties and operators were considered. We obtained that MGNRS on dual domains
will degenerate into MGNRS on a single domain when the two domains are the same. Finally, a kind
of special multi-criteria group decision making (MCGDM) problem was solved based on MGNRS on
dual domains, and an example was given to show its feasibility.

Keywords: neutrosophic rough set; MGNRS; dual domains; inclusion relation; decision-making

1. Introduction

As we all know, Pawlak first proposed a rough set in 1982, which was a useful tool of granular
computing. The relation is an equivalent in Pawlak’s rough set. After that, many researchers proposed
other types of rough set theory (see the work by the following authors [1–8]).

In 1965, Zadeh presented a new concept of the fuzzy set. After that, a lot of scholars studied it
and made extensions. For example, Atanassov introduced an intuitionistic fuzzy set, which gives two
degrees of membership of an element; it is a generalization of the fuzzy set. Smarandache introduced
a neutrosophic set in 1998 [9,10], which was an extension of the intuitionistic fuzzy set. It gives three
degrees of membership of an element (T.I.F). Smarandache and Wang [11] proposed the definition of
a single valued neutrosophic set and studied its operators. Ye [12] proposed the definition of simplified
neutrosophic sets and studied their operators. Zhang et al. [13] introduced a new inclusion relation
of the neutrosophic set and told us when it was used by an example, and its lattice structure was
studied. Garg and Nancy proposed neutrosophic operators and applied them to decision-making
problems [14–16]. Now, some researchers have combined the fuzzy set and rough set and have
achieved many running results, such as the fuzzy rough set [17] and rough fuzzy set. Broumi and
Smarandache [18] proposed the definition of a rough neutrosophic set and studied their operators and
properties. In 2016, Yang et al. [19] proposed the definition of single valued neutrosophic rough sets
and studied their operators and properties.

Under the perspective of granular computing [20], the concept of a rough set is shown by the
upper and lower approximations of granularity. In other words, the concept is represented by the
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known knowledge, which is defined by a single relationship. In fact, to meet the user’s needs or achieve
the goal of solving the problem, it is sometimes necessary to use multiple relational representation
concepts on the domain, such as illustrated by the authors of [21]. In a grain calculation, an equivalence
relation in the domain is a granularity, and a partition is considered as a granularity space [22].
The approximation that is defined by multiple equivalence relationships is a multi-granularity
approximation and multiple partitions are considered as multi-granularity spaces; the resulting
rough set is named a multi-granularity rough set, which has been proposed by Qian and Liang [23].
Recently, many scholars [24,25] have studied it and made extensions. Huang et al. [26] proposed the
notion of intuitionistic fuzzy multi-granulation rough sets and studied their operators. Zhang et al. [27]
introduced two new multi-granulation rough set models and investigated their operators. Yao et al. [28]
made a summary about the rough set models on the multi-granulation spaces.

Although there have been many studies regarding multi-granulation rough set theory, there have
been fewer studies about the multi-granulation rough set model on dual domains. Moreover,
a multi-granulation rough set on dual domains is more convenient, for example, medical diagnosis
in clinics [22,29]. The symptoms are the uncertainty index sets and the diseases are the decision
sets. They are associated with each other, but they belong to two different domains. Therefore,
it is necessary to use two different domains when solving the MCGDM problems. Sun et al. [29]
discussed the multi-granulation rough set models based on dual domains; their properties were
also obtained.

Although neutrosophic sets and multi-granulation rough sets are both useful tools to solve
uncertainty problems, there are few research regarding their combination. In this paper, we proposed
the definition of MGNRS as a rough set generated by multi-neutrosophic relations. It is useful to solve
a kind of special group decision-making problem. We studied their properties and operations and then
built a way to solve MCGDM problems based on the MGNRS theory on dual domains.

The structure of the article is as follows. In Section 2, some basic notions and operations are
introduced. In Section 3, the notion of MGNRS is proposed and their properties are studied. In Section 4,
the model of MGNRS on dual domains is proposed and their properties are obtained. Also, we obtained
that MGNRS on dual domains will degenerate into MGNRS on a single domain when the two domains
are same. In Section 5, an application of the MGNRS to solve a MCGDM problem was proposed.
Finally, Section 6 concludes this paper and provides an outlook.

2. Preliminary

In this section, we review several basic concepts and operations of the neutrosophic set and
multi-granulation rough set.

Definition 1 ([11]). A single valued neutrosophic set B is denoted by ∀ y ε Y, as follows:

B(y) = (TB(y), IB(y), FB(y))

TB(y), IB(y), FB(y) ε [0,1] and satisfies 0 ≤ TB(y) + IB(y) + FB(y) ≤ 3.

As a matter of convenience, ‘single valued neutrosophic set’ is abbreviated to ‘neutrosophic set’
later. In this paper, NS(Y) denotes the set of all single valued neutrosophic sets in Y, and NR(Y × Z)
denotes the set of all of the neutrosophic relations in Y × Z.

Definition 2 ([11]). If A and C are two neutrosophic sets, then the inclusion relation, union, intersection, and
complement operations are defined as follows:

(1) A ⊆ C iff ∀ y ε Y, TA(y) ≤ TC(y), IA(y) ≥ IC(y) and FA(y) ≥ FC(y)
(2) Ac = {(y, FA(y), 1 − IA(y), TA(y)) | y ε Y}
(3) A ∩ C = {(y, TA(y) ∧ TC(y), IA(y) ∨ IC(y), FA(y) ∨ FC(y)) | y ε Y}
(4) A ∪ C = {(y, TA(y) ∨ TC(y), IA(y) ∧ IC(y), FA(y) ∧ FC(y)) | y ε Y}
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Definition 3 ([19]). If (U, R) is a single valued neutrosophic approximation space. Then ∀ B ε SVNS(U),
the lower approximation N(B) and upper approximation N(B) of B are defined as follows:

TN(B)(y) = min
z∈U

[max(FR(y, z), TB(z))], IN(B)(y) = max
z∈U

[min((1− IR(y, z)), IB(z))],

FN(B)(y) = max
z∈U

[min(TR(y, z), FB(z))]

TN(B)(y) = max
z∈U

[min(TR(y, z), TB(z))], IN(B)(y) = min
z∈U

[max(IR(y, z), IB(z))],

FN(B)(y) = min
z∈U

[max(FR(y, z), FB(z))]

The pair
(

N(B), N(B)
)

is called the single valued neutrosophic rough set of B, with respect
to (U, R).

According to the operation of neutrosophic number in [16], the sum of two neutrosophic sets in U
is defined as follows.

Definition 4. If C and D are two neutrosophic sets in U, then the sum of C and D is defined as follows:

C + D = {<y, C(y) ⊕ D(y)> | y ε U}.

Definition 5 ([30]). If b = (Tb, Ib, Fb) is a neutrosophic number, n* = (Tb*, Ib*, Fb*) = (1, 0, 0) is an ideal
neutrosophic number. Then, the cosine similarity measure is defined as follows:

S(b, b∗) =
Tb · Tb∗ + Ib · Ib∗ + Fb · Fb∗√

Tb
2 + Ib

2 + Fb
2 ·
√
(Tb∗)

2 + (Ib∗)
2 + (Fb∗)

2

3. Multi-Granulation Neutrosophic Rough Sets

In this part, we propose the concept of MGNRS and study their characterizations. MGNRS is
a rough set generated by multi-neutrosophic relations, and when all neutrosophic relations are same,
MGNRS will degenerated to neutrosophic rough set.

Definition 6. Assume U is a non-empty finite domain, and Ri (1 ≤ i ≤ n) is the binary neutrosophic relation
on U. Then, (U, Ri) is called the multi-granulation neutrosophic approximation space (MGNAS).

Next, we present the multi-granulation rough approximation of a neutrosophic concept in an
approximation space.

Definition 7. Let the tuple ordered set (U, Ri) (1 ≤ i ≤ n) be a MGNAS. For any B ε NS (U), the three
memberships of the optimistic lower approximation Mo(B)and optimistic upper approximationMo

(B) in (U, Ri)
are defined, respectively, as follows:

TMo(B)(y) =
n

max
i=1

min
z∈U

(
max

(
FRi (y, z), TB(z)

))
IMo(B)(y) =

n
min
i=1

max
z∈U

(
min

((
1− IRi (y, z)

)
, IB(z)

))
,

FMo(B)(y) =
n

min
i=1

max
z∈U

(
min

(
TRi (y, z), FB(z)

))
, TMo

(B)(y) =
n

min
i=1

max
z∈U

(
min

(
TRi (y, z), TB(z)

))
,

IMo
(B)(y) =

n
max
i=1

min
z∈U

(
max

(
IRi (y, z), IB(z)

))
, FMo

(B)(y) =
n

max
i=1

min
z∈U

(
max

(
FRi (y, z), FB(z)

))
.

Then, Mo(B), Mo
(B) ε NS(U). In addition, B is called a definable neutrosophic set on (U, Ri) when

Mo(B) = Mo
(B). Otherwise, the pair

(
Mo(B), Mo

(B)
)

is called an optimistic MGNRS.

Florentin Smarandache (ed.) Collected Papers, VI

285



Definition 8. Let the tuple ordered set (U, Ri) (1 ≤ i ≤ n) be a MGNAS. For any B ε NS(U), the three
memberships of pessimistic lower approximation Mp(B) and pessimistic upper approximation Mp

(B) in (U, Ri)
are defined, respectively, as follows:

TMp(B)(y) =
n

min
i=1

min
z∈U

(
max

(
FRi (y, z), TB(z)

))
, IMp(B)(y) =

n
max
i=1

max
z∈U

(
min

((
1− IRi (y, z)

)
, IB(z)

))
,

FMp(B)(y) =
n

max
i=1

max
z∈U

(
min

(
TRi (y, z), FB(z)

))
, TMp

(B)(y) =
n

max
i=1

max
z∈U

(
min

(
TRi (y, z), TB(z)

))
,

IMp
(B)(y) =

n
min
i=1

min
z∈U

(
max

(
IRi (y, z), IB(z)

))
, FMp

(B)(y) =
n

min
i=1

min
z∈U

(
max

(
FRi (y, z), FB(z)

))
.

Similarly, B is called a definable neutrosophic set on (U, Ri) when Mp(B) = Mp
(B). Otherwise, the pair(

Mp(B), Mp
(B)
)

is called a pessimistic MGNRS.

Example 1. Define MGNAS (U, Ri), where U = {z1, z2, z3} and Ri (1 ≤ i ≤ 3) are given in Tables 1–3

Table 1. Neutrosophic relation R1.

R1 z1 z2 z3

z1 (0.4, 0.5, 0.4) (0.5, 0.7, 0.1) (1, 0.8, 0.8)
z2 (0.5, 0.6, 1) (0.2, 0.6, 0.4) (0.9, 0.2, 0.4)
z3 (1, 0.2, 0) (0.8, 0.9, 1) (0.6, 1, 0)

Table 2. Neutrosophic relation R2.

R2 z1 z2 z3

z1 (0.9, 0.2, 0.4) (0.3, 0.9, 0.1) (0.1, 0.7, 0)
z2 (0.4, 0.5, 0.1) (0, 0.1, 0.7) (1, 0.8, 0.8)
z3 (1, 0.5, 0) (0.4, 0.4, 0.2) (0.1, 0.5, 0.4)

Table 3. Neutrosophic relation R3.

R3 z1 z2 z3

z1 (0.7, 0.7, 0) (0.4, 0.8, 0.9) (1, 0.4, 0.5)
z2 (0.8, 0.2, 0.1) (1, 0.1, 0.8) (0.1, 0.3, 0.5)
z3 (0, 0.8, 1) (1, 0, 1) (1, 1, 0)

Suppose a neutrosophic set on U is as follows: C(z1) = (0.2, 0.6, 0.4), C(z2) = (0.5, 0.4, 1),
C(z3) = (0.7, 0.1, 0.5); by Definitions 7 and 8, we can get the following:

Mo(C)(z1) = (0.4, 0.3, 0.4), Mo(C)(z2) = (0.5, 0.4, 0.5), Mo(C)(z3) = (0.7, 0.4, 0.4)
Mo

(C)(z1) = (0.3, 0.6, 0.4), Mo
(C)(z2) = (0.5, 0.4, 0.5), Mo

(C)(z3) = (0.4, 0.6, 0.5)
Mp(C)(z1) = (0.2, 0.6, 0.5), Mp(C)(z2) = (0.2, 0.6, 0.1), Mp(C)(z3) = (0.2, 0.6, 0.1)
Mp

(C)(z1) = (0.7, 0.4, 0.4), Mp
(C)(z2) = (0.7, 0.2, 0.4), Mp

(C)(z3) = (0.7, 0.4, 0.4)

Proposition 1. Assume (U, Ri) is MGNAS, Ri (1 ≤ i ≤ n) is the neutrosophic relations. ∀ C ε NS(U), Mo(C)
and Mo

(C) are the optimistic lower and upper approximation of C. Then,

Mo(C) =
n
∪

i=1
N(C)Mo

(C) =
n
∩

i=1
N(C)

where
N(C)(y) = ∩

z∈U
(Ri

c(y, z) ∪ C(z)),N(C)(y) = ∪
z∈U

(Ri(y, z) ∩ C(z))

Proof. They can be proved by Definitions 7.
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Proposition 2. Assume (U, Ri) be MGNAS, Ri (1 ≤ i ≤ n) be neutrosophic relations. ∀ C ε NS(U), Mp(C)
and Mp

(C) are the pessimistic lower and upper approximation of C. Then

Mp(C) =
n
∩

i=1
N(C)Mp

(C) =
n
∪

i=1
N(C)

where
N(C)(y) = ∩

z∈U
(Ri

c(y, z) ∪ C(z)), N(C)(y) = ∪
z∈U

(Ri(y, z) ∩ C(z))

Proof. Proposition 2 can be proven by Definition 8.

Proposition 3. Assume (U, Ri) is MGNAS, Ri (1 ≤ i ≤ n) is the neutrosophic relations. ∀ C, D ε NS(U),
we have the following:

(1) Mo(C) =∼ Mo
(∼ C), Mp(C) =∼ Mp

(∼ C);

(2) Mo
(C) =∼ Mo(∼ C), Mp

(C) =∼ Mp(∼ C);
(3) Mo(C ∩ D) = Mo(C) ∩Mo(D), Mp(C ∩ D) = Mp(C) ∩Mp(D);

(4) Mo
(C ∪ D) = Mo

(C) ∪Mo
(D), Mp

(C ∪ D) = Mp
(C) ∪Mp

(D);
(5) C ⊆ D ⇒ Mo(C) ⊆ Mo(D), Mp(C) ⊆ Mp(D) ;

(6) C ⊆ D ⇒ Mo
(C) ⊆ Mo

(D), Mp
(C) ⊆ Mp

(D) ;
(7) Mo(C ∪ D) ⊇ Mo(C) ∪Mo(D), Mp(C ∪ D) ⊇ Mp(C) ∪Mp(D);

(8) Mo
(C ∩ D) ⊆ Mo

(C) ∩Mo
(D), Mp

(C ∩ D) ⊆ Mp
(C) ∩Mp

(D).

Proof. (1), (2), (5), and (6) can be taken directly from Definitions 7 and 8. We only show (3), (4), (7),
and (8).

(3) From Proposition 1, we have the following:

Mo(C ∩ D)(y) =
n
∪

i=1

(
∩

z∈U
(Ri

c(y, z) ∪ (C ∩ D)(z))
)

=
n
∪

i=1

(
∩

z∈U
((Ri

c(y, z) ∪ C(z)) ∩ (Ri
c(y, z) ∪ D(z)))

)
=

(
n
∪

i=1

(
∩

z∈U
(Ri

c(y, z) ∪ C(z))
))
∩
(

n
∪

i=1

(
∩

z∈U
(Ri

c(y, z) ∪ D(z))
))

= MoC(y) ∩MoD(y).

Similarly, from Proposition 2, we can get the following:

Mp(C ∩ D)(y) = MpC(y) ∩MpD(y).

(4) According to Propositions 1 and 2, in the same way as (3), we can get the proof.
(7) From Definition 7, we have the following:

TMo(C∪D)(y) =
n

max
i=1

min
z∈U

{
max

[
FRi (y, z), (max(TC(z), TD(z)))

]}
=

n
max
i=1

min
z∈U

{
max

[(
max

(
FRi (y, z), TC(z)

))
,
(
max

(
FRi (y, z), TD(z)

))]}
≥ max

{[
n

max
i=1

min
z∈U

(
max

(
FRi (y, z), TC(z)

))]
,
[

n
max
i=1

min
z∈U

(
max

(
FRi (y, z), TD(z)

))]}
= max

(
TMo(C)(y), TMo(D)(y)

)
.
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IMo(C∪D)(y) =
n

min
i=1

max
z∈U

{
min

[(
1− IRi (y, z)

)
, (min(IC(z), ID(z)))

]}
=

n
min
i=1

max
z∈U

{
min

[(
min

((
1− IRi (y, z)

)
, IC(z)

))
,
(
min

((
1− IRi (y, z)

)
, ID(z)

))]}
≤ min

{[
n

min
i=1

max
z∈U

(
min

((
1− IRi (y, z)

)
, IC(z)

))]
,
[

n
min
i=1

max
z∈U

(
min

((
1− IRi (y, z)

)
, ID(z)

))]}
= min

(
IMo(C)(y), IMo(D)(y)

)
.

FMo(C∪D)(y) =
n

min
i=1

max
z∈U

{
min

[
TRi (y, z), (min(FC(z), FD(z)))

]}
=

n
min
i=1

max
z∈U

{
min

[
min

(
TRi (y, z), FC(z)

)]
,
[
min

(
TRi (y, z), FD(z)

)]}
≤ min

{[
n

min
i=1

max
z∈U

(
min

(
TRi (y, z), FC(z)

))]
,
[

n
min
i=1

max
z∈U

(
min

(
TRi (y, z), FD(z)

))]}
= min

(
FMo(C)(y), FMo(D)(y)

)
.

Hence, Mo(C ∪ D) ⊇ Mo(C) ∪Mo(D).
Also, according to Definition 8, we can get Mp(C ∪ D) ⊇ Mp(C) ∪Mp(D).
(8) From Definition 7, we have the following:

TMo
(C∩D)(y) =

n
min
i=1

max
z∈U

{
min

[
TRi (y, z), (min(TC(z), TD(z)))

]}
=

n
min
i=1

max
z∈U

{
min

[(
min

(
TRi (y, z), TC(z)

))
,
(
min

(
TRi (y, z), TD(z)

))]}
≤ min

{[
n

min
i=1

max
z∈U

(
min

(
TRi (y, z), TC(z)

))]
,
[

n
min
i=1

max
z∈U

(
min

(
TRi (y, z), TD(z)

))]}
= min

(
TMo

(C)(y), TMo
(D)(y)

)
.

IMo
(C∩D)(y) =

n
max
i=1

min
z∈U

{
max

[
IRi (y, z), (max(IC(z), ID(z)))

]}
=

n
max
i=1

min
z∈U

{
max

[(
max

(
IRi (y, z), IC(z)

))
,
(
max

(
IRi (y, z), ID(z)

))]}
≤ min

{[
n

max
i=1

min
z∈U

(
max

(
IRi (y, z), IC(z)

))]
,
[

n
max
i=1

min
z∈U

(
max

(
IRi (y, z), ID(z)

))]}
= min

(
IMo

(C)(y), IMo
(D)(y)

)
.

FMo
(C∩D)(y) =

n
max
i=1

min
z∈U

[
FRi (y, z) ∨ (FC(z) ∨ FD(z))

]
=

n
max
i=1

min
z∈U

[(
FRi (y, z) ∨ FC(z)

)
∨
(

FRi (y, z) ∨ FD(z)
)]

≥
[

n
max
i=1

min
z∈U

(
FRi (y, z) ∨ FC(z)

)]
∨
[

n
max
i=1

min
z∈U

(
FRi (y, z) ∨ FD(z)

)]
= max

(
FMo

(C)(y), FMo
(D)(y)

)
.

Hence, Mo
(C ∩ D) ⊆ Mo

(C) ∩Mo
(D).

Similarly, according Definition 8, we can get Mp
(C ∩ D) ⊆ Mp

(C) ∩Mp
(D).

Next, we will give an example to show that maybe Mo(C ∪ D) 6= Mo(C) ∪Mo(D).

Example 2. Define MGNAS (U, Ri), where U = {z1, z2, z3} and Ri (1 ≤ i ≤ 3) are given in Example 1.
Suppose there are two neutrosophic sets on universe U, as follows: C(z1) = (0.5, 0.1, 0.2), C(z2) = (0.5,

0.3, 0.2), C(z3) = (0.6, 0.2, 0.1), D(z1) = (0.7, 0.2, 0.1), D(z2) = (0.4, 0.2, 0.1), D(z3) = (0.2, 0.2, 0.5), we have
(C ∪ D)(z1) = (0.7, 0.1, 0.1), (C ∪ D)(z2) = (0.5, 0.2, 0.1), (C ∪ D)(z3) = (0.6, 0.2, 0.1), (C ∩ D)(z1) = (0.5, 0.1,
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0.2), (C ∩ D)(z2) = (0.4, 0.2, 0.2), (C ∩ D)(z3) = (0.2, 0.2, 0.5). Then, from Definitions 7 and 8, we can get
the following:

Mo(C)(z1) = (0.5, 0, 0.2), Mo(C)(z2) = (0.5, 0.1, 0.2), Mo(C)(z3) = (0.5, 0.1, 0.2);
Mo(D)(z1) = (0.4, 0, 0.1), Mo(D)(z2) = (0.2, 0.1, 0.2), Mo(D)(z3) = (0.4, 0.1, 0.2);

Mo(C ∪ D)(z1) = (0.5, 0, 0.1), Mo(C ∪ D)(z2) = (0.5, 0.1, 0.1), Mo(C ∪ D)(z3) = (0.5, 0.1, 0.1)
(Mo(C) ∪Mo(D))(z1) = (0.5, 0, 0.1),(Mo(C) ∪Mo(D))(z2) = (0.5, 0.1, 0.2),

(Mo(C) ∪Mo(D))(z3) = (0.5, 0.1, 0.2)

So, Mo(C ∪ D) 6= Mo(C) ∪Mo(D).
Also, there are examples to show that maybe Mp(C ∪ D) 6= Mp(C) ∪Mp(D),
Mo

(C ∩ D) 6= Mo
(C) ∩Mo

(D), Mp
(C ∩ D) 6= Mp

(C) ∩Mp
(D). We do not say anymore here.

4. Multi-Granulation Neutrosophic Rough Sets on Dual Domains

In this section, we propose the concept of MGNRS on dual domains and study their
characterizations. Also, we obtain that the MGNRS on dual domains will degenerate into MGNRS,
defined in Section 3, when the two domains are same.

Definition 9. Assume that U and V are two domains, and Ri ε NS(U × V) (1 ≤ i ≤ n) is the binary
neutrosophic relations. The triple ordered set (U, V, Ri) is called the (two-domain) MGNAS.

Next, we present the multi-granulation rough approximation of a neutrosophic concept in
an approximation space on dual domains.

Definition 10. Let (U, V, Ri) (1 ≤ i ≤ n) be (two-domain) MGNAS. ∀ B ε NS(V) and y ε U, the three
memberships of the optimistic lower and upper approximation Mo(B), Mo

(B) in (U, V, Ri) are defined,
respectively, as follows:

TMo(B)(y) =
n

max
i=1

min
z∈V

[
max

(
FRi (y, z), TB(z)

)]
IMo(B)(y) =

n
min
i=1

max
z∈V

[
min

((
1− IRi (y, z)

)
, IB(z)

)]
FMo(B)(y) =

n
min
i=1

max
z∈V

[
min

(
TRi (y, z), FB(z)

)]
TMo

(B)(y) =
n

min
i=1

max
z∈V

[
min

(
TRi (y, z), TB(z)

)]
I n

∑
i=1

Ri

o

(B)
(y) =

n
max
i=1

min
z∈V

[
max

(
IRi (y, z), IB(z)

)]
FMo

(B)(y) =
n

max
i=1

min
z∈V

[
max

(
FRi (y, z), FB(z)

)]

Then Mo(B), Mo
(B) ε NS(U). In addition, B is called a definable neutrosophic set on (U, V, Ri)

on dual domains when Mo(B) = Mo
(B). Otherwise, the pair

(
Mo(B), Mo

(B)
)

is called an optimistic
MGNRS on dual domains.

Definition 11. Assume (U, V, Ri) (1 ≤ i ≤ n) is (two-domain) MGNAS. ∀ B ε NS(V) and y ε U, the three
memberships of the pessimistic lower and upper approximation Mp(B), Mp

(B) in (U, V, Ri) are defined,
respectively, as follows:

TMp(B)(y) =
n

min
i=1

min
z∈V

[
max

(
FRi (y, z), TB(z)

)]
, IMp(B)(y) =

n
max
i=1

max
z∈V

[
min

((
1− IRi (y, z)

)
, IB(z)

)]
,

FMp(B)(y) =
n

max
i=1

max
z∈V

[
min

(
TRi (y, z), FB(z)

)]
, TMp

(B)(y) =
n

max
i=1

max
z∈V

[
min

(
TRi (y, z), TB(z)

)]
,

IMp
(B)(y) =

n
min
i=1

min
z∈V

[
max

(
IRi (y, z), IB(z)

)]
, FMp

(B)(y) =
n

min
i=1

min
z∈V

[
max

(
FRi (y, z), FB(z)

)]
.
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Then, B is called a definable neutrosophic set on (U, V, Ri) when Mp(B) = Mp
(B). Otherwise,

the pair
(

Mp(B), Mp
(B)
)

is called a pessimistic MGNRS on dual domains.

Remark 1. Note that if U = V, then the optimistic and pessimistic MGNRS on the dual domains will be the
same with the optimistic and pessimistic MGNRS on a single domain, which is defined in Section 3

Proposition 4. Assume (U, V, Ri) (1 ≤ i ≤ n) is (two-domain) MGNAS, Ri (1 ≤ i ≤ n) is the neutrosophic
relations. ∀ C, D ε NS(U), we have the following:

(1) Mo(C) =∼ Mo
(∼ C), Mp(C) =∼ Mp

(∼ C);

(2) Mo
(C) =∼ Mo(∼ C), Mp

(C) =∼ Mp(∼ C);
(3) Mo(C ∩ D) = Mo(C) ∩Mo(D), Mp(C ∩ D) = Mp(C) ∩Mp(D);

(4) Mo
(C ∪ D) = Mo

(C) ∪Mo
(D), Mp

(C ∪ D) = Mp
(C) ∪Mp

(D);
(5) C ⊆ D ⇒ Mo(C) ⊆ Mo(D), Mp(C) ⊆ Mp(D) ;

(6) C ⊆ D ⇒ Mo
(C) ⊆ Mo

(D), Mp
(C) ⊆ Mp

(D) ;
(7) Mo(C ∪ D) ⊇ Mo(C) ∪Mo(D), Mp(C ∪ D) ⊇ Mp(C) ∪Mp(D);

(8) Mo
(C ∩ D) ⊆ Mo

(C) ∩Mo
(D), Mp

(C ∩ D) ⊆ Mp
(C) ∩Mp

(D).

Proof. These propositions can be directly proven from Definitions 10 and 11.

5. An Application of Multi-Granulation Neutrosophic Rough Set on Dual Domains

Group decision making [31] is a useful way to solve uncertainty problems. It has developed
rapidly since it was first proposed. Its essence is that in the decision-making process, multiple
decision makers (experts) are required to participate and negotiate in order to settle the corresponding
decision-making problems. However, with the complexity of the group decision-making problems,
what we need to deal with is the multi-criteria problems, that is, multi-criteria group decision making
(MCGDM). The MCGDM problem is to select or rank all of the feasible alternatives in multiple,
interactive, and conflicting standards.

In this section, we build a neo-way to solve a kind of special MCGDM problem using the MGNRS
theory. We generated the rough set according the multi-neutrosophic relations and then used it to
solve the decision-making problems. We show the course and methodology of it.

5.1. Problem Description

Firstly, we describe the considered problem and we show it using a MCGDM example of
houses selecting.

Let U = {x1, x2, . . . , xm} be the decision set, where x1 represents very good, x2 represents good,
x3 represents less good, . . . , and xm represents not good. Let V = {y1, y2, . . . , yn} be the criteria set to
describe the given house, where y1 represents texture, y2 represents geographic location, y3 represents
price, . . . , and yn represents solidity. Suppose there are k evaluation experts and all of the experts give
their own evaluation for criteria set yj (yj ε V) (j = 1, 2, . . . , n), regarding the decision set elements
xi (xi ε U) (i = 1, 2, . . . , m). In this paper, let the evaluation relation R1, R2, . . . , Rk between V and U
given by the experts, be the neutrosophic relation, R1, R2, . . . , Rk ε SNS (U × V). That is, Rl (xi, yj)
(l = 1, 2, . . . , k) represents the relation of the criteria set yj and the decision set element xi, which is
given by expert l, based on their own specialized knowledge and experience. For a given customer, the
criterion of the customer is shown using a neutrosophic set, C, in V, according to an expert’s opinion.
Then, the result of this problem is to get the opinion of the given house for the customer.

Then, we show the method to solve the above problem according to the theory of optimistic and
pessimistic MGNRS on dual domains.
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5.2. New Method

In the first step, we propose the multi-granulation neutrosophic decision information system
based on dual domains for the above problem.

According to Section 5.1′s description, we can get the evaluation of each expert as a neutrosophic
relation. Then, all of the binary neutrosophic relations Rl given by all of the experts construct a relation
set R (i.e., Rl ε R). Then, we get the multi-granulation neutrosophic decision information systems
based on dual domains, denoted by (U, V,R).

Secondly, we compute Mo(C), Mo
(C), Mp(C), Mp

(C) for the given customer, regarding (U, V,R).
Thirdly, according to Definition 4, we computed the sum of the optimistic and pessimistic

multi-granulation neutrosophic lower and upper approximation.
Next, according Definition 5, we computed the cosine similarity measure. Define the choice x∗

with the idea characteristics value α ∗ = (1, 0, 0) as the ideal choice. The bigger the value of S(αxi , α∗)
is, the closer the choice xi with the ideal alternative x ∗, so the better choice xi is.

Finally, we compared S(αxi , α∗) and ranked all of the choices that the given customer can choose
from and we obtained the optimal choice.

5.3. Algorithm and Pseudo-Code

In this section, we provide the algorithm and pseudo-code given in table Algorithm 1.

Algorithm 1. Multi-granulation neutrosophic decision algorithm.

Input Multi-granulation neutrosophic decision information systems (U, V,R).
Output The optimal choice for the client.
Step 1 Computing Mo(C), Mo

(C), Mp(C), Mp
(C) of neutrosophic set C about (U, V,R);

Step 2 From Definition 4., we get Mo(C) + Mo
(C) and Mp(A) + Mp

(A);
Step 3 From Definition 5., we computer So(αxi , α∗) and Sp(αxi , α∗) (i = 1, 2, . . . , m);
Step 4 The optimal decision-making is to choose xh if

S(αxh , α∗) = maxi∈{1,2,··· ,m}(S(αxi , α∗)).
pseudo-code
Begin
Input (U, V,R), where U is the decision set, V is the criteria set, andR denotes the binary neutrosophic

relation between criteria set and decision set.
Calculate Mo(C), Mo

(C), Mp(C), Mp
(C). Where Mo(C), Mo

(C), Mp(C), Mp
(C) , which represents the

optimistic and pessimistic multi-granulation lower and upper approximation of C, which is defined in
Section 4.

Calculate Mo(C) + Mo
(C) and Mp(C) + Mp

(C), which is defined in Definition 4.

Calculate So
(

Mo(C) + Mo
(C), α∗

)
and Sp

(
Mp(C) + Mp

(C), α∗
)

, which is defined in Definition 5.

For i = 1, 2, . . . , m; j = 1, 2, . . . , n; l = 1, 2, . . . , k;

If So(αxi , α∗) < So
(

αxj , α∗
)

, then So
(

αxj , α∗
)
→Max,

else So(αxi , α∗)→Max,
If So(αxl , α∗) > Max, then So(αxl , α∗)→Max;

Print Max;
End

5.4. An Example

In this section, we used Section 5.2’s way of solving a MCGDM problem, using the example of
buying houses.

Let V = {y1, y2, y3, y4} be the criteria set, where y1 represents the texture, y2 represents the
geographic location, y3 represents the price, and y4 represents the solidity. Let U = {z1, z2, z3, z4} be
a decision set, where z1 represents very good, z2 represents good, z3 represents less good, and z4

represents not good.

Florentin Smarandache (ed.) Collected Papers, VI

291



Assume that there are three experts. They provide their opinions about all of the criteria sets yj
(yj ε V) (j = 1, 2, 3, 4) regarding the decision set elements zi (xi ε U) (i = 1, 2, 3, 4). Like the discussion
in Section 5.1, the experts give three evaluation relations, R1, R2, and R3, which are neutrosophic
relations between V and U, that is, R1, R2, R3 ε NR(U × V). TRk(zi, yj) shows the expert, k, give the
truth membership of yj to zi; IRk(zi, yj) shows the expert, k, give the indeterminacy membership of yj to
zi; FRk(zi, yj) shows the expert, k, give the falsity membership of yj to zi. For example, the first value
(0.2, 0.3, 0.4) in Table 4, of 0.2 shows that the truth membership of the texture for the given house is
very good, 0.3 shows that the indeterminacy membership of the texture for the given house is very
good, and 0.4 shows that the falsity membership of the texture for the given house is very good.

Table 4. Neutrosophic relation R1.

R1 y1 y2 y3 y4

z1 (0.2, 0.3, 0.4) (0.3, 0.5, 0.4) (0.4, 0.6, 0.2) (0.1, 0.3, 0.5)
z2 (0.8, 0.7, 0.1) (0.2, 0.5, 0.6) (0.6, 0.6, 0.7) (0.4, 0.6, 0.3)
z3 (0.5, 0.7, 0.2) (0.6, 0.2, 0.1) (1, 0.9, 0.4) (0.5, 0.4, 0.3)
z4 (0.4, 0.6, 0.3) (0.5, 0.5, 0.4) (0.3, 0.8, 0.4) (0.2, 0.9, 0.8)

So, we build the multi-granulation neutrosophic decision information system (U, V, R) for
the example.

Assume that the three experts give three evaluation relations, the results are given in Tables 4–6.

Table 5. Neutrosophic relation R2.

R2 y1 y2 y3 y4

z1 (0.3, 0.4, 0.5) (0.6, 0.7, 0.2) (0.1, 0.8, 0.3) (0.5, 0.3, 0.4)
z2 (0.5, 0.5, 0.4) (1, 0, 1) (0.8, 0.1, 0.8) (0.7, 0.8, 0.5)
z3 (0.7, 0.2, 0.1) (0.3, 0.5, 0.4) (0.6, 0.1, 0.4) (1, 0, 0)
z4 (1, 0.2, 0) (0.8, 0.1, 0.5) (0.1, 0.2, 0.7) (0.2, 0.2, 0.8)

Table 6. Neutrosophic relation R3.

R3 y1 y2 y3 y4

z1 (0.6, 0.2, 0.2) (0.3, 0.1, 0.7) (0, 0.2, 0.9) (0.8, 0.3, 0.2)
z2 (0.1, 0.1, 0.7) (0.2, 0.3, 0.8) (0.7, 0.1, 0.2) (0, 0, 1)
z3 (0.8, 0.4, 0.1) (0.9, 0.5, 0.3) (0.2, 0.1, 0.6) (0.7, 0.2, 0.3)
z4 (0.6, 0.2, 0.2) (0.2, 0.2, 0.8) (1, 1, 0) (0.5, 0.3, 0.1)

Assume C is the customer’s evaluation for each criterion in V, and is given by the following:

C(y1) = (0.6, 0.5, 0.5), C(y2) = (0.7, 0.3, 0.2), C(y3) = (0.4, 0.5, 0.9), C(y4) = (0.3, 0.2, 0.6).

From Definitions 10 and 11, we can compute the following:

Mo(C)(z1) = (0.4, 0.5, 0.4), Mo(C)(z2) = (0.5, 0.4, 0.6), Mo(C)(z3) = (0.3, 0.3, 0.6),
Mo(C)(z4) = (0.6, 0.4, 0.4)

Mo
(C)(z1) = (0.4, 0.3, 0.5), Mo

(C)(z2) = (0.4, 0.5, 0.7), Mo
(C)(z3) = (0.6, 0.3, 0.4),

Mo
(C)(z4) = (0.5, 0.5, 0.5)

Mp(C)(z1) = (0.3, 0.5, 0.6), Mp(C)(z2) = (0.3, 0.5, 0.8), Mp(C)(z3) = (0.3, 0.5, 0.9),
Mp(C)(z4) = (0.3, 0.5, 0.9)

Mo
(C)(z1) = (0.6, 0.3, 0.2), Mo

(C)(z2) = (0.7, 0.2, 0.5), Mo
(C)(z3) = (0.7, 0.2, 0.2),

Mo
(C)(z4) = (0.7, 0.2, 0.4)
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According Definition 4, we have the following:(
Mo(C) + Mo

(C)
)
(z1) = (0.64, 0.15, 0.2),

(
Mo(C) + Mo

(C)
)
(z2) = (0.7, 0.2, 0.42),(

Mo(C) + Mo
(C)
)
(z3) = (0.72, 0.09, 0.24),

(
Mo(C) + Mo

(C)
)
(z4) = (0.8, 0.2, 0.2)

(
Mp(C) + Mp

(C)
)
(z1) = (0.72, 0.15, 0.12),

(
Mp(C) + Mp

(C)
)
(z2) = (0.79, 0.1, 0.4),(

Mp(C) + Mp
(C)
)
(z3) = (0.79, 0.1, 0.18),

(
Mp(C) + Mp

(C)
)
(z4) = (0.79, 0.1, 0.36)

Then, according Definition 5, we have the following:

So(αz1 , α∗) = 0.9315, So(αz2 , α∗) = 0.8329, So(αz3 , α∗) = 0.8588, So(αz4 , α∗) = 0.9428. (1)

Sp(αz1 , α∗) = 0.9662, Sp(αz2 , α∗) = 0.8865, Sp(αz3 , α∗) = 9677, Sp(αz4 , α∗) = 0.9040. (2)

Then, we have the following:

So(αz4 , α∗) > So(αz1 , α∗) > So(αz3 , α∗) > So(αz2 , α∗). (3)

Sp(αz3 , α∗) > Sp(αz1 , α∗) > Sp(αz4 , α∗) = Sp(αz2 , α∗). (4)

So, the optimistic optimal choice is to choose x4, that is, this given house is “not good” for the
customer; the pessimistic optimal choice is to choose x3, that is, this given house is “less good” for
the customer.

6. Conclusions

In this paper, we propose the concept of MGNRS on a single domain and dual domains, and
obtain their properties. I addition, we obtain that MGNRS on dual domains will be the same as the
MGNRS on a single domain when the two domains are same. Then, we solve a kind of special group
decision-making problem (based on neutrosophic relation) using MGNRS on dual domains, and we
show the algorithm and give an example to show its feasibility.

In terms of the future direction, we will study other types of combinations of multi-granulation
rough sets and neutrosophic sets and obtain their properties. At the same time, exploring the
application of MGNRS in totally dependent-neutrosophic sets (see [32]) and related algebraic systems
(see [33–35]), and a new aggregation operator, similarity measure, and distance measure (see [36–39]),
are also meaningful research directions for the future.
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Abstract. In this paper, we propose a new technique for the enhancing images. It will work on removing the noise contained in 
the image as well as improving its contrast based on three different enhancing transforms, we commence by embedding the im-
age into a neutrosophic domain; where the image will be mapped in three different levels, a level of trueness, a level of false-
ness and a level of indeterminacy. Hence, we act separately on each level using the enhancement transforms. Finally, we intro-
duce  a new analysis in the field of analysis and processing of images using the neutrosophic crisp set theory via Mat lab pro-
gram where has been obtained three images, which helps in a new analysis to improve and retrieve images. 

Keywords: Image analysis, Image  Enhancement, Image processing,  Neutrosophic Crisp Set, 
Gaussian Distribution,  Logarithmic Transform, Neutrosophic Crisp Mathematical Morphology

1. Introduction

As a discipline, neutrosophic is an active and growing area of image processing and analysis. Mathematically, a gray scale image 
is represented by an nm  array nmm jigI  )],([ with entities ),( jig  corresponding to the intensity of the pixel located at ),( ji .
Presently applications require different kinds of images as sources of information for interpretation and analysis. Whenever an image is 
converted from one form to another (such as digitizing, scanning, transmitting, storing, etc.) some form of declination occurs at the 
output. Hence, the output image has to undergo a process called image enhancement which consists of a collection of techniques that 
seek to improve the visual appearance of an image [12]. Image enhancement is a process which mainly used to improve the quality of 
images, removing noise from the images.It has important role in many fields like high definition TV (HDTV), X-rayprocessing, motion 
detection, remote sensing and in studying medical images [8]. The fundamental concepts of neutrosophic set, introduced by 
Smarandache in [22, 23] and many applications, introduced by Salama et al. in [14-21],[27, 28] provides a natural foundation for 
treating mathematically the neutrosophic phenomena which exist pervasively in our real world and for building new branches of 
neutrosophic mathematics, as an extension of the concept of the fuzzy set theory introduced by Zadeh [25].  

2. Preliminaries

we recall some definitions for essential concepts of neutrosophic sets and its operations, which were introduced by Smarandache in [22, 
23] and many applications by Salama et al. in [14-21].

2.1. Image Enhancement 

Recent applications are in need of different kinds of images as a source of information for interpretation and analysis. Whenever 
an image is transformed from one structure to another, such as: digitizing, scanning, and transmitting, some kind of distortion might oc-
cur to the output image. Hence, a process called image enhancement must be done. The process of an image enhancement contains a 
collection of techniques with the aim of providing a better visual appearance of the image; it is to improve the image quality so that the 

Neutrosophic Approach to Grayscale Images Domain
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resultant image is better than the original image for a specific application. In other words, to convert the image to an appropriate form 
for analysis by either a human eye or a machine. Currently, the image enhancement research covers wide topics such as: algorithms 
based on the human visual system [6], histograms with hue-preservation [9], JPEG-based enhancement for the visually impaired [24], 
and histogram modification techniques [5]. Additive noise, Gaussian noise, Impulse noise and Poisson noise represent several types of 
noises that corrupt the image, to remove any of such there are various filters available. For instance: Gaussian filter, Median filter, High 
pass filter and Low pass filter; each of these can be used to remove the image noise and, hence, enhance the image. The applications of 
image enhancement are in every field where images are needed to be understood and analyzed, as in medical image analysis, and analy-
sis of images from satellites. Generally, the enhancement techniques can be categorized into two main groups, which are the Spatial 
Domain Methods and the Frequency Domain Methods [26]. 

2.2. Spatial Domain for Image Enhancement 

The spatial domain is the normal image space, which is a direct handling of image pixels [2]. It is the manipulation or the change 
of image representations. Moreover, spatial domain is used in several applications as smoothing, sharpening and filtering images 
.Spatial domain techniques such as the logarithmic transforms[7], power law transforms[11], and histogram equalization[13], are basi-
cally to perform on the direct manipulation of the image pixels. In practice, spatial techniques are useful for directly changing the gray 
level intensities of individual pixels and consequently the contrast of the entire image. Usually, the spatial domain techniques enhance 
the whole image uniformly, which in various cases produces undesirable results and do not make it possible to efficiently enhance 
edges or other required information. 

2.3 Frequency Domain for Image Enhancement 

While in the spatial domain an image is treated as it is, and the value of the pixels of the image changes with respect to the scene, 
in the frequency domain we are dealing with the rate at which the values of the pixel are changing in the spatial domain. In all the me-
thods applied, a Fourier transform of the image is firstly computed so that the image is transferred into the frequency domain. Hence, 
any operation used for the purpose of image enhancement will be performed on the Fourier transform of the image. Afterward an In-
verse Fourier transform is performed to obtain the resultant image. The main objective of all the enhancement operations is to modify 
the image contrast, brightness or the grey levels distribution. Therefore, the value of the pixels of the output image will be changed ac-
cording to the transformation applied on the input values. In image processing and image analysis, the image transform is a mathemati-
cal tool which is used for detecting the rough or unclear area in the image and fix it. The image transformation allows us to move from 
frequency domain to time domain to perform the desired task in an easy manner. Various types of image transforms are available such 
as Fourier Transform [1], Walsh Transform [10], Hadamard Transform, Stant Transform, and Wavelet Transform [4]. The image trans-
formation to neutrosophic  
domain in [3] 

3. Hesitancy Degrees with Neutrosophic Image Domain
Salama et al. in [27, 28] presented the texture features for images embedded in the neutrosophic domain with Hesitancy degree. 

Definition 3.1 [15,27,28]: 
Let  on  . Then for a Neutrosophic set  in X, 
We call , the Neutrosophic index of x in A, It is a hesitancy degree of x to A it is obvious that 

. 
In this section we are transforming the image mI  into a neutrosophic domain using four functions: T, I, F and   . A pixel ),( jiP in the

image is described by a forth ( ),( jiT ; ),( jiI ; ),( jiF ; ),( ji ). Where ),( jiT is the membership degree of the pixel in the white set, 

and ),( jiF is its membership degree in the non-white (black) set; while ),( jiI is how much it is neither white nor black; k and ),( ji  is 

hesitancy degree. The values of ),( jiT , ),( jiI , ),( jiF  and ),( ji are defined as follows: 

min

_

max

_
min

__
),(

),(
gg

gjig
jiT



  , 
minmax

min),(1),( 



 jijiI , 

),(1),( jiTjiF  , 

Florentin Smarandache (ed.) Collected Papers, VI

297



),(),(),((3),( jiFjiIjiTji  , where ),(
_

jig  is the local mean intensity in some neighborhood w of the pixel, 

,),(
1

),(
2

2

2

2

_










w

w

w

w

iu

iu

jv

jv
vug

ww
jig ),( ji is the homogeneity value computed by the absolute value of difference between the 

intensity and its local mean value ),(),((),(
_

jigjigabsji  . 

4. A Neutrosophic Image Enhancement Filter

Consider an Image G in the neutrosophic domain with four functions (T, I, F,   ) describing the three levels of trueness, indeterminacy 
and falseness with hesitancy degree as previously explained in 2. The filter we propose to enhance G is two fold. In one hand it aims to 
remove the noise from the image, in the other hand it improves the image contrast. To do so, we will work on each level separately. 

Firstly, in the indeterminacy level, we will force the stability of this blur area around the mean using the Gaussian distribution. 

A general form of the Gaussian distribution is 





 


 t

, where   is the standard deviation and   is the mean value. Secondly, in the 

falseness level, a logarithmic transform is applied to enhance the details in ; 2 the dark areas while considering the brighter ones. Its 
general form is, c log (1 + t), where t is assumed to be non-negative; t   0, and c is a scaling parameter. 
  Thirdly, a power-law transform is working over the shattered areas in the trueness level. The power law transformations include the nth 
power and the  nth   root transformation, these transformations are also known as gamma transformation and can be given by the general 

expression, cr  . Variation in the value of   varies the enhancement of the images. Finally, we have got the output image, G
_
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5. A Neutrosophic Crisp Operators for Grayscale Image
 5.1. Grayscale Image via Neutrosophic Crisp Domain. 

In this section, we introduce  a new analysis in the field of analysis and processing of images using the neutrosophic crisp set theory
due to Salama et  al. in [14,17]  via Matlab program where has been obtained three images representing, which helps in a new analysis 
to improve and retrieve images 

A grayscale image in a 2D Cartesian domain 

Fig. 1: a) Grayscale image 
The following figure shows a grayscale image in a neutrosophic crisp components. 
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Fig. 1:  b) Neutrosophic Crisp Components  respectively 

At this point, we have noticed that there exist some crisp sets which having the neutrosophic triple structure and are not classified in 
either categories of the neutrosophic crisp sets' classification. In this case, the three components of those sets may overlap. In this 
section, we deduced a new triple structured set; where the three components are disjoint. 

Fig. 2: b) Neutrosophic Crisp Components  respectively 
The following figure shows a grayscale image in star neutrosophic crisp components. 

Fig. 3  b) Star Neutrosophic  Crisp Components  respectively 
Definition 5.1 

For any triple structured crisp set , of the form the retract neutrosophic crisp set  is the 
structure ,where

and
 Furthermore, the three components  and  are disjoint and . 

The following figure shows a grayscale image in a neutrosophic retract crisp components. 

Fig.4: b) Neutrosophic Retract Components  respectively 

5.2. A Grayscale Image & Neutrosophic Crisp Operators 
  Salama et al. [17] extended the definitions of some morphological  filters using the neutrosophic crisp sets concept. The idea behind 
the new introduced operators and filters is to act  on  the image in the neutrosophic crisp domain instead of the spatial domain. 
The following figure shows a grayscale image in a neutrosophic crisp Dilation components. 
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Fig.5: Neutrosophic Crisp Dilation components in type 1  respectively 

Fig.6: Neutrosophic Crisp Dilation components in type 2  respectively 

The following figure shows a grayscale image in a neutrosophic crisp Erosion components. 

Fig.7: Neutrosophic Crisp Erosion components in type 1 respectively

Fig.8: Neutrosophic Crisp Erosion components in type2 respectively

The following figure shows a grayscale image in a neutrosophic crisp Opening components. 

Fig.9: Neutrosophic Crisp opening components in type1 respectively

Fig.10: Neutrosophic Crisp opening components in type2  respectively

The following figure shows a grayscale image in a neutrosophic crisp Closing components. 

Fig.11: Neutrosophic Crisp closing components in type1 
321 ,, AAA  respectively
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Fig.12: Neutrosophic Crisp closing components in type2 
321 ,, AAA  respectively

Conclusion 
As a discipline, neutrosophic is an active and growing area of image processing and analysis. In this work, we introduce a neutrosophic 
technique for the image processing, analysis and enhancement. The two fold proposed technique aims to remove the noise from the 
image, as well as improving the image contrast. To commence, we construct the embedding of the image in the neutrosophic domain; in 
which the image is mapped into three different levels, describing the levels of trueness, falseness and indeterminacy. Using the Power-
law, Logarithmic and Gaussian transforms, the proposed a technique acts on each level of the image separately. Our plan next is to 
experiment our technique on different types of images, such as medical images. 
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Abstract: Big Data is a large-sized and complex dataset, which cannot be managed using traditional
data processing tools. Mining process of big data is the ability to extract valuable information from
these large datasets. Association rule mining is a type of data mining process, which is indented to
determine interesting associations between items and to establish a set of association rules whose
support is greater than a specific threshold. The classical association rules can only be extracted from
binary data where an item exists in a transaction, but it fails to deal effectively with quantitative
attributes, through decreasing the quality of generated association rules due to sharp boundary
problems. In order to overcome the drawbacks of classical association rule mining, we propose in
this research a new neutrosophic association rule algorithm. The algorithm uses a new approach
for generating association rules by dealing with membership, indeterminacy, and non-membership
functions of items, conducting to an efficient decision-making system by considering all vague
association rules. To prove the validity of the method, we compare the fuzzy mining and the
neutrosophic mining. The results show that the proposed approach increases the number of generated
association rules.

Keywords: neutrosophic association rule; data mining; neutrosophic sets; big data

1. Introduction

The term ‘Big Data’ originated from the massive amount of data produced every day. Each day,
Google receives cca. 1 billion queries, Facebook registers more than 800 million updates, and YouTube
counts up to 4 billion views, and the produced data grows with 40% every year. Other sources of
data are mobile devices and big companies. The produced data may be structured, semi-structured,
or unstructured. Most of the big data types are unstructured; only 20% of data consists in structured
data. There are four dimensions of big data:

(1) Volume: big data is measured by petabytes and zettabytes.
(2) Velocity: the accelerating speed of data flow.
(3) Variety: the various sources and types of data requiring analysis and management.
(4) Veracity: noise, abnormality, and biases of generated knowledge.

Consequently, Gartner [1] outlines that big data’s large volume requires cost-effective, innovative
forms for processing information, to enhance insights and decision-making processes.

Prominent domains among applications of big data are [2,3]:
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(1) Business domain.
(2) Technology domain.
(3) Health domain.
(4) Smart cities designing.

These various applications help people to obtain better services, experiences, or be healthier,
by detecting illness symptoms much earlier than before [2]. Some significant challenges of managing
and analyzing big data are [4,5]:

(1) Analytics Architecture: The optimal architecture for dealing with historic and real-time data at
the same time is not obvious yet.

(2) Statistical significance: Fulfill statistical results, which should not be random.
(3) Distributed mining: Various data mining methods are not fiddling to paralyze.
(4) Time evolving data: Data should be improved over time according to the field of interest.
(5) Compression: To deal with big data, the amount of space that is needed to store is highly relevant.
(6) Visualization: The main mission of big data analysis is the visualization of results.
(7) Hidden big data: Large amounts of beneficial data are lost since modern data is unstructured data.

Due to the increasing volume of data at a matchless rate and of various forms, we need to manage
and analyze uncertainty of various types of data. Big data analytics is a significant function of big data,
which discovers unobserved patterns and relationships among various items and people interest on a
specific item from the huge data set. Various methods are applied to obtain valid, unknown, and useful
models from large data. Association rule mining stands among big data analytics functionalities.
The concept of association rule (AR) mining already returns to H’ajek et al. [6]. Each association
rule in database is composed from two different sets of items, which are called antecedent and
consequent. A simple example of association rule mining is “if the client buys a fruit, he/she is
80% likely to purchase milk also”. The previous association rule can help in making a marketing
strategy of a grocery store. Then, we can say that association rule-mining finds all of the frequent
items in database with the least complexities. From all of the available rules, in order to determine the
rules of interest, a set of constraints must be determined. These constraints are support, confidence,
lift, and conviction. Support indicates the number of occurrences of an item in all transactions,
while the confidence constraint indicates the truth of the existing rule in transactions. The factor
“lift” explains the dependency relationship between the antecedent and consequent. On the other
hand, the conviction of a rule indicates the frequency ratio of an occurring antecedent without a
consequent occurrence. Association rules mining could be limited to the problem of finding large
itemsets, where a large itemset is a collection of items existing in a database transactions equal to or
greater than the support threshold [7–20]. In [8], the author provides a survey of the itemset methods
for discovering association rules. The association rules are positive and negative rules. The positive
association rules take the form X → Y , X ⊆ I, Y ⊆ I and X ∩ Y = ϕ, where X, Y are antecedent
and consequent and I is a set of items in database. Each positive association rule may lead to three
negative association rules, → Y , X → Y , and X → Y . Generating association rules in [9] consists
of two problems. The first problem is to find frequent itemsets whose support satisfies a predefined
minimum value. Then, the concern is to derive all of the rules exceeding a minimum confidence,
based on each frequent itemset. Since the solution of the second problem is straightforward, most of the
proposed work goes in for solving the first problem. An a priori algorithm has been proposed in [19],
which was the basis for many of the forthcoming algorithms. A two-pass algorithm is presented
in [11]. It consumes only two database scan passes, while a priori is a multi-pass algorithm and
needs up to c+1 database scans, where c is the number of items (attributes). Association rules mining
is applicable in numerous database communities. It has large applications in the retail industry to
improve market basket analysis [7]. Streaming-Rules is an algorithm developed by [9] to report an
association between pairs of elements in streams for predictive caching and detecting the previously
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undetectable hit inflation attacks in advertising networks. Running mining algorithms on numerical
attributes may result in a large set of candidates. Each candidate has small support and many rules
have been generated with useless information, e.g., the age attribute, salary attribute, and students’
grades. Many partitioning algorithms have been developed to solve the numerical attributes problem.
The proposed algorithms faced two problems. The first problem was the partitioning of attribute
domain into meaningful partitions. The second problem was the loss of many useful rules due to
the sharp boundary problem. Consequently, some rules may fail to achieve the minimum support
threshold because of the separating of its domain into two partitions.

Fuzzy sets have been introduced to solve these two problems. Using fuzzy sets make the
resulted association rules more meaningful. Many mining algorithms have been introduced to solve
the quantitative attributes problem using fuzzy sets proposed algorithms in [13–27] that can be
separated into two types related to the kind of minimum support threshold, fuzzy mining based on
single-minimum support threshold, and fuzzy mining based on multi-minimum support threshold [21].
Neutrosophic theory was introduced in [28] to generalize fuzzy theory. In [29–32], the neutrosophic
theory has been proposed to solve several applications and it has been used to generate a solution
based on neutrosophic sets. Single-valued neutrosophic set was introduced in [33] to transfer the
neutrosophic theory from the philosophic field into the mathematical theory, and to become applicable
in engineering applications. In [33], a differentiation has been proposed between intuitionistic fuzzy
sets and neutrosophic sets based on the independence of membership functions (truth-membership
function, falsity-membership function, and indeterminacy-membership function). In neutrosophic
sets, indeterminacy is explicitly independent, and truth-membership function and falsity-membership
function are independent as well. In this paper, we introduce an approach that is based on neutrosophic
sets for mining association rules, instead of fuzzy sets. Also, a comparison resulted association
rules in both of the scenarios has been presented. In [34], an attempt to express how neutrosophic
sets theory could be used in data mining has been proposed. They define SVNSF (single-valued
neutrosophic score function) to aggregate attribute values. In [35], an algorithm has been introduced
to mining vague association rules. Items properties have been added to enhance the quality of mining
association rules. In addition, almost sold items (items has been selected by the customer, but not
checked out) were added to enhance the generated association rules. AH-pair Database consisting
of a traditional database and the hesitation information of items was generated. The hesitation
information was collected, depending online shopping stores, which make it easier to collect that type
of information, which does not exist in traditional stores. In this paper, we are the first to convert
numerical attributes (items) into neutrosophic sets. While vague association rules add new items from
the hesitating information, our framework adds new items by converting the numerical attributes into
linguistic terms. Therefore, the vague association rule mining can be run on the converted database,
which contains new linguistic terms.

Research Contribution

Detecting hidden and affinity patterns from various, complex, and big data represents a significant
role in various domain areas, such as marketing, business, medical analysis, etc. These patterns are
beneficial for strategic decision-making. Association rules mining plays an important role as well
in detecting the relationships between patterns for determining frequent itemsets, since classical
association rules cannot use all types of data for the mining process. Binary data can only be used to
form classical rules, where items either exist in database or not. However, when classical association
rules deal with quantitative database, no discovered rules will appear, and this is the reason for
innovating quantitative association rules. The quantitative method also leads to the sharp boundary
problem, where the item is below or above the estimation values. The fuzzy association rules are
introduced to overcome the classical association rules drawbacks. The item in fuzzy association rules
has a membership function and a fuzzy set. The fuzzy association rules can deal with vague rules,
but not in the best manner, since it cannot consider the indeterminacy of rules. In order to overcome
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drawbacks of previous association rules, a new neutrosophic association rule algorithm has been
introduced in this research. Our proposed algorithm deals effectively and efficiently with vague
rules by considering not only the membership function of items, but also the indeterminacy and the
falsity functions. Therefore, the proposed algorithm discovers all of the possible association rules and
minimizes the losing processes of rules, which leads to building efficient and reliable decision-making
system. By comparing our proposed algorithm with fuzzy approaches, we note that the number
of association rules is increased, and negative rules are also discovered. The separation of negative
association rules from positive ones is not a simple process, and it helps in various fields. As an
example, in the medical domain, both positive and negative association rules help not only in the
diagnosis of disease, but also in detecting prevention manners.

The rest of this research is organized as follows. The basic concepts and definitions of association
rules mining are presented in Section 2. A quick overview of fuzzy association rules is described
in Section 3. The neutrosophic association rules and the proposed model are presented in Section 4.
A case study of Telecom Egypt Company is presented in Section 5. The experimental results and
comparisons between fuzzy and proposed association rules are discussed in Section 6. The conclusions
are drawn in Section 7.

2. Association Rules Mining

In this section, we formulate the |D| transactions from the mining association rules for a database
D. We used the following notations:

(i) I = {i1, i2, . . . im} represents all the possible data sets, called items.
(ii) Transaction set T is the set of domain data resulting from transactional processing such as T ⊆ I.
(iii) For a given itemset X ⊆ I and a given transaction T, we say that T contains X if and only if X ⊆ T.
(iv) σX: the support frequency of X, which is defined as the number of transactions out of D that

contain X.
(v) s: the support threshold.

X is considered a large itemset, if σX ≥ |D| × s. Further, an association rule is an implication of
the form X ⇒ Y , where X ⊆ I, Y ⊆ I and X ∩Y = ϕ.

An association rule X ⇒ Y is addressed in D with confidence c if at least c transactions out of D
contain both X and Y. The rule X ⇒ Y is considered as a large itemset having a minimum support s if:
σX∪Y ≥ |D| × s.

For a specific confidence and specific support thresholds, the problem of mining association
rules is to find out all of the association rules having confidence and support that is larger than the
corresponding thresholds. This problem can simply be expressed as finding all of the large itemsets,
where a large itemset L is:

L = {X|X ⊆ I ∧ σX ≥ |D| × s}.

3. Fuzzy Association Rules

Mining of association rules is considered as the main task in data mining. An association rule
expresses an interesting relationship between different attributes. Fuzzy association rules can deal with
both quantitative and categorical data and are described in linguistic terms, which are understandable
terms [26].

Let T = {t1, . . . , tn} be a database transactions. Each transaction consists of a number of attributes
(items). Let I = {i1, . . . , im} be a set of categorical or quantitative attributes. For each attribute ik,
(k = 1, . . . , m), we consider {n1, . . . , nk} associated fuzzy sets. Typically, a domain expert determines
the membership function for each attribute.

The tuple < X, A > is called the fuzzy itemset, where X ⊆ I (set of attributes) and A is a set of
fuzzy sets that is associated with attributes from X.
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Following is an example of fuzzy association rule:
IF salary is high and age is old THEN insurance is high
Before the mining process starts, we need to deal with numerical attributes and prepare them for

the mining process. The main idea is to determine the linguistic terms for the numerical attribute and
define the range for every linguistic term. For example, the temperature attribute is determined by the
linguistic terms {very cold, cold, cool, warm, hot}. Figure 1 illustrates the membership function of the
temperature attribute.

Figure 1. Linguistic terms of the temperature attribute.

The membership function has been calculated for the following database transactions illustrated
in Table 1.

Table 1. Membership function for Database Transactions.

Transaction Temp. Membership Degree

T1 18 1 cool
T2 13 0.6 cool, 0.4 cold
T3 12 0.4 cool, 0.6 cold
T4 33 0.6 warm, 0.4 hot
T5 21 0.2 warm, 0.8 cool
T6 25 1 warm

We add the linguistic terms {very cold, cold, cool, warm, hot} to the candidate set and calculate
the support for those itemsets. After determining the linguistic terms for each numerical attribute,
the fuzzy candidate set have been generated.

Table 2 contains the support for each itemset individual one-itemsets. The count for every
linguistic term has been calculated by summing its membership degree over the transactions. Table 3
shows the support for two-itemsets. The count for the fuzzy sets is the summation of degrees that
resulted from the membership function of that itemset. The count for two-itemset has been calculated
by summing the minimum membership degree of the 2 items. For example, {cold, cool} has count 0.8,
which resulted from transactions T2 and T3. For transaction T2, membership degree of cool is 0.6 and
membership degree for cold is 0.4, so the count for set {cold, cool} in T2 is 0.4. Also, T3 has the same
count for {cold, cool}. So, the count of set {cold, cool} over all transactions is 0.8.
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Table 2. 1-itemset support.

1-itemset Count Support

Very cold 0 0
Cold 1 0.17
Cool 2.8 0.47

Warm 1.6 0.27
Hot 0.6 0.1

Table 3. 2-itemset support.

2-itemset Count Support

{Cold, cool} 0.8 0.13
{Warm, hot} 0.4 0.07
{warm, cool} 0.2 0.03

In subsequent discussions, we denote an itemset that contains k items as k-itemset. The set of all
k-itemsets in L is referred as Lk.

4. Neutrosophic Association Rules

In this section, we overview some basic concepts of the NSs and SVNSs over the universal set X,
and the proposed model of discovering neutrosophic association rules.

4.1. Neutrosophic Set Definitions and Operations

Definition 1 ([33]). Let X be a space of points and x∈X. A neutrosophic set (NS) A in X is definite by a
truth-membership function TA(x), an indeterminacy-membership function IA(x) and a falsity-membership
function FA(x). TA(x), IA(x) and FA(x) are real standard or real nonstandard subsets of ]−0, 1+[. That is
TA(x): X→ ]−0, 1+[, IA(x): X→ ]−0, 1+[ and FA(x): X→ ]−0, 1+[. There is no restriction on the sum of
TA(x), IA(x) and FA(x), so 0− ≤ sup TA(x) + sup IA(x) + sup FA(x) ≤ 3+.

Neutrosophic is built on a philosophical concept, which makes it difficult to process during
engineering applications or to use it to real applications. To overcome that, Wang et al. [31], defined the
SVNS, which is a particular case of NS.

Definition 2. Let X be a universe of discourse. A single valued neutrosophic set (SVNS) A over X is an object
taking the form A = {〈x,TA(x), IA(x), FA(x)〉: x∈X}, where TA(x): X→ [0, 1], IA(x): X→ [0, 1] and FA(x):
X→ [0, 1] with 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3 for all x∈X. The intervals TA(x), IA(x) and FA(x) represent
the truth-membership degree, the indeterminacy-membership degree and the falsity membership degree of x to A,
respectively. For convenience, a SVN number is represented by A = (a, b, c), where a, b, c∈[0, 1] and a + b + c ≤ 3.

Definition 3 (Intersection) ([31]). For two SVNSs A = 〈TA(x), IA(x), FA(x)〉 and B = 〈TB(x), IB(x), FB(x)〉,
the intersection of these SVNSs is again an SVNSs which is defined as C = A∩ B whose truth, indeterminacy and
falsity membership functions are defined as TC(x) = min(TA(x), TB(x)), IA(x) = min(IA(x), IB(x)) and
FC(x) = max(FA(x), FB(x)).

Definition 4 (Union) ([31]). For two SVNSs A = 〈TA(x), IA(x), FA(x)〉 and B = 〈TB(x), IB(x), FB(x)〉,
the union of these SVNSs is again an SVNSs which is defined as C = A ∪ B whose truth, indeterminacy and
falsity membership functions are defined as TC(x) = max(TA(x), TB(x)), IA(x) = max(IA(x), IB(x)) and
FC(x) = min(FA(x), FB(x)).
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Definition 5 (Containment) ([31]). A single valued neutrosophic set A contained in the other SVNS B,
denoted by A ⊆ B if and only if TA(x) ≤ TB(x), IA(x) ≤ IB(x) and FA(x) ≥ FB(x) for all x in X.

Next, we propose a method for generating the association rule under the SVNS environment.

4.2. Proposed Model for Association Rule

In this paper, we introduce a model to generate association rules of form:
X → Y where X ∩Y = ϕ and X, Y are neutrosophic sets.
Our aim is to find the frequent itemsets and their corresponding support. Generating an

association rule from its frequent itemsets, which are dependent on the confidence threshold, are also
discussed here. This has been done by adding the neutrosophic set into I, where I is all of the
possible data sets, which are referred as items. So I = N ∪M where N is neutrosophic set and M is
classical set of items. The general form of an association rule is an implication of the form X → Y ,
where X ⊆ I, Y ⊆ I, X ∩Y = ϕ.

Therefore, an association rule X → Y is addressed in Database D with confidence ‘c’ if at least c
transactions out of D contains both X and Y. On the other hand, the rule X → Y is considered a large
item set having a minimum support s if σX∪Y ≥ |D| × s. Furthermore, the process of converting the
quantitative values into the neutrosophic sets is proposed, as shown in Figure 2.

Figure 2. The proposed model.

The proposed model for the construction of the neutrosophic numbers is summarized in the
following steps:
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Step 1 Set linguistic terms of the variable, which will be used for quantitative attribute.
Step 2 Define the truth, indeterminacy, and the falsity membership functions for each constructed

linguistic term.
Step 3 For each transaction t in T, compute the truth-membership, indeterminacy-membership and

falsity-membership degrees.
Step 4 Extend each linguistic term l in set of linguistic terms L into TL, IL, and FL to denote truth-

membership, indeterminacy-membership, and falsity-membership functions, respectively.
Step 5 For each k-item set where k = {1, 2, . . . , n}, and n number of iterations.

• calculate count of each linguistic term by summing degrees of membership for each

transaction as Count(A) =
i=t
∑

i=1
µA(x) where µA is TA, IA or FA.

• calculate support for each linguistic term s = Count(A)
No. o f trnsactions .

Step 6 The above procedure has been repeated for every quantitative attribute in the database.

In order to show the working procedure of the approach, we consider the temperature as an
attribute and the terms “very cold”, “cold”, “cool”, “warm”, and “hot” as their linguistic terms
to represent the temperature of an object. Then, following the steps of the proposed approach,
construct their membership function as below:

Step 1 The attribute temperature’ has set the linguistic terms “very cold”, “cold”, “cool”, “warm”,
and “hot”, and their ranges are defined in Table 4.

Table 4. Linguistic terms ranges.

Linguistic Term Core Range Left Boundary Range Right Boundary Range

Very Cold −∞–0 N/A 0–5
Cold 5–10 0–5 10–15
Cool 15–20 10–15 20–25

Warm 25–30 20–25 30–35
Hot 35–∞ 30–35 N/A

Step 2 Based on these linguistic term ranges, the truth-membership functions of each linguistic
variable are defined, as follows:

Tvery−cold(x) =


1 ; f or x ≤ 0
(5− x)/5 ; f or 0 < x < 5
0 ; f or x ≥ 5

Tcold(x) =


1 ; f or 5 ≤ x ≤ 10
(15− x)/5 ; f or 10 < x < 15
x/5 ; f or 0 < x < 5
0 ; f or x ≥ 15 or x ≤ 0

Tcool(x) =


1 ; f or 15 ≤ x ≤ 20
(25− x)/5 ; f or 20 < x < 25
(x− 10)/5 ; f or 10 < x < 15
0 ; otherwise

Twarm(x) =


1 ; f or 25 ≤ x ≤ 30
(35− x)/5 ; f or 30 < x < 35
(x− 20)/5 ; f or 20 < x < 25
0 ; otherwise

Florentin Smarandache (ed.) Collected Papers, VI

310



Thot(x) =


1 ; f or x ≥ 35
(x− 30)/5 ; f or 30 < x < 35
0 ; otherwise

The falsity-membership functions of each linguistic variable are defined as follows:

Fvery−cold(x) =


0 ; f or x ≤ 0
x/5 ; f or 0 < x < 5
1 ; f or x ≥ 5

;

Fcold(x) =


0 ; f or 5 ≤ x ≤ 10
(x− 10)/5 ; f or 10 < x < 15
(5− x)/5 ; f or 0 < x < 5
1 ; f or x ≥ 15 or x ≤ 0

Fcool(x) =


0 ; f or 15 ≤ x ≤ 20
(x− 20)/5 ; f or 20 < x < 25
(15− x)/5 ; f or 10 < x < 15
1 ; otherwise

Fwarm(x) =


0 ; f or 25 ≤ x ≤ 30
(x− 30)/5 ; f or 30 < x < 35
(25− x)/5 ; f or 20 < x < 25
1 ; otherwise

Fhot(x) =


0 ; f or x ≥ 35
(35− x)/5 ; f or 30 < x < 35
1 ; otherwise

The indeterminacy membership functions of each linguistic variables are defined as follows:

Ivery−cold(x) =


0 ; f or x ≤ −2.5
(x + 2.5)/5 ; f or− 2.5 ≤ x ≤ 2.5
(7.5− x)/5 ; f or 2.5 ≤ x ≤ 7.5
0 ; f or x ≥ 7.5

Icold(x) =



(x + 2.5)/5 ; f or 2.5 ≤ x ≤ 2.5
(7.5− x)/5 ; f or 2.5 ≤ x ≤ 7.5
(x− 7.5)/5 ; f or 7.5 ≤ x ≤ 12.5
(17.5− x)/5 ; f or 12.5 ≤ x ≤ 17.5
0 ; otherwise

Icool(x) =



(x− 7.5)/5 ; f or 7.5 ≤ x ≤ 12.5
(17.5− x)/5 ; f or 12.5 ≤ x ≤ 17.5
(x− 17.5)/5 ; f or 17.5 ≤ x ≤ 22.5
(27.5− x)/5 ; f or 22.5 ≤ x ≤ 27.5
0 ; otherwise

Iwarm(x) =



(x− 17.5)/5 ; f or 17.5 ≤ x ≤ 22.5
(27.5− x)/5 ; f or 22.5 ≤ x ≤ 27.5
(x− 27.5)/5 ; f or 27.5 ≤ x ≤ 32.5
(37.5− x)/5 ; f or 32.5 ≤ x ≤ 37.5
0 ; otherwise
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Ihot(x) =


(x− 27.5)/5 ; f or 27.5 ≤ x ≤ 32.5
(37.5− x)/5 ; f or 32.5 ≤ x ≤ 37.5
0 ; otherwise

The graphical membership degrees of these variables are summarized in Figure 3. The graphical
falsity degrees of these variables are summarized in Figure 4. Also, the graphical indeterminacy
degrees of these variables are summarized in Figure 5. On the other hand, for a particular linguistic
term, ‘Cool’ in the temperature attribute, their neutrosophic membership functions are represented in
Figure 6.

Figure 3. Truth-membership function of temperature attribute.

Figure 4. Falsity-membership function of temperature attribute.

Figure 5. Indeterminacy-membership function of temperature attribute.
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Figure 6. Cool (T, I, F) for temperature attribute.

Step 3 Based on the membership grades, different transaction has been set up by taking different
sets of the temperatures. The membership grades in terms of the neutrosophic sets of these
transactions are summarized in Table 5.

Table 5. Membership function for database Transactions.

Transaction Temp. Membership Degree

T1 18

Very-cold <0,0,1>
cold <0,0,1>

cool <1,0.1,0>
warm <0,0.1,1>

hot <0,0,1>

T2 13

Very cold <0,0,1>
cold <0.4,0.9,0.6>
cool <0.6,0.9,0.4>

warm <0,0,1>
hot <0,0,1>

T3 12

Very cold <0,0,1>
cold <0.6,0.9,0.4>
cool <0.4,0.9,0.6>

warm <0,0,1>
hot <0,0,1>

T4 33

Very cold <0,0,1>
cold <0,0,1>
cool <0,0,1>

warm <0.4,0.9,0.6>
hot <0.6,0.9,0.4>

T5 21

Very cold <0,0,1>
cold <0,0,1>

cool <0.8,0.7,0.2>
warm <0.2,0.7,0.8>

hot <0,0,1>

T6 25

Very cold <0,0,1>
cold <0,0,1>
cool <0,0,1>

warm <1,0.5,0>
hot <0,0,1>
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Step 4 Now, we count the set of linguistic terms {very cold, cold, cool, warm, hot} for every element
in transactions. Since the truth, falsity, and indeterminacy-memberships are independent
functions, the set of linguistic terms can be extended to

{
Tvery−cold, Tcold, Tcool , Twarm, Thot

Fvery−cold, Fcold, Fcool , Fwarm, Fhot Ivery−cold, Icold, Icool , Iwarm, Ihot

}
where Fwarm means not worm

and Iwarm means not sure of warmness. This enhances dealing with negative association rules,
which is handled as positive rules without extra calculations.

Step 5 By using the membership degrees that are given in Table 5 for candidate 1-itemset, the count
and support has been calculated, respectively. The corresponding results are summarized in
Table 6.

Table 6. Support for candidate 1-itemset neutrosophic set.

1-itemset Count Support

Tverycold 0 0
TCold 1 0.17
TCool 2.8 0.47

TWarm 1.6 0.27
THot 0.6 0.1

Iverycold 0 0
ICold 1.8 0.3
ICool 2.6 0.43

IWarm 2.2 0.37
IHot 0.9 0.15

Fverycold 6 1
FCold 5 0.83
FCool 3.2 0.53

FWarm 4.4 0.73
FHot 5.4 0.9

Similarly, the two-itemset support is illustrated in Table 7 and the rest of itemset generation
(k-itemset for k = 3, 4 . . . 8) are obtained similarly. The count for k-item set in database record is defined
by minimum count of each one-itemset exists.

For example: {TCold, TCool} count is 0.8
Because they exists in both T2 and T3.
In T2: TCold = 0.4 and TCool = 0.6 so, count for {TCold, TCool} in T2 = 0.4
In T3: TCold = 0.6 and TCool = 0.4 so, count for {TCold, TCool} in T2 = 0.4
Thus, count of {TCold, TCool} in (Database) DB is 0.8.

Table 7. Support for candidate 2-itemset neutrosophic set.

2-itemset Count Support 2-itemset Count Support

{TCold, TCool} 0.8 0.13 {ICold, ICool} 1.8 0.30
{TCold, ICold} 1 0.17 {ICold, Fverycold} 1.8 0.30
{TCold, ICool} 1 0.17 {ICold, FCold} 1 0.17

{TCold, Fverycold} 1 0.17 {ICold, FCool} 1 0.17
{TCold, FCold} 0.8 0.13 {ICold, FWarm} 1.8 0.30
{TCold, FCool} 1 0.17 {ICold, FHot} 1.8 0.30

{TCold, FWarm} 1 0.17 {ICool, IWarm} 0.8 0.13
{TCold, FHot} 1 0.17 {ICool, Fverycold} 2.6 0.43

{TCool, TWarm} 0.2 0.03 {ICool, FCold} 1.8 0.30
{TCool, ICold} 1 0.17 {ICool, FCool} 1.2 0.20
{TCool, FCool} 1.8 0.30 {ICool, FWarm} 2.6 0.43
{TCool, IWarm} 0.8 0.13 {ICool, FHot} 2.6 0.43

{TCool, Fverycold} 2.8 0.47 {IWarm, IHot} 0.9 0.15
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Table 7. Cont.

{TCool, FCold} 2.8 0.47 {IWarm, Fverycold} 2.2 0.37
{TCool, FCool} 1 0.17 {IWarm, FCold} 2.2 0.37

{TCool, FWarm} 2.8 0.47 {IWarm, FCool} 1.6 0.27
{TCool, FHot} 2.8 0.47 {IWarm, FWarm} 1.4 0.23

{TWarm, THot} 0.4 0.07 {IWarm, FHot} 1.7 0.28
{TWarm, ICool} 0.2 0.03 {IHot, Fverycold} 0.9 0.15

{TWarm, IWarm} 1.1 0.18 {IHot, FCold} 0.9 0.15
{TWarm, IHot} 0.4 0.07 {IHot, FCool} 0.9 0.15

{TWarm, Fverycold} 1.6 0.27 {IHot, FWarm} 0.6 0.10
{TWarm, FCold} 1.6 0.27 {IHot, FHot} 0.4 0.07
{TWarm, FCool} 1.6 0.27 {Fverycold, FCold} 5 0.83

{TWarm, FWarm} 0.6 0.10 {Fverycold, FCool} 3.2 0.53
{TWarm, FHot} 1.6 0.27 {Fverycold, FWarm} 4.4 0.73
{THot, IWarm} 0.6 0.10 {Fverycold, FHot} 5.4 0.90
{THot, IHot} 0.6 0.10 {FCold, FCool} 3 0.50

{THot, Fverycold} 0.6 0.10 {FCold, FWarm} 3.4 0.57
{THot, FCold} 0.6 0.10 {FCold, FHot} 4.4 0.73
{THot, FCool} 0.6 0.10 {FCool, FWarm} 1.8 0.30

{THot, FWarm} 0.6 0.10 {FCool, FHot} 2.6 0.43
{THot, FHot} 0.4 0.07 {FWarm, FHot} 4.2 0.70

5. Case Study

In this section, the case of Telecom Egypt Company stock records has been studied. Egyptian stock
market has many companies. One of the major questions for stock market users is when to buy or
to sell a specific stock. Egyptian stock market has three indicators, EGX30, EGX70, and EGX100.
Each indicator gives a reflection of the stock market. Also, these indicators have an important impact
on the stock market users, affecting their decisions of buying or selling stocks. We focus in our study
on the relation between the stock and the three indicators. Also, we consider the month and quarter
of the year to be another dimension in our study, while the sell/buy volume of the stock per day is
considered to be the third dimension.

In this study, the historical data has been taken from the Egyptian stock market program (Mist)
during the program September 2012 until September 2017. For every stock/indicator, Mist keeps a
daily track of number of values (opening price, closing price, high price reached, low price reached,
and volume). The collected data of Telecom Egypt Stock are summarized in Figure 7.

Figure 7. Telecom Egypt stock records.
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In this study, we use the open price and close price values to get price change rate, which are
defined as follows:

price change rate =
close price − open price

open price
× 100

and change the volume to be a percentage of total volume of the stock with the following relation:

percentage of volume =
volume

total volume
× 100

The same was performed for the stock market indicators. Now, we take the attributes as “quarter”,
“month”, “stock change rate”, “volume percentage”, and “indicators change rate”. Table 8 illustrates
the segment of resulted data after preparation.

Table 8. Segment of data after preparation.

Ts_Date Month Quarter Change Volume Change30 Change70 Change100

13 September 2012 September 3 0.64 0.03 −1.11 0.01 −0.43
16 September 2012 September 3 0.07 0.02 2.82 4.50 3.67
17 September 2012 September 3 3.47 0.12 1.27 0.76 0.81
18 September 2012 September 3 1.38 0.03 −0.08 −0.48 −0.43
19 September 2012 September 3 −1.48 0.02 0.35 −1.10 −0.64
20 September 2012 September 3 0.47 0.05 −1.41 −1.64 −1.55
23 September 2012 September 3 3.64 0.02 −0.21 1.00 0.41
24 September 2012 September 3 −0.47 0.05 0.27 −0.09 0.03
25 September 2012 September 3 −2.77 0.15 2.15 1.79 1.85
26 September 2012 September 3 1.96 0.04 0.22 0.96 0.57
27 September 2012 September 3 0.90 0.05 −1.38 −0.88 −0.92
30 September 2012 September 3 −0.14 0.00 −1.11 −0.79 −0.75

1 October 2012 October 4 −1.60 0.02 −2.95 −4.00 −3.51

Based on these linguistic terms, define the ranges under the SVNSs environment. For this,
corresponding to the attribute in “change rate” and “volume”, the truth-membership functions by
defining their linguistic terms as {“high up”, “high low”, “no change”, “low down”, “high down”}
corresponding to attribute “change rate”, while for the attribute “volume”, the linguistic terms
are (low, medium, and high) and their ranges are summarized in Figures 8 and 9, respectively.
The falsity-membership function and indeterminacy-membership function have been calculated and
applied as well for change rate attribute.

Figure 8. Change rate attribute truth-membership function.
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Figure 9. Volume attribute truth-membership function.

6. Experimental Results

We proceeded to a comparison between fuzzy mining and neutrosophic mining algorithms,
and we found out that the number of generated association rules increased in neutrosophic mining.

A program has been developed to generate large itemsets for Telecom Egypt historical data.
VB.net has been used in creating this program. The obtained data have been stored in an access
database. The comparison depends on the number of generated association rules in a different
min-support threshold. It should be noted that the performance cannot be part of the comparison
because of the number of items (attributes) that are different in fuzzy vs. neutrosophic association
rules mining. In fuzzy mining, the number of items was 14, while in neutrosophic mining it is
34. This happens because the number of attributes increased. Spreading each linguistic term into
three (True, False, Indeterminacy) terms make the generated rules increase. The falsity-generated
association rules can be considered a negative association rules. As pointed out in [36], the conviction
of a rule conv(X → Y) is defined as the ratio of the expected frequency that X happened without Y
falsity-association rules to be used to generate negative association rules if T(x) + F(x) = 1. In Table 9,
the number of generated fuzzy rules in each k−itemset using different min-support threshold are
reported, while the total generated fuzzy association rule is presented in Figure 10.

Figure 10. No. of fuzzy association rules with different min-support threshold.
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Table 9. No. of resulted fuzzy rules with different min-support.

Min-Support 0.02 0.03 0.04 0.05

1-itemset 10 10 10 10
2-itemset 37 36 36 33
3-itemset 55 29 15 10
4-itemset 32 4 2 0

As compared to the fuzzy approach, by applying the same min-support threshold, we get a huge
set of neutrosophic association rules. Table 10 illustrates the booming that happened to generated
neutrosophic association rules. We stop generating itemsets at iteration 4 due to the noted expansion
in the results shown in Figure 11, which shows the number of neutrosophic association rules.

Table 10. No. of neutrosophic rules with different min-support threshold.

Min-Support 0.02 0.03 0.04 0.05

1-itemset 26 26 26 26
2-itemset 313 311 309 300
3-itemset 2293 2164 2030 1907
4-itemset 11,233 9689 8523 7768

Figure 11. No. of neutrosophic association rules with different min-support threshold.

Experiment has been re-run using different min-support threshold values and the resulted
neutrosophic association rules counts has been noted and listed in Table 11. Note the high values that
are used for min-support threshold. Figure 12 illustrates the generated neutrosophic association rules
for min-support threshold from 0.5 to 0.9.

Table 11. No. of neutrosophic rules with different min-support threshold.

Min-Support 0.5 0.6 0.7 0.8 0.9

1-itemset 11 9 9 6 5
2-itemset 50 33 30 11 10
3-itemset 122 64 50 10 10
4-itemset 175 71 45 5 5
5-itemset 151 45 21 1 1
6-itemset 88 38 8 0 0
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Figure 12. No. of neutrosophic rules for min-support threshold from 0.5 to 0.9.

Using the neutrosophic mining approach makes association rules exist for most of the min-support
threshold domain, which may be sometimes misleading. We found that using the neutrosophic
approach is useful in generating negative association rules beside positive association rules
minings. Huge generated association rules provoke the need to re-mine generated rules (mining
of mining association rules). Using suitable high min-support values may help in the neutrosophic
mining process.

7. Conclusions and Future Work

Big data analysis will continue to grow in the next years. In order to efficiently and effectively
deal with big data, we introduced in this research a new algorithm for mining big data using
neutrosophic association rules. Converting quantitative attributes is the main key for generating
such rules. Previously, it was performed by employing the fuzzy sets. However, due to fuzzy
drawbacks, which we discussed in the introductory section, we preferred to use neutrosophic sets.
Experimental results showed that the proposed approach generated an increase in the number of
rules. In addition, the indeterminacy-membership function has been used to prevent losing rules
from boundaries problems. The proposed model is more effective in processing negative association
rules. By comparing it with the fuzzy association rules mining approaches, we conclude that the
proposed model generates a larger number of positive and negative association rules, thus ensuring
the construction of a real and efficient decision-making system. In the future, we plan to extend the
comparison between the neutrosophic association rule mining and other interval fuzzy association
rule minings. Furthermore, we seized the falsity-membership function capacity to generate negative
association rules. Conjointly, we availed of the indeterminacy-membership function to prevent losing
rules from boundaries problems. Many applications can emerge by adaptions of truth-membership
function, indeterminacy-membership function, and falsity-membership function. Future work will
benefit from the proposed model in generating negative association rules, or in increasing the quality
of the generated association rules by using multiple support thresholds and multiple confidence
thresholds for each membership function. The proposed model can be developed to mix positive
association rules (represented in the truth-membership function) and negative association rules
(represented in the falsity-membership function) in order to discover new association rules, and the
indeterminacy-membership function can be put forth to help in the automatic adoption of support
thresholds and confidence thresholds. Finally, yet importantly, we project to apply the proposed model
in the medical field, due to its capability in effective diagnoses through discovering both positive
and negative symptoms of a disease. All future big data challenges could be handled by combining
neutrosophic sets with various techniques.
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Abstract: We introduce oracle Turing machines with neutrosophic values allowed in the oracle
information and then give some results when one is permitted to use neutrosophic sets and logic
in relative computation. We also introduce a method to enumerate the elements of a neutrosophic
subset of natural numbers.

Keywords: computability; oracle Turing machines; neutrosophic sets; neutrosophic logic; recursive
enumerability; oracle computation; criterion functions

1. Introduction

In classical computability theory, algorithmic computation is modeled by Turing machines, which
were introduced by Alan M. Turing [1]. A Turing machine is an abstract model of computation defined
by a 7-tuple (Q, Σ, Γ, δ, q0, F, {L, R}), where Q is a finite set of states, Σ is the alphabet, Γ is the tape
alphabet, q0 ∈ Q is the starting state, F ⊂ Q is a set of halting states, the set {L, R} denotes the possible
left (L) and right (R) move of the tape head, and δ is the transition function, defined as:

δ : Q× Γ→ Q× Σ× {L, R}.

Each transition is a step of the computation. Let w be a string over the alphabet Σ. We say
that a Turing machine on input w halts if the computation ends with some state q ∈ F. The output
of the machine, in this case, is whatever was written on the tape at the end of the computation.
If a Turing machine M on input w halts, then we say that M is defined on w. Since there is a
one-to-one correspondence between the set of all finite strings over Σ and the set of natural numbers
N = {0, 1, 2, . . .}, without loss of generality we may assume that Turing machines are defined from N
to N.

Standard Turing machines admit partial functions, i.e., functions that may not be defined on every
input. The class of functions computable by Turing machines are called partial recursive (computable)
functions. We shall not delve into the details about what is meant by a function or set that is computable
by a Turing machine. We assume that the reader is familiar with the basic terminology. However, for a
detailed account, the reader may refer to Reference [2–4]. Using a well known method called Gödel
numbering, originated from Gödel’s celebrated 1931 paper [5], it is possible to have an algorithmic
enumeration of all partial recursive functions. We let Ψi denote the ith partial recursive function, i.e.,
the ith Turing machine.

If a partial recursive function is defined on every argument we say that it is total. Total recursive
functions are simply called recursive or computable. Since there are countable infinitely many Turing
machines, there are countable infinitely many computable functions. Computable sets and functions are
widely used in mathematics and computer science. However, nearly all functions are non-computable.
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Since there are 2ℵ0 functions from N to N and only ℵ0 many computable functions, there are
uncountably many non-computable functions.

Oracle Turing machines, introduced by Alan Turing [6], are used for relativizing the computation
with respect to a given set of natural numbers. An oracle Turing machine is a Turing machine with an
extra oracle tape containing the characteristic function of a given set of natural numbers. The characteristic
function of a set S ⊂ N is defined as:

χS(x) =

{
1 if x ∈ S
0 if x 6∈ S.

We may also think of χS as an infinite binary sequence and call it the characteristic sequence of S.
For a set S ⊂ N, we let S(i) denote χS(i). So the characteristic sequence of a set S simply gives the
membership information about natural numbers regarding S. For a given an oracle Turing machine
with the characteristic sequence of a set S provided in the oracle tape, functions are denoted as
computable by the machine relative to the oracle S. If the oracle Turing machine with an oracle S
computes a function f , then we say that f is computable in S or we say S computes f . We denote the
ith oracle Turing machine with an oracle A by Ψi(A). Then, it makes sense to write Ψi(A) = B if A
computes B.

Now we shall look at a non-standard Turing machine model based on neutrosophic sets.
Neutrosophic logic, first introduced by Smarandache [7,8], is a generalization of classical, fuzzy and
intuitionistic fuzzy logic. The key assumption of neutrosophy is that every idea not only has a certain
degree of truth, as is generally taken in many-valued logic contexts, but also has degrees of falsity
and indeterminacy, which need to be considered independently from each other. A neutrosophic set
relies on the idea that there is a degree of probability that an element is a member of the given set,
a degree that the very same element is not a member of the set, and a degree that the membership
of the element is indeterminate for the set. For our purpose we take subsets of natural numbers.
Roughly speaking, if n were a natural number and if A were a neutrosophic set, then there would be a
probability distribution p∈(n) + p 6∈(n) + pI(n) = 1, where p∈(n) denotes the probability of n being
a member of A, p 6∈(n) denotes the probability of n not being a member of A, and pI(n) denotes the
degree of probability that the membership of n is indeterminate in A. Since the probability distribution
is expected to be normalized, the summation of all probabilities must be equal to unity. We should
note however that the latter requirement can be modified depending on the application.

The above interpretation of a neutrosophic set can be in fact generalized to any multi-dimensional
collection of attributes. That is, our attributes did not need to be merely about membership,
non-membership, and indeterminacy, but it could range over any finite set of attributes a0, a1, . . . , ak
and b0, b1, . . . bk so that the value of an element would range over (x, y, I) such that x ∈ am and
y ∈ bm for 0 ≤ m ≤ k. The set of attributes can also be countably infinite or even uncountable.
However, we are not concerned with these cases. We shall only consider the membership attribute
discussed above.

We are particularly interested in subsets of natural numbers A ⊂ N, in our study. Any neutrosophic
subset A of natural numbers (we shall occasionally denote such a set by AN) is defined in the form of
ordered triplets:

{〈p∈(0), p 6∈(0), pI(0)〉, 〈p∈(1), p 6∈(1), pI(1)〉, 〈p∈(2), p 6∈(2), pI(2)〉, . . .},

where, for each i ∈ N, p∈(i) denotes the degree of probability of i being an element of A, p 6∈(i) denotes
the probability of i being not an element of A, and pI(i) denotes the probability of i being indetermined.
Since we assume a normalized probability distribution, we have that for every i ∈ N:

p∈(i) + p 6∈(i) + pI(i) = 1.
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2. Oracle Turing Machines with Neutrosophic Values

Now we can extend the notion of relativized computation based on neutrosophic sets and
neutrosophic logic. For this we introduce oracle Turing machines with neutrosophic oracle tape.
The general idea is as follows. Standard oracle tape contains the information of the characteristic
sequence of a given set A ⊂ N. We extend the definition of the characteristic function to neutrosophic
sets as follows.

Definition 1. Let A ⊂ N be a set. A neutrosophic oracle tape is a countably infinite sequence t0, t1, . . . where
ti = 〈a, b, c〉 is an ordered triplet and a, b, c ∈ Q, so that a is the probability value of i such that i ∈ A, b is the
probability value of i such that i 6∈ A, and c is the probability of i being indeterminate for A.

The overall picture of a neutrosophic oracle tape can be seen in Figure 1. Now we need to modify
the notion of the characteristic sequence accordingly.

Figure 1. Neutrosophic oracle tape.

Definition 2. Let S ⊂ N be a set and let B denote the blank symbol in the alphabet of the oracle tape.
The neutrosophic characteristic function of S is defined by

χN
S (x) =



〈1, 0, I〉 if p∈(x) > 0 and p 6∈(x) > 0 and pI(x) > 0
〈B, 0, I〉 if p∈(x) = 0 and p 6∈(x) > 0 and pI(x) > 0
〈B, B, I〉 if p∈(x) = 0 and p 6∈(x) = 0 and pI(x) > 0
〈B, B, B〉 if p∈(x) = 0 and p 6∈(x) = 0 and pI(x) = 0
〈1, B, I〉 if p∈(x) > 0 and p 6∈(x) = 0 and pI(x) > 0
〈1, B, B〉 if p∈(x) > 0 and p 6∈(x) = 0 and pI(x) = 0
〈1, 0, B〉 if p∈(x) > 0 and p 6∈(x) > 0 and pI(x) = 0
〈B, 0, B〉 if p∈(x) = 0 and p 6∈(x) > 0 and pI(x) = 0

The idea behind this definition is to label the distributions which have significant probability
value with respect to a pre-determined probability threshold value, in this case we assume this value
to be 0 by default. Note that this threshold value could be defined for any r ∈ Q so that instead of
being greater than 0, we would require the probability for that attribute to be greater than r in order to
be labelled. We will talk about the properties of defining an arbitrary threshold value and its relation
to neutrosophic computations in the next section.

Definition 3. A neutrosophic oracle Turing machine is a Turing machine with an additional neutrosophic
oracle tape (Q, Σ, Γ, Γ′, δ, q0, F, {L, R}), where Q is a finite set of states, Σ is the alphabet, Γ is the tape alphabet,
Γ′ is the neutrosophic oracle tape alphabet containing the blank symbol B, q0 ∈ Q is the starting state, F ⊂ Q is
a set of halting states, the set {L, R} denotes the possible left (L) and right (R) move of the tape head, and δ is the
transition function defined as:

δ : Q× Γ× Γ′ → Q× Σ× {L, R}2.

Theorem 1. Any neutrosophic oracle Turing machine can be simulated by a standard Turing machine.
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Proof. Assuming the Church–Turing thesis in the proof, we only need to argue that standard oracle
tapes can in theory represent neutrosophic oracle tapes. In fact any neutrosophic oracle tapes can be
represented by three standard oracle tapes each of which contains one and only one attribute. The ith
cell of the first oracle tape contains the probability value p∈(i). The ith cell of the second oracle tape
contains the value p 6∈(i). Similarly, the ith cell of the third oracle tape contains pI(i).

We also need to argue that a three-tape oracle standard Turing machine can be simulated by a
single tape oracle Turing machine. Let Γ be the oracle alphabet. We define an extension Γ′ of Γ by
introducing a delimeter symbol # to separate each attribute for a given number i. We define another
delimiter symbol ⊥ to separate each i ∈ N. Let Γ′ = Γ ∪ {#,⊥}. Then, a neutrosophic oracle tape can
be represented by a single oracle tape with the tape alphabet Γ′. The oracle tape will be in the form:

p∈(0)#p 6∈(0)#pI(0)⊥p∈(1)#p 6∈(1)#pI(1)⊥ . . .

The symbol ⊥ determines a counter for i, whereas for each i, the symbol # determines a counter
for the attribute. �

A neutrosophic set A computes another neutrosophic set B if using finitely many pieces of
information of the characteristic sequence of A determines the ith entry of the characteristic sequence
of B given any index i ∈ N. Then, based on this definition, a set B ⊂ N is neutrosophically computable
in A if B = ΨN

e (A) for some e ∈ N, where ΨN
e denotes the e-th neutrosophic oracle Turing machine.

If B = ΨN
e (A) for some e ∈ N, we denote this by B ≤N A. If B ≤N A and A ≤N B, then we say that

A and B are neutrosophically equivalent and denote this by A ≡N B. Intuitively, A ≡N B means that
A and B are neutrosophic subsets of natural numbers, and they have the same level of neutrosophic
information complexity. We leave the discussion on the properties of the equivalence classes induced
by ≡N for another study as it is beyond the scope of this paper.

3. Neutrosophic Enumeration and Criterion Functions

We now introduce the concept of neutrosophic enumeration of the members of neutrosophic
subsets of natural numbers. Since we talk about enumeration, we must only take countable sets
into consideration. It is known from classical computability that, given a set A ⊂ N, A is called
recursively enumerable if there exists some e ∈ N such that A is the domain of Ψe. We want to define
the neutrosophic counterpart of this notion, but we need to be careful about the indeterminate cases,
an intrinsic property in neutrosophic logic.

Definition 4. A set A is called neutrosophic Turing enumerable if there exists some e ∈ N such that A is the
domain of ΨN

e restricted to elements whose probability degree of membership is greater than a given probability
threshold. More precisely, if r ∈ Q is a given probability threshold, then A is neutrosophic Turing enumerable if
A is the domain of ΨN

e (∅) restricted to those elements i such that pA
∈ (i) ≥ r, where pA

∈ (i) denotes the degree of
probability of membership of i in A.

If the eth Turing machine is defined on the argument i, we denote this by Ψe(i) ↓. The halting set
in classical computability theory is defined as:

K = {e : Ψe(e) ↓}.

It is known that K is recursively enumerable but not recursive. Unlike in classical Turing
computability, we show that neutrosophically computable sets allow us to neutrosophically compute
the halting set. The way to do this goes as follows. A single neutrosophic subset of natural numbers is
not enough to compute the halting set. Instead, we take the union of all neutrosophically computable
subsets of natural numbers by taking an infinite join which will code the information of the halting set.
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Let {Ai}i∈N be a countable sequence of subsets of N. The infinite join is defined by⊕
{Ai} = {〈i, x〉 : x ∈ Ai},

where 〈i, j〉 is mapped to a natural number using a uniform pairing function N×N→ N.

Theorem 2. Let AN be a neutrosophic subset of N. Then,
⊕{AN

i } ≡N K

Proof. We first show that
⊕{AN

i } ≥N K. The infinite join of all neutrosophically computable sets
computes the halting set. Let {ΨN

i }i∈N be an effective enumeration of neutrosophic Turing functionals.
Let {AN

i } be the corresponding neutrosophic sets, each of which is computable by ΨN
i . To compute

K, we let
⊕{AN

i } be the infinite join of all AN
i . To know whether Ψi(i) is defined or not, we see

if p∈(i) + p 6∈(i) > 0.5. If so, then Ψi(i) ↓. Otherwise it must be that pI(i) > 0.5. In this case,
Ψi(i) is undefined.

Next, we show
⊕{AN

i } ≤N K. To prove this, we assume that there exists an oracle for K. If i ∈ K,
then there exist indices x, y ∈ N such that 〈x, y〉 = i and it must be that p∈(i) + p 6∈(i) > 0.5 since Ψi(i)
is defined, but we may not know whether i ∈ Ai or i 6∈ Ai. If i 6∈ K, then the same argument holds to
prove this case as well. �

The use of the probability ratio 0.5 is for convenience. This notion will be generalized later on.
Classically speaking, given a subset of natural numbers, we can easily convert it to a neutrosophic
set preserving the membership information of the given classical set. Suppose that we are given a
set A ⊂ N and we want to convert it to a neutrosophic set with the same characteristic sequence.
The neutrosophic counterpart AN is defined, for each i ∈ N, as:

AN(i) =

{
〈i, 1− i, 0〉 if A(i) = 1
〈1− i, i, 0〉 otherwise.

We now introduce the tree representation of neutrosophic sets and give a method, using trees,
to approximate its classical counterpart. Suppose that we are given a neutrosophic subset of natural
numbers in the form:

AN = {〈p∈(i), p 6∈(i), pI(i)〉}i∈N.

We use the probability distribution to decide which element will be included in the classical
counterpart. If AN is a neutrosophic subset of natural numbers, the classical counterpart of AN is
defined as:

A(i) =

{
1 if p∈(i) > p 6∈(i)
0 if p∈(i) < p 6∈(i).

Now we introduce a simple conversion using trees. The aim is to approximate to the classical
counterpart of a given neutrosophic set AN in a computable fashion. For this we start with a full
ternary tree, as given in Figure 2, coding all possible combinations.

Figure 2. Approximating a neutrosophic set with a classical set through a ternary tree.
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The correct interpretation of this tree is as follows. Each branch represent a possible element of the
set we want to construct. For instance, if p∈(0) has the largest probability value among p∈(0), p 6∈(0),
pI(0), then we choose p∈(0) and define 0 to be an element of the classical set we construct. If either
p 6∈(0) or pI(0) is greater than p∈(0), then we know 0 is not an element of the constructed set. Since we
are defining a classical set, the only time when some i ∈ N is in the constructed set is if p∈(i) > p 6∈(i)
and p∈(i) > pI(i). Continuing along this line, if p 6∈(1), say, has the greatest probability value among
p∈(1), p 6∈(1), pI(1), then 1 will not be an element. So far, 0 is an element and 1 is not an element. So in
the tree we choose the leftmost branch and then next we choose the middle branch. Repeating this
procedure for every i ∈ N, we end up defining a computable infinite path on this ternary tree which
defines elements of the set being constructed. At each step, we simply take the maximum probability
value and select that attribute. The infinite path defines a computable approximation to the classical
counterpart of AN using the tree method.

Earlier we defined Turing machines with a neutrosophic oracle tape. Suppose that the characteristic
sequence of a neutrosophic set A can be considered as an oracle. Then, the e-th neutrosophic oracle
Turing machine can compute a function of the same characteristic. That is, not only can Turing machines
with neutrosophic oracles compute classical sets, but they can also compute neutrosophic sets. It is
important to note that we need to modify the definition of standard oracle Turing machines in order to
use neutrosophic sets. We add the symbol I to the alphabet of the oracle tape. The transition function δN

is then defined as:
δN : Q× Σ× Γ→ Q× Σ ∪ {I} × {L, R}2.

We say that the neutrosophic oracle Turing machine, say ΨN
e , computes a neutrosophic set B

if ΨN
e = B.
We now turn to the problem of enumerating members of a neutrosophic subset A of natural

numbers. Normally, general intuition suggests that we pick elements i ∈ N such that p∈(i) > 0.5. It is
important to note that, given A = {〈p∈(i), p 6∈(i), pI(i)〉}i∈N, not every i will be enumerated if we use
this probability criterion. However, changing the criterion depending on what aspect of the set we
want to look at and depending on the application, would also change the enumerated set. Therefore,
we would need a kind of criterion function to set a probability threshold regarding which elements of
the neutrosophic set are to be enumerated.

In practice, one often encounters a situation where the given information is not directly used
but rather analyzed under the criterion determined by a function. We examine how the computation
behaves when we impose a function on the neutrosophic oracle tape. That is, suppose that f : N→
{a, b, c} is a function, where a, b, c ∈ Q, which maps each cell of the neutrosophic oracle tape to a
probability value. For example, f could be defined as a constant non-membership function which
assigns every triplet in the cells to the non-membership 6∈ attribute. In this case, the probability of
any natural number not being an element of the considered oracle A is just 1. When these kinds of
functions are used in the oracle information of A, we may be able to compute some useful information.

The intuition in using criterion functions is to select, under a previously determined probability
threshold, a natural number from the probability distribution which is available in a given neutrosophic
subset of natural numbers. As an example, let us imagine a neutrosophic subset A of natural numbers.
Suppose for simplicity that A is finite and is defined as:

A = {〈0.1, 0.4, 0.5〉, 〈0.6, 0.3, 0.1〉, 〈0, 0.9, 0.1〉}.

First of all, we should read this as follows: A has neutrosophic information about the first three
natural numbers 0, 1, 2. In this example, p∈(0) = 0.1, p 6∈(0) = 0.4, pI(0) = 0.5. For the natural number
1, we have that p∈(1) = 0.6, p 6∈(1) = 0.3, pI(1) = 0.1. Finally, for the natural number 2, we have
p∈(2) = 0, p 6∈(2) = 0.9, pI(2) = 0.1. Now if we want to know which natural numbers are in A,
normally we would only pick the number 2 since p∈(2) > 0.5. Our criterion of enumeration in this
case is 0.5. In general, this probability value may not be always applicable. Moreover, this probability

Florentin Smarandache (ed.) Collected Papers, VI

327



threshold value may not be constant. That is, we may want to have a different probability threshold
for every natural number i. If our criterion were to select the ith element whose probability exceeds pi,
we would enumerate those numbers. For example, if the criterion is defined as

f (0) = 0, f (1) = 0.8, f (2) = 0.2,

then for the first triple, the probability threshold is 0, meaning that we enumerate the natural number
0 if p∈(0) > 0. Obviously 0 will be enumerated in this case since p∈(0) = 0.1 > 0. The probability
threshold for enumerating the number 1 is 0.8, so it will not be enumerated since p∈(1) = 0.6 < 0.8.
Finally, the probability threshold for enumerating the number 2 is 0.2. In this case, 2 will not be
enumerated since p∈(2) = 0 < 0.2. So the enumeration set for A under the criterion f will be {0}.

We are now ready to give the formal definition of a criterion function.

Definition 5. A criteria function is a mapping f : N → Q which, given a neutrosophic subset A of natural
numbers, determines a probability threshold for each triple 〈p∈(i), p 6∈(i), pI(i)〉 in A.

We first note a simple observation that if the criterion function is the constant function f (n) = 0
for any n ∈ N, the enumeration set will be equal to N itself. However, this does not mean that the
enumeration set will be empty if f (n) = 1. Given a neutrosophic set A, if p∈(i) = 1 for all i, then the
enumeration set for A will also be equal to N.

We shall next give the following theorem. First we remind the reader that we call a function f
strictly decreasing if f (i + 1) < f (i).

Theorem 3. Let f be a strictly decreasing criterion function for a neutrosophic set A such that p∈(i) < p∈(i + 1)
for every i ∈ N, and let EA be the enumeration set for A under the criterion f . Then, there exists some k ∈ N such
that |EA| < k.

Proof. Clearly, given A and that for each i, p∈(i) < p∈(i + 1), only those numbers i which satisfy
p∈(i) > f (i) will be enumerated. Since the probability distribution of membership degrees of elements
of A strictly increases and f is strictly decreasing, there will be some number j ∈ N such that
p∈(i) ≤ f (j). Moreover, for the same reason p∈(m) ≤ f (m) for every m > j. Therefore, the number of
elements enumerated is less than j. That is, |EA| < j. �

We denote the complement of a neutrosophic subset of natural numbers A by Ac and we define
it as follows. Let pA

∈ (i) denote the probability of i being an element of A and let pA
6∈(i) denote the

probability of i being not an element of A. In addition, pA
I (i) denotes the probability of the membership

of i being indeterminate. Then:
Ac(i) = 〈pA

6∈(i), pA
∈ (i), pA

I (i)〉.

So the complement of a neutrosophic set in consideration is formed by simply interchanging
the probabilities of membership and non-membership for all i ∈ N. Notice that the probability of
indeterminacy remains the same. Our next observation is as follows. Suppose that A and Ac are
neutrosophic subsets of natural numbers and f is a criterion function. If EA ⊂ EAc , then clearly
p 6∈(i) ≥ p∈(i) for all i ∈ N.

The probability distribution of members of a neutrosophic set can be also be given by a function
g(i, j) such that i ∈ N and j ∈ {1, 2, 3} where j is the index for denoting the membership probability
by 1, non-membership probability by 2, and indeterminacy probability by 3, respectively. For instance,
for i ∈ N, g(i, 2) denotes the probability of the non-membership of i generated by the function g.
Now g being a computable function means, for any i, j, there is an algorithm to find the value of g(i, j).
We give the following theorem.
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Theorem 4. Let A be a neutrosophic set. If g is a computable function, then there exists a computable criterion
function f such that EA is the enumeration set of A under the criterion function f and, moreover, EA = N.

Proof. Suppose that we are given A. If g is a computable function that generates the probability
distribution of members of A, then we can computably find g(i, 1) = k. We then simply let f (i) be
some m ≤ k. Since p∈(i) = k ≥ f (i), every i will be a member of EA. Since i is arbitrary, EA = N. �

We say that a function f majorizes a function g if f (x) > g(x) for all x. Suppose now that g is a
quickly growing function in the sense that it majorizes every computable function. That is, assume
that g(i, j) ≥ f (i) for every i, j ∈ N and every computable function f . Now in this case g is necessarily
non-computable. Otherwise we would be able to construct a function h where h(i) is chosen to be
some s > t such that g(i, j) is defined at step t. So if g is not computable, we cannot apply the previous
theorem on g. The only way to enumerate A is by using relative computability rather than giving a
plain computable procedure. Suppose that we are given such a function g. Let Ψi(A; i) denote the
ith Turing machine with oracle A and input i. We define g′ = {x : Ψx(g; x) ↓} to be the jump of g,
where x = 〈i, j〉 for a uniform pairing function N×N → N. The jump of g is basically the halting
set relativized to g. If we want to enumerate members of A, we can then use g′ as an oracle. Since,
by definition, g′ computes g, we enumerate members of A computably in g′.

We shall also note an observation regarding the relationship between A and Ac. Given a function
f , unless f (i) is strictly between pA

∈ (i) and pA
6∈(i), we have that EA = EAc . That is, the only case when

EA 6= EAc is if pA
∈ (i) < f (i) < pA

6∈(i) or pA
6∈(i) < f (i) < pA

∈ (i). Let us examine each case. In the first case,
since f (i) > pA

∈ (i), i will not be enumerated into EA, but since pAc
∈ (i) > f (i), it will be enumerated

into EAc . The second case is just the opposite. That is, i will be enumerated into EA but not into EAc .
What about the cases where i is enumerated into both enumeration sets? It depends on how we

allow our criteria function to operate over probability distributions. If we only want to enumerate
those elements i such that p∈(i) ≥ f (i), then we may have equal probability distribution among
membership and non-membership attributes. We may have that p∈(i) = p 6∈(i) = 0.5 and pI(i) = 0.
In this case, we get to enumerate i both into EA and EAc . However, if we allow the criterion function
to operate in a way that i is enumerated if and only if p∈(i) > f (i), then it must be the case that
p 6∈(i) < f (i) so i will only be enumerated into EA.

The use of the criterion function may vary depending on the application and which aspect of the
given neutrosophic set we want to analyze.

4. Conclusions

We introduced the neutrosophic counterpart of oracle Turing machines with neutrosophic values
allowed in the oracle tape. For this we presented a new type of oracle tape where each cell contains a
triplet of three probability values, namely for the membership, non-membership, and indeterminacy.
The notion of neutrosophic oracle Turing machine is interesting in its own right since oracle information
is used in relative computability of sets and enables us to investigate the computability theoretic
properties of sets relative to one another. In this paper, we also introduced a method to enumerate
the elements of a neutrosophic subset of natural numbers. For this we defined a criterion function to
choose elements which satisfy a certain probability degree. This defines a method that can be used
in many applications of neutrosophic sets, particularly in decision making problems, solution space
searching, and many more. We proved some results about the relationship between the enumeration
sets of a given neutrosophic subset of natural numbers and the criterion function. A future work of
this study is to investigate the properties of equivalence classes induced by the operator ≡N . We may
call this equivalence class, neutrosophic degree of computability. It would be interesting to study
the relationship between neutrosophic degrees of computability and classical Turing degrees. The
results also arise further developments in achieving of new generation of computing machines such as
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Abstract
In this paper, we point out a major issue of stock market regarding trending scenario of trades where data exactness, accu-
racy of expressing data and uncertainty of values (closing point of the day) are lacked. We use neutrosophic soft sets (NSS) 
consisting of three factors (True, Uncertainty and False) to deal with exact state of data in several directions. A new approach 
based on NSS is proposed for stock value prediction based on real data from last 7 years. It calculates the stock price based 
on the factors like “open”, “high”, “low” and “adjacent close”. The highest score value retrieved from the score function 
is used to determine which opening price and high price decide the closing price from the above mentioned four factors.

Keywords Neutrosophic soft sets · Soft sets · Stock trending · Stock parameters · Open · Close · High · Low · Adjacent 
close

1 Introduction

Many fields may not be effectively demonstrated by tradi-
tional expression since vulnerability is excessively muddled. 
They can be demonstrated by various distinctive methodolo-
gies including the likelihood theory, fuzzy set (FS) (Zadeh 
1965), rough set (Pawlak 1982), neutrosophic set (NS) 
(Smarandache 2005) and soft set (Molodtsov 1999). NSs 
can deal with uncertain and conflicting data, which exist, 
regularly in conviction frameworks (Wang et al. 2005). In 

this manner, Maji proposed neutrosophic delicate set with 
operations, which is free of the challenges specified (Maji 
2013). He additionally, connected to basic leadership issues 
(Maji 2012). After Maji, the investigations on the neutro-
sophic delicate set theory have been considered progres-
sively (Broumi 2013; Broumi and Smarandache 2013). From 
scholastic perspective, the NS should be determined on the 
grounds that are connected to genuine applications (Deli 
2017). In NS, indeterminacy is evaluated expressly and other 
membership degrees are free. This presumption is essential 
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in numerous applications, for example, data combination 
in which the information is consolidated from various sen-
sors. As of late, NSs had for the most part been connected 
to picture preparing (Cheng and Guo 2008; Guo and Cheng 
2009) (Table 1).

Along these lines, Wang et al. (2010) proposed a single-
valued NS (SVNS) and set-theoretic operations and prop-
erties. Ye (2013a) proposed similarity measures between 
interim NSs and connected them to multi-criteria decision-
making issues. On one hand, a SVNS is an example of a 
NS, which gives us an extra probability to deal with vulner-
ability, inadequacy and conflicting data. It would be more 
appropriate to apply uncertain and conflicting data measures 
in decision-making. In any case, the connector in the FS is 
portrayed concerning T, i.e. participation just; hereafter the 
information of indeterminacy and non-enrollment is lost. 
While in the SVNS, they can be characterized regarding any 
of them. Thus, the idea of SVNSs is broader and overcomes 
the previously mentioned issues. Then, SVNSs can be uti-
lized for applications to handle dubious, imprecision and 
conflicting data. Because of its capacity, SVNS is reasonable 
for catching loose, indeterminate, and conflicting data in the 
multi-criteria decision-making.

Broumi and Smarandache (2013) presented correla-
tion coefficients of interval valued NS (INS). Ye (2013b) 
exhibited the correlation coefficient of single-valued NSs 
(SVNSs). Ye (2014a, b) presented the idea of streamlined 
NSs (SNSs), which are a subclass of NSs, and character-
ized operational laws of SNSs. The authors proposed some 
accumulation administrators, including a rearranged Neu-
trosophic weighted number juggling normal administrator 
and an improved neutrosophic weighted geometric normal 
administrator. Peng et  al. (2014, 2015) showed another 
outranking approach for multi-criteria decision-making 
(MCDM) to an improved neutrosophic condition, where 
reality enrollment degree, indeterminacy-participation 
degree and misrepresentation participation degree for 
every component are singleton sub-sets in Zadeh (1965). 
Ma et al. (2017) proposed cosine similarity measures of 
SNSs whereas Deli and Şubaş (2017) presented a medici-
nal treatment determination technique in view of an inter-
val neutrosophic phonetic condition, in which criteria and 
decision-producers are doled out various levels of need. 
Ye (2015) introduced a philosophy for tackling multi-trait 

decision-making issues with SVN-numbers. Pramanik et al. 
(2017) proposed new vector similitude measures of single 
valued and interval NSs by hybridizing the ideas of Dice 
and cosine closeness measures. Mostly often, we see that 
data lack exactness, lack accuracy of expression. It is indeed 
necessary to use NS and its extension for dealing with these 
factors (Thanh et al. 2018a, b; Ali et al. 2017, 2018a, b, c; 
Nguyen et al. 2018; Broumi et al. 2017a, b; Dey et al. 2018; 
Thao et al. 2018; Thong et al. 2018; Son et al. 2017; Son and 
Thong 2017; Son 2015, 2016, 2017; Thong and Son 2015, 
2016a, b, c; Angelov and Sotirov 2015).

This paper proposes a model for stock trend prediction 
based on neutrosophic soft set (NSS). Sections 2 and 3 pre-
sent preliminary and the proposal. Sections 4 and 5 dive 
discussion, conclusions and further research respectively.

2  Background

Definition 1 (Molodtsov 1999) A soft set is defined as 
below,

where, U and S are the universal and soft sets having param-
eters like R = redundancy contradiction, Inc = inconsist-
ency, In = incompleteness, Un = uncertainty, V = vagueness, 
A = ambiguity, and I = imprecision undefined. Here fis a 
mapping function to S.

Definition 2 (Molodtsov 1999) Let Ƭ be the fuzzy soft set 
and ℸ be the Cross so that the Fusion and Cross can be 
defined as

(Ʈ∪ Ƭ)(x) = Ʈ(x)∨ Ƭ(x)
(Ʈ∩ Ƭ)(x) = Ʈ(x)∧ Ƭ(x)
Ƭ ⊆Ʈ
if Ƭ(x) ≤ Ʈ(x),x∈U
where Ƭ denotes the family of fuzzy soft sets Ƭ (upper 

case), and ℸ is the Cross to define the Fusion.

Definition 3 (Molodtsov 1999) If (f, X) and (f′, Y) ∈ U then 
(f, X) is fuzzy soft subset of (f′, Y) or (f, X) ⊆ (f′, Y) if

1. X ⊆ Y
2. f(a) ≤ f(a), a ∈ A.

f ∶ S → power_of (U)

Table 1  Neutrosophic soft set (f, A) representing the stock-trending

ST High price Low price Adj close price

Para1 (35.57571, 35.07286, 0, 35.56) (37.17857, 36.53286, 37.03143) (38.10714, 36.6, 38.06714)
Para2 (35.87714, 34.93572, 35.34) (37.61286, 36.67857, 36.95429) (36.87714, 35.53286, 36.57)
Para3 (35.41286, 34.53857, 35.29572) (36.89286, 28.46429, 35.17857) (35.22429, 32.17286, 33.69429)
Para4 (35.60714, 34.70857, 34.94143) (36.37857, 35.50428, 36.28429) (37.12714, 35.78571, 36.64571)
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where (f, X) is fuzzy soft set. The difference between (f, A) 
and (f, X) is that (f, A) represents Universal Neutrosophic 
Set whereas (f, X) represents the fuzzy soft set.
All neutrosophic sets of X are denoted fN (X).

Definition 4 (Wang et al. 2010) NSS X is contained in NSS 
Y if

1. X⊆Y
2. TX(x) ≤ TY (x), IX(x) ≤ IY (x), FX(x) ≥ FY (x) for all x
∈ X.

Definition 5 (Wang et al. 2010) The complement of NSS is 
a NSS (fc, ¬ X):

1. fc: ¬ A → fN (X),
2. fc(a) = < x, Tf c (x) = ff (x), If c (x) = 1 − If (x), ff c

(x) = Tf (x)>, a ∈ A and x ∈ X.

Definition 6 (Wang et al. 2010) Assume Z = < x, TX(x), 
IX(x), f′′X(x) > and A ≤ x, TA (x), IA (x), f′′A (x) > is NSS. We 
have

X∨A ≤ x, max(TX(x),  TA (x)), max(IX(x),  IA (x)),
min(f′′X(x), f′′A (x))>

X∧A ≤ x, min(TX(x),  TA (x)), min(IX(x),  IA (x)), 
max(f′′X(x), f′′A (x))>

Definition 7 (Wang et al. 2010) A set Z - ¬(f, X) is said to 
be non-empty over U if Tf (a) = 0, If (a) : 0, ff (a) : 1, a ∈ A.

Definition 8 (Wang et al. 2010) Fuzzy set (f, A) is a Univer-
sal Neutrosophic Set over U if  Tf (a) = 1,  If (a) : 1,  Ff (a) : 0 
for all a ∈ A.where (f, A) represents a fuzzy set over the 
universal neutrosophic set.

3  Proposed model

We now derive Fusion, Cross and Structure as below:

(a) Fusion of NSSs (f, A) and (f′′, B) is (H, C) = (f, A) ∪ (f′′, 
B) over U with C = A ∪ B and H(C) = f(C) if c ∈ A\B.

(b) Cross of NSSs (f, A) and (g, B) is (H, C) = (f, A) ∩ (g, 
B) with C = A∩B, H(c) = F(c)∧G(c), c ∈ C.

(c) Relation is computed by the following steps:

1. Let L ⊆ A × B:  Le(a, b) = f(a) ∧f′′(b), a ∈ A, b ∈ B,
 Le: K → FN (U).

2. Lf1 in relation with (f, A) to (f′′, B) and  Lf2 in relation
with (f, B) to (f′′, C). Then, the composition of rela-
tions  Lf1 and  Lf2 is defined by  (Lf1◦  Lf2) (a, c) = Lf1
(a, b) ∧  Lf2 (b, c), a ∈ A, b ∈ B, c ∈ C.

3. The fusion and cross of  Lf1 and  Lf2 of (f, A) and (f′′,
B) over U are:

fusion → Lf1 ∪  Lf2 (a, b) = MAX{Lf1 (a, b),  Lf2 (a, b)},
cross → Lf1 ∩  Lf2 (a, b) = MIN {Lf1 (a, b),  Lf2 (a, b)}.

4. The MAX→MIN→MAX composition for set is
expressed with the relation L ◦ A.

5. The associative (AL), non-deterministic (NL) and non-
associative (NAL) functions can be derived as below:

AL◦A(y) = ∪x[AL(x) ∧ AA(x, y)],
NL◦A(y) = ∪x[NL(x) ∧ NA(x, y)],
NAL◦A(y) = ∧x[NAL(x) ∨ NALA(x, y)].

6. (f, A) conclusively can be defined as: V (F,
A) = TA +  (1 − UA)—FA where TA → True value,
UA → Uncertain value and FA → denotes the False 
value. The TA, UA and FA are the values with respect 
to (F, A).

7. Score function → S1 = V (F, A) − V (G, B). The score
function for (L,A) → TAi – Uai * FAi.

Now, trade trends are identified using NSSs with vari-
ables below: Date, Open—opening price of particular date, 
High—highest price at particular date, Low—lowest price 
at particular date, Close—closing price at particular date, 
Adj Close—adj. close price at particular date, Volume—vol-
ume of stock traded.NSS is applied for identification, detec-
tion and determination of which stock is getting affected 
from various parameters. The effect E relates to a closing 
price C.
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 (ir1), the value of the US dollar  (USD1) and Economic/
Political shocks  (sh1). The following demonstrates the pro-
cessing of the algorithm and achieved results.

1. Parameters of stock are sent to association Q.
2. Trading relating to open and closing is given in

Table 2.
3. Structure T of “open and close” and “high and low” is

found in Step 5 (Table 3).
4. Supplement of Table 1 is shown in Table 4.
5. Supplement of Table 2 is in Table 5.
6. Estimation of Tables 4 and 5 is in Table 6.
7. Outputs of Tables 3 and 6 are given in Tables 7 and 8

independently.
8. Score associated for the qualities in Tables 7 and 8 is

found in Table 9.
9. Score for Table 3 is in Table 10.

 10. Find highest score for stock closing affected by differ-
ent opening and closing.

From all the columns, we extract Date and Open from 
the table to make a new dataset.

Table 2  Obtaining the relation L 

Factors Open High Low Close Adj close

Para1 12.327143 12.368571 11.7 11.971429 10.770167
Para2 12.007143 12.278571 11.97 12.237143 11.00922
Para3 12.252857 12.314285 12.05 12.15 10.930819
Para4 12.28 12.361428 12.18 12.21 10.984798

Table 3  Performing the transformation operation using relation T 

Factors Open High Low Close

Para1 12.444285 12.642858 12.29 12.321428
Para2 12.444285 12.481428 12.141429 12.197143
Para3 12.328571 12.378572 12.218572 12.277143
Para4 12.347143 12.355714 12.178572 12.221429

Table 4  The complement of Q ◦ R 

ST High price Low price Adj close price

Para1 (37.02143, 35.79286, 35.84857, 32.25138) (36.25714, 35.09286, 35.61857, 32.04446) (35.98571, 34.64143, 34.74286, 31.25662)
Para2 (35.85429, 34.6, 35.78714, 32.19612) (36.26571, 35.33857, 36.21571, 32.58168) (37.02143, 36.28714, 36.32571, 32.68065)
Para3 (37.12143, 36.5, 37.09857, 33.37596) (38.25, 37.23286, 38.17857, 34.34757) (38.98571, 38.5, 38.83857, 34.94136)
Para4 (39.28571, 38.77428, 39.15286, 35.22411) (39.85857, 38.39, 38.59572, 34.72287) (39.42429, 38.78571, 39.12143, 35.19582)

NSS Algorithm for determining the decision for closing of stock trending
Input: variables
Output: Actual and Predicated Values
Algorithm:

1. Split the data into train and test NSS data
2. The Date is the features and the Open price is our target values which need to be

predicted
X(features) = [Year, Month, Day], y(target) = [Open]

3. Feature scaling is done on data for faster convergence rate of algorithms and to
maintain standardization in data

4. Function to plot graph is written which takes dataset as parameters and plots the
graph

5. Train the model using Regression
6. The Train data are fitted into the algorithm
7. The model’s accuracy is then computed by giving Test data as input and

evaluating the predicted result against the known value from Test data
8. The graph is plotted between Actual value vs. Predicted value

4  Result and discussion

There are sets of 7 years which include the various param-
eters to predict the next day opening value (https ://in.finan 
ce.yahoo .com). The parameters achieved here are High 
(highest price at particular date), Low (lowest price at par-
ticular date) and Adj Close (adj. close price at particular 
date) Let the possible reasons relating to these ups and 
downs be Gold Price  (g1), Petrol Price  (pp1), Interest Rates 

Florentin Smarandache (ed.) Collected Papers, VI

334

https://in.finance.yahoo.com
https://in.finance.yahoo.com


After decomposition of date

Year (YYYY) 
integer

Month (MM) 
integer

Day (DD) 
integer

Open (float)

Now, let us take Para  =  {para1, para2, para3, 
para4} where para1 = g1, para2 = pp1, para3 = ir1, and 
para4 = USD1 as the universal set where  g1,  pp1,  ir1, 
 USD1  sh1 are Gold Price  (g1), Petrol Price  (pp1), Interest 
Rates  (ir1), the value of the US dollar  (USD1) and Eco-
nomic/Political shocks  (sh1) as explained in the previous 
statements.

Next, consider the set K = {k1, k2, k3, k4} as univer-
sal set where k1, k2, k3, k4 represent consequence/results 
like open, high, low and adj close respectively and the 
set F = {f1, f2, f3, f4} where f1, f2, f3 and f4 represent the 
faster convergence rate, actual value, trending value and 
predicted value respectively.

We construct stock-trending relation and trending-close 
relation as follows:

F (para1) = {k1/(0.7, 0.4, 0.1), k2/(0.8, 0.6, 0.7), k3/(0.4, 
0.8, 0.5)},

F (para2) = {k1/(0.6, 0.5, 0.3), k2/(0.6, 0.5, 0.2), k3/(0.7, 
0.9, 0.0)},

F (para3) = {k1/(0.8, 0.4, 0.2), k2/(0.5, 0.1, 0.5), k3/(1.0, 
0.5, 1.0)},

F (para4) = {k1/(0.4, 0.6, 0.3), k2/(0.5, 0.4, 0.8), k3/(0.5, 
0.6, 0.9)}.

(f, A) results into a collection of generalized stock-trend-
ing in the stock market. It represents stock-trending relation 
given by,

Next,  G(k1) = {f1/(37.59,36.95714,37.44143), 
f 2 / ( 3 7 . 8 5 7 1 4 , 3 6 . 6 2 8 5 7 , 3 6 . 9 0 8 5 7 ) ,  f 3 /
(36.64,35.64286,36.26), f4/(34.92857,33.05,34.61714)}, 
G(k2)   =   { f1 / (36 .59714 ,35 .38714 ,36 .31714) , 
f 2 / ( 3 6 . 9 3 5 7 2 , 3 5 . 7 5 1 4 3 , 3 6 . 0 5 1 4 3 ) ,  f 3 /
( 3 4 . 8 3 5 7 1 , 3 3 . 7 4 4 2 9 , 3 3 . 9 6 5 7 1 ) ,  f 4 /
(36.13143,34.97857,35.47714)}, G(k4) = {f1/(37.82857,37
.19,37.70714,33.92345), f2/(37.93572,37.20153,37.58857,3
3.81678), f3/(37.41429,36.37571,36.56572,32.89656)}. We 
realize {G(f1), G(f2), G(f3)} of all S where G: S → FN (D). 
Thus, (G, S) is represented by a relation matrix (stock_high-
stock_lowmatrix) R given in Table 2.

The trading knowledge relating the parameters with the 
set of open and closing values under consideration is in 
Table 2. We perform transformation operation Q ◦ R to get 
the stocks’ high and low value relation in Table 3.

Likewise, Q ◦ R is calculated to give the stocks’ high 
and low value relation T. These set of values are now com-
plimented in Tables 4 and 5. The composition values are 
calculated in Table 6.

Table 6 uses the composition of relations  Lf1 and  Lf2 
which are defined by,

(Lf1 ◦ Lf2)(a, c) = Lf1(a, b) ∧ Lf2(b, c), a ∈ A, b ∈ B, c ∈ C.
Value functions for Tables 3 and 6 are calculated in 

Tables 7 and 8.

Table 5  The complement of R′

R′ High Low Close Adj close

Para1 (39.23714, 38.27143, 38.71) (39.02857, 38.3, 38.42857) (38.61, 37.97286, 38.1) (12.184286, 12.042857, 12.1, 
10.885842)

Para2 (39.23714, 38.27143, 38.71) (39.02857, 38.3, 38.42857) (38.61, 37.97286, 38.1) (12.184286, 12.042857, 12.1, 
10.885842)

Para3 (12.234285, 12.081429, 
12.185715, 10.962953)

(12.231428, 12.111428, 
12.172857, 10.951384)

(12.201428, 12.094286, 
12.118571, 10.902546)

(12.308572, 12.022857, 
12.271428, 11.040065)

Para4 (12.784286, 12.28, 12.742857, 
11.46419)

(12.972857, 12.647142, 
12.787143, 11.504031)

(12.905714, 12.692857, 
12.724286, 11.447481)

(12.857142, 12.515715, 
12.644286, 11.375507)

Table 6  Composition values of Tables 4 and 5

R′ High Low Close Adj close

Para1 (12.44, 11.915714, 11.99, 
10.786877)

(12.228572, 11.857142, 12.087143, 
10.874274)

(12.615714, 11.964286, 12.437143, 
11.189151)

(12.505714, 12.172857, 
12.201428, 10.977087)

Para2 (12.664286, 12.251429, 12.331429, 
11.094046)

(12.615714, 12.485714, 12.598572, 
11.334381)

(12.71, 12.492857, 12.531428, 
11.273974)

(12.674286, 12.494286, 
12.571428, 11.309962)

Para3 (12.692857, 12.485714, 12.567142, 
11.306105)

(12.855714, 12.57, 12.838572, 
11.550298)

(12.201428, 12.094286, 12.118571, 
10.902546)

(12.308572, 12.022857, 
12.271428, 11.040065)

Para4 (12.784286, 12.28, 12.742857, 
11.46419)

(12.972857, 12.647142, 12.787143, 
11.504031)

(12.905714, 12.692857, 12.724286, 
11.447481)

(12.857142, 12.515715, 
12.644286, 11.375507)
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Score function (L,A) → TAi – Uai * FAi for Table 3 is in 
Table 10. As explained earlier, the score function comprises 
of values of high, low, close and Adjclose. The closest score 
function is depicted below.

It is clear from Tables 9 and 10 that stock price at para1 
and para4 are absolute alteration due to k1, k2, k3, k4 repre-
sent consequence/results like open, high, low and adj close 
respectively.

From Table 3, Q ◦ R is performed to give the stocks’ high 
and low value relation. These set of values are now compli-
mented in Tables 4 and 5.

5  Conclusion

This paper applied neutrosophic soft sets to predict the stock 
price. Based upon the factors like open, high, low and adj 
close, and the score value, we have developed a technique 

to determine which opening price and high price decide the 
closing price from what factors. Since there is no competing 
interest exists in the field of applied NSS, there are various 
scopes using fuzzy theory to determine the predictability of 
stock parameterized values at the specific time. In our work, 
we have focused on the value for the opening and closing 
points. The work can be extended to trace the decision at 
any point of time. Yet, it indeed needs huge datasets for 
testing the model rigorously. We keep this as the reference 
for the future.
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Abstract Groups are the most fundamental and rich

algebraic structure with respect to some binary operation in

the study of algebra. In this paper, for the first time, we

introduced the notion of neutrosophic triplet which is a

group of three elements that satisfy certain properties with

some binary operation. These neutrosophic triplets highly

depends on the defined binary operation. Further, in this

paper, we utilized these neutrosophic triplets to introduce

the innovative notion of neutrosophic triplet group which is

completely different from the classical group in the struc-

tural properties. A big advantage of neutrosophic triplet is

that it gives a new group (neutrosophic triplet group)

structure to those algebraic structures which are not group

with respect to some binary operation in the classical group

theory. In neutrosophic triplet group, we apply the funda-

mental law of Neutrosophy that for an idea A, we have

neutral of A denoted as neut(a) and anti of A denoted as

anti(A) to capture this beautiful picture of neutrosophic

triplet group in algebraic structures. We also studied some

interesting properties of this newly born structure. We

further defined neutro-homomorphisms for neutrosophic

triplet groups. A neutron-homomorphism is the general-

ization of the classical homomorphism with two extra

conditions. As a further generalization, we gave rise to a

new field or research called Neutrosophic Triplet

Structures (such as neutrosophic triplet ring, neutrosophic

triplet field, neutrosophic triplet vector space, etc.). In the

end, we gave main distinctions and comparison of neu-

trosophic triplet group with the classical Molaei’s gener-

alized group as well as the possible application areas of the

neutrosophic triplet groups.

Keywords Groups � Homomorphism � Neutrosophic
triplet � Neutrosophic triplet group � Neutro-
homomorphism

1 Introduction

Neutrosophy is a new branch of philosophy which studies

the nature, origin and scope of neutralities as well as their

interaction with ideational spectra. Florentin Smarandache

[8] in 1995, first introduced the concept of neutrosophic

logic and neutrosophic set where each proposition in neu-

trosophic logic is approximated to have the percentage of

truth in a subset T, the percentage of indeterminacy in a

subset I, and the percentage of falsity in a subset F so that

this neutrosophic logic is called an extension of fuzzy logic

especially to intuitionistic fuzzy logic. In fact neutrosophic

set is the generalization of classical sets [9], fuzzy set [12],

intuitionistic fuzzy set [1, 9] and interval valued fuzzy set

[9], etc. This mathematical tool is used to handle problems

consisting uncertainty, imprecision, indeterminacy, incon-

sistency, incompleteness and falsity. By utilizing the idea

of neutrosophic theory, Vasantha Kandasamy and Florentin

Smarandache studied neutrosophic algebraic structures in

[4–6] by inserting an indeterminate element ‘‘I’’ in the

algebraic structure and then combine ‘‘I’’ with each ele-

ment of the structure with respect to corresponding binary

operation *. They call it neutrosophic element, and the

Neutrosophic triplet group 
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generated algebraic structure is then termed as neutro-

sophic algebraic structure. They further study several

neutrosophic algebraic structures such as neutrosophic

fields, neutrosophic vector spaces, neutrosophic groups,

neutrosophic bigroups, neutrosophic N-groups, neutro-

sophic semigroups, neutrosophic bisemigroups, neutro-

sophic N-semigroup, neutrosophic loops, neutrosophic

biloops, neutrosophic N-loop, neutrosophic groupoids and

neutrosophic bigroupoids and so on.

Groups [2, 3, 11] are so much important in algebraic

structures as they play the role of back bone in almost all

algebraic structures theory. Groups are thought as old

algebra due to its rich structure than any other notion. In

many algebraic structures, groups provide concrete foun-

dation such as, rings, fields, vector spaces, etc. Groups are

also important in many other areas like physics, chemistry,

combinatorics, biology, etc., to study the symmetries and

other behavior among their elements. The most important

aspect of a group is group action. There are many types of

groups such as permutation groups, matrix groups, trans-

formation groups, lie groups, etc., which are highly used as

a practical perspective in our daily life. Generalized groups

[7] are important in this aspect.

In this paper, for the first time, we introduced the idea of

neutrosophic triplet. The newly born neutrosophic triplets

are highly dependable on the proposed binary operation.

These neutrosophic triplets have been discussed by

Smarandache and Ali in Physics [10]. Moreover, we uti-

lized these neutrosophic triplets to introduce neutrosophic

triplet group which is different from the classical group

both in structural and foundational properties from all

aspects. Furthermore, we gave some interesting and fun-

damental properties and notions with illustrative examples.

We also introduced a new type of homomorphism called as

neutro-homomorphism which is in fact a generalization of

the classical homomorphism under some conditions. We

also study neutro-homomorphism for neutrosophic triplet

groups. The rest of the paper is organized as follows. After

the literature review in Sect. 1, we introduced neutrosophic

triplets in Sect. 2. Section 3 is dedicated to the introduction

of neutrosophic triplet groups with some of its interesting

properties. In Sect. 4, we developed neutron-homomor-

phism, and in Sect. 5, we gave distinction and comparison

of neutrosophic triplet group with the classical Molaei’s

generalized group. We also draw a brief sketch of the

possible applications of neutrosophic triplet group in other

research areas. Conclusion is given in Sect. 6.

2 Neutrosophic triplet

Definition 2.1 Let N be a set together with a binary

operation *. Then, N is called a neutrosophic triplet set if

for any a 2 N, there exist a neutral of ‘‘a’’ called neut(a),

different from the classical algebraic unitary element, and

an opposite of ‘‘a’’ called anti(a), with neut(a) and

anti(a) belonging to N, such that:

a � neut að Þ ¼ neut að Þ � a ¼ a;

and

a � anti að Þ ¼ anti að Þ � a ¼ neut að Þ:

The elements a, neut(a) and anti(a) are collectively called

as neutrosophic triplet, and we denote it by (a, neut(a),

anti(a)). By neut(a), we mean neutral of a and apparently,

a is just the first coordinate of a neutrosophic triplet and not

a neutrosophic triplet. For the same element ‘‘a’’ in N, there

may be more neutrals to it neut(a) and more opposites of it

anti(a).

Definition 2.2 The element b in (N, *) is the second

component, denoted as neut(�), of a neutrosophic triplet, if

there exist other elements a and c in N such that

a * b = b * a = a and a * c = c * a = b. The formed

neutrosophic triplet is (a, b, c).

Definition 2.3 The element c in (N, *) is the third com-

ponent, denoted as anti(�), of a neutrosophic triplet, if there
exist other elements a and b in N such that

a * b = b * a = a and a * c = c * a = b. The formed

neutrosophic triplet is (a, b, c).

Example 2.4 Consider Z6 under multiplication modulo 6,

where

Z6 ¼ 0; 1; 2; 3; 4; 5f g

Then, 2 gives rise to a neutrosophic triplet because

neut(2) = 4, as 2� 4 ¼ 8 � 2ðmod6Þ. Also anti(2) = 2

because 2 9 2 = 4. Thus, (2, 4, 2) is a neutrosophic triplet.

Similarly 4 gives rise to a neutrosophic triplet because

neut(4) = anti(4) = 4. So (4, 4, 4) is a neutrosophic triplet.

3 does not give rise to a neutrosophic triplet as neut(3) = 5,

but anti(3) does not exist in Z6, and last but not the least 0

gives rise to a trivial neutrosophic triplet as neu-

t(0) = anti(0) = 0. The trivial neutrosophic triplet is

denoted by (0, 0, 0).

Theorem 2.5 If (a, neut(a), anti(a)) form a neutrosophic

triplet, then

1. (anti(a), neut(a), a) also form a neutrosophic triplet,

and similarly

2. (neut(a), neut(a), neut(a)) form a neutrosophic triplet.

Proof We prove both 1 and 2.

1. Of course, anti(a) * a = neut(a).

We need to prove that: anti(a) * neut(a) = anti(a). Mul-

tiply by a to the left, and we get:

Florentin Smarandache (ed.) Collected Papers, VI

339



a � antiðaÞ � neutðaÞ ¼ a � antiðaÞ

or

a � antiðaÞ½ � � neutðaÞ ¼ neutðaÞ

or

neutðaÞ � neutðaÞ ¼ neutðaÞ:

Again multiply by a to the left and we get:

a � neutðaÞ � neutðaÞ ¼ a � neutðaÞ

or

a � neutðaÞ½ � � neutðaÞ ¼ a

or

a * neut(a) = a.

2. To show that (neut(a), neut(a), neut(a)) is a neutro-

sophic triplet, it results from the fact that

neut(a) * neut(a) = neut(a).

3 Neutrosophic triplet group

Definition 3.1 Let (N, *) be a neutrosophic triplet set.

Then, N is called a neutrosophic triplet group, if the fol-

lowing conditions are satisfied.

(1) If (N, *) is well-defined, i.e. for any a, b 2 N, one

has a * b 2 N.

(2) If (N, *) is associative, i.e. (a * b) * c =

a * (b * c) for all a, b, c 2 N.

The neutrosophic triplet group, in general, is not a group

in the classical algebraic way.

We consider, as the neutrosophic neutrals replacing the

classical unitary element, and the neutrosophic opposites as

replacing the classical inverse elements.

Example 3.2 Consider (Z10, #), where # is defined as

a#b ¼ 3ab mod10ð Þ. Then, (Z10, #) is a neutrosophic triplet
group under the binary operation # with the following

table (Tables 1, 2).

It is also associative, i.e.

a#bð Þ#c ¼ a# b#cð Þ

Now take L. H. S to prove the R. H. S, so

a#bð Þ#c ¼ 3abð Þ#c;

¼ 3 3abð Þc ¼ 9abc;

¼ 3a 3bcð Þ ¼ 3a b#cð Þ;
¼ a# b#cð Þ:

For each a 2 Z10, we have neut(a) in Z10. That is

neut(0) = 0, neut(1) = 7, neut(2) = 2, neut(3) = 7,

neut(4) = 2, and so on.

Similarly, for each a 2 Z10, we have anti(a) in Z10. That

is anti(0) = 0, anti(1) = 9, anti(2) = 2, anti(3) = 3,

anti(4) = 1, and so on. Thus, (Z10, #) is a neutrosophic

triplet group with respect to #.

Definition 3.3 Let (N, *) be a neutrosophic triplet group.

Then, N is called a commutative neutrosophic triplet group

if for all a, b 2 N, we have a * b = b * a.

Example 3.4 Consider (Z10, *), where * is defined as a �
b ¼ 5aþ b mod10ð Þ for all a, b 2 Z10. Then, (Z10, *) is the

neutrosophic triplet group which is given by the following

Table 2: Then, Z10; �ð Þ is a non-commutative neutrosophic

triplet group.

Theorem 3.5 Every idempotent element gives rise to a

neutrosophic triplet.

Proof Let a be an idempotent element. Then, by defini-

tion a2 = a. Since a2 = a, which clearly implies that

neut(a) = a and anti(a) = a. Hence a gives rise to a neu-

trosophic triplet

a; a; að Þ:

Theorem 3.6 There are no neutrosophic triplets in Zn
with respect to multiplication if n is a prime.

Table 1 Cayley table of neutrosophic triplet group (Z10, #)

# 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 3 6 9 2 5 8 1 4 7

2 0 6 2 8 4 0 6 2 8 4

3 0 9 8 7 6 5 4 3 2 1

4 0 2 4 6 8 0 2 4 6 8

5 0 5 0 5 0 5 0 5 0 5

6 0 8 6 4 2 0 8 6 4 2

7 0 1 2 3 4 5 6 7 8 9

8 0 4 8 2 6 0 4 8 2 6

9 0 7 4 1 8 5 2 9 6 3

Table 2 Cayley table of a non-commutative neutrosophic triplet

group (Z10, *)

* 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 5 6 7 8 9 0 1 2 3 4

2 0 1 2 3 4 5 6 7 8 9

3 5 6 7 8 9 0 1 2 3 4

4 0 1 2 3 4 5 6 7 8 9

5 5 6 7 8 9 0 1 2 3 4

6 0 1 2 3 4 5 6 7 8 9

7 5 6 7 8 9 0 1 2 3 4

8 0 1 2 3 4 5 6 7 8 9

9 5 6 7 8 9 0 1 2 3 4
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Proof It is obvious.

Remark 3.7 Let (N, *) be a neutrosophic triplet group

under * and let a 2 N. Then, neut(a) is not unique in N, and

also neut(a) depends on the element a and the operation *.

To prove the above remark, let’s take a look to the fol-

lowing example.

Example 3.8 Let N = {0, 4, 8, 9} be a neutrosophic tri-

plet group under multiplicationmodulo 12 in (Z12, 9). Then

neut(4) = 4, neut(8) = 4 and neut(9) = 9. This shows

thatneut(a) is not unique.

Remark 3.9 Let (N, *) be a neutrosophic triplet group

with respect to * and let a 2 N. Then, anti(a) is not unique

in N and also anti(a) depends on the element a and the

operation *. To prove the above remark, let’s take a look to

the following example.

Example 3.10 Let N be a neutrosophic triplet group in

above example. Then, anti(4) = 4, anti(8) = 8 and

anti(9) = 9.

Proposition 3.11 Let (N, *) be a neutrosophic triplet

group with respect to * and let

a; b; c 2 N:

then

(1) a * b = a * c if and only if neut(a) * b = neut(a) * c.

(2) b * a = c * a if and only if b * neut(a) = c * neut(a).

Proof

1. Suppose that a * b = a * c. Since N is a neutrosophic

triplet group, so anti(a) 2 N. Multiply anti(a) to the

left side with a * b = a * c.

antiðaÞ � a � b ¼ antiðaÞ � a � c
antiðaÞ � a½ � � b ¼ antiðaÞ � a½ � � c
neutðaÞ � b ¼ neutðaÞ � c

Conversely suppose that neut(a) * b = neut(a) * c.Multi-

ply a to the left side, we get:

a � neutðaÞ � b ¼ a � neutðaÞ � c
a � neutðaÞ½ � � b ¼ a � neutðaÞ½ � � c
a � b ¼ a � c

2. The proof is similar to 1.

Proposition 3.12 Let (N, *) be a neutrosophic triplet

group with respect to * and leta, b, c 2 N.

1. If anti að Þ � b ¼ anti að Þ � c, then neut að Þ � b ¼
neut að Þ � c.

2. If b � anti að Þ ¼ c � anti að Þ; then b � neut að Þ ¼
c � neut að Þ:

Proof

1. Suppose that anti(a) * b = anti(a) * c. Since N is a

neutrosophic triplet group with respect to *, so

a 2 N. Multiply a to the left side with anti(a) * -

b = anti(a) * c, we get:

a � antiðaÞ � b ¼ a � antiðaÞ � c
a � antiðaÞ½ � � b ¼ a � antiðaÞ½ � � c
neut að Þ � b ¼ neut að Þ � c:

2. The proof is same as (1).

Theorem 3.13 Let (N, *) be a commutative neutrosophic

triplet group with respect to * and a, b 2 N. Then

neut að Þ � neut bð Þ ¼ neut a � bð Þ:

Proof Consider left hand side, neut(a) * neut(b). Now

multiply to the left with a and to the right with b, we get:

a � neutðaÞ � neutðbÞ � b ¼ a � neutðaÞ½ � � neutðbÞ � b½ �
¼ a � b:

Now consider right hand side, we have neut(a * b). Again

multiply to the left with a and to the right with b, we get:

a � neutða � bÞ � b ¼ a � b½ � � neutða � bÞ½ �, as * is

associative.

¼ a � b:

This completes the proof.

Theorem 3.14 Let (N, *) be a commutative neutrosophic

triplet group with respect to * and a, b 2 N. Then

anti að Þ � anti bð Þ ¼ anti a � bð Þ:

Proof Consider left hand side, anti(a) * anti(b). Multiply

to the left with a and to the right with b, we get:

a � antiðaÞ � antiðbÞ � b ¼ a � antiðaÞ½ � � antiðbÞ � b½ �
¼ neutðaÞ � neutðbÞ

¼ neut a � bð Þ, By above theorem.

Now consider right hand side, which is anti(a * b).

Multiply to the left with a and to the right with b, we

get: a � antiða � bÞ � b ¼ a � b½ � � antiða � bÞ½ �, since * is

associative.

¼ neut a � bð Þ:

This shows that anti(a) * anti(b) = anti(a * b) is true for

all a, b 2 N.
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Theorem 3.15 Let (N, *) be a commutative neutrosophic

triplet group under * and

a; b 2 N:

then

1. neut að Þ � neut bð Þ ¼ neut bð Þ � neut að Þ:
2. anti að Þ � anti bð Þ ¼ anti bð Þ � anti að Þ:

Proof

1. Consider right hand side neut(b) * neut(a). Since by

Theorem 3, we have

neutðbÞ � neutðaÞ ¼ neutðb � aÞ

= neut(a * b), as N is commutative. = neut(a) * neut(b),

again by theorem 3. Hence

neut(a) * neut(b) = neut(b) * neut(a).

2. On similar lines, one can easily obtained the proof of

(2).

Definition 3.16 Let (N, *) be a neutrosophic triplet group

under *, and let H be a subset of N. Then, H is called a

neutrosophic triplet subgroup of N if H itself is a neutro-

sophic triplet group with respect to *.

Example 3.17 Consider (Z10, #) be a neutrosophic triplet

group in Example 3.2, and H = {0, 2, 4, 6, 8} be a subset

of Z10. Then, clearly H is a neutrosophic triplet subgroup of

Z10.

Proposition 3.18 Let (N, *) be a neutrosophic triplet

group andHbe a subset of N.ThenH is a neutrosophic triplet

subgroup of N if and only if the following conditions hold.

1. a * b 2 H for all a, b 2 H.

2. neut(a) 2 H for all a 2 H.

3. anti(a) 2 H for all a 2 H.

Proof The proof is straightforward.

Definition 3.19 Let N be a neutrosophic triplet group and

let a 2 N. A smallest positive integer n C 1 such that

an = neut(a) is called neutrosophic triplet order. It is

denoted by nto(a).

Example 3.20 Let N be a neutrosophic triplet group under

multiplication modulo 10 in (Z10, 9), where

N ¼ 0; 2; 4; 6; 8f g:

then

ntoð2Þ ¼ 4; ntoð4Þ ¼ 2;

ntoð6Þ ¼ 2; ntoð8Þ ¼ 4:

Theorem 3.21 Let (N, *) be a neutrosophic triplet group

with respect to * and let a 2 N. Then

1. neut að Þ � neut að Þ ¼ neut að Þ:
In general (neut(a))n = neut(a), where n is a nonzero

positive integer.

2. neut að Þ � anti að Þ ¼ anti að Þ � neut að Þ ¼ anti að Þ:

Proof

1. Consider neut(a) * neut(a) = neut(a).

Multiply a to the left side, we get;

a � neutðaÞ � neutðaÞ ¼ a � neutðaÞ
a � neutðaÞ½ � � neutðaÞ ¼ a � neutðaÞ½ �
a � neutðaÞ ¼ a

a ¼ a:

On the same lines, we can see that (neut(a))n = neut(a) for

a nonzero positive integer n.

2. Consider neut(a) * anti(a) = anti(a).

Multiply to the left with a, we get

a � neutðaÞ � antiðaÞ ¼ a � antiðaÞ
a � neutðaÞ½ � � antiðaÞ ¼ neutðaÞ
a � antiðaÞ ¼ neutðaÞ
neut að Þ ¼ neut að Þ:

Similarly anti(a) * neut(a) = anti(a).

Definition 3.22 Let N be a neutrosophic triplet group and

a 2 N. Then, N is called neutro-cyclic triplet group if

N = hai. We say that a is a generator part of the neutro-

sophic triplet.

Example 3.23 Let N = {2, 4, 6, 8} be a neutrosophic

triplet group with respect to multiplication modulo 10 in

(Z10, 9). Then, clearly N is a neutro-cyclic triplet group as

N = h2i. Therefore, 2 is the generator part of the neutro-

sophic triplet (2, 6, 8).

Theorem 3.24 Let N be a neutro-cyclic triplet group and

let a be a generator part of the neutrosophic triplet. Then

1. hneut(a)i generates neutro-cyclic triplet subgroup of

N.

2. hanti(a)i generates neutro-cyclic triplet subgroup of N.

Proof Straightforward.

4 Neutro-homomorphism

In this section, we introduced neutron-homomorphism for

the neutrosophic triplet groups. We also studied some of

their properties. Further, we defined neutro-isomorphisms.

Florentin Smarandache (ed.) Collected Papers, VI

342



Definition 4.1 Let (N1, *1) and (N2, *2) be two neutro-

sophic triplet groups. Let

f : N1 ! N2

be a mapping. Then, f is called neutro-homomorphism if

for all a, b 2 N1, we have

1.

f a �1 bð Þ ¼ f að Þ �2 f bð Þ;

2.

f ðneutðaÞÞ ¼ neutðf ðaÞÞ

and

3.

f anti að Þð Þ ¼ anti f að Þð Þ:

Example 4.2 Let N1 be a neutrosophic triplet group with

respect to multiplication modulo 6 in (Z6, 9), where

N1 ¼ 0; 2; 4f g:

And let N2 be another neutrosophic triplet group with

respect to multiplication modulo 10 in (Z10, 9), where

N2 ¼ 0; 2; 4; 6; 8f g:

Let f:N1 ? N2 be a mapping defined as

f 0ð Þ ¼ 0; f 2ð Þ ¼ 4; f 4ð Þ ¼ 6:

Then, clearly f is a neutro-homomorphism because condi-

tions (1), (2) and (3) are satisfied easily.

Proposition 4.3 Every neutro-homomorphism is a clas-

sical homomorphism by neglecting the unity element in

classical homomorphism.

Proof First we neglect the unity element that classical

homomorphism maps unity element to the corresponding

unity element. Now suppose that f is a neutro-homomor-

phism from a neutrosophic triplet group N1 to a neutro-

sophic triplet group N2. Then, by condition (1), it follows

that f is a classical homomorphism.

Definition 4.4 A neutro-homomorphism is called neutro-

isomorphism if it is one–one and onto.

5 Distinctions and comparison

The distinctions between Molaei’s Generalized Group [7]

and Neutrosophic Triplet Group are:

1. in MGG for each element there exists a unique neutral

element, which can be the group neutral element, while

in NTG each element may have many neutral

elements, and also the neutral elements have to be

different from the unique group neutral element;

2. in MGG the associativity applies, and in NTG the

associativity is not required;

3. in MGG there exists a unique inverse of an element,

while in NTG there may be many inverses for the same

given element;

4. MGG has a weaker structure than NTG.

So far the applications of neutrosophic triplet sets are in

Z, modulon, n C 2. But new applications can be found, for

example in social science: One person\A[ that has an

enemy anti Ad1ð Þh i (enemy in a degree d1 of enemy city),

and a neutral person neut Ad1ð Þh i with respect to

anti Ad1ð Þh i. Then, another enemy anti Ad2ð Þh i in a different

degree of enemy city, and a neutral anti Ad2ð Þh i, and so on.

Hence one has the neutrosophic triplets:

A; neut Ad1ð Þh i; anti Ad1ð Þh ið Þ;

A; neut Ad2ð Þh i; anti Ad2ð Þh ið Þ, and so on.

Then, we take another person B in the same way…

B; neut Bd1ð Þh i; anti Bd1ð Þh ið Þ;
B; neut Bd2ð Þh i; anti Bd2ð Þh ið Þ

etc.

More applications can be found, if we deeply think

about cases where we have neutrosophic triplets (A,

hneut(A)i, hanti(A)i) in technology and in science.

6 Conclusion

Inspiring from the Neutrosophic philosophy, we defined

neutrosophic triplet. Basically A neutrosophic triplet in a

set is a group of certain elements which satisfy certain

conditions that highly depends upon the proposed binary

operation. The main theme of this paper is first to intro-

duced the neutrosophic triplets which are completely new

notions and then utilize these neutrosophic triplets to

introduce the neutrosophic triplet groups. This neutro-

sophic triplet group has several extraordinary properties as

compared to the classical group. We also studied some

interesting properties of this newly born structure. We

further defined neutro-homomorphisms for neutrosophic

triplet groups. A neutron-homomorphism is the general-

ization of the classical homomorphism with two extra

conditions. As a further generalization, we gave rise to a

new field or research called Neutrosophic Triplet Struc-

tures (such as neutrosophic triplet ring, neutrosophic triplet

field, neutrosophic triplet vector space, etc.). In the end, we

gave main distinctions and comparison of neutrosophic

triplet group with the classical Molaei’s generalized group
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as well as the possible application areas of the neutrosophic

triplet groups.
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Abstract: In this study, the neutrosophic triplet G-module is introduced and the properties of
neutrosophic triplet G-module are studied. Furthermore, reducible, irreducible, and completely
reducible neutrosophic triplet G-modules are defined, and relationships of these structures with
each other are examined. Also, it is shown that the neutrosophic triplet G-module is different from
the G-module.

Keywords: neutrosophic triplet G-module; neutrosophic triplet group; neutrosophic triplet vector space

1. Introduction

Neutrosophy is a branch of philosophy, firstly introduced by Smarandache in 1980. Neutrosophy [1]
is based on neutrosophic logic, probability, and set. Neutrosophic logic is a generalized form of many
logics such as fuzzy logic, which was introduced by Zadeh [2], and intuitionistic fuzzy logic, which
was introduced by Atanassov [3]. Furthermore, Bucolo et al. [4] studied complex dynamics through
fuzzy chains; Chen [5] introduced MAGDM based on intuitionistic 2–Tuple linguistic information,
and Chen [6] obtain some q–Rung Ortopair fuzzy aggregation operators and their MAGDM. Fuzzy
set has function of membership; intuitionistic fuzzy set has function of membership and function of
non-membership. Thus; they do not explain the indeterminancy states. However, the neutrosophic set
has a function of membership, a function of indeterminacy, and a function of non-membership. Also,
many researchers have studied the concept of neutrosophic theory in [7–12]. Recently, Olgun et al. [13]
studied the neutrosophic module; Şahin et al. [14] introduced Neutrosophic soft lattices; Şahin et al. [15]
studied the soft normed ring; Şahin et al. [16] introduced the centroid single-valued neutrosophic
triangular number and its applications; Şahin et al. [17] introduced the centroid points of transformed
single-valued neutrosophic number and its applications; Ji et al. [18] studied multi-valued neutrosophic
environments and their applications. Also, Smarandache et al. [19] studied neutrosophic triplet (NT)
theory and [20,21] neutrosophic triplet groups. A NT has a form <x, neut(x), anti(x)>, in which neut(x)
is neutral of “x” and anti(x) is opposite of “x”. Furthermore, neut(x) is different from the classical
unitary element. Also, the neutrosophic triplet group is different from the classical group. Recently,
Smarandache et al. [22] studied the NT field and [23] the NT ring; Şahin et al. [24] introduced the
NT metric space, the NT vector space, and the NT normed space; Şahin et al. [25] introduced the NT
inner product.

The concept of G-module [26] was introduced by Curties. G-modules are algebraic structures
constructed on groups and vector spaces. The concept of group representation was introduced by
Frobenious in the last two decades of the 19th century. The representation theory is an important
algebraic structure that makes the elements, which are abstract concepts, more evident. Many
important results could be proved only for representations over algebraically closed fields. The module
theoretic approach is better suited to deal with deeper results in representation theory. Moreover,
the module theoretic approach adds more elegance to the theory. In particular, the G-module structure
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has been extensively used for the study of representations of finite groups. Also, the representation
theory of groups describes all the ways in which group G may be embedded in any linear group GL
(V). The G-module also holds an important place in the representation theory of groups. Recently
some researchers have been dealing with the G-module. For example, Fernandez [27] studied
fuzzy G-modules. Sinho and Dewangan [28] studied isomorphism theory for fuzzy submodules
of G-modules. Şahin et al. [29] studied soft G-modules. Sharma and Chopra [30] studied the injectivity
of intuitionistic fuzzy G-modules.

In this paper, we study neutrosophic triplet G-Modules in order to obtain a new algebraic
constructed on neutrosophic triplet groups and neutrosophic triplet vector spaces. Also we define the
reducible neutrosophic triplet G-module, the irreducible neutrosophic triplet G-module, and the
completely reducible neutrosophic triplet G-module. In this study, in Section 2, we give some
preliminary results for neutrosophic triplet sets, neutrosophic triplet groups, the neutrosophic triplet
field, the neutrosophic triplet vector space, and G-modules. In Section 3, we define the neutrosophic
triplet G-module, and we introduce some properties of a neutrosophic triplet G-module. We show
that the neutrosophic triplet G-module is different from the G-module, and we show that if certain
conditions are met, every neutrosophic triplet vector space or neutrosophic triplet group can be a
neutrosophic triplet G-module at the same time. Also, we introduce the neutrosophic triplet G-module
homomorphism and the direct sum of neutrosophic triplet vector space. In Section 4, we define
the reducible neutrosophic triplet G-module, the irreducible neutrosophic triplet G-module, and the
completely reducible neutrosophic triplet G-module, and we give some properties and theorems for
them. Furthermore, we examine the relationships of these structures with each other, and we give
some properties and theorems. In Section 5, we give some conclusions.

2. Preliminaries

Definition 1. Let N be a set together with a binary operation *. Then, N is called a neutrosophic triplet set if for
any a ∈ N there exists a neutral of “a” called neut(a) that is different from the classical algebraic unitary element
and an opposite of “a” called anti(a) with neut(a) and anti(a) belonging to N, such that [21]:

a*neut(a) = neut(a)* a = a,
and
a*anti(a) = anti(a)* a = neut(a).

Definition 2. Let (N,*) be a neutrosophic triplet set. Then, N is called a neutrosophic triplet group if the
following conditions are satisfied [21].

(1) If (N,*) is well-defined, i.e., for any a, b ∈ N, one has a*b ∈ N.
(2) If (N,*) is associative, i.e., (a*b)*c = a*(b*c) for all a, b, c ∈ N.

Theorem 1. Let (N,*) be a commutative neutrosophic triplet group with respect to * and a, b ∈ N, in which a
and b are both cancellable [21],

(i) neut(a)*neut(b) = neut(a*b).
(ii) anti(a)*anti(b) = anti(a*b).

Definition 3. Let (NTF,*, #) be a neutrosophic triplet set together with two binary operations * and #. Then
(NTF,*, #) is called neutrosophic triplet field if the following conditions hold [22].

1. (NTF,*) is a commutative neutrosophic triplet group with respect to *.
2. (NTF, #) is a neutrosophic triplet group with respect to #.
3. a#(b*c) = (a#b)*(a#c) and (b*c)#a = (b#a)*(c#a) for all a, b, c ∈ NTF.
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Theorem 2. Let (N,*) be a neutrosophic triplet group with respect to *. For (left or right) cancellable a ∈ N, one
has the following [24]:

(i) neut(neut(a)) = neut(a);
(ii) anti(neut(a)) = neut(a);
(iii) anti(anti(a)) = a;
(iv) neut(anti(a)) = neut(a).

Definition 4. Let (NTF, ∗1, #1) be a neutrosophic triplet field, and let (NTV, ∗2, #2) be a neutrosophic triplet
set together with binary operations “ ∗2” and “#2”. Then (NTV, ∗2, #2) is called a neutrosophic triplet vector
space if the following conditions hold. For all u, v ∈ NTV, and for all k ∈ NTF, such that u∗2v ∈ NTV and u
#2k ∈ NTV [24];

(1) (u∗2v) ∗2t = u∗2 (v∗2t); u, v, t ∈ NTV;
(2) u∗2v = v∗2u; u, v ∈ NTV;
(3) (v∗2u) #2k = (v#2k) ∗2(u#2k); k ∈ NTF and u, v ∈ NTV;
(4) (k∗1t) #2u = (k#2v) ∗1(u#2v); k, t ∈ NTF and u ∈ NTV;
(5) (k#1t) #2u = k#1(t#2u); k, t ∈ NTF and u ∈ NTV;
(6) There exists any k ∈ NTF such that u#2neut(k) = neut(k) #2u = u; u ∈ NTV.

Definition 5. Let G be a finite group. A vector space M over a field K is called a G-module if for every g ∈ G
and m ε M there exists a product (called the action of G on M) m.g ∈M satisfying the following axioms [26]:

(i) m.1G = m, ∀ m ε M (1G being the identity element in G);
(ii) m.(g.h) = (m.g).h, ∀ m ε M; g, h ε G;
(iii) (k1m1 + k2m2).g = k1(m1.g)+ k2(m2.g); k1, k2ε K; m1, m2ε M, and g ε G.

Definition 6. Let M be a G-module. A vector subspace N of M is a G-submodule if N is also a G-module under
the same action of G [26].

Definition 7. Let M and M∗ be G-modules. A mapping φ [26]: M→ M∗ is a G-module homomorphism if

(i) φ(k1.m1 + k2.m2) = k1. φ(m1) + k2.φ(m2);
(ii) φ(m.g) = φ(m).g; k1, k2ε K; m, m1, m2ε M; g ε G.

Further, if φ is 1-1, then φ is an isomorphism. The G-modules M and M* are said to be isomorphic
if there exists an isomorphism φ of M onto M*. Then we write M ∼= M∗.

Definition 8. Let M be a nonzero G-module. Then, M is irreducible if the only G-submodules of M are M and
{0}. Otherwise, M is reducible [26].

Definition 9. Let M1, M2, M3, . . . , Mn be vector spaces over a field K [31]. Then, the set {m1 + m2 + . . . +
mn; mi ε Mi} becomes a vector space over K under the operations

(m1+m2 + . . . + mn) +
(
m1
′ + m2

′ + . . . + mn
′) = (m1 + m1

′)+ (m2 + m2
′)+ . . . +

(
mn + mn

′) and

α(m1+m2 + . . . + mn) = αm1 + αm2 + . . . + αmn; α ε K, mn
′ ε Mi

It is the called direct sum of the vector spaces M1, M2, M3, . . . , Mn and is denoted by n
i=1⊕Mi.

Remark 1. The direct sum M = n
i=1⊕Mi of vector spaces Mi has the following properties [31]:

(i) Each element m ε M has a unique expression as the sum of elements of Mi.
(ii) The vector subspaces M1, M2, M3, . . . , Mn of M are independent.
(iii) For each 1 ≤ i ≤ n, Mj ∩ (M1 + M2 + . . . + Mj−1 + Mj+1 + . . . + Mn) = {0}.
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Definition 10. A nonzero G-module M is completely reducible if for every G-submodule N of M there exists a
G-submodule N* of M such that M = N ⊕ N∗ [26].

Proposition 1. A G-submodule of a completely reducible G-module is completely reducible [26].

3. Neutrosophic Triplet G-Module

Definition 11. Let (G, *) be a neutrosophic triplet group, (NTV,∗1, #1) be a neutrosophic triplet vector space on
a neutrosophic triplet field (NTF,∗2, #2), and g*m ε NTV for g ε G, m ε NTV. If the following conditions are
satisfied, then (NTV,∗1, #1) is called neutrosophic triplet G-module.

(a) There exists g ∈ G such that m*neut(g) = neut(g)*m = m for every m ∈ NTV;
(b) m∗1(g∗1h) = (m∗1g) ∗1h, ∀ m ∈ NTV; g, h ∈ G;
(c) (k1#1m1 ∗1 k2 #1m2)*g = k1#1 (m1*g)∗1k2#1 (m2*g), ∀k1, k2ε NTF; m1, m2 ε NTV; g ε G.

Corollary 1. Neutrosophic G-modules are generally different from the classical G-modules, since there is a single
unit element in classical G-module. However, the neutral element neut(g) in neutrosophic triplet G-module
is different from the classical one. Also, neutrosophic triplet G-modules are different from fuzzy G-modules,
intuitionistic fuzzy G-modules, and soft G-modules, since neutrosophic triplet set is a generalized form of fuzzy
set, intuitionistic fuzzy set, and soft set.

Example 1. Let X be a nonempty set and let P(X) be set of all subset of X. From Definition 4, (P(X), ∪, ∩) is a
neutrosophic triplet vector space on the (P(X), ∪, ∩) neutrosophic triplet field, in which
the neutrosophic triplets with respect to ∪; neut(A) = A and anti(A) = B, such that A, B ∈ P(X); A ⊆ B;
and the neutrosophic triplets with respect to ∩; neut(A) = A and anti(A) = B, such that A, B ∈ P(X); B ⊇ A.
Furthermore, (P(X), ∪) is a neutrosophic triplet group with respect to ∪, in which
neut(A) = A and anti(A) = B such that A, B ⊂ P(X); A ⊆ B. We show that (P(X), ∪, ∩) satisfies condition of
neutrosophic triplet G-module. From Definition 11:

(a) It is clear that if A = B, there exists any A ∈ P(X) for every B ∈ P(X), such that B ∪ neut(A) = neut(A) ∪
B = A.

(b) It is clear that A ∪ (B ∪ C) = (A ∪ B) ∪ C, ∀ A ∈ P(X); B, C ∈ P(X).
(c) It is clear that

((A1 ∩ B1)∪ (A2 ∩ B2)) ∪ C = (A1 ∩ B1) ∪ C))∪ (A2 ∩ B2) ∪ C)), ∀A1, A2 ε P(X); B1, B2 ε P(X); C ε P(X).
Thus, (P(X), ∪, ∩) is a neutrosophic triplet G-module.

Corollary 2. If G = NTV, * = ∗1, then each (NTV,∗1, #1) neutrosophic triplet vector space is a neutrosophic
triplet G-module at the same time. Thus, if G = NTV and * = ∗1, then every neutrosophic triplet vector space or
neutrosophic triplet group can be a neutrosophic triplet G-module at the same time. It is not provided by classical
G-module.

Proof of Corollary 1. If G = NTV, * = ∗1;

(a) There exists a g ε NTV such that m*neut(g) = neut(g)*m = m, ∀m ε NTV;
(b) It is clear that m*(g*h) = (m*g)*h, as (NTV,*) is a neutrosophic triplet group; ∀ m, g, h ∈ NTV;
(c) It is clear that (k1#1m1 ∗1 k2 #1m2)*g = k1#1(m1*g)∗1k2#1 (m2*g), since (NTV,∗1, #1) is a neutrosophic

triplet vector space; ∀ g, k1, k2 ε NTF; m1, m2 ε NTV.

Definition 12. Let (NTV,∗1, #1) be a neutrosophic triplet G-module. A neutrosophic triplet subvector space
(N, ∗1, #1) of (NTV,∗1, #1) is a neutrosophic triplet G-submodule if (N,∗1, #1) is also a neutrosophic triplet
G-module.

Example 2. From Example 1; for N ⊆ X, (P(N), ∪, ∩) is a neutrosophic triplet subvector space of (P(X), ∪, ∩).
Also, (P(N), ∪, ∩) is a neutrosophic triplet G-module. Thus, (P(N), ∪, ∩) is a neutrosophic triplet G-submodule
of (P(X), ∪, ∩).

Florentin Smarandache (ed.) Collected Papers, VI

348



Example 3. Let (NTV,∗1, #1) be a neutrosophic triplet G-module. N = {neut(x)} ∈ NTV is a neutrosophic
triplet subvector space of (NTV,∗1, #1). Also, N = {neut(x) = x} ∈ NTV is a neutrosophic triplet G-submodule of
(NTV,∗1, #1).

Definition 13. Let (NTV,∗1, #1) and (NTV∗,∗3, #3) be neutrosophic triplet G-modules on neutrosophic triplet
field (NTF,∗2, #2) and (G, *) be a neutrosophic triplet group. A mapping φ: NTV→NTV∗ is a neutrosophic
triplet G-module homomorphism if

(i) φ(neut(m)) = neut(φ(m))
(ii) φ(anti(m)) = anti(φ(m))
(iii) φ((k1#1m1) ∗1 (k2#1m2)) = (k1#3φ(m1))∗3(k2#3φ(m2))
(iv) φ(m*g) = φ(m)*g; ∀ k1, k2 ∈ NTF; m, m1, m2 ∈M; g ∈ G.

Further, if φ is 1-1, then φ is an isomorphism. The neutrosophic triplet G-modules (NTV,∗1, #1)
and (NTV∗,∗3, #3) are said to be isomorphic if there exists an isomorphism φ: NTV→ NTV∗. Then,
we write NTV ∼= NTV∗.

Example 4. From Example 1, (P(X), ∪, ∩) is neutrosophic triplet vector space on neutrosophic triplet field
(P(X), ∪, ∩). Furthermore, (P(X), ∪, ∩) is a neutrosophic triplet G-module. We give a mapping φ: P(X)→
P(X), such that φ(A) = neut(A). Now, we show that φ is a neutrosophic triplet G-module homomorphism.

(i) φ(neut(A)) = neut(neut(A)) = neut(φ(A))
(ii) φ(anti(A)) = neut(anti(A)); from Theorem 2, neut(anti(A)) = neut(A).

anti(φ(A)) = anti(neut(A)); from Theorem 2, anti(neut(A)) = neut(A). Then φ(anti(A)) = anti(φ(A)).
(iii) φ((A1 ∩ B1)∪ (A2 ∩B2)) = neut(A1 ∩ B1)∪ (A2 ∩B2)); from Theorem 1, as neut(a)*neut(b) = neut(a*b);

neut(A1 ∩ B1) ∪ (A2 ∩B2)) = neut(A1 ∩ B1) ∪ neut(A2 ∩B2) =

((neut(A1) ∩ neut(B1)) ∪ ((neut(A2) ∩ neut(B2)). From Example 1, as neut(A) = A,

((neut(A1) ∩ neut(B1)) ∪ ((neut(A2) ∩ neut(B2)) = (A1∩ neut(B1)) ∪ (A2 ∩ neut(B2)) =

(A1∩ neut(B1) ) ∪(A2 ∩ neut(B2)) = (A1∩φ(B1)) ∪(A2 ∩ φ (B2)).
(iv) φ(A*B) = neut(A*B); from Theorem 1, as neut(a)*neut(b) = neut(a*b), neut(A*B) = neut(A)* neut(B).

From Example 1, as neut(A) = A, neut(A)* neut(B) = A* neut(B) = A* φ(B).

4. Reducible, Irreducible, and Completely Reducible Neutrosophic Triplet G-Modules

Definition 14. Let (NTV,∗1, #1) be neutrosophic triplet G-modules on neutrosophic triplet field (NTF,∗2, #2).
Then, (NTV,∗1, #1) is irreducible neutrosophic triplet G-modules if the only neutrosophic triplet G-submodules
of (NTV,∗1, #1) are (NTV,∗1, #1) and {neut(x) = x}, x ∈ NTV. Otherwise, (NTV,∗1, #1) is reducible neutrosophic
triplet G-module.

Example 5. From Example 2, for N = {1,2} ⊆ {1,2,3} = X, (P(N), ∪, ∩) is a neutrosophic triplet subvector space
of (P(X), ∪, ∩). Also, (P(N), ∪, ∩) is a neutrosophic triplet G-module. Thus, (P(N), ∪, ∩) is a neutrosophic
triplet G-submodule of (P(X), ∪, ∩). Also, from Definition 14, (P(X), ∪, ∩) is a reducible neutrosophic triplet
G-module.
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Example 6. Let X = G = {1, 2} and P(X) be power set of X. Then, (P(X), *, ∩) is a neutrosophic triplet vector
space on the (P(X), *, ∩) neutrosophic triplet field and (G, *) is a neutrosophic triplet group, in which

A∗B =



B\A, s(A) < s(B)ΛB ⊃ A ∧ A′ = B
A\B, s(B) < s(A)ΛA ⊃ B ∧ B′ = A

(A\B)′, s(A) > s(B) ∧ A ⊃ B ∧ B′ 6= A
(B\A)′, s(B) > s(A) ∧ B ⊃ A ∧ A′ 6= B

X, s(A) = s(B) ∧ A 6= B
∅, A = B

Here, s(A) means the cardinal of A, and A’ means the complement of A.
The neutrosophic triplets with respect to *;
neut(∅) = ∅, anti(∅) = ∅; neut({1}) = {1, 2}, anti({1}) = {2}; neut({2}) = {1, 2}, anti({2}) = {1}; neut({1, 2}) = ∅,
anti({1,2}) = {1, 2};
The neutrosophic triplets with respect to ∩;
neut(A) = A and anti(A) = B, in which B ⊃ ⋂ A.
Also, (P(X), *, ∩) is a neutrosophic triplet G-module. Here, only neutrosophic triplet G-submodules of (P(X), *,
∩) are (P(X), *, ∩) and {neut(∅) = ∅}. Thus, (P(X),*, ∩) is a irreducible neutrosophic triplet G-module.

Definition 15. Let (NTV1,∗1, #1), (NTV2,∗1, #1), . . . , (NTVn,∗1, #1) be neutrosophic triplet vector spaces on
(NTF,∗2, #2). Then, the set {m1 + m2 + . . . + mn; mi ε NTVi} becomes a neutrosophic triplet vector space on
(NTF,∗2, #2), such that

(m1 ∗1 m2 ∗1 . . .∗1mn) ∗1 (m1
′ ∗1 m2

′∗1 . . . ∗1 mn
′) = (m1 ∗1 m1

′) ∗1 (m2 ∗1 m2
′) ∗1 . . . ∗1

(mn ∗1 mn
′) and

α#1(m1∗1 m2∗1 . . . ∗1 mn) =
(
α#1m1)∗1α#1m2)∗1 . . . ∗1 (α#1mn); α ε NT f , mn

′ ε NTVi.

It is called the direct sum of the neutrosophic triplet vector spaces NTV1, NTV2, NTV3, . . . , NTVn

and is denoted by n
i=1⊕NTVi.

Remark 2. The direct sum NTV = n
i=1⊕NTVi of neutrosophic triplet vector spaces NTVi has the following

properties.

(i) Each element m ε NTV has a unique expression as the sum of elements of NTVi.
(ii) For each 1 ≤ i ≤ n, NTVj ∩ (NTV1 + NTV2 + . . . + NTVj−1 + NTVj+1 + . . . + NTVn) = {x: neut(x)

= x}.

Definition 16. Let (NTV, ∗1, #1) be neutrosophic triplet G-modules on neutrosophic triplet field (NTF, ∗2, #2),
such that NTV 6= {neut(x) = x}. Then, (NTV, ∗1, #1) is a completely reducible neutrosophic triplet G-module
if for every neutrosophic triplet G-submodule (N1, ∗1, #1) of (NTV, ∗1, #1) there exists a neutrosophic triplet
G-submodule (N2, ∗1, #1) of (NTV, ∗1, #1), such that NTV = N1 ⊕ N2.

Example 7. From Example 5, for N = {1, 2}, (P(N), ∪, ∩) is a neutrosophic triplet vector space on (P(N), ∪, ∩)
and a neutrosophic triplet G-module. Also, the neutrosophic triplet G-submodules of (P(N), ∪, ∩) are (P(N), ∪,
∩), (P(M), ∪, ∩), (P(K), ∪, ∩), and (P(L), ∪, ∩). Here, M = {1}, K = {2}, and T = {∅}, in which P(M)⊕P(K) =
P(N), P(K)⊕P(M) = P(N), P(N)⊕P(T) = P(N), and P(T)⊕P(N) = P(N). Thus, (P(N), ∪, ∩) is a completely
reducible neutrosophic triplet G-module.

Theorem 3. A neutrosophic triplet G-submodule of a completely reducible neutrosophic triplet G-module is
completely neutrosophic triplet G-module.

Proof of Theorem 1. Let (NTV, ∗1,#1) is a completely reducible neutrosophic triplet G-module on neutrosophic
triplet field (NTF, ∗2, #2). Assume that (N, ∗1, #1) is a neutrosophic triplet G-submodule of (NTV, ∗1, #1) and
(M, ∗1, #1) is a neutrosophic triplet G-submodule of (N, ∗1, #1). Then, (M, ∗1,#1) is a neutrosophic triplet
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G-submodule of (NTV, ∗1, #1). There exists a neutrosophic triplet G-submodule (T, ∗1, #1), such that NTV =
M⊕T, since (NTV, ∗1, #1) is a completely reducible neutrosophic triplet G-module. Then, we take N′ = T ∩ N.
From Remark 2,

N′ ∩M ⊂ M ∩ T = {x : neut(x) = x} (1)

Then, we take y ∈ N. If y ∈ N, y ∈ NTV and y = m ∗1 t, in which m ∈M; t ∈ T. Therefore, we obtain t ∈
N. Thus,

tN′ = T ∩ N and y = m∗1 tN′⊕M (2)

From (i) and (ii), we obtain N = N′⊕M. Thus, (N, ∗1, #1) is completely reducible neutrosophic triplet G-module.

Theorem 4. Let (NTV, ∗1, #1) be a completely reducible neutrosophic triplet G-module on neutrosophic triplet
field (NTF, ∗2, #2). Then, there exists a irreducible neutrosophic triplet G-submodule of (NTV, ∗1, #1).

Proof of Theorem 2. Let (NTV, ∗1, #1) be a completely reducible neutrosophic triplet G-module and (N, ∗1,
#1) be a neutrosophic triplet G-submodule of (NTV, ∗1, #1). We take y 6= neut(y) ∈ N, and we take collection
sets of neutrosophic triplet G-submodules of (N, ∗1, #1) such that do not contain element y. This set is not empty,
because there is {x: x = neut(x)} neutrosophic triplet G-submodule of (N, ∗1, #1). From Zorn’s Lemma, the
collection has maximal element (M, ∗1, #1). From Theorem 3, (N, ∗1, #1) is a completely reducible neutrosophic
triplet G-module, and there exists a (N1, ∗1, #1) neutrosophic triplet G-submodule, such that N = M⊕N1.
We show that (N1∗1, #1) is a irreducible neutrosophic triplet G–submodule. Assume that (N1, ∗1, #1) is a
reducible neutrosophic triplet G–submodule. Then, there exists (K1, ∗1, #1) and (K2, ∗1, #1) neutrosophic triplet
G-submodules of (N1, ∗1, #1), such that y ∈ N1, N2, and from Theorem 3, N1 = K1 ⊕ K2, in which, as N =
M⊕N1, N = M⊕K1 ⊕ K2. From Remark 2, (M∗1K1) ∩ K2 = {neut(x) = x} or (M∗1K2) ∩ K1 = neut(x) = x}.
Then, y /∈ (M∗1K1) ∩ K2 or y /∈ (M∗1K2) ∩ K1. Hence, y /∈ (M∗1K1) or y /∈ (M∗1K2). This is a contraction.
Thus, (N1∗1, #1) is an irreducible neutrosophic triplet G-submodule.

Theorem 5. Let (NTV, ∗1, #1) be a completely reducible neutrosophic triplet G-module. Then, (NTV, ∗1, #1) is
a direct sum of irreducible neutrosophic triplet G-modules of (NTV, ∗1, #1).

Proof of Theorem 3. From Theorem 3, (Ni,∗1, #1) (i = 1, 2, . . . , n), neutrosophic triplet G-submodules of
(NTV, ∗1, #1) are completely reducible neutrosophic triplet G-modules, such that NTV = Ni−k ⊕ Nk (k = 1, 2,
. . . , i − 1). From Theorem 4, there exists (Mi, ∗1, #1) irreducible neutrosophic triplet G-submodules of (Ni, ∗1,
#1). Also, from Theorem 3, (Mi, ∗1, #1) are completely reducible neutrosophic triplet G-modules, such that Ni =
Ni−k ⊕ Nk (k = 1, 2, . . . , i − 1). If these steps are followed, we obtained (NTV, ∗1, #1), which is a direct sum of
irreducible neutrosophic triplet G-modules of (NTV, ∗1, #1).

5. Conclusions

In this paper; we studied the neutrosophic triplet G-module. Furthermore, we showed that
neutrosophic triplet G-module is different from the classical G-module. Also, we introduced the
reducible neutrosophic triplet G-module, the irreducible neutrosophic triplet G-module, and the
completely reducible neutrosophic triplet G-module. The neutrosophic triplet G-module has new
properties compared to the classical G-module. By using the neutrosophic triplet G-module, a theory of
representation of neutrosophic triplet groups can be defined. Thus, the usage areas of the neutrosophic
triplet structures will be expanded.
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Abstract-

 

Telephony is gaining momentum in the daily lives of 
individuals and in the activities of all companies. With the great 
trend towards telephony networks, whether analogue or digital 
known as Voice over IP (VoIP), the number of calls an 
individual can receive becomes considerably high. However, 
effective management of incoming calls to subscribers 
becomes a necessity. Recently, much attention has been paid 
towards applications of single-valued neutrosophic graphs in 
various research fields. One of the suitable reason is it 
provides a generalized representation of fuzzy graphs (FGs) 
for dealing with human nature more effectively when 
compared to existing models i.e. intuitionistic fuzzy graphs 
(IFGs), inter-valued fuzzy graphs (IVFGs) and bipolar-valued 
fuzzy graphs (BPVFGs) etc. In this paper we focused on 
precise analysis of useful information extracted by calls 
received, not received due to some reasons using the 
properties of SVNGs. Hence the proposed method introduced 
one of the first kind of mathematical model for precise analysis 
of instantaneous traffic beyond the Erlang unit. To achieve this 
goal an algorithm is proposed for a neutrosophic mobile 
network model (NMNM) based on a hypothetical data set. In 
addition, the drawback and further improvement of proposed 
method with a mathematical proposition is established for it 
precise applications.
Keywords: fuzzy graph, intuitionistic fuzzy graph, 
information extraction, single-valued neutrosophic graph,
mobile networks.

According to the last report published by the National 
Telecommunications Regulatory Agency (ANRT) of 
the kingdom of morocco, the rate of possession 
of individuals (12 to 65 years) by mobile phone is 
slightly increasing in May 2017 (95% against 94.4% in 
2015).the use of smartphones by individuals recorded a 
notable evolution and increased to 67% instead of 
54.7% in 2015 [1]. with the rapid explosion on access to 
the telephone network, the number of calls received 
becomes considerable. Nowadays, the terms "priority of 
incoming call", "priority of numbers", "trust of calling 
equipment", etc. are used [2]. Guarantee a quality of 
experience (QoE) for the customer is therefore becoming a 
necessity and especially a promoter axis. However, the 
amount of information that the service provider must 
process to ensure QoE is very high, and the decision to 
route, hold, or reject the incoming call must be at real-

time. 

Recent time the theory of graph is utilized for 
various process to deal with uncertainty and vagueness in 
data sets. It is a mathematical tool which deals with 
large number of data or information in efficient manner. 
Graph theory is one of the richest research area in 
mathematics as it has applications in enormous fields 
including management sciences [3], social sciences [4], 
computer sciences [5], communication networks [6], in 
description of group structures [7], database theory [8], 
economics [9] etc. 

I. Introduction

elephony, appeared in the 1830s, it was based on 
music notes, for the exchange of messages. It then 
became a communication system essentially T L. A. Zadeh [10] introduced the theory of fuzzy 

sets (FSs) in 1965 as a tool to deal with uncertainties. It 
was Kaufmann [11] who define FG but an illustrated 
work on FGs was done by Rosenfeld in [12]. The theory 
of FGs is of great importance and in the recent 
decades, it has been used extensively in many areas 
such as cluster analysis [13-16], slicing [16], in the 
solution of fuzzy intersecting equations [17, 18], data 
base theory [8], networking [19], group structures 
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ensuring the transmission and reproduction of speech. 
Telephony also enables more advanced services such 
as voicemail, conference calling or voice services. 
Telephony is based on a telecommunications network, 
typically, telephony network consists of four main types 
of equipment: terminals, central systems, ancillary  
servers, and the access media. we mainly distinguish 
three types of access media: (i) Land line network, 
known as Public Switched Telephone Network (PSTN), 
(ii) wireless network - mobile networks, and (iii) private 
network, whose companies have their own call centre. 
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Although FG theory has been applied to many 

real-life problems as discussed earlier however literature 
provide very less attention has been paid about a 
mobile network model (MNM) and its analysis for 
information processing. In a mobile network, there are 
variable factors such as: receiving a call either from 
known or unknown number, ignoring a call or couldn’t 
attend due to enormous reasons, and rejecting a call for 
some reasons. In this case, extracting some useful 
information or pattern to take a particular decision is a 
major problem for the researchers. To solve this 
problem the current paper aimed at developing a 
neutrosophic set based mobilephone network by 
presenting NMNM in the field off SVNGs. It is proposed 
that, how SVNGs can be utilized to store the record of 
incoming or outgoing calls and how neutrosophic logic 
can be considered a best tool for such type of 
problems. 

This article is organized as follows: Section 2 
consists of some basic ideas. The complete description 
of NMNM is presented in section 3. In section 4, an 
algorithm is proposed while in section 5 the proposed 
NMNM is illustrated by a flow chart. At the end a 
hypothetical example is discussed in section 6. Some 
special circumstances and significance of neutrosophic 
mobile network model are presented in section 7. The 
article ended with some advantages of proposed model 
and some concluding remark and discussion. 

II. Basic Concepts

In this section, some elementary concepts are 
demonstrated related to graphs including FGs, IFGs 
and SVNGs. For undefined terms and notions, one may 
refer to [34-46, 50]. 
Definition 1[50]. Neutrosophic Set (NS) 

Let X be a space of points and let x∈ X. A 

neutrosophic set S  in X is characterized by a truth
membership function𝑇𝑇𝑆𝑆̅, an indeterminacy membership 
function𝐼𝐼𝑆𝑆̅, and a falsehood membership function 𝐹𝐹𝑆𝑆̅.𝑇𝑇𝑆𝑆̅,  
𝐼𝐼𝑆𝑆̅and𝐹𝐹𝑆𝑆̅are real standard or non-standard subsets of

0 ,1− +   . The neutrosophic set can be represented as 

( ) ( ) ( )( ){ }, , , :S S SS x T x I x F x x X= ∈

The sum of 𝑇𝑇𝑆𝑆̅(𝑥𝑥),𝐼𝐼𝑆𝑆̅(𝑥𝑥)and 𝐹𝐹𝑆𝑆̅(𝑥𝑥) is 

( ) ( ) ( )0 3S S ST x I x F x− +≤ + + ≤
. 

To use neutrosophic set in the real life 
applications such as engineering and scientific 
problems, it is necessary to consider the interval [0, 1] 

instead of 0 ,1− +   for technical applications. 

Definition 2: A pair G = (V, E) is known as 

1. Fuzzy graph if
a) V = {vi: i ∈ I}andT1: V → [0, 1] is the association

degree of vi ∈ V.
b) E = ��vi, vj�: �vi, vj� ∈ V × V�andT2: V × V → [0, 1] is

defined as T2�vi, vj� ≤ min�T1(vi), T1�vj�� for all
�vi, vj� ∈ E.

2. Intuitionistic fuzzy graph if
a) V = {vi: i ∈ I}such as T1: V → [0, 1] is the

association degree and F1: V → [0, 1] is the
disassociation degree of vi ∈ V subject to condition
0 ≤ T1 + F1 ≤ 1.  

b) E = ��vi, vj�: �vi, vj� ∈ V × V�T2: V × V → [0, 1]is the
association degree and F2: V × V → [0, 1] is the
disassociation degree of �vi, vj� ∈ E defined as
T2�vi, vj� ≤ min�T1(vi), T1�vj��

 and  F2�vi, vj� ≤
max�F1(vi), F1�vj��subject to condition 0 ≤ T2 +
F2 ≤ 1 for all �vi, vj� ∈ E.

3. Single-valued neutrosophic graph if
a) V = {vi: i ∈ I}such as T1: V → [0, 1] is the

association degree, I1: V → [0, 1] is the
indeterminacy degree andF1: V → [0, 1] is the
disassociation degree of vi ∈ V subject to condition
0 ≤ T1 + I1 + F1 ≤ 3.  

[20, 21], chemical structures [22], navigations [23], 
traffic controlling [24] etc. The concept of FGs have 
worth in graph theory as it is the best tool to deal with 
uncertainties. K. Atanassov [25, 26] proposed the 
concept of intuitionistic fuzzy sets, an extension of FSs 
which creates space for IFGs. The concept of IFGs were 
proposed by R. Parvathi and M. G. Karunambigai [27]. 
The structure of IFGs is successfully applied in social 
networks [28], clustering [29], radio coverage network 
[30] and shortest path problems [31] etc. IFGs 
effectively deals with uncertainties due to its advance 
structure. In 1995 F. Smarandache proposed 
neutrosophic logic which provides a base for 
neutrosophic set (NS) theory [32, 50]. NS theory is a 
generalization of IFSs and among one of the best 
structures of fuzzy logics describing the uncertain 
situations soundly. To apply NS theory in real life 
situations a discrete form of NSs is introduced known as 
single-valued neutrosophic set (SVNS) [33] which give 
rise to the theory of SVNGs [34, 35]. SVNG is of more 
advanced structure than IFGs and successfully applied 
in navigations [36], minimum spanning tree problem 
[37], shortest path problem [38] so far. Some potential 
work for SVNGs have been done in [39-50] for partial 
ignorance in the given information at different 
granulation [51-52].In this paper, we have focused on 
analysis of mobile network for extracting some 
information to describe the offered or carried network for 
multi-decision analytics. 
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b) E = ��vi, vj�: �vi, vj� ∈ V × V�T2: V × V → [0, 1]is the
association degree, I2: V × V → [0, 1] is the
indeterminacy degree and F2: V × V → [0, 1] is the
disassociation degree of �vi, vj� ∈ Edefined as
T2�vi, vj� ≤ min�T1(vi), T1�vj��, I2�vi, vj� ≥ max

�I1(vi), I1�vj��  and F2�vi, vj� ≥ max�F1(vi),  F1�vj��
subject to  condition 0 ≤ T2 + I2 + F2 ≤ 3 for all 
�vi, vj� ∈ E.

Example: The following figures 1(a, b, c) are the examples of FG, IFG and SVNG respectively. 

Figure 1 (a): Fuzzy graph.      Figure 1 (b): Intuitionistic fuzzy graph.

Figure 2 (c): Single valued neutrosophic graph.

III. A Neutrosophic Mobile Netowrk
Model 

Computing the load of a given Telephone 
network is one of the major issue for the researchers to 
extract some useful information for descriptive analysis 
of carried or offered traffic. It used to measure by 
“Erlang Unit” which represents the average number of 
concurrent calls carried by the given telephone network. 
As for example a radio channel is busy at all time can be 
considered as load of 1 Erlang. Similarly, an office 
having two telephone operators and both are busy on 
each time. It means the office is having two Erlangs. It 
means the Erland unit represents the offered traffic value 
followed by average number of concurrent calls which is 
basically depends on call arrival rate, λ, and the average 
call-holding time (the average time of a phone call), h, 
given by: (https://en.wikipedia.org/wiki/Erlang_(unit)). 

E= λ h     (1)

Where h and λ are represented by the same 
units of time (seconds and calls per second, or minutes 
and calls per minute).  

 The problem arises when the user or expert 
want to analyze the instantaneous traffic to find the exact 
number of calls received, not received or uncertain due 
to some reasons to know the level of traffic, recording 
devices,  or solving other security issues.  In this case, 
characterizing the uncertainty and vagueness in 
telephone network based on its acceptation, rejection 
and indeterminacy is major problem. To solve this 
problem current paper introduces a mathematical 
representation of telephone network using SVNGs where 
(𝑇𝑇, 𝐼𝐼,𝐹𝐹) can further be divided into some situations as 
given below: 

𝑻𝑻 can be considered as received calls and is 
divided into subcases[𝑻𝑻𝟏𝟏,𝑻𝑻𝟐𝟐, …𝑻𝑻𝒏𝒏] where 𝑻𝑻𝟏𝟏 represents 
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calls coming from a saved number and 𝑻𝑻𝟐𝟐 represents 
calls made from some unknown numbers or these can 
be calls from family member or from friend’s circle or 
from unknown number etc. 

𝑰𝑰 can be considered as calls which couldn’t be 
answered due to many reasons [𝑰𝑰𝟏𝟏, 𝑰𝑰𝟐𝟐, 𝑰𝑰𝟑𝟑, … 𝑰𝑰𝒏𝒏] 
represents calls not attended due to driving, busy 
schedule or meeting or incoming call is from unknown 
number or any other reason. 

𝑭𝑭 represents those calls which are rejected due 
to numerous reasons such as [𝑭𝑭𝟏𝟏,𝑭𝑭𝟐𝟐,𝑭𝑭𝟑𝟑, …𝑭𝑭𝒏𝒏] stand for 

rejected calls as incoming call is from unknown number 
or due to hate or behavior of caller etc. 

  

The value of 𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓,𝐧𝐧𝐧𝐧𝐓𝐓𝐓𝐓𝐓𝐓𝐧𝐧𝐧𝐧 𝐧𝐧𝐧𝐧𝐚𝐚 𝐟𝐟𝐧𝐧𝐧𝐧𝐟𝐟𝐟𝐟𝐓𝐓𝐟𝐟 membership grades can be calculated as  

�𝐍𝐍𝐍𝐍.  𝐍𝐍𝐟𝐟𝐨𝐨𝐧𝐧𝐧𝐧𝐧𝐧𝐟𝐟𝐧𝐧𝐓𝐓𝐓𝐓𝐧𝐧𝐧𝐧𝐚𝐚𝐧𝐧𝐚𝐚
𝐒𝐒

, 𝐍𝐍𝐍𝐍.  𝐍𝐍𝐟𝐟𝐨𝐨𝐧𝐧𝐧𝐧𝐧𝐧𝐟𝐟𝐧𝐧𝐧𝐧𝐟𝐟𝐓𝐓𝐓𝐓𝐧𝐧𝐧𝐧𝐓𝐓𝐓𝐓𝐧𝐧𝐧𝐧𝐚𝐚𝐧𝐧𝐚𝐚
𝐒𝐒

, 𝐍𝐍𝐍𝐍.  𝐍𝐍𝐟𝐟𝐨𝐨𝐧𝐧𝐧𝐧𝐧𝐧𝐟𝐟𝐓𝐓𝐧𝐧𝐨𝐨𝐧𝐧𝐨𝐨𝐓𝐓𝐧𝐧𝐚𝐚
𝐒𝐒

�      (2) 

where S is the total number of incoming calls. 
Neutrosophic mobile network model is presented in the following figure 3. 

Figure 1: Neutrosophic Mobile Network Model

The figure 3 represents a neutrosophic mobile 
network model. Using the formula (2), the values of 
𝑇𝑇2, 𝐼𝐼2,𝐹𝐹2 changes in different situations. This value 
becomes (0, 1, 0) when no calls is received and it 
becomes (0, 0, 1) when all calls are rejected. 
The following example illustrate NMNM in a better way. 
Example 1: Let us suppose 100 calls came on a mobile 
at end of the day and described in form of following 
information: 
1. 60 calls were received truly among them 50

numbers are saved and 10 were unsaved in mobile.
In this case these 60 calls will be considered as
truth membership i.e. 0.6.

2. 30 calls were not-received by mobile holder. Among
them 20 calls which are saved in mobile contacts
were not received due to driving, meeting, or phone
left in home, car or bag and 10 were not received
due to uncertain numbers. In this case all 30 not

received numbers by any cause (i.e. driving, 
meeting or phone left in home) will be considered 
as Indeterminacy membership i.e. 0.3.   

3. 10 calls were those number which was rejected
calls intentionally by mobile holder due to behavior 
of those saved numbers, not useful calls, marketing 
numbers or other cases for that he/she do not want 
to pick or may be blocked numbers. In all cases 
these calls can be considered as false i.e. 0.1 
membership value. 

  It is clear from the above explanation that in 
NMNM, all possibilities can be described effectively. 
Such a model based on SVNGs described uncertain 
situation better than crisp graphs or fuzzy graphs or 
intuitionistic fuzzy graphs due to diverse nature of the 
NS theory. Moreover, it should be noted that in this 
network the total number of incoming calls is equal to 
𝑻𝑻 + 𝑰𝑰 + 𝑭𝑭 denoted by 𝑺𝑺.
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The above situation can be represented as: 
− neutrosophic set: (0.6, 0.3, 0.1)  
− or hesitant neutrosophic set: ({0.5, 0.6}, {0.2, 0.3}, {0.1}) 

or interval valued neutrosophic set: ([0.5, 0.6], [0.2, 0.3], [0.1, 0.1]) 

IV. Algorithm

In this section, an algorithm is proposed 
describing the flow of NMNM. Here a network of some 
neutrosophic mobile phones is assumed and the 
quantity of received, not attended and rejected calls is 
expressed in the form of single-valued neutrosophic 
numbers. The NMNM is not limited to store the data of 
small networks but it can be applied to large networks 
as well.  

It is assumed that the number of incoming calls 
received or not received or rejected could be unlimited 
in this case. In order to calculate the membership 
grades of 𝑇𝑇, 𝐼𝐼 and 𝐹𝐹, formula given in(2) could be of 
use. The edges in NMNM enables us to get the 
percentage of calls attended, ignored or rejected at any 
instant between two mobile numbers. To enable the 
caller for making or receiving unlimited number of calls, 
we must assign a neutrosophic number (1, 1, 1) to each 
vertex. 

• Let 𝑣𝑣𝑗𝑗 = (1, 1, 1) and 𝑣𝑣𝑘𝑘 = (1, 1, 1) be two vertices representing two mobile phone numbers.
• 𝑒𝑒𝑗𝑗𝑘𝑘 = �𝑇𝑇𝑗𝑗𝑘𝑘 , 𝐼𝐼𝑗𝑗𝑘𝑘 ,𝐹𝐹𝑗𝑗𝑘𝑘 �

 be the edge of 𝑣𝑣𝑗𝑗  and 𝑣𝑣𝑘𝑘 .
• Let 𝑆𝑆 denote the number of all calls between two neutrosophic mobile numbers.
• 𝑇𝑇𝑗𝑗𝑘𝑘 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑣𝑣𝑛𝑛𝑒𝑒𝑛𝑛

𝑆𝑆

• 𝐼𝐼𝑗𝑗𝑘𝑘 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛
𝑆𝑆

• 𝐹𝐹𝑗𝑗𝑘𝑘 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑗𝑗𝑒𝑒𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛
𝑆𝑆

This can be written as following propositions: 

Let us suppose, total number of all calls 
between two neutrosophic mobile number =s, m= total 
number of calls received, n-total number of calls 
rejected then the number of unattended calls are (s-m-
n). This can be written as (𝑛𝑛

𝑛𝑛
, 𝑛𝑛−𝑛𝑛−𝑛𝑛

𝑛𝑛
, 𝑛𝑛
𝑛𝑛
) neutrosophic

number for determining the nth call. 

Initially one call is made and received then truth 
value is 1

1
= 1, indeterminacy value is 0, falsity value is 

0. In case two calls are made and received then too
truth value is 2

2
= 1 and so on…

If two calls are made and 1 is received and 1 
ignored, then truth is 1

2
= 0.5 and indeterminacy is 

1
2

= 0.5 so we may say that 50% calls are received and 
50% are ignored. If 3 calls are made and number of 
received, ignored and rejected calls are 1 so we have 
(0.33, 0.33, 0.33)

 
which make sense that 33% calls are 

received, 33% calls are ignored and 33% calls are 
rejected. Similarly, the

 
algorithm works for nth

 
calls.

 

The algorithm proposed here explain every 
possibility that might be happen in a mobile network 
proving the worth of SVNGs as the most suitable tool for 
modeling such type of network.

 

V. Flowchart

A flowchart below described the NMNM step by 
step. It is assumed here that the total number of call 
could possibly be received or ignored or rejected is 100 
(For the sack of simplicity). Here it is also assumed that 
initially the number of phone calls made so far is zero. In 
other words, it may be assumed that initially there is no 

edge between two nodes vj and vk . The illustrated 
flowchart is described as follows:
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Figure 2:

 

Flow chart describing algorithm of NMNM

In this flow chart, we keep the number of calls 
limited to 100 but in large networks or in real-life this 
number of calls cannot be restricted to 100. So, one 
may set the desired range of calls by their own consent.

 

VI. Illustrated Example

 

Consider a network of three people connect to 
each other via mobile phones which are represented by 

vertices of SVNGs. The following table 1 describe the 
calling data (total number of calls, received calls, calls 
not attended and rejected calls) of these three peoples.

 Table 1: Specifying the calling data of a group

 

Pair

 

Total calls Received 
calls

Not attended 
calls

Rejected calls Corresponding Edge

 

John-Aslam

 

24 15 5 4 

Aslam-Chris 15 7

 

5 3 (0.466667, 0.3333, 0.2)

Chris-Aslam

 

19 15 4 0 (0.789474, 0.210526, 0)

Chris-John 5 0 5 0 (0, 1, 0)

John-Chris 8 4 3 1 (0.5, 0.375, 0.125)

If call from 𝑣𝑣𝑛𝑛
accepted by 𝑣𝑣𝑗𝑗

Use formula 2 to 

calculate the value of 

𝑇𝑇𝑛𝑛𝑗𝑗

Use formula 2 to 

calculate the value of 𝐼𝐼𝑛𝑛𝑗𝑗

If call from 𝑣𝑣𝑛𝑛
ignored or left 

unattended by 𝑣𝑣𝑗𝑗

Start

Incoming call 
from 𝑣𝑣𝑛𝑛 to 𝑣𝑣𝑗𝑗

Use formula 2 to 

calculate the value of 

𝐹𝐹𝑛𝑛𝑗𝑗

If call from 𝑣𝑣𝑛𝑛
rejected by 𝑣𝑣𝑗𝑗

(0.625, 0.208333, 0.166667)
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Figure 3: A network of people connected via mobile numbers

In this example, a network of finite number of 
people is illustrated. The edges in this network is in the 
form single-valued neutrosophic numbers showing the 
percentage of number of calls received, left unattended 
or rejected. The Figure 5 shows that maximum true calls 
happens among Chris and Aslam due to maximal true 
membership-values, minimum indeterminacy and 
minimum falsity membership-values when compared to 
others. Similarly, other information can be extracted from 
the proposed method.

 

VII. Some Special
 Circumstances and

Significance of Neutrosophic Mobile 
Network Model

 

In this part of the article, some special cases 
are listed to extract meaningful information from the 
proposed method.

 
It is discussed how proposed model 

is capable of dealing with such kind of situations. This is 
done in the following way:

 

Question 1:
 
Is there any difference between saved and 

unsaved numbers? Did it influence the membership?
 

Answer:
 
The answer to this question should be of the 

following form:
 

When both saved and unsaved numbers are 

•
 

Received:
 

Then truth valued is increased by an
amount.

 

• Left Unattended: Then indeterminacy values in
increased by an amount.

 

• Rejected:
 

Then falsity value is increased by an
amount.

 

So saved and unsaved numbers are treated 
equally in such scenario. But In case the number is 
saved most probably the holder knows the person and 
pick the phone or reject it most of time. However, when 
number is unsaved then many times holders do not 
want to pick which affects indeterminacy membership-
values a lot.

 

Question 2: How the proposed model deals with 
marketing numbers as they are important some time 
while some other time they are meaningless. 

Answer: We have introduced a unique scenario to 
understand the telephone network using single-valued 
neutrosophic set and its properties as a first basic 
algorithm when none of the approaches are exists in this 
regard. Of course, we can control this issue by two 
cases. The first way is when we do not know that the 
incoming call is marketing call so it may be rejected or 
ignored. In second case, when we want to pick the 
same marketing call in some other time then the number 
can be saved in the phone as useful number. In this 
case the first time its membership-values will affect the 
indeterminacy or falsity value whereas in second case it 
affects the truth membership-values. 

Question 3: When a person is in comma, then all calls 
on his/her mobile shall be left unattended similarly when 
a person is kidnapped, then all calls on his/her mobile 
gets rejection. How the proposed method explains such 
situation? 

Answer: This is an impressive question towards one of 
the useful applications of our motive to introduce 
neutrosophic set in telephone network.  

We will first try to understand the first case that 
is Coma means holder is in the operating system. In this 
case the call may go but holder cannot pick it due to 
uncertainty. Hence all the incoming call on holder’s 
mobile will be unreceived (not rejected only unreceived) 
which can be clearly shown by (0, 1, 0). For example, 
suppose 10 calls came on to his/her mobile and are left 
unattended…. i.e. s = 10, m = 0and n = 0. Then 

�m
s

, s−m−n
s

, n
s
� = �0, 10−0−0

10
, 0� = (0, 1, 0)

Now we can understand the case of 
kidnapping. In this case, the call can be rejected by 
kidnapper or switch off the phone. It is well known that 
the kidnapper will not pick the phone or allow to ring the 
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bell several times to understand the location. Hence

 

all 
calls will be rejected and can be represented as (0, 0, 1) 
for all time. For example, if 10 calls made and rejected. 
Then n = 10, s = 10. � 0

10
, 10−0−10

10
, 10

10
� = (0, 0, 1). 

Hence the proposed NMNM can deal with every 
possibility than one my face. It shows its significance in 
extracting some meaningful information from mobile 
network based on their calls received and rejected. The 
analysis derived from the proposed method will be 
helpful in making an intelligent system.

 

In this article, the mobile network is discussed in 
the environment of SVNGs. It is observed that such a 
network cannot be established by ordinary FSs i.e. by 
FGs as FS theory only deals with association degree. 
Similarly, such a network is difficult to establish in the 
environment of IFS theory as it describes the association 
and dissociation degree of elements but in mobile 
network models we face several types of situations as 
described earlier. Therefore, the space of SVNG is so 
far, a best tool for describing such type of situation and 
for establishing a mobile network model.

 

VIII. Conclusion and Discussion

In this article, a method for information analysis 
in mobile network model is described using SVNGs, 
known as NMNM for precise representation of 
instantaneous traffic in an alternative way when 
compared to Erlang Number. The proposed method 
also describes the structure of FSs and IFSs to make it 
less resourceful in establishing such type of network for 
extracting some useful information. A mathematical 
proposition is also derived for restructuring the SVNGs 
to represent the received, un-received as well as 
uncertain calls when compared for depth analysis. The 
proposed NMNM model is explained using an illustrative 
example for better understanding. However, the analysis 
derived from the proposed method is not implemented 
in any real data sets. To solve this problem in near future 
the author will focus on comparative study of the 
proposed method.
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Abstract: In the recent years, school administrators often come across various problems while
teaching, counseling, and promoting and providing other services which engender disagreements and
interpersonal conflicts between students, the administrative staff, and others. Action learning is an
effective way to train school administrators in order to improve their conflict-handling styles. In this
paper, a novel approach is used to determine the effectiveness of training in school administrators
who attended an action learning course based on their conflict-handling styles. To this end, a Rahim
Organization Conflict Inventory II (ROCI-II) instrument is used that consists of both the demographic
information and the conflict-handling styles of the school administrators. The proposed method uses
the Neutrosophic Set (NS) and Support Vector Machines (SVMs) to construct an efficient classification
scheme neutrosophic support vector machine (NS-SVM). The neutrosophic c-means (NCM) clustering
algorithm is used to determine the neutrosophic memberships and then a weighting parameter is
calculated from the neutrosophic memberships. The calculated weight value is then used in SVM as
handled in the Fuzzy SVM (FSVM) approach. Various experimental works are carried in a computer
environment out to validate the proposed idea. All experimental works are simulated in a MATLAB
environment with a five-fold cross-validation technique. The classification performance is measured
by accuracy criteria. The prediction experiments are conducted based on two scenarios. In the first
one, all statements are used to predict if a school administrator is trained or not after attending an
action learning program. In the second scenario, five independent dimensions are used individually
to predict if a school administrator is trained or not after attending an action learning program.
According to the obtained results, the proposed NS-SVM outperforms for all experimental works.

Keywords: action learning; school administrator; SVM; neutrosophic classification

1. Introduction

Support Vector Machine (SVM) is a widely used supervised classifier, which has provided better
achievements than traditional classifiers in many pattern recognition applications in the last two
decades [1]. SVM is also known as a kernel-based learning algorithm where the input features are
transformed into a high-dimensional feature space to increment the class separability of the input
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features. Then SVM seeks a separating optimal hyperplane that maximizes the margin between two
classes in high-dimensional feature space [2]. Maximizing the margin is an optimization problem
which can be solved using the Lagrangian multiplier [2]. In addition, some of the input features,
which are called support vectors, can also be used to determine the optimal hyperplane [2].

Although SVM outperforms many classification applications, in some applications, some of the input
data points may not be truly classified [3]. This misclassification may arise due to noises or other conditions.
To handle such a problem, Lin et al. proposed Fuzzy SVMs (FSVMs), in which a fuzzy membership is
assigned to each input data point [3]. Thus, a robust SVM architecture is constructed by combining the fuzzy
memberships into the learning of the decision surface. Another fuzzy-based improved SVMs approach was
proposed by Wang et al. The authors applied it to a credit risk analysis of consumer lending [4]. Ilhan et al.
proposed a hybrid method where a genetic algorithm (GA) and SVM were used to predict Single Nucleotide
Polymorphisms (SNP) [5]. In other words, GA was used to select the optimum C and γ parameters in order
to predict the SNP. The authors also used a particle swarm optimization (PSO) algorithm to optimize C and
γ parameters of SVMs. Peng et al. proposed an improved SVM for heterogeneous datasets [6]. To do so,
the authors used a mapping procedure to map nominal features to another space via the minimization of the
predicted generalization errors. Ju et al. proposed neutrosophic logic to improve the efficiency of the SVMs
classifier (N-SVM) [7]. More specifically, the proposed N-SVM approach was applied to image segmentation.
The authors used the diverse density support vector machine (DD-SVM) to improve its efficiency with
neutrosophic set theory [8]. Almasi et al. proposed a new fuzzy SVM method, which was based on an
optimization method [9]. The proposed method simultaneously generated appropriate fuzzy memberships
and solved the model selection problem for the SVM family in linear/nonlinear and separable/non-separable
classification problems. In Reference [10], Tang et al. proposed a novel fuzzy membership function for linear
and nonlinear FSVMs. The structural information of two classes in the input space and in the feature space
was used for the calculation of the fuzzy memberships. Wu et al. used an artificial immune system (AIS) in the
optimization of SVMs [11]. The authors used the AIS algorithm to optimize the C and γ parameters of SVMs
and developed an efficient scheme called AISSVM. Chen et al. optimized the parameters of the SVM by using
the artificial bee colony (ABC) approach [12]. Specifically, the authors used an enhanced ABC algorithm where
cat chaotic mapping initialization and current optimum were used to improve the ABC approach. Zhao et al.
used an ant colony algorithm (ACA) to improve the efficiency of SVMs [13]. The ACA optimization method
was used to select the kernel function parameter and soft margin constant C penalty parameter. Guraksin et al.
used particle swarm optimization (PSO) to tune SVM parameters to improve its efficiency [14]. The improved
SVM approach was applied to a bone age determination system.

In this paper, a new approach is proposed: Neutrosophic SVM (NS-SVM). The neutrosophic set
(NS) is defined as the generalization of the fuzzy set [15]. NS is quite effective in dealing with outliers
and noises. The noises and outlier samples in a dataset can be treated as a kind of indeterminacy. NS has
been successfully applied for indeterminate information processing, and demonstrates advantages
to deal with the indeterminacy information of data [16–18]. NS employs three memberships to
measure the degree of truth (T), indeterminacy (I), and falsity (F) of each dataset. The neutrosophic
c-means (NCM) algorithm is used to produce T, I, and F memberships [16,17]. In recent years, school
administrators often come across various problems while teaching, counseling, and promoting and
providing other services which engender disagreements and interpersonal conflicts between students,
the administrative staff, and others. Action learning is an effective way to train school administrators in
order to improve their conflict-handling styles. To this end, the developed NS-SVM approach is applied
to determine the effectiveness of training in school administrators who attended an action learning
course based on their conflict-handling styles. A Rahim Organization Conflict Inventory II (ROCI-II)
instrument is used that consists of both the demographic information and the conflict-handling styles
of the school administrators. A five-fold cross-validation test is applied to evaluate the proposed
method. The classification accuracy is calculated for performance measure. The proposed method is
also compared with SVM and FSVM.
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The paper is organized as follows. In the next section, a summarization of the present works on
this topic is given. The proposed NS-SVM is introduced in Section 3. Section 4 gives the experimental
work and results. We conclude the paper in Section 5.

2. Related Works

As mentioned earlier, there have been a number of presented works about the feature weighting for
improving the efficiency of classifiers. To this end, Akbulut et al. proposed an NS-based Extreme Learning
Machine (ELM) approach for imbalanced data classification [18]. They initially employed an NS-based
clustering algorithm to assign a weight for each input data point and then the obtained weights were
linked to the ELM formulation to improve its efficiency. In the experiments, the proposed scheme highly
improved the classification accuracy. Ju et al. proposed a similar work and applied it to improve image
segmentation performance [7]. The authors opted to construct the NS weights based on the formulations
given in Reference [7]. The obtained weights were then used in SVM equations. In other words, the authors
used the DD-SVM to improve its efficiency with neutrosophic logic. Guo et al. proposed an unsupervised
approach for data clustering [16]. The authors combined NS theory in an unsupervised data clustering
which can be seen as a weighting procedure. Thus, the indeterminate data points were also considered in
the classification process more efficiently. An NS-based k-NN approach was proposed by Akbulut et al. [19].
The authors used the NS memberships to improve the classification performance of the k-NN classifier.
The proposed scheme calculated the NS memberships based on a supervised neutrosophic c-means (NCM)
algorithm. A final belonging membership U was calculated from the NS triples. A final voting scheme as
given in fuzzy k-NN was considered for class label determination. Budak et al. proposed an NS-based
efficient Hough transform [20]. The authors initially transferred the Hough space into the NS space by
calculating the NS membership triples. An indeterminacy filtering was constructed where the neighborhood
information was used to remove the indeterminacy in the spatial neighborhood of the neutrosophic Hough
space. The potential peaks were detected based on thresholding on the neutrosophic Hough space, and these
peak locations were then used to detect the lines in the image domain.

3. Proposed Neutrosophic Set Support Vector Machines (NS-SVM)

In this section, we briefly introduce the theories of SVM and NS. The readers may refer to related
references for detailed information [1,3]. Then, the proposed neutrosophic set support vector machine
is presented in detail below.

3.1. Support Vector Machine (SVM)

SVM is an important and efficient supervised classification algorithm [1,2]. Given a set of N
training data points {(xi, yi)

N
n=1} where xi is a multidimensional feature vector and yi ∈ {−1, 1} is

the corresponding label, an SVM models a decision boundary between classes of training data as
a separating hyperplane. SVM aims to find an optimal solution by maximizing the margin around the
separating hyperplane, which is equivalent to minimizing ||w|| with the constraint:

yi(w.xi + b) ≥ 1 (1)

SVM employs non-linear mapping to transform the input data into a higher dimensional space.
Thus, the hyperplane can be found in the higher dimensional space with a maximum margin as:

w.ϕ(x) + b = 0 (2)

such that for each data sample (ϕ(xi), yi):

yi(w.ϕ(xi) + b) ≥ 1, i = 1, . . . , N. (3)
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when the input dataset is not linearly separable, then the soft margin is allowed by defining N
non-negative variables, denoted by ξ = (ξ1, ξ2, . . . , ξN), such that the constraint for each sample in
Equation (3) is rewritten as:

yi(w.ϕ(xi) + b) ≥ 1− ξi, i = 1, . . . , N (4)

where the optimal hyperplane is determined as;

minimum

(
1
2

w2 + C
N

∑
i=1

ξi

)
(5)

subjected to yi(w.ϕ(xi) + b) ≥ 1− ξi, i = 1, . . . , N (6)

where C is a constant parameter that tunes the balance between the maximum margin and the minimum
classification error.

3.2. Neutrosophic c-Means Clustering

In this section, a weighting function is defined by samples using the neutrosophic c-means (NCM)
clustering. Let A = {A1, A2, , . . . ., Am} be a set of alternatives in the neutrosophic set. A sample Ai
is represented as {T(Ai), I(Ai), F(Ai)}/Ai, where T(Ai), I(Ai) and F(Ai) are the membership values
to the true, indeterminate, and false sets. T(Ai) is used to measure the belonging degree of the sample
to the center of the labeled class, I(Ai) for indiscrimination degree between two classes, and F(Ai) for
the belonging degree to the outliers.

The NCM clustering overcomes the disadvantages of handling indeterminate points in other
algorithms [16]. Here we improve the NCM by only computing neutrosophic memberships to the true
and indeterminate sets based on the samples’ distribution.

Using NCM, the truth and indeterminacy memberships are defined as:

K =

[
1

v1

C

∑
j=1

(
xi − cj

)− 2
m−1 +

1
v2

(xi − cimax)
−( 2

m−1 ) +
1

v3
δ−(

2
m−1 )

]
(7)

Tij =
K
v1

(xi − cj)
−( 2

m−1 ) (8)

Ii =
K
v2

(xi − cimax)
−( 2

m−1 ) (9)

where Tij and Ii are the true and indeterminacy membership values of point i, and the cluster center
is denoted as cj. cimax is obtained from indexes of the largest and second largest value of Tij. v1, v2,

and v3 are constant weights. Tij and Ii are updated at each iteration until
∣∣∣T(k+1)

ij − T(k)
ij

∣∣∣ < ε, where ε is
a termination criterion.

3.3. Proposed Neutrosophic Set Support Vector Machine (NS-SVM)

In the fuzzy support vector machine (FSVM), a membership gi is assigned for each input data
point {(xi, yi)

N
n=1}, where 0 < gi < 1 [3]. As gi and ξi shows the membership and the error of SVM for

input data point xi , respectively, the term giξi shows the measure of error with different weighting.
Thus, the optimal hyperplane problem can be re-solved as;

minimum

(
1
2

w2 + C
N

∑
i=1

giξi

)
(10)

subjected to yi(w.ϕ(xi) + b) ≥ 1− ξi, i = 1, . . . , N (11)
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In the proposed method, a weighting function is defined in the NS based on the memberships
to truth and indeterminacy and then used to remove the effect of indeterminacy information
for classification.

gNi =
C

∑
j=1

Tij·Ii (12)

Then we use the newly defined weight function gNi to replace the weight function in Equation (4),
and an optimization procedure is employed to minimize the cost function as:

minimum

(
1
2

w2 + C
N

∑
i=1

gNi·ξi

)
(13)

subjected to yi(w.ϕ(xi) + b) ≥ 1− ξi, i = 1, . . . , N (14)

Finally, the support vectors are identified and their weights are obtained for classification. The semantic
algorithm of the proposed method is given as:

Input: Labeled training dataset.
Output: Predicted class labels.
Step 1: Calculate the cluster centers according to the labeled dataset and employ NCM algorithm

to determine NS memberships T and I for each data point.
Step 2: Calculate gNi by using T and I components according to Equation (8).
Step 3: Optimize NS-SVM by minimizing the cost function according to Equation (9).
Step 4: Calculate the labels of test data.

4. Experimental Work and Results

In this study, a new approach NS-SVM is proposed and applied to determine if an action learning
experience resulted in school administrators being more productive in their conflict-management skills [21].
To this end, an experimental organization was constructed where 38 administrators from various schools in
Elazig/Turkey were administered a pre-test and a post-test of the Rahim Organization Conflict Inventory II
(ROCI-II) [22]. The pre-test was applied to the administrators before the action learning experience and the
post-test was applied after the action learning experience. The ROCI-II contains 28 scale items. These scale
items are grouped into five dimensions: integrating, obliging, dominating, avoiding, and compromising.
The dataset, which was used in this work, is given in Appendix A. The MATLAB software is used in
construction of the NS-SVM approach. In the evaluation of the proposed method, a five-fold cross-validation
test is used and the mean accuracy value is recorded. During the experimental work, two different scenarios
are considered. In the first one, all 28 scale items are used to determine the trained and non-trained
school administrators. In the second scenario, each dimension of ROCI-II is used to determine trained and
non-trained administrators in order to determine the relationship between the dimensions and the trained
and non-trained school administrators. The NS-SVM parameter C is searched in the range of [10−3, 102] at
a step size of 10−1. In addition, for NCM the following parameters are chosen: ε= 10−3, v1= 0.75, v2= 0.125,
v3= 0.125, which were obtained from trial and error. The δ parameter of NCM method is also searched in
the range of

{
2−10, 2−8, . . . , 28, 210}. The dataset is normalized with zero mean and unit variance. Table 1

shows the obtained accuracy scores for the first scenario. The obtained results are further compared with
FSVM and other SVM types such as Linear, Quadratic, Cubic, Fine Gaussian, Medium Gaussian, and Coarse
Gaussian SVMs.

As seen in Table 1, 81.2% accuracy is obtained with the proposed NS-SVM method, which is
the highest among all compared classifier types. The second highest accuracy, 76.9%, is obtained by
the FSVM method. An accuracy score of 73.7% is produced by both linear and medium Gaussian
SVM methods. In addition, quadratic and cubic SVM techniques produce 68.4% accuracy scores.
An accuracy score of 63.2% is obtained by the coarse Gaussian SVM method and finally, the worst
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accuracy score, 48.7%, is obtained by the fine Gaussian SVM method. Generally speaking, contributing
memberships as weighting to SVM highly increases the efficiency. Both FSVM and NS-SVM produce
better results than traditional SVM methods. The experimental results that cover the second scenario
are given in Tables 2–6. Table 2 shows the obtained accuracy scores when the integrating dimension is
used as input. The integrating dimension has six scale items.

Table 1. Prediction accuracies for the first scenario. The bold case shows the highest accuracy. SVM:
Support Vector Machines; FSVM: Fuzzy Support Vector Machines; NS-SVM: Neutrosophic Support
Vector Machines.

Classifier Type Accuracy (%)

Linear SVM 73.7
Quadratic SVM 68.4

Cubic SVM 68.4
Fine Gaussian SVM 48.7

Medium Gaussian SVM 73.7
Coarse Gaussian SVM 63.2

FSVM 76.9
NS-SVM 81.2

As seen in Table 2, the highest accuracy score, 80.3%, is obtained by the proposed method.
This score is 4% better than that achieved by FSVM. The FSVM method produces a 76.3% accuracy
score, which is the second highest. Linear and medium Gaussian SVM methods produce 73.7%
accuracy scores, which are the third highest. In addition, linear and medium Gaussian SVM methods
achieve the best accuracy among the ordinary SVM techniques. It is worth mentioning that cubic SVM
has the lowest accuracy score, with an achievement of 53.9%.

Table 2. Prediction accuracies for the second scenario. The integrating dimension is used as input. The bold
case shows the highest accuracy.

Classifier Type Accuracy (%)

Linear SVM 73.7
Quadratic SVM 57.9

Cubic SVM 53.9
Fine Gaussian SVM 60.5

Medium Gaussian SVM 73.7
Coarse Gaussian SVM 67.1

FSVM 76.3
NS-SVM 80.3

Table 3 shows the achievements obtained when the obliging dimension is used as input to the
classifiers. The obliging dimension covers five scale items and 73.8% accuracy score, which is the
highest, obtained by the NS-SVM method. FSVM also produces a 71.3% accuracy score, which is
the second-best achievement. The worst accuracy score is obtained by quadratic SVM, for which the
accuracy score is 50.0%. One important inference from Table 3 is that ordinary SVM techniques produce
almost similar achievements, while weighting with memberships highly improves the accuracy.

The dominating dimension also covers five scale items and the produced results are shown in
Table 4. As seen in Table 4, the highest accuracy, 70.0%, is produced by the proposed NS-SVM method.
In addition, the second-best accuracy score, 65.0%, is obtained by the FSVM method. The linear
SVM obtains 59.2% accuracy, which is the third highest accuracy score. When one considers the
ordinary SVM’s achievements, an obvious improvement can be seen easily that is achieved by the
NS-SVM method.
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Table 3. Prediction accuracies for the second scenario. The obliging dimension is used as input. The bold
case shows the highest accuracy.

Classifier Type Accuracy (%)

Linear SVM 61.8
Quadratic SVM 50.0

Cubic SVM 51.3
Fine Gaussian SVM 52.6

Medium Gaussian SVM 61.8
Coarse Gaussian SVM 55.3

FSVM 71.3
NS-SVM 73.8

Table 4. Prediction accuracies for the second scenario. The dominating dimension is used as input. The bold
case shows the highest accuracy.

Classifier Type Accuracy (%)

Linear SVM 59.2
Quadratic SVM 57.9

Cubic SVM 52.6
Fine Gaussian SVM 55.3

Medium Gaussian SVM 52.6
Coarse Gaussian SVM 55.3

FSVM 65.0
NS-SVM 70.0

The avoiding dimension covers six scale items and the produced results are given in Table 5. As one
evaluates the obtained results given in Table 5, it can be observed that the avoiding dimension is not
efficient enough in discriminating trained and non-trained participants. In other words, the ordinary SVM
techniques do not achieve better accuracy scores. Among them, the highest accuracy, 53.9%, is produced
by the cubic SVM method. On the other hand, both FSVM and the proposed NS-SVM methods produce
better accuracy scores, with achievements of 63.8% and 66.3%, respectively. Once more, the best accuracy
is obtained by the proposed NS-SVM method.

Table 5. Prediction accuracies for the second scenario. The avoiding dimension is used as input. The bold
case shows the highest accuracy.

Classifier Type Accuracy (%)

Linear SVM 50.0
Quadratic SVM 43.4

Cubic SVM 53.9
Fine Gaussian SVM 48.7

Medium Gaussian SVM 44.7
Coarse Gaussian SVM 42.1

FSVM 63.8
NS-SVM 66.3

Finally, the compromising dimension covers six scale items and the produced results are given
in Table 6. As seen in Table 6, the compromising dimension is quite efficient in the determination of
trained and non-trained participants, where better accuracy scores are visible when compared with
the avoiding dimension’s accuracy scores. A 75.0% accuracy score, the highest among all methods,
is obtained by NS-SVM. A 73.8% accuracy score is obtained by the FSVM method. The highest third
accuracy score is produced by medium Gaussian SVM.
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Table 6. Prediction accuracies for the second scenario. The compromising dimension is used as input.
The bold case shows the highest accuracy.

Classifier Type Accuracy (%)

Linear SVM 67.1
Quadratic SVM 67.1

Cubic SVM 57.9
Fine Gaussian SVM 65.8

Medium Gaussian SVM 71.1
Coarse Gaussian SVM 68.4

FSVM 73.8
NS-SVM 75.0

We further analyze the results obtained from the first scenario by considering a statistical measure
and the running time. To this end, the f-measure metric was considered. The f-measure calculates the
weighted harmonic mean of recall and precision [23]. The results are tabulated in Table 7.

Table 7. Calculated f-measure and running times for the first scenario. The bold cases show the
better achievements.

Classifier Type f-Measure (%) Time (s)

Linear SVM 73.50 0.314
Quadratic SVM 68.50 0.129

Cubic SVM 68.50 0.122
Fine Gaussian SVM 48.50 0.119

Medium Gaussian SVM 71.00 0.130
Coarse Gaussian SVM 61.00 0.129

FSVM 76.50 0.089
NS-SVM 80.00 0.065

In Table 7, the best f-measure achievement score, 80.00%, was achieved by the proposed NS-SVM
method. The second-best f-measure score, 76.50%, was produced by FSVM. The other SVM techniques
also produced reasonable f-measure scores when their accuracy achievements were considered (Table 1).
In addition, the running time of the proposed method was less than those of the other SVM methods.
The proposed method achieved its process at 0.065 s. In other words, this running time is almost half
the running times of the non-weighted SVM methods. Thus, it is evident that the proposed NS-SVM
performed more accurate results in a very short time, demonstrating its efficiency.

5. Conclusions

In this paper, neutrosophic set theory and SVM is used to construct an efficient classification approach
called NS-SVM. It is then applied to an educational problem. More specifically, the determination of
the effectiveness of training in school administrators who attended an action learning course based on
their conflict-handling styles is achieved. To this end, a ROCI-II instrument is used that consists of both
the demographic information and the conflict-handling styles of the school administrators. Six various
SVM approaches and FSVM are used in performance comparison. The experimental works are carried
out with a five-fold cross-validation technique and the classification accuracy is measured to evaluate
the performance of the proposed NS-SVM approach. The experiments are conducted based on two
scenarios. In the first one, all statements are used to predict if a school administrator is trained or not
after attending an action learning program. In the second scenario, five independent dimensions are
used individually to predict if a school administrator is educated or not after attending an action learning
program. According to the obtained results, the first scenario achieves the best performance with the
NS-SVM method, resulting in an accuracy score of 81.2%. In addition, for all experiments in the second
scenario, the proposed NS-SVM achieves the highest accuracy scores as given in Tables 2–6. Furthermore,
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FSVM achieved the second highest accuracy scores for all experiments that are handled in scenarios
1 and 2. This situation shows that embedding the membership degrees into the SVM method highly
improves its discriminatory ability. To further analyze the efficiency of the proposed method, we used
the f-measure test and the running times of the methods. The proposed NS-SVM yielded the highest
f-measure score. In addition, the running time of the proposed method was much less than those of the
traditional SVM techniques.

This study revealed important results for both educational research and determining the effectiveness
of educational practices. First, this research showed that the NS-SVM technique can be used in pre-test
and post-test comparisons in experimental educational research. In addition, this study demonstrated that
the effectiveness levels of training courses can be determined by examining the NS-SVM discrimination
accuracy of individuals who attended training courses compared to those who did not.

Appendix A

The dataset was used in the experimental works is given in Figure A1. The features are in the
columns and the last column shows the class labels. Moreover, the rows show the number of samples.

This dataset was originally constructed based on the questionnaire that was based on the ROCI-II
instrument [24]. As mentioned earlier, the ROCI-II instrument contains 28 scale items which are
grouped into five dimensions; integrating (six scale items, Features 1–6), obliging (five scale items,
Features 7–11), dominating (five scale items, Features 12–16), avoiding (six scale items, Features 17–22),
and compromising (six scale items, Features 23–28). The school administrators were asked to fill out
this questionnaire by assigning a five-point Likert scale (1–5) for each feature before and after a action
learning course. Thus, 76 questionnaires were obtained. In scenario 1, the 28 scale items were used in
the prediction of trained and non-trained school administrators and in scenario 2, each dimension of
the ROCI-II instrument was used to predict trained and non-trained school administrators.
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Biçimleri; A.Ü. Sosyal Bilimler Enstitüsü, Yayımlanmamış Doktora Tezi: Ankara, Turkey, 1994.
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Abstract: A single-valued neutrosophic set has king power to express uncertainty characterized by
indeterminacy, inconsistency and incompleteness. Most of the existing single-valued neutrosophic
cross entropy bears an asymmetrical behavior and produces an undefined phenomenon in some
situations. In order to deal with these disadvantages, we propose a new cross entropy measure under
a single-valued neutrosophic set (SVNS) environment, namely NS-cross entropy, and prove its basic
properties. Also we define weighted NS-cross entropy measure and investigate its basic properties.
We develop a novel multi-attribute group decision-making (MAGDM) strategy that is free from the
drawback of asymmetrical behavior and undefined phenomena. It is capable of dealing with an
unknown weight of attributes and an unknown weight of decision-makers. Finally, a numerical
example of multi-attribute group decision-making problem of investment potential is solved to show
the feasibility, validity and efficiency of the proposed decision-making strategy.

Keywords: neutrosophic set; single-valued neutrosophic set; NS-cross entropy measure; multi-attribute
group decision-making

1. Introduction

To tackle the uncertainty and modeling of real and scientific problems, Zadeh [1] first introduced
the fuzzy set by defining membership measure in 1965. Bellman and Zadeh [2] contributed important
research on fuzzy decision-making using max and min operators. Atanassov [3] established the
intuitionistic fuzzy set (IFS) in 1986 by adding non-membership measure as an independent component
to the fuzzy set. Theoretical and practical applications of IFSs in multi-criteria decision-making
(MCDM) have been reported in the literature [4–12]. Zadeh [13] introduced entropy measure in the
fuzzy environment. Burillo and Bustince [14] proposed distance measure between IFSs and offered an
axiomatic definition of entropy measure. In the IFS environment, Szmidt and Kacprzyk [15] proposed
a new entropy measure based on geometric interpretation of IFS. Wei et al. [16] developed an entropy
measure for interval-valued intuitionistic fuzzy set (IVIFS) and presented its applications in pattern
recognition and MCDM. Li [17] presented a new multi-attribute decision-making (MADM) strategy
combining entropy and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) in
an IVIFS environment. Shang and Jiang [18] introduced the cross entropy in the fuzzy environment.
Vlachos and Sergiadis [19] presented intuitionistic fuzzy cross entropy by extending fuzzy cross
entropy [18]. Ye [20] defined a new cross entropy under an IVIFS environment and presented an
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optimal decision-making strategy. Xia and Xu [21] put forward a new entropy and a cross entropy and
employed them for multi-attribute criteria group decision-making (MAGDM) strategy under an IFS
environment. Tong and Yu [22] defined cross entropy under an IVIFS environment and applied it to
MADM problems.

The study of uncertainty took a new direction after the publication of the neutrosophic set
(NS) [23] and single-valued neutrosophic set (SVNS) [24]. SVNS appeals more to researchers for
its applicability in decision-making [25–54], conflict resolution [55], educational problems [56,57],
image processing [58–60], cluster analysis [61,62], social problems [63,64], etc. The research on
SVNS gained momentum after the inception of the international journal “Neutrosophic Sets and
Systems”. Combining with the neutrosophic set, a number of hybrid neutrosophic sets such
as the neutrosophic soft set [65–72], the neutrosophic soft expert set [73–75], the neutrosophic
complex set [76], the rough neutrosophic set [77–86], the rough neutrosophic tri complex set [87],
the neutrosophic rough hyper complex set [88], the neutrosophic hesitant fuzzy sets/multi-valued
neutrosophic set [89–97], the bipolar neutrosophic set [98–103], the rough bipolar neutrosophic set [104],
the neutrosophic cubic set [105–113], and the neutrosophic cubic soft set [114,115] has been reported
in the literature. Wang et al. [116] defined the interval neutrosophic set (INS). Different interval
neutrosophic hybrid sets and their theoretical development and applications have been reported
in the literature, such as the interval-valued neutrosophic soft set [117], the interval neutrosophic
complex set [118], the interval neutrosophic rough set [119–121], and the interval neutrosophic hesitant
fuzzy set [122]. Other extensions of neutrosophic sets, such as trapezoidal neutrosophic sets [123,124],
normal neutrosophic sets [125], single-valued neutrosophic linguistic sets [126], interval neutrosophic
linguistic sets [127,128], simplified neutrosophic linguistic sets [129], single-valued neutrosophic
trapezoid linguistic sets [130], interval neutrosophic uncertain linguistic sets [131–133], neutrosophic
refined sets [134–139], linguistic refined neutrosophic sets [140] bipolar neutrosophic refined sets [141],
and dynamic single-valued neutrosophic multi-sets [142] have been proposed to enrich the study of
neutrosophics. So the field of neutrosophic study has been steadily developing.

Majumdar and Samanta [143] defined an entropy measure and presented an MCDM strategy
under SVNS environment. Ye [144] proposed cross entropy measure under the single-valued
neutrosophic set environment, which is not symmetric straight forward and bears undefined
phenomena. To overcome the asymmetrical behavior of the cross entropy measure, Ye [144] used a
symmetric discrimination information measure for single-valued neutrosophic sets. Ye [145] defined
cross entropy measures for SVNSs to overcome the drawback of undefined phenomena of the cross
entropy measure [144] and proposed a MCDM strategy.

The aforementioned applications of cross entropy [144,145] can be effective in dealing with
neutrosophic MADM problems. However, they also bear some limitations, which are outlined below:

i. The strategies [144,145] are capable of solving neutrosophic MADM problems that require the
criterion weights to be completely known. However, it can be difficult and subjective to offer
exact criterion weight information due to neutrosophic nature of decision-making situations.

ii. The strategies [144,145] have a single decision-making structure, and not enough attention is paid
to improving robustness when processing the assessment information.

iii. The strategies [144,145] cannot deal with the unknown weight of the decision-makers.

Research gap:

MAGDM strategy based on cross entropy measure with unknown weight of attributes and
unknown weight of decision-makers.

This study answers the following research questions:

i. Is it possible to define a new cross entropy measure that is free from asymmetrical phenomena
and undefined behavior?
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ii. Is it possible to define a new weighted cross entropy measure that is free from the asymmetrical
phenomena and undefined behavior?

iii. Is it possible to develop a new MAGDM strategy based on the proposed cross entropy measure
in single-valued neutrosophic set environment, which is free from the asymmetrical phenomena
and undefined behavior?

iv. Is it possible to develop a new MAGDM strategy based on the proposed weighted cross entropy
measure in the single-valued neutrosophic set environment that is free from the asymmetrical
phenomena and undefined behavior?

v. How do we assign unknown weight of attributes?
vi. How do we assign unknown weight of decision-makers?

Motivation:

The above-mentioned analysis describes the motivation behind proposing a comprehensive
NS-cross entropy-based strategy for tackling MAGDM under the neutrosophic environment.
This study develops a novel NS-cross entropy-based MAGDM strategy that can deal with multiple
decision-makers and unknown weight of attributes and unknown weight of decision-makers and free
from the drawbacks that exist in [144,145].

The objectives of the paper are:

1. To define a new cross entropy measure and prove its basic properties, which are free from
asymmetrical phenomena and undefined behavior.

2. To define a new weighted cross measure and prove its basic properties, which are free from
asymmetrical phenomena and undefined behavior.

3. To develop a new MAGDM strategy based on weighted cross entropy measure under
single-valued neutrosophic set environment.

4. To develop a technique to incorporate unknown weight of attributes and unknown weight
of decision-makers in the proposed NS-cross entropy-based MAGDM under single-valued
neutrosophic environment.

To fill the research gap, we propose NS-cross entropy-based MAGDM, which is capable of dealing
with multiple decision-makers with unknown weight of the decision-makers and unknown weight of
the attributes.

The main contributions of this paper are summarized below:

1. We define a new NS-cross entropy measure and prove its basic properties. It is straightforward
symmetric and it has no undefined behavior.

2. We define a new weighted NS-cross entropy measure in the single-valued neutrosophic set
environment and prove its basic properties. It is straightforward symmetric and it has no
undefined behavior.

3. In this paper, we develop a new MAGDM strategy based on weighted NS cross entropy
to solve MAGDM problems with unknown weight of the attributes and unknown weight
of decision-makers.

4. Techniques to determine unknown weight of attributes and unknown weight of decisions makers
are proposed in the study.

The rest of the paper is presented as follows: Section 2 describes some concepts of SVNS.
In Section 3 we propose a new cross entropy measure between two SVNS and investigate its properties.
In Section 4, we develop a novel MAGDM strategy based on the proposed NS-cross entropy with
SVNS information. In Section 5 an illustrative example is solved to demonstrate the applicability and
efficiency of the developed MAGDM strategy under SVNS environment. In Section 6 we present
comparative study and discussion. Section 7 offers conclusions and the future scope of research.
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2. Preliminaries

This section presents a short list of mostly known definitions pertaining to this paper.

Definition 1 [23] NS. Let U be a space of points (objects) with a generic element in U denoted by u, i.e., u ∈ U.
A neutrosophic set A in U is characterized by truth-membership measure TA(u), indeterminacy-membership
measure IA(u) and falsity-membership measure FA(u), where TA(u), IA(u), FA(u) are the measures from U
to ]− 0, 1+ [i.e., TA(u), IA(u), FA(u):U→]− 0, 1+[ NS can be expressed as A = {<u; (TA(u), IA(u), FA(u))>:
∀ u ∈U}. Since TA(u), IA(u), FA(u) are the subsets of ]−0, 1+ [there the sum (TA(u) + IA(u) + FA(u)) lies
between −0 and 3+.

Example 1. Suppose that U = {u1, u2, u3, . . .} be the universal set. Let R1 be any neutrosophic set in U.
Then R1 expressed as R1 = {<u1; (0.6, 0.3, 0.4)>: u1 ∈ U}.

Definition 2 [24] SVNS. Assume that U be a space of points (objects) with generic elements u ∈ U. A SVNS
H in U is characterized by a truth-membership measure TH(u), an indeterminacy-membership measure IH(u),
and a falsity-membership measure FH(u), where TH(u), IH(u), FH(u) ∈ [0, 1] for each point u in U. Therefore,
a SVNS A can be expressed as H = {u, (TH (u), I H (u), FH (u)) | ∀u ∈ U}, whereas, the sum of TH(u), IH(u)
and FH(u) satisfy the condition 0 ≤ TH(u) + IH(u) + FH(u) ≤ 3 and H(u) = <(TH (u), IH (u), FH (u)> call a
single-valued neutrosophic number (SVNN).

Example 2. Suppose that U = {u1, u2, u3, . . .} be the universal set. A SVNS H in U can be expressed as:
H = {u1, (0.7, 0.3, 0.5)| u1 ∈ U} and SVNN presented H = <0.7, 0.3, 0.5>.

Definition 3 [24] Inclusion of SVNSs. The inclusion of any two SVNS sets H1 and H2 in U is denoted by
H1 ⊆ H2 and defined as follows:

H1 ⊆ H2, TH1(u) ≤ TH2(u), IH1(u) ≥ IH2(u), FH1(u) ≥ FH2(u) i f f f or all u ∈ U.

Example 3. Let H1 and H2 be any two SVNNs in U presented as follows: H1 = <(0.7, 0.3, 0.5)> and
H2 = <(0.8, 0.2, 0.4)> for all u ∈ U. Using the property of inclusion of two SVNNs, we conclude that H1 ⊆ H2.

Definition 4 [24] Equality of two SVNSs. The equality of any two SVNS H1 and H2 in U denoted by
H1 = H2 and defined as follows:

TH1(u) = TH2(u), IH1(u) = IH2(u) and FH1(u) = FH2(u) f or all u ∈ U.

Definition 5 Complement of any SVNSs. The complement of any SVNS H in U denoted by Hc and defined
as follows:

Hc = {u, 1− TH , 1− IH , 1− FH | u ∈ U}.

Example 4. Let H be any SVNN in U presented as follows: H = < (0.7, 0.3, 0.5) >. Then compliment of H is
obtained as Hc = <(0.3, 0.7, 0.5)>.

Definition 6 [24] Union. The union of two single-valued neutrosophic sets H1 and H2 is a neutrosophic set
H3 (say) written as

H3 = H1∪H2.
TH3(u) = max {TH1(u), TH2(u)}, IHJ3(u) = min {IH1(u), IH2(u)}, FH3 (u) = min {FH1(u), FH2(u)}, ∀ u ∈ U.
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Example 5. Let H1 and H2 be two SVNSs in U presented as follows:

H1 = <(0.6, 0.3, 0.4)> and H2 = <(0.7, 0.3, 0.6)>. Then union of them is presented as:

H1 ∪ H2 =< (0.7, 0.3, 0.4) > .

Definition 7 [24] Intersection. The intersection of two single-valued neutrosophic sets H1 and H2 denoted by
H4 and defined as

H4 = H1 ∩ H2
TH4 (u) = min {TH1(u), TH2(u)}, IH4(u) = max{IH1(u), IH2(u)}
FH4(u) = max {FH1(u), FH2(u)}, ∀ u ∈ U.

Example 6. Let H1 and H2 be two SVNSs in U presented as follows:

H1 = <(0.6, 0.3, 0.4)> and H2 = <(0.7, 0.3, 0.6)>.

Then intersection of H1 and H2 is presented as follows:

H1∩H2 = <(0.6, 0.3, 0.6)>

3. NS-Cross Entropy Measure

In this section, we define a new single-valued neutrosophic cross-entropy measure for measuring
the deviation of single-valued neutrosophic variables from an a priori one.

Definition 8 NS-cross entropy measure. Let H1 and H2 be any two SVNSs in U = { u1, u2, u3, . . . , un}.
Then, the single-valued cross-entropy of H1 and H2 is denoted by CENS (H1, H2) and defined as follows:

CENS (H1, H2) =
1
2

 n
∑

i = 1

〈 2 |TH1 (ui)−TH2 (ui)|√
1+|TH1 (ui)|2+

√
1+|TH2 (ui)|2

+
2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2
 + 2|IH1 (ui)−IH2 (ui)|√

1+|IH1 (ui)|2+
√

1+|IH2 (u)|
2 +

2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2
+ 2|FH1 (ui)−FH2 (ui)|√

1+|FH1 (ui)|2+
√

1+|FH2 (ui)|2
+

2
∣∣∣(1−FH1

(ui))−(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2
〉

(1)

Example 7. Let H1 and H2 be two SVNSs in U, which are given by H1 = {u, (0.7, 0.3, 0.4)| u ∈ U} and
H2 = {u, (0.6, 0.4, 0.2)| u ∈ U}. Using Equation (1), the cross entropy value of H1 and H2 is obtained as
CENS(H 1, H2) = 0.707.

Theorem 1. Single-valued neutrosophic cross entropy CENS(H 1, H2) for any two SVNSs H1, H2, satisfies
the following properties:

i. CENS(H 1, H2) ≥ 0.
ii. CENS(H 1, H2) = 0 if and only if TH1(ui) = TH2(ui), IH1(ui) = IH2(ui), FH1(ui) =

FH2(ui), ∀ ui ∈ U.
iii. CENS(H 1, H2) = CENS (Hc

1, Hc
2)

iv. CENS (H1, H2) = CENS (H2, H1)
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Proof. (i) For all values of ui ∈ U,
∣∣TH1(ui)

∣∣ ≥ 0,
∣∣TH2(ui)

∣∣ ≥ 0,
∣∣TH1(ui)− TH2(ui)

∣∣ ≥ 0,√
1 +

∣∣TH1(ui)
∣∣2 ≥ 0,

√
1 +

∣∣TH2(ui)
∣∣2 ≥ 0,

∣∣∣(1− TH1
(ui))

∣∣∣ ≥ 0,
∣∣(1− TH2(ui))

∣∣ ≥ 0,∣∣∣(1− TH1
(ui))− (1− TH2(ui))

∣∣∣ ≥ 0,

√
1 +

∣∣∣(1− TH1
(ui))

∣∣∣2 ≥ 0,

√
1 +

∣∣∣(1− TH2
(ui))

∣∣∣2 ≥ 0.

Then,

 2|TH1 (ui)−TH2 (ui)|√
1+|TH1 (ui)|2+

√
1+|TH2 (ui)|2

+
2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2
 ≥ 0.

Similarly,

 2|IH1 (ui)−IH2 (ui)|√
1+|IH1 (ui)|2+

√
1+|IH2 (u)|

2 +
2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2
 ≥ 0,

and

 2|FH1 (ui)−FH2 (ui)|√
1+|FH1 (ui)|2+

√
1+|FH2 (ui)|2

+
2
∣∣∣(1−FH1

(ui))−(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2
 ≥ 0.

Therefore, CENS (H 1, H2) ≥ 0.
Hence complete the proof.

(ii)

 2 |TH1 (ui)−TH2 (ui)|√
1+|TH1 (ui)|2+

√
1+|TH2 (ui)|2

+
2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2
 = 0, ⇔ TH1(ui) = TH2(ui) , 2 |IH1 (ui)−IH2 (ui)|√

1+|IH1 (ui)|2+
√

1+|IH2 (u) |
2 +

2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2
 = 0 ⇔ IH1(ui) = IH2(ui) , and, 2 |FH1 (ui)−FH2 (ui)|√

1+|FH1 (ui)|2+
√

1+|FH2 (ui)|2
+

2
∣∣∣(1−FH1

(ui))−(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2
 = 0, ⇔ F H1(ui) = FH2(ui)

Therefore, CENS(H 1, H2) = 0, iff TH1(ui) = TH2(ui), IH1(ui) = IH2(ui), FH1(ui) = FH2(ui),
∀ ui ∈ U.

Hence complete the proof.
(iii) Using Definition 5, we obtain the following expression

CENS (Hc
1, Hc

2) =
1
2

 n
∑

i =1

〈 2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2 +
2 |TH1 (ui)−TH2 (ui)|√

1+|TH1 (ui)|2+
√

1+|TH2 (ui)|2

 + 2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2 +
2|IH1 (ui)−IH2 (ui)|√

1+|IH1 (ui)|2+
√

1+|IH2 (u)|
2

+ 2
∣∣∣(1−FH1

(ui))−(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2 +
2|FH1 (ui)−FH2 (ui)|√

1+|FH1 (ui)|2+
√

1+|FH2 (ui)|2

〉
= 1

2

 n
∑

i=1

〈 2|TH1 (ui)−TH2 (ui)|√
1+|TH1 (ui)|2+

√
1+|TH2 (ui)|2

+
2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2
+ 2|IH1 (ui)−IH2 (ui)|√

1+|IH1 (ui)|2+
√

1+|IH2 (u)|
2 +

2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2
+ 2|FH1 (ui)−FH2 (ui)|√

1+|FH1 (ui)|2+
√

1+|FH2 (ui)|2
+

2
∣∣∣(1−FH1

(ui))−(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2
〉 = CESN(H1, H2)

Therefore, CENS(H 1, H2) = CENS(H
c
1, Hc

2).
Hence complete the proof.

(iv) Since,
∣∣TH1(ui)− TH2(ui)

∣∣ =
∣∣TH2(ui)− TH1(ui)

∣∣, ∣∣IH1(ui)− IH2(ui)
∣∣ =∣∣IH2(ui)− IH1(ui)

∣∣, ∣∣FH1(ui)− FH2(ui)
∣∣ =

∣∣FH2(ui)− FH1(ui)
∣∣, ∣∣∣(1− TH1

(ui))− (1− TH2(ui))
∣∣∣ =∣∣(1− TH2(ui))− ( 1− TH1(ui))

∣∣, ∣∣(1− IH1(ui))− (1− IH2(ui))
∣∣ =

∣∣(1− IH2(ui))− (1− IH1(ui))
∣∣,
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∣∣∣(1− FH1
(ui))− (1− FH2(ui))

∣∣∣ =
∣∣(1− FH2(ui))− (1− FH1(ui))

∣∣, then,
√

1 +
∣∣TH1(ui)

∣∣2 +√
1 +

∣∣TH2(ui)
∣∣2 =

√
1 +

∣∣TH2(ui)
∣∣2 +

√
1 +

∣∣TH1(ui)
∣∣2,
√

1 +
∣∣IH1(ui)

∣∣2 +
√

1 +
∣∣IH2(ui)

∣∣2 =√
1 +

∣∣IH2(ui)
∣∣2 +

√
1 +

∣∣IH1(ui)
∣∣2,

√
1 +

∣∣FH1(ui)
∣∣2 +

√
1 +

∣∣FH2(ui)
∣∣2 =

√
1 +

∣∣FH2(ui)
∣∣2 +√

1 +
∣∣FH1(ui)

∣∣2,

√
1 +

∣∣∣(1− TH1
(ui))

∣∣∣2 +
√

1 +
∣∣(1− TH2(ui))

∣∣2 =
√

1 +
∣∣(−TH2(ui) )

∣∣2 +√
1 +

∣∣(1− TH1(ui))
∣∣2,
√

1 +
∣∣(1− IH1(ui))

∣∣2 +
√

1 +
∣∣(1− IH2(ui))

∣∣2 =
√

1 +
∣∣(1− IH2(ui))

∣∣2 +√
1 +

∣∣(1− IH1(ui))
∣∣2,

√
1 +

∣∣∣(1− FH1
(ui))

∣∣∣2 +
√

1 +
∣∣(1− FH2(ui))

∣∣2 =
√

1 +
∣∣(1− FH2(ui))

∣∣2 +√
1 +

∣∣(1− FH1(ui))
∣∣2, ∀ ui ∈ U.

Therefore, CENS(H 1, H2) = CENS (H2, H1).
Hence complete the proof.

Definition 9 Weighted NS-cross entropy measure. We consider the weight wi (i = 1, 2, ..., n) for the

element ui (i = 1, 2, .., n) with the conditions wi ∈ [0, 1] and
n
∑

i=1
wi = 1.

Then the weighted cross entropy between SVNSs H1 and H2 can be defined as follows:

CEw
NS (H1, H2) =

1
2

〈
n
∑

i = 1
wi


 2 |TH1 (ui)−TH2 (ui)|√

1+|TH1 (ui)|2+
√

1+|TH2 (ui)|2
+

2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2
 + 2 |IH1 (ui)−IH2 (ui)|√

1+|IH1 (ui) |2+
√

1+|IH2 (u)|
2 +

2
∣∣∣(1−IH1

(ui)) −(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1 −IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2
+

 2 |FH1 (ui)−FH2 (ui)|√
1+|FH1 (ui)|2+

√
1+|FH2 (ui)|2

+
2
∣∣∣(1−FH1

(ui))−(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2


〉 (2)

Theorem 2. Single-valued neutrosophic weighted NS-cross-entropy (defined in Equation (2)) satisfies the
following properties:

i. CEw
NS (H 1, H2) ≥ 0.

ii. CEw
NS (H 1, H2) = 0, if and only if TH1(ui) = TH2(ui) IH1(ui) = IH2(ui), FH1(ui) = FH2(ui),

∀ ui ∈ U.
iii. CEw

NS (H 1, H2) = CEw
NS (Hc

1, Hc
2)

iv. CEw
NS (H 1, H2)= CEw

NS ( H 2, H1)

Proof. (i). For all values of ui ∈ U,
∣∣TH1(ui)

∣∣ ≥ 0
∣∣TH2(ui)

∣∣ ≥ 0,
∣∣TH1(ui)− TH2(ui)

∣∣ ≥ 0,√
1 +

∣∣TH1(ui)
∣∣2 ≥ 0,

√
1 +

∣∣TH2(ui)
∣∣2 ≥ 0,

∣∣∣(1− TH1
(ui))

∣∣∣ ≥ 0,
∣∣(1− TH2(ui))

∣∣ ≥ 0,∣∣∣(1− TH1
(ui))− (1− TH2(ui))

∣∣∣ ≥ 0,

√
1 +

∣∣∣(1− TH1
(ui))

∣∣∣2 ≥ 0,

√
1 +

∣∣∣(1− TH2
(ui))

∣∣∣2 ≥ 0, then, 2 |TH1 (ui)−TH2 (ui)|√
1+|TH1 (ui)|2+

√
1+|TH2 (ui)|2

+
2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2
 ≥ 0.

Similarly,

 2 |IH1 (ui)−IH2 (ui)|√
1+|IH1 (ui)|2+

√
1+|IH2 (u)|

2 +
2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2
 ≥ 0,

and

 2 |FH1 (ui)−FH2 (ui)|√
1+|FH1 (ui)|2+

√
1+|FH2 (ui)|2

+
2
∣∣∣(1−FH1

(ui))−(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2
 ≥ 0.

Since wi ∈ [0, 1] and
n
∑

i=1
wi = 1, therefore, CEw

NS (H 1, H2) ≥ 0.

Hence complete the proof.
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(ii) Since,

 2 |TH1 (ui)−TH2 (ui)|√
1+|TH1 (ui)|2+

√
1+|TH2 (ui)|2

+
2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2
 = 0, ⇔ TH1(ui) = TH2(ui) , 2 |IH1 (ui)−IH2 (ui)|√

1+|IH1 (ui) |2+
√

1+|IH2 (u) |
2 +

2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2
 = 0, ⇔ IH1(ui) = IH2(ui) , 2 |FH1 (ui)−FH2 (ui)|√

1+|FH1 (ui)|2+
√

1+|FH2 (ui)|2
+

2
∣∣∣(1−FH1

(ui))−(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2
 = 0, ⇔ F H1(ui) = FH2(ui)

and wi ∈ [0, 1] ,
n
∑

i=1
wi = 1, wi ≥ 0. Therefore, CEw

NS (H1, H2) = 0 iff TH1(ui) = TH2(ui),

IH1(ui) = IH2(ui), FH1(ui) = FH2(ui), ∀ ui ∈ U.
Hence complete the proof.

(iii) Using Definition 5, we obtain the following expression

CEw
NS (Hc

1, Hc
2) =

1
2

 n
∑

i =1
wi

〈 2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2 +
2 |TH1 (ui)−TH2 (ui)|√

1+|TH1 (ui)|2+
√

1+|TH2 (ui)|2

 + 2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2 +
2 |IH1 (ui)−IH2 (ui)|√

1+|IH1 (ui)|2+
√

1+|IH2 (u)|
2

+ 2
∣∣∣(1−FH1

(ui)) −(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2 +
2 |FH1 (ui)−FH2 (ui)|√

1+|FH1 (ui)|2+
√

1+|FH2 (ui)|2

〉
= 1

2

 n
∑

i =1
wi

〈 2 |TH1 (ui)−TH2 (ui)|√
1+|TH1 (ui)|2+

√
1+|TH2 (ui)|2

+
2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2
 + 2 |IH1 (ui)−IH2 (ui)|√

1+|IH1 (ui)|2+
√

1+|IH2 (u)|
2 +

2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2
+ 2 |FH1 (ui)−FH2 (ui)|√

1+|FH1 (ui)|2+
√

1+|FH2 (ui)|2
+

2
∣∣∣(1−FH1

(ui)) −(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2
〉 = CEw

NS (H1, H2)

Therefore, CEw
NS (H1, H2) = CEw

NS (Hc
1, Hc

2).
Hence complete the proof.

(iv) Since
∣∣TH1(ui)− TH2(ui)

∣∣ =
∣∣TH2(ui)− TH1(ui)

∣∣, ∣∣IH1(ui)− IH2(ui)
∣∣ =

∣∣IH2(ui)− IH1(ui)
∣∣,∣∣FH1(ui)− FH2(ui)

∣∣ =
∣∣FH2(ui)− FH1(ui)

∣∣, ∣∣∣(1− TH1
(ui))− (1− TH2(ui))

∣∣∣ =∣∣(1− TH2(ui))− (1− TH1(ui))
∣∣, ∣∣(1− IH1(ui))− (1− IH2(ui))

∣∣ =
∣∣(1− IH2(ui))− (1− IH1(ui))

∣∣,∣∣∣(1− FH1
(ui))− (1− FH2(ui))

∣∣∣ =
∣∣(1− FH2(ui))− (1− FH1(ui))

∣∣, we obtain
√

1 +
∣∣TH1(ui)

∣∣2 +√
1 +

∣∣TH2(ui)
∣∣2 =

√
1 +

∣∣TH2(ui)
∣∣2 +

√
1 +

∣∣TH1(ui)
∣∣2,
√

1 +
∣∣IH1(ui)

∣∣2 +
√

1 +
∣∣IH2(ui)

∣∣2 =√
1 +

∣∣IH2(ui)
∣∣2 +

√
1 +

∣∣IH1(ui)
∣∣2,

√
1 +

∣∣FH1(ui)
∣∣2 +

√
1 +

∣∣FH2(ui)
∣∣2 =

√
1 +

∣∣FH2(ui)
∣∣2 +√

1 +
∣∣FH1(ui)

∣∣2,

√
1 +

∣∣∣(1− TH1
(ui))

∣∣∣2 +
√

1 +
∣∣(1− TH2(ui))

∣∣2 =
√

1 +
∣∣(−TH2(ui) )

∣∣2 +√
1 +

∣∣(1− TH1(ui))
∣∣2,
√

1 +
∣∣(1− IH1(ui))

∣∣2 +
√

1 +
∣∣(1− IH2(ui))

∣∣2 =
√

1 +
∣∣(1− IH2(ui))

∣∣2 +√
1 +

∣∣(1− IH1(ui))
∣∣2,

√
1 +

∣∣∣(1− FH1
(ui))

∣∣∣2 +
√

1 +
∣∣(1− FH2(ui))

∣∣2 =
√

1 +
∣∣(1− FH2(ui))

∣∣2 +√
1 +

∣∣(1− FH1(ui))
∣∣2, ∀ ui ∈ U and wi ∈ [0, 1] ,

n
∑

i=1
wi = 1.

Therefore, CEw
NS (H1, H2) = CEw

NS (H2, H1).
Hence complete the proof.
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4. MAGDM Strategy Using Proposed Ns-Cross Entropy Measure under SVNS Environment

In this section, we develop a new MAGDM strategy using the proposed NS-cross entropy measure.

Description of the MAGDM Problem

Assume that A = {A1, A2, A3, . . . , Am} and G = {G1, G2, G3, . . . , Gn} be the discrete set
of alternatives and attributes respectively and W = {w1, w2, w3, . . . , wn} be the weight vector of

attributes Gj(j = 1, 2, 3, . . . , n), where wj ≥ 0 and
n
∑

j=1
wj = 1. Assume that E =

{
E1, E2, E3, . . . , Eρ

}
be the set of decision-makers who are employed to evaluate the alternatives. The weight vector
of the decision-makers Ek (k = 1, 2, 3, . . . , ρ) is λ =

{
λ1, λ2, λ3, . . . , λρ

}
(where, λk ≥ 0 and

ρ

∑
k=1

λk = 1), which can be determined according to the decision-makers’ expertise, judgment quality

and domain knowledge.
Now, we describe the steps of the proposed MAGDM strategy (see Figure 1) using NS-cross

entropy measure.
MAGDM Strategy Using Ns-Cross Entropy Measure

Step 1. Formulate the decision matrices

For MAGDM with SVNSs information, the rating values of the alternatives Ai (i = 1, 2, 3, . . . , m)

based on the attribute Gj ( j = 1, 2, 3, . . . , n) provided by the k-th decision-maker can be expressed in
terms of SVNN as ak

ij =< Tk
ij, Ik

ij, Fk
ij > (i = 1, 2, 3, . . . , m; j = 1, 2, 3, . . . , n; k = 1, 2, 3, . . . , ρ). We present

these rating values of alternatives provided by the decision-makers in matrix form as follows:

Mk =


G1 G2 . . . . Gn

A1 ak
11 ak

12 . . . ak
1n

A2 ak
21 ak

2n ak
22

. . . . . .
Am ak

m1 ak
m2 . . . ak

mn

 (3)

Step 2. Formulate priori/ideal decision matrix

In the MAGDM, the a priori decision matrix has been used to select the best alternatives among
the set of collected feasible alternatives. In the decision-making situation, we use the following decision
matrix as a priori decision matrix.

P =


G1 G2 . . . . Gn

A1 a∗11 a∗12 . . . a∗1n
A2 a∗21 a∗22 a∗2n
. . . . . .

Am a∗m1 a∗m2 . . . a∗mn

 (4)

where, a∗ij =< max
i

(Tk
ij), min

i
(Ik

ij), min
i

(Fk
ij) >) corresponding to benefit attributes and a∗ij =<

min
i

(Tk
ij), max

i
(Ik

ij), max
i

(Fk
ij) > corresponding to cost attributes, and (i = 1, 2, 3, . . . , m; j = 1, 2, 3, . . . ,

n; k = 1, 2, 3, . . . , ρ).

Step 3. Determinate the weights of decision-makers

To find the decision-makers’ weights we introduce a model based on the NS-cross entropy
measure. The collective NS-cross entropy measure between Mk and P (Ideal matrix) is defined
as follows:

CEc
NS(Mk, P) =

1
m

m

∑
i=1

CENS

(
Mk(Ai), P(Ai)

)
(5)
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where, CENS

(
Mk(Ai), P(Ai)

)
=

n
∑

j=1
CENS(Mk(Ai(Gj)), P(Ai(Gj))).

Thus, we can introduce the following weight model of the decision-makers:

λK =

(
1÷ CEc

NS(Mk, P)
)

ρ

∑
k=1

(
1÷ CEc

NS(Mk, P)
) (6)

where, 0 ≤ λK ≤ 1 and
ρ

∑
k=1

λK = 1 for k = 1, 2, 3, . . . , ρ.

   Figure.1 Decision making procedure of the proposed MAGDM strategy 

 Decision making analysis phase 

HH 

 Preparatory Phase 

 Multi attribute group decision making problem 

Formation of decision matrix provided 

by decision makers 
Step-1 
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Rank the priority 

Step-4 

Step-5 

Selection the best alternative 

Step- 6 

Formation of weighted aggregated 
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decision maker 
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attribute 

Step-7 

Step-8 
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Step- 3 
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Step-5 
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decision maker 

Determination of the weight of 

attributes 

Step-7 

Step-8 

Figure 1. Decision-making procedure of the proposed MAGDM strategy.
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Step 4. Formulate the weighted aggregated decision matrix

For obtaining one group decision, we aggregate all the individual decision matrices (Mk) to
an aggregated decision matrix (M) using single valued neutrosophic weighted averaging (SVNWA)
operator ([51]) as follows:

aij = SVNSWAλ( a1
ij, a2

ij, a3
ij, . . . , aρij) = (λ1a1

ij ⊕ λ2a2
ij ⊕ λ3a3

ij ⊕ . . .⊕ λρaρij) =

< 1−
ρ

∏
k=1

(1 − Tk
ij)

λk ,
ρ

∏
k=1

(Ik
ij)

λk ,
ρ

∏
k=1

(Fk
ij)

λk >
(7)

Therefore, the aggregated decision matrix is defined as follows:

M =


G1 G2 . . . . Gn

A1 a11 a12 . . . a1n
A2 a21 a22 a2n
. . . . . .

Am am1 am2 . . . amn

 (8)

where, aij =< Tij, Iij, Fij >, (i = 1, 2, 3, . . . , m; j = 1, 2, 3, . . . , n; k = 1, 2, 3, . . . , ρ).

Step 5. Determinate the weight of attributes

To find the attributes weight we introduce a model based on the NS-cross entropy measure.
The collective NS-cross entropy measure between M (Weighted aggregated decision matrix) and P
(Ideal matrix) for each attribute is defined by

CEj
NS(M, P) =

1
m

m

∑
i=1

CENS
(

M(Ai(Gj)), P(Ai(Gj))
)

(9)

where, i = 1, 2, 3, . . . , m; j = 1, 2, 3, . . . , n.
Thus, we defined a weight model for attributes as follows:

wj =

(
1÷ CEj

NS(M, P)
)

n
∑

J=1

(
1÷ CEj

NS(M, P)
) (10)

where, 0 ≤ wj ≤ 1 and
n
∑

j=1
wj = 1 for j = 1, 2, 3, . . . , n.

Step 6. Calculate the weighted NS-cross entropy measure

Using Equation (2), we calculate weighted cross entropy value between weighted aggregated
matrix and priori matrix. The cross entropy values can be presented in matrix form as follows:

NS Mw
CE =


CEw

NS (A1)

CEw
NS (A2)

. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .

CEw
NS (Am)

 (11)

Step 7. Rank the priority

Smaller value of the cross entropy reflects that an alternative is closer to the ideal alternative.
Therefore, the preference priority order of all the alternatives can be determined according to the
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increasing order of the cross entropy values CEw
NS (Ai) (i = 1, 2, 3, . . . , m). Smallest cross entropy value

indicates the best alternative and greatest cross entropy value indicates the worst alternative.

Step 8. Select the best alternative

From the preference rank order (from step 7), we select the best alternative.

5. Illustrative Example

In this section, we solve an illustrative example adapted from [12] of MAGDM problems to reflect
the feasibility, applicability and efficiency of the proposed strategy under the SVNS environment.

Now, we use the example [12] for cultivation and analysis. A venture capital firm intends to make
evaluation and selection of five enterprises with the investment potential:

(1) Automobile company (A1)
(2) Military manufacturing enterprise (A2)
(3) TV media company (A3)
(4) Food enterprises (A4)
(5) Computer software company (A5)

On the basis of four attributes namely:

(1) Social and political factor (G1)
(2) The environmental factor (G2)
(3) Investment risk factor (G3)
(4) The enterprise growth factor (G4).

The investment firm makes a panel of three decision-makers.
The steps of decision-making strategy (4.1.1.) to rank alternatives are presented as follows:

Step: 1. Formulate the decision matrices

We represent the rating values of alternatives Ai (i = 1, 2, 3, 4, 5) with respects to the attributes Gj
(j = 1, 2, 3, 4) provided by the decision-makers Ek (k = 1, 2, 3) in matrix form as follows:

Decision matrix for E1 decision-maker

M1 =



G1 G2 G3 G4

A1 (0.9, 0.5, 0.4) (0.7, 0.4, 0.4) (0.7, 0.3, 0.4) (0.5, 0.4, 0.9)
A2 (0.7, 0.2, 0.3) (0.8, 0.4, 0.3) (0.9, 0.6, 0.5) (0.9, 0.1, 0.3)
A3 (0.8, 0.4, 0.4) (0.7, 0.4, 0.2) (0.9, 0.7, 0.6) (0.7, 0.3, 0.3)
A4 (0.5, 0.8, 0.7) (0.6, 0.3, 0.4) (0.7, 0.2, 0.5) (0.5, 0.4, 0.7)
A5 (0.8, 0.4, 0.3) (0.5, 0.4, 0.5) (0.6, 0.4, 0.4) (0.9, 0.7, 0.5)


(12)

Decision matrix for E2 decision-maker

M 2 =



G1 G2 G3 G4

A1 (0.7, 0.2, 0.3) (0.5, 0.4, 0.5) (0.9, 0.4, 0.5) (0.6, 0.5, 0.3)
A2 (0.7, 0.4, 0.4) (0.7, 0.3, 0.4) (0.7, 0.3, 0.4) (0.6, 0.4, 0.3)
A3 (0.6, 0.4, 0.4) (0.5, 0.3, 0.5) (0.9, 0.5, 0.4) (0.6, 0.5, 0.6)
A4 (0.7, 0.5, 0.3) (0.6, 0.3, 0.6) (0.7, 0.4, 0.4) (0.8, 0.5, 0.4)
A5 (0.9, 0.4, 0.3) (0.6, 0 .4, 0.5) (0.8, 0.5, 0.6) (0.5, 0.4, 0.5)


(13)
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Decision matrix for E3 decision-maker

M 3 =



G1 G2 G3 G4

A1 (0.7, 0.2, 0.5) (0.6, 0.4, 0.4) (0.7, 0.4, 0.5) (0.9, 0.4, 0.3)
A2 (0.6, 0.5, 0.5) (0.9, 0.3, 0.4) (0.7, 0.4, 0.3) (0.8, 0.4, 0.5)
A3 (0.8, 0.3, 0.5) (0.9, 0.3, 0.4) (0.8, 0.3, 0.4) (0.7, 0.3, 0.4)
A4 (0.9, 0.3, 0.4) (0.6, 0.3, 0.4) (0.5, 0.2, 0.4) (0.7, 0.3, 0.5)
A5 (0.8, 0.3, 0.3) (0.6, 0.4, 0.3) (0.6, 0.3, 0.4) (0.7, 0.3, 0.5)


(14)

Step: 2. Formulate priori/ideal decision matrix

A priori/ideal decision matrix Please provide a sharper picture

P =



G1 G2 G3 G4

A1 (0.9, 0.2, 0.3) (0.7, 0.4, 0.4) (0.9, 0.3, 0.4) (0.9, 0.4, 0.3)
A2 (0.7, 0.2, 0.3) (0.9, 0.3, 0.3) (0.9, 0.3, 0.3) (0.9, 0.1, 0.3)
A3 (0.8, 0.3, 0.4) (0.9, 0.3, 0.2) (0.9, 0.3, 0.4) (0.7, 0.3, 0.3)
A4 (0.9, 0.3, 0.3) (0.6, 0.3, 0.4) (0.7, 0.2, 0.4) (0.7, 0.3, 0.4)
A5 (0.9, 0.3, 0.3) (0.6, 0.4, 0.3) (0.8, 0.3, 0.4) (0.9, 0.3, 0.5)


(15)

Step: 3. Determine the weight of decision-makers

By using Equations (5) and (6), we determine the weights of the three decision-makers as follows:

λ1 =
(1÷ 0.9)

3.37
≈ 0.33, λ2 =

(1÷ 1.2)
3.37

≈ 0.25, λ1 =
(1÷ .07)

3.37
≈ 0.42.

Step: 4. Formulate the weighted aggregated decision matrix

Using Equation (7) the weighted aggregated decision matrix is presented as follows:
Weighted Aggregated decision matrix

M =



G1 G2 G3 G4

A1 (0.8, 0.3, 0.4) (0.6, 0.4, 0.4) (0.8, 0.4, 0.4) (0.7, 0.4, 0.5)
A2 (0.7, 0.3, 0 .4) (0.8, 0.3, 0.4) (0.8, 0.4, 0.4) (0.8, 0.2, 0.3)
A3 (0.8, 0.4, 0.4) (0.8, 0.3, 0.3) (0.9, 0.5, 0.5) (0.7, 0.3, 0.4)
A4 (0.7, 0.5, 0.5) (0.6, 0.3, 0.4) (0.6, 0.2, 0.4) (0.7, 0.4, 0.5)
A5 (0.8, 0.4, 0.4) (0.6, 0.4, 0.4) (0.7, 0.4, 0.4) (0.8, 0.5, 0.5)


(16)

Step: 5. Determinate the weight of the attributes

By using Equations (9) and (10), we determine the weights of the four attribute as follows:

w1 =
(1÷ 0.26)

25
≈ 0.16, w2 =

(1÷ 0.11)
25

≈ 0.37, w3 =
(1÷ 0.20)

25
≈ 0.20, w4 =

(1÷ 0.15)
25

≈ 0.27.

Step: 6. Calculate the weighted SVNS cross entropy matrix

Using Equation (2) and weights of attributes, we calculate the weighted NS-cross entropy values
between ideal matrix and weighted aggregated decision matrix.
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NS Mw
CE =


0.195
0.198
0.168
0.151
0.184

 (17)

Step: 7. Rank the priority

The cross entropy values of alternatives are arranged in increasing order as follows:

0.151 < 0.168 < 0.184 < 0.195 < 0.198.

Alternatives are then preference ranked as follows:

A4 > A3 > A5 > A1 > A2.

Step: 8. Select the best alternative

From step 7, we identify A4 is the best alternative. Hence, Food enterprises (A4) is the best
alternative for investment.

In Figure 2, we draw a bar diagram to represent the cross entropy values of alternatives which
shows that A4 is the best alternative according our proposed strategy.

In Figure 3, we represent the relation between cross entropy values and acceptance values of
alternatives. The range of acceptance level for five alternatives is taken by five points. The high
acceptance level of alternatives indicates the best alternative for acceptance and low acceptance level
of alternative indicates the poor acceptance alternative.

We see from Figure 3 that alternative A4 has the smallest cross entropy value and the highest
acceptance level. Therefore A4 is the best alternative for acceptance. Figure 3 indicates that alternative
A2 has highest cross entropy value and lowest acceptance value that means A2 is the worst alternative.
Finally, we conclude that the relation between cross entropy values and acceptance value of alternatives

Figure 3. Relation between weighted NS-cross entropy values and acceptance level line of 
alternatives. 

6. Comparative Study and Discussion 

In literature only two MADM strategies [144,145] have been proposed. No MADGM strategy is
available. So the proposed MAGDM is novel and non-comparable with the existing cross entropy
under SVNS for numerical example. 

i. The MADM strategies [144,145] are not applicable for MAGDM problems. The proposed 
MAGDM strategy is free from such drawbacks. 

ii. Ye [144] proposed cross entropy that does not satisfy the symmetrical property straightforward 
and is undefined for some situations but the proposed strategy satisfies symmetric property 
and is free from undefined phenomenon. 

iii. The strategies [144,145] cannot deal with the unknown weight of the attributes whereas the
proposed MADGM strategy can deal with the unknown weight of the attributes 

iv. The strategies [144,145] are not suitable for dealing with the unknown weight of 
decision-makers, whereas the essence of the proposed NS-cross entropy-based MAGDM is that 
it is capable of dealing with the unknown weight of the decision-makers.
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7. Conclusions

In this paper, we have defined a novel cross entropy measure in SVNS environment. The proposed
cross entropy measure in SVNS environment is free from the drawbacks of asymmetrical behavior
and undefined phenomena. It is capable of dealing with the unknown weight of attributes and the
unknown weight of decision-makers. We have proved the basic properties of the NS-cross entropy
measure. We also defined weighted NS-cross entropy measure and proved its basic properties. Based
on the weighted NS-cross entropy measure, we have developed a novel MAGDM strategy to solve
neutrosophic multi-attribute group decision-making problems. We have at first proposed a novel
MAGDM strategy based on NS-cross entropy measure with technique to determine the unknown
weight of attributes and the unknown weight of decision-makers. Other existing cross entropy
measures [144,145] can deal only with the MADM problem with single decision-maker and known
weight of the attributes. So in general, our proposed NS-cross entropy-based MAGDM strategy is not
comparable with the existing cross-entropy-based MADM strategies [144,145] under the single-valued
neutrosophic environment. Finally, we solve a MAGDM problem to show the feasibility, applicability
and efficiency of the proposed MAGDM strategy. The proposed NS-cross entropy-based MAGDM
can be applied in teacher selection, pattern recognition, weaver selection, medical treatment selection
options, and other practical problems. In future study, the proposed NS-cross entropy-based MAGDM
strategy can be also extended to the interval neutrosophic set environment.
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Abstract:    A rough fuzzy set is the result of 
approximation of a fuzzy set with respect to a crisp 
approximation space. It is mathematical tool for the 
knowledge   discovery   in   the   fuzzy   information 
systems. In this paper, we introduce the concepts of 
rough standard neutrosophic sets, standard 
neutrosophic information system and give the 
knowledge discovery on standard neutrosophic 
information system based on rough standard 
neutrosophic sets. 

Keywords:  rough  set,  standard  neutrosophic  set, 
rough  standard  neutrosophic  set,  standard 
neutrosophic information systems 

1. INTRODUCTION

Rough set theory was introduced by Pawlak in 
1980s [1]. It becomes a usefully mathematical tool for 
data mining, especially for redundant and uncertain 
data.  At  first,  the  establishment  of  the rough  set 
theory is  based  on  equivalence  relation.  The  set  of 
equivalence classes of the universal set, obtained by 
an equivalence    relation,    is    the    basis    for    the 
construction of upper and lower approximation of the 
subset of universal set. 

Fuzzy set theory was introduced by Zadeh since 
1965 [2]. Immediately, it became a useful method to 
study in the problems of imprecision and uncertainty. 
Since, a lot of new theories treating imprecision and 
uncertainty   have   been   introduced.   For   instance, 

Intuitionistic fuzzy sets were introduced in1986, by K. 
Atanassov [3], which is a generalization of the notion 
of a fuzzy set. When fuzzy set give the degree of 
membership of an element in a given set, Intuitionistic 
fuzzy set give a degree of membership and a degree of 
non-membership of an element in a given set. In 1999 
[14], Sarandache gave the concept of neutrosophic set 
which generalized fuzzy set and intuitionistic fuzzy 
set. This new concept is difficult to apply in the real 
appliction.  It  is  a  set  in which  each  proposition  is 
estimated to have a degree of truth (T), adegree of 
indeterminacy (I) and a degree of falsity (F).  Over 
time, the subclass of neutrosophic sets was proposed. 
They are also more advantageous in the practical 
application. Wang et al. [15] proposed interval 
neutrosophic sets and some operators of them. Wang 
et al. [16] proposed a single valued neutrosophic set as 
an instance of the neutrosophic set accompanied with 
various set theoretic operators and properties. Ye [17] 
defined the concept of simplified neutrosophic sets, It 
is  a  set  where each element  of  the  universe  has a 
degree of truth, indeterminacy and falsity respectively 
and which lies between [0, 1] and some operational 
laws for simplified neutrosophic sets and to propose 
two aggregation operators, including a simplified 
neutrosophic  weighted  arithmetic  average  operator 
and a simplified neutrosophic weighted geometric 
average operator. In 2013, Cuong and Kreinovich 
introduced the concept of picture fuzzy set [4], in 
which   a   given   set   were   to   be   in   with   three 
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memberships: a degree of positive membership, a 
degree  of  negative  membership,  and  a  degree  of 
neutral membership of an element in this set. After 
that, Son given the application of the picture fuzzy set 
in the clustering problem [5]. We also regard picture 
fuzzy set as standard neutrosophic set.  In addition, 
combining rough set and fuzzy set has also many 
interesting results. The approximation of rough (or 
fuzzy) sets in fuzzy approximation space give us the 
fuzzy rough set [6, 7, 8]; and the approximation of 
fuzzy sets in crisp approximation space give us the 
rough fuzzy set [6, 7]. Wu et al, [8] present a general 
framework for the study of fuzzy rough sets in both 
constructive and axiomatic approaches. By the same, 
Wu and Xu were investigated the fuzzy topological 
structures on the rough fuzzy sets [9], in which both 
constructive and  axiomatic  approaches are  used.  In 
2012, Xu and Wu were also investigated the rough 
intuitionistic  fuzzy  set  and  the  intuitionistic  fuzzy 
topologies  in  crisp  approximation  spaces  [10].  In 
2015, Thao et al. introduces the rough picture fuzzy 
set is the result of approximation of a picture fuzzy set 
with respect to a crisp approximation space [12]. 

In this paper, we introduce the concept of standard 
neutrosophic  information  system,  study  the 
knowledge discovery of standard neutrosophic 
information system based on rough standard 
neutrosophic sets. The remaining part of this paper is 
organized as following: we recall basic notions of 
rough   set,   standard   neutrosophic   set   and   rough 
standard neutrosophic set on the crisp approximation 

 space,  respectively,  in  section  2  and  section  3.  In  
 section 4, we introduce the basic concepts of standard 
neutrosophic    information    system.    Finally,    we 
investigate   the   knowledge   discovery   of   standard 
neutrosophic information system and the knowledge 
reduction and extension of the standard neutrosophic 
information  system  in   section   5  and   section  6, 
respectively. 

II. BASIC NOTIONS OF SN SET AND
ROUGH SET 

In  this  paper,  we  denote      be  a  nonempty set 
called  the  universe  of  discourse.  The  class  of  all 
subsets of    will be denoted by          and the class of 
all fuzzy subsets of    will be denoted by 

Definition 1. [4]. A standard neutrosophic set (SN - 
set)     on the universe    is an object of the form 
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VII. CONCLUSION

In this paper, we introduce the concept of SN- 
information system, study the knowledge discovery of 
standard  neutrosophic  information  system based  on 
rough SN- sets. We investigate some problems of the 
knowledge discovery of SNIS and the knowledge 
reduction and extension of the SNIS in section 6. In 
the future, we introduce the application of this study 
in the practical problems. 
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ABSTRACT 

This paper presents a study of neutrosophic shortest path with interval valued neutrosophic 

number on a network. A proposed algorithm also gives the shortest path length using ranking 

function from source node to destination node. Here each arc length is assigned to interval 

valued neutrosophic number. Finally, a numerical example has been provided for illustrating 

the proposed approach  

1. INTRODUCTION

Neutrosophy was pioneered by Smarandache in 1998. It is a branch of philosophy which 

studies the origin, nature, and scope of neutralities, as well as their interactions with different 

Shortest Path Problem under Interval Valued 
Neutrosophic Setting 

Said Broumi, Assia Bakali, Mohamed Talea, Florentin Smarandache, 
K. Kishore, R. Şahin 

S. Broumi, A. Bakali, M. Talea, F. Smarandache, K. Kishore, R. Şahin (2018). Shortest Path Problem under 
Interval Valued Neutrosophic Setting. Journal of Fundamental and Applied Sciences, 10(4S), 131-137 

ideational spectra. Smarandache generalized the concepts of fuzzy sets [28] and intuitionistic 

fuzzy set [25] by adding an independent indeterminacy-membership. Neutrosophic set is a 

powerful tool to deal with incomplete, indeterminate and inconsistent information in real 

world, which have attracted the widespread concerns for researchers. The concept of 

neutrosophic set is characterized by three independent degrees namely truth-membership 

degree (T), indeterminacy-membership degree (I), and falsity-membership degree (F). Later 

on, Smarandache extended the neutrosophic set to neutrosophic overset, underset, and offset 

[46].  
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The concept of single valued neutrosophic theory has proven to be useful in many different 

field such as the decision making problem, medical diagnosis and so on. Later on, the concept 

of interval valued neutrosophic sets [15] (IVNS for short) appear as a generalization of fuzzy 

sets, intuitionistic fuzzy set, interval valued fuzzy sets [20], interval valued intuitionistic fuzzy 

sets [26] and single valued neutrosophic sets. Interval valued neutrosophic set is a model of 

a neutrosophic set, which can be used to handle uncertainty in fields of scientific, 

environment and engineering. This concept is characterized by the truth-

membership, the indeterminacy-membership and the falsity-membership independently, 

which is a powerful tool to deal with incomplete, indeterminate and inconsistent information. 

3. EXPERIMENTAL

The shortest path problem is a fundamental algorithmic problem, in which a minimum weight 

path is computed between two nodes of a weighted, directed graph. This problem has been 

studied for a long time and has attracted researchers from various areas of interests such 

operation research, computer science, communication network and so on. There are many 

shortest path problems [2, 3, 4, 12, 31, 45] that have been studied with different types of input 

data, including fuzzy set, intuitionistic fuzzy sets, trapezoidal intuitionistic fuzzy sets vague 

set. Till now, few research papers deal with shortest path in neutrosophic environment. 

Broumi et al. 

4. CONCLUSION

In this paper we developed an algorithm for solving shortest path problem on a network with 

interval valued neutrosophic arc lengths. The process of ranking the path is very useful to make 

decisions in choosing the best of all possible path alternatives. We have explained the method 

by an example with the help of a hypothetical data. Further, we plan to extend the following 

algorithm of interval neutrosophic shortest path problem in an interval valued bipolar 

neutrosophic environment.  
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Abstract. In this article we introduce the concept of complex neutrosophıc subgroups (normal subgroups).
We define the notion of alpha-cut of complex neutrosophıc set, give examples and study some of its related
results. We also define the Cartesian product of complex neutrosophic subgroups. Furthermore, we
introduce the concept of image and preimage of complex neutrosophic set and prove some of its properties.

1. Introduction

[1], In 1965, Zadeh presented the idea of a fuzzy set. [2], Atanassov’s in 1986, initiated the notion of
intuitionistic fuzzy set which is the generalization of a fuzzy set. Neutrosophic set was first proposed by
Smarandache in 1999 [5], which is the generalization of fuzzy set and intuitionistic fuzzy set. Neutrosophic
set is characterized by a truth membership function, an indeterminacy membership function and a falsity
membership function. In 2002, the Ramot et al. [8], generalized the concept of fuzzy set and introduced
the notion of complex fuzzy set. There are many researchers which have worked on complex fuzzy set
for instance, Buckly [6], Nguyen et al. [7] and Zhang et al. [9]. In contrast, Ramot et al. [8] presented an
innovative concept that is totally different from other researchers, in which the author extended the range of
membership function to the unit circle in the complex plane, unlike the others who limited to. Furthermore
to solve enigma they also added an extra term which is called phase term in translating human language
to complex valued functions on physical terms and vice versa. Abd Uazeez et al. in 2012 [10], added the
non-membership term to the idea of complex fuzzy set which is known as complex intuitionistic fuzzy
sets, the range of values are extended to the unit circle in complex plan for both membership and non-
membership functions instead of [0, 1]. In 2016, Mumtaz Ali et al. [12], extended the concept of complex
fuzzy set, complex intuitionistic fuzzy set, and introduced the concept of complex neutrosophic sets which
is a collection of complex-valued truth membership function, complex-valued indeterminacy membership
function and complex-valued falsity membership function. Further in 1971, Rosenfeld [3], applied the
concept of fuzzy set to groups and introduced the concept of fuzzy groups. The author defined fuzzy
subgroups and studied some of its related properties. Vildan and Halis in 2017 [13], extended the concept
of fuzzy subgroups on the base of neutrosophic sets and initiated the notion of neutrosophic subgroups.

Keywords. Complex fuzzy sets; Complex neutrosophic sets; Neutrosophic subgroups; Complex neutrosophic 
subgroups; Complex neutrosophic normal subgroups.

An Application of Complex Neutrosophic Sets 
to the Theory of Groups 

Muhammad Gulistan, Florentin Smarandache, Amir Abdullah 
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Due to the motivation and inspiration of the above discussion. In this paper we introduce the concept of
a complex neutrosophic subgroups (normal subgroups). We have give examples and study some related
results. We also study the concept of Cartesian product of complex neutrosophic subgroups, image and
preimage of complex neutrosophic set and alpha-cut of complex neutrosophic set with the help of examples
and prove some of its properties.

2. Preliminaries

Here in this part we gathered some basic helping materials.

Definition 2.1. [1] A function f is defined from a universe X to a closed interval [0, 1] is called a fuzzy set,i.e., a
mapping:

f : X −→ [0, 1].

Definition 2.2. [8] A complex fuzzy set (CFS) C over the universe X, is defined an object of the form:

C = {(x, µC(x)) : x ∈ X}

where µC(x) = rC(x) · eiωC(x), here the amplitude term rC(x) and phase term ωC(x), are real valued functions, for every
x ∈ X, the amplitude term µC(x) : X → [0, 1] and phase term ωC(x) lying in the interval [0, 2π].

Definition 2.3. [11] Let C1 and C2 be any two complex Atanassov’s intuitionistic fuzzy sets (CAIFSs) over the
universe X, where

C1 =
{〈

x, rC1 (x) · eiν
C1

(x)
, kC1 (x) · eiω

C1
(x)〉 : x ∈ X

}
and

C2 =
{〈

x, rC2 (x) · eiν
C2

(x)
, kC2 (x) · eiω

C2
(x)〉 : x ∈ X

}
.

Then

1. Containment:

C1 ⊆ C2 ⇔ rC1 (x) ≤ rC2 (x), kC1 (x) ≥ kC2 (x) and ν
C1

(x) ≤ ν
C2

(x), ω
C1

(x) ≥ ω
C2

(x).

2. Equal:

C1 = C2 ⇔ rC1 (x) = rC2 (x), kC1 (x) = kC2 (x) and ν
C1

(x) = ν
C2

(x), ω
C1

(x) = ω
C2

(x).

Definition 2.4. [12] Let X be a universe of discourse, and x ∈ X. A complex neutrosophic set (CNS) C in X is
characterized by a complex truth membership function CT(x) = pC(x) · eiµC(x), a complex indeterminacy membership
function CI(x) = qC(x) · eiνC(x) and a complex falsity membership function CF(x) = rC(x) · eiωC(x). The values
CT(x),CI(x),CF(x) may lies all within the unit circle in the complex plane, where pC(x), qC(x), rC(x) and µC(x),
νC(x) ωC(x) are amplitude terms and phase terms, respectively, and where pC(x), qC(x), rC(x) ∈ [0, 1], such that,
0 ≤ pC(x) + qC(x) + rC(x) ≤ 3 and µC(x), νC(x) ωC(x) ∈ [0, 2π].

The complex neutrosophic set can be represented in the form as:

C =

{〈
x,CT(x) = pC(x) · eiµC(x),CI(x) = qC(x) · eiνC(x),

CF(x) = rC(x) · eiωC(x)

〉
: x ∈ X

}
.

Example 2.5. Let X = {x1, x2, x3} be the universe set and C be a complex neutrosophic set which is given by:

C =


〈
x1, 0.2e0.5πi, 0.3e0.6πi, 0.4e0.8πi

〉
,
〈
x2, 0.4e0.6πi, 0.5e1.3πi, 0.1e0.6πi

〉
,〈

x3, 0.1e0.6πi, 0.3e0.9πi, 0.9e0.7πi
〉  .
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Definition 2.6. [3] Let G be any group with multiplication and F be a fuzzy subset of a group G, then F is called a
fuzzy subgroup (FSG) of G, if the following axioms are hold:

(FSG1): F (x · y) ≥ min{F (x),F (y)}.

(FSG2): F (x−1) ≥ F (x), ∀ x, y ∈ G.

Definition 2.7. [13] Let G be any group with multiplication and N be a neutrosophic set on a group G. Then N is
called a neutrosophic subgroup (NSG) of G, if its satisfy the following conditions:

(NSG1): N(x · y) ≥ N(x) ∧N(y), i.e.,

TN (x · y) ≥ TN (x) ∧ TN (y), IN (x · y) ≥ IN (x) ∧ IN (y) and FN (x · y) ≤ FN (x) ∨ FN (y).

(NSG2): N(x−1) ≥ N(x), i.e.,

TN (x−1) ≥ TN (x), IN (x−1) ≥ IN (x) and FN (x−1) ≤ FN (x), for all x and y in G.

3. Complex Neutrosophic Subgroup

Note: It should be noted that through out in this section we use a capital letter C to denote a complex
neutrosophic set:

C =
{〈

TC = pC · eiµC , IC = qC · eiνC ,FC = rC · eiωC
〉}
.

Definition 3.1. A complex neutrosophic set C =
{〈

TC = pC · eiµC , IC = qC · eiνC ,FC = rC · eiωC
〉}

on a group (G, ·) is
known as a complex neutrosophic subgroup (CNSG) of G, if for all elements x, y ∈ G, the following conditions are
satisfied:

(CNSG1): C(xy) ≥ min
{
C(x),C(y)

}
i.e.,

(i) pC(xy) · eiµC(xy)
≥ min{pC(x) · eiµC(x), pC(y) · eiµC(y)

}

(ii) qC(xy) · eiνC(xy)
≥ min{qC(x) · eiνC(x), qC(y) · eiνC(y)

}

(iii) rC(xy) · eiωC(xy)
≤ max{rC(x) · eiωC(x), rC(y) · eiωC(y)

}

(CNSG2): C(x−1) ≥ C(x) i.e.,

(iv) pC(x−1) · eiµC(x−1)
≥ pC(x) · eiµC(x)

(v) qC(x−1) · eiνC(x−1)
≥ qC(x) · eiνC(x)

(vi) rC(x−1) · eiωC(x−1)
≤ rC(x) · eiωC(x).

Example 3.2. Let G = {1,−1, i,−i} be a group under multiplication, and

C =


〈
1, 0.7e0.6πi, 0.6e0.5πi, 0.5e0.2πi

〉
,
〈
−1, 0.6e0.5πi, 0.5e0.4πi, 0.4e0.2πi

〉
,〈

i, 0.5e0.3πi, 0.4e0.2πi, 0.1e0.2πi
〉
,
〈
−i, 0.5e0.3πi, 0.4e0.2πi, 0.1e0.2πi

〉 
be a complex neutrosophic set on G. Clearly C is a complex neutrosophic subgroup of G.
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3.1. Cartesian Product of Complex Neutrosophic Subgroups

Definition 3.3. Let C1 = 〈C1T(x),C1I(x),C1F(x)〉 and C2 = 〈C2T(x),C2I(x),C2F(x)〉 be any two complex neutro-
sophic subgroups of the groups G1 and G2, respectively. Then the Cartesian product of C1 and C2, represented by
C1 × C2 and define as:

C1 × C2 =

{ 〈
(x, y), (C1 × C2)T(x, y), (C1 × C2)I(x, y), (C1 × C2)F(x, y)

〉
/ ∀ x ∈ G1, y ∈ G2

}
where

(C1 × C2)T(x, y) = min
{
C1T(x),C2T(y)

}
,

(C1 × C2)I(x, y) = min
{
C1I(x),C2I(y)

}
,

(C1 × C2)F(x, y) = max
{
C1F(x),C2F(y)

}
.

Example 3.4. Let G1 = {1,−1, i,−i} and G2 = {1, ω, ω2
} are two groups under multiplication.

Consider,

C1 =


〈
1, 0.7e0.6πi, 0.6e0.5πi, 0.5e0.2πi

〉
,
〈
−1, 0.6e0.5πi, 0.5e0.4πi, 0.4e0.2πi

〉
,〈

i, 0.5e0.3πi, 0.4e0.2πi, 0.1e0.2πi
〉
,
〈
−i, 0.5e0.3πi, 0.4e0.2πi, 0.1e0.2πi

〉 
and

C2 =


〈
1, 0.8e0.6πi, 0.6e0.5πi, 0.3e0.2πi

〉
,
〈
ω, 0.7e0.6πi, 0.5e0.4πi, 0.3e0.2πi

〉
,〈

ω2, 0.7e0.6πi, 0.5e0.4πi, 0.3e0.2πi
〉 

are two complex neutrosophic subgroups of G1 and G2, respectively.

Now let x = 1 and y = ω, then

C1 × C2 = {〈(C1 × C2)T(1, ω), (C1 × C2)I(1, ω), (C1 × C2)F(1, ω)〉 , ...}
= {〈min {C1T(1),C2T(ω)} ,min {C1I(1),C2I(ω)} , max{C1F(1),
C2F(ω)}〉 , ...}

= {
〈
min{0.7e0.6πi, 0.7e0.6πi

},min{0.6e0.5πi, 0.5e0.4πi
} ,max{0.5e0.2πi,

0.3e0.2πi
}

〉
, ...}

= {
〈
0.7e0.6πi, 0.5e0.4πi, 0.5e0.2πi

〉
, ...}.

Theorem 3.5. If C1 and C2 are any two complex neutrosophic subgroups of the groups G1 and G2 respectively, then
C1 × C2 is a complex neutrosophic subgroup of G1 × G2.

Proof: Assume that C1 = 〈C1T,C1I,C1F〉 and C2 = 〈C2T,C2I,C2F〉 be any two complex neutrosophic sub-
groups of the groups G1 and G2, respectively. Let any arbitrary elements x1, x2 ∈ G1 and y1, y2 ∈ G2, then
(x1, y1),(x2, y2) ∈ G1 × G2.

Consider,

(C1 × C2)T((x1, y1), (x2, y2)) = (C1 × C2)T(x1x2, y1y2)
= min{C1T(x1x2),C2T(y1y2)}
≥ C1T(x1) ∧ C1T(x2) ∧ C2T(y1) ∧ C2T(y2)
= C1T(x1) ∧ C2T(y1) ∧ C1T(x2) ∧ C2T(y2)
= (C1 × C2)T(x1, y1) ∧ (C1 × C2)T(x2, y2).
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Similarly,

(C1 × C2)I((x1, y1), (x2, y2)) ≥ (C1 × C2)I(x1, y1) ∧ (C1 × C2)I(x2, y2),

and

(C1 × C2)F((x1, y1), (x2, y2)) = (C1 × C2)F(x1x2, y1y2)
= max{C1F(x1x2),C2F(y1y2)}
≤ C1F(x1) ∨ C1F(x2) ∨ C2F(y1) ∨ C2F(y2)
= C1F(x1) ∨ C2F(y1) ∨ C1F(x2) ∨ C2F(y2)
= (C1 × C2)F(x1, y1) ∨ (C1 × C2)F(x2, y2).

Also,

(C1 × C2)T(x1, y1)−1 = (C1 × C2)T(x−1
1 , y

−1
1 )

= C1T(x−1
1 ) ∧ C2T(y−1

1 )
≥ C1T(x) ∧ C2T(y)
= (C1 × C2)T(x, y).

Similarly,

(C1 × C2)I(x1, y1)−1
≥ (C1 × C2)I(x, y).

And

(C1 × C2)F(x1, y1)−1 = (C1 × C2)F(x−1
1 , y

−1
1 )

= C1F(x−1
1 ) ∨ C2F(y−1

1 )
≤ C1F(x) ∨ C2F(y)
= (C1 × C2)F(x, y).

Hence C1 × C2 is a complex neutrosophic subgroup of G1 × G2. �

Theorem 3.6. Let C be a CNSG of a group G. Then the following properties are satisfied:

(a) C(ê) · eiC(ê)
≥ C(x) · eiC(x)

∀ x ∈ G, where ê is the unit element of G.

(b) C(x−1) · eiC(x−1) = C(x) · eiC(x) for each x ∈ G.

Proof: (a) Let ê be the unit element of G and x ∈ G be arbitrary element, then by (CNSG1), (CNSG2) of
Definition 3.1,

pC(ê) · eiµC(ê) = pC(x · x−1) · eiµC(x·x−1)

≥ pC(x) · eiµC(x)
∧ pC(x−1) · eiµC(x−1)

= pC(x) · eiµC(x)
∧ pC(x) · eiµC(x)

= pC(x) · eiµC(x)

pC(ê) · eiµC(ê)
≥ pC(x) · eiµC(x),

Similarly,

qC(ê) · eiνC(ê)
≥ qC(x) · eiνC(x).
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And

rC(ê) · eiωC(ê) = rC(x · x−1) · eiωC(x·x−1)

≤ rC(x) · eiωC(x)
∨ rC(x−1) · eiωC(x−1)

= rC(x) · eiωC(x)
∨ rC(x) · eiωC(x)

= rC(x) · eiωC(x)

rC(ê) · eiωC(ê)
≤ rC(x) · eiωC(x).

Hence C(ê) · eiC(ê)
≥ C(x) · eiC(x) is satisfied, for all x ∈ G.

(b) Let x ∈ G. Since C is a complex neutrosophic subgroup of G,

so C(x−1) · eiC(x−1)
≥ C(x) · eiC(x) is clear from (CNSG2) of Definition 3.1.

Again by applying (CNSG2) of Definition 3.1, and using group structure ofG, the other side of the inequality
is proved as follows;

pC(x) · eiµC(x) = pC(x−1)−1
· eiµC(x−1)−1

≥ pC(x−1) · eiµC(x−1),

qC(x) · eiνC(x) = qC(x−1)−1
· eiνC(x−1)−1

≥ qC(x−1) · eiνC(x−1),

rC(x) · eiωC(x) = rC(x−1)−1
· eiωC(x−1)−1

≤ rC(x−1) · eiωC(x−1).

Therefore,

C(x) · eiC(x)
≥ C(x−1) · eiC(x−1).

Thus,

C(x−1) · eiC(x−1) = C(x) · eiC(x).

Hence C(x−1) · eiC(x−1) = C(x) · eiC(x) is satisfied, for all x ∈ G. �

Theorem 3.7. Let C be a complex neutrosophic set on a group G. Then C is a CNSG of G if and only if C(x · y−1) ·
eiC(x·y−1)

≥ C(x) · eiC(x)
∧ C(y) · eiC(y) for each x,y ∈ G.

Proof: Let C be a complex neutrosophic subgroup of G and x, y ∈ G, So, it is clear that,

pC(xy−1) · eiµC(xy−1)
≥ pC(x) · eiµC(x)

∧ pC(y−1) · eiµC(y−1)

≥ pC(x) · eiµC(x)
∧ pC(y) · eiµC(y).

Similarly,

qC(xy−1) · eiνC(xy−1)
≥ qC(x) · eiνC(x)

∧ qC(y) · eiνC(y).

And

rC(xy−1) · eiωC(xy−1)
≤ rC(x) · eiωC(x)

∨ rC(y−1) · eiωC(y−1)

≤ rC(x) · eiωC(x)
∨ rC(y) · eiωC(y).
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Hence

C(x · y−1) · eiC(x·y−1) = (pC(xy−1) · eiµC(xy−1), qC(xy−1) · eiνC(xy−1),

rC(xy−1) · eiωC(xy−1))

≥ (pC(x) · eiµC(x)
∧ pC(y) · eiµC(y), qC(x) · eiνC(x)

∧ qC(y) · eiνC(y), rC(x) · eiωC(x)
∨ rC(y) · eiωC(y))

= (pC(x) · eiµC(x), qC(x) · eiνC(x), rC(x) · eiωC(x))

∧ (pC(y) · eiµC(y), qC(y) · eiνC(y), rC(y) · eiωC(y))

= C(x) · eiC(x)
∧ C(y) · eiC(y).

Thus,

C(x · y−1) · eiC(x·y−1)
≥ C(x) · eiC(x)

∧ C(y) · eiC(y).

Conversely, Suppose the condition

C(x · y−1) · eiC(x·y−1)
≥ C(x) · eiC(x)

∧ C(y) · eiC(y)

is hold.

Let ê be the unit of G, since G is a group,

pC(x−1) · eiµC(x−1) = pC(ê · x−1) · eiµC(ê·x−1)

≥ pC(ê) · eiµC(ê)
∧ pC(x) · eiµC(x)

= pC(x · x−1) · eiµC(x·x−1)
∧ pC(x) · eiµC(x)

≥ pC(x) · eiµC(x)
∧ pC(x) · eiµC(x)

∧ pC(x) · eiµC(x)

= pC(x) · eiµC(x)

pC(x−1) · eiµC(x−1)
≥ pC(x) · eiµC(x).

Similarly,

qC(x−1) · eiνC(x−1)
≥ qC(x) · eiνC(x).

And

rC(x−1) · eiωC(x−1) = rC(ê · x−1) · eiωC(ê·x−1)

≤ rC(ê) · eiωC(ê)
∨ rC(x) · eiωC(x)

= rC(x · x−1) · eiωC(x·x−1)
∨ rC(x) · eiωC(x)

≤ rC(x) · eiωC(x)
∨ rC(x) · eiωC(x)

∨ rC(x) · eiωC(x)

= ∨rC(x) · eiωC(x).

So, the condition (CNSG2) of Definition 3.1 is satisfied.

Now let us show the condition (CNSG1) of Definition 3.1,

pC(x · y) · eiµC(x·y) = pC(x · (y−1)−1) · eiµC(x·(y−1)−1)

≥ pC(x) · eiµC(x)
∧ pC(y−1) · eiµC(y−1)

≥ pC(x) · eiµC(x)
∧ pC(y) · eiµC(y).
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Similarly,

qC(x · y) · eiνC(x·y)
≥ qC(x) · eiνC(x)

∧ qC(y) · eiνC(y)

and

rC(x · y) · eiωC(x·y) = rC(x · (y−1)−1) · eiωC(x·(y−1)−1)

≤ rC(x) · eiωC(x)
∨ rC(y−1) · eiωC(y−1)

≤ rC(x) · eiωC(x)
∨ rC(y) · eiωC(y).

Therefore (CNSG1) of Definition 3.1 is also satisfied. Thus C is a complex neutrosophic subgroup of G. �

F Based on Theorem 3.7, we define complex neutrosophic subgroup as follows:

Definition 3.8. Let G be any group with multiplication. A complex neutrosophic set

C =
{〈

TC = pC · eiµC , IC = qC · eiνC ,FC = rC · eiωC
〉}

on group G is known as a complex neutrosophic subgroup (CNSG) of G, if

C(x−1y) ≥ min
{
C(x),C(y)

}
i.e.,

(i) pC(x−1y) · eiµC(x−1 y)
≥ min{pC(x) · eiµC(x), pC(y) · eiµC(y)

}

(ii) qC(x−1y) · eiνC(x−1 y)
≥ min{qC(x) · eiνC(x), qC(y) · eiνC(y)

}

(iii) rC(x−1y) · eiωC(x−1 y)
≤ max{rC(x) · eiωC(x), rC(y) · eiωC(y)

},∀ x, y ∈ G.

Example 3.9. Let G = {1,−1, i,−i} be a group under multiplication, and C = 〈TC, IC,FC〉 be complex neutrosophic
set on G, such that

TC(1) = 0.8e0.6πi,TC(−1) = 0.7e0.5πi,TC(i) = TC(−i) = 0.3e0.2πi

IC(1) = 0.7e0.5πi, IC(−1) = 0.6e0.4πi, IC(i) = IC(−i) = 0.2e0.2πi

FC(1) = 0.5e0.4πi,FC(−1) = 0.1e0.2πi,FC(i) = FC(−i) = 0.1e0.2πi.

Clearly, C is a complex neutrosophic subgroup of G.

Theorem 3.10. If C1 and C2 are two complex neutrosophic subgroups of a group G, then the intersection C1 ∩C2 is
a complex neutrosophic subgroup of G.

Proof: Let x, y ∈ G be any arbitrary elements. By Theorem 3.7, it is enough to show that

(C1 ∩ C2)(x · y−1) ≥ (C1 ∩ C2)(x) ∧ (C1 ∩ C2)(y).

First consider the truth-membership degree of the intersection

pC1∩C2 (x · y−1) · eiµC1∩C2 (x·y−1) = pC1 (x · y−1) · eiµC1 (x·y−1)

∧ pC2 (x · y−1) · eiµC2 (x·y−1)

≥ pC1 (x) · eiµC1 (x)
∧ pC1 (y) · eiµC1 (y)

∧ pC2 (x) · eiµC2 (x)
∧ pC2 (y) · eiµC2 (y)

= (pC1 (x) · eiµC1 (x)
∧ pC2 (x) · eiµC2 (x))

∧ (pC1 (y) · eiµC1 (y)
∧ pC2 (y) · eiµC2 (y))

= pC1∩C2 (x) · eiµC1∩C2 (x)

∧ pC1∩C2 (y) · eiµC1∩C2 (y).
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Similarly,

qC1∩C2 (x · y−1) · eiνC1∩C2 (x·y−1)
≥ qC1∩C2 (x) · eiνC1∩C2 (x)

∧ qC1∩C2 (y) · eiνC1∩C2 (y).

And

rC1∪C2 (x · y−1) · eiωC1∪C2 (x·y−1) = rC1 (x · y−1) · eiωC1 (x·y−1)

∨ rC2 (x · y−1) · eiωC2 (x·y−1)

≤ rC1 (x) · eiωC1 (x)
∨ rC1 (y) · eiωC1 (y)

∨ rC2 (x) · eiωC2 (x)
∨ rC2 (y) · eiωC2 (y)

= rC1 (x) · eiωC1 (x)
∨ rC2 (x) · eiωC2 (x)

∨ rC1 (y) · eiωC1 (y)
∨ rC2 (y) · eiωC2 (y)

= rC1∪C2 (x) · eiωC1∪C2 (x)

∨ rC1∪C2 (y) · eiωC1∪C2 (y).

Hence C1 ∩ C2 is a complex neutrosophic subgroup of G. �

Theorem 3.11. If C1 and C2 are two complex neutrosophic subgroups of a group G, then the union C1 ∪ C2 is a
complex neutrosophic subgroup of G.

Proof: Let x, y ∈ G be any arbitrary elements. By Theorem 3.7, it is enough to show that

(C1 ∪ C2)(x · y−1) ≥ min{(C1 ∪ C2)(x), (C1 ∪ C2)(y)}.

Consider,

pC1∪C2 (x · y−1) · eiµC1∪C2 (x·y−1) = pC1 (x · y−1) · eiµC1 (x·y−1)

∨ pC2 (x · y−1) · eiµC2 (x·y−1)

≥ pC1 (x) · eiµC1 (x)
∧ pC1 (y) · eiµC1 (y)

∨ pC2 (x) · eiµC2 (x)
∧ pC2 (y) · eiµC2 (y)

= (pC1 (x) · eiµC1 (x)
∨ pC2 (x) · eiµC2 (x))

∧ (pC1 (y) · eiµC1 (y)
∨ pC2 (y) · eiµC2 (y))

= min{pC1∪C2 (x) · eiµC1∪C2 (x),

pC1∪C2 (y) · eiµC1∪C2 (y)
}.

And

rC1∩C2 (x · y−1) · eiωC1∩C2 (x·y−1) = rC1 (x · y−1) · eiωC1 (x·y−1)

∧ rC2 (x · y−1) · eiωC2 (x·y−1)

≤ rC1 (x) · eiωC1 (x)
∨ rC1 (y) · eiωC1 (y)

∧ rC2 (x) · eiωC2 (x)
∨ rC2 (y) · eiωC2 (y)

= rC1 (x) · eiωC1 (x)
∧ rC2 (x) · eiωC2 (x)

∨ rC1 (y) · eiωC1 (y)
∧ rC2 (y) · eiωC2 (y)

= max{rC1∩C2 (x) · eiωC1∩C2 (x),

rC1∩C2 (y) · eiωC1∩C2 (y)
}.

Thus, C1 ∪ C2 is a complex neutrosophic subgroup of G. �
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4. Alpha-Cut of Complex Neutrosophic Set

Definition 4.1. Let C =
〈
CT = pCeiµC ,CI = qCeiνC ,CF = rCeiωC

〉
be a complex neutrosophic set onX and α = β · eiγ,

where β ∈ [0, 1], γ ∈ [0, 2π].

Define the α-level set of C as follows:

Cα = {x ∈ X | C(x) ≥ α} i.e.,(
pC(x) · eiµC(x)

)
α

=
{
x ∈ X | pC(x) · eiµC(x)

≥ β · eiγ
}
,(

qC(x) · eiνC(x)
)
α

=
{
x ∈ X | qC(x) · eiνC(x)

≥ β · eiγ
}
,(

rC(x) · eiωC(x)
)α

=
{
x ∈ X | rC(x) · eiωC(x)

≤ β · eiγ
}
.

It is easy to verify that,

(1) If C1 ⊆ C2 and α = β · eiγ, where, β ∈ [0, 1], γ ∈ [0, 2π], then,(
pC1 (x) · eiµC1 (x)

)
α
⊆

(
pC2 (x) · eiµC2 (x)

)
α(

qC1 (x) · eiνC1 (x)
)
α
⊆

(
qC2 (x) · eiνC2 (x)

)
α(

rC1 (x) · eiωC1 (x)
)α
⊇

(
rC2 (x) · eiωC2 (x)

)α
.

(2) α1 ≤ α2 where, α1 = β1 · eiγ1 , α2 = β2 · eiγ2 implies that(
pC1 (x) · eiµC1 (x)

)
α1
⊇

(
pC1 (x) · eiµC1 (x)

)
α2(

qC1 (x) · eiνC1 (x)
)
α1
⊇

(
qC1 (x) · eiνC1 (x)

)
α2(

rC1 (x) · eiωC1 (x)
)α1
⊆

(
rC1 (x) · eiωC1 (x)

)α2
.

Example 4.2. Let

C =


〈
x1, 0.2e0.4πi, 0.3e0.5πi, 0.7e0.1πi

〉
,
〈
x2, 0.7e0.1πi, 0.6e0.5πi, 0.7e0.4πi

〉
,〈

x3, 0.6e0.4πi, 0.4e0.5πi, 0.1e0.4πi
〉 

be a complex neutrosophic set of X, and α = 0.4e0.4πi. Then the α-level set as: Cα = {x3}.

Proposition 4.3. C is a complex neutrosophic subgroup of G if and only if for all α = βeiγ where, β ∈ [0, 1], γ ∈
[0, 2π], α-level sets of C,

(
pC · eiµC

)
α
,
(
qC · eiνC

)
α

and
(
rC · eiωC

)α
are classical subgroups of G.

Proof: Let C be a CNSG of G, α = βeiγ where β ∈ [0, 1], γ ∈ [0, 2π] and x, y ∈
(
pC · eiµC

)
α

(similarly

x, y ∈
(
qC · eiνC

)
α
,
(
rC · eiωC

)α
).

By the assumption,

pC(x · y−1) · eiµC(x·y−1)
≥ pC(x) · eiµC(x)

∧ pC(y) · eiµC(y)

≥ α ∧ α = α.

Similarly,

qC(x · y−1) · eiνC(x·y−1)
≥ α.

And

rC(x · y−1) · eiωC(x·y−1)
≤ rC(x) · eiωC(x)

∨ rC(y) · eiωC(y)

≤ α ∨ α = α.
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Hence x · y−1
∈

(
pC · eiµC

)
α
,
(
qC · eiνC

)
α
,
(
rC · eiωC

)α
for each α.

This means that
(
pC(x) · eiµC(x)

)
α
,
(
qC(x) · eiνC(x)

)
α

and
(
rC(x) · eiωC(x)

)α
is a classical subgroup of G for each α.

Conversely, let
(
pC · eiµC

)
α

be a classical subgroup of G, for each α = βeiγ where β ∈ [0, 1], γ ∈ [0, 2π].

Let x, y ∈ G, α = pC(x) · eiµC(x)
∧ pC(y) · eiµC(y) and δ = pC(x) · eiµC(x). Since

(
pC · eiµC

)
α

and
(
pC · eiµC

)
δ

are classical

subgroup of G, x · y ∈
(
pC · eiµC

)
α

and x−1
∈

(
pC · eiµC

)
δ
. Thus,

pC(x · y) · eiµC(x·y)
≥ α = pC(x) · eiµC(x)

∧ pC(y) · eiµC(y),

and

pC(x−1) · eiµC(x−1)
≥ δ = pC(x) · eiµC(x).

Similarly,

qC(x · y) · eiνC(x·y)
≥ qC(x) · eiνC(x)

∧ qC(y) · eiνC(y),

qC(x−1) · eiνC(x−1)
≥ qC(x) · eiνC(x).

And

rC(x · y) · eiωC(x·y)
≤ rC(x) · eiωC(x)

∨ rC(y) · eiωC(y),

rC(x−1) · eiωC(x−1)
≤ rC(x) · eiωC(x).

So, the conditions of Definition 3.1 are satisfied. Hence G is a complex neutrosophic subgroup. �

5. Image and Preimage of Complex Neutrosophic Set

Definition 5.1. Let f : G1 −→ G2 be a function and C1 and C2 be the complex neutrosophic sets of G1 and G2,
respectively. Then the image of a complex neutrosophic set C1 is a complex neutrosophic set of G2 and it is defined as
follows:

f (C1)(y) =
(
p f (C1)(y) · eiµ f (C1)(y), q f (C1)(y) · eiν f (C1)(y),

r f (C1)(y) · eiω f (C1)(y)
)

=
(

f (pC1 )(y) · ei f (µC1 )(y), f (qC1 )(y) · ei f (νC1 )(y),

f (rC1 )(y) · ei f (ωC1 )(y)
)
, ∀ y ∈ G2

where,

f (pC1 )(y) · ei f (µC1 )(y) =

{ ∨
pC1 (x) · eiµC1 (x), if x ∈ f−1(y)
0 otherwise

f (qC1 )(y) · ei f (νC1 )(y) =

{ ∨
qC1 (x) · eiνC1 (x), if x ∈ f−1(y)
0 otherwise

f (rC1 )(y) · ei f (ωC1 )(y) =

{ ∧
rC1 (x) · eiωC1 (x), if x ∈ f−1(y)
1 · ei2π otherwise .
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And the preimage of a complex neutrosophic set C2 is a complex neutrosophic set of G1 and it is defined as follows: for
all x ∈ G1,

f−1(C2)(x) =
(
p f−1 (C2)(x) · eiµ f−1 (C2)(x), q f−1 (C2)(x) · eiν f−1 (C2)(x),

r f−1 (C2)(x) · eiω f−1 (C2)(x)
)

=
(
pC2 ( f (x)) · eiµC2 ( f (x)), qC2 ( f (x)) · eiνC2 ( f (x)),

rC2 ( f (x)) · eiωC2 ( f (x))
)

= C2( f (x)).

Theorem 5.2. Let G1 and G2 be two groups and f : G1 −→ G2 be a group homomorphism. If C is a complex
neutrosophic subgroup of G1, then the image of C, f (C) is a complex neutrosophic subgroup of G2.

Proof: Let C be a CNSG of G1 and y1, y2 ∈ G2. if f−1(y1) = φ or f−1(y2) = φ, then it is obvious that f (C) is
a CNSG of G2. Let us assume that there exist x1, x2 ∈ G1 such that f (x1) = y1 and f (x2) = y2. Since f is a
group homomorphism,

f (pC(y1 · y−1
2 )) · ei f (µC(y1·y−1

2 )) =
∨

y1·y−1
2 = f (x)

pC(x) · eiµC(x)

≥ pC(x1 · x−1
2 ) · eiµC(x1·x−1

2 ),

f (qC(y1 · y−1
2 )) · ei f (νC(y1·y−1

2 )) =
∨

y1·y−1
2 = f (x)

qC(x) · eiνC(x)

≥ qC(x1 · x−1
2 ) · eiνC(x1·x−1

2 ),

f (rC(y1 · y−1
2 )) · ei f (ωC(y1·y−1

2 )) =
∧

y1·y−1
2 = f (x)

rC(x) · eiωC(x)

≤ rC(x1 · x−1
2 ) · eiωC(x1·x−1

2 ).

By using the above inequalities let us prove that

f (C)(y1 · y−1
2 ) ≥ f (C)(y1) ∧ f (C)(y2).

f (C)(y1 · y−1
2 ) =

(
f (pC(y1 · y−1

2 )) · ei f (µC(y1·y−1
2 )), f (qC(y1 · y−1

2 )) · ei f (νC(y1·y−1
2 )),

f (rC(y1 · y−1
2 )) · ei f (ωC(y1·y−1

2 ))
)

=

 ∨
y1·y−1

2 = f (x)

pC(x) · eiµC(x),
∨

y1·y−1
2 = f (x)

qC(x) · eiνC(x),

∧
y1·y−1

2 = f (x)

rC(x) · eiωC(x)


≥

(
pC(x1 · x−1

2 ) · eiµC(x1·x−1
2 ), qC(x1 · x−1

2 ) · eiνC(x1·x−1
2 ),

rC(x1 · x−1
2 ) · eiωC(x1·x−1

2 )
)
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≥

(
pC(x1) · eiµC(x1)

∧ pC(x2) · eiµC(x2), qC(x1) · eiνC(x1)

∧qC(x2) · eiνC(x2), rC(x1) · eiωC(x1)
∨ rC(x2) · eiωC(x2)

)
=

(
pC(x1) · eiµC(x1), qC(x1) · eiνC(x1), rC(x1) · eiωC(x1)

∧pC(x2) · eiµC(x2), qC(x2) · eiνC(x2), rC(x2) · eiωC(x2)
)

= f (C)(y1) ∧ f (C)(y2).

This is satisfied for each x1, x2 ∈ G1 with f (x1) = y1 and f (x2) = y2, then it is obvious that

f (C)(y1 · y−1
2 ) ≥

 ∨
y1= f (x1)

pC(x1) · eiµC(x1),
∨

y1= f (x1)

qC(x1) · eiνC(x1),

∧
y1= f (x1)

rC(x1) · eiωC(x1)

 ∧
 ∨

y2= f (x2)

pC(x2) · eiµC(x2),

∨
y2= f (x2)

qC(x2) · eiνC(x2),
∧

y2= f (x2)

rC(x2) · eiωC(x2)


=

(
f (pC(y1)) · ei f (µC(y1)), f (qC(y1)) · ei f (νC(y1)), f (rC(x1)) · ei f (ωC(x1))

)
∧

(
f (pC(y2)) · ei f (µC(y2)), f (qC(y2)) · ei f (νC(y2)), f (rC(x2)) · ei f (ωC(x2))

)
= f (C)(y1) ∧ f (C)(y2).

Hence the image of a CNSG is also a CNSG. �

Theorem 5.3. Let G1 and G2 be the two groups and f : G1 −→ G2 be a group homomorphism. If C2 is a complex
neutrosophic subgroup of G2, then the preimage of f−1(C2) is a complex neutrosophic subgroup of G1.

Proof: LetC2 be a complex neutrosophic subgroup ofG2, and x1, x2 ∈ G1. Since f is a group homomorphism,
the following inequalities is obtained.

f−1(C2)(x1 · x−1
2 ) =

(
pC2 ( f (x1 · x−1

2 )) · eiµC2 ( f (x1·x−1
2 )),

qC2 ( f (x1 · x−1
2 )) · eiνC2 ( f (x1·x−1

2 )),

rC2 ( f (x1 · x−1
2 )) · eiωC2 ( f (x1·x−1

2 ))
)

=
(
pC2 ( f (x1) · f (x2)−1) · eiµC2 ( f (x1)· f (x2)−1),

qC2 ( f (x1) · f (x2)−1) · eiνC2 ( f (x1)· f (x2)−1),

rC2 ( f (x1) · f (x2)−1) · eiωC2 ( f (x1)· f (x2)−1)
)

≥

(
pC2 ( f (x1) ∧ f (x2)) · eiµC2 ( f (x1)∧ f (x2)),

qC2 ( f (x1) ∧ f (x2)) · eiνC2 ( f (x1)∧ f (x2)),

rC2 ( f (x1) ∨ f (x2)) · eiωC2 ( f (x1)∨ f (x2))
)

=
(
pC2 ( f (x1)) · eiµC2 ( f (x1)), qC2 ( f (x1) · eiνC2 ( f (x1)),

rC2 ( f (x1) · eiωC2 ( f (x1))) ∧ (pC2 ( f (x2)) · eiµC2 ( f (x2)),

qC2 ( f (x2) · eiνC2 ( f (x2)), rC2 ( f (x2) · eiωC2 ( f (x2))
)

= f−1(C2)(x1) ∧ f−1(C2)(x2).
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Hence f−1(C2) is a CNSG of G1. �

Theorem 5.4. Let f : G1 −→ G2 be a homomorphism of groups, C is a CNSG of G1 and define C−1 : G1 −→

[0, 1] · ei[0,2π]
× [0, 1] · ei[0,2π]

× [0, 1] · ei[0,2π] as C−1(x) = C(x−1) for arbitrary x ∈ G1. Then the following properties
are valid.

(1) C−1 is a CNSG of G1.

(2)
(

f (C)
)−1 = f (C−1).

Proof: (1) Let C is a complex neutrosophic subgroup of G1.

Since C−1 : G1 −→ [0, 1] · ei[0,2π]
× [0, 1] · ei[0,2π]

× [0, 1] · ei[0,2π].

Let for all x ∈ G1, this implies that, C−1(x) = (xT, xI, xF) where xT ∈ [0, 1] · ei[0,2π], xI ∈ [0, 1] · ei[0,2π] and
xF ∈ [0, 1] · ei[0,2π].

So C−1 is a complex neutrosophic subgroup of G1.

(2) Given that C−1(x) = C(x−1) ∀ x ∈ G1.

Since f : G1 −→ G2 be a homomorphism. As C is a CNSG of G1 this implies that C−1 is a CNSG of G1 by
part (1), so f (C−1) ∈ G2 and f (C) ∈ G2. Now by (1), ( f (C))−1

∈ G2 as G2 is a group homomorphism.

So f (C−1) = ( f (C))−1 by uniqueness of inverse of an element. �

Corollary 5.5. Let f : G1 −→ G2 be an isomorphism on of groups, C is complex neutrosophic subgroup of G1, then
f−1( f (C)) = C.

Corollary 5.6. Let f : G −→ G be an isomorphism on a group G, C is complex neutrosophic subgroup of G, then
f (C) = C if and only if f−1(C) = C.

6. Complex Neutrosophic Normal Subgroup

Definition 6.1. Let C be a complex neutrosophic subgroup of a group G is known as a complex neutrosophic normal
subgroup (CNNSG) of G, if

C(xyx−1) ≥ C(y) i.e.,

(i) pC(xyx−1) · eiµC(xyx−1)
≥ pC(y) · eiµC(y)

(ii) qC(xyx−1) · eiνC(xyx−1)
≥ qC(y) · eiνC(y)

(iii) rC(xyx−1) · eiωC(xyx−1)
≤ rC(y) · eiωC(y), ∀ x,y ∈ G.

Example 6.2. Let G = S3 = {1, a, a2, b, ab, a2b} be a group and C = 〈TC, IC,FC〉 be a complex neutrosophic set of G
such that,

TC(1) = 0.8e0.6πi,TC(a) = TC(a2) = 0.6e0.6πi

TC(b) = TC(ab) = TC(a2b) = 0.5e0.4πi

IC(1) = 0.7e0.5πi, IC(a) = IC(a2) = 0.6e0.5πi

IC(b) = IC(ab) = IC(a2b) = 0.4e0.3πi

FC(1) = 0.5e0.4πi,FC(a) = FC(a2) = 0.3e0.2πi

FC(b) = FC(ab) = FC(a2b) = 0.3e0.2πi.

Then clearly C is a complex neutrosophic normal subgroup of G.
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Theorem 6.3. IfC1 andC2 are any two complex neutrosophic normal subgroups of the groupsG1 andG2 respectively,
then C1 × C2 is also a complex neutrosophic normal subgroup of G1 × G2.

Proof: Similarly to the proof of Theorem 3.5. �

Theorem 6.4. Let G be a group, and C1 and C2 be two CNNSGs of G, then C1 ∩ C2 is also a complex neutrosophic
normal subgroup of G.

Proof: Since C1 and C2 are CNNSGs of G, then

pC1 (x · y · x−1) · eiµC1 (x·y·x−1)
≥ pC1 (y) · eiµC1 (y),

and

pC2 (x · y · x−1) · eiµC2 (x·y·x−1)
≥ pC2 (y) · eiµC2 (y).

So, by the definition of the intersection,

pC1∩C2 (x · y · x−1) · eiµC1∩C2 (x·y·x−1) = pC1 (x · y · x−1) · eiµC1 (x·y·x−1)

∧ pC2 (x · y · x−1) · eiµC2 (x·y·x−1)

≥ pC1 (y) · eiµC1 (y)
∧ pC2 (y) · eiµC2 (y)

= pC1∩C2 (y) · eiµC1∩C2 (y).

By the similar way,

qC1∩C2 (x · y · x−1) · eiνC1∩C2 (x·y·x−1)
≥ qC1∩C2 (y) · eiνC1∩C2 (y).

And

rC1∪C2 (x · y · x−1) · eiωC1∪C2 (x·y·x−1) = rC1 (x · y · x−1) · eiωC1 (x·y·x−1)

∨ rC2 (x · y · x−1) · eiωC2 (x·y·x−1)

≤ rC1 (y) · eiωC1 (y)
∨ rC2 (y) · eiωC2 (y)

= rC1∪C2 (y) · eiωC1∪C2 (y).

Hence the intersection of two CNNSGs is also a CNNSG. �

Theorem 6.5. If C1 and C2 be two CNNSGs of G, then C1 ∪ C2 is a complex neutrosophic normal subgroup of G.

Proof: Similarly to the proof of Theorem 3.11. �

Proposition 6.6. Let C be a complex neutrosophic subgroup of a group G. Then the following are correspondent:

(1) C is a CNNSG of G.
(2) C(x · y · x−1) = C(y), ∀ x, y ∈ G.
(3) C(x · y) = C(y · x), ∀ x, y ∈ G.

Proof: (1)⇒ (2) : Let C be a complex neutrosophic normal subgroup of G. Take x, y ∈ G, then by Definition
6.1,

pC(x · y · x−1) · eiµC(x·y·x−1)
≥ pC(y) · eiµC(y),

qC(x · y · x−1) · eiνC(x·y·x−1)
≥ qC(y) · eiνC(y),

rC(x · y · x−1) · eiωC(x·y·x−1)
≤ rC(y) · eiωC(y).
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 Thus taking arbitrary element x, the following is got for the truth 

membership of C,

pC(x−1
· y · x) · eiµC(x−1

·y·x) = pC(x−1
· y · (x−1)−1

· eiµC(x−1
·y·(x−1)−1)

≥ pC(y) · eiµC(y).

Therefore,

pC(y) · eiµC(y) = pC(x−1
· (x · y · x−1) · x) · eiµC(x−1

·(x·y·x−1)·x)

≥ pC(x · y · x−1) · eiµC(x·y·x−1).

Thus, pC(x · y · x−1) · eiµC(x·y·x−1) = pC(y) · eiµC(y).

Similarly, qC(x · y · x−1) · eiνC(x·y·x−1) = qC(y) · eiνC(y).

For falsity membership,

rC(x−1
· y · x) · eiωC(x−1

·y·x) = rC(x−1
· y · (x−1)−1) · eiωC(x−1

·y·(x−1)−1)

≤ rC(y) · eiωC(y).

Therefore,

rC(y) · eiωC(y) = rC(x−1
· (x · y · x−1) · x) · eiωC(x−1

·(x·y·x−1)·x)

≤ rC(x · y · x−1) · eiωC(x·y·x−1).

This implies that

rC(x · y · x−1) · eiωC(x·y·x−1) = rC(y) · eiωC(y).

Hence C(x · y · x−1) = C(y) for all x, y ∈ G.

(2)⇒ (3) : Substituting y = y · x in (2), the condition (3) is shown easily.
(3)⇒ (1) : According to C(y · x) = C(x · y), the equality

C(x · y · x−1) = C(y · x · x−1) = C(y) ≥ C(y)

is satisfied. Hence C is a CNNSG of G. �

Theorem 6.7. Let C is a complex neutrosophic subgroup of a group G. Then C is a complex neutrosophic normal
subgroup of G if and only if for arbitrary α = βeiγ where β ∈ [0, 1], γ ∈ [0, 2π], if α-level sets of C are non-empty,
then

(
pC · eiµC

)
α
,
(
qC · eiνC

)
α

and
(
rC · eiωC

)α
are classical subgroups of G.

Proof: Similarly to the proof of Proposition 4.3. �

Theorem 6.8. Let C is a complex neutrosophic normal subgroup of a group G. Let GC = {x ∈ G | C(x)eiC(x) =
C(ê)eiC(ê)

}, where ê is the unit of G. Then the classical subset GC of G is a normal subgroup of G.

Proof: Let C be a CNNSG of G. First it is necessary to show that the classical subset GC is a subgroup of G.
Let us take x, y ∈ GC, then by Theorem 3.7,

C(x · y−1)eiC(x·y−1)
≥ C(x)eiC(x)

∧ C(y)eiC(y)

= C(ê)eiC(ê)
∧ C(ê)eiC(ê)

= C(ê)eiC(ê)
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and always C(ê)eiC(ê)
≥ C(x · y−1)eiC(x·y−1).

Hence x · y−1
∈ GC, i.e., GC is a subgroup of G.

Now we will be shown that GC is normal. Take arbitrary x ∈ GC and y ∈ G. Therefore, C(x)eiC(x) = C(ê)eiC(ê).
Since C ∈CNNSG(G), the following is obtained,

C(y · x · y−1)eiC(y·x·y−1) = C(y−1
· y · x)eiC(y−1

·y·x)

= C(x)eiC(x) = C(ê)eiC(ê).

Hence, y · x · y−1
∈ GC, So GC is a normal subgroup of G.

Theorem 6.9. Let f : G1 −→ G2 be a group homomorphism and C2 is a CNNSG of G2. Then the preimage f−1(C2)
is a CNNSG of G1.

Proof: From the Theorem 5.3, it is known that f−1(C2) is a complex neutrosophic subgroup of G1. Hence it
is sufficient to show that normality property of f−1(C2). For arbitrary x1, x2 ∈ G1, by homomorphism of f
and by the normality of C2,

f−1(C2)(x1 · x2)ei f−1(C2)(x1·x2) = C2( f (x1 · x2))eiC2( f (x1·x2))

= C2( f (x1) · f (x2))eiC2( f (x1)· f (x2))

= C2( f (x2) · f (x1))eiC2( f (x2)· f (x1))

= C2( f (x2 · x1))eiC2( f (x2·x1))

= f−1(C2)(x2 · x1)ei f−1(C2)(x2·x1).

Hence, from the Proposition 6.6, f−1(C2) is a CNNSG of G1. �

Theorem 6.10. Let f : G1 −→ G2 be a surjective homomorphism of groups G1 and G2. if C is a CNNSG of G1, then
f (C) is a CNNSG of G2.

Proof: Since f (C) is a complex neutrosophic subgroup ofG2 is clear from the Theorem 5.2, it is sufficient only
to show that the normality condition by using Proposition 6.6 (3). Take y1, y2 ∈ G2 such that f−1(y1) , φ,
f−1(y2) , φ and f−1(y1 · y−1

2 ) , φ. So it is inferred that

f (pC(y1 · y2 · y−1
1 ))ei f (µC(y1·y2·y−1

1 )) =
∨

l∈ f−1(y1·y2·y−1
1 )

pC(l)eiµC(l)

and

f (pC(y2))ei f (µC(y2)) =
∨

l∈ f−1(y2)

pC(l)eiµC(l).

For all x2 ∈ f−1(y2), x1 ∈ f−1(y1) and x−1
1 ∈ f−1(y−1

1 ), since C is normal,

pC(x1 · x2 · x−1
1 )eiµC(x1·x2·x−1

1 )
≥ pC(x2)eiµC(x2),

qC(x1 · x2 · x−1
1 )eiνC(x1·x2·x−1

1 )
≥ qC(x2)eiνC(x2),

rC(x1 · x2 · x−1
1 )eiωC(x1·x2·x−1

1 )
≤ rC(x2)eiωC(x2)

are obtained.

Since f is a homomorphism , it follows that

f (x1 · x2 · x−1
1 ) = f (x1) · f (x2) · f (x1)−1 = y1 · y2 · y−1

1 .
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So, x1 · x2 · x−1
1 ∈ f−1(y1 · y2 · y−1

1 ). Hence∨
l∈ f−1(y1·y2·y−1

1 )

pC(l)eiµC(l)
≥

∨
x1∈ f−1(y1),x2∈ f−1(y2)

pC(x1 · x2 · x−1
1 )eiµC(x1·x2·x−1

1 )

≥

∨
x2∈ f−1(y2)

pC(x2)eiµC(x2).

This means that,

f (pC(y1 · y2 · y−1
1 ))ei f (µC(y1·y2·y−1

1 ))
≥ f (pC(y2))ei f (µC(y2)).

On the other hand, the following inequalities are obtained in a similar observation.

f (qC(y1 · y2 · y−1
1 ))ei f (νC(y1·y2·y−1

1 ))
≥ f (qC(y2))ei f (νC(y2)),

f (rC(y1 · y2 · y−1
1 ))ei f (ωC(y1·y2·y−1

1 ))
≥ f (rC(y2))ei f (ωC(y2)).

So the desired inequality,

f (C)(y1 · y2 · y−1
1 )ei f (C)(y1·y2·y−1

1 ) =
(

f (pC(y1 · y2 · y−1
1 ))ei f (µC(y1·y2·y−1

1 )),

f (qC(y1 · y2 · y−1
1 ))ei f (νC(y1·y2·y−1

1 )),

f (rC(y1 · y2 · y−1
1 ))ei f (ωC(y1·y2·y−1

1 ))
)

≥

(
f (pC(y2))ei f (µC(y2)), f (qC(y2))ei f (νC(y2)),

f (rC(y2))ei f (ωC(y2))
)

=
(
p f (C)(y2)eiµ f (C)(y2), q f (C)(y2)eiν f (C)(y2),

r f (C)(y2)eiω f (C)(y2)
)

= f (C)(y2)ei f (C)(y2),

is satisfied. �

7. Conclusion

In this paper we presented the concept of complex neutrosophic subgroups (normal subgroups) and
alpha-cut of complex neutrosophic set, and studied some of its motivating results. We have also defined the
Cartesian product of complex neutrosophic subgroups and discussed some its related results. Furthermore,
we have also defined the concept of image and preimage of complex neutrosophic set and studied some of
its properties. In future, we will generalized the study to soft set theory and will initiate the concept of soft
complex neutrosophic subgroups (normal subgroups).
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Abstract: A single-valued neutrosophic set (SVNS) is a special case of a neutrosophic set which is
characterized by a truth, indeterminacy, and falsity membership function, each of which lies in the
standard interval of [0, 1]. This paper presents a modified Technique for Order Preference by Similarity
to an Ideal Solution (TOPSIS) with maximizing deviation method based on the single-valued
neutrosophic set (SVNS) model. An integrated weight measure approach that takes into consideration
both the objective and subjective weights of the attributes is used. The maximizing deviation
method is used to compute the objective weight of the attributes, and the non-linear weighted
comprehensive method is used to determine the combined weights for each attributes. The use
of the maximizing deviation method allows our proposed method to handle situations in which
information pertaining to the weight coefficients of the attributes are completely unknown or only
partially known. The proposed method is then applied to a multi-attribute decision-making (MADM)
problem. Lastly, a comprehensive comparative studies is presented, in which the performance of our
proposed algorithm is compared and contrasted with other recent approaches involving SVNSs
in literature.

Keywords: 2ingle-valued neutrosophic set; Technique for Order Preference by Similarity to an
Ideal Solution (TOPSIS); integrated weight; maximizing deviation; multi-attribute decision-making
(MADM)

1. Introduction

The study of fuzzy set theory proposed by Zadeh [1] was an important milestone in the study
of uncertainty and vagueness. The widespread success of this theory has led to the introduction
of many extensions of fuzzy sets such as the intuitionistic fuzzy set (IFS) [2], interval-valued fuzzy set
(IV-FS) [3], vague set [4], and hesitant fuzzy set [5]. The most widely used among these models is the
IFS model which has also spawned other extensions such as the interval-valued intuitionistic fuzzy
set [6] and bipolar intuitionistic fuzzy set [7]. Smarandache [8] then introduced an improvement to
IFS theory called neutrosophic set theory which loosely refers to neutral knowledge. The study of the
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neutrality aspect of knowledge is the main distinguishing criteria between the theory of fuzzy sets,
IFSs, and neutrosophic sets. The classical neutrosophic set (NS) is characterized by three membership
functions which describe the degree of truth (T), the degree of indeterminacy (I), and the degree
of falsity (F), whereby all of these functions assume values in the non-standard interval of ]0−,
1+[. The truth and falsity membership functions in a NS are analogous to the membership and
non-membership functions in an IFS, and expresses the degree of belongingness and non-belongingness
of the elements, whereas the indeterminacy membership function expresses the degree of neutrality in
the information. This additional indeterminacy membership function gives NSs the ability to handle
the neutrality aspects of the information, which fuzzy sets and its extensions are unable to handle.
Another distinguishing factor between NSs and other fuzzy-based models is the fact that all the three
membership functions in a NS are entirely independent of one another, unlike the membership and
non-membership functions in an IFS or other fuzzy-based models in which values of the membership
and non-membership functions are dependent on one another. This gives NSs the ability to handle
uncertain, imprecise, inconsistent, and indeterminate information, particularly in situations whereby
the factors affecting these aspects of the information are independent of one another. This also makes
the NS more versatile compared to IFSs and other fuzzy- or IF-based models in literature.

Smarandache [8] and Wang et al. [9] pointed out that the non-standard interval of ]0−, 1+[ in which
the NS is defined in, makes it impractical to be used in real-life problems. Furthermore, values in this
non-standard interval are less intuitive and the significance of values in this interval can be difficult
to be interpreted. This led to the conceptualization of the single-valued neutrosophic set (SVNS).
The SVNS is a straightforward extension of NS which is defined in the standard unit interval of [0, 1].
As values in [0, 1] are compatible with the range of acceptable values in conventional fuzzy set theory
and IFS theory, it is better able to capture the intuitiveness of the process of assigning membership
values. This makes the SVNS model easier to be applied in modelling real-life problems as the results
obtained are a lot easier to be interpreted compared to values in the interval ]0−, 1+[.

The SVNS model has garnered a lot of attention since its introduction in [9], and has been actively
applied in various multi-attribute decision-making (MADM) problems using a myriad of different
approaches. Wang et al. [9] introduced some set theoretic operators for SVNSs, and studied some
additional properties of the SVNS model. Ye [10,11] introduced a decision-making algorithm based on
the correlation coefficients for SVNSs, and applied this algorithm in solving some MADM problems.
Ye [12,13] introduced a clustering method and also some decision-making methods that are based on
the similarity measures of SVNSs, whereas Huang [14] introduced a new decision-making method for
SVNSs and applied this method in clustering analysis and MADM problems. Peng and Liu [15] on the
other hand proposed three decision-making methods based on a new similarity measure, the EDAS
method and level soft sets for neutrosophic soft sets, and applied this new measure to MADM
problems set in a neutrosophic environment. The relations between SVNSs and its properties were first
studied by Yang et al. [16], whereas the graph theory of SVNSs and bipolar SVNSs were introduced by
Broumi et al. in [17–19] and [20–22], respectively. The aggregation operators of simplified neutrosophic
sets (SNSs) were studied by Tian et al. [23] and Wu et al. [24]. Tian et al. [23] introduced a generalized
prioritized aggregation operator for SNSs and applied this operator in a MADM problem set in an
uncertain linguistic environment, whereas Wu et al. [24] introduced a cross-entropy measure and
a prioritized aggregation operator for SNSs and applied these in a MADM problem. Sahin and
Kucuk [25] proposed a subsethood measure for SVNSs and applied these to MADM problems.

The fuzzy Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method
for SVNSs were studied by Ye [26] and Biswas et al. [27]. Ye [26] introduced the TOPSIS method for
group decision-making (MAGDM) that is based on single-valued neutrosophic linguistic numbers,
to deal with linguistic decision-making. This TOPSIS method uses subjective weighting method
whereby attribute weights are randomly assigned by the users. Maximizing deviation method or any
other objective weighting methods are not used. Biswas et al. [27] proposed a TOPSIS method for
group decision-making (MAGDM) based on the SVNS model. This TOPSIS method is based on the
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original fuzzy TOPSIS method and does not use the maximizing deviation method to calculate the
objective weights for each attribute. The subjective weight of each attribute is determined by using
the single-valued neutrosophic weighted averaging aggregation operator to calculate the aggregated
weights of the attributes using the subjective weights that are assigned by each decision maker.

The process of assigning weights to the attributes is an important phase of decision making.
Most research in this area usually use either objective or subjective weights. However, considering the
fact that different values for the weights of the attributes has a significant influence on the ranking
of the alternatives, it is imperative that both the objective and subjective weights of the attributes
are taken into account in the decision-making process. In view of this, we consider the attributes’
subjective weights which are assigned by the decision makers, and the objective weights which are
computed using the maximizing deviation method. These weights are then combined using the
non-linear weighted comprehensive method to obtain the integrated weight of the attributes.

The advantages and drawbacks of the methods that were introduced in the works described above
served as the main motivation for the work proposed in this paper, as we seek to introduce an effective
SVNS-based decision-making method that is free of all the problems that are inherent in the other
existing methods in literature. In addition to these advantages and drawbacks, the works described
above have the added disadvantage of not being able to function (i.e., provide reasonable solutions)
under all circumstances. In view of this, the objective of this paper is to introduce a novel TOPSIS
with maximizing deviation method for SVNSs that is able to provide effective solutions under any
circumstances. Our proposed TOPSIS method is designed to handle MADM problems, and uses the
maximizing deviation method to calculate the objective weights of attributes, utilizing an integrated
weight measure that takes into consideration both the subjective and objective weights of the attributes.
The robustness of our TOPSIS method is verified through a comprehensive series of tests which proves
that our proposed method is the only method that shows compliance to all the tests, and is able to
provide effective solutions under all different types of situations, thus out-performing all of the other
considered methods.

The remainder of this paper is organized as follows. In Section 2, we recapitulate some
of the fundamental concepts related to neutrosophic sets and SVNSs. In Section 3, we define an
SVNS-based TOPSIS and maximizing deviation methods and an accompanying decision-making
algorithm. The proposed decision-making method is applied to a supplier selection problem in
Section 4. In Section 5, a comprehensive comparative analysis of the results obtained via our proposed
method and other recent approaches is presented. The similarities and differences in the performance
of the existing algorithms and our algorithm is discussed, and it is proved that our algorithm is
effective and provides reliable results in every type of situation. Concluding remarks are given in
Section 6, followed by the acknowledgements and list of references.

2. Preliminaries

In this section, we recapitulate some important concepts pertaining to the theory of neutrosophic
sets and SVNSs. We refer the readers to [8,9] for further details pertaining to these models.

The neutrosophic set model [8] is a relatively new tool for representing and measuring uncertainty
and vagueness of information. It is fast becoming a preferred general framework for the analysis
of uncertainty in data sets due to its capability in the handling big data sets, as well as its ability
in representing all the different types of uncertainties that exists in data, in an effective and concise
manner via a triple membership structure. This triple membership structure captures not only the
degree of belongingness and non-belongingness of the objects in a data set, but also the degree of
neutrality and indeterminacy that exists in the data set, thereby making it superior to ordinary fuzzy
sets [1] and its extensions such as IFSs [2], vague sets [4], and interval-valued fuzzy sets [3]. The formal
definition of a neutrosophic set is as given below.

Let U be a universe of discourse, with a class of elements in U denoted by x.
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Definition 1. [8] A neutrosophic set A is an object having the form A = {x, TA(x), IA(x), FA(x) : x ∈ U},
where the functions T, I, F : U →]−0, 1+[ denote the truth, indeterminacy, and falsity membership functions,
respectively, of the element x ∈ U with respect to A. The membership functions must satisfy the condition
−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

Definition 2. [8] A neutrosophic set A is contained in another neutrosophic set B, if TA(x) ≤ TB(x), IA(x) ≥
IB(x), and FA(x) ≥ FB(x), for all x ∈ U. This relationship is denoted as A ⊆ B.

Wang et al. [9] then introduced a special case of the NS model called the single-valued
neutrosophic set (SVNS) model, which is as defined below. This SVNS model is better suited to
applied in real-life problems compared to NSs due to the structure of its membership functions which
are defined in the standard unit interval of [0, 1].

Definition 3. [9] A SVNS A is a neutrosophic set that is characterized by a truth-membership
function TA(x), an indeterminacy-membership function IA(x), and a falsity-membership function FA(x),
where TA(x), IA(x), FA(x) ∈ [0, 1]. This set A can thus be written as

A = {〈 x, TA(x), IA(x), FA(x)〉 : x ∈ U} . (1)

The sum of TA(x), IA(x) and FA(x) must fulfill the condition 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.
For a SVNS A in U, the triplet (TA(x), IA(x), FA(x)) is called a single-valued neutrosophic number
(SVNN). For the sake of convenience, we simply let x = (Tx, Ix, Fx) to represent a SVNN as an element
in the SVNS A.

Next, we present some important results pertaining to the concepts and operations of SVNSs.
The subset, equality, complement, union, and intersection of SVNSs, and some additional operations
between SVNSs were all defined by Wang et al. [9], and these are presented in Definitions 4 and
5, respectively.

Definition 4. [9] Let A and B be two SVNSs over a universe U.

(i) A is contained in B, if TA(x) ≤ TB(x), IA(x) ≥ IB(x), and FA(x) ≥ FB(x), for all x ∈ U.
This relationship is denoted as A ⊆ B.

(ii) A and B are said to be equal if A ⊆ B and B ⊆ A.
(iii) Ac = (x, (FA(x), 1− IA(x), TA(x))), for all x ∈ U.
(iv) A ∪ B = (x, (max(TA, TB), min(IA, IB), min(FA, FB))), for all x ∈ U.
(v) A ∩ B = (x, (min(TA, TB), max(IA, IB), max(FA, FB))), for all x ∈ U.

Definition 5. [9] Let x = (Tx, Ix, Fx) and y =
(
Ty, Iy, Fy

)
be two SVNNs. The operations for SVNNs can

be defined as follows:

(i) x
⊕

y =
(
Tx + Ty − Tx ∗ Ty, Ix ∗ Iy, Fx ∗ Fy

)
(ii) x

⊗
y =

(
Tx ∗ Ty, Ix + Iy − Ix ∗ Iy, Fx + Fy − Fx ∗ Fy

)
(iii) λx =

(
1− (1− Tx)

λ, (Ix)
λ, (Fx)

λ
)

, where λ > 0

(iv) xλ =
(
(Tx)

λ, 1− (1− Ix)
λ, 1− (1− Fx)

λ
)

, where λ > 0.

Majumdar and Samanta [28] introduced the information measures of distance, similarity,
and entropy for SVNSs. Here we only present the definition of the distance measures between
SVNSs as it is the only component that is relevant to this paper.

Definition 6. [28] Let A and B be two SVNSs over a finite universe U = {x1, x2, . . . , xn}. Then the various
distance measures between A and B are defined as follows:
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(i) The Hamming distance between A and B are defined as:

dH(A, B) =
n

∑
i=1
{|TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)− FB(xi)|} (2)

(ii) The normalized Hamming distance between A and B are defined as:

dN
H(A, B) =

1
3n

n

∑
i=1
{|TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)− FB(xi)|} (3)

(ii) The Euclidean distance between A and B are defined as:

dE(A, B) =

√
n

∑
i=1

{
(TA(xi)− TB(xi))

2 + (IA(xi)− IB(xi))
2 + (FA(xi)− FB(xi))

2
}

(4)

(iv) The normalized Euclidean distance between A and B are defined as:

dN
E (A, B) =

√
1

3n

n

∑
i=1

{
(TA(xi)− TB(xi))

2 + (IA(xi)− IB(xi))
2 + (FA(xi)− FB(xi))

2
}

(5)

3. A TOPSIS Method for Single-Valued Neutrosophic Sets

In this section, we present the description of the problem that is being studied followed by our
proposed TOPSIS method for SVNSs. The accompanying decision-making algorithm which is based
on the proposed TOPSIS method is presented. This algorithm uses the maximizing deviation method
to systematically determine the objective weight coefficients for the attributes.

3.1. Description of Problem

Let U = {u1, u2, . . . , um} denote a finite set of m alternatives, A = {e1, e2, . . . , en} be a set of n
parameters, with the weight parameter wj of each ej completely unknown or only partially known,

wj ∈ [0, 1], and
n
∑

j=1
wj = 1.

Let A be an SVNS in which xij =
(
Tij, Iij, Fij

)
represents the SVNN that represents the information

pertaining to the ith alternative xi that satisfies the corresponding jth parameter ej. The tabular
representation of A is as given in Table 1.

Table 1. Tabular representation of the Single Valued Neutrosophic Set (SVNS) A.

U e1 e2 . . . en

x1 (T11, I11, F11) (T12, I12, F12) . . . (T1n, I1n, F1n)
x2 (T21, I21, F21) (T22, I22, F22) . . . (T2n, I2n, F2n)
...

...
...

. . .
...

xm. (Tm1, Im1, Fm1) (Tm2, Im2, Fm2) . . . (Tmn, Imn, Fmn)

3.2. The Maximizing Deviation Method for Computing Incomplete or Completely Unknown Attribute Weights

The maximizing deviation method was proposed by Wang [29] with the aim of applying it in
MADM problems in which the weights of the attributes are completely unknown or only partially
known. This method uses the law of input arguments i.e., it takes into account the magnitude of
the membership functions of each alternative for each attribute, and uses this information to obtain
exact and reliable evaluation results pertaining to the weight coefficients for each attribute. As such,
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this method is able to compute the weight coefficients of the attributes without any subjectivity, in a
fair and objective manner.

The maximizing deviation method used in this paper is a modification of the original version
introduced in Wang [29] that has been made compatible with the structure of the SVNS model.
The definitions of the important concepts involved in this method are as given below.

Definition 7. For the parameter ej ∈ A, the deviation of the alternative xi to all the other alternatives is
defined as:

Dij
(
wj
)
=

m

∑
k=1

wj d
(

xij, xkj

)
, (6)

where xij, xkj are the elements of the SVNS A, i = 1, 2, . . . , m, j = 1, 2, . . . , n and d
(

xij, xkj

)
denotes the

distance between elements xij and xkj.

The other deviation values include the deviation value of all alternatives to other alternatives,
and the total deviation value of all parameters to all alternatives, both of which are as defined below:

(i) The deviation value of all alternatives to other alternatives for the parameter ej ∈ A, denoted by
Dj
(
wj
)
, is defined as:

Dj
(
wj
)
=

m

∑
i=1

Dij
(
wj
)
=

m

∑
i=1

m

∑
k=1

wj d
(

xij, xkj

)
, (7)

where j = 1, 2, . . . , n.
(ii) The total deviation value of all parameters to all alternatives, denoted by D

(
wj
)
, is defined as:

(
wj
)
=

n

∑
j=1

Dj
(
wj
)
=

n

∑
j=1

m

∑
i=1

m

∑
k=1

wj d
(

xij, xkj

)
, (8)

where wj represents the weight of the parameter ej ∈ A.

(iii) The individual objective weight of each parameter ej ∈ A, denoted by θj, is defined as:

θj =
∑m

i=1 ∑m
k=1 d

(
xij, xkj

)
∑n

j=1 ∑m
i=1 ∑m

k=1 d
(

xij, xkj

) (9)

It should be noted that any valid distance measure between SVNSs can be used in Equations (6)–(9).
However, to improve the effective resolution of the decision-making process, in this paper, we use the
normalized Euclidean distance measure given in Equation (5) in the computation of Equations (6)–(9).

3.3. TOPSIS Method for MADM Problems with Incomplete Weight Information

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) was originally
introduced by Hwang and Yoon [30], and has since been extended to fuzzy sets, IFSs, and other
fuzzy-based models. The TOPSIS method works by ranking the alternatives based on their distance
from the positive ideal solution and the negative ideal solution. The basic guiding principle is that
the most preferred alternative should have the shortest distance from the positive ideal solution and
the farthest distance from the negative ideal solution (Hwang and Yoon [30], Chen and Tzeng [31]).
In this section, we present a decision-making algorithm for solving MADM problems in single-valued
neutrosophic environments, with incomplete or completely unknown weight information.
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3.3.1. The Proposed TOPSIS Method for SVNSs

After obtaining information pertaining to the weight values for each parameter based on the
maximizing deviation method, we develop a modified TOPSIS method for the SVNS model. To achieve
our goal, we introduce several definitions that are the important components of our proposed
TOPSIS method.

Let the relative neutrosophic positive ideal solution (RNPIS) and relative neutrosophic negative
ideal solution (RNNIS) be denoted by b+ and b−, respectively, where these solutions are as
defined below:

b+ =

{(
max

i
Tij, min

i
Iij, min

i
Fij

)∣∣∣∣ j = 1, 2, . . . , n
}

, (10)

and

b− =

{(
min

i
Tij, max

i
Iij, max

i
Fij

)∣∣∣∣ j = 1, 2, . . . , n
}

(11)

The difference between each object and the RNPIS, denoted by D+
i , and the difference between

each object and the RNNIS, denoted by D−i , can then be calculated using the normalized Euclidean
distance given in Equation (5) and by the formula given in Equations (12) and (13).

D+
i =

n

∑
j=1

wj dNE

(
bij, b+j

)
, i = 1, 2, . . . , m (12)

and

D−i =
n

∑
j=1

wj dNE

(
bij, b−j

)
, i = 1, 2, . . . , m (13)

Here, wj denotes the integrated weight for each of the attributes.
The optimal alternative can then be found using the measure of the relative closeness coefficient

of each alternative, denoted by Ci, which is as defined below:

Ci =
D−i

max
j

D−j
−

D+
i

min
j

D+
j

, i, j = 1, 2, . . . , m (14)

From the structure of the closeness coefficient in Equation (14), it is obvious that the larger
the difference between an alternative and the fuzzy negative ideal object, the larger the value of
the closeness coefficient of the said alternative. Therefore, by the principal of maximum similarity
between an alternative and the fuzzy positive ideal object, the objective of the algorithm is to determine
the alternative with the maximum closeness coefficient. This alternative would then be chosen as
the optimal alternative.

3.3.2. Attribute Weight Determination Method: An Integrated WEIGHT MEASure

In any decision-making process, there are two main types of weight coefficients, namely the
subjective and objective weights that need to be taken into consideration. Subjective weight refers to
the values assigned to each attribute by the decision makers based on their individual preferences
and experience, and is very much dependent on the risk attitude of the decision makers. Objective
weight refers to the weights of the attributes that are computed mathematically using any appropriate
computation method. Objective weighting methods uses the law of input arguments (i.e., the input
values of the data) as it determines the attribute weights based on the magnitude of the membership
functions that are assigned to each alternative for each attribute.

Therefore, using only subjective weighting in the decision-making process would be inaccurate as
it only reflects the opinions of the decision makers while ignoring the importance of each attribute that
are reflected by the input values. Using only objective weighting would also be inaccurate as it only
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reflects the relative importance of the attributes based on the law of input arguments, but fails to take
into consideration the preferences and risk attitude of the decision makers.

To overcome this drawback and improve the accuracy and reliability of the decision-making
process, we use an integrated weight measure which combines the subjective and objective weights
of the attributes. This factor makes our decision-making algorithm more accurate compared to most
of the other existing methods in literature that only take into consideration either the objective or
subjective weights.

Based on the formula and weighting method given above, we develop a practical and effective
decision-making algorithm based on the TOPSIS approach for the SVNS model with incomplete weight
information. The proposed Algorithm 1 is as given below.

Algorithm 1. (based on a modified TOPSIS approach).

Step 1. Input the SVNS A which represents the information pertaining to the problem.
Step 2. Input the subjective weight hj for each of the attributes ej ∈ A as given by the decision makers.
Step 3. Compute the objective weight θj for each of the attributes ej ∈ A, using Equation (9).
Step 4. The integrated weight coefficient wj for each of the attributes ej ∈ A, is computed using Equation
as follow:

wj =
hj θj

∑n
j=1 hj θj

Step 5. The values of RNPIS b+ and RNNIS b− are computed using Equations (10) and (11).
Step 6. The difference between each alternative and the RNPIS, D+ and the RNNIS D− are computed using
Equations (12) and (13), respectively.
Step 7. The relative closeness coefficient Ci for each alternative is calculated using Equation (14).
Step 8. Choose the optimal alternative based on the principal of maximum closeness coefficient.

4. Application of the Topsis Method in a Made Problem

The implementation process and utility of our proposed decision-making algorithm is illustrated
via an example related to a supplier selection problem.

4.1. Illustrative Example

In today’s extremely competitive business environment, firms must be able to produce good
quality products at reasonable prices in order to be successful. Since the quality of the products is
directly dependent on the effectiveness and performance of its suppliers, the importance of supplier
selection has become increasingly recognized. In recent years, this problem has been handled using
various mathematical tools. Some of the recent research in this area can be found in [32–38].

Example 1. A manufacturing company is looking to select a supplier for one of the products manufactured by
the company. The company has shortlisted ten suppliers from an initial list of suppliers. These ten suppliers
form the set of alternatives U that are under consideration,

U = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}.

The procurement manager and his team of buyers evaluate the suppliers based on a set of
evaluation attributes E which is defined as:

E = {e1 = service quality, e2 = pricing and cos t structure, e3 = financial stability,
e4 = environmental regulation compliance, e5 = reliability,

e6 = relevant experience}.

The firm then evaluates each of the alternatives xi (i = 1, 2, . . . , 10), with respect to the attributes
ej (j = 1, 2, . . . , 6). The evaluation done by the procurement team is expressed in the form of SVNNs
in a SVNS A.

Florentin Smarandache (ed.) Collected Papers, VI

433



Now suppose that the company would like to select one of the five shortlisted suppliers to be
their supplier. We apply the proposed Algorithm 1 outlined in Section 3.3 to this problem with the aim
of selecting a supplier that best satisfies the specific needs and requirements of the company. The steps
involved in the implementation process of this algorithm are outlined below (Algorithm 2).

Algorithm 2. (based on the modified TOPSIS approach).

Step 1. The SVNS A constructed for this problem is given in tabular form in Table 2
Step 2. The subjective weight hj for each attribute ej ∈ A as given by the procurement team (the decision
makers) are h = {h1 = 0.15, h2 = 0.15, h3 = 0.22, h4 = 0.25, h5 = 0.14, h6 = 0.09}.
Step 3. The objective weight θj for each attribute ej ∈ A is computed using Equation (9) are as given below:
θ = {θ1 = 0.139072, θ2 = 0.170256, θ3 = 0.198570, θ4 = 0.169934 , θ5 = 0.142685,

θ6 = 0.179484}.
Step 4. The integrated weight wj for each attribute ej ∈ A is computed using Equation (15). The integrated
weight coefficent obtained for each attribute is:
w = {w1 = 0.123658, w2 = 0.151386, w3 = 0.258957, w4 = 0.251833, w5 = 0.118412,

w6 = 0.0957547}.
Step 5. Use Equations (10) and (11) to compute the values of b+ and b− from the neutrosophic numbers given
in Table 2. The values are as given below:
b+ =

{
b+1 = [0.7, 0.2, 0.1], b+2 = [0.9, 0, 0.1], b+3 = [0.8, 0, 0], b+4 = [0.9, 0.3, 0],

b+5 = [0.7, 0.2, 0.2], b+6 = [0.8, 0.2 0.1
}

and
b− =

{
b−1 = [0.5, 0.8, 0.5], b−2 = [0.6, 0.8, 0.5], b−3 = [0.1, 0.7, 0.5], b−4 = [0.3, 0.8, 0.7],

b−5 = [0.5, 0.8, 0.7], b−6 = [0.5, 0.8, 0.9]
}

.
Step 6. Use Equations (12) and (13) to compute the difference between each alternative and the RNPIS and the
RNNIS, respectively. The values of D+ and D− are as given below:
D+ =

{
D+

1 = 0.262072, D+
2 = 0.306496, D+

3 = 0.340921, D+
4 = 0.276215, D+

5 = 0.292443,
D+

6 = 0.345226, D+
7 = 0.303001, D+

8 = 0.346428, D+
9 = 0.271012, D+

10 = 0.339093
}

.
and
D− =

{
D−1 = 0.374468, D−2 = 0.307641, D−3 = 0.294889, D−4 = 0.355857, D−5 = 0.323740

D−6 = 0.348903, D−7 = 0.360103, D−8 = 0.338725, D−9 = 0.379516, D−10 = 0.349703
}

.
Step 7. Using Equation (14), the closeness coefficient Ci for each alternative is:
C1 = −0.0133, C2 = −0.3589, C3 = −0.5239, C4 = −0.1163, C5 = −0.2629,
C6 = −0.3980, C7 = −0.2073, C8 = −0.4294, C9 = −0.0341, C10 = −0.3725.
Step 8. The ranking of the alternatives obtained from the closeness coefficient is as given below:

x1 > x9 > x4 > x7 > x5 > x2 > x10 > x6 > x8 > x3.

Therefore the optimal decision is to select supplier x1.

Table 2. Tabular representation of SVNS A.

U e1 e2 e3

x1 (0.7, 0.5, 0.1) (0.7, 0.5, 0.3) (0.8, 0.6, 0.2)
x2 (0.6, 0.5, 0.2) (0.7, 0.5, 0.1) (0.6, 0.3, 0.5)
x3 (0.6, 0.2, 0.3) (0.6, 0.6, 0.4) (0.7, 0.7, 0.2)
x4 (0.5, 0.5, 0.4) (0.6, 0.4, 0.4) (0.7, 0.7, 0.3)
x5 (0.7, 0.5, 0.5) (0.8, 0.3, 0.1) (0.7, 0.6, 0.2)

U e1 e2 e3

x6 (0.5, 0.5, 0.5) (0.7, 0.8, 0.1) (0.7, 0.3, 0.5)
x7 (0.6, 0.8, 0.1) (0.7, 0.2, 0.1) (0.6, 0.3, 0.4)
x8 (0.7, 0.8, 0.3) (0.6, 0.6, 0.5) (0.8, 0, 0.5)
x9 (0.6, 0.7, 0.1) (0.7, 0, 0.1) (0.6, 0.7, 0)
x10 (0.5, 0.7, 0.4) (0.9, 0, 0.3) (1, 0, 0)
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Table 2. Cont.

U e4 e5 e6

x1 (0.9, 0.4, 0.2) (0.6, 0.4, 0.7) (0.6, 0.5, 0.4)
x2 (0.6, 0.4, 0.3) (0.7, 0.5, 0.4) (0.7, 0.8, 0.9)
x3 (0.5, 0.5, 0.3) (0.6, 0.8, 0.6) (0.7, 0.2, 0.5)
x4 (0.9, 0.4, 0.2) (0.7, 0.3, 0.5) (0.6, 0.4, 0.4)
x5 (0.7, 0.5, 0.2) (0.7, 0.5, 0.6) (0.6, 0.7, 0.8)

U e4 e5 e6

x6 (0.4, 0.8, 0) (0.7, 0.4, 0.2) (0.5, 0.6, 0.3)
x7 (0.3, 0.5, 0.1) (0.6, 0.3, 0.6) (0.5, 0.2, 0.6)
x8 (0.7, 0.3, 0.6) (0.6, 0.8, 0.5) (0.6, 0.2, 0.4)
x9 (0.7, 0.4, 0.3) (0.6, 0.6, 0.7) (0.7, 0.3, 0.2)
x10 (0.5, 0.6, 0.7) (0.5, 0.2, 0.7) (0.8, 0.4, 0.1)

4.2. Adaptation of the Algorithm to Non-Integrated Weight Measure

In this section, we present an adaptation of our algorithm introduced in Section 4.1 to cases
where only the objective weights or subjective weights of the attributes are taken into consideration.
The results obtained via these two new variants are then compared to the results obtained via the
original algorithm in Section 4.1. Further, we also compare the results obtained via these two new
variants of the algorithm to the results obtained via the other methods in literature that are compared
in Section 5.

To adapt our proposed algorithm in Section 3 for these special cases, we hereby represent
the objective-only and subjective-only adaptations of the algorithm. This is done by taking only
the objective (subjective) weight is to be used, then simply take wj = θj (wj = hj). The two adaptations
of the algorithm are once again applied to the dataset for SVNS A given in Table 2.

4.2.1. Objective-Only Adaptation of Our Algorithm

All the steps remain the same as the original algorithm; however, only the objective weights of the
attributes are used, i.e., we take wj = θj.

The results of applying this variant of the algorithm produces the ranking given below:

x9 > x1 > x4 > x10 > x7 > x6 > x5 > x8 > x3 > x2.

Therefore, if only the objective weight is to be considered, then the optimal decision is to select
supplier x9.

4.2.2. Subjective-Only Adaptation of Our Algorithm

All the steps remain the same as the original algorithm; however, only the subjective weights
of the attributes are used, i.e., we take wj = hj.

The results of applying this variant of the algorithm produces the ranking given below:

x1 > x9 > x4 > x7 > x5 > x2 > x6 > x10 > x8 > x3

Therefore, if only the objective weight is to be considered, then the optimal decision is to select
supplier x1.

From the results obtained above, it can be observed that the ranking of the alternatives are clearly
affected by the decision of the decision maker to use only the objective weights, only the subjective
weights of the attributes, or an integrated weight measure that takes into consideration both the
objective and subjective weights of the attributes.
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5. Comparatives Studies

In this section, we present a brief comparative analysis of some of the recent works in this area
and our proposed method. These recent approaches are applied to our Example 1, and the limitations
that exist in these methods are elaborated, and the advantages of our proposed method are discussed
and analyzed. The results obtained are summarized in Table 3.

5.1. Comparison of Results Obtained Through Different Methods

Table 3. The results obtained using different methods for Example 1.

Method The Final Ranking The Best Alternative

Ye [39]
(i) WAAO *

(ii) WGAO **

x1 > x4 > x9 > x5 > x7 > x2 > x10 > x8 > x3 > x6
x10 > x9 > x8 > x1 > x5 > x7 > x4 > x2 > x6 > x3

x1
x10

Ye [10]
(i) Weighted correlation coefficient

(ii) Weighted cosine similarity measure

x1 > x4 > x5 > x9 > x2 > x8 > x7 > x3 > x6 > x10
x1 > x9 > x4 > x5 > x2 > x10 > x8 > x3 > x7 > x6

x1
x1

Ye [11] x1 > x9 > x4 > x7 > x5 > x2 > x8 > x6 > x3 > x10 x1

Huang [14] x1 > x9 > x4 > x5 > x2 > x7 > x8 > x6 > x3 > x10 x1

Peng et al. [40]
(i) GSNNWA ***

(ii) GSNNWG ****

x9 > x10 > x8 > x6 > x1 > x7 > x4 > x5 > x2 > x3
x1 > x9 > x4 > x5 > x7 > x2 > x8 > x3 > x6 > x10

x9
x1

Peng & Liu [15]
(i) EDAS

(ii) Similarity measure

x1 > x4 > x6 > x9 > x10 > x3 > x2 > x7 > x5 > x8
x10 > x8 > x7 > x4 > x1 > x2 > x5 > x9 > x3 > x6

x1
x10

Maji [41] x5 > x1 > x9 > x6 > x2 > x4 > x3 > x8 > x7 > x10 x5

Karaaslan [42] x1 > x9 > x4 > x5 > x7 > x2 > x8 > x3 > x6 > x10 x1

Ye [43] x1 > x9 > x4 > x5 > x7 > x2 > x8 > x3 > x6 > x10 x1

Biswas et al. [44] x10 > x9 > x7 > x1 > x4 > x6 > x5 > x8 > x2 > x3 x10

Ye [45] x9 > x7 > x1 > x4 > x2 > x10 > x5 > x8 > x3 > x6 x9

Adaptation of our algorithm (objective
weights only) x9 > x1 > x4 > x10 > x7 > x6 > x5 > x8 > x3 > x2 x9

Adaptation of our algorithm (subjective
weights only) x1 > x9 > x4 > x7 > x5 > x2 > x6 > x10 > x8 > x3 x1

Our proposed method (using integrated
weight measure) x1 > x9 > x4 > x7 > x5 > x2 > x10 > x6 > x8 > x3 x1

* WAAO = weighted arithmetic average operator; ** WGAO = weighted geometric average operator; *** GSNNWA =
generalized simplified neutrosophic number weighted averaging operator; **** GSNNWG = generalized simplified
neutrosophic number weighted geometric operator.

5.2. Discussion of Results

From the results obtained in Table 3, it can be observed that different rankings and optimal
alternatives were obtained from the different methods that were compared. This difference is due to a
number of reasons. These are summarized briefly below:

(i) The method proposed in this paper uses an integrated weight measure which considers both the
subjective and objective weights of the attributes, as opposed to some of the methods that only
consider the subjective weights or objective weights.

(ii) Different operators emphasizes different aspects of the information which ultimately leads
to different rankings. For example, in [40], the GSNNWA operator used is based on an
arithmetic average which emphasizes the characteristics of the group (i.e., the whole information),
whereas the GSNNWG operator is based on a geometric operator which emphasizes the
characteristics of each individual alternative and attribute. As our method places more importance
on the characteristics of the individual alternatives and attributes, instead of the entire information
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as a whole, our method produces the same ranking as the GSNNWG operator but different results
from the GSNNWA operator.

5.3. Analysis of the Performance and Reliability of Different Methods

The performance of these methods and the reliability of the results obtained via these methods
are further investigated in this section.

Analysis

In all of the 11 papers that were compared in this section, the different authors used different
types of measurements and parameters to determine the performance of their respective algorithms.
However, all of these inputs always contain a tensor with at least three degrees. This tensor can refer to
different types of neutrosophic sets depending on the context discussed in the respective papers, e.g.,
simplified neutrosophic sets, single-valued neutrosophic sets, neutrosophic sets, or INSs. For the sake
of simplicity, we shall denote them simply as S.

Furthermore, all of these methods consider a weighted approach i.e., the weight of each attribute
is taken into account in the decision-making process. The decision-making algorithms proposed
in [10,11,14,39,40,43,45] use the subjective weighting method, the algorithms proposed in [42,44] use
the objective weighting method, whereas only the decision-making methods proposed in [15] use
an integrated weighting method which considers both the subjective and objective weights of the
attributes. The method proposed by Maji [41] did not take the attribute weights into consideration in
the decision-making process.

In this section, we first apply the inputs of those papers into our own algorithm. We then compare
the results obtained via our proposed algorithm with their results, with the aim of justifying the
effectiveness of our algorithm. The different methods and their algorithms are analyzed below:

(i) The algorithms in [10,11,39] all use the data given below as inputs

S =


[0.4, 0.2, 0.3], [0.4, 0.2, 0.3], [0.2, 0.2, 05]
[0.6, 0.1, 0.2], [0.6, 0.1, 0.2], [0.5, 0.2, 0.2]
[0.3, 0.2, 0.3], [0.5, 0.2, 0.3], [0.5, 0.3, 0.2]
[0.7, 0.0, 0.1], [0.6, 0.1, 0.2], [0.4, 0.3, 0.2]


The subjective weights wj of the attributes are given by w1 = 0.35, w2 = 0.25, w3 = 0.40. All the
five algorithms from papers [10,11,39] yields either one of the following rankings:

A4 > A2 > A3 > A1 or A2 > A4 > A3 > A1

Our algorithm yields the ranking A4 > A2 > A3 > A1 which is consistent with the results
obtained through the methods given above.

(ii) The method proposed in [44] also uses the data given in S above as inputs but ignores the opinions
of the decision makers as it does not take into account the subjective weights of the attributes.
The algorithm from this paper yields the ranking of A4 > A2 > A3 > A1. To fit this data into our
algorithm, we randomly assigned the subjective weights of the attributes as wj =

1
3 for j = 1, 2, 3.

A ranking of A4 > A2 > A3 > A1 was nonetheless obtained from our algorithm.
(iii) The methods introduced in [14,43,45] all use the data given below as input values:

S =


[0.5, 0.1, 0.3], [0.5, 0.1, 0.4], [0.7, 0.1, 02], [0.3, 0.2, 0.1]
[0.4, 0.2, 0.3], [0.3, 0.2, 0.4], [0.9, 0.0, 0.1], [0.5, 0.3, 0.2]
[0.4, 0.3, 0.1], [0.5, 0.1, 0.3], [0.5, 0.0, 0.4], [0.6, 0.2, 0.2]
[0.6, 0.1, 0.2], [0.2, 0.2, 0.5], [0.4, 0.3, 0.2], [0.7, 0.2, 0.1]
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The subjective weights wj of the attributes are given by w1 = 0.30, w2 = 0.25, w3 = 0.25 and
w4 = 0.20.

In this case, all of the three algorithms produces a ranking of A1 > A3 > A2 > A4.
This result is however not very reliable as all of these methods only considered the subjective

weights of the attributes and ignored the objective weight which is a vital measurement of the
relative importance of an attribute ej relative to the other attributes in an objective manner i.e.,
without “prejudice”.

When we calculated the objective weights using our own algorithm we have the following
objective weights:

aj = [0.203909, 0.213627, 0.357796, 0.224667]

In fact, it is indeed <0.9, 0.0, 0.1> that mainly contributes to the largeness of the objective weight
of attribute e3 compared to the other values of ej. Hence, when we calculate the integrated weight,
the weight of attribute e3 is still the largest.

Since [0.9, 0.0, 0.1] is in the second row, our algorithm yields a ranking of A2 > A1 > A3 > A4

as a result.
We therefore conclude that our algorithm is more effective and the results obtained via our

algorithm is more reliable than the ones obtained in [14,43,45], as we consider both the objective and
subjective weights.

(iv) It can be observed that for the methods introduced in [10,11,39,44], we have 0.8 ≤ Tij + Iij + Fij ≤ 1
for all the entries. A similar trend can be observed in [14,43,45], where 0.6 ≤ Tij + Iij + Fij ≤ 1
for all the entries. Therefore, we are not certain about the results obtained through the decision
making algorithms in these papers when the value of Tij + Iij + Fij deviates very far from 1.

Another aspect to be considered is the weighting method that is used in the decision making
process. As mentioned above, most of the current decision making methods involving SVNSs use
subjective weighting, a few use objective weighting and only two methods introduced in [15] uses an
integrated weighting method to arrive at the final decision. In view of this, we proceeded to investigate
if all of the algorithms that were compared in this section are able to produce reliable results when
both the subjective and objective weights are taken into consideration. Specifically, we investigate
if these algorithms are able to perform effectively in situations where the subjective weights clearly
prioritize over the objective weights, and vice-versa. To achieve this, we tested all of the algorithms
with three sets of inputs as given below:

Test 1: A scenario containing a very small value of Tij + Iij + Fij.

S1 =


A1 = ([0.5, 0.5, 0.5], [0.9999, 0.0001, 0.000])

A2 = ([0.5, 0.5, 0.5], [0.9999, 0.0001, 0.0001])
A3 = ([0.5, 0.5, 0.5], [0.9999, 0.0000, 0.0001])
A4 = ([0.5, 0.5, 0.5], [0.0001, 0.0000, 0.000])


The subjective weight in this case is assigned as: aj = [0.5, 0.5].
By observation alone, it is possible to tell that an effective algorithm should produce A4 as the

least favoured alternative, and A2 should be second least-favoured alternative.
Test 2: A scenario where subjective weights prioritize over objective weight.

S2 =

{
A1 = ([0.80, 0.10, 0.10], [0.19, 0.50, 0.50])
A2 = ([0.20, 0.50, 0.50], [0.81, 0.10, 0.10])

}

The subjective weight in this case is assigned as: aj = [0.99, 0.01].
By observation alone, we can tell that an effective algorithm should produce a ranking of A1 > A2.
Test 3: This test is based on a real-life situation.
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Suppose a procurement committee is looking to select the best supplier to supply two raw
materials e1 and e2. In this context, the triplet [T, I, F] represents the following:

T : the track record of the suppliers that is approved by the committee
I : the track record of the suppliers that the committee feels is questionable
F : the track record of the suppliers that is rejected by the committee

Based on their experience, the committee is of the opinion that raw material e1 is slightly more
important than raw material e2, and assigned subjective weights of wsub

1 = 0.5001 and wsub
2 = 0.4999.

After an intensive search around the country, the committee shortlisted 20 candidates (A1 to
A20). After checking all of the candidates’ track records and analyzing their past performances, the
committee assigned the following values for each of the suppliers.

S3 =



A1 = ([0.90, 0.00, 0.10], [0.80, 0.00, 0.10]), A2 = ([0.80, 0.00, 0.10], [0.90, 0.00, 0.10])
A3 = ([0.50, 0.50, 0.50], [0.00, 0.90, 0.90]), A4 = ([0.50, 0.50, 0.50], [0.10, 0.90, 0.80])
A5 = ([0.50, 0.50, 0.50], [0.20, 0.90, 0.70]), A6 = ([0.50, 0.50, 0.50], [0.30, 0.90, 0.60])
A7 = ([0.50, 0.50, 0.50], [0.40, 0.90, 0.50]), A8 = ([0.50, 0.50, 0.50], [0.50, 0.90, 0.40])
A9 = ([0.50, 0.50, 0.50], [0.60, 0.90, 0.30]), A10 = ([0.50, 0.50, 0.50], [0.70, 0.30, 0.90])

A11 = ([0.50, 0.50, 0.50], [0.70, 0.90, 0.30]), A12 = ([0.50, 0.50, 0.50], [0.00, 0.30, 0.30])
A13 = ([0.50, 0.50, 0.50], [0.70, 0.90, 0.90]), A14 = ([0.50, 0.50, 0.50], [0.70, 0.30, 0.30])
A15 = ([0.50, 0.50, 0.50], [0.60, 0.40, 0.30]), A16 = ([0.50, 0.50, 0.50], [0.50, 0.50, 0.30])
A17 = ([0.50, 0.50, 0.50], [0.40, 0.60, 0.30]), A18 = ([0.50, 0.50, 0.50], [0.30, 0.70, 0.30])
A19 = ([0.50, 0.50, 0.50], [0.20, 0.80, 0.30]), A20 = ([0.50, 0.50, 0.50], [0.10, 0.90, 0.30])


The objective weights for this scenario was calculated based on our algorithm and the values are

wobj
1 = 0.1793 and wobj

2 = 0.8207.
Now it can be observed that suppliers A1 and A2 are the ones that received the best evaluation

scores from the committee. Supplier A1 received better evaluation scores from the committee compared
to supplier A2 for attribute e1. Attribute e1 was deemed to be more important than attribute e2 by
the committee, and hence had a higher subjective weight. However, the objective weight of attribute
e2 is much higher than e1. This resulted in supplier A2 ultimately being chosen as the best supplier.
This is an example of a scenario where the objective weights are prioritized over the subjective weights,
and has a greater influence on the decision-making process.

Therefore, in the scenario described above, an effective algorithm should select A2 as the optimal
supplier, followed by A1. All of the remaining choices have values of T < 0.8, I > 0.0 and F > 0.1.
As such, an effective algorithm should rank all of these remaining 18 choices behind A1.

We applied the three tests mentioned above and the data set for S3 given above to the
decision-making methods introduced in the 11 papers that were compared in the previous section.
The results obtained are given in Table 4.

Thus it can be concluded that our proposed algorithm is the most effective algorithm and the
one that yields the most reliable results in all the different types of scenario. Hence, our proposed
algorithm provides a robust framework that can be used to handle any type of situation and data, and
produce accurate and reliable results for any type of situation and data.

Finally, we look at the context of the scenario described in Example 1. The structure of our data
(given in Table 2) is more generalized, by theory, having 0 ≤ Tij + Iij + Fij ≤ 1 and 0 ≤ Tij + Iij + Fij ≤ 3,
and is similar to the structure of the data used in [15,40–42]. Hence, our choice of input data serves as
a more faithful indicator of how each algorithm works under all sorts of possible conditions.
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Table 4. Compliance to Tests 1, 2, and 3.

Paper Test 1
Compliance

Test 2
Compliance

Test 3
Compliance

Ye [39]
WAAO * Y Y N
WGAO * N Y N

Ye [10]
Weighted correlation coefficient Y Y N
Weighted cosine similarity measure N Y N

Ye [11] Y Y N
Huang [14] Y Y N

Peng et al. [40] GSNNWA ** Y Y N
GSNNWG ** Y Y N

Peng & Liu [15] EDAS Y Y N
Similarity measure N Y Y

Maji [41] N N N
Karaaslan [42] Y Y N
Ye [43] Y Y N
Biswas et al. [44] Y N Y
Ye [45] Y Y N
Adaptation of our proposed algorithm (objective weights only) Y N Y
Adaptation of our proposed algorithm (subjective weights only) Y Y N
Our proposed algorithm Y Y Y

Remarks: Y = Yes (which indicates compliance to Test); N = No (which indicates non-compliance to Test); * WAAO =
weighted arithmetic average operator; * WGAO = weighted geometric average operator; ** GSNNWA = generalized
simplified neutrosophic number weighted averaging operator; ** GSNNWG = generalized simplified neutrosophic
number weighted geometric operator.

6. Conclusions

The concluding remarks and the significant contributions that were made in this paper are
expounded below.

(i) A novel TOPSIS method for the SVNS model is introduced, with the maximizing deviation
method used to determine the objective weight of the attributes. Through thorough analysis,
we have proven that our algorithm is compliant with all of the three tests that were discussed in
Section 5.3. This clearly indicates that our proposed decision-making algorithm is not only an
effective algorithm but one that produces the most reliable and accurate results in all the different
types of situation and data inputs.

(ii) Unlike other methods in the existing literature which reduces the elements from single-valued
neutrosophic numbers (SVNNs) to fuzzy numbers, or interval neutrosophic numbers (INNs)
to neutrosophic numbers or fuzzy numbers, in our version of the TOPSIS method the input
data is in the form of SVNNs and this form is maintained throughout the decision-making
process. This prevents information loss and enables the original information to be retained,
thereby ensuring a higher level of accuracy for the results that are obtained.

(iii) The objective weighting method (e.g., the ones used in [10,11,14,39,40,43,45]) only takes into
consideration the values of the membership functions while ignoring the preferences of the
decision makers. Through the subjective weighting method (e.g., the ones used in [42,44]),
the attribute weights are given by the decision makers based on their individual preferences and
experiences. Very few approaches in the existing literature (e.g., [15]) consider both the objective
and subjective weighting methods. Our proposed method uses an integrated weighting model
that considers both the objective and subjective weights of the attributes, and this accurately
reflects the input values of the alternatives as well as the preferences and risk attitude of the
decision makers.
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Abstract: This paper proposes novel skin lesion detection based on neutrosophic clustering
and adaptive region growing algorithms applied to dermoscopic images, called NCARG. First,
the dermoscopic images are mapped into a neutrosophic set domain using the shearlet transform
results for the images. The images are described via three memberships: true, indeterminate, and false
memberships. An indeterminate filter is then defined in the neutrosophic set for reducing the
indeterminacy of the images. A neutrosophic c-means clustering algorithm is applied to segment the
dermoscopic images. With the clustering results, skin lesions are identified precisely using an adaptive
region growing method. To evaluate the performance of this algorithm, a public data set (ISIC 2017) is
employed to train and test the proposed method. Fifty images are randomly selected for training and
500 images for testing. Several metrics are measured for quantitatively evaluating the performance
of NCARG. The results establish that the proposed approach has the ability to detect a lesion with
high accuracy, 95.3% average value, compared to the obtained average accuracy, 80.6%, found when
employing the neutrosophic similarity score and level set (NSSLS) segmentation approach.

Keywords: neutrosophic clustering; image segmentation; neutrosophic c-means clustering; region
growing; dermoscopy; skin cancer

1. Introduction

Dermoscopy is an in-vivo and noninvasive technique to assist clinicians in examining pigmented
skin lesions and investigating amelanotic lesions. It visualizes structures of the subsurface skin in
the superficial dermis, the dermoepidermal junction, and the epidermis [1]. Dermoscopic images
are complex and inhomogeneous, but they have a significant role in early identification of skin
cancer. Recognizing skin subsurface structures is performed by visually searching for individual
features and salient details [2]. However, visual assessment of dermoscopic images is subjective,
time-consuming, and prone to errors [3]. Consequently, researchers are interested in developing
automated clinical assessment systems for lesion detection to assist dermatologists [4,5]. These systems
require efficient image segmentation and detection techniques for further feature extraction and skin
cancer lesion classification. However, skin cancer segmentation and detection processes are complex
due to dissimilar lesion color, texture, size, shape, and type; as well as the irregular boundaries of
various lesions and the low contrast between skin and the lesion. Moreover, the existence of dark hair
that covers skin and lesions leads to specular reflections.
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Traditional skin cancer detection techniques implicate image feature analysis to outline the
cancerous areas of the normal skin. Thresholding techniques use low-level features, including intensity
and color to separate the normal skin and cancerous regions. Garnavi et al. [6] applied Otsu’s method
to identify the core-lesion; nevertheless, such process is disposed to skin tone variations and lighting.
Moreover, dermoscopic images include some artifacts due to water bubble, dense hairs, and gel that
are a great challenge for accurate detection. Silveira et al. [7] evaluated six skin lesions segmentation
techniques in dermoscopic images, including the gradient vector flow (GVF), level set, adaptive snake,
adaptive thresholding, fuzzy-based split and merge (FSM), and the expectation–maximization level set
(EMLV) methods. The results established that adaptive snake and EMLV were considered the superior
semi-supervised techniques, and that FSM achieved the best fully computerized results.

In dermoscopic skin lesion images, Celebi et al. [8] applied an unsupervised method using
a modified JSEG algorithm for border detection, where the original JSEG algorithm is an adjusted
version of the generalized Lloyd algorithm (GLA) for color quantization. The main idea of this method
is to perform the segmentation process using two independent stages, namely color quantization
and spatial segmentation. However, one of the main limitations occurs when the bounding box does
not entirely include the lesion. This method was evaluated on 100 dermoscopic images, and border
detection error was calculated. Dermoscopic images for the initial consultation were analyzed by
Argenziano et al. [9] and were compared with images from the last follow-up consultation and the
symmetrical/asymmetrical structural changes. Xie and Bovik [10] implemented a dermoscopic image
segmentation approach by integrating the genetic algorithm (GA) and self-generating neural network
(SGNN). The GA was used to select the optimal samples as initial neuron trees, and then the SGNF was
used to train the remaining samples. Accordingly, the number of clusters was determined by adjusting
the SD of cluster validity. Thus, the clustering is accomplished by handling each neuron tree as a cluster.
A comparative study between this method and other segmentation approaches—namely k-means,
statistical region merging, Otsu’s thresholding, and the fuzzy c-means methods—has been conducted
revealing that the optimized method provided improved segmentation and more accurate results.

Barata et al. [11] proposed a machine learning based, computer-aided diagnosis system for
melanoma using features having medical importance. This system used text labels to detect several
significant dermoscopic criteria, where, an image annotation scheme was applied to associate the
image regions with the criteria (texture, color, and color structures). Features fusion was then used to
combine the lesions’ diagnosis and the medical information. The proposed approach achieved 84.6%
sensitivity and 74.2% specificity on 804 images of a multi-source data set.

Set theory, such as the fuzzy set method, has been successfully employed into image segmentation.
Fuzzy sets have been introduced into image segmentation applications to handle uncertainty. Several
researchers have been developing efficient clustering techniques for skin cancer segmentation and other
applications based on fuzzy sets. Fuzzy c-means (FCM) uses the membership function to segment the
images into one or several regions. Lee and Chen [12] proposed a segmentation technique on different
skin cancer types using classical FCM clustering. An optimum threshold-based segmentation technique
using type-2 fuzzy sets was applied to outline the skin cancerous areas. The results established the
superiority of this method compared to Otsu’s algorithm, due its robustness to skin tone variations
and shadow effects. Jaisakthi et al. [13] proposed an automated skin lesion segmentation technique
in dermoscopic images using a semi-supervised learning algorithm. A k-means clustering procedure
was employed to cluster the pre-processed skin images, where the skin lesions were identified from
these clusters according to the color feature. However, the fuzzy set technique cannot assess the
indeterminacy of each element in the set. Zhou et al. [14] introduced the fuzzy c-means (FCM)
procedure based on mean shift for detecting regions within the dermoscopic images.

Recently, neutrosophy has provided a prevailing technique, namely the neutrosophic set (NS),
to handle indeterminacy during the image processing. Guo and Sengur [15] integrated the NS and FCM
frameworks to resolve the inability of FCM for handling uncertain data. A clustering approach called
neutrosophic c-means (NCM) clustering was proposed to cluster typical data points. The results proved
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the efficiency of the NCM for image segmentation and data clustering. Mohan et al. [16] proposed
automated brain tumor segmentation based on a neutrosophic and k-means clustering technique.
A non-local neutrosophic Wiener filter was used to improve the quality of magnetic resonance images
(MRI) before applying the k-means clustering approach. The results found detection rates of 100% with
98.37% accuracy and 99.52% specificity. Sengur and Guo [17] carried out an automated technique using
a multiresolution wavelet transform and NS. The color/texture features have been mapped on the NS
and wavelet domain. Afterwards, the c-k-means clustering approach was employed for segmentation.
Nevertheless, wavelets [18] are sensitive to poor directionality during the analysis of supplementary
functions in multi-dimensional applications. Hence, wavelets are relatively ineffectual to represent
edges and anisotropic features in the dermoscopic images. Subsequently, enhanced multi-scale
procedures have been established, including the curvelets and shearlets to resolve the limitations of
wavelet analysis. These methods have the ability to encode directional information for multi-scale
analysis. Shearlets provides a sparse representation of the two-dimensional information with edge
discontinuities [19]. Shearlet-based techniques were established to be superior to wavelet-based
methods [20].

Dermoscopic images include several artifacts such as hair, air bubbles, and other noise factors that
are considered indeterminate information. The above-mentioned skin lesion segmentation methods
either need a preprocessing to deal with the indeterminate information, or their detection results must
be affected by them. To overcome this disadvantage, we introduce the neutrosophic set to deal with
indeterminate information in dermoscopic images; we use a shearlet transform and the neutrosophic
c-means (NCM) method along with an indeterminacy filter (IF) to eliminate the indeterminacy for
accurate skin cancer segmentation. An adaptive region growing method is also employed to identify
the lesions accurately.

The rest of the paper is organized as follows. In the second section, the proposed method is
presented. Then the experimental results are discussed in the third section. The conclusions are drawn
in the final section.

2. Methodology

The current work proposes a skin lesion detection algorithm using neutrosophic clustering and
adaptive region growing in dermoscopic images. In this study, the red channel is used to detect the
lesion, where healthy skin regions tend to be reddish, while darker pixels often occur in skin lesion
regions [21]. First, the shearlet transform is employed on the red channel of dermoscopic image to
extract the shearlet features. Then, the red channel of the image is mapped into the neutrosophic
set domain, where the map functions are defined using the shearlet features. In the neutrosophic
set, an indeterminacy filtering operation is performed to remove indeterminate information, such as
noise and hair without using any de-noising or hair removal approaches. Then, the segmentation is
performed through the neutrosophic c-means (NCM) clustering algorithm. Finally, the lesions are
identified precisely using adaptive region growing on the segmentation results.

2.1. Shearlet Transform

Shearlets are based on a rigorous and simple mathematical framework for the geometric
representation of multidimensional data and for multiresolution analysis [22]. The shearlet transform
(ST) resolves the limitations of wavelet analysis; where wavelets fail to represent the geometric
regularities and yield surface singularities due to their isotropic support. Shearlets include nearly
parallel elongated functions to achieve surface anisotropy along the edges. The ST is an innovative
two-dimensional wavelet transformation extension using directional and multiscale filter banks to
capture smooth contours corresponding to the prevailing features in an image. Typically, the ST is
a function with three parameters a, s, and t denoting the scale, shear, and translation parameters,
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respectively. The shearlet can fix both the locations of singularities and the singularities’ curve tracking
automatically. For a > 0, s ∈ R, t ∈ R2, the ST can be defined using the following expression [23]:

STς p(a, s, t) =< 〈p, ςa,s,t〉, (1)

where ςa,s,t( f ) = |detNa,s|−1/2ς
(

N−1
a,s ( f − t)

)
and Na,s =

[
a s
0
√

a

]
. Each matrix Na,s can be

defined as:
Na,s = VsDa, (2)

where the shear matrix is expressed by:

Vs =

[
1 s
0 1

]
(3)

and the anisotropic dilation matrix is given by:

Da =

[
a s
0
√

a

]
. (4)

During the selection of a proper decomposition function for any τ = (τ1, τ2) ∈ R2, and τ2 6= 0,
ς can be expressed by:

_
ς (τ) =

_
ς (τ1, τ2) =

_
ς 1(τ1)

_
ς 2

(
τ1

τ2

)
, (5)

where
_
ς 1 ∈ L2(R) and ‖ς2‖L2

= 1.
From the preceding equations, the discrete shearlet transform (DST) is formed by translation,

shearing, and scaling to provide the precise orientations and locations of edges in an image. The DST is
acquired by sampling the continuous ST. It offers a decent anisotropic feature extraction. Thus, the DST
system is properly definite by sampling the continuous ST on a discrete subset of the shearlet group as
follows, where j, k, m ∈ Z× Z× Z2 [24]:

ST(ς) =
{

ς j,k,m = a−
3
4 ς
(

Da
−1Vs

−1(.− t)
)

: (j, k, m) ∈ ∧
}

. (6)

The DST can be divided into two steps: multi-scale subdivision and direction localization [25],
where the Laplacian pyramid algorithm is first applied to an image in order to obtain the
low-and-high-frequency components at any scale j, and then direction localization is achieved with
a shear filter on a pseudo polar grid.

2.2. Neutrosophic Images

Neutrosophy has been successfully used for many applications to describe uncertain or
indeterminate information. Every event in the neutrosophy set (NS) has a certain degree of truth (T),
indeterminacy (I), and falsity (F), which are independent from each other. Previously reported studies
have demonstrated the role of NS in image processing [26,27].

A pixel P(i, j) in an image is denoted as PNS(i, j) = {T(i, j), I(i, j), F(i, j)} in the NS domain,
where T(i, j), I(i, j), and F(i, j) are the membership values belonging to the brightest pixel set,
indeterminate set, and non-white set, respectively.

In the proposed method, the red channel of the dermoscopic image is transformed into the NS
domain using shearlet feature values as follows:
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T(x, y) = STL(x,y)−STLmin
STLmax−STLmin

I(x, y) = STH(x,y)−STHmin
STHmax−STHmin

(7)

where T and I are the true and indeterminate membership values in the NS. STL(x, y) is the
low-frequency component of the shearlet feature at the current pixel P(x, y). In addition, STLmax

and STLmin are the maximum and minimum of the low-frequency component of the shearlet feature
in the whole image, respectively. STH(x, y) is the high-frequency component of the shearlet feature
at the current pixel P(x, y). Moreover, STHmax and STHmin are the maximum and minimum of the
high-frequency component of the shearlet feature in the whole image, respectively. In the proposed
method, we only use T and I for segmentation because we are only interested in the degree to which
a pixel belongs to the high intensity set of the red channel.

2.3. Neutrosophic Indeterminacy Filtering

In an image, noise can be considered as indeterminate information, which can be handled
efficiently using NS. Such noise and artifacts include the existence of hair, air bubbles, and blurred
boundaries. In addition, NS can be integrated with different clustering approaches for image
segmentation [16,28], where the boundary information, as well as the details, may be blurred due to the
principal low-pass filter leading to inaccurate segmentation of the boundary pixels. A novel NS based
clustering procedure, namely the NCM has been carried out for data clustering [15], which defined
the neutrosophic membership subsets using attributes of the data. Nevertheless, when it is applied to
the image processing area, it does not account for local spatial information. Several side effects can
affect the image when using classical filters in the NS domain, leading to blurred edge information,
incorrect boundary segmentation, and an inability to combine the local spatial information with the
global intensity distribution.

After the red channel of the dermoscopic image is mapped into the NS domain, an indeterminacy
filter (IF) is defined based on the neutrosophic indeterminacy value, and the spatial information is
utilized to eliminate the indeterminacy. The IF is defined by using the indeterminate value Is(x, y),
which has the following kernel function [28]:

OI(u, v) =
1

2πσ2
I

e
− u2+v2

2σ2
I (8)

σI(x, y) = f (I(x, y)) = rI(x, y) + q, (9)

where σI represents the Gaussian distribution’s standard deviation, which is defined as a linear function
f (.) associated with the indeterminacy degree. Since σI becomes large with a high indeterminacy
degree, the IF can create a smooth current pixel by using its neighbors. On the other hand, with a low
indeterminacy degree, the value of σI is small and the IF performs less smoothing on the current pixel
with its neighbors.

2.4. Neutrosophic C-Means (NCM)

In the NCM algorithm, an objective function and membership are considered as follows [29]:

J(T, I, F, A) =
N

∑
i=1

A

∑
j=1

(v1Tij)
m||xi − aj||2 +

N

∑
i=1

(v2 Ii)
m||xi − aimax||2 +

N

∑
i=1

δ2(v3Fi)
m (10)
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aimax =
api+aqi

2

pi = argmax
j=1,2,··· ,A

(Tij)

qi = argmax
j 6=pi∩j=1,2,··· ,A

(Tij)

(11)

where m is a constant and usually equal to 2. The value of aimax is calculated, since pi and qi are
identified as the cluster numbers with the largest and second largest values of T, respectively.
The parameter δ is used for controlling the number of objects considered as outliers, and vi is
a weight factor.

In our NS domain, we only defined the membership values of T and I. Therefore, the objective
function reduces to:

J(T, I, F, A) =
N

∑
i=1

A

∑
j=1

(v1Tij)
m||xi − aj||2 +

N

∑
i=1

(v2 Ii)
m||xi − aimax||2. (12)

To minimize the objective function, three membership values are updated on each iteration as:

Tij =
K

v1

(
xi − aj

)− 2
m−1

I i =
K

v2
(xi − aimax)

− 2
m−1

K =

[
1

v1

A
∑

j=1

(
xi − aj

)− 2
m−1 + 1

v2
(xi − aimax)

− 2
m−1

]−1 (13)

where aimax is calculated based on the indexes of the largest and the second largest value of Tij.

The iteration does not stop until
∣∣∣T(k+1)

ij − T(k)
ij

∣∣∣ < ε, where ε is a termination criterion between 0 and
1, and k is the iteration step. In the proposed method, the neutrosophic image after indeterminacy
filtering is used as the input for NCM algorithm, and the segmentation procedure is performed using
the final clustering results. Since the pixels whose indeterminacy membership values are higher than
their true membership values, it is hard to determine which group they belong to. To solve this problem,
the indeterminacy filter is employed again on all pixels, and the group is determined according to their
biggest true membership values for each cluster after the IF operation.

2.5. Lesion Detection

After segmentation, the pixels in an image are grouped into several groups according to their
true membership values. Due to the fact that the lesions have low intensities, especially for the core
part inside a lesion, the cluster with lowest true membership value is initially considered as the lesion
candidate pixels. Then an adaptive region growing algorithm is employed to precisely detect the
lesion boundary parts having higher intensity and lower contrast than the core ones. A contrast ratio
is defined adaptively to control the growing speed:

DR(t) =
mean(Ra − Rb)

mean(Rb)
, (14)

where DR(t) is the contrast ratio at the t-th iteration of growing, and Rb and Ra are the regions before
and after the t-th iteration of growing, respectively.

A connected component analysis is taken to extract the components’ morphological features.
Due to the fact that there is only one lesion in a dermoscopic image, the region with the biggest area is
identified as the final lesion region. The block diagram of the proposed neutrosophic clustering and
adaptive region growing (NCARG) method is illustrated in Figure 1.
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Figure 1. Flowchart of the proposed neutrosophic clustering and adaptive region growing (NCARG)
skin lesion detection algorithm.

Figure 1 illustrates the steps of the proposed skin lesion segmentation method (NCARG) using
neutrosophic c-means and region growing algorithms. Initially, the red channel of the dermoscopic
image is transformed using a shearlet transform, and the shearlet features of the image are used to
map the image into the NS domain. In the NS domain, an indeterminacy filtering operation is taken
to remove the indeterminate information. Afterward, the segmentation is performed through NCM
clustering on the filtered image. Finally, the lesion is accurately identified using an adaptive region
growing algorithm where the growing speed is controlled by a newly defined contrast ratio.

To illustrate the steps in the proposed method, we use an example to demonstrate the intermediate
results in Figure 2. Figure 2a,b are the original image and its ground truth image of segmentation.
Figure 2c is its red channel. Figure 2d,e are the results after indeterminacy filtering and the NCM.
In Figure 2f, the final detection result is outlined in blue and ground truth in red where the detection
result is very close to its ground truth result.

Figure 2. Intermediate results of an example image: ISIC_0000015: (a) Original skin lesion image;
(b) Ground truth image; (c) Red channel of the original image; (d) Result after indeterminate filtering;
(e) Result after NCM; (f) Detected lesion region after adaptive region growing, where the blue line is
for the boundary of the detection result and the red line is the boundary of the ground truth result.
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2.6. Evaluation Metrics

Several performance metrics are measured to evaluate the proposed skin cancer segmentation
approach, namely the Jaccard index (JAC), Dice coefficient, sensitivity, specificity, and accuracy [30].
Each of these metric is defined in the remainder of this section. JAC is a statistical metric to compare
diversity between the sample sets based upon the union and intersection operators as follows:

JAC(Y, Q) =
ArY ∩ ArQ

ArY ∪ ArQ
, (15)

where ∩ and ∪ are the intersection and union of two sets, respectively. In addition, ArY and ArQ
are the automated segmented skin lesion area and the reference golden standard skin lesion area
enclosed by the boundaries Y and Q; respectively. Typically, a value of 1 specifies complete similarity,
while a JAC value of 0 specifies no similarity.

The Dice index compares the similarity of two sets, which is given as following for two sets X
and Y:

DSC =
2|X ∩Y|
|X|+|Y| (16)

Furthermore, the sensitivity, specificity, and accuracy are related to the detection of the lesion region.
The sensitivity indicates the true positive rate, showing how well the algorithm successfully predicts
the skin lesion region, which is expressed as follows:

Sensitivity =
Number of true positives

Number of true positives + Number of false negatives
. (17)

The specificity indicates the true negative rate, showing how well the algorithm predicts the non-lesion
regions, which is expressed as follows:

Specificity =
Number of true negative

Number of conditionnegative
. (18)

The accuracy is the proportion of true results (either positive or negative), which measures the reliability
degree of a diagnostic test:

Accuracy =
Number of true positive + Number of true negative

Number of total population
. (19)

These metrics are measured to evaluate the proposed NCARG method compared to another
efficient segmentation algorithm that is based on the neutrosophic similarity score (NSS) and level
set (LS), called NSSLS [31]. In the NSSLS segmentation method, the three membership subsets are
used to transfer the input image to the NS domain, and then the NSS is applied to measure the
fitting degree to the true tumor region. Finally, the LS method is employed to segment the tumor
in the NSS image. In the current work, when the NSSLS is applied to the skin images, the images
are interpreted using NSS, and the skin lesion boundary is extracted using the level set algorithm.
Moreover, the statistical significance between the evaluated metrics using both segmentation methods
is measured by calculating the significant difference value (p-value) to estimate the difference between
the two methods. The p-value refers to the probability of error, where the two methods are considered
statistically significant when p ≤ 0.05.

3. Experimental Results and Discussion

3.1. Dataset

The International Skin Imaging Collaboration (ISIC) Archive [32] contains over 13,000 dermoscopic
images of skin lesions. Using the images in the ISIC Archive, the 2017 ISBI Challenge on Skin Lesion Analysis
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Towards Melanoma Detection was proposed to help participants develop image analysis tools to
enable the automated diagnosis of melanoma from dermoscopic images. Image analysis of skin lesions
includes lesion segmentation, detection and localization of visual dermoscopic features/patterns,
and disease classification. All cases contain training, and binary mask images as ground truth files.

In our experiment, 50 images were selected to tune the parameters in the proposed NCARG
algorithm and 500 images were used as the testing dataset. In the experiment, the parameters are set
to r = 1, q = 0.05, w1 = 0.75, w2 = 0.25, and ε = 0.001.

3.2. Detection Results

Skin lesions are visible by the naked eye; however, early-stage detection of melanomas is
complex and difficult to distinguish from benign skin lesions with similar appearances. Detecting
and recognizing melanoma at its earliest stages reduces melanoma mortality. Skin lesion digital
dermoscopic images are employed in the present study to detect skin lesions for accurate automated
diagnosis and clinical decision support. The ISIC images are used to test and to validate the proposed
approach of skin imaging. Figure 3 demonstrates the detection results using the proposed NCARG
approach compared to the ground truth images. In the Figure 3d, the boundary detection results are
marked in blue and the ground truth results are in red. The detection results match the ground truth
results, and their boundaries are very close. Figure 3 establishes that the proposed approach accurately
detects skin lesion regions, even with lesions of different shapes and sizes.

Figure 3. Detection results: (a) Skin cancer image number; (b) Original skin lesion image; (c) Ground
truth image; and (d) Detected lesion region using the proposed approach.

3.3. Evaluation

Table 1 reports the average values as well as the standard deviations (SD) of the evaluation metrics
on the proposed approach’s performance over 500 images.
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Table 1. The performance of computer segmentation using the proposed NCARG method with
reference to ground truth boundaries (Average ± SD).

Metric Value Accuracy (%) Dice (%) JAC (%) Sensitivity (%) Specificity (%)

Average 95.3 90.38 83.2 97.5 88.8

Standard deviation 6 7.6 10.5 3.5 11.4

Table 1 establishes that the proposed approach achieved a detection accuracy for the skin lesion
regions of 95.3% with a 6% standard deviation, compared to the ground truth images. In addition,
the mean values of the Dice index, Jaccard index, sensitivity, and specificity are 90.38%, 83.2%, 97.5%,
and 88.8%; respectively, with standard deviations (SD) of 7.6%, 10.5%, 3.5%, and 11.4%; respectively.
These reported experimental test results proved that the proposed NCARG approach correctly detects
skin lesions of different shapes and sizes with high accuracy. Ten dermoscopic images were randomly
selected; their segmentation results are shown in Figure 4, and the evaluation metrics are reported in
Table 2.

Figure 4. Cont.
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Figure 4. Comparative segmentation results, where (a1–a10): original dermoscopic test images;
(b1–b10): ground truth images; (c1–c10): segmented images using the neutrosophic similarity score
and level set (NSSLS) algorithm, and (d1–d10): NCARG proposed approach.

Table 2. The performance of computer segmentation using the proposed method with reference to the
ground truth boundaries (Average ± SD) of ten images during the test phase.

Image ID Accuracy (%) Dice (%) JAC (%) Sensitivity (%) Specificity (%)

ISIC_0012836 99.7819 93.2747 87.397 99.9909 87.851
ISIC_0013917 99.1485 90.4852 82.6237 1 82.6237
ISIC_0014647 99.4684 92.8643 86.6791 99.7929 91.2339
ISIC_0014649 98.8823 95.2268 90.8886 98.8313 99.2854
ISIC_0014773 98.9017 97.3678 94.8707 98.6294 99.9692
ISIC_0014968 89.5888 89.2267 80.5489 81.7035 99.9913
ISIC_0014994 98.9242 93.0613 87.023 1 87.023
ISIC_0015019 93.8788 93.9689 88.6239 88.6218 99.602
ISIC_0015941 99.7687 94.3589 89.3203 1 89.3203
ISIC_0015563 98.0344 83.939 72.3232 97.928 1
Average (%) 97.63777 92.3774 86.0298 96.54978 93.68998

SD (%) 3.31069 3.7373 6.2549 6.26068 6.76053

3.4. Comparative Study with NSSLS Method

The proposed NCARG approach is compared with the NSSLS algorithm [31] for detecting skin
lesions. Figure 4(a1–a10), Figure 4(b1–b10), Figure 4(c1–c10) and Figure 4(d1–d10) include the original
dermoscopic images, the ground truth images, the segmented images using the NSSLS algorithm,
and the NCARG proposed approach; respectively.

Figure 4 illustrates different samples from the test images with different size, shape,
light illumination, skin surface roughness/smoothness, and the existence of hair and/or air bubbles.
For these different samples, the segmented image using the proposed NCARG algorithm is matched
with the ground truth; while, the NSSLS failed to accurately match the ground truth. Thus, Figure 4
demonstrates that the proposed approach accurately detects the skin lesion under the different cases
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compared with the NSSLS method. The superiority of the proposed approach is due to the ability of the
NCM along with the IF to handle indeterminate information. In addition, shearlet transform achieved
the surface anisotropic regularity along the edges leading the algorithm to capture the smooth contours
corresponding to the dominant features in the image. For the same images in Figure 4, the comparative
results of the previously mentioned evaluation metrics are plotted for the NCARG and NSSLS in
Figures 5 and 6; respectively. In both figures, the X-axis denotes the image name under study, and the
Y-axis denotes the value of the corresponding metric in the bar graph.

Figure 5 along with Table 2 illustrate the accuracy of the proposed algorithm, which achieves
an average accuracy of 97.638% for the segmentation of the different ten skin lesion samples,
while Figure 6 illustrates about 44% average accuracy of the NSSLS method. Thus, Figures 5 and 6
establish the superiority of the proposed approach compared with the NSSLS method, owing to the
removal the indeterminate information and the efficiency of the shearlet transform. The same results
are confirmed by measuring the same metrics using 500 images, as reported in Figure 7.

Figure 5. Evaluation metrics of the ten test images using the proposed segmentation NCARG approach.

Figure 6. Evaluation metrics of the ten test images using the NSSLS segmentation approach
for comparison.
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Figure 7 reports that the proposed method achieves about 15% improvement on the accuracy and
about 25% improvement in the JAC over the NSSLS method. Generally, Figure 7 proves the superiority
of the proposed method compared with the NSSLS method. In addition, Table 3 reports the statistical
results on the testing images; it compares the detection performance with reference to the ground
truth segmented images for the NSSLS and the proposed NCARG method. The p-values are used to
estimate the differences between the metric results of the two methods. The statistical significance was
set at a level of 0.05; a p-value of <0.05 refers to the statistically significant relation.

Figure 7. Comparative results of the performance evaluation metrics of the proposed NCARG and
NSSLS methods.

The p-values reported in Table 3 establish a significant difference in the performance metric values
when using the proposed NCARG and NSSLS methods. The mean and standard deviation of the
accuracy, Dice, JAC, sensitivity, and specificity for the NSSLS and NCARG methods, along with the
p-values, establish that the proposed NCARG method improved skin lesion segmentation compared
with the NSSLS method. Figure 7 along with Table 3 depicts that the NCARG achieved 95.3% average
accuracy, which is superior to the 80.6% average accuracy of the NSSLS approach. Furthermore,
the proposed algorithm achieved a 90.4% average Dice coefficient value, 83.2% average JAC value,
97.5% average sensitivity value, and 88.8% average specificity value. The segmentation accuracy
improved from 80.6 ± 22.1 using the NSSLS to 95.3 ± 6 using the proposed method, which is
a significant difference. The skin lesion segmentation improvement is statistically significant (p < 0.05)
for all measured performances metrics by SPSS software.

Table 3. The average values (mean ± SD) of the evaluation metrics using the NCARG approach
compared to the NSSLS approach.

Method Accuracy (%) Dice (%) JAC (%) Sensitivity (%) Specificity (%)

NSSLS method 80.6 ± 22.1 66.4 ± 32.6 57.9 ± 33.7 82.1 ± 24 83.1 ± 30.4

Proposed NCARG method 95.3 ± 6 90.4 ± 7.6 83.2 ± 10.5 97.5 ± 6.3 88.8 ± 11.4

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

The cumulative percentage is used to measure the percentage of images, which have a metric
value less than a threshold value. The cumulative percentage (CP) curves of the measured metrics
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are plotted for comparing the performance of the NSSLS and NCARG algorithms. Figures 8–12 show
the cumulative percentage of images having five measurements less than a certain value; the X-axis
represents the different threshold values on the metric and the Y-axis is the percentage of the number
of images whose metric values are greater than this threshold value. These figures demonstrate the
comparison of performances in terms of the cumulative percentage of the different metrics, namely the
accuracy, Dice value, JAC, sensitivity, and specificity; respectively.

Figure 8 illustrates a comparison of performances in terms of the cumulative percentage of the
NCARG and NSSLS segmentation accuracy. About 80% of the images have a 95% accuracy for the
segmentation using the proposed NCARG, while the achieved cumulative accuracy percentage using
the NSSLS is about 65% for 80% of the images.

Figure 8. Comparison of performances in terms of the cumulative percentage of the accuracy using the
NCARG and NSSLS segmentation methods.

Figure 9 compares the performances, in terms of the cumulative percentage of the Dice index
values, of the NCARG and NSSLS segmentations. Figure 9 depicts that 100% of the images have about
82% Dice CP values using the NCARG method, while 58% of the images achieved the same 82% Dice
CP values when using the NSSLS method.

Figure 9. Comparison of performances in terms of the cumulative percentage of the Dice values using
the NCARG and NSSLS segmentation methods.
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Figure 10 compares the performances, in terms of the cumulative percentage of the JAC values,
of the NCARG and NSSLS segmentation. About 50% of the images have 83% CP JAC values using
the NCARG method, while the obtained CP JAC using the NSSLS for the same number of images is
about 72%.

Figure 10. Comparison of performances in terms of the cumulative percentage of the JAC values using
NCARG and NSSLS segmentation methods.

Figure 11 compares the performances, in terms of the cumulative percentage of the sensitivity,
using the NCARG and NSSLS segmentation methods. About 50% of the images have 97% sensitivity
value using the NCARG method, while the NSSLS achieves about 92% sensitivity value.

Figure 11. Comparison of performances in terms of the cumulative percentage of the sensitivity using
the NCARG and NSSLS segmentation methods.

Figure 12 demonstrates the comparison of performances, in terms of the cumulative percentage
of the specificity, using the NCARG and NSSLS segmentation methods. A larger number of images
have accuracies in the range of 100% to 85% when using the NSSLS compared to the proposed method.
However, about 100% of the images have 63% CP specificity values using the NCARG method,
while the NSSLS achieved about 20% cumulative specificity values with 90% of the images. Generally,
the cumulative percentage of each metric establishes the superiority of the proposed NCARG method
compared with the NSSLS method.
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Figure 12. Comparison of performances in terms of the cumulative percentage of the specificity using
the NCARG and NSSLS segmentation methods.

3.5. Comparison with Other Segmentation Methods Using the ISIC Archive

In case of lesion segmentation, variability in the images is very high; therefore, performance
results highly depend on the data set that is used in the experiments. Several studies and challenges
have been conducted to resolve such trials [33]. In order to validate the performance of the proposed
NCARG method, a comparison is conducted on the results of previously published studies on the
same ISIC dermoscopic image data set. Yu et al. [34] leveraged very deep convolutional neural
networks (CNN) for melanoma image recognition using the ISIC data set. The results proved
that deeper networks, of more than 50 layers, provided more discriminating features with more
accurate recognition. For accurate skin lesion segmentation, fully convolutional residual networks
(FCRN) with a multi-scale contextual information integration structure were applied to the further
classification stage. The network depth increase achieved enhanced discrimination capability of
CNN. The FCRNs of 38 layers achieved 0.929 accuracy, 0.856 Dice, 0.785 JAC, and 0.882 sensitivity.
Thus, our proposed NCARG provides superior performance in terms of these metrics. However,
with an increased FCRN layer depth of 50, the performance improvement increased compared to our
proposed method. However, the complexity also increases. In addition, Yu et al. have compared
their study with other studies, namely the fully convolutional VGG-16 network [34,35] and the fully
convolutional GoogleNet [34,36] establishing the superiority of our work compared to both of those
studies. Table 4 reports a comparative study between the preceding studies, which have used the same
ISIC data set, and the proposed NCARG method.

Table 4. Performance metrics comparison of different studies using the ISIC dataset for segmentation.

Method Accuracy (%) Dice (%) JAC (%) Sensitivity (%) Specificity (%)

FCRNs of 38 layers [34] 92.9 85.6 78.5 88.2 93.2
FCRNs of 101 layers [34] 93.7 87.2 80.3 90.3 93.5

VGG-16 [34,35] 90.3 79.4 70.7 79.6 94.5
GoogleNet [34,36] 91.6 84.8 77.6 90.1 91.6

Proposed NCARG method 95.3 90.4 83.2 97.5 88.8

The preceding results and the comparative study establish the superiority of the proposed NCARG
method compared with other methods. This superiority arises due to the effectiveness of the shearlet
transform, the indeterminacy filtering, and the adaptive region growing, yielding an overall accuracy
of 95.3%. Moreover, in comparison with previously conducted studies on the same ISIC dermoscopic
image data set, the proposed method can be considered an effective method. In addition, the studies
in References [37,38] can be improved and compared with the proposed method on the same dataset.
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4. Conclusions

In this study, a novel skin lesion detection algorithm is proposed based on neutrosophic
c-means and adaptive region growing algorithms applied to dermoscopic images. The dermoscopic
images are mapped into the neutrosophic domain using the shearlet transform results of the image.
An indeterminate filter is used for reducing the indeterminacy on the image, and the image is
segmented via a neutrosophic c-means clustering algorithm. Finally, the skin lesion is accurately
identified using a newly defined adaptive region growing algorithm. A public data set was employed
to test the proposed method. Fifty images were selected randomly for tuning, and five hundred images
were used to test the process. Several metrics were measured for evaluating the proposed method
performance. The evaluation results demonstrate the proposed method achieves better performance
to detect the skin lesions when compared to the neutrosophic similarity score and level set (NSSLS)
segmentation approach.

The proposed NCARG approach achieved average 95.3% accuracy of 500 dermoscopic images
including, ones with different shape, size, color, uniformity, skin surface roughness, light illumination
during the image capturing process, and existence of air bubbles. The significant difference in the
p-values of the measured metrics using the NSSLS and the proposed NCARG proved the superiority of
the proposed method. This proposed method determines possible skin lesions in dermoscopic images
which can be employed for further accurate automated diagnosis and clinical decision support.
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Abstract Neutrosophic set is a powerful general formal

framework which generalizes the concepts of classic set,

fuzzy set, interval-valued fuzzy set, intuitionistic fuzzy set,

etc. Recent studies have developed systems with complex

fuzzy sets, for better designing and modeling real-life

applications. The single-valued complex neutrosophic set,

which is an extended form of the single-valued complex

fuzzy set and of the single-valued complex intuitionistic

fuzzy set, presents difficulties to defining a crisp neutro-

sophic membership degree as in the single-valued neutro-

sophic set. Therefore, in this paper we propose a new

notion, called interval complex neutrosophic set (ICNS),

and examine its characteristics. Firstly, we define several

set theoretic operations of ICNS, such as union, intersec-

tion and complement, and afterward the operational rules.

Next, a decision-making procedure in ICNS and its appli-

cations to a green supplier selection are investigated.

Numerical examples based on real dataset of Thuan Yen

JSC, which is a small-size trading service and transporta-

tion company, illustrate the efficiency and the applicability

of our approach.

Keywords Green supplier selection � Multi-criteria

decision-making � Neutrosophic set � Interval complex

neutrosophic set � Interval neutrosophic set

Abbreviations

NS Neutrosophic set

INS Interval neutrosophic set

CFS Complex fuzzy set

CIFS Complex intuitionistic fuzzy set

IVCFS Interval-valued complex fuzzy set

CNS Complex neutrosophic set

ICNS Interval-valued complex neutrosophic set, or

interval complex neutrosophic set

SVCNS Single-valued complex neutrosophic set

MCDM Multi-criteria decision-making

MCGDM Multi-criteria group decision-making

_ Maximum operator (t-conorm)

^ Minimum operator (t-norm)

1 Introduction

Smarandache [12] introduced the Neutrosophic Set (NS) as

a generalization of classical set, fuzzy set, and intuitionistic

fuzzy set. The neutrosophic set handles indeterminate data,

whereas the fuzzy set and the intuitionistic fuzzy set fail to

work when the relations are indeterminate. Neutrosophic

set has been successfully applied in different fields,
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including decision-making problems [2, 5–8, 11, 14–16,

19–24, 27, 28]. Since the neutrosophic set is difficult to be

directly used in real-life applications, Smarandache [12]

and Wang et al. [18] proposed the concept of single-valued

neutrosophic set and provided its theoretic operations and

properties. Nonetheless, in many real-life problems, the

degrees of truth, falsehood, and indeterminacy of a certain

statement may be suitably presented by interval forms,

instead of real numbers [17]. To deal with this situation,

Wang et al. [17] proposed the concept of Interval Neu-

trosophic Set (INS), which is characterized by the degrees

of truth, falsehood and indeterminacy, whose values are

intervals rather than real numbers. Ye [19] presented the

Hamming and Euclidean distances between INSs and the

similarity measures between INSs based on the distances.

Tian et al. [16] developed a multi-criteria decision-making

(MCDM) method based on a cross-entropy with INSs

[3, 10, 19, 25].

Recent studies in NS and INS have concentrated on

developing systems using complex fuzzy sets [9, 10, 26]

for better designing and modeling real-life applications.

The functionality of ‘complex’ is for handling the infor-

mation of uncertainty and periodicity simultaneously. By

adding complex-valued non-membership grade to the def-

inition of complex fuzzy set, Salleh [13] introduced the

concept of complex intuitionistic fuzzy set. Ali and

Smarandache [1] proposed a complex neutrosophic set

(CNS), which is an extension form of complex fuzzy set

and of complex intuitionistic fuzzy set. The complex

neutrosophic set can handle the redundant nature of

uncertainty, incompleteness, indeterminacy, inconsistency,

etc., in periodic data. The advantage of CNS over the NS is

the fact that, in addition to the membership degree pro-

vided by the NS and represented in the CNS by amplitude,

the CNS also provides the phase, which is an attribute

degree characterizing the amplitude.

Yet, in many real-life applications, it is not easy to find a

crisp (exact) neutrosophic membership degree (as in the

single-valued neutrosophic set), since we deal with unclear

and vague information. To overcome this, we must create a

new notion, which uses an interval neutrosophic member-

ship degree. This paper aims to introduce a new concept of

Interval-Valued Complex Neutrosophic Set or shortly

Interval Complex Neutrosophic Set (ICNS), that is more

flexible and adaptable to real-life applications than those of

SVCNS and INS, due to the fact that many applications

require elements to be represented by a more accurate

form, such as in the decision-making problems

[4, 7, 16, 17, 20, 25]. For example, in the green supplier

selection, the linguistic rating set should be encoded by

ICNS rather than by INS or by SVCNS, to reflect the

hesitancy and indeterminacy of the decision.

This paper is the first attempt to define and use the ICNS

in decision-making. The contributions and the tidings of

this paper are highlighted as follows: First, we define the

Interval Complex Neutrosophic Set (Sect. 3.1). Next, we

define some set theoretic operations, such as union, inter-

section and complement (Sect. 3.2). Further, we establish

the operational rules of ICNS (Sect. 3.3). Then, we

aggregate ratings of alternatives versus criteria, aggregate

the importance weights, aggregate the weighted ratings of

alternatives versus criteria, and define a score function to

rank the alternatives. Last, a decision-making procedure in

ICNS and an application to a green supplier selection are

presented (Sects. 4, 5).

Green supplier selection is a well-known application of

decision-making. One of the most important issues in

supply chain to make the company operation efficient is the

selection of appropriate suppliers. Due to the concerns over

the changes in world climate, green supplier selection is

considered as a key element for companies to contribute

toward the world environment protection, as well as to

maintain their competitive advantages in the global market.

In order to select the appropriate green supplier, many

potential economic and environmental criteria should be

taken into consideration in the selection procedure.

Therefore, green supplier selection can be regarded as a

multi-criteria decision-making (MCDM) problem. How-

ever, the majority of criteria is generally evaluated by

personal judgement and thus might suffer from subjectiv-

ity. In this situation, ICNS can better express this kind of

information.

The advantages of the proposal over other possibilities

are highlighted as follows:

(a) The complex neutrosophic set is a generalization of

interval complex fuzzy set, interval complex intu-

itionistic fuzzy sets, single-valued complex neutro-

sophic set and so on. For more detail, we refer to

Fig. 1 in Sect. 3.1.

(b) In many real-life applications, it is not easy to find a

crisp (exact) neutrosophic membership degree (as in

the single-valued neutrosophic set), since we deal

with unclear and vague periodic information. To

overcome this, the complex interval neutrosophic set

is a better representation.

(c) In order to select the appropriate green supplier,

many potential economic and environmental criteria

should be taken into consideration in the selection

procedure. Therefore, green supplier selection can be

regarded as a multi-criteria decision-making

(MCDM) problem. However, the majority of criteria

are generally evaluated by personal judgment, and

thus, it might suffer from subjectivity. In this
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Fig. 1 Relationship of complex neutrosophic set with different types of fuzzy sets
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situation, ICNS can better express this kind of

information.

(d) The amplitude and phase (attribute) of ICNS have

the ability to better catch the unsure values of the

membership. Consider an example that we have a car

component factory where each worker receives 10

car components per day to polish. The factory needs

to have one worker coming in the weekend to work

for a day, in order to finish a certain order from a

customer. Again, the manager asks for a volunteer

worker W. It turns out that the number of car

components that will be done over one weekend day

is W([0.6, 0.9], [0.1, 0.2], [0.0, 0.2]), which are

actually the amplitudes for T, I, F. But what will be

their quality? Indeed, their quality will be W([0.6,

0.9] 9 e[0.6, 0.7], [0.1, 0.2] 9 e[0.4, 0.5], [0.0,

0.2] 9 e[0.0, 0.1]), by taking the [min, max] for each

corresponding phase of T, I, F, respectively, for all

workers. The new notion is indeed better in solving

the decision-making problem. Unfortunately, other

existing approaches cannot handle this type of

information.

(e) The modified score function, accuracy function and

certainty function of ICNS are more general in

nature as compared to classical score, accuracy and

certainty functions of existing methods. In modified

forms of these functions, we have defined them for

both amplitude and phase terms while it is not

possible in the traditional case.

The rest of this paper is organized as follows. Section 2

recalls some basic concepts of neutrosophic set, interval

neutrosophic set, complex neutrosophic set, and their

operations. Section 3 presents the formulation of the

interval complex neutrosophic set and its operations. Sec-

tion 4 proposes a multi-criteria group decision-making

model in ICNS. Section 5 demonstrates a numerical

example of the procedure for green supplier selection on a

real dataset. Section 6 delineates conclusions and suggests

further studies.

2 Basic Concepts

Definition 1 [12] Neutrosophic set (NS)

Let X be a space of points and let x 2 X. A neutrosophic set

S in X is characterized by a truth membership function TS,

an indeterminacy membership function IS, and a falsehood

membership function FS. TS, IS and FS are real standard or

non-standard subsets of 0�; 1þ� ½. To use neutrosophic set in
some real-life applications, such as engineering and sci-

entific problems, it is necessary to consider the interval

0; 1½ � instead of 0�; 1þ� ½, for technical applications. The

neutrosophic set can be represented as:

S ¼ x; TS xð Þ; IS xð Þ;FS xð Þ
� �

: x 2 X
� �

;

where one has that 0� sup TS xð Þ þ sup IS xð Þ þ sup

FS xð Þ� 3, and TS, IS and FS are subsets of the unit interval

[0, 1].

Definition 2 [9, 10] Complex fuzzy set (CFS)

A complex fuzzy set S, defined on a universe of discourse

X, is characterized by a membership function gS xð Þ that

assigns to any element x 2 X a complex-valued grade of

membership in S. The values gS xð Þ lie within the unit circle

in the complex plane, and thus, all forms pS xð Þ � ej�lSðxÞ
where pS xð Þ and lS xð Þ are both real-valued and

pS xð Þ 2 0; 1½ �. The term pS xð Þ is termed as amplitude term,

and ej�lSðxÞ is termed as phase term. The complex fuzzy set

can be represented as:

S ¼ x; gS xð Þ
� �

: x 2 X
� �

:

Definition 3 [13] Complex intuitionistic fuzzy set (CIFS)

A complex intuitionistic fuzzy set S, defined on a universe

of discourse X, is characterized by a membership function

gS xð Þ and a non-membership function fS xð Þ, respectively,
assigning to an element x 2 X a complex-valued grade to

both membership and non-membership in S. The values of

gS xð Þ and fS xð Þ lie within the unit circle in the complex

plane and are of the form gS xð Þ ¼ pS xð Þ � ej�lSðxÞ and

fS xð Þ ¼ rS xð Þ � ej�xS
ðxÞ where pS xð Þ; rS xð Þ; lS xð Þ and xS xð Þ

are all real-valued and pS xð Þ, rS xð Þ 2 0; 1½ � with j ¼
ffiffiffiffiffiffiffi

�1
p

.

The complex intuitionistic fuzzy set can be represented as:

S ¼ x; gS xð Þ; fS xð Þ
� �

: x 2 X
� �

:

Definition 4 [4] Interval-valued complex fuzzy set

(IVCFS)

An interval-valued complex fuzzy set �A is defined over a

universe of discourse X by a membership function

l �A : X ! C 0;1½ � � R;

l �A xð Þ ¼ r �A xð Þ � ejx �A xð Þ

In the above equation, C 0;1½ � is the collection of interval

fuzzy sets and R is the set of real numbers. rS xð Þ is the

interval-valued membership function while ejx �A xð Þ is the

phase term, with j ¼
ffiffiffiffiffiffiffi

�1
p

.

Definition 5 [1] Single-valued complex neutrosophic set

(SVCNS)

A single-valued complex neutrosophic set S, defined on a

universe of discourse X, is expressed by a truth
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membership function TSðxÞ, an indeterminacy membership

function ISðxÞ and a falsity membership function FSðxÞ,
assigning a complex-valued grade of TSðxÞ, ISðxÞ and FSðxÞ
in S for any x 2 X. The values TSðxÞ, ISðxÞ, FSðxÞ and their

sum may all be within the unit circle in the complex plane,

and so it is of the following form:

TSðxÞ ¼ pSðxÞ � e
jl

S
ðxÞ; ISðxÞ ¼ qSðxÞ � e

jm
S
ðxÞ and FSðxÞ

¼ rSðxÞ � e
jx

S
ðxÞ;

where pSðxÞ, qSðxÞ, rSðxÞ and lSðxÞ, mSðxÞ, xSðxÞ are,

respectively, real values and pSðxÞ; qSðxÞ; rSðxÞ 2 ½0; 1�,
such that 0� pSðxÞ þ qSðxÞ þ rSðxÞ� 3. The single-valued

complex neutrosophic set S can be represented in set form

as:

S ¼ x; TSðxÞ; I SðxÞ;FSðxÞ
� �

: x 2 X
� �

:

Definition 6 [1] Complement of single-valued complex

neutrosophic set

Let S ¼ x; TSðxÞ; I SðxÞ;FSðxÞ
� �

: x 2 X
� �

be a single-val-

ued complex neutrosophic set in X. Then, the complement

of a SVCNS S is denoted as S
c
and is defined by:

S
c ¼ x; T

S
cðxÞ; I

S
cðxÞ;F

S
cðxÞ

� �

: x 2 X
� �

;

where T
S
cðxÞ ¼ p

S
c xð Þ � ej�lSc ðxÞ is such that p

S
c xð Þ ¼ rSðxÞ

and l
S
c xð Þ ¼ lS xð Þ; 2p� lS xð Þ or lS xð Þ þ p. Similarly,

I
S
cðxÞ ¼ q

S
c xð Þ � ej�mSc ðxÞ, where q

S
c xð Þ ¼ 1� qS xð Þ and

m
S
c xð Þ ¼ mS xð Þ; 2p� m

S
c xð Þ or m

S
c xð Þ þ p. Finally,

F
S
cðxÞ ¼ r

S
c xð Þ � ej�xS

c ðxÞ, where r
S
c xð Þ ¼ pS xð Þ and

x
S
c xð Þ ¼ xS xð Þ; 2p� xS xð Þ or xS xð Þ þ p

Definition 7 [1] Union of single-valued complex neu-

trosophic sets

Let �A and �B be two SVCNSs in X. Then:

A [ B ¼ x; TA[B xð Þ; IA[B xð Þ;FA[B Xð Þ
� �

: x 2 X
� �

;

where

TA[B xð Þ ¼ pA xð Þ _ pB xð Þ
� �� �

� ej�lT �A[ �B
ðxÞ
;

IA[B xð Þ ¼ qA xð Þ ^ qB xð Þ
� �� �

� ej�mIA[B ðxÞ;

FA[B xð Þ ¼ rA xð Þ ^ rB xð Þ
� �� �

� ej�xF
A[B

ðxÞ

where _ and ^ denote the max and min operators,

respectively. To calculate the phase terms ej�lA[BðxÞ, ej�mA[BðxÞ

and ej�xA[BðxÞ, we refer to [1].

Definition 8 [1] Intersection of single-valued complex

neutrosophic sets

Let �A and B be two SVCNSs in X. Then:

�A \ �B ¼ x; T �A\ �B xð Þ; I �A\ �B xð Þ;F �A\ �B Xð Þð Þ : x 2 Xf g;

where

T �A\ �B xð Þ ¼ p �A xð Þ ^ p �B xð Þð Þ½ � � ej�lT �A\ �B
ðxÞ
;

I �A\ �B xð Þ ¼ q �A xð Þ _ q �B xð Þð Þ½ � � ej�mI �A\ �B
ðxÞ;

F �A\ �B xð Þ ¼ r �A xð Þ _ r �B xð Þð Þ½ � � ej�xF �A\ �B
ðxÞ

where _ and ^ denote the max and min operators,

respectively. To calculate the phase terms ej�lA[BðxÞ, ej�mA[BðxÞ

and ej�xA[BðxÞ, we refer to [1].

3 Interval Complex Neutrosophic Set with Set
Theoretic Properties

3.1 Interval Complex Neutrosophic Set

Before we present the definition, let us consider an example

below to see the advantages of the new notion ICNS.

Example 1 Suppose we have a car component factory.

Each worker from this factory receives 10 car components

per day to polish.

• NS The best worker, John, successfully polishes 9 car

components, 1 car component is not finished, and he

wrecks 0 car component. Then, John’s neutrosophic

work is (0.9, 0.1, 0.0). The worst worker, George,

successfully polishes 6, not finishing 2, and wrecking 2.

Thus, George’s neutrosophic work is (0.6, 0.2, 0.2).

• INS The factory needs to have one worker coming in the

weekend, to work for a day in order to finish a required

order from a customer. Since the factory management

cannot impose the weekend overtime to workers, the

manager asks for a volunteer. How many car compo-

nents are to be polished during the weekend? Since the

manager does not know which worker (W) will volun-

teer, he estimates that the work to be done in a weekend

day will be: W([0.6, 0.9], [0.1, 0.2], [0.0, 0.2]), i.e., an

interval for each T, I, F, respectively, between the

minimum and maximum values of all workers.

• CNS The factory’s quality control unit argues that

although many workers correctly/successfully polish

their car components, some of the workers do a work of

a better quality than the others. Going back to John and

George, the factory’s quality control unit measures the

work quality of each of them and finds out that: John’s

work is (0.9 9 e0.6, 0.1 9 e0.4, 0.0 9 e0.0), and

George’s work is (0.6 9 e0.7, 0.2 9 e0.5, 0.2 9 e0.1).

Thus, although John polishes successfully 9 car com-

ponents, more than George’s 6 successfully polished

Florentin Smarandache (ed.) Collected Papers, VI

466



car components, the quality of John’s work (0.6, 0.4,

0.0) is less than the quality of George’s work (0.7, 0.5,

0.1).

It is clear from the above example that the amplitude and

phase (attribute) of CNS should be represented by inter-

vals, which better catch the unsure values of the mem-

bership. Let us come back to Example 1, where the factory

needs to have one worker coming in the weekend to work

for a day, in order to finish a certain order from a customer.

Again, the manager asks for a volunteer worker W. We find

out that the number of car components that will be done

over one weekend day is W([0.6, 0.9], [0.1, 0.2], [0.0, 0.2]),

which are actually the amplitudes for T, I, F. But what will

be their quality? Indeed, their quality will be W([0.6,

0.9] 9 e[0.6, 0.7], [0.1, 0.2] 9 e[0.4, 0.5], [0.0,

0.2] 9 e[0.0, 0.1]), by taking the [min, max] for each cor-

responding phases for T, I, F, respectively, for all workers.

Therefore, we should propose a new notion for such the

cases of decision-making problems.

Definition 9 Interval complex neutrosophic set.

An interval complex neutrosophic set is defined over a

universe of discourse X by a truth membership function TS,

an indeterminate membership function IS, and a falsehood

membership function FS, as follows:

TS : X ! C 0;1½ � � R; TS xð Þ ¼ tS xð Þ � ejaxS
xð Þ

IS : X ! C 0;1½ � � R; IS xð Þ ¼ iS xð Þ � ejbwS
xð Þ

FS : X ! C 0;1½ � � R;FS xð Þ ¼ fS xð Þ � ejc/S
xð Þ

9

>

>

=

>

>

;

ð1Þ

In the above Eq. (1), C 0;1½ � is the collection of interval

neutrosophic sets and R is the set of real numbers, tS xð Þ is
the interval truth membership function, iS xð Þ is the interval
indeterminate membership and fS xð Þ is the interval false-

hood membership function, while ejaxS
xð Þ, ejbwS

xð Þ and

ejc/S
xð Þ are the corresponding interval-valued phase terms,

respectively, with j ¼
ffiffiffiffiffiffiffi

�1
p

. The scaling factors a; b and c
lie within the interval ð0; 2p�: This study assumes that the

values a; b; c ¼ p: In set theoretic form, an interval com-

plex neutrosophic set can be written as:

S ¼
TS xð Þ ¼ tS xð Þ � ejaxS

xð Þ; IS xð Þ ¼ iS xð Þ � ejbwS
xð Þ;FS xð Þ ¼ fS xð Þ � ejc/S

xð Þ

x

* +

: x 2 X

( )

ð2Þ

In (2), the amplitude interval-valued terms tS xð Þ; iS
xð Þ; fS xð Þ can be further split as tS xð Þ ¼ tSL xð Þ; tSU xð Þ

h i

,

iS xð Þ ¼ iSL xð Þ; iSU xð Þ
h i

and fS xð Þ ¼ fSL xð Þ; fSU xð Þ
h i

, where

tSU xð Þ; iSU xð Þ; fSU xð Þ represents the upper bound, while

tSL xð Þ; iSL xð Þ; fSL xð Þ represents the lower bound in each

interval, respectively. Similarly, for the phases: xS xð Þ ¼
xSL

xð Þ;xSU
xð Þ

h i

, wS xð Þ ¼ wSL
xð Þ;wSU

xð Þ
h i

, and uS xð Þ ¼

uSL
xð Þ;uSU

xð Þ
h i

.

Example 2 Let X ¼ x1; x2; x3; x4f g be a universe of dis-

course. Then, an interval complex neutrosophic set S can

be given as follows:

S ¼

0:4; 0:6½ � � ejp½0:5;0:6�; 0:1; 0:7½ � � ejp½0:1;0:3�; 0:3; 0:5½ � � ejp½0:8;0:9�
x1

;
0:2; 0:4½ � � ejp½0:3;0:6�; 0:1; 0:1½ � � ejp½0:7;0:9�; 0:5; 0:9½ � � ejp½0:2;0:5�

x2
;

0:3; 0:4½ �:ejp½0:7;0:8�; 0:6; 0:7½ � � ejp½0:6;0:7�; 0:2; 0:6½ � � ejp½0:6;0:8�
x3

;
0; 0:9½ � � ejp½0:9;1�; 0:2; 0:3½ � � ejp½0:7;0:8�; 0:3; 0:5½ � � ejp½0:4;0:5�

x4

8

>

>

<

>

>

:

9

>

>

=

>

>

;

Further on,we present the connections among different types

of fuzzy sets, intuitionistic fuzzy sets, neutrosophic sets, to

complex neutrosophic set (in Fig. 1). The arrows (!) refer to

the generalization of the preceding term to the next term, e.g.,

the fuzzy set is the generalization of the classic set, and so on.

3.2 Set Theoretic Operations of Interval Complex

Neutrosophic Set

Definition 10 Let �A and �B be two interval complex

neutrosophic set over X which are defined by T �A xð Þ ¼
t �A xð Þ � ejpx �A xð Þ, I �A xð Þ ¼ i �A xð Þ � ejpw �A xð Þ, F �A xð Þ ¼ f �A xð Þ �
ejp/ �A xð Þ and T �B xð Þ ¼ t �B xð Þ � ejpx �B xð Þ, I �B xð Þ ¼ i �B xð Þ � ejpw �B xð Þ,

FS xð Þ ¼ fS xð Þ � ejp/S
xð Þ, respectively. The union of �A and �B

is denoted as
�A [ �B, and it is defined as:

T �A[ �B xð Þ ¼ inf t �A[ �B xð Þ; sup t �A[ �B xð Þ½ � � ejpx �A[ �B xð Þ;

I �A[ �B xð Þ ¼ inf i �A[ �B xð Þ; sup i �A[ �B xð Þ½ � � ejpw �A[ �B xð Þ;

F �A[ �B xð Þ ¼ inf f �A[ �B xð Þ; sup f �A[ �B xð Þ½ � � ejp/ �A[ �B xð Þ;

where

inf t �A[ �B xð Þ ¼ _ inf t �A xð Þ; inf t �B xð Þð Þ; sup t �A[ �B xð Þ ¼ _ sup t �A xð Þ; sup t �B xð Þð Þ;
inf i �A[ �B xð Þ ¼ ^ inf i �A xð Þ; inf i �B xð Þð Þ; sup i �A[ �B xð Þ ¼ ^ sup i �A xð Þ; sup i �B xð Þð Þ;
inf f �A[ �B xð Þ ¼ ^ inf f �A xð Þ; inf f �B xð Þð Þ; sup f �A[ �B xð Þ ¼ ^ sup f �A xð Þ; sup f �B xð Þð Þ;

for all x 2 X. The union of the phase terms remains the same

as defined for single-valued complex neutrosophic set, with

the distinction that instead of subtractions and additions of

numbers, we now have subtractions and additions of inter-

vals. The symbols _,^ represent max and min operators.

Example 3 Let X ¼ x1; x2; x3; x4f g be a universe of dis-

course. Let �A and B be two interval complex neutrosophic

sets defined on X as follows:

�A ¼

0:4; 0:6½ � � ejp½0:5;0:6�; 0:1; 0:7½ � � ejp½0:1;0:3�; 0:3; 0:5½ � � ejp½0:8;0:9�
x1

;
0:2; 0:4½ � � ejp½0:3;0:6�; 0:1; 0:1½ � � ejp½0:7;0:9�; 0:5; 0:9½ � � ejp½0:2;0:5�

x2
;

0:3; 0:4½ �:ejp½0:7;0:8�; 0:6; 0:7½ � � ejp½0:6;0:7�; 0:2; 0:6½ � � ejp½0:6;0:8�
x3

;
0; 0:9½ � � ejp½0:9;1�; 0:2; 0:3½ � � ejp½0:7;0:8�; 0:3; 0:5½ � � ejp½0:4;0:5�

x4

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

�B ¼

0:3; 0:7½ � � ejp½0:7;0:8�; 0:4; 0:9½ � � ejp½0:3;0:5�; 0:6; 0:8½ � � ejp½0:5;0:6�
x1

;
0:4; 0:4½ � � ejp½0:6;0:7�; 0:1; 0:9½ � � ejp½0:2;0:4�; 0:3; 0:8½ � � ejp½0:5;0:6�

x2
;

0:37; 0:64½ � � ejp½0:47;0:50; 0:36; 0:57½ � � ejp½0:64;0:7�; 0:28; 0:66½ � � ejp½0:16;0:2�
x3

;
0:15; 0:52½ � � ejp½0:1;0:2�; 0; 0:5½ � � ejp½0:6;0:7�; 0:3; 0:3½ � � ejp½0:6;0:7�

x4

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;
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Then, their union �A [ �B is given by:

�A [ �B ¼

0:4; 0:7½ � � ejp½0:7;0:8�; 0:1; 0:7½ � � ejp½0:1;0:3�; 0:3; 0:5½ � � ejp½0:5;0:6�
x1

;
0:4; 0:4½ � � ejp½0:6;0:7�; 0:1; 0:1½ � � ejp½0:7;0:9�; 0:3; 0:8½ � � ejp½0:5;0:6�

x2
;

0:37; 0:64½ � � ejp½0:7;0:8�; 0:36; 0:57½ � � ejp½0:6;0:7�; 0:2; 0:6½ � � ejp½0:16;0:21�
x3

;
0:15; 0:9½ � � ejp½0:9;1�; 0; 0:3½ � � ejp½0:6;;0:7�; 0:3; 0:3½ � � ejp½0:4;0:5�

x4

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

Definition 11 Let �A and �B be two interval complex

neutrosophic set over X which are defined by T �A xð Þ ¼
t �A xð Þ � ejpx �A xð Þ, I �A xð Þ ¼ i �A xð Þ � ejpw �A xð Þ, F �A xð Þ ¼ f �A xð Þ �
ejp/ �A xð Þ and T �B xð Þ ¼ t �B xð Þ � ejpx �B xð Þ, I �B xð Þ ¼ i �B xð Þ � ejpw �B xð Þ,

FS xð Þ ¼ fS xð Þ � ejp/S
xð Þ, respectively. The intersection of �A

and �B is denoted as �A \ �B, and it is defined as:

T �A\ �B xð Þ ¼ inf t �A\ �B xð Þ; sup t �A\ �B xð Þ½ � � ejpx �A\ �B xð Þ;

I �A\ �B xð Þ ¼ inf i �A\ �B xð Þ; sup i �A\ �B xð Þ½ � � ejpw �A\ �B xð Þ;

F �A\ �B xð Þ ¼ inf f �A\ �B xð Þ; sup f �A\ �B xð Þ½ � � ejp/ �A\ �B xð Þ;

where

inf t �A\ �B xð Þ ¼ ^ inf t �A xð Þ; inf t �B xð Þð Þ; sup t �A\ �B xð Þ ¼ ^ sup t �A xð Þ; sup t �B xð Þð Þ;
inf i �A\ �B xð Þ ¼ _ inf i �A xð Þ; inf i �B xð Þð Þ; sup i �A\ �B xð Þ ¼ _ sup i �A xð Þ; sup i �B xð Þð Þ;
inf f �A\ �B xð Þ ¼ _ inf f �A xð Þ; inf f �B xð Þð Þ; sup f �A\ �B xð Þ ¼ _ sup f �A xð Þ; sup f �B xð Þð Þ;

for all x 2 X. Similarly, the intersection of the phase terms

remains the same as defined for single-valued complex

neutrosophic set, with the distinction that instead of sub-

tractions and additions of numbers we now have subtrac-

tions and additions of intervals. The symbols _,^ represent

max and min operators.

Example 4 Let X, �A and B be as in Example 3. Then, the

intersection �A \ �B is given by:

�A \ �B ¼

0:3; 0:6½ � � ejp½0:5;0:6�; 0:4; 0:9½ � � ejp½0:3;0:5�; 0:6; 0:8½ � � ejp½0:8;0:9�
x1

;
0:2; 0:4½ � � ejp½0:3;0:6�; 0:1; 0:9½ � � ejp½0:7:0:9�; 0:5; 0:9½ � � ejp½0:5;0:6�

x2
;

0:3; 0:4½ � � ejp½0:47;0:50�; 0:6; 0:7½ � � ejp½0:64;0:70�; 0:28; 0:6½ �6 � ejp½0:6;0:8�
x3

;
0; 0:52½ � � ejp½0:1;0:2�; 0:2; 0:5½ � � ejp½0:7;0:8�; 0:3; 0:5½ � � ejp½0:6;0:7�

x4

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

Definition 12 Let �A be an interval complex neutrosophic

set over X which is defined by T �A xð Þ ¼ t �A xð Þ � ejpx �A xð Þ,

I �A xð Þ ¼ i �A xð Þ � ejpw �A xð Þ, F �A xð Þ ¼ f �A xð Þ � ejp/ �A xð Þ. The com-

plement of �A is denoted as �A
c
, and it is defined as:

�A
c ¼ T �A

c xð Þ ¼ t �Ac xð Þ � ejpx �Ac xð Þ; I �Ac xð Þ ¼ i �Ac xð Þ � ejpw �Ac xð Þ;F �A
c xð Þ ¼ f �Ac xð Þ � ejp/ �Ac xð Þ

x

	 


: x 2 X

� �

;

where t �Ac xð Þ ¼ f �A xð Þ and x �A
c xð Þ ¼ 2p� x �A xð Þ or

x �A xð Þ þ p. Similarly,i �Ac xð Þ ¼ inf i �Ac xð Þ; sup i �Ac xð Þð Þ,
where inf i �Ac xð Þ ¼ 1� sup i �A xð Þ and sup i �Ac xð Þ ¼ 1�
inf i �A xð Þ, with phase term w �A

c xð Þ ¼ 2p� w �A xð Þ or w �A xð Þþ
p. Also, f �Ac xð Þ ¼ i �Ac xð Þ, while the phase term / �A

c xð Þ ¼
2p� / �A xð Þ or / �A xð Þ þ p.

Proposition 1 Let �A, �B and C be three interval complex

neutrosophic sets over X. Then:

1. �A [ �B ¼ �B [ �A;

2. �A \ �B ¼ �B \ �A;

3. �A [ �A ¼ �A;

4. �A \ �A ¼ �A;

5. �A [ �B [ C
� �

¼ �A [ �Bð Þ [ C;

6. �A \ �B \ C
� �

¼ �A \ �Bð Þ \ C;

7. �A [ �B \ C
� �

¼ �A [ �Bð Þ \ �A [ C
� �

;

8. �A \ �B [ C
� �

¼ �A \ �Bð Þ [ �A \ C
� �

;

9. �A [ �A \ �Bð Þ ¼ �A;

10. �A \ �A [ �Bð Þ ¼ �A;

11. �A [ �Bð Þc¼ �A
c \ �B

c
;

12. �A \ �Bð Þc¼ �A
c [ �B

c
;

13. �A
c� �c¼ �A:

Proof All these assertions can be straightforwardly

proven.

Theorem 1 The interval complex neutrosophic set �A [ �B

is the smallest one containing both �A and �B.

Proof Straightforwardly.

Theorem 2 The interval complex neutrosophic set �A \ �B

is the largest one contained in both �A and �B.

Proof Straightforwardly.

Theorem 3 Let P be the power set of all interval complex

neutrosophic set. Then, P;[;\
� �

forms a distributive

lattice.

Proof Straightforwardly.

Theorem 4 Let �A and �B be two interval complex neu-

trosophic sets defined on X. Then, �A � �B if and only if
�B
c � �A

c
.

Proof Straightforwardly.

3.3 Operational Rules of Interval Complex

Neutrosophic Sets

Let �A ¼ ð½TL
A ; T

U
A �; ½ILA; IUA �; ½FL

A;F
U
A �Þ and B ¼ ð½TL

B ; T
U
B �;

½ILB; IUB �; ½FL
B;F

U
B �Þ be two interval complex neutrosophic

sets over X which are defined by ½TL
A ; T

U
A � ¼ ½tLA xð Þ;

tUA xð Þ� � ejp½xL
A
xð Þ;xU

A
xð Þ�,½ILA; IUA � ¼ ½iLA xð Þ; iUA xð Þ� � ejp½wL

A xð Þ;wU
A xð Þ�;

½FL
A;F

U
A � ¼ ½f LA xð Þ; f UA xð Þ� � ejp½/L

A xð Þ;/U
A xð Þ� and ½TL

B ; T
U
B � ¼

½tLB xð Þ; tUB xð Þ� � ejp½xL
B xð Þ;xU

B xð Þ�; ½ILB; IUB � ¼ ½iLB xð Þ; iUB xð Þ��
ejp½w

L
B xð Þ;wU

B xð Þ�; ½FL
B;F

U
B � ¼ ½f LB xð Þ; f UB xð Þ� � ejp½/L

B xð Þ;/U
B xð Þ�;

respectively. Then, the operational rules of ICNS are

defined as follows:

(a) The product of �A and �B, denoted as �A� �B, is:
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T �A� �B xð Þ ¼ tL�A xð ÞtL
B
xð Þ; tU�A xð ÞtU

B
xð Þ

h i

� ejp½xL
�A� �B xð Þ;xR

�A� �B xð Þ�;

I �A� �B xð Þ ¼ iL�A xð Þ þ iL
B
xð Þ � iL�A xð ÞiL

B
xð Þ; iR�A xð Þ

h

þiR
B
xð Þ � iR�A xð ÞiR

B
xð Þ
i

� ejp½w
L
�A� �B xð Þ;wR

�A� �B xð Þ�;

F �A� �B xð Þ ¼ f L�A xð Þ þ f L
B
xð Þ � f L�A xð Þf L

B
xð Þ;

h

f R�A xð Þ þ

f R
B

xð Þ � f R�A xð Þf R
B

xð Þ� � ejp½/L
�A� �B

xð Þ;/R
�A� �B

xð Þ� The product of

phase terms is defined below:

xL
�A� �B xð Þ ¼ xL

�A xð ÞxL
�B xð Þ; xU

�A� �B xð Þ ¼ xU
�A xð ÞxU

�B xð Þ
wL

�A� �B xð Þ ¼ wL
�A xð ÞwL

�B xð Þ; wU
�A� �B xð Þ ¼ wU

�A xð ÞwU
�B xð Þ

/L
�A� �B xð Þ ¼ /L

�A xð Þ/L
�B xð Þ; /U

�A� �B xð Þ ¼ /U
�A xð Þ/U

�B xð Þ:

(b) The addition of �A and �B, denoted as �Aþ �B, is

defined as:

T �Aþ �B xð Þ ¼ tL�A xð Þ þ tL
B
xð Þ � tL�A xð ÞtL

B
xð Þ; tU�A xð Þ

h

þtU
B

xð Þ � tU�A xð ÞtU
B

xð Þ
i

� ejp½xL
�Aþ �B

xð Þ;xL
�Aþ �B

xð Þ�;

I �Aþ �B
xð Þ ¼ iL�A xð ÞiL

B
xð Þ; iU�A xð ÞiU

B
xð Þ

h i

� ejp½w
L
�Aþ �B

xð Þ;wR
�Aþ �B

xð Þ�;

F �Aþ �B
xð Þ ¼ f L�A xð Þf L

B
xð Þ; f R�A xð Þf R

B
xð Þ

h i

� ejp½/
L
�Aþ �B

xð Þ;/R
�Aþ �B

xð Þ�

The addition of phase terms is defined below:

xL
�Aþ �B xð Þ ¼ xL

�A xð Þ þ xL
�B xð Þ; xU

�Aþ �B xð Þ ¼ xU
�A xð Þ þ xU

�B xð Þ
wL

�Aþ �B xð Þ ¼ wL
�A xð Þ þ wL

�B xð Þ; wU
�Aþ �B xð Þ ¼ wU

�A xð Þ þ wU
�B xð Þ

/L
�Aþ �B xð Þ ¼ /L

�A xð Þ þ /L
�B xð Þ; /U

�Aþ �B xð Þ ¼ /U
�A xð Þ þ /U

�B xð Þ

(c) The scalar multiplication of �A is an interval complex

neutrosophic set denoted as C ¼ k �A and defined as:

TC xð Þ ¼ 1� ð1� tL
A
ðxÞÞk; 1� ð1� tR

A
ðxÞÞk

h i

� ejp½x
L

C
xð Þ;xR

C
xð Þ�
;

IC xð Þ ¼½ðiL
A
ðxÞÞk; ðiR

A
ðxÞÞk� � ejp½w

L

C
xð Þ;wR

C
xð Þ�
;

FC xð Þ ¼½ðf L
A
ðxÞÞk; ðiR

A
ðxÞÞk� � ejp½/

L

C
xð Þ;/R

C
xð Þ�

The scalar of phase terms is defined below:

xL

C
xð Þ ¼xL

�A xð Þ � k; xR

C
xð Þ ¼ xR

�A xð Þ � k;
wL

C
xð Þ ¼wL

�A xð Þ � k; wR

C
xð Þ ¼ wR

�A xð Þ � k;
/L

C
xð Þ ¼/L

�A xð Þ � k; /R

C
xð Þ ¼ /R

�A xð Þ � k

4 A Multi-criteria Group Decision-Making Model
in ICNS

Definition 13 Let us assume that a committee of h

decision-makers ðDq; q ¼ 1; . . .; hÞ is responsible for

evaluating o alternatives ðAo; o ¼ 1; . . .;mÞ under p selec-

tion criteria ðCp; p ¼ 1; . . .; nÞ; where the suitability ratings

of alternatives under each criterion, as well as the weights

of all criteria, are assessed in IVCNS. The steps of the

proposed MCGDM method are as follows:

4.1 Aggregate Ratings of Alternatives Versus

Criteria

Let xopq ¼ ð½TL
opq; T

U
opq�; ½ILopq; IUopq�; ½FL

opq;F
U
opq�Þ be the suit-

ability rating assigned to alternative Ao by decision-maker

Dq for criterion Cp; where ½TL
opq; T

U
opq� ¼ ½tLopq; tUopq� �

ejp½x
L xð Þ;xU xð Þ�; ½ILopq; IUopq� ¼ ½iLopq; iUopq� � ejp½w

L xð Þ;wU xð Þ�; ½FL
opq;

FU
opq� ¼ ½f Lopq; f Uopq� � ejp½/

L xð Þ;/U xð Þ�; o ¼ 1; . . .;m; p ¼ 1; . . .;

n; q ¼ 1; . . .; h: Using the operational rules of the IVCNS,

the averaged suitability rating xop ¼ ð½TL
op; T

U
op�;

½ILop; IUop�; ½FL
op;F

U
op�Þ can be evaluated as:

xop ¼
1

h
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4.2 Aggregate the Importance Weights

Let wpq ¼ ð½TL
pq; T

U
pq�; ½ILpq; IUpq�; ½FL

pq;F
U
pq�Þ be the weight

assigned by decision-maker Dq to criterion Cp; where

½TL
pq; T

U
pq� ¼ ½tLpq; tUpq� � ejp½x

L xð Þ;xU xð Þ�; ½ILpq; IUpq� ¼ ½iLpq; iUpq� �
ejp½w

L xð Þ;wU xð Þ�; ½FL
pq;F

U
pq� ¼ ½f Lpq; f Upq� � ejp½/

L xð Þ;/U xð Þ�; FU
pq ¼

f Upq � ejp/ xð Þ; p ¼ 1; . . .; n; q ¼ 1; . . .; h: Using the opera-

tional rules of the IVCNS, the average weight wp ¼
ð½TL

p ; T
U
p �; ½ILp ; IUp �; ½FL

p ;F
U
p �Þ can be evaluated as:

wp ¼ ð1
h
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4.3 Aggregate the Weighted Ratings of Alternatives

Versus Criteria

The weighted ratings of alternatives can be developed via

the operations of interval complex neutrosophic set as

follows:

Vo ¼
1

p

X

h

p¼1

xop � wp; o ¼ 1; . . .;m; p ¼ 1; . . .; h: ð5Þ

4.4 Ranking the Alternatives

In this section, the modified score function, the accuracy

function and the certainty function of an ICNS, i.e., Vo ¼
ð½TL

o ; T
U
o �; ½ILo ; IUo �; ½FL

o ;F
U
o �Þ; o ¼ 1; . . .;m, adopted from Ye

[20], are developed for ranking alternatives in decision-

making problems, where

½TL
o ; T

U
o � ¼ ½tLo ; tUo �ejp½x

L xð Þ;xU xð Þ�; ½ILo ; IUo � ¼ ½iLo ; iUo �ejp½w
L xð Þ;wU xð Þ�;

½FL
o ;F

U
o � ¼ ½f Lo ; f Uo �ejp½/

L xð Þ;/U xð Þ�/U xð Þ�

The values of these functions for amplitude terms are

defined as follows:

eaVo
¼ 1

6
ð4þ tLo � iLo � f Lo þ tUo � iUo � f Uo Þ; haVo

¼ 1

2
ðtLo � f Lo þ tUo � f Uo Þ; and caVo

¼ 1

2
ðtLo þ tUo Þ

The values of these functions for phase terms are defined

below:

e
p
Vo

¼ p xLðxÞ � wLðxÞ � /LðxÞ þ xRðxÞ � wRðxÞ � /RðxÞ
� �

;

h
p
Vo

¼ p xLðxÞ � /LðxÞ þ xRðxÞ � /RðxÞ
� �

; and c
p
Vo

¼ p xLðxÞ þ xRðxÞ
� �

Let V1 and V2 be any two ICNSs. Then, the ranking

method can be defined as follows:

• If eaV1
[ eaV2

; then V1 [V2

• If eaV1
¼ eaV2

and e
p
V1
[ e

p
V2
; then V1 [V2

• If eaV1
¼ eaV2

;epV1
¼ e

p
V2

and haV1
[ haV2

; then V1 [V2

• If eaV1
¼ eaV2

;epV1
¼ e

p
V2
;haV1

¼ haV2
and h

p
V1
[ h

p
V2
; then

V1 [V2

• If eaV1
¼ eaV2

;epV1
¼ e

p
V2
;haV1

¼ haV2
;hpV1

¼ h
p
V2

and caV1
[

caV2
; then V1 [V2

• If eaV1
¼ eaV2

;epV1
¼ e

p
V2
;haV1

¼ haV2
;hpV1

¼ h
p
V2
;caV1

¼ caV2

and c
p
V1
[ c

p
V2
; then V1 [V2

• If eaV1
¼ eaV2

;epV1
¼ e

p
V2
;haV1

¼ haV2
;hpV1

¼ h
p
V2
;caV1

¼ caV2

and c
p
V1

¼ c
p
V2
; then V1 ¼ V2

5 Application of the Proposed MCGDM Approach

This section applies the proposed MCGDM for green

supplier selection in the case study of Thuan Yen JSC,

which is a small-size trading service and transportation

company. The managers of this company would like to

effectively manage the suppliers, due to an increasing

number of them. Data were collected by conducting semi-

structured interviews with managers and department heads.

Three managers (decision-makers), i.e., D1–D3, were

requested to separately proceed to their own evaluation for

the importance weights of selection criteria and the ratings

of suppliers. According to the survey and the discussions

with the managers and department heads, five criteria,

namely Price/cost (C1), Quality (C2), Delivery (C3),

Relationship Closeness (C4) and Environmental Manage-

ment Systems (C5), were selected to evaluate the green

suppliers. The entire green supplier selection procedure

was characterized by the following steps:

5.1 Aggregation of the Ratings of Suppliers Versus

the Criteria

Three managers determined the suitability ratings of three

potential suppliers versus the criteria using the linguistic

rating set S = {VL, L, F, G, VG} where VL = Very

Low = ([0.1, 0.2]ejp[0.7,0.8], [0.7, 0.8]ejp[0.9,1.0], [0.6,

0.7]ejp[1.0,1.1]), L = Low = ([0.3, 0.4]ejp[0.8,0.9], [0.6,

0.7]ejp[1.0,1.1], [0.5, 0.6]ejp[0.9,1.0]), F = Fair = ([0.4,

0.5]ejp[0.8,0.9], [0.5, 0.6]ejp[0.9,1.0],[0.4, 0.5]ejp[0.8,0.9]), G =

Good = ([0.6, 0.7]ejp[0.9,1.0], [0.4, 0.5]ejp[0.9,1.0], [0.3,

0.4]ejp[0.7,0.8]), and VG = Very Good = ([0.7, 0.8]

ejp[1.1,1.2], [0.2, 0.3]ejp[0.8,0.9], [0.1, 0.2]ejp[0.6,0.7]), to eval-

uate the suitability of the suppliers under each criteria.

Table 1 gives the aggregated ratings of three suppliers (A1,

A2, A3) versus five criteria (C1,…, C5) from three decision-

makers (D1, D2, D3) using Eq. (3).

5.2 Aggregation of the Importance Weights

After determining the green suppliers criteria, the three

company managers are asked to determine the level of

importance of each criterion using a linguistic weighting

set Q = {UI, OI, I, VI, AI} where UI = Unimpor-

tant = ([0.2, 0.3]ejp[0.7,0.8], [0.5, 0.6]ejp[0.9,1.0], [0.5,

0.6]ejp[1.1,1.2]), OI = Ordinary Important = ([0.3,

0.4]ejp[0.8,0.9], [0.5, 0.6]ejp[1.0,1.1], [0.4, 0.5]ejp[0.9,1.0]), I =

Important = ([0.5, 0.6]ejp[0.9,1.0], [0.4, 0.5]ejp[0.9,1.0], [0.3,
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0.4]ejp[0.8,0.9]), VI = Very Important = ([0.7, 0.8]

ejp[0.9,1.0], [0.3, 0.4]ejp[0.9,1.0], [0.2, 0.3]ejp[0.7,0.8]), and

AI = Absolutely Important = ([0.8, 0.9]ejp[1.0,1.1], [0.2,

0.3]ejp[0.8,0.9], [0.1, 0.2]ejp[0.6,0.7]).

Table 2 displays the importance weights of the five

criteria from the three decision-makers. The aggregated

weights of criteria obtained by Eq. (4) are shown in the last

column of Table 2.

5.3 Compute the Total Value of Each Alternative

Table 3 presents the final fuzzy evaluation values of each

supplier using Eq. (5).

Table 1 Aggregated ratings of suppliers versus the criteria

Criteria Suppliers Decision-makers Aggregated ratings

D1 D2 D3

C1 A1 G F G ([0.542, 0.644]ejp[0.867,0.967], [0.431, 0.531]ejp[0.9,1.0]], [0.33, 0.431]ejp[0.733,0.833])

A2 F F G ([0.476, 0.578]ejp[0.833,0.933], [0.464, 0.565]ejp[0.9,1.0], [0.363, 0.464]ejp[0.767,0.867])

A3 VG G VG ([0.67, 0.771]ejp[1.033,1.133], [0.252, 0.356]ejp[0.833,0.933], [0.144, 0.252]ejp[0.633,0.733])

C2 A1 F F F ([0.4, 0.5]ejp[0.8,0.9], [0.5, 0.6]ejp[0.9,1.0], [0.4, 0.5]ejp[0.8,0.9])

A2 VG G G ([0.637, 0.738]ejp[0.967,1.067], [0.317, 0.422]ejp[0.867,0.967], [0.208, 0.317]ejp[0.667,0.767])

A3 F G G ([0.542, 0.644]ejp[0.867,0.967], [0.431, 0.531]ejp[0.9,1.0], [0.33, 0.431]ejp[0.733,0.833])

C3 A1 L F L ([0.335, 0.435]ejp[0.8,0.9], [0.565, 0.665]ejp[0.967,1.067], [0.464, 0.565]ejp[0.867,0.967])

A2 G G G ([0.6, 0.7]ejp[0.9,1.0], [0.4, 0.5]ejp[0.9,1.0], [0.3, 0.4]ejp[0.7,0.8])

A3 F G F ([0.476, 0.578]ejp[0.833,0.933], [0.464, 0.565]ejp[0.9,1.0], [0.363, 0.464]ejp[0.767,0.867])

C4 A1 G F G ([0.542, 0.644]ejp[0.867,0.967], [0.431, 0.531]ejp[0.9,1.0], [0.33, 0.431]ejp[0.733,0.833])

A2 F F L ([0.368, 0.469]ejp[0.8,0.9], [0.531, 0.632]ejp[0.933,1.033], [0.431, 0.531]ejp[0.833,0.933])

A3 G VG G ([0.637, 0.738]ejp[0.967,1.067], [0.317, 0.422]ejp[0.867,0.967], [0.208, 0.317]ejp[0.667,0.767])

C5 A1 L F L ([0.335, 0.435]ejp[0.8,0.9], [0.565, 0.665]ejp[0.967,1.067], [0.464, 0.565]ejp[0.867,0.967])

A2 G G VG ([0.637, 0.738]ejp[0.967,1.067], [0.317, 0.422]ejp[0.867,0.967], [0.208, 0.317]ejp[0.667,0.767])

A3 G F F ([0.476, 0.578]ejp[0.833,0.933], [0.464, 0.565]ejp[0.9,1.0], [0.363, 0.464]ejp[0.767,0.867])

Table 2 The importance and aggregated weights of the criteria

Criteria Decision-makers Aggregated weights

D1 D2 D3

C1 VI I I ([0.578, 0.683]ejp[0.9,1.0], [0.363, 0.464]ejp[0.9,1.0], [0.262, 0.363]ejp[0.767,0.867])

C2 AI VI VI ([0.738, 0.841]ejp[0.933,1.033], [0.262, 0.363]ejp[0.867,0.967], [0.159, 0.262]ejp[0.667,0.767)

C3 VI VI I ([0.644, 0.748]ejp[0.9,1.0], [0.33, 0.431]ejp[0.9,1.0], [0.229, 0.33]ejp[0.733,0.833])

C4 I I I ([0.5, 0.6]ejp[0.9,1.0]], [0.4, 0.5]ejp[0.9,1.0], [0.3, 0.4]ejp[0.8,0.9])

C5 I OI OI ([0.374, 0.476]ejp[0.833,0.933], [0.391, 0.565]ejp[0.967,1.067], [0.363, 0.464]ejp[0.867,0.967])

Table 3 The final fuzzy evaluation values of each supplier

Suppliers Aggregated weights

A1 ([0.247, 0.361]ejp[0.739,0.921], [0.673, 0.784]ejp[0.841,1.034], [0.552, 0.679]ejp[0.614,0.78])

A2 ([0.319, 0.449]ejp[0.798,0.986], [0.607, 0.733]ejp[0.81,1.0], [0.475, 0.617]ejp[0.558,0.717])

A3 ([0.322, 0.451]ejp[0.811,1.001], [0.6, 0.724]ejp[0.798,0.987], [0.465, 0.606]ejp[0.547,0.705])
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Table 4 Modified score function of each alternative

Suppliers Modified score function Accuracy function Certainty function Ranking

Amplitude term Phase term Amplitude term Phase term Amplitude term Phase term

A1 0.320 -1.61p -0.311 0.265p 0.304 1.659p 3

A2 0.389 -1.301p -0.162 0.508p 0.384 1.784p 2

A3 0.396 -1.225p -0.149 0.56p 0.387 1.811p 1

Table 5 The importance and aggregated weights of the criteria

Criteria Decision-makers Aggregated weights

D1 D2 D3 D4

C1 AI AI AI VI ([0.269, 0.361]ejp[0.194,0.214], [0.115, 0.161]ejp[0.156,0.175], [0.066, 0.115]ejp[0.117,0.136])

C2 VI I I VI ([0.157, 0.204]ejp[0.175,0.194], [0.191, 0.239]ejp[0.175,0.194], [0.144, 0.191]ejp[0.148,0.168)

C3 AI AI VI AI ([0.252, 0.336]ejp[0.189,0.208], [0.129, 0.176]ejp[0.161,0.18], [0.08, 0.129]ejp[0.122,0.141])

C4 VI VI I OI ([0.186, 0.241]ejp[0.175,0.194]], [0.176, 0.223]ejp[0.175,0.194], [0.129, 0.176]ejp[0.141,0.161])

C5 I I AI AI ([0.168, 0.224]ejp[0.18,0.2], [0.17, 0.219]ejp[0.175,0.194], [0.12, 0.17]ejp[0.145,0.164])

Table 6 Aggregated ratings of suppliers versus the criteria

Criteria Suppliers Decision-makers Aggregated ratings

D1 D2 D3 D4

C1 A1 G F G G ([0.557, 0.659]ejp[0.875,0.975], [0.008, 0.019]ejp[0.9,1.0]], [0.436, 0.532]ejp[0.725,0.825])

A2 G G F F ([0.510, 0.613]ejp[0.85,0.95], [0.01, 0.023]ejp[0.9,1.0], [0.436, 0.532]ejp[0.75,0.85])

A3 L G F L ([0.414, 0.518]ejp[0.825,0.925], [0.019, 0.039]ejp[0.95,1.05], [0.495, 0.589]ejp[0.825,0.925])

A4 G F G F ([0.510, 0.613]ejp[0.85,0.95], [0.01, 0.023]ejp[0.9,1.0], [0.436, 0.532]ejp[0.75,0.85])

A5 F G G G ([0.557, 0.659]ejp[0.875,0.975], [0.008, 0.019]ejp[0.9,1.0]], [0.436, 0.532]ejp[0.725,0.825])

C2 A1 G G F G ([0.557, 0.659]ejp[0.875,0.975], [0.008, 0.019]ejp[0.9,1.025]], [0.495, 0.589]ejp[0.725,0.825])

A2 G F L F ([0.437, 0.539]ejp[0.825,0.925], [0.015, 0.033]ejp[0.925,1.025]], [0.495, 0.589]ejp[0.8,0.9])

A3 L G G G ([0.54, 0.643]ejp[0.875,0.975], [0.01, 0.023]ejp[0.925,1.025]], [0.461, 0.557]ejp[0.75,0.85])

A4 F L G L ([0.414, 0.518]ejp[0.825,0.925], [0.019, 0.039]ejp[0.95,1.05]], [0.495, 0.589]ejp[0.825,0.925])

A5 G G F G ([0.557, 0.659]ejp[0.875,0.975], [0.008, 0.019]ejp[0.9,1.0]], [0.436, 0.532]ejp[0.725,0.825])

C3 A1 F F L L ([0.352, 0.452]ejp[0.8,0.9], [0.023, 0.047]ejp[0.95,1.05]], [0.532, 0.622]ejp[0.85,0.95])

A2 G G G G ([0.6, 0.7]ejp[0.9,1.0], [0.006, 0.016]ejp[0.9,1.0], [0.405, 0.503]ejp[0.7,0.8])

A3 L G F F ([0.437, 0.539]ejp[0.825,0.925], [0.015, 0.033]ejp[0.925,1.025]], [0.495, 0.589]ejp[0.8,0.9])

A4 G F G F ([0.51, 0.613]ejp[0.85,0.95], [0.01, 0.023]ejp[0.9,1.0]], [0.436, 0.532]ejp[0.75,0.85])

A5 F G G G ([0.557, 0.659]ejp[0.875,0.975], [0.008, 0.019]ejp[0.9,1.0]], [0.436, 0.532]ejp[0.725,0.825])

C4 A1 G L F L ([0.414, 0.518]ejp[0.825,0.925], [0.019, 0.039]ejp[0.95,1.05], [0.495, 0.589]ejp[0.825,0.925])

A2 G G L G ([0.54, 0.643]ejp[0.875,0.975], [0.01, 0.023]ejp[0.925,1.025], [0.461, 0.557]ejp[0.75,0.85])

A3 F F F F ([0.4, 0.5]ejp[0.8,0.9], [0.016, 0.034]ejp[0.9,1.0], [0.503, 0.595]ejp[0.8,0.9])

A4 L L F G ([0.414, 0.518]ejp[0.825,0.925], [0.019, 0.039]ejp[0.95,1.05], [0.495, 0.589]ejp[0.825,0.925])

A5 F G G G ([0.557, 0.659]ejp[0.875,0.975], [0.008, 0.019]ejp[0.9,1.0]], [0.436, 0.532]ejp[0.725,0.825])

C5 A1 L F G L ([0.414, 0.518]ejp[0.825,0.925], [0.019, 0.039]ejp[0.95,1.05], [0.495, 0.589]ejp[0.825,0.925])

A2 G L G G ([0.54, 0.643]ejp[0.875,0.975], [0.01, 0.023]ejp[0.925,1.025]], [0.461, 0.557]ejp[0.75,0.85])

A3 G G L F ([0.491, 0.595]ejp[0.85,0.95], [0.012, 0.027]ejp[0.925,1.025], [0.461, 0.557]ejp[0.775,0.875])

A4 L L F G ([0.414, 0.518]ejp[0.825,0.925], [0.019, 0.039]ejp[0.95,1.05], [0.495, 0.589]ejp[0.825,0.925])

A5 G G G G ([0.6, 0.7]ejp[0.9,1.0], [0.006, 0.016]ejp[0.9,1.0], [0.405, 0.503]ejp[0.7,0.8])
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5.4 Ranking the Alternatives

Using the modified ranking method, the final ranking value

of each alternative is defined as in Table 4. According to

this table, the ranking order of the three suppliers is

A3 � A2 � A1:

6 Comparison of the Proposed Method
with Another MCGDM Method

6.1 Example 1

This section compares the proposed approach with another

MCGDM approach to demonstrate its advantages and

applicability by reconsidering the example investigated by

Sahin and Yigider [14]. In this example, four decision-

makers (D1,…,D4) have been appointed to evaluate five

suppliers (S1,…, S5) based on five performance criteria

including delivery (C1), quality (C2), flexibility (C3), ser-

vice (C4) and price (C5).

The information of weights provided to the five criteria

by the four decision-makers are presented in Table 5. The

aggregated weights of criteria obtained by Eq. (4) are

shown in the last column of Table 5.

Table 6 demonstrates the averaged ratings of suppliers

versus the criteria based on the data presented in Tables 4,

5, 6, 7 and 8 in the work of Sahin and Yigider [14] and the

proposed method.

Table 7 presents the final fuzzy evaluation values of

each supplier using Eq. (5).

Using the proposed modified ranking method, the final

ranking value of each alternative is defined as in Table 8.

According to this table, the ranking order of the five sup-

pliers is A5 � A2 � A1 � A3 � A4: Obviously, the results

in Sahin and Yigider [14] conflict with ours in this paper.

The reason for the difference is in the proposed method:

IVCNS was used to measure the ratings of the suppliers

and the importance weights of criteria.

6.2 Example 2

This section uses a numerical example to compare the

proposed approach with Ye’s method [21] as follows.

Consider two ICNS, i.e., A1 = ([0.5, 0.6]ejp[0.9,1.0], [0.4,

0.5]ejp[0.7,0.8]], [0.3, 0.4]ejp[0.5,0.6] and A2 = ([0.5,

0.6]ejp[0.8,0.9], [0.4, 0.5]ejp[0.5,0.6]], [0.3, 0.4]ejp[0.7,0.8]. It is

clear that the truth membership, indeterminacy member-

ship and false-membership of A1 and A2 have the same

amplitude values. Using the Ye’s method [21], the simi-

larity measures between ICNS A1 and A2 are: S1(A1,

A2) = 1 and S2(A1, A2) = 1. Therefore, the ranking order

of A1 and A2 is A1 = A2. This is not reasonable.

However using the proposed ranking method, the

modified score, the accuracy and certainty function of A1

and A2 are: eaVo
ðA1Þ ¼ eaVo

ðA2Þ ¼ 0:583; haVo
ðA1Þ ¼

haVo
ðA2Þ ¼ 0:2; caVo

ðA1Þ ¼ caVo
ðA2Þ ¼ 0:55 and e

p
Vo
ðA1Þ ¼

�0:7p; epVo
ðA2Þ ¼ �0:9p; h

p
Vo
ðA1Þ ¼ 0:8p; hpVo

ðA2Þ ¼ 0:2p

and c
p
Vo
ðA1Þ ¼ 1:9p; cpVo

ðA2Þ ¼ 1:7p: Accordingly, the

ranking order of ICNS A1 and A2 is A1[A2. Obviously,

the proposed ranking method can also rank ICNS other

than INS.

Table 7 The final fuzzy evaluation values of each supplier

Suppliers Aggregated weights

A1 ([0.095, 0.154]ejp[0.153,0.19], [0.166, 0.228]ejp[0.156,0.192], [0.534, 0.639]ejp[0.106,0.137])

A2 ([0.11, 0.174]ejp[0.158,0.195], [0.162, 0.22]ejp[0.153,0.189], [0.508, 0.616]ejp[0.101,0.131])

A3 ([0.093, 0.151]ejp[0.153,0.189], [0.166, 0.227]ejp[0.155,0.191], [0.539, 0.643]ejp[0.106,0.137])

A4 ([0.096, 0.156]ejp[0.153,0.189], [0.165, 0.227]ejp[0.156,0.192], [0.547, 0.651]ejp[0.107,0.138])

A5 ([0.117, 0.183]ejp[0.161,0.198], [0.16, 0.217]ejp[0.15,0.187], [0.491, 0.6]ejp[0.097,0.126])

Table 8 Modified score function of each alternative

Suppliers Modified score function Accuracy function Certainty function Ranking

Amplitude term Phase term Amplitude term Phase term Amplitude term Phase term

A1 0.447 -0.248p -0.461 0.100p 0.125 0.344p 3

A2 0.463 -0.222p -0.420 0.121p 0.142 0.353p 2

A3 0.445 -0.247p -0.469 0.099p 0.122 0.341p 4

A4 0.444 -0.252p -0.473 0.096p 0.126 0.342p 5

A5 0.472 -0.201p -0.395 0.136p 0.150 0.359p 1
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7 Conclusion

It is believed that uncertain, ambiguous, indeterminate,

inconsistent and incomplete periodic/redundant informa-

tion can be dealt better with intervals instead of single

values. This paper aimed to propose the interval complex

neutrosophic set, which is more adaptable and flexible to

real-life problems than other types of fuzzy sets. The def-

initions of interval complex neutrosophic set, accompanied

by the set operations, were defined. The relationship of

interval complex neutrosophic set with other existing

approaches was presented.

A new decision-making procedure in the interval com-

plex neutrosophic set has been presented and applied to a

decision-making problem for the green supplier selection.

Comparison between the proposed method and the related

methods has been made to demonstrate the advantages and

applicability. The results are significant to enrich the

knowledge of neutrosophic set in the decision-making

applications.

Future work plans to use the decision-making procedure

to more complex applications, and to advance the interval

complex neutrosophic logic system for forecasting

problems.
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ABSTRACT

In this article, we combine the interval valued neutrosophic soft set and graph theory. We introduce the 
notions of interval valued neutrosophic soft graphs, strong interval valued neutrosophic graphs, 
complete interval valued neutrosophic graphs, and investigate some of their related properties. We study 
some operations on interval valued neutrosophic soft graphs. We also give an application of interval 
valued neutrosophic soft graphs into a decision making problem. We hold forth an algorithm to solve 
decision making problems by using interval valued neutrosophic soft graphs. 

1. INTRODUCTION
The neutrosophic set (NSs), proposed by (Smarandache, 2006, 2011), is a powerful 
mathematical tool for dealing with incomplete, indeterminate and inconsistent information in 
real world. Itis a generalization of the theory of fuzzy sets (Zadeh, 1965), intuitionistic fuzzy 
sets (Atanassov, 1986,1999) and interval-valued intuitionistic fuzzy sets (Atanassov, 1989). 
The neutrosophic sets are characterized by a truth-membership function (t), an indeterminacy-
membership function (i) and a falsity-membership function (f) independently, which are within 
the real standard or nonstandard unit interval ]−0, 1+[. In order to conveniently employ NS in 
real life applications, (Wang et al., 2010) introduced the concept of single-valued neutrosophic 
set (SVNS), a subclass of the neutrosophic sets. The same authors (Wang,  Zhang, & 
Sunderraman, 2005) introduced the concept of interval valued neutrosophic set (IVNS), which 
is more precise and flexible than single valued neutrosophic set. The IVNS is a generalization 
of single valued neutrosophic set, in which three membership functions are independent and 
their value belong to the unit interval [0, 1]. Some more work on single valued neutrosophic 
set, interval valued neutrosophic set and their applications may be found in (Aydoğdu, 2015;
Ansari et a.l, 2012; Ansari et al. 2013; Ansari et al. 2013a; Zhang et al., 2015; Zhang et al., 
2015b; Deli et al.  ,2015; Ye, 2014, 2014a; Şahin, 2015; Aggarwal et al.,2010;  Broumi and   
Smarandache, 2014; Karaaslan and Davvaz, 2018). 

Graph theory has now become a major branch of applied mathematics and it is generally 
regarded as a branch of combinatorics. Graph is a widely used tool for solving a combinatorial 
problem in different areas, such as geometry, algebra, number theory, topology, optimization 
and computer science. Most important thing to be noted is that, when we have uncertainty 
regarding either the set of vertices or edges, or both, the model becomes a fuzzy graph. The 
extension of fuzzy graph theory (Nagoor and Basheer, 2003; Nagoor & Latha,2012; 
Bhattacharya,1987) have been developed by several researchers. Intuitionistic fuzzy graphs 
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Said Broumi, Assia Bakali, Mohamed Talea, Florentin Smarandache, 
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(Nagoor & Shajitha, 2010; Akram, 2012) considered the vertex sets and edge sets as 
intuitionistic fuzzy sets. Interval valued fuzzy graphs (Akram & Dudek, 2011; Akram, 2012a) 
considered the vertex sets and edge sets as interval valued fuzzy sets. Interval valued 
intuitionistic fuzzy graphs (Akram, 2014; Hai-Long et.,2016) considered the vertex sets and 
edge sets as interval valued intuitionistic fuzzy sets. Bipolar fuzzy graphs (Akram, 2011, 2013) 
considered the vertex sets and edge sets as bipolar fuzzy sets. M-polar fuzzy graphs (Akram, 
2016) considered the vertex sets and edge sets as m-polar fuzzy sets. But, when the relations 
between nodes (or vertices) in problems are indeterminate, the fuzzy graphs and their extensions 
fail. For this purpose, (Smarandache, 2015,2015a,2015b; Vasantha and Smarandache,2013) 
defined four main categories of neutrosophic graphs. Two of them are based on literal 
indeterminacy (I), which are called I-edge neutrosophic graph and I-vertex neutrosophic graph; 
these concepts are studied deeply and gained popularity among the researchers due to their 
applications via real world problems (Devadoss et al., 2013, Jiang et al., 2010;  Vasantha et al., 
2015) The two others graphs arebased on (t, i, f) components and are called:(t, i, f)-edge 
neutrosophic graph and (t, i, f)-vertex neutrosophic graph; these concepts are not developed at 
all. 
Later on, (Broumi et al., 2016a) introduced a third neutrosophic graph model, and investigated 
some of its properties. This model allows the attachment of truth-membership (t), 
indeterminacy–membership (i) and falsity- membership degrees (f) both to vertices and edges. 
The third neutrosophic graph model is called single valued neutrosophic graph (SVNG for 
short). The single valued neutrosophic graph is the generalization of fuzzy graph and 
intuitionistic fuzzy graph. Also, the same authors (Broumi et al., 2016a, 2016e) introduced 
neighborhood degree of a vertex and closed neighborhood degree of a vertex in single valued 
neutrosophic graph as a generalization of neighborhood degree of a vertex and closed 
neighborhood degree of a vertex in fuzzy graph and intuitionistic fuzzy graph. Also, (Broumi et 
al., 2016b) introduced the concept of interval valued neutrosophic graph as a generalization of 
fuzzy graph, intuitionistic fuzzy graph, interval valued fuzzy graph, interval valued 
intuitionistic fuzzy graph and single valued neutrosophic graph, and have discussed some of 
their properties with proofs and examples. In addition, (Broumi et al., 2016c) have introduced 
some operations, such as Cartesian product, composition, union and join on interval valued 
neutrosophic graphs, and investigate some their properties. On the other hand, (Broumi et al., 
2016d) discussed a subclass of interval valued neutrosophic graph, called strong interval valued 
neutrosophic graph, and introduced some operations such as, Cartesian product, composition 
and join of two strong interval valued neutrosophic graph with proofs. Interval valued 
neutrosophic soft sets are the generalization of fuzzy soft sets (Maji, 2001), intuitionistic fuzzy 
soft sets (Maji, 2001a), interval valued intuitionistic fuzzy soft sets (Jiang, et al., 2010) and 
(Maji, 2013). (Thumbakara and George,2014) combined the concept of soft set theory with 
graph theory. (Irfan et al, 2016) proposed a method to represent a graph, which is based on 
adjacency of vertices and soft set theory and introduced some operations such as restricted 
intersection, restricted union, extended intersection and extended union for graphs. In addition, 
the authors defined a metric to find distances between graphs represented by soft sets. Later on, 
Mohinta (2015) extended the concept of soft graph to the case of fuzzy soft graph. Also, Akram 
et al. (2015) studied more properties on fuzzy soft graphs and some operations. Shahzadi and 
Akram (2016) presented different types of new concepts, including intuitionistic fuzzy soft 
graphs, complete intuitionistic fuzzy soft graph, strong intuitionistic fuzzy soft graph and self- 
complement of intuitionistic fuzzy soft graph. And described various methods of their 
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construction, and investigated some of their related properties and discussed the applications of 
intuitionistic fuzzy soft graphs in communication network and decision making. 

Recently, the notion of neutrosophic soft set has been extended in the graph theory and the 
concept of neutrosophic soft graph was provided by (Shah and Hussain, 2016) Later on, 
Shahzadi and Akram (2016) have applied the concept of neutrosophic soft sets to graphs and 
discussed various methods of construction of neutrosophic soft graphs. In the literature, the 
study of interval valued neutrosophic soft graphs (IVNS-graph) is still blank. 

In the present paper, interval valued neutrosophic soft sets (Deli, 2015). are employed 
to study graphs and give rise to a new class of graphs called interval valued neutrosophic soft 
graphs. We have discussed different operations defined on neutrosophic soft graphs such as 
Cartesian product, composition, union and join with examples and proofs. The concepts of 
strong interval valued neutrosophic soft graphs, complete interval valued neutrosophic soft 
graphs and the complement of strong interval valued neutrosophic soft graphs a real so 
discussed. Interval valued neutrosophic soft graphs are pictorial representation in which each 
vertex and each edge is an element of interval valued neutrosophic soft sets.  

This paper is organized as follows. In section 2, we give all the basic definitions related 
to interval valued neutrosophic graphs and interval valued neutrosophic soft sets which will be 
employed in later sections. In section 3, we introduce certain notions including interval valued 
neutrosophic soft graphs, strong interval valued neutrosophic soft graphs, complete interval 
valued neutrosophic soft graphs, the complement of strong interval valued neutrosophic soft 
graphs, and illustrate these notions by several examples, then we present some operations such 
as Cartesian product, composition, intersection, union and join on an interval valued 
neutrosophic soft graphs and investigate some of their related properties. In section 4, we 
present an application of interval valued neutrosophic soft graphs in decision making.  
2. PRELIMINARIES
In this section, we mainly recall some notions related to neutrosophic sets, single valued 
neutrosophic sets, interval valued neutrosophic sets, neutrosophic soft sets, interval valued, soft 
sets, neutrosophic soft sets, single valued neutrosophic graphs, fuzzy graph, intuitionistic fuzzy 
graph, interval valued intuitionistic fuzzy graphs and interval valued neutrosophic graphs, 
relevant to the present work. See especially (Mohamed et al, 2014; Nagoor and Basheer, 2003; 
Nagoor and Shajitha2010; Molodtsov, 1999; Smarandache, 2006; Wang et al., 2005;  Wang et 
al., 2010; Deli, 2015; Broumi et al., 2016a, 2016b) for further details and background. 

Definition 2.1 (Smarandache, 2006). Let X be a space of points (objects) with generic elements 
in X denoted by x; then the neutrosophic set A (NS A) is an object having the form A = {< x: 
TA(x), IA(x), FA(x)>, x ∈ X}, where the functions T, I, F: X→]−0,1+[define respectively the a
truth-membership function, an indeterminacy-membership function, and a falsity-membership 
function of the element x ∈ X to the set A, with the condition: 

−0 ≤ TA(x)+ IA(x)+ FA(x)≤ 3+. (1) 

The functions TA(x), IA(x) and FA(x) are real standard or nonstandard subsets of ]−0,1+[.
Since it is difficult to apply NSs to practical problems, (Wang et al., 2010). introduced 

the concept of a SVNS, which is an instance of a NS and can be used in real scientific and 
engineering applications. 

Florentin Smarandache (ed.) Collected Papers, VI

477

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Smarandache,%20F..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Wang%2C%20H..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Wang%2C%20H..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Wang%2C%20H..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Smarandache,%20F..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Wang%2C%20H..QT.&newsearch=true


Definition 2.2 (Wang et al., 2010). Let Xbe a space of points (objects) with generic elements 
in X denoted by x. A single valued neutrosophic set A (SVNS A) is characterized by truth-
membership function TA(x), an indeterminacy-membership function IA(x), and a falsity-
membership function FA(x). For each point x in XTA(x), IA(x), FA(x) ∈ [0, 1]. A SVNS A can 
be written as  

A = {< x: TA(x), IA(x), FA(x)>, x ∈ X}. (2) 

Definition2.3 (Nagoor and Basheer, 2003)A fuzzy graph is a pair of functions G = (σ, µ) where 
σ is a fuzzy subset of a non-empty set V andμis a symmetric fuzzy relation on σ. i.eσ : V → [ 
0,1] and  μ:VxV→[0,1] such thatμ(uv) ≤ σ(u) ⋀ σ(v)for all u, v ∈ V, where uv denotes the edge 
between u and v and σ(u) ⋀ σ(v) denotes the minimum of σ(u) and σ(v). σ is called the fuzzy 
vertex set of V andμ is called the fuzzy edge set of E. 

Fig.1:FuzzyGraph 

Definition2.4 (Nagoor and Basheer, 2003) The fuzzy subgraph   H = (τ, ρ)  is called a fuzzy 
subgraph of G = (σ, µ) 
If τ(u) ≤ σ(u) for all u ∈ V and ρ(u, v) ≤μ(u, v)for all u, v ∈ V. 

Definition2.5 (Nagoor and Shajitha2010) An Intuitionistic fuzzy graph is of the form G = (V,E) 
where: 

i. V={v1,v2,….,vn} such that 𝜇1:V→ [0,1] and𝛾1:V→ [0,1] denote the degree of
membership and non-membership of the element vi ∈ V, respectively, and 0 ≤
𝜇1(vi)+𝛾1(vi))≤ 1for everyvi ∈ V,(i=1, 2,……. n),

ii. E⊆ VxV where𝜇2:VxV→[0,1]and𝛾2:VxV→ [0,1] are such that 𝜇2(vi,
vj)≤min[𝜇1(vi),𝜇1(vj)]and 𝛾2(vi, vj)≥max[𝛾1(vi),𝛾1(vj)]and 0 ≤𝜇2(vi, vj)+𝛾2(vi,
vj)≤ 1 for every(vi, vj) ∈E,(i,j =1,2,……. n)

Fig.2: Intuitionistic Fuzzy Graph 
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Definition 2.6 (Broumi et al., 2016a).Let A = (𝑇𝐴,𝐼𝐴, 𝐹𝐴) and B = (𝑇𝐵,𝐼𝐵, 𝐹𝐵)be single valued 
neutrosophic sets on a set X. If A = (𝑇𝐴,𝐼𝐴, 𝐹𝐴) is a single valued neutrosophic relation on a set
X, then A =(𝑇𝐴,𝐼𝐴, 𝐹𝐴) is called a single valued neutrosophic relation on B = (𝑇𝐵,𝐼𝐵, 𝐹𝐵) if 

TB(x, y) ≤ min(TA(x),TA(y))  
IB(x, y) ≥ max(IA(x),IA(y)) and 
FB(x, y) ≥ max(FAx),FA(y)) for all x, y ∈ X. 

A single valued neutrosophic relation A on X is called symmetric if 𝑇𝐴(x, y) = 𝑇𝐴(y, x), 
𝐼𝐴(x, y) = 𝐼𝐴(y, x), 𝐹𝐴(x, y) = 𝐹𝐴(y, x) and 𝑇𝐵(x, y) = 𝑇𝐵(y, x), 𝐼𝐵(x, y) = 𝐼𝐵(y, x) and 𝐹𝐵(x, y) = 
𝐹𝐵(y, x), for all x, y ∈X. 

Definition 2.7 (Broumi et al., 2016a). A single valued neutrosophic graph (SVN-graph) with 
underlying set V is defined to be a pair G= (A, B) where: 
1.The functions 𝑇𝐴:V→[0, 1], 𝐼𝐴:V→[0, 1] and 𝐹𝐴:V→[0, 1] denote the degree of truth-
membership, degree of indeterminacy-membership and falsity-membership of the element 𝑣𝑖 ∈ 
V, respectively,and 

0≤ 𝑇𝐴(𝑣𝑖) + 𝐼𝐴(𝑣𝑖) +𝐹𝐴(𝑣𝑖) ≤3 for all𝑣𝑖 ∈ V (i=1, 2, …,n) 
2. The functions𝑇𝐵: E ⊆ V x V →[0, 1],𝐼𝐵:E ⊆ V x V →[0, 1] and 𝐹𝐵: E ⊆ V x V →[0, 1] are
defined by 

𝑇𝐵({𝑣𝑖, 𝑣𝑗}) ≤min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)], 
𝐼𝐵({𝑣𝑖, 𝑣𝑗}) ≥ max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)], and 
𝐹𝐵({𝑣𝑖, 𝑣𝑗}) ≥max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)], 

Denoting the degree of truth-membership, indeterminacy-membership and falsity-membership 
of the edge (𝑣𝑖,𝑣𝑗) ∈ E respectively, where: 

 0≤ 𝑇𝐵({𝑣𝑖, 𝑣𝑗}) + 𝐼𝐵({𝑣𝑖, 𝑣𝑗})+ 𝐹𝐵({𝑣𝑖, 𝑣𝑗}) ≤3for all{𝑣𝑖, 𝑣𝑗} ∈ E (i, j = 1, 2,…, n) 
We call A the single valued neutrosophic vertex set of V, B the single valued 

neutrosophic edge set of E, respectively. Note that B is a symmetric single valued neutrosophic 
relation on A. We use the notation (𝑣𝑖, 𝑣𝑗) for an element of E. Thus, G = (A, B) is a single 
valued neutrosophic graph of G∗= (V, E) if:

𝑇𝐵(𝑣𝑖 , 𝑣𝑗) ≤min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)], 
𝐼𝐵(𝑣𝑖, 𝑣𝑗) ≥ max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)] and 
𝐹𝐵(𝑣𝑖, 𝑣𝑗) ≥ max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)], for all(𝑣𝑖, 𝑣𝑗) ∈ E. 

Fig.3: Single valued neutrosophic graph 

Definition 2.9 (Broumi et al., 2016a).A partial SVN-subgraph of SVN-graph G= (A, B)is a 
SVN-graph H=(𝑽′,𝑬′)such that
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′ (𝒗𝒊) ≤ 𝑻𝑨(𝒗𝒊),𝑰𝑨
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𝑭𝑩(𝒗𝒊, 𝒗𝒋),for all (𝒗𝒊𝒗𝒋) ∈ 𝑬. 

Definition 2.10 (Broumi et al., 2016a). ASVN-subgraph of SVN-graph G= (V, E)is a SVN-
graph H=(𝑽′,𝑬′)such that

(i) 𝑽′ = 𝑽, where𝑻𝑨
′ (𝒗𝒊) = 𝑻𝑨(𝒗𝒊),𝑰𝑨

′ (𝒗𝒊) = 𝑰𝑨(𝒗𝒊),𝑭𝑨
′ (𝒗𝒊) = 𝑭𝑨(𝒗𝒊)for all𝒗𝒊in the

vertex set of𝑽′.
(ii) 𝑬′ = 𝑬, where𝑻𝑩

′ (𝒗𝒊, 𝒗𝒋) = 𝑻𝑩(𝒗𝒊, 𝒗𝒋),𝑰𝑩
′ (𝒗𝒊, 𝒗𝒋) = 𝑰𝑩(𝒗𝒊, 𝒗𝒋),𝑭𝑩

′ (𝒗𝒊, 𝒗𝒋) =

𝑭𝑩(𝒗𝒊, 𝒗𝒋)for every (𝒗𝒊𝒗𝒋) ∈ 𝑬 in the edge set of𝑬′.

Definition 2.10 (Broumi et al., 2016a). Let G= (A, B) be a single valued neutrosophic graph. 
Then the degree of any vertex v is sum of degree of truth-membership, sum of degree of 
indeterminacy-membership and sum of degree of falsity-membership of all those edges which 
are incident on vertex v denoted by d(v)= (𝑑𝑇(𝑣), 𝑑𝐼(𝑣),𝑑𝐹(𝑣)) where: 

𝑑𝑇(𝑣)=∑ 𝑇𝐵(𝑢, 𝑣)𝑢≠𝑣  denotesdegree of truth-membership vertex.

𝑑𝐼(𝑣)=∑ 𝐼𝐵(𝑢, 𝑣)𝑢≠𝑣  denotes degree of indeterminacy-membership vertex.

𝑑𝐹(𝑣)=∑ 𝐹𝐵(𝑢, 𝑣)𝑢≠𝑣  denotes degree of falsity-membership vertex.

Definition 2.11(Broumi et al., 2016a). A single valued neutrosophic graph G = (A, B) of 𝐺∗=
(V, E) is calledstrong single valued neutrosophic graph if: 

𝑇𝐵(𝑣𝑖 , 𝑣𝑗) =min [𝑇𝐴(𝑣𝑖),𝑇𝐴(𝑣𝑗)] 

𝐼𝐵(𝑣𝑖, 𝑣𝑗) =max [𝐼𝐴(𝑣𝑖),𝐼𝐴(𝑣𝑗)] 

𝐹𝐵(𝑣𝑖, 𝑣𝑗) =max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)], for all (𝑣𝑖, 𝑣𝑗) ∈ E. 

Definition 2.12(Broumi et al., 2016a). A single valued neutrosophic graph G= (A, B) is called 
complete if 

𝑇𝐵(𝑣𝑖 , 𝑣𝑗) =min [𝑇𝐴(𝑣𝑖),𝑇𝐴(𝑣𝑗)] 

𝐼𝐵(𝑣𝑖, 𝑣𝑗) =max [𝐼𝐴(𝑣𝑖),𝐼𝐴(𝑣𝑗)] 

𝐹𝐵(𝑣𝑖, 𝑣𝑗) =max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)], for all 𝑣𝑖, 𝑣𝑗 ∈ V. 

Definition 2.13(Broumi et al., 2016a)The complement of a single valued neutrosophic graph G 
(A, B) on𝐺∗ is a single valued neutrosophic graph �̅� on 𝐺∗ where:

1.�̅� =A

2.𝑇𝐴
̅̅ ̅(𝑣𝑖)= 𝑇𝐴(𝑣𝑖),𝐼�̅�(𝑣𝑖)= 𝐼𝐴(𝑣𝑖),𝐹𝐴

̅̅ ̅(𝑣𝑖) = 𝐹𝐴(𝑣𝑖), for all 𝑣𝑗 ∈ V.

3.𝑇𝐵
̅̅ ̅(𝑣𝑖, 𝑣𝑗)= min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)]-𝑇𝐵(𝑣𝑖 , 𝑣𝑗)

𝐼�̅�(𝑣𝑖 , 𝑣𝑗)= max [𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)]-𝐼𝐵(𝑣𝑖, 𝑣𝑗) and

𝐹𝐵
̅̅ ̅(𝑣𝑖 , 𝑣𝑗)= max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)]-𝐹𝐵(𝑣𝑖 , 𝑣𝑗),for all (𝑣𝑖, 𝑣𝑗) ∈ E.
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Definition 2.14 (Mohamed et al, 2014). An interval valued intuitionistic fuzzy graph with 
underlying set V is defined to be a pair G= (A, B) where  

1)The functions 𝑀𝐴 : V→ D [0, 1]and 𝑁𝐴 : V→ D [0, 1] denote the degree of membership and
non-membership of the element x ∈ V, respectively, such that 0 such that0≤𝑀𝐴(x)+ 𝑁𝐴(x) ≤ 1 
for all x ∈ V. 

2) The functions 𝑀𝐵 : E ⊆ 𝑉 × 𝑉 → D [0, 1]and 𝑁𝐵 : : E ⊆ 𝑉 × 𝑉 → D [0, 1] are defined by

𝑀𝐵𝐿(𝑥, 𝑦))≤min (𝑀𝐴𝐿(𝑥), 𝑀𝐴𝐿(𝑦)) and 𝑁𝐵𝐿(𝑥, 𝑦)) ≥max (𝑁𝐴𝐿(𝑥), 𝑁𝐴𝐿(𝑦)) 

𝑀𝐵𝑈(𝑥, 𝑦))≤min (𝑀𝐴𝑈(𝑥), 𝑀𝐴𝑈(𝑦)) and 𝑁𝐵𝑈(𝑥, 𝑦)) ≥max (𝑁𝐴𝑈(𝑥), 𝑁𝐴𝑈(𝑦)), 

such that 

0≤𝑀𝐵𝑈(𝑥, 𝑦))+ 𝑁𝐵𝑈(𝑥, 𝑦)) ≤ 1 for all (𝑥, 𝑦) ∈ E. 

Définition 2.15 (Broumi et al., 2016b). By an interval-valued neutrosophic graph of a graph G∗

= (V, E) we mean a pair G = (A,B), where A =< [TAL, TAU], [IAL, IAU], [FAL, FAU]> is an 
interval-valued neutrosophic set on V and B =< [TBL, TBU], [IBL, IBU], [FBL, FBU]> is an interval-
valued neutrosophic relation on E satisfies the following condition: 

1. V= {𝑣1,𝑣2 ,…,𝑣𝑛} such that 𝑇𝐴𝐿:V→[0, 1],𝑇𝐴𝑈:V→[0, 1], 𝐼𝐴𝐿:V→[0, 1],𝐼𝐴𝑈:V→[0, 1]and
𝐹𝐴𝐿:V→[0, 1],𝐹𝐴𝑈:V→[0, 1] denote the degree of truth-membership, the degree
ofindeterminacy- membership and falsity-membership of the element 𝑦 ∈ V,
respectively,and0≤ 𝑇𝐴(𝑣𝑖) + 𝐼𝐴(𝑣𝑖) +𝐹𝐴(𝑣𝑖) ≤3 for all𝑣𝑖 ∈ V (i=1, 2, …,n).

2. The functions𝑇𝐵𝐿:V x V →[0, 1],𝑇𝐵𝑈:V x V →[0, 1],𝐼𝐵𝐿:V x V →[0, 1],𝐼𝐵𝑈:V x V →[0, 1]and
𝐹𝐵𝐿:V x V →[0,1],𝐹𝐵𝑈:V x V →[0, 1] are such that:

𝑇𝐵𝐿({𝑣
𝑖
, 𝑣𝑗}) ≤min [𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)]

𝑇𝐵𝑈({𝑣
𝑖
, 𝑣𝑗}) ≤min [𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)]

𝐼𝐵𝐿({𝑣
𝑖
, 𝑣𝑗}) ≥max[𝐼𝐵𝐿(𝑣𝑖), 𝐼𝐵𝐿(𝑣𝑗)]

𝐼𝐵𝑈({𝑣
𝑖
, 𝑣𝑗}) ≥max[𝐼𝐵𝑈(𝑣𝑖), 𝐼𝐵𝑈(𝑣𝑗)]

𝐹𝐵𝐿({𝑣
𝑖
, 𝑣𝑗}) ≥max[𝐹𝐵𝐿(𝑣𝑖), 𝐹𝐵𝐿(𝑣𝑗)]

𝐹𝐵𝑈({𝑣
𝑖
, 𝑣𝑗}) ≥max[𝐹𝐵𝑈(𝑣𝑖), 𝐹𝐵𝑈(𝑣𝑗)],

Denoting the degree of truth-membership, indeterminacy-membership and falsity-membership 
of the edge (𝑣𝑖,𝑣𝑗) ∈ E respectively, where 

 0≤ 𝑇𝐵({𝑣𝑖, 𝑣𝑗}) + 𝐼𝐵({𝑣𝑖, 𝑣𝑗})+ 𝐹𝐵({𝑣𝑖, 𝑣𝑗}) ≤3for all{𝑣𝑖, 𝑣𝑗} ∈ E (i, j = 1, 2, ., n). 

they call A the interval valued neutrosophic vertex set of V, B the interval valued 
neutrosophic edge set of E, respectively, Note that B is a symmetric interval valued 
neutrosophic relation on A. We use the notation (𝑣𝑖, 𝑣𝑗) for an element of E Thus, G = (A, B) 
is an interval valued neutrosophic graph of G∗= (V, E) if

𝑇𝐵𝐿(𝑣𝑖, 𝑣𝑗) ≤min [𝑇𝐴𝐿(𝑣𝑖), 𝑇𝐴𝐿(𝑣𝑗)] 
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𝑇𝐵𝑈(𝑣𝑖 , 𝑣𝑗) ≤min [𝑇𝐴𝑈(𝑣𝑖), 𝑇𝐴𝑈(𝑣𝑗)] 

𝐼𝐵𝐿(𝑣𝑖 , 𝑣𝑗) ≥max[𝐼𝐵𝐿(𝑣𝑖), 𝐼𝐵𝐿(𝑣𝑗)]  

𝐼𝐵𝑈(𝑣𝑖, 𝑣𝑗) ≥max[𝐼𝐵𝑈(𝑣𝑖), 𝐼𝐵𝑈(𝑣𝑗)]And 

𝐹𝐵𝐿(𝑣𝑖 , 𝑣𝑗) ≥max[𝐹𝐵𝐿(𝑣𝑖), 𝐹𝐵𝐿(𝑣𝑗)]  

𝐹𝐵𝑈(𝑣𝑖, 𝑣𝑗) ≥max[𝐹𝐵𝑈(𝑣𝑖), 𝐹𝐵𝑈(𝑣𝑗)],for all(𝑣𝑖, 𝑣𝑗) ∈ E. 

Fig. 4: G: Interval valued neutrosophic graph. 

Definition 2.16 (Molodtsov, 1999). Let U be an initial universe set and E be a set of parameters. 
Let P(U) denotes the power set of U. Consider a nonempty set A, A ⊂ E. A pair (K, A) is called 
a soft set over U, where K is a mapping given by K: A → P(U). 

As an illustration, let us consider the following example. 

Example 2.Suppose that U is the set of houses under consideration, say U = {ℎ1, ℎ2. . .,ℎ5}.
Let E be the set of some attributes of such houses, say E = {𝑒1, 𝑒2, . . ., 𝑒5}, where 𝑒1, 𝑒2, . . ., 
𝑒5 stand for the attributes “beautiful”, “costly”, “in the green surroundings’”, “moderate”, 
respectively.  

In this case, to define a soft set means to point out expensive houses, beautiful houses, 
and so on. For example, the soft set (K, A) that describes the “attractiveness of the houses” in 
the opinion of a buyer, say Thomas, may be defined like this:  

A={𝑒1, 𝑒2,𝑒3, 𝑒4,𝑒5};  
K(𝑒1) = {ℎ2, ℎ3, ℎ5}, K(𝑒2) = {ℎ2, ℎ4}, K(𝑒3) = {ℎ1}, K(𝑒4) = U, K(𝑒5) = {ℎ3, ℎ5}. 

Definition 2.17 (Wang et al., 2005).Let IVNS(X) denote the family of all the interval valued 
neutrosophic sets in universe X, assume A, B ∈ IVNS(X) such that 

A = {〈x, [TA
L(x), TA

U(x)], [IA
L(x), IA

U(x)], [FA
L(x), FA

U(x)]〉: x ∈ X}

B = {〈x, [TB
L(x), TB

U(x)], [IB
L(x), IB

U(x)], [FB
L(x), FB

U(x)]〉: x ∈ X}

then some operations can be defined as follows: 

(1) A ∪ B = {⟨x, [max{TA
L(x), TB

L(x)} , max{TA
U(x), TB

U(x)}],

[min{IA
L(x), IB

L(x)} , min{IA
U(x), IB

U(x)}], [min{FA
L(x), FB

L(x)} , min{FA
U(x), FB

U(x)}]⟩: x

∈ X}; 
(2) A ∩ B = {⟨x, [min{TA

L(x), TB
L(x)} , min{TA

U(x), TB
U(x)}],

𝑣3 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.2],[ 0.3, 0.4],[0.4, 0.5]> 

𝑣1 
𝑣2 

<[0.1, 0.3],[ 0.4, 0.5],[0.4, 0.5]> <[0.1, 0.2],[ 0.3, 0.5],[0.4, 0.6]> 
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[max{IA
L(x), IB

L(x)} , max{IA
U(x), IB

U(x)}], [max{FA
L(x), FB

L(x)} , max{FA
U(x), FB

U(x)}]⟩: x

∈ X}; 
(3) Ac = {〈x, [FA

L(x), FA
U(x)], [1 − IA

U(x), 1 − IA
L(x)], [TA

L(x), TA
U(x)]〉: x ∈ X};

(4) A ⊆ B, iff TA
L(x) ≤ TB

L(x), TA
U(x) ≤ TB

U(x),IA
L(x) ≥ IB

L(x), IA
U(x) ≥ IB

U(x) and FA
L(x) ≥

FB
L(x), FA

U(x) ≥ FB
U(x) for all x ∈ X.

A = B, iff A ⊆ Band B ⊆A. 

As an illustration, let us consider the following example. 

Example 2.18.Assume that the universe of discourse U= {x1, x2, x3, x4}. Then, A is an interval 
valued neutrosophic set (IVNS) of U such that: 

A = {<x1, [0.1, 0.8], [0.2, 0.6], [0.8, 0.9] >, <x2, [0.2, 0.5], [0.3, 0.5], [0.6, 0.8]>,
<x3, [0.5, 0.8], [0.4, 0.5], [0.5, 0.6] >, <x4, [0.1, 0.4], [0.1, 0.5], [0.4, 0.8] >}. 

Definition 2.19 (Deli et  al., 2015).Let U be an initial universe set and A ⊂ E be a set of 
parameters. Let IVNS (U) denote the set of all interval valued neutrosophic subsets of U. The 
collection (K, A) is termed to be the soft interval valued neutrosophic set over U, where K is a 
mapping given by K: A → IVNS(U).  

The interval valued neutrosophic soft set defined over a universe is denoted by INSS. 
Here, 

1. Υ is an ivn-soft subset of Ψ, denoted by Υ ⋐ Ψ, if K(e) ⊆L(e) for all e∈E.
2. Υ is an ivn-soft equals toΨ, denoted by Υ = Ψ, if K(e)=L(e) for all e∈E.
3. The complement of Υ is denoted by Υc , and is defined by Υc = {(x, Ko (x)): x∈E}
4. The union of Υ and Ψ is denoted by Υ ∪" Ψ, if K(e) ∪L(e) for all e∈E.
5. The intersection of Υand Ψ is denoted by Υ ∩" Ψ,if K(e) ∪L(e) for all e∈E.

To illustrate let us consider the following example: 
Let U be the set of houses under consideration and E is the set of parameters (or 

qualities). Each parameter is an interval valued neutrosophic word or sentence involving 
interval valued neutrosophic words. Consider E= {beautiful, costly, in the green surroundings, 
moderate, expensive}. In this case, to define an interval valued neutrosophic soft set means to 
point out beautiful houses, costly houses, and so on.  

Suppose that there are five houses in the universe U, given by U = {h1,ℎ2,ℎ3,ℎ4,ℎ5} and 
the set of parameters A = {e1,𝑒2,𝑒3,𝑒4}, where each𝑒𝑖is a specific criterion for houses: 

e1 stands for ‘beautiful’, 
e2 stands for ‘costly’,
e3 stands for ‘in the green surroundings’, 
e4 stands for ‘moderate’. 

Suppose that, 

K(beautiful)={<ℎ1,[0.5, 0.6], [0.6, 0.7], [0.3, 0.4]>,<ℎ2,[0.4, 0.5], [0.7 ,0.8], [0.2, 0.3] >, 
<h3,[0.6, 0.7],[0.2 ,0.3],[0.3, 0.5] >,<ℎ4,[0.7 ,0.8],[0.3, 0.4],[0.2, 0.4] >,<h5,[ 0.8, 0.4] ,[0.2 
,0.6],[0.3, 0.4] >}. 
K(costly)={<ℎ1,[0.5, 0.6], [0.3, 0.7], [0.1, 0.4]>,<ℎ2,[0.3, 0.5], [0.6 ,0.8], [0.1, 0.3] >, <ℎ3,[0.3, 
0.5],[0.2 ,0.6],[0.3, 0.4] >,<ℎ4,[0.2 ,0.5],[0.1, 0.2],[0.2, 0.4] >,<ℎ5,[ 0.2, 0.4] ,[0.1 ,0.5],[0.1, 

Florentin Smarandache (ed.) Collected Papers, VI

483



0.4] >}. 
K(in the green surroundings)= {<ℎ1,[0.5, 0.6], [0.6, 0.7], [0.3, 0.4]>,<ℎ2,[0.4, 0.5], [0.7 ,0.8],
[0.2, 0.5]>, <ℎ3,[0.2, 0.4],[0.2 ,0.3],[0.3, 0.5]>,<ℎ4,[0.7 ,0.8],[0.3, 0.4],[0.2, 0.4] >,<ℎ5,[ 0.8, 
0.4] ,[0.2 ,0.6],[0.2, 0.3] >}, 
K(moderate)={<ℎ1,[0.1, 0.6], [0.6, 0.7], [0.3, 0.4]>,<ℎ2,[0.2, 0.5], [0.4,0.8], [0.2, 0.4] >, 
<ℎ3,[0.3, 0.7],[0.2 ,0.4],[0.2, 0.5] >,<ℎ4,[0.7 ,0.8],[0.3, 0.4],[0.1, 0.2] >,<ℎ5,[ 0.3, 0.4] 
,[0.2,0.6],[0.1, 0.2] >}. 

3. INTERVAL VALUED NEUTROSOPHIC SOFT GRAPHS
Let U be an initial universe and P the set of all parameters, P(U) denoting the set of all interval 
neutrosophic sets of U. Let A be a subset of P. A pair (K, A) is called an interval valued 
neutrosophic soft set over U. Let P(V) denote the set of all interval valued neutrosophic sets of 
V and P(E) denote the set of all interval valued neutrosophic sets of E. 

Definition3.1 An interval valued neutrosophics of the graph G=(G∗,K, M,A) is a 4-tuple
such that 

a) 𝐺∗= (V, E) is a simple graph,
b) A is a nonempty set of parameters,
c) (K, A) is an interval valued neutrosophic soft set over V,
d) (M, A) is an interval valued neutrosophic over E,
e) (𝐾(e), 𝑀(e)) is an interval valued neutrosophic (sub)graph of 𝐺∗for all e∈A.

That is, 
𝑇𝑀(𝑒)

𝐿 (𝑥𝑦) ≤min [𝑇𝐾(𝑒)
𝐿 (𝑥), 𝑇𝐾(𝑒)

𝐿 (𝑦)], 𝑇𝑀(𝑒)
𝑈 (𝑥𝑦) ≤ min [𝑇𝐾(𝑒)

𝑈 (𝑥), 𝑇𝐾(𝑒)
𝑈 (𝑦)],

𝐼𝑀(𝑒)
𝐿 (𝑥𝑦) ≥max [𝐼𝐾(𝑒)

𝐿 (𝑥), 𝐼𝐾(𝑒)
𝐿 (𝑦)], 𝐼𝑀(𝑒)

𝑈 (𝑥𝑦) ≥ max [𝑇𝐾(𝑒)
𝑈 (𝑥), 𝑇𝐾(𝑒)

𝑈 (𝑦)]
and𝐹𝑀(𝑒)

𝐿 (𝑥𝑦) ≥max [𝐹𝐾(𝑒)
𝐿 (𝑥), 𝐹𝐾(𝑒)

𝐿 (𝑦)], 𝐹𝑀(𝑒)
𝑈 (𝑥𝑦) ≥ max [𝑇𝐾(𝑒)

𝑈 (𝑥), 𝑇𝐾(𝑒)
𝑈 (𝑦)],

such that 

0≤ 𝑇𝑀(𝑒)(𝑥𝑦) + 𝐼𝑀(𝑒)(𝑥𝑦)+ 𝐹(𝑥𝑦) ≤3 for all e∈ A and x, y ∈ V. 

The interval valued neutrosophic graph (𝐾(e), 𝑀 (e)) is denoted by H(e) for convenience. An 
interval valued neutrosophic graph is a parametrized family of interval valued neutrosophic graphs. The 
class of all interval valued neutrosophic soft graphs of 𝐺∗ is denoted by IVN(𝐺∗). Note that

𝑇𝑀(𝑒)
𝐿 (𝑥𝑦)= 𝑇𝑀(𝑒)

𝑈 (𝑥𝑦) =𝐼𝑀(𝑒)
𝐿 (𝑥𝑦)= 𝐼𝑀(𝑒)

𝑈 (𝑥𝑦) = 0 and 𝐹𝑀(𝑒)
𝐿 (𝑥𝑦)= 𝐹𝑀(𝑒)

𝑈 (𝑥𝑦) = 0 for
all xy ∈ V− E, e ∉ A. 

Definition 3.2Let 𝐺1=(𝐾1, 𝑀1, A) and 𝐺2=(𝐾2, 𝑀2, B) be two interval valued neutrosophic 
graphs of G∗. Then 𝐺1 is an interval valued neutrosophic soft subgraph of 𝐺2 if

(i) A⊆ B 
(ii) 𝐻1(e) is a partial subgraph of 𝐻2(e) for all e ∈ A. 

Example 3.3.Consider a simple graph𝐺∗=(V, E) such that V={𝑣1, 𝑣2,𝑣3} and E={𝑣1𝑣2,
𝑣2𝑣3,𝑣3𝑣1}. 

Let A= {𝑒1, 𝑒2} be a set of parameter and let(K, A)bean interval valued neutrosophic 
soft set over V with its interval valued neutrosophic approximate function 𝐾 : A →P(V) defined 
by 
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𝐾(𝑒1)={𝑣1|([0.3, 0.5],[0.2, 0.3], [0.3, 0.4]), 𝑣2|([0.2, 0.3], [0.2, 0.3], [0.1, 0.4]), 
𝑣3|([0.1, 0.3], [0.2, 0.4], [0.3, 0.5])}, 

𝐾(𝑒2)={𝑣1|([0.1, 0.4], [0.1, 0.3], [0.2, 0.3]), 𝑣2|([0.1, 0.3], [0.1, 0.2], [0.1, 0.4]), 
𝑣3|([0.1, 0.2], [0.2, 0.3], [0.2, 0.5])}. 

Let (𝑀, A)be an interval valued neutrosophic soft set over E with its interval valued 
neutrosophic approximate function𝑀 : A →P(E) defined by 

𝑀(𝑒1)={𝑣1𝑣2|([0.1, 0.2], [0.3, 0.4], [0.4, 0.5]), 𝑣2𝑣3|([0.1, 0.3], [0.4, 0.5], [0.4, 
0.5]),𝑣3𝑣1 |([0.1, 0.2], [0.3, 0.5], [0.5, 0.6])}, 

𝑀(𝑒2)= {𝑣1𝑣2|([0.1, 0.2], [0.2, 0.3], [0.3, 0.4]), 𝑣2𝑣3|([0.1, 0.2], [0.3, 0.4], [0.2, 
0.5]),, 𝑣3𝑣1 |([0.1, 0.2], [0.2, 0.4], [0.3, 0.5])}. 

Thus, 𝐻(𝑒1)=( 𝐾(𝑒1), 𝑀(𝑒1)), 𝐻(𝑒2)=( 𝐾(𝑒2), 𝑀(𝑒2)) are interval valued neutrosophic 
graphs corresponding to the parameters 𝑒1and 𝑒1as shown below. 

𝐻(𝑒1) 

𝐻(𝑒2) 

Fig. 3.1:Interval valued neutrosophic soft graph G= {𝐻(𝑒1), 𝐻(𝑒2)}. 

Hence G= { 𝐻(𝑒1), 𝐻(𝑒2)} is an interval valued neutrosophic soft graph of 𝐺∗.

Tabular representation of an interval valued neutrosophic soft graph is given in Table 
below. 

Table 1: Tabular representation of an interval valued neutrosophic soft graph. 

𝐾 𝑣1 𝑣2 𝑣3 
𝑒1 <[0.3,0.5],[0.2, 0.3][0.3, 0.4]> <[0.2,0.3],[0.2, 0.3][0.1, 0.4]> <[0.1,0.3],[0.2, 0.4][0.3, 0.5]> 
𝑒2 <[0.1,0.4],[0.1, 0.3][0.2, 0.3]> <[0.1,0.3],[0.1, 0.2][0.1, 0.4]> <[0.1,0.2],[0.2, 0.3][0.2, 0.5]> 

𝑣3 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.2],[ 0.3, 0.4],[0.4, 0.5]> 

𝑣1 
𝑣2 

<[0.1, 0.3],[ 0.4, 0.5],[0.4, 0.5]> <[0.1, 0.2],[ 0.3, 0.5],[0.4, 0.6]> 

𝑣3 

<[0.1, 0.4],[ 0.1, 0.3],[0.2, 0.3]> 
<[0.1, 0.3],[ 0.1, 0.2],[0.1, 0.4]> 

<[0.1, 0.2],[ 0.2, 0.3],[0.2, 0.5]> 

<[0.1, 0.2],[ 0.2, 0.3],[0.3, 0.4]> 

𝑣1 
𝑣2 

<[0.1, 0.2],[ 0.3, 0.4],[0.2, 0.5]> <[0.1, 0.2],[ 0.2, 04],[0.3, 0.5]> 
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𝑀 (𝑣1, 𝑣2) (𝑣2, 𝑣3) (𝑣1, 𝑣3) 
𝑒1 <[0.1,0.2],[0.3, 0.4][0.4, 0.5]> <[0.1,0.3],[0.4, 0.5][0.4, 0.5]> <[0.1,0.2],[0.3, 0.5][0.4, 0.6]> 
𝑒2 <[0.1,0.2],[0.2, 0.3][0.3, 0.4]> <[0.1,0.2],[0.3, 0.4][0.2, 0.5]> <[0.1,0.2],[0.2, 0.4][0.3, 0.5]> 

Definition 3.4Let 𝐺1=(𝐾1, 𝑀1, A) and 𝐺2=(𝐾2, 𝑀2, B) be two interval valued neutrosophic 
graphs of 𝐺1

∗ = (𝑉1, 𝐸1) and𝐺1
∗ = (𝑉2, 𝐸2) respectively. The Cartesian product of two

graphs𝐺1and 𝐺2 is an interval valued neutrosophic soft graph G= 𝐺1×𝐺2 = (K,M, 𝐴×𝐵), where 
(K=𝐾1×𝐾2, 𝐴×𝐵) is an interval valued neutrosophic soft set over V= 𝑉1×𝑉2, (M=𝑀1×𝑀2, 𝐴×𝐵) is 
an interval valued neutrosophic soft set over E= {(𝑥, 𝑥2) (𝑥, 𝑦2) /𝑥 ∈ 𝑉1, 𝑥2𝑦2 ∈ 𝐸2} ∪{(𝑥1,𝑧) 
(𝑦1, 𝑧) /𝑧 ∈ 𝑉2, 𝑥1𝑦1 ∈ 𝐸1}and(K, M, 𝐴×𝐵) are interval valued neutrosophic soft graphs such 
that: 

1) (𝑇𝐾1(𝑎)
𝐿 × 𝑇𝐾2(𝑏)

𝐿 ) (𝑥1, 𝑥2) = min (𝑇𝐾1(𝑎)
𝐿 (𝑥1), 𝑇𝐾2(𝑏)

𝐿 (𝑥2)) 
(𝑇𝐾1(𝑎)

𝑈 × 𝑇𝐾2(𝑏)
𝑈 ) (𝑥1, 𝑥2) = min (𝑇𝐾1(𝑎)

𝑈 (𝑥1), 𝑇𝐾2(𝑏)
𝑈 (𝑥2)) 

(𝐼𝐾1(𝑎)
𝐿 × 𝐼𝐾2(𝑏)

𝐿 ) (𝑥1, 𝑥2) = max (𝐼𝐾1(𝑎)
𝐿 (𝑥1), 𝐼𝐾2(𝑏)

𝐿 (𝑥2)) 
(𝐼𝐾1(𝑎)

𝑈 × 𝐼𝐾2(𝑏)
𝑈 ) (𝑥1, 𝑥2) = max (𝐼𝐾1(𝑎)

𝑈 (𝑥1), 𝐼𝐾2(𝑏)
𝑈 (𝑥2)) 

(𝐹𝐾1(𝑎)
𝐿 × 𝐹𝐾2(𝑏)

𝐿 ) (𝑥1, 𝑥2) = max (𝐹𝐾1(𝑎)
𝐿 (𝑥1), 𝐹𝐾2(𝑏)

𝐿 (𝑥2)) 

(𝐹𝐾1(𝑎)
𝑈 × 𝐹𝐾2(𝑏)

𝑈 ) (𝑥1, 𝑥2) = max (𝐹𝐾1(𝑎)
𝑈 (𝑥1), 𝐹𝐾2(𝑏)

𝑈 (𝑥2)) for all ( 𝑥1, 𝑥2) ∈ 𝐴×𝐵 

2) (𝑇𝑀1(𝑎)
𝐿 × 𝑇𝑀2(𝑏)

𝐿 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐾1(𝑎)
𝐿 (𝑥), 𝑇𝑀2(𝑏)

𝐿 (𝑥2𝑦2)) 
(𝑇𝑀1(𝑎)

𝑈 × 𝑇𝑀2(𝑏)
𝑈 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐾1(𝑎)

𝑈 (𝑥), 𝑇𝑀2(𝑏)
𝑈 (𝑥2𝑦2)) 

(𝐼𝑀1(𝑎)
𝐿 × 𝐼𝑀2(𝑏)

𝐿 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) =max (𝐼𝐾1(𝑎)
𝐿 (𝑥), 𝐼𝑀2(𝑏)

𝐿 (𝑥2𝑦2)) 
(𝐼𝑀1(𝑎)

𝑈 × 𝐼𝑀2(𝑏)
𝑈 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐼𝐾1(𝑎)

𝑈 (𝑥), 𝐼𝑀2(𝑏)
𝑈 (𝑥2𝑦2)) 

(𝐹𝑀1(𝑎)
𝐿 × 𝐹𝑀2(𝑏)

𝐿 ) ((𝑥, 𝑥2) (𝑥, 𝑦2)) = max (𝐹𝐾1(𝑎)
𝐿 (𝑥), 𝐹𝑀2(𝑏)

𝐿 (𝑥2𝑦2)) 
(𝐹𝑀1(𝑎)

𝑈 × 𝐹𝑀2(𝑏)
𝑈 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = max(𝐹𝐾1(𝑎)

𝑈 (𝑥), 𝐹𝑀2(𝑏)
𝑈 (𝑥2𝑦2)) ∀ x ∈ 𝑉1 

and ∀𝑥2𝑦2 ∈ 𝐸2 

3) (𝑇𝑀1(𝑎)
𝐿 × 𝑇𝑀2(𝑏)

𝐿 ) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = min (𝑇𝑀1(𝑎)
𝐿 (𝑥1𝑦1), 𝑇𝐾2(𝑏)

𝐿 (𝑧)) 
(𝑇𝑀1(𝑎)

𝑈 × 𝑇𝑀2(𝑏)
𝑈 ) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = min (𝑇𝑀1(𝑎)

𝑈 (𝑥1𝑦1), 𝑇𝐾2(𝑏)
𝑈 (𝑧)) 

(𝐼𝑀1(𝑎)
𝐿 × 𝐼𝑀2(𝑏)

𝐿 ) ((𝑥1,𝑧) (𝑦1, 𝑧)) = max (𝐼𝑀1(𝑎)
𝐿 (𝑥1𝑦

1
), 𝐼𝐾2(𝑏)

𝐿 (𝑧)) 
(𝐼𝑀1(𝑎)

𝑈 × 𝐼𝑀2(𝑏)
𝑈 ) ((𝑥1,𝑧) (𝑦1,𝑧)) = max (𝐼𝑀1(𝑎)

𝑈 (𝑥1𝑦1), 𝐼𝐾2(𝑏)
𝑈 (𝑧)) 

(𝐹𝑀1(𝑎)
𝐿 × 𝐹𝑀2(𝑏)

𝐿 )((𝑥1,𝑧) (𝑦1, 𝑧)) = max (𝐹𝑀1(𝑎)
𝐿 (𝑥1𝑦1), 𝐹𝐾2(𝑏)

𝐿 (𝑧)) 
(𝐹𝑀1(𝑎)

𝑈 × 𝐹𝑀2(𝑏)
𝑈 ) ((𝑥1,𝑧) (𝑦1, 𝑧)) = max (𝐹𝑀1(𝑎)

𝑈 (𝑥1𝑦1), 𝐹𝐾2(𝑏)
𝑈 (𝑧)) ∀ z ∈ 𝑉2 

and ∀𝑥1𝑦1 ∈ 𝐸1 

H(a, b) = 𝐻1(𝑎) × 𝐻2(𝑏) for all ( 𝑎, 𝑏) ∈ 𝐴×𝐵 are interval valued neutrosophic graphs
of G. 

Example 3.5.Let A= {𝑒1, 𝑒2} and B= {𝑒3, 𝑒4} be a set ofparameters. Consider two interval 
valued neutrosophic soft graphs 𝐺1=(𝐻1, A) ={𝐻(𝑒1), 𝐻(𝑒2)}and 𝐺2=(𝐻2, B) = 
{𝐻(𝑒3), 𝐻(𝑒4)}such that  
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𝐻1(𝑒1)=({𝑢1|([0.3, 0.5], [0.2, 0.3], [0.3, 0.4]), 𝑢2|([0.6, 0.7], [0.2, 0.4], [0.1, 0.3])}, 
{𝑢1𝑢2|([0.3, 0.6], [0.2, 0.4], [0.2, 0.5])}). 

𝐻1(𝑒2)=({𝑢1|([0.3, 0.5], [0.2, 0.3], [0.3, 0.4]), 𝑢2|([0.2, 0.3], [0.2, 0.3], [0.1, 0.4]), 
𝑢3|([0.1, 0.3], [0.2, 0.4], [0.3, 0.5])}, {𝑢1𝑢2|([0.1, 0.2], [0.3, 0.4], [0.4, 0.5]), 
𝑢2𝑢3|([0.1, 0.3], [0.4, 0.5], [0.4, 0.5]), 𝑢3𝑢1 |([0.1, 0.2], [0.3, 0.5], [0.5, 0.6])}). 

𝐻2(𝑒3)=({𝑣1|([0.4, 0.6], [0.2, 0.3], [0.1, 0.3]), 𝑣2|([0.4, 0.7], [0.2, 0.4], [0.1, 0.3])}, 
{𝑣1𝑣2|([0.3, 0.5], [0.4, 0.5], [0.3, 0.5])}). 

𝐻2(𝑒4)=({𝑣1|([0.1, 0.4], [0.1, 0.3], [0.2, 0.3]), 𝑣2|([0.1, 0.3], [0.1, 0.2], [0.1, 0.4]), 
𝑣3|([0.1, 0.2], [0.2, 0.3], [0.2, 0.5])}, {𝑣1𝑣2|([0.1, 0.2], [0.2, 0.3], [0.3, 0.4]), 
𝑣2𝑣3|([0.1, 0.2], [0.3, 0.4], [0.2, 0.5]),𝑣3𝑣1 |([0.1, 0.2], [0.2, 0.4], [0.3, 0.5])}) 

𝐻1(𝑒1) 

𝐻1(𝑒2) 

𝐻2(𝑒3) 

𝐻2(𝑒4) 

Fig. 3.2: Interval valued neutrosophic soft graph 𝐺1= {𝐻1(𝑒1),𝐻1(𝑒2)} and 𝐺2=

{𝐻2(𝑒3),𝐻2(𝑒4)} 

The Cartesian product of𝐺1 and 𝐺2 is 𝐺1×𝐺2 = (H,𝐴×𝐵), where A×𝐵= {(𝑒1, 𝑒3), (𝑒1, 𝑒4), (𝑒2, 

𝑒3), (𝑒2, 𝑒4)}, H(𝑒1, 𝑒3) = 𝐻1(𝑒1) ×𝐻2(𝑒3), H(𝑒1, 𝑒4) = 𝐻1(𝑒1) ×𝐻2(𝑒4), H(𝑒2, 𝑒3) = 𝐻1(𝑒2) ×

𝐻2(𝑒3) and H(𝑒2, 𝑒4) = 𝐻1(𝑒2) ×𝐻2(𝑒4) are interval valued neutrosophic graphs of G = 𝐺1×𝐺2.

H(𝑒1, 𝑒3) = 𝐻1(𝑒1) ×𝐻2(𝑒3) is shown in Fig. 3.3. 

𝑣3 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.2],[ 0.3, 0.4],[0.4, 0.5]> 

𝑢1 
𝑢2 

<[0.1, 0.3],[ 0.4, 0.5],[0.4, 0.5]> <[0.1, 0.2],[ 0.3, 0.5],[0.4, 0.6]> 

𝑢1 

<[0.5, 0.7],[ 0.2, 0.3],[0.1, 0.3]> <[0.6, 0.7],[ 0.2, 0.4],[0.1, 0.3]> 

<[0.3, 0.6],[ 0.2, 0.4],[0.2, 0.4]> 

𝑢2 

𝑣3 

<[0.1, 0.4],[ 0.1, 0.3],[0.2, 0.3]> 
<[0.1, 0.3],[ 0.1, 0.2],[0.1, 0.4]> 

<[0.1, 0.2],[ 0.2, 0.3],[0.2, 0.5]> 

<[0.1, 0.2],[ 0.2, 0.3],[0.3, 0.4]> 

𝑣1 
𝑣2 

<[0.1, 0.2],[ 0.3, 0.4],[0.2, 0.5]> <[0.1, 0.2],[ 0.2, 0.4],[0.3, 0.5]> 
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Fig. 3.3: Cartesian product 

In the similar way, Cartesian product of H(𝑒1, 𝑒4) = 𝐻1(𝑒1) ×𝐻2(𝑒4), H(𝑒2, 𝑒3) = 𝐻1(𝑒2) ×

𝐻2(𝑒3) and H(𝑒2, 𝑒4) = 𝐻1(𝑒2) ×𝐻2(𝑒4) can be drawn. 

Hence G =𝐺1×𝐺2= {H(𝑒1, 𝑒3), H(𝑒1, 𝑒4), H(𝑒2, 𝑒3), H(𝑒2, 𝑒4)} is an interval valued neutrosophic 
soft graph. 

Theorem 3.6. The Cartesian product of two interval valued neutrosophic soft graph is an 
interval valued neutrosophic soft graph. 

Proof. Let 𝐺1=(𝐾1, 𝑀1, A) and 𝐺2=(𝐾2, 𝑀2, B) be two interval valued neutrosophic graphs of 
𝐺1

∗ = (𝑉1, 𝐸1) and 𝐺1
∗ = (𝑉2, 𝐸2) respectively. Let G= 𝐺1×𝐺2 = (K,M, 𝐴×𝐵) be the Cartesian product

of two graphs𝐺1and 𝐺2. We claim that G= 𝐺1×𝐺2 = (K,M, 𝐴×𝐵)is an interval valued neutrosophic 

soft graph G= 𝐺1×𝐺2 = (K,M, 𝐴×𝐵), where (K=𝐾1×𝐾2, 𝐴×𝐵) is an interval valued neutrosophic soft 

graph and (H, 𝐴×𝐵) = { (𝐾1×𝐾2) (𝑎𝑖 , 𝑏𝑗), (𝑀1×𝑀2)(𝑎𝑖 , 𝑏𝑗)} for all 𝑎𝑖 ∈ A,𝑏𝑖 ∈ B for i= 1, 2,…, m, 
j= 1, 2,…,n are interval valued neutrosophic graphs of G. 

Consider, (𝑥, 𝑥2) (𝑥, 𝑦2) ∈ 𝐸, we have

𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐾1(𝑎𝑖)

𝐿 (𝑥), 𝑇𝑀2(𝑏𝑗)
𝐿 (𝑥2𝑦2)), for i= 1, 2,…, m, j= 1, 

2,…,n 

≤min {𝑇𝐾1(𝑎𝑖)
𝐿 (𝑥), min{𝑇𝐾2(𝑏𝑗)

𝐿 (𝑥2),𝑇𝐾2(𝑏𝑗)
𝐿 (𝑦2)}} 

= min {min{𝑇𝐾1(𝑎𝑖)
𝐿 (𝑥),𝑇𝐾2(𝑏𝑗)

𝐿 (𝑥2)}, min{𝑇𝐾1(𝑎𝑖)
𝐿 (𝑥),𝑇𝐾2(𝑏𝑗)

𝐿 (𝑦2)}} 

𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥, 𝑥2)(𝑥, 𝑦2)) ≤min{( 𝑇𝐾1(𝑎𝑖)

𝐿 × 𝑇𝐾2(𝑏𝑗)
𝐿 ) (x, 𝑥2), ( 𝑇𝐾1(𝑎𝑖)

𝐿 × 𝑇𝐾2(𝑏𝑗)
𝐿 ) (x, 

𝑦2),for i= 1, 2,…, m, j= 1, 2,…,n 

Similarly, we prove that 

<[.4, .7], [.2, .4], [.1, .3]> 

𝐮𝟐𝐯𝟐

𝐮𝟐𝐯𝟏

<(
𝐮

𝟐
𝐯 𝟐

,𝐮
𝟐

𝐯 𝟏
), 

[.3
, .

5]
, [

.4
, .

.5
], 

[.3
, .

5]
> 

<(𝐮𝟏𝐯𝟏,𝐮𝟐𝐯𝟏), [.3, .6], [.2, .4], [.2, .4]> 

<[.4, .6], [.2, .4], [.1, .3]> <[.4, .6], [.2, .3], [.1, 
.3]>

𝐮𝟏𝐯𝟏

<(
𝐮

𝟏
𝐯 𝟏

,𝐮
𝟏

𝐯 𝟐
), 

[.3
, .

5]
, [

.4
, .

5]
, [

.3
, .

5
]>

 

<(𝐮𝟏𝐯𝟐,𝐮𝟐𝐯𝟐), [.3, .6], [.2, .4], [.2, .4]> 

𝐮𝟏𝐯𝟐

<[4, .7], [.2, .4], [.1, .3]> 
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𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥, 𝑥2)(𝑥, 𝑦2)) ≤min{( 𝑇𝐾1(𝑎𝑖)

𝑈 × 𝑇𝐾2(𝑏𝑗)
𝑈 ) (x, 𝑥2), ( 𝑇𝐾1(𝑎𝑖)

𝑈 × 𝑇𝐾2(𝑏𝑗)
𝑈 ) (x, 

𝑦2),for i= 1, 2,…, m, j= 1, 2,…,n. 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐼𝐾1(𝑎𝑖)

𝐿 (𝑥), 𝐼𝑀2(𝑏𝑗)
𝐿 (𝑥2𝑦2)), for i= 1, 2,…, m, j= 1, 

2,…,n 

≥max {𝐼𝐾1(𝑎𝑖)
𝐿 (𝑥), max{𝐼𝐾2(𝑏𝑗)

𝐿 (𝑥2),𝐼𝐾2(𝑏𝑗)
𝐿 (𝑦2)}} 

= max {max{𝐼𝐾1(𝑎𝑖)
𝐿 (𝑥),𝐼𝐾2(𝑏𝑗)

𝐿 (𝑥2)}, max{𝐼𝐾1(𝑎𝑖)
𝐿 (𝑥),𝐼𝐾2(𝑏𝑗)

𝐿 (𝑦2)}} 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥, 𝑥2)(𝑥, 𝑦2)) ≥max {( 𝐼𝐾1(𝑎𝑖)

𝐿 × 𝐼𝐾2(𝑏𝑗)
𝐿 ) (x, 𝑥2), ( 𝐼𝐾1(𝑎𝑖)

𝐿 × 𝐼𝐾2(𝑏𝑗)
𝐿 ) (x, 

𝑦2),for i= 1, 2,…, m, j= 1, 2,…,n 

Similarly, we prove that 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥, 𝑥2)(𝑥, 𝑦2)) ≥max {( 𝐼𝐾1(𝑎𝑖)

𝑈 × 𝐼𝐾2(𝑏𝑗)
𝑈 ) (x, 𝑥2), ( 𝐼𝐾1(𝑎𝑖)

𝑈 × 𝐼𝐾2(𝑏𝑗)
𝑈 ) (x, 

𝑦2),for i= 1, 2,…, m, j= 1, 2,…,n 

𝐹𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐹𝐾1(𝑎𝑖)

𝐿 (𝑥), 𝐹𝑀2(𝑏𝑗)
𝐿 (𝑥2𝑦2)), for i= 1, 2,…, m, j= 1, 

2,…,n 

≥ max {𝐹𝐾1(𝑎𝑖)
𝐿 (𝑥), max {𝐹𝐾2(𝑏𝑗)

𝐿 (𝑥2),𝐹𝐾2(𝑏𝑗)
𝐿 (𝑦2)}} 

= max{ max {𝐹𝐾1(𝑎𝑖)
𝐿 (𝑥),𝐹𝐾2(𝑏𝑗)

𝐿 (𝑥2)}, max {𝐹𝐾1(𝑎𝑖)
𝐿 (𝑥),𝐹𝐾2(𝑏𝑗)

𝐿 (𝑦2)}} 

𝐹𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥, 𝑥2)(𝑥, 𝑦2)) ≥ max {( 𝐹𝐾1(𝑎𝑖)

𝐿 × 𝐹𝐾2(𝑏𝑗)
𝐿 ) (x, 𝑥2), ( 𝐹𝐾1(𝑎𝑖)

𝐿 × 𝐹𝐾2(𝑏𝑗)
𝐿 ) (x, 

𝑦2),for i= 1, 2,…, m, j= 1, 2,…,n 

Similarly, we prove that 

𝐹𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥, 𝑥2)(𝑥, 𝑦2)) ≥ max {( 𝐹𝐾1(𝑎𝑖)

𝑈 × 𝐹𝐾2(𝑏𝑗)
𝑈 ) (x, 𝑥2), ( 𝐹𝐾1(𝑎𝑖)

𝑈 × 𝐹𝐾2(𝑏𝑗)
𝑈 ) (x, 

𝑦2),for i= 1, 2,…, m, j= 1, 2,…,n 

Similarly, for (𝑥1,𝑧) (𝑦1, 𝑧)∈ 𝐸, we have

𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥1, 𝑧) (𝑦1, 𝑧)) ≤min{( 𝑇𝐾1(𝑎𝑖)

𝐿 × 𝑇𝐾2(𝑏𝑗)
𝐿 ) (𝑥1, 𝑧), ( 𝑇𝐾1(𝑎𝑖)

𝐿 × 𝑇𝐾2(𝑏𝑗)
𝐿 ) (𝑦1, 𝑧), 

𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥1, 𝑧) (𝑦1, 𝑧)) ≤min{( 𝑇𝐾1(𝑎𝑖)

𝑈 × 𝑇𝐾2(𝑏𝑗)
𝑈 ) (𝑥1, 𝑧), ( 𝑇𝐾1(𝑎𝑖)

𝑈 × 𝑇𝐾2(𝑏𝑗)
𝑈 ) (𝑦1, 𝑧), 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥1, 𝑧) (𝑦1, 𝑧)) ≥ max {( 𝐼𝐾1(𝑎𝑖)

𝐿 × 𝐼𝐾2(𝑏𝑗)
𝐿 ) (𝑥1, 𝑧), ( 𝐼𝐾1(𝑎𝑖)

𝐿 × 𝐼𝐾2(𝑏𝑗)
𝐿 ) (𝑦1, 𝑧), 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥1, 𝑧) (𝑦1, 𝑧)) ≥ max {( 𝐼𝐾1(𝑎𝑖)

𝑈 × 𝐼𝐾2(𝑏𝑗)
𝑈 ) (𝑥1, 𝑧), ( 𝐼𝐾1(𝑎𝑖)

𝑈 × 𝐼𝐾2(𝑏𝑗)
𝑈 ) (𝑦1, 𝑧), 

𝐹𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥1, 𝑧) (𝑦1, 𝑧)) ≥ max {( 𝐹𝐾1(𝑎𝑖)

𝐿 × 𝐹𝐾2(𝑏𝑗)
𝐿 ) (𝑥1, 𝑧), ( 𝐹𝐾1(𝑎𝑖)

𝐿 × 𝐹𝐾2(𝑏𝑗)
𝐿 ) (𝑦1, 

𝑧), 

𝐹𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥1, 𝑧) (𝑦1, 𝑧)) ≥ max {( 𝐹𝐾1(𝑎𝑖)

𝑈 × 𝐹𝐾2(𝑏𝑗)
𝑈 ) (𝑥1, 𝑧), ( 𝐹𝐾1(𝑎𝑖)

𝑈 × 𝐹𝐾2(𝑏𝑗)
𝑈 ) (𝑦1, 

𝑧),for i= 1, 2,…, m, j= 1, 2,…,n 

Hence G = (K, M, 𝐴×𝐵) is an interval valued neutrosophic soft graph. 
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Definition 3.7Let 𝐺1=(𝐾1, 𝑀1, A) and 𝐺2=(𝐾2, 𝑀2, B) be two interval valued neutrosophic 
graphs of 𝐺1

∗ = (𝑉1, 𝐸1) and 𝐺1
∗ = (𝑉2, 𝐸2) respectively. The strong product of two graphs𝐺1and 𝐺2 is

an interval valued neutrosophic soft graph G= 𝐺1 ⊗ 𝐺2 = (K,M, 𝐴×𝐵), where (K=𝐾1×𝐾2, 𝐴×𝐵) is an

interval valued neutrosophic soft set over V= 𝑉1×𝑉2, (M, 𝐴×𝐵) is an interval valued neutrosophic soft 
set over E= {(𝑥, 𝑥2) (𝑥, 𝑦2) /𝑥 ∈ 𝑉1, 𝑥2𝑦2 ∈ 𝐸2} ∪{(𝑥1,𝑧) (𝑦1, 𝑧) /𝑧 ∈ 𝑉2, 𝑥1𝑦1 ∈ 𝐸1} ∪{(𝑥1,𝑥2) (𝑦1,𝑦2)

/𝑥1𝑦1 ∈ 𝐸1, 𝑥2𝑦2 ∈ 𝐸2} and(K, M, 𝐴×𝐵) are interval valued neutrosophic soft graphs such that: 

1) (𝑇𝐾1(𝑎)
𝐿 × 𝑇𝐾2(𝑏)

𝐿 ) (𝑥1, 𝑥2) = min (𝑇𝐾1(𝑎)
𝐿 (𝑥1), 𝑇𝐾2(𝑏)

𝐿 (𝑥2)) 
(𝑇𝐾1(𝑎)

𝑈 × 𝑇𝐾2(𝑏)
𝑈 ) (𝑥1, 𝑥2) = min (𝑇𝐾1(𝑎)

𝑈 (𝑥1), 𝑇𝐾2(𝑏)
𝑈 (𝑥2)) 

(𝐼𝐾1(𝑎)
𝐿 × 𝐼𝐾2(𝑏)

𝐿 ) (𝑥1, 𝑥2) = max (𝐼𝐾1(𝑎)
𝐿 (𝑥1), 𝐼𝐾2(𝑏)

𝐿 (𝑥2)) 
(𝐼𝐾1(𝑎)

𝑈 × 𝐼𝐾2(𝑏)
𝑈 ) (𝑥1, 𝑥2) = max (𝐼𝐾1(𝑎)

𝑈 (𝑥1), 𝐼𝐾2(𝑏)
𝑈 (𝑥2)) 

(𝐹𝐾1(𝑎)
𝐿 × 𝐹𝐾2(𝑏)

𝐿 ) (𝑥1, 𝑥2) = max (𝐹𝐾1(𝑎)
𝐿 (𝑥1), 𝐹𝐾2(𝑏)

𝐿 (𝑥2)) 

(𝐹𝐾1(𝑎)
𝑈 × 𝐹𝐾2(𝑏)

𝑈 ) (𝑥1, 𝑥2) = max (𝐹𝐾1(𝑎)
𝑈 (𝑥1), 𝐹𝐾2(𝑏)

𝑈 (𝑥2)) for all ( 𝑥1, 𝑥2) ∈ 𝐴×𝐵 

2) (𝑇𝑀1(𝑎)
𝐿 × 𝑇𝑀2(𝑏)

𝐿 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐾1(𝑎)
𝐿 (𝑥), 𝑇𝑀2(𝑏)

𝐿 (𝑥2𝑦2)) 
(𝑇𝑀1(𝑎)

𝑈 × 𝑇𝑀2(𝑏)
𝑈 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐾1(𝑎)

𝑈 (𝑥), 𝑇𝑀2(𝑏)
𝑈 (𝑥2𝑦2)) 

(𝐼𝑀1(𝑎)
𝐿 × 𝐼𝑀2(𝑏)

𝐿 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) =max (𝐼𝐾1(𝑎)
𝐿 (𝑥), 𝐼𝑀2(𝑏)

𝐿 (𝑥2𝑦2)) 
(𝐼𝑀1(𝑎)

𝑈 × 𝐼𝑀2(𝑏)
𝑈 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐼𝐾1(𝑎)

𝑈 (𝑥), 𝐼𝑀2(𝑏)
𝑈 (𝑥2𝑦2)) 

(𝐹𝑀1(𝑎)
𝐿 × 𝐹𝑀2(𝑏)

𝐿 ) ((𝑥, 𝑥2) (𝑥, 𝑦2)) = max (𝐹𝐾1(𝑎)
𝐿 (𝑥), 𝐹𝑀2(𝑏)

𝐿 (𝑥2𝑦2)) 
(𝐹𝑀1(𝑎)

𝑈 × 𝐹𝑀2(𝑏)
𝑈 ) ((𝑥,𝑥2)(𝑥, 𝑦2))= max(𝐹𝐾1(𝑎)

𝑈 (𝑥), 𝐹𝑀2(𝑏)
𝑈 (𝑥2𝑦2)) ∀ x ∈ 𝑉1and 

∀𝑥2𝑦2 ∈ 𝐸2. 

3) (𝑇𝑀1(𝑎)
𝐿 × 𝑇𝑀2(𝑏)

𝐿 ) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = min (𝑇𝑀1(𝑎)
𝐿 (𝑥1𝑦1), 𝑇𝐾2(𝑏)

𝐿 (𝑧)) 
(𝑇𝑀1(𝑎)

𝑈 × 𝑇𝑀2(𝑏)
𝑈 ) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = min (𝑇𝑀1(𝑎)

𝑈 (𝑥1𝑦1), 𝑇𝐾2(𝑏)
𝑈 (𝑧)) 

(𝐼𝑀1(𝑎)
𝐿 × 𝐼𝑀2(𝑏)

𝐿 ) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = max (𝐼𝑀1(𝑎)
𝐿 (𝑥1𝑦

1
), 𝐼𝐾2(𝑏)

𝐿 (𝑧)) 
(𝐼𝑀1(𝑎)

𝑈 × 𝐼𝑀2(𝑏)
𝑈 ) ((𝑥1, 𝑧) (𝑦1,𝑧)) = max (𝐼𝑀1(𝑎)

𝑈 (𝑥1𝑦1), 𝐼𝐾2(𝑏)
𝑈 (𝑧)) 

(𝐹𝑀1(𝑎)
𝐿 × 𝐹𝑀2(𝑏)

𝐿 )((𝑥1, 𝑧) (𝑦1, 𝑧)) = max (𝐹𝑀1(𝑎)
𝐿 (𝑥1𝑦1), 𝐹𝐾2(𝑏)

𝐿 (𝑧)) 
(𝐹𝑀1(𝑎)

𝑈 × 𝐹𝑀2(𝑏)
𝑈 ) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = max (𝐹𝑀1(𝑎)

𝑈 (𝑥1𝑦1), 𝐹𝐾2(𝑏)
𝑈 (𝑧)) ∀ z ∈ 𝑉2 and 

∀𝑥1𝑦1 ∈ 𝐸1. 

4) (𝑇𝑀1(𝑎)
𝐿 × 𝑇𝑀2(𝑏)

𝐿 ) ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = min (𝑇𝐾1(𝑎)
𝐿 (𝑥1𝑦1), 𝑇𝐾2(𝑏)

𝐿 (𝑥2𝑦2)) 
(𝑇𝑀1(𝑎)

𝑈 × 𝑇𝑀2(𝑏)
𝑈 ) ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = min (𝑇𝐾1(𝑎)

𝑈 (𝑥1𝑦1), 𝑇𝐾2(𝑏)
𝑈 (𝑥2𝑦2)) 

(𝐼𝑀1(𝑎)
𝐿 × 𝐼𝑀2(𝑏)

𝐿 ) ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = max (𝐼𝐾1(𝑎)
𝐿 (𝑥1𝑦1), 𝐼𝐾2(𝑏)

𝐿 (𝑥2𝑦2)) 
(𝐼𝑀1(𝑎)

𝑈 × 𝐼𝑀2(𝑏)
𝑈 ) ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = max (𝐼𝐾1(𝑎)

𝑈 (𝑥1𝑦1), 𝐼𝐾2(𝑏)
𝑈 (𝑥2𝑦2)) 

(𝐹𝑀1(𝑎)
𝐿 × 𝐹𝑀2(𝑏)

𝐿 ) ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = max (𝐹𝐾1(𝑎)
𝐿 (𝑥1𝑦1), 𝐹𝐾2(𝑏)

𝐿 (𝑥2𝑦2)) 
(𝐹𝑀1(𝑎)

𝑈 × 𝐹𝑀2(𝑏)
𝑈 ) ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = max (𝐹𝐾1(𝑎)

𝑈 (𝑥1𝑦1), 𝐹𝐾2(𝑏)
𝑈 (𝑥2𝑦2)) for all ( 𝑥1, 

𝑦1) ∈ 𝐸1, ( (𝑥2, 𝑦2) ∈ 𝐸2. 

H(a, b) = 𝐻1(𝑎) ⊗ 𝐻2(𝑏) for all ( 𝑎, 𝑏) ∈ 𝐴×𝐵 are interval valued neutrosophic graphs of G. 
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Theorem 3.8. The strong product of two interval valued neutrosophic soft graph is an interval 
valued neutrosophic soft graph. 

Definition 3.9Let 𝐺1=(𝐾1, 𝑀1, A) and 𝐺2=(𝐾2, 𝑀2, B) be two interval valued neutrosophic 
graphs of 𝐺1

∗ = (𝑉1, 𝐸1) and 𝐺1
∗ = (𝑉2, 𝐸2) respectively. The composition of two graphs𝐺1and 𝐺2 is

an interval valued neutrosophic soft graph G= 𝐺1[𝐺2] = (K,M, 𝐴 ∘ 𝐵), where (K=𝐾1 ∘ 𝐾2, 𝐴 ∘ 𝐵) is an

interval valued neutrosophic soft set over V= 𝑉1×𝑉2, (M, 𝐴 ∘ 𝐵) is an interval valued neutrosophic soft 
set over E= {(𝑥, 𝑥2) (𝑥, 𝑦2) /𝑥 ∈ 𝑉1, 𝑥2𝑦2 ∈ 𝐸2} ∪{(𝑥1,𝑧) (𝑦1, 𝑧) /𝑧 ∈ 𝑉2, 𝑥1𝑦1 ∈ 𝐸1} ∪{(𝑥1,𝑥2) (𝑦1,𝑦2)
/𝑥1𝑦1 ∈ 𝐸1, 𝑥2  ≠ 𝑦2}and(K, M, 𝐴 ∘ 𝐵) are interval valued neutrosophic soft graphs such that: 

1) (𝑇𝐾1(𝑎)
𝐿 ∘ 𝑇𝐾2(𝑏)

𝐿 ) (𝑥1, 𝑥2) = min (𝑇𝐾1(𝑎)
𝐿 (𝑥1), 𝑇𝐾2(𝑏)

𝐿 (𝑥2)) 
(𝑇𝐾1(𝑎)

𝑈 ∘ 𝑇𝐾2(𝑏)
𝑈 ) (𝑥1, 𝑥2) = min (𝑇𝐾1(𝑎)

𝑈 (𝑥1), 𝑇𝐾2(𝑏)
𝑈 (𝑥2)) 

(𝐼𝐾1(𝑎)
𝐿 ∘ 𝐼𝐾2(𝑏)

𝐿 ) (𝑥1, 𝑥2) = max (𝐼𝐾1(𝑎)
𝐿 (𝑥1), 𝐼𝐾2(𝑏)

𝐿 (𝑥2))
(𝐼𝐾1(𝑎)

𝑈 ∘ 𝐼𝐾2(𝑏)
𝑈 ) (𝑥1, 𝑥2) = max (𝐼𝐾1(𝑎)

𝑈 (𝑥1), 𝐼𝐾2(𝑏)
𝑈 (𝑥2)) 

(𝐹𝐾1(𝑎)
𝐿 ∘ 𝐹𝐾2(𝑏)

𝐿 ) (𝑥1, 𝑥2) = max (𝐹𝐾1(𝑎)
𝐿 (𝑥1), 𝐹𝐾2(𝑏)

𝐿 (𝑥2)) 

(𝐹𝐾1(𝑎)
𝑈 ∘ 𝐹𝐾2(𝑏)

𝑈 ) (𝑥1, 𝑥2) = max (𝐹𝐾1(𝑎)
𝑈 (𝑥1), 𝐹𝐾2(𝑏)

𝑈 (𝑥2)) for all ( 𝑥1, 𝑥2) ∈ 𝐴×𝐵 

2) (𝑇𝑀1(𝑎)
𝐿 ∘ 𝑇𝑀2(𝑏)

𝐿 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐾1(𝑎)
𝐿 (𝑥), 𝑇𝑀2(𝑏)

𝐿 (𝑥2𝑦2)) 
(𝑇𝑀1(𝑎)

𝑈 ∘ 𝑇𝑀2(𝑏)
𝑈 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐾1(𝑎)

𝑈 (𝑥), 𝑇𝑀2(𝑏)
𝑈 (𝑥2𝑦2)) 

(𝐼𝑀1(𝑎)
𝐿 ∘ 𝐼𝑀2(𝑏)

𝐿 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) =max (𝐼𝐾1(𝑎)
𝐿 (𝑥), 𝐼𝑀2(𝑏)

𝐿 (𝑥2𝑦2)) 
(𝐼𝑀1(𝑎)

𝑈 ∘ 𝐼𝑀2(𝑏)
𝑈 ) ((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐼𝐾1(𝑎)

𝑈 (𝑥), 𝐼𝑀2(𝑏)
𝑈 (𝑥2𝑦2)) 

(𝐹𝑀1(𝑎)
𝐿 ∘ 𝐹𝑀2(𝑏)

𝐿 ) ((𝑥, 𝑥2) (𝑥, 𝑦2)) = max (𝐹𝐾1(𝑎)
𝐿 (𝑥), 𝐹𝑀2(𝑏)

𝐿 (𝑥2𝑦2)) 
(𝐹𝑀1(𝑎)

𝑈 ∘ 𝐹𝑀2(𝑏)
𝑈 ) ((𝑥, 𝑥2)(𝑥, 𝑦2))= max(𝐹𝐾1(𝑎)

𝑈 (𝑥), 𝐹𝑀2(𝑏)
𝑈 (𝑥2𝑦2)) ∀ x ∈ 𝑉1and 

∀𝑥2𝑦2 ∈ 𝐸2. 

3) (𝑇𝑀1(𝑎)
𝐿 ∘ 𝑇𝑀2(𝑏)

𝐿 ) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = min (𝑇𝑀1(𝑎)
𝐿 (𝑥1𝑦1), 𝑇𝐾2(𝑏)

𝐿 (𝑧)) 
(𝑇𝑀1(𝑎)

𝑈 ∘ 𝑇𝑀2(𝑏)
𝑈 ) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = min (𝑇𝑀1(𝑎)

𝑈 (𝑥1𝑦1), 𝑇𝐾2(𝑏)
𝑈 (𝑧)) 

(𝐼𝑀1(𝑎)
𝐿 ∘ 𝐼𝑀2(𝑏)

𝐿 ) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = max (𝐼𝑀1(𝑎)
𝐿 (𝑥1𝑦

1
), 𝐼𝐾2(𝑏)

𝐿 (𝑧)) 
(𝐼𝑀1(𝑎)

𝑈 ∘ 𝐼𝑀2(𝑏)
𝑈 ) ((𝑥1, 𝑧) (𝑦1,𝑧)) = max (𝐼𝑀1(𝑎)

𝑈 (𝑥1𝑦1), 𝐼𝐾2(𝑏)
𝑈 (𝑧)) 

(𝐹𝑀1(𝑎)
𝐿 ∘ 𝐹𝑀2(𝑏)

𝐿 )((𝑥1, 𝑧) (𝑦1, 𝑧)) = max (𝐹𝑀1(𝑎)
𝐿 (𝑥1𝑦1), 𝐹𝐾2(𝑏)

𝐿 (𝑧)) 
(𝐹𝑀1(𝑎)

𝑈 ∘ 𝐹𝑀2(𝑏)
𝑈 ) ((𝑥1, 𝑧) (𝑦1, 𝑧)) = max (𝐹𝑀1(𝑎)

𝑈 (𝑥1𝑦1), 𝐹𝐾2(𝑏)
𝑈 (𝑧)) ∀ z ∈ 𝑉2 and 

∀𝑥1𝑦1 ∈ 𝐸1. 

4) (𝑇𝑀1(𝑎)
𝐿 ∘ 𝑇𝑀2(𝑏)

𝐿 ) ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = min (𝑇𝐾1(𝑎)
𝐿 (𝑥1𝑦1), 𝑇𝐾2(𝑏)

𝐿 (𝑥2),𝑇𝐾2(𝑏)
𝐿 (𝑦2)) 

(𝑇𝑀1(𝑎)
𝑈 ∘ 𝑇𝑀2(𝑏)

𝑈 ) ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = min (𝑇𝐾1(𝑎)
𝑈 (𝑥1𝑦1), 𝑇𝐾2(𝑏)

𝑈 (𝑥2), 𝑇𝐾2(𝑏)
𝑈 (𝑦2)) 

(𝐼𝑀1(𝑎)
𝐿 ∘ 𝐼𝑀2(𝑏)

𝐿 ) ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = max (𝐼𝐾1(𝑎)
𝐿 (𝑥1𝑦1), 𝐼𝐾2(𝑏)

𝐿 (𝑥2),𝐼𝐾2(𝑏)
𝐿 (𝑦2)) 

(𝐼𝑀1(𝑎)
𝑈 ∘ 𝐼𝑀2(𝑏)

𝑈 ) ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = max (𝐼𝐾1(𝑎)
𝑈 (𝑥1𝑦1), 𝐼𝐾2(𝑏)

𝑈 (𝑥2), 𝐼𝐾2(𝑏)
𝑈 (𝑦2)) 

(𝐹𝑀1(𝑎)
𝐿 ∘ 𝐹𝑀2(𝑏)

𝐿 ) ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = max (𝐹𝐾1(𝑎)
𝐿 (𝑥1𝑦1), 𝐹𝐾2(𝑏)

𝐿 (𝑥2),𝐹𝐾2(𝑏)
𝐿 (𝑦2)) 

(𝐹𝑀1(𝑎)
𝑈 ∘ 𝐹𝑀2(𝑏)

𝑈 ) ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = max (𝐹𝐾1(𝑎)
𝑈 (𝑥1𝑦1), 𝐹𝐾2(𝑏)

𝑈 (𝑥2), 𝐹𝐾2(𝑏)
𝑈 (𝑦2)) for 

all ( 𝑥1, 𝑦1) ∈ 𝐸1, and 𝑥2 ≠ 𝑦2. 
H(a, b) = 𝐻1(𝑎)[𝐻2(𝑏)] for all ( 𝑎, 𝑏) ∈ 𝐴×𝐵 are interval valued neutrosophic graphs of G. 
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Example 3.10.Let A= {𝑒1} A= {𝑒2, 𝑒3} be the parameters sets. Consider two interval valued 
neutrosophic soft graphs 𝐺1=(𝐻1, A) ={𝐻1(𝑒1)}and 𝐺2=(𝐻2, B) = {𝐻2(𝑒2),𝐻2(𝑒3)} such that  

𝐻1(𝑒1)=({𝑢1|([0.5, 0.7], [0.2, 0.3], [0.1, 0.3]), 𝑢2|([0.6, 0.7], [0.2, 0.4], [0.1, 
0.3])},{𝑢1𝑢2|([0.3, 0.6], [0.2, 0.4], [0.2, 0.4])}) 

𝐻2(𝑒2)=({𝑣1|([0.1, 0.4], [0.1, 0.3], [0.2, 0.3]), 𝑣2|([0.1, 0.3], [0.1, 0.2], [0.1, 0.4]), 
𝑣3|([0.1, 0.2], [0.2, 0.3], [0.2, 0.5])}, {𝑣1𝑣2|([0.1, 0.2], [0.2, 0.3], [0.3, 0.4]), 
𝑣2𝑣3|([0.1, 0.2], [0.3, 0.4], [0.2, 0.5]),𝑣3𝑣1 |([0.1, 0.2], [0.2, 0.4], [0.3, 0.5])}) 

𝐻2(𝑒3)=({𝑣1|([0.4, 0.6], [0.2, 0.3], [0.1, 0.3]), 𝑣2|([0.4, 0.7], [0.2, 0.4], [0.1, 
0.3])},{𝑣1𝑣2|([0.3, 0.5], [0.2, 0.5], [0.3, 0.5])}) 

Fig.3.4:Interval valued neutrosophic soft graph corresponding to 𝐻1(𝑒1)

 

Fig. 3.5: Interval valued neutrosophic soft graph corresponding to𝐻2(𝑒3).

The composition of𝐺1 and 𝐺2 is 𝐺1[𝐺2] = (H,𝐴×𝐵), where A×𝐵= {(𝑒1, 𝑒2), (𝑒1, 𝑒3), (𝑒2, 
𝑒3)}, H(𝑒1, 𝑒2) = 𝐻1(𝑒1) [𝐻2(𝑒2)] and H(𝑒1, 𝑒3) = 𝐻1(𝑒1) [𝐻2(𝑒3)] are interval valued 
neutrosophic graphs of 𝐺1[𝐺2]. 𝐻1(𝑒1) [𝐻2(𝑒3)] is shown in Fig. 3.6. 

Fig. 3.6:Composition𝐻1(𝑒1)[ 𝐻2(𝑒3)] 

Hence G=𝐺1[𝐺2] ={𝐻1(𝑒1) [𝐻2(𝑒2)], 𝐻1(𝑒1) [𝐻2(𝑒3)]}is an interval valued neutrosophic 
soft graph. 

Theorem 3.11. The composition of two interval valued neutrosophic soft graph is an interval 
valued neutrosophic soft graph 

𝑢1 

<[0.5, 0.7],[ 0.2, 0.3],[0.1, 0.3]> <[0.6, 0.7],[ 0.2, 0.4],[0.1, 0.3]> 

<[0.3, 0.6],[ 0.2, 0.4],[0.2, 0.4]> 

𝑢2 

𝑣1 

<[0.4, 0.6],[ 0.2, 0.3],[0.1, 0.3]> <[0.4, 0.7],[ 0.2, 0.4],[0.1, 0.3]>

<[0.3, 0.5],[ 0.2, 0.5],[0.3, 0.5]> 

𝑣2 

<[.4, .7], [.2, .4], [.1, .3]> 

𝐮𝟐𝐯𝟐

𝐮𝟐𝐯𝟏

<(
𝐮

𝟐
𝐯 𝟐

,𝐮
𝟐

𝐯 𝟏
), 

[.6
, .

7]
, [

.2
, .

.4
], 

[.1
, 

..
3]

>

<(𝐮𝟏𝐯𝟏,𝐮𝟐𝐯𝟏), [.3, .6], [.2, .4], [.3, .4]> 

<[.4, .6], [.2, .4], [.1, .3]> <[.4, .6], [.2, .3], [.1, .3]> 

𝐮𝟏𝐯𝟏 

<(
𝐮

𝟏
𝐯 𝟏

,𝐮
𝟏

𝐯 𝟐
), 

[.3
, .

5]
, [

.2
, .

5]
,

[.3
, .

5]
> 

<(𝐮𝟏𝐯𝟐,𝐮𝟐𝐯𝟐), [.3, .6], [.2, .4], [.2, .4]> 

𝐮𝟏𝐯𝟐

<[4, .7], [.2, .3], [.1, .3]> 

< [.3, .6], [.2, .4],[.2, .4]>

< [.3, .6], [.2, .4],[.2, .4]>
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Proof. Let 𝐺1=(𝐾1, 𝑀1, A) and 𝐺2=(𝐾2, 𝑀2, B) be two interval valued neutrosophic graphs of 
𝐺1

∗ = (𝑉1, 𝐸1) and 𝐺1
∗ = (𝑉2, 𝐸2) respectively. Let G= 𝐺1[𝐺2] = (K,M, 𝐴×𝐵) be the Cartesian

composition of two graphs𝐺1and 𝐺2. We claim that G= 𝐺1[𝐺2] = (K,M, 𝐴 ∘ 𝐵)I s an interval valued 
neutrosophic soft graph and (H, 𝐴 ∘ 𝐵) = {𝐾1(𝑎𝑖)[𝐾2(𝑏𝑗)], 𝑀1(𝑎𝑖)[𝑀2(𝑏𝑗)]} for all 𝑎𝑖 ∈ A,𝑏𝑖 ∈ B for 
i= 1, 2,…, m, j= 1, 2,…,n are interval valued neutrosophic graphs of G. 

Consider, (𝑥, 𝑥2) (𝑥, 𝑦2) ∈ 𝐸, we have

𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥, 𝑥2)(𝑥, 𝑦2)) = min (𝑇𝐾1(𝑎𝑖)

𝐿 (𝑥), 𝑇𝑀2(𝑏𝑗)
𝐿 (𝑥2𝑦2)), for i= 1, 2,…, m, j= 1, 

2,…,n 

≤min {𝑇𝐾1(𝑎𝑖)
𝐿 (𝑥), min{𝑇𝐾2(𝑏𝑗)

𝐿 (𝑥2),𝑇𝐾2(𝑏𝑗)
𝐿 (𝑦2)}} 

= min { min{𝑇𝐾1(𝑎𝑖)
𝐿 (𝑥),𝑇𝐾2(𝑏𝑗)

𝐿 (𝑥2)}, min{𝑇𝐾1(𝑎𝑖)
𝐿 (𝑥),𝑇𝐾2(𝑏𝑗)

𝐿 (𝑦2)}} 

𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥, 𝑥2)(𝑥, 𝑦2)) ≤min{( 𝑇𝐾1(𝑎𝑖)

𝐿 ∘ 𝑇𝐾2(𝑏𝑗)
𝐿 ) (x, 𝑥2), ( 𝑇𝐾1(𝑎𝑖)

𝐿 ∘ 𝑇𝐾2(𝑏𝑗)
𝐿 ) (x, 

𝑦2),for i= 1, 2,…, m, j= 1, 2,…,n 

Similarly, we prove that 

𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥, 𝑥2)(𝑥, 𝑦2)) ≤min{( 𝑇𝐾1(𝑎𝑖)

𝑈 ∘ 𝑇𝐾2(𝑏𝑗)
𝑈 ) (x, 𝑥2), ( 𝑇𝐾1(𝑎𝑖)

𝑈 ∘ 𝑇𝐾2(𝑏𝑗)
𝑈 ) (x, 

𝑦2),for i= 1, 2,…, m, j= 1, 2,…,n. 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐼𝐾1(𝑎𝑖)

𝐿 (𝑥), 𝐼𝑀2(𝑏𝑗)
𝐿 (𝑥2𝑦2)), for i= 1, 2,…, m, j= 1, 

2,…,n 

≥ max {𝐼𝐾1(𝑎𝑖)
𝐿 (𝑥), max {𝐼𝐾2(𝑏𝑗)

𝐿 (𝑥2),𝐼𝐾2(𝑏𝑗)
𝐿 (𝑦2)}} 

= max{ max {𝐼𝐾1(𝑎𝑖)
𝐿 (𝑥),𝐼𝐾2(𝑏𝑗)

𝐿 (𝑥2)}, max {𝐼𝐾1(𝑎𝑖)
𝐿 (𝑥),𝐼𝐾2(𝑏𝑗)

𝐿 (𝑦2)}} 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥, 𝑥2)(𝑥, 𝑦2)) ≥ max {( 𝐼𝐾1(𝑎𝑖)

𝐿 ∘ 𝐼𝐾2(𝑏𝑗)
𝐿 ) (x, 𝑥2), ( 𝐼𝐾1(𝑎𝑖)

𝐿 ∘ 𝐼𝐾2(𝑏𝑗)
𝐿 ) (x, 𝑦2),for 

i= 1, 2,…, m, j= 1, 2,…,n 

Similarly, we prove that 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥, 𝑥2)(𝑥, 𝑦2)) ≥ max {( 𝐼𝐾1(𝑎𝑖)

𝑈 ∘ 𝐼𝐾2(𝑏𝑗)
𝑈 ) (x, 𝑥2), ( 𝐼𝐾1(𝑎𝑖)

𝑈 ∘ 𝐼𝐾2(𝑏𝑗)
𝑈 ) (x, 𝑦2),for 

i= 1, 2,…, m, j= 1, 2,…,n 

𝐹𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥, 𝑥2)(𝑥, 𝑦2)) = max (𝐹𝐾1(𝑎𝑖)

𝐿 (𝑥), 𝐹𝑀2(𝑏𝑗)
𝐿 (𝑥2𝑦2)), for i= 1, 2,…, m, j= 1, 

2,…,n 

≥ max {𝐹𝐾1(𝑎𝑖)
𝐿 (𝑥), max {𝐹𝐾2(𝑏𝑗)

𝐿 (𝑥2),𝐹𝐾2(𝑏𝑗)
𝐿 (𝑦2)}} 

= max{ max {𝐹𝐾1(𝑎𝑖)
𝐿 (𝑥),𝐹𝐾2(𝑏𝑗)

𝐿 (𝑥2)}, max {𝐹𝐾1(𝑎𝑖)
𝐿 (𝑥),𝐹𝐾2(𝑏𝑗)

𝐿 (𝑦2)}} 

𝐹𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥, 𝑥2)(𝑥, 𝑦2)) ≥ max {( 𝐹𝐾1(𝑎𝑖)

𝐿 ∘ 𝐹𝐾2(𝑏𝑗)
𝐿 ) (x, 𝑥2), ( 𝐹𝐾1(𝑎𝑖)

𝐿 ∘ 𝐹𝐾2(𝑏𝑗)
𝐿 ) (x, 

𝑦2),for i= 1, 2,…, m, j= 1, 2,…,n 

Similarly, we prove that 
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𝐹𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥, 𝑥2)(𝑥, 𝑦2)) ≥ max {( 𝐹𝐾1(𝑎𝑖)

𝑈 ∘ 𝐹𝐾2(𝑏𝑗)
𝑈 ) (x, 𝑥2), ( 𝐹𝐾1(𝑎𝑖)

𝑈 ∘ 𝐹𝐾2(𝑏𝑗)
𝑈 ) (x, 

𝑦2),for i= 1, 2,…, m, j= 1, 2,…,n 

Similarly, for (𝑥1,𝑧) (𝑦1, 𝑧) ∈ 𝐸, we have

𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥1, 𝑧) (𝑦1, 𝑧)) ≤min{( 𝑇𝐾1(𝑎𝑖)

𝐿 ∘ 𝑇𝐾2(𝑏𝑗)
𝐿 ) (𝑥1, 𝑧), ( 𝑇𝐾1(𝑎𝑖)

𝐿 ∘ 𝑇𝐾2(𝑏𝑗)
𝐿 ) (𝑦1, 𝑧), 

𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥1, 𝑧) (𝑦1, 𝑧)) ≤min{( 𝑇𝐾1(𝑎𝑖)

𝑈 ∘ 𝑇𝐾2(𝑏𝑗)
𝑈 ) (𝑥1, 𝑧), ( 𝑇𝐾1(𝑎𝑖)

𝑈 ∘ 𝑇𝐾2(𝑏𝑗)
𝑈 ) (𝑦1, 𝑧), 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥1, 𝑧) (𝑦1, 𝑧)) ≥ max {( 𝐼𝐾1(𝑎𝑖)

𝐿 ∘ 𝐼𝐾2(𝑏𝑗)
𝐿 ) (𝑥1, 𝑧), ( 𝐼𝐾1(𝑎𝑖)

𝐿 ∘ 𝐼𝐾2(𝑏𝑗)
𝐿 ) (𝑦1, 𝑧), 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥1, 𝑧) (𝑦1, 𝑧)) ≥ max {( 𝐼𝐾1(𝑎𝑖)

𝑈 ∘ 𝐼𝐾2(𝑏𝑗)
𝑈 ) (𝑥1, 𝑧), ( 𝐼𝐾1(𝑎𝑖)

𝑈 ∘ 𝐼𝐾2(𝑏𝑗)
𝑈 ) (𝑦1, 𝑧), 

𝐹𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥1, 𝑧) (𝑦1, 𝑧)) ≥ max {( 𝐹𝐾1(𝑎𝑖)

𝐿 ∘ 𝐹𝐾2(𝑏𝑗)
𝐿 ) (𝑥1, 𝑧), ( 𝐹𝐾1(𝑎𝑖)

𝐿 ∘ 𝐹𝐾2(𝑏𝑗)
𝐿 ) (𝑦1, 

𝑧), 

𝐹𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥1, 𝑧) (𝑦1, 𝑧)) ≥ max {( 𝐹𝐾1(𝑎𝑖)

𝑈 ∘ 𝐹𝐾2(𝑏𝑗)
𝑈 ) (𝑥1, 𝑧), ( 𝐹𝐾1(𝑎𝑖)

𝑈 ∘ 𝐹𝐾2(𝑏𝑗)
𝑈 ) (𝑦1, 

𝑧),for i= 1, 2,…, m, j= 1, 2,…,n 

Let (𝑥1, 𝑥2) (𝑦1, 𝑦2) ∈ 𝐸, (𝑥1, 𝑦1) ∈ 𝐸1and 𝑥2 ≠ 𝑦2. Then we have 

𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = min (𝑇𝐾1(𝑎𝑖)

𝐿 (𝑥1𝑦1), 𝑇𝐾2(𝑏𝑗)
𝐿 (𝑥2),𝑇𝐾2(𝑏𝑗)

𝐿 (𝑦2)) 

≤min{min{𝑇𝐾1(𝑎𝑖)
𝐿 (𝑥1),𝑇𝐾1(𝑎𝑖)

𝐿 (𝑦1)},𝑇𝐾2(𝑏𝑗)
𝐿 (𝑥2),𝑇𝐾2(𝑏𝑗)

𝐿 (𝑦2))} 

=min { min{𝑇𝐾1(𝑎𝑖)
𝐿 (𝑥1), 𝑇𝐾2(𝑏𝑗)

𝐿 (𝑥2)}, min{𝑇𝐾1(𝑎𝑖)
𝐿 (𝑦1), 𝑇𝐾2(𝑏𝑗)

𝐿 (𝑦2)}} 

𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) ≤min{𝑇𝐾(𝑎𝑖,𝑏𝑗)

𝐿 (𝑥1, 𝑥2), 𝑇𝐾(𝑎𝑖,𝑏𝑗)
𝐿 (𝑦1, 𝑦2)} 

We prove also that, 

𝑇𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) ≥max{𝑇𝐾(𝑎𝑖,𝑏𝑗)

𝑈 (𝑥1, 𝑥2), 𝑇𝐾(𝑎𝑖,𝑏𝑗)
𝑈 (𝑦1, 𝑦2)}. 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = max (𝐼𝐾1(𝑎𝑖)

𝐿 (𝑥1𝑦1), 𝐼𝐾2(𝑏𝑗)
𝐿 (𝑥2),𝐼𝐾2(𝑏𝑗)

𝐿 (𝑦2)) 

≥max{max{𝐼𝐾1(𝑎𝑖)
𝐿 (𝑥1),𝐼𝐾1(𝑎𝑖)

𝐿 (𝑦1)},𝐼𝐾2(𝑏𝑗)
𝐿 (𝑥2),𝐼𝐾2(𝑏𝑗)

𝐿 (𝑦2))} 

=max{ max{𝐼𝐾1(𝑎𝑖)
𝐿 (𝑥1), 𝐼𝐾2(𝑏𝑗)

𝐿 (𝑥2)}, max{𝐼𝐾1(𝑎𝑖)
𝐿 (𝑦1), 𝐼𝐾2(𝑏𝑗)

𝐿 (𝑦2)}} 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) ≥max{𝐼𝐾(𝑎𝑖,𝑏𝑗)

𝐿 (𝑥1, 𝑥2), 𝐼𝐾(𝑎𝑖,𝑏𝑗)
𝐿 (𝑦1, 𝑦2)} 

We prove also that, 

𝐼𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) ≥max{𝐼𝐾(𝑎𝑖,𝑏𝑗)

𝑈 (𝑥1, 𝑥2), 𝐼𝐾(𝑎𝑖,𝑏𝑗)
𝑈 (𝑦1, 𝑦2)} 

Similarly, we prove also that 

𝐹𝑀(𝑎𝑖,𝑏𝑗)
𝐿 ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) ≥max{𝐹𝐾(𝑎𝑖,𝑏𝑗)

𝐿 (𝑥1, 𝑥2), 𝐹𝐾(𝑎𝑖,𝑏𝑗)
𝐿 (𝑦1, 𝑦2)} 

𝐹𝑀(𝑎𝑖,𝑏𝑗)
𝑈 ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) ≥max{𝐹𝐾(𝑎𝑖,𝑏𝑗)

𝑈 (𝑥1, 𝑥2), 𝐹𝐾(𝑎𝑖,𝑏𝑗)
𝑈 (𝑦1, 𝑦2)} 

Hence G= (K, M, A∘ B) is an interval valued neutrosophic graph. 
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Definition 3.12Let 𝐺1=(𝐾1, 𝑀1, A) and 𝐺2=(𝐾2, 𝑀2, B) be two interval valued neutrosophic 
graphs of 𝐺1

∗ = (𝑉1, 𝐸1) and 𝐺1
∗ = (𝑉2, 𝐸2) respectively. The intersection of two graphs𝐺1and 𝐺2

is an interval valued neutrosophic soft graph G= 𝐺1 ∩ 𝐺2 = (K,M, 𝐴 ∪ 𝐵), where (K, 𝐴 ∪ 𝐵) is an 
interval valued neutrosophic soft set over V= 𝑉1 ∩ 𝑉2, (M, 𝐴 ∪ 𝐵) is an interval valued neutrosophic 
soft set over E= 𝐸1 ∩ 𝐸2, truth-membership, indeterminacy–membership, and falsity-
membership function of G for all x, z ∈V defined by 

1) 𝑇𝐾(𝑒)
𝐿 (𝑥) ={

𝑇𝐾1(𝑒)
𝐿 (𝑥)       if 𝑒 ∈ 𝐴 − 𝐵

𝑇𝐾2(𝑒)
𝐿 (𝑥)      if 𝑒 ∈ 𝐴 − 𝐵

min ( 𝑇𝐾1(𝑒)
𝐿 (𝑥), 𝑇𝐾2(𝑒)

𝐿 (𝑥)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝑇𝐾(𝑒)
𝑈 (𝑥) ={

𝑇𝐾1(𝑒)
𝑈 (𝑥)  if 𝑒 ∈ 𝐴 − 𝐵

𝑇𝐾2(𝑒)
𝑈 (𝑥)      if 𝑒 ∈ 𝐴 − 𝐵

min ( 𝑇𝐾1(𝑒)
𝑈 (𝑥), 𝑇𝐾2(𝑒)

𝑈 (𝑥)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐼𝐾(𝑒)
𝐿 (𝑥) ={

𝐼𝐾1(𝑒)
𝐿 (𝑥)       if 𝑒 ∈ 𝐴 − 𝐵

𝐼𝐾2(𝑒)
𝐿 (𝑥)      if 𝑒 ∈ 𝐴 − 𝐵

max ( 𝐼𝐾1(𝑒)
𝐿 (𝑥), 𝐼𝐾2(𝑒)

𝐿 (𝑥)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐼𝐾(𝑒)
𝑈 (𝑥) ={

𝐼𝐾1(𝑒)
𝑈 (𝑥)  if 𝑒 ∈ 𝐴 − 𝐵

𝐼𝐾2(𝑒)
𝑈 (𝑥)      if 𝑒 ∈ 𝐴 − 𝐵

max ( 𝐼𝐾1(𝑒)
𝐿 (𝑥), 𝐼𝐾2(𝑒)

𝑈 (𝑥)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐹𝐾(𝑒)
𝐿 (𝑥) ={

𝐹𝐾1(𝑒)
𝐿 (𝑥)       if 𝑒 ∈ 𝐴 − 𝐵

𝐹𝐾2(𝑒)
𝐿 (𝑥)      if 𝑒 ∈ 𝐴 − 𝐵

max ( 𝐹𝐾1(𝑒)
𝐿 (𝑥), 𝐹𝐾2(𝑒)

𝐿 (𝑥)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐹𝐾(𝑒)
𝑈 (𝑥) ={

𝐹𝐾1(𝑒)
𝑈 (𝑥)  if 𝑒 ∈ 𝐴 − 𝐵

𝐹𝐾2(𝑒)
𝑈 (𝑥)      if 𝑒 ∈ 𝐴 − 𝐵

max ( 𝐹𝐾1(𝑒)
𝐿 (𝑥), 𝐹𝐾2(𝑒)

𝑈 (𝑥)) if 𝑒 ∈ 𝐴 ∩ 𝐵

2) 𝑇𝑀(𝑒)
𝐿 (𝑥𝑧) ={

𝑇𝑀1(𝑒)
𝐿 (𝑥𝑧)       if 𝑒 ∈ 𝐴 − 𝐵

𝑇𝑀2(𝑒)
𝐿 (𝑥𝑧)      if 𝑒 ∈ 𝐴 − 𝐵

min ( 𝑇𝑀1(𝑒)
𝐿 (𝑥𝑧), 𝑇𝑀2(𝑒)

𝐿 (𝑥𝑧)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝑇𝑀(𝑒)
𝑈 (𝑥𝑧) ={

𝑇𝑀1(𝑒)
𝑈 (𝑥𝑧)  if 𝑒 ∈ 𝐴 − 𝐵

𝑇𝑀2(𝑒)
𝑈 (𝑥𝑧)      if 𝑒 ∈ 𝐴 − 𝐵

min ( 𝑇𝑀1(𝑒)
𝑈 (𝑥𝑧), 𝑇𝑀2(𝑒)

𝑈 (𝑥𝑧)) if 𝑒 ∈ 𝐴 ∩ 𝐵
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𝐼𝑀(𝑒)
𝐿 (𝑥𝑧) ={

𝐼𝑀1(𝑒)
𝐿 (𝑥𝑧)       if 𝑒 ∈ 𝐴 − 𝐵

𝐼𝑀2(𝑒)
𝐿 (𝑥𝑧)      if 𝑒 ∈ 𝐴 − 𝐵

max ( 𝐼𝑀1(𝑒)
𝐿 (𝑥𝑧), 𝐼𝑀2(𝑒)

𝐿 (𝑥𝑧)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐼𝑀(𝑒)
𝑈 (𝑥𝑧) ={

𝐼𝑀1(𝑒)
𝑈 (𝑥𝑧)  if 𝑒 ∈ 𝐴 − 𝐵

𝐼𝑀2(𝑒)
𝑈 (𝑥𝑧)      if 𝑒 ∈ 𝐴 − 𝐵

max ( 𝐼𝑀1(𝑒)
𝐿 (𝑥𝑧), 𝐼𝐾2(𝑒)

𝑈 (𝑥𝑧)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐹𝑀(𝑒)
𝐿 (𝑥) ={

𝐹𝑀1(𝑒)
𝐿 (𝑥𝑧)       if 𝑒 ∈ 𝐴 − 𝐵

𝐹𝑀2(𝑒)
𝐿 (𝑥𝑧)      if 𝑒 ∈ 𝐴 − 𝐵

max ( 𝐹𝑀1(𝑒)
𝐿 (𝑥𝑧), 𝐹𝑀2(𝑒)

𝐿 (𝑥𝑧)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐹𝑀(𝑒)
𝑈 (𝑥𝑧) ={

𝐹𝑀1(𝑒)
𝑈 (𝑥𝑧)  if 𝑒 ∈ 𝐴 − 𝐵

𝐹𝑀2(𝑒)
𝑈 (𝑥𝑧)      if 𝑒 ∈ 𝐴 − 𝐵

max ( 𝐹𝑀1(𝑒)
𝐿 (𝑥𝑧), 𝐹𝑀2(𝑒)

𝑈 (𝑥𝑧)) if 𝑒 ∈ 𝐴 ∩ 𝐵

Example 3.13.Let A= {𝑒1, 𝑒2} and B= {𝑒1, 𝑒4} be a set ofparameters. Consider two interval 
valued neutrosophic soft graphs 𝐺1=(𝐻1, A) ={𝐻1(𝑒1),𝐻1(𝑒2)} and 𝐺2=(𝐻2, B) = 
{𝐻2(𝑒1),𝐻2(𝑒4)}such that  

𝐻1(𝑒1)=({𝑣1|([0.4, 0.5], [0.1, 0.3], [0.1, 0.4]), 𝑣2|([0.4, 0.6], [0.1, 0.2], [0.2, 0.3]), 
𝑣3|([0.2, 0.3], [0.2, 0.4], [0.1, 0.2]), 𝑣4|([0.3, 0.6], [0.2, 0.3], [0.2, 0.3])}, 
{𝑣1𝑣2|([0.4, 0.5], [0.2, 0.3], [0.3, 0.4]), 𝑣2𝑣3|([0.2, 0.3], [0.2, 0.4], [0.4, 0.5]), 𝑣3𝑣4 
|([0.2, 0.4], [0.2, 0.4], [0.4, 0.5]), 𝑣1𝑣4 |([0.3, 0.5], [0.2, 0.3], [0.3, 0.4]),𝑣1𝑣3 
|([0.2, 0.3], [0.2, 0.5], [0.3, 0.4])}). 

𝐻1(𝑒2)=({𝑣1|([0.4, 0.6], [0.2, 0.3], [0.1, 0.3]), 𝑣2|([0.4, 0.7], [0.2, 0.4], [0.1, 0.3])}, 
{𝑣1𝑣2|([0.3, 0.5], [0.4, 0.5], [0.3, 0.5])}). 

𝐻2(𝑒1)=({𝑣1|([0.3, 0.5], [0.2, 0.3], [0.3, 0.4]), 𝑣2|([0.2, 0.3], [0.2, 0.3], [0.1, 0.4]), 
𝑣3|([0.1, 0.3], [0.2, 0.4], [0.3, 0.5])}, {𝑣1𝑣2|([0.1, 0.2], [0.3, 0.4], [0.4, 0.5]), 
𝑣2𝑣3|([0.1, 0.3], [0.4, 0.5], [0.4, 0.5]), 𝑣3𝑣1 |([0.1, 0.2], [0.3, 0.5], [0.5, 0.6])}). 

𝐻2(𝑒4)=({𝑢1|([0.4, 0.6], [0.2, 0.3], [0.2, 0.4]), 𝑢2|([0.4, 0.5], [0.1, 0.4], [0.2, 0.3])}, 
{𝑢1𝑢2|([0.3, 0.5], [0.4, 0.5], [0.3, 0.5])}). 

𝐻1(𝑒1) 

𝑣4 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.4],[ 0.2, 0.4],[0.4, 0.5]> 

𝑣3 

<[0.3, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

<[
0

.3
, 0

.5
],

[ 
0

.2
, 0

.3
],

[0
.3

, 0
.4

]>
 

<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]> <[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 

𝑣1 

<[0.4, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 

𝑣2 

<[
0.

2,
 0

.3
],

[ 
0

.2
, 0

.4
,[

0.
2

, 0
.3

]>
 

𝑣4 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.4],[ 0.2, 0.4],[0.4, 0.5]> 

𝑣3 

<[0.3, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

<[
0

.3
, 0

.5
],

[ 
0

.2
, 0

.3
],

[0
.3

, 0
.4

]>
 

<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]> <[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 

𝑣1 

<[0.4, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 

𝑣2 

<[
0.

2,
 0

.3
],

[ 
0

.2
, 0

.4
,[

0.
2

, 0
.3

]>
 

<[0.2, 0.3],[ 0.2, 0.5],[0.3, 0.4]> 
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𝐻1(𝑒2) 

𝐻2(𝑒1) 

𝐻2(𝑒4) 

Fig. 3.7: Interval valued neutrosophic soft graph 𝐺1= {𝐻1(𝑒1),𝐻1(𝑒2)} and 𝐺2= 
{𝐻2(𝑒1),𝐻2(𝑒4)} 

The intersection of𝐺1 and 𝐺2 is 𝐺1 ∩ 𝐺2 = (H,𝐴 ∪ 𝐵), whereA∪ 𝐵= {𝑒1, 𝑒2, 𝑒3,𝑒4 }, H(𝑒1) 
= 𝐻1(𝑒1) ∩ 𝐻2(𝑒1), H(𝑒2) and H(𝑒4) are interval valued neutrosophic graphs of G = 𝐺1 ∩ 𝐺2. are 
shown in Fig. 3.8. 

𝐻(𝑒1) 

𝐻(𝑒2) 

𝐻(𝑒4) 

Fig. 3.8: Interval valued neutrosophic soft graph G = 𝐺1 ∩ 𝐺2. 

𝑣3 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.2],[ 0.3, 0.4],[0.4, 0.5]> 

𝑣1 
𝑣2 

<[0.1, 0.3],[ 0.4, 0.5],[0.4, 0.5]> <[0.1, 0.2],[ 0.3, 0.5],[0.4, 0.6]> 

𝑣1 

<[0.4, 0.6],[ 0.2, 0.3],[0.1, 0.3]> <[0.4, 0.7],[ 0.2, 0.4],[0.1, 0.3]> 

<[0.3, 0.5],[ 0.4, 0.5],[0.3, 0.5]> 

𝑣2 

<[0.4, 0.6],[ 0.2, 0.3],[0.2, 0.4]> 

𝑢1 

<[0.3, 0.5],[ 0.4, 0.5],[0.3, 0.5]> 

𝑢2 

<[0.4, 0.5],[ 0.1, 0.4],[0.2, 0.3]> 

𝑣1 

<[0.4, 0.6],[ 0.2, 0.3],[0.1, 0.3]> <[0.4, 0.7],[ 0.2, 0.4],[0.1, 0.3]> 

<[0.3, 0.5],[ 0.4, 0.5],[0.3, 0.5]> 

𝑣2 

<[0.4, 0.6],[ 0.2, 0.3],[0.2, 0.4]> 

𝑢1 

<[0.3, 0.5],[ 0.4, 0.5],[0.3, 0.5]> 

𝑢2 

<[0.4, 0.5],[ 0.1, 0.4],[0.2, 0.3]> 

𝑣3 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.2, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.2],[ 0.3, 0.4],[0.4, 0.5]> 

𝑣1 
𝑣2 

<[0.1, 0.3],[ 0.4, 0.5],[0.4, 0.5]> <[0.1, 0.2],[ 0.3, 0.5],[0.4, 0.6]> 
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Definition 3.14Let 𝐺1=(𝐾1, 𝑀1, A) and 𝐺2=(𝐾2, 𝑀2, B) be two interval valued neutrosophic 
graphs of 𝐺1

∗ = (𝑉1, 𝐸1) and 𝐺1
∗ = (𝑉2, 𝐸2) respectively. The union of two graphs𝐺1and 𝐺2 is an

interval valued neutrosophic soft graph G= 𝐺1 ∪ 𝐺2 = (K,M, 𝐴 ∪ 𝐵), where (K, 𝐴 ∪ 𝐵) is an 
interval valued neutrosophic soft set over V= 𝑉1 ∪ 𝑉2, (M, 𝐴 ∪ 𝐵) is an interval valued neutrosophic 
soft set over E= 𝐸1 ∩ 𝐸2, truth-membership, indeterminacy-membership, and falsity-
membership function of G for all x, z ∈V defined by: 

1) 𝑇𝐾(𝑒)
𝐿 (𝑥) ={

𝑇𝐾1(𝑒)
𝐿 (𝑥)       if 𝑒 ∈ 𝐴 − 𝐵

𝑇𝐾2(𝑒)
𝐿 (𝑥)      if 𝑒 ∈ 𝐴 − 𝐵

max ( 𝑇𝐾1(𝑒)
𝐿 (𝑥), 𝑇𝐾2(𝑒)

𝐿 (𝑥)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝑇𝐾(𝑒)
𝑈 (𝑥) ={

𝑇𝐾1(𝑒)
𝑈 (𝑥)  if 𝑒 ∈ 𝐴 − 𝐵

𝑇𝐾2(𝑒)
𝑈 (𝑥)      if 𝑒 ∈ 𝐴 − 𝐵

max ( 𝑇𝐾1(𝑒)
𝑈 (𝑥), 𝑇𝐾2(𝑒)

𝑈 (𝑥)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐼𝐾(𝑒)
𝐿 (𝑥) ={

𝐼𝐾1(𝑒)
𝐿 (𝑥)       if 𝑒 ∈ 𝐴 − 𝐵

𝐼𝐾2(𝑒)
𝐿 (𝑥)      if 𝑒 ∈ 𝐴 − 𝐵

min ( 𝐼𝐾1(𝑒)
𝐿 (𝑥), 𝐼𝐾2(𝑒)

𝐿 (𝑥)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐼𝐾(𝑒)
𝑈 (𝑥) ={

𝐼𝐾1(𝑒)
𝑈 (𝑥)  if 𝑒 ∈ 𝐴 − 𝐵

𝐼𝐾2(𝑒)
𝑈 (𝑥)      if 𝑒 ∈ 𝐴 − 𝐵

min ( 𝐼𝐾1(𝑒)
𝐿 (𝑥), 𝐼𝐾2(𝑒)

𝑈 (𝑥)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐹𝐾(𝑒)
𝐿 (𝑥) ={

𝐹𝐾1(𝑒)
𝐿 (𝑥)       if 𝑒 ∈ 𝐴 − 𝐵

𝐹𝐾2(𝑒)
𝐿 (𝑥)      if 𝑒 ∈ 𝐴 − 𝐵

min ( 𝐹𝐾1(𝑒)
𝐿 (𝑥), 𝐹𝐾2(𝑒)

𝐿 (𝑥)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐹𝐾(𝑒)
𝑈 (𝑥) ={

𝐹𝐾1(𝑒)
𝑈 (𝑥)  if 𝑒 ∈ 𝐴 − 𝐵

𝐹𝐾2(𝑒)
𝑈 (𝑥)      if 𝑒 ∈ 𝐴 − 𝐵

min ( 𝐹𝐾1(𝑒)
𝐿 (𝑥), 𝐹𝐾2(𝑒)

𝑈 (𝑥)) if 𝑒 ∈ 𝐴 ∩ 𝐵

2) 𝑇𝑀(𝑒)
𝐿 (𝑥𝑧) ={

𝑇𝑀1(𝑒)
𝐿 (𝑥𝑧)       if 𝑒 ∈ 𝐴 − 𝐵

𝑇𝑀2(𝑒)
𝐿 (𝑥𝑧)      if 𝑒 ∈ 𝐴 − 𝐵

max ( 𝑇𝑀1(𝑒)
𝐿 (𝑥𝑧), 𝑇𝑀2(𝑒)

𝐿 (𝑥𝑧)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝑇𝑀(𝑒)
𝑈 (𝑥𝑧) ={

𝑇𝑀1(𝑒)
𝑈 (𝑥𝑧)       if 𝑒 ∈ 𝐴 − 𝐵

𝑇𝑀2(𝑒)
𝑈 (𝑥𝑧)      if 𝑒 ∈ 𝐴 − 𝐵

max ( 𝑇𝑀1(𝑒)
𝑈 (𝑥𝑧), 𝑇𝑀2(𝑒)

𝑈 (𝑥𝑧)) if 𝑒 ∈ 𝐴 ∩ 𝐵
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𝐼𝑀(𝑒)
𝐿 (𝑥𝑧) ={

𝐼𝑀1(𝑒)
𝐿 (𝑥𝑧)       if 𝑒 ∈ 𝐴 − 𝐵

𝐼𝑀2(𝑒)
𝐿 (𝑥𝑧)      if 𝑒 ∈ 𝐴 − 𝐵

min ( 𝐼𝑀1(𝑒)
𝐿 (𝑥𝑧), 𝐼𝑀2(𝑒)

𝐿 (𝑥𝑧)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐼𝑀(𝑒)
𝑈 (𝑥𝑧) ={

𝐼𝑀1(𝑒)
𝑈 (𝑥𝑧)       if 𝑒 ∈ 𝐴 − 𝐵

𝐼𝑀2(𝑒)
𝑈 (𝑥𝑧)      if 𝑒 ∈ 𝐴 − 𝐵

min ( 𝐼𝑀1(𝑒)
𝐿 (𝑥𝑧), 𝐼𝐾2(𝑒)

𝑈 (𝑥𝑧)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐹𝑀(𝑒)
𝐿 (𝑥) ={

𝐹𝑀1(𝑒)
𝐿 (𝑥𝑧)       if 𝑒 ∈ 𝐴 − 𝐵

𝐹𝑀2(𝑒)
𝐿 (𝑥𝑧)      if 𝑒 ∈ 𝐴 − 𝐵

min ( 𝐹𝑀1(𝑒)
𝐿 (𝑥𝑧), 𝐹𝑀2(𝑒)

𝐿 (𝑥𝑧)) if 𝑒 ∈ 𝐴 ∩ 𝐵

𝐹𝑀(𝑒)
𝑈 (𝑥𝑧) ={

𝐹𝑀1(𝑒)
𝑈 (𝑥𝑧)       if 𝑒 ∈ 𝐴 − 𝐵

𝐹𝑀2(𝑒)
𝑈 (𝑥𝑧)      if 𝑒 ∈ 𝐴 − 𝐵

min ( 𝐹𝑀1(𝑒)
𝐿 (𝑥𝑧), 𝐹𝑀2(𝑒)

𝑈 (𝑥𝑧)) if 𝑒 ∈ 𝐴 ∩ 𝐵

Definition 3.16. Let 𝐺1 and 𝐺2 be two interval valued neutrosophic soft graphs denoted by𝐺1 
+ 𝐺2 =( 𝐾1 + 𝐾2, 𝑀1 + 𝑀2,A ⋃B), Where ( 𝐾1 + 𝐾2, A ⋃ B ) is an interval valued neutrosophic 
soft set over𝑉1⋃ 𝑉2 , ( 𝑀1 + 𝑀2 , A ⋃ B ) is an interval valued neutrosophic soft set 
over𝐸1⋃𝐸2⋃𝐸′ defined by

( 𝐾1 + 𝐾2 , A ⋃B ) =(𝐾1, A) ⋃ (𝐾2, B) 

( 𝑀1 + 𝑀2 , A ⋃B ) =(𝑀1, A) ⋃ (𝑀2, B) if xz ∈ 𝐸1⋃𝐸2, 

when e ∈ A ∩ B, xz∈ 𝐸′, where 𝐸′ is the set of all edge joining the vertices of 𝑉1 and 𝑉2.

Definition 3.17The complement of an interval valued neutrosophic soft graph𝐺=(𝐾, 𝑀, A) 
denoted by �̅�=(�̅�, �̅�, �̅�).

1. �̅� =A
2. 𝐾(𝑒)̅̅ ̅̅ ̅̅  =K(e),
3. 𝑇𝑀(𝑒)̅̅ ̅̅ ̅̅ ̅

𝐿 (x, z) = min(𝑇𝐾(𝑒)
𝐿 (x) ,𝑇𝐾(𝑒)

𝐿 (z)) −𝑇𝑀(𝑒)
𝐿 (x,z), 

𝑇𝑀(𝑒)̅̅ ̅̅ ̅̅ ̅
𝑈 (x, z) = min(𝑇𝐾(𝑒)

𝐿 (x) ,𝑇𝐾(𝑒)
𝐿 (z)) −𝑇𝑀(𝑒)

𝑈 (x,z), 

𝐼𝑀(𝑒)̅̅ ̅̅ ̅̅ ̅
𝐿 (x, z) = min(𝐼𝐾(𝑒)

𝐿 (x) ,𝐼𝐾(𝑒)
𝐿 (z)) −𝐼𝑀(𝑒)

𝐿 (x,z), 

𝐼𝑀(𝑒)̅̅ ̅̅ ̅̅ ̅
𝑈 (x, z) = min(𝑇𝐾(𝑒)

𝐿 (x) ,𝐼𝐾(𝑒)
𝐿 (z)) −𝐼𝑀(𝑒)

𝑈 (x,z), 

𝐹𝑀(𝑒)̅̅ ̅̅ ̅̅ ̅
𝐿 (x, z) = min(𝐹𝐾(𝑒)

𝐿 (x) ,𝐹𝐾(𝑒)
𝐿 (z)) −𝐹𝑀(𝑒)

𝐿 (x,z), 

𝐹𝑀(𝑒)̅̅ ̅̅ ̅̅ ̅
𝑈 (x, z) = min(𝑇𝐾(𝑒)

𝐿 (x) ,𝐹𝐾(𝑒)
𝐿 (z)) −𝐹𝑀(𝑒)

𝑈 (x,z), for all 𝑥, 𝑧 ∈V,e ∈ A. 

Definition 3.18 An interval valued neutrosophic soft graph G is a complete interval valued 
neutrosophic soft graph if H(e) is a complete interval valued neutrosophic graph of G for all e 
∈A, i.e. 

𝑇𝑀(𝑒)
𝐿 (x,z)= min(𝑇𝐾(𝑒)

𝐿 (x) ,𝑇𝐾(𝑒)
𝐿 (z)) 

𝑇𝑀(𝑒)
𝑈 (x,z)= min(𝑇𝐾(𝑒)

𝐿 (x) ,𝑇𝐾(𝑒)
𝐿 (z)) 
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𝐼𝑀(𝑒)
𝐿 (x,z)= min(𝐼𝐾(𝑒)

𝐿 (x) ,𝐼𝐾(𝑒)
𝐿 (z))  

𝐼𝑀(𝑒)
𝑈 (x,z)= min(𝑇𝐾(𝑒)

𝐿 (x) ,𝐼𝐾(𝑒)
𝐿 (z)) 

𝐹𝑀(𝑒)
𝐿 (x,z) = min(𝐹𝐾(𝑒)

𝐿 (x) ,𝐹𝐾(𝑒)
𝐿 (z)) 

𝐹𝑀(𝑒)
𝑈 (x,z) = min(𝑇𝐾(𝑒)

𝐿 (x) ,𝐹𝐾(𝑒)
𝐿 (z)), For all 𝑥, 𝑧 ∈V, e ∈ A. 

Example 3.19.Consider a simple graph𝐺∗=(V, E) such that V={𝑢1, 𝑢2,𝑢3, 𝑢4} and E={𝑢1𝑢2,
𝑢2𝑢3,𝑢3𝑢1}. 

Let A= {𝑒1, 𝑒2, 𝑒3}be a set ofparameters. Let (K, A) be an interval valued neutrosophic graph 
soft sets over V with its approximation function. K:A ⟶P(V) defined by 

𝐾(𝑒1)=({𝑢1|([0.1, 0.4], [0.1, 0.3], [0.2, 0.3]), 𝑢2|([0.1, 0.3], [0.1, 0.2], [0.1, 0.4]), 
𝑢3|([0.1, 0.2], [0.2, 0.3], [0.2, 0.5])}. 

𝐾(𝑒2)=({𝑢1|([0.3, 0.5], [0.2, 0.3], [0.3, 0.4]), 𝑢2|([0.2, 0.3], [0.2, 0.3], [0.1, 0.4]), 
𝑢3|([0.1, 0.3], [0.2, 0.4], [0.3, 0.5])}. 

𝐾(𝑒3)=({𝑢1|([0.4, 0.5], [0.1, 0.3], [0.1, 0.4]), 𝑢2|([0.4, 0.6], [0.1, 0.2], [0.2 0.3]), 
𝑢3|([0.2, 0.3], [0.2, 0.4], [0.1, 0.2]), 𝑢4|([0.3, 0.6], [0.2, 0.3], [0.2, 0.3])}. 

Let (M, A) be an interval valued neutrosophic graph soft sets over E with its approximation 
function. M:A⟶P(E) defined by 

𝑀(𝑒1)={𝑢1𝑢2|([0.1, 0.3], [0.1, 0.3], [0.2, 0.4]), 𝑢2𝑢3|([0.1, 0.2], [0.2, 0.3], [0.2, 
0.5]), 𝑢3𝑢1 |([0.1, 0.2], [0.2, 0.3], [0.2, 0.5])}. 

𝑀(𝑒2)={𝑢1𝑢2|([0.1, 0.3], [0.2, 0.3], [0.3, 0.4]), 𝑢2𝑢3|([0.1, 0.3], [0.2, 0.4], [0.3 
0.5]), 𝑢3𝑢1 |([0.1, 0.3], [0.2, 0.4], [0.3, 0.5])}. 

𝑀(𝑒3)={𝑢1𝑢2|([0.4, 0.5], [0.1, 0.3], [0.2, 0.4]), 𝑢2𝑢3|([0.2, 0.3], [0.2, 0.4], [0.2, 
0.3]),𝑢3𝑢4|([0.2, 0.3], [0.2, 0.4], [0.2, 0.3]), 𝑢4𝑢1|([0.3, 0.5], [0.2, 0.3], [0.2, 
0.4]),𝑢1𝑢3|([0.2, 0.3], [0.2, 0.4], [0.1, 0.4]), 𝑢2𝑢4|([0.2, 0.6], [0.2, 0.4], [0.2, 0.3])} 

It is easy to see that 𝐻(𝑒1), 𝐻(𝑒2), 𝐻(𝑒3) are complete interval valued neutrosophic graphs of G 
corresponding to the parameters𝑒1, 𝑒2, 𝑒3 respectively as shown in Fig. 3.9. 

𝐻(𝑒1) 𝑢3 

<[0.1, 0.4],[ 0.1, 0.3],[0.2, 0.3]> 
<[0.1, 0.3],[ 0.1, 0.2],[0.1, 0.4]> 

<[0.1, 0.2],[ 0.2, 0.3],[0.2, 0.5]> 

<[0.1, 0.3],[ 0.1, 0.3],[0.2, 0.4]> 

𝑢1 
𝑢2 

<[0.1, 0.2],[ 0.2, 0.3],[0.2, 0.5]> <[0.1, 0.2],[ 0.2, 0.3],[0.2, 0.5]> 
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𝐻(𝑒2) 

𝐻(𝑒3) 

Fig. 3.9: Complete interval valued neutrosophic soft graph G={ 𝐻(𝑒1), 𝐻(𝑒2), 𝐻(𝑒3)}. 

Definition 3.20: An interval valued neutrosophic soft graph G is a strong interval valued 
neutrosophic soft graph if H(e) is a strong interval valued neutrosophic graph of G for all e ∈A, 
i.e. 

𝑇𝑀(𝑒)
𝐿 (x, z)= min(𝑇𝐾(𝑒)

𝐿 (x) ,𝑇𝐾(𝑒)
𝐿 (z)) 

𝑇𝑀(𝑒)
𝑈 (x, z)= min(𝑇𝐾(𝑒)

𝐿 (x) ,𝑇𝐾(𝑒)
𝐿 (z)) 

𝐼𝑀(𝑒)
𝐿 (x, z)= min(𝐼𝐾(𝑒)

𝐿 (x) ,𝐼𝐾(𝑒)
𝐿 (z))  

𝐼𝑀(𝑒)
𝑈 (x, z)= min(𝑇𝐾(𝑒)

𝐿 (x) ,𝐼𝐾(𝑒)
𝐿 (z)) 

𝐹𝑀(𝑒)
𝐿 (x, z) = min(𝐹𝐾(𝑒)

𝐿 (x) ,𝐹𝐾(𝑒)
𝐿 (z)) 

𝐹𝑀(𝑒)
𝑈 (x, z) = min(𝑇𝐾(𝑒)

𝐿 (x) ,𝐹𝐾(𝑒)
𝐿 (z)), for all 𝑥, 𝑧 ∈V, e ∈ A. 

Example 3.21.Consider a simple graph𝐺∗=(V, E) such that V={𝑢1, 𝑢2,𝑢3, 𝑢4} and E={𝑢1𝑢2,
𝑢2𝑢3,𝑢3𝑢1}. 

Let A= {𝑒1, 𝑒2, 𝑒3}be a set ofparameters. Let (K, A) be an interval valued neutrosophic 
graph soft sets over V with its approximation function. K:A⟶P(V) defined by 

𝐾(𝑒1)=({𝑢1|([0.1, 0.4], [0.1, 0.3], [0.2, 0.3]), 𝑢2|([0.1, 0.3], [0.1, 0.2], [0.1, 0.4]), 
𝑢3|([0.1, 0.2], [0.2, 0.3], [0.2, 0.5])}. 

𝐾(𝑒2)=({𝑢1|([0.3, 0.5], [0.2, 0.3], [0.3, 0.4]), 𝑢2|([0.2, 0.3], [0.2, 0.3], [0.1, 0.4]), 
𝑢3|([0.1, 0.3], [0.2, 0.4], [0.3, 0.5])}. 

𝑢3 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.3,[ 0.2, 0.3],[0.3, 0.4]> 

𝑢1 
𝑢2 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> <[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.4]>

𝑢4 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

𝑢3 

<[0.3, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

<[
0.

3,
 0

.5
],

[ 
0

.2
, 0

.3
],

[0
.2

, 0
.4

]>
 

<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]> <[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 

𝑢1 

<[0.4, 0.5],[ 0.1, 0.3],[0.2, 0.4]> 

𝑢2 

<[
0.

2,
 0

.3
],

[ 
0

.2
, 0

.4
,[

0.
2

, 0
.3

]>
 

<[0.2, 0.3],[ 0.2, 0.4],[0.2, 0.3]>
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𝐾(𝑒3)=({𝑢1|([0.4, 0.5], [0.1, 0.3], [0.1, 0.4]), 𝑢2|([0.4, 0.6], [0.1, 0.2], [0.2 0.3]), 
𝑢3|([0.2, 0.3], [0.2, 0.4], [0.1, 0.2]), 𝑢4|([0.3, 0.6], [0.2, 0.3], [0.2, 0.3])}.

Let (M, A) be an interval valued neutrosophic graph soft sets over E with its 
approximation function. M:A⟶P(E) defined by 

𝑀(𝑒1)={𝑢1𝑢2|([0.1, 0.3], [0.1, 0.3], [0.2, 0.4]), 𝑢2𝑢3|([0.1, 0.2], [0.2, 0.3], [0.2, 
0.5]), 𝑢3𝑢1 |([0.1, 0.2], [0.2, 0.3], [0.2, 0.5])}. 
𝑀(𝑒2)={𝑢1𝑢2|([0.1, 0.3], [0.2, 0.3], [0.3, 0.4]), 𝑢2𝑢3|([0.1, 0.3], [0.2, 0.4], [0.3 
0.5]), 𝑢3𝑢1 |([0.1, 0.3], [0.2, 0.4], [0.3, 0.5])}. 
𝑀(𝑒3)={𝑢1𝑢2|([0.4, 0.6], [0.1, 0.3], [0.2, 0.4]), 𝑢2𝑢3|([0.2, 0.3], [0.2, 0.4], [0.2, 
0.3]),𝑢3𝑢4|([0.2, 0.3], [0.2, 0.4], [0.2, 0.3]), 𝑢4𝑢1|([0.3, 0.5], [0.2, 0.3], [0.2, 0.4])} 

It is easy to see that 𝐻(𝑒1), 𝐻(𝑒2), 𝐻(𝑒3) are strong interval valued neutrosophic graphs 
of G corresponding to the parameters𝑒1, 𝑒2, 𝑒3 respectively as shown in Fig. 3.10. 

𝐻(𝑒1) 

𝐻(𝑒2) 

𝐻(𝑒3) 

Fig. 3.10: Strong interval valued neutrosophic soft graph G={ 𝐻(𝑒1), 𝐻(𝑒2), 𝐻(𝑒3)}. 

4. APPLICATION
Interval valued neutrosophic soft set has several applications in decision making problems and 
can be used to deal with uncertainties from our different daily life problems. In this section, we 

𝑢3 

<[0.1, 0.4],[ 0.1, 0.3],[0.2, 0.3]> 
<[0.1, 0.3],[ 0.1, 0.2],[0.1, 0.4]> 

<[0.1, 0.2],[ 0.2, 0.3],[0.2, 0.5]> 

<[0.1, 0.3],[ 0.1, 0.3],[0.2, 0.4]> 

𝑢1 
𝑢2 

<[0.1, 0.2],[ 0.2, 0.3],[0.2, 0.5]> <[0.1, 0.2],[ 0.2, 0.3],[0.2, 0.5]> 

𝑢3 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.3,[ 0.2, 0.3],[0.3, 0.4]> 

𝑢1 
𝑢2 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> <[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

𝑣4 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.3],[ 0.2, 0.4],[0.2, 0.3]> 

𝑣3 

<[0.3, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

<[
0

.3
, 0

.5
],

[ 
0.

2
, 0

.3
],

[0
.2

, 0
.4

]>
 

<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]> <[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 

𝑣1 

<[0.4, 0.6],[ 0.1, 0.3],[0.2, 0.4]> 

𝑣2 

<[
0.

2,
 0

.3
],

[ 
0

.2
, 0

.4
,[

0.
2

, 0
.3

]>
 

Florentin Smarandache (ed.) Collected Papers, VI

502



apply the concept of interval valued neutrosophic soft sets in a decision making problem and 
then give an algorithm for the selection of optimal object based upon given sets of information. 

Suppose that V={ℎ1,ℎ2,ℎ3,ℎ4,ℎ5} is the set of five houses under consideration. Mr. X 
is going to buy one of the houses on the basis of wishing parameters or attributes set A={𝑒1= 
large,𝑒2= beautiful, 𝑒3= green surrounding}.(K, A) is the interval valued neutrosophic soft set 
on V which describes the value of the houses based upon the given parameters 𝑒1= large,𝑒2= 
beautiful, 𝑒3= green surrounding, respectively. 

𝐾(𝑒1)=({ℎ1|([0.3, 0.4], [0.2, 0.3], [0.3, 0.4]), ℎ3|([0.2, 0.3], [0.2, 0.3], [0.1, 0.4]), 
ℎ4|([0.2, 0.3], [0.2, 0.4], [0.3, 0.5])}. 

𝐾(𝑒2)=( {ℎ1|([0.2, 0.5], [0.1, 0.3], [0.1, 0.3]), ℎ2|([0.3, 0.4], [0.1, 0.2], [0.2, 0.3]), 
ℎ3|([0.2, 0.3], [0.2, 0.3], [0.3, 0.4]),ℎ4|([0.3, 0.4], [0.2, 0.3], [0.1, 0.2]), ℎ5|([0.3, 
0.4], [0.1, 0.2], [0.2, 0.4])}. 

𝐾(𝑒3) =( {ℎ1|([0.4, 0.5], [0.1, 0.3], [0.1, 0.4]), ℎ2|([0.4, 0.6], [0.1, 0.2], [0.2, 0.3]), 
ℎ3|([0.2, 0.3], [0.2, 0.4], [0.1, 0.2]),ℎ4|([0.3, 0.6], [0.2, 0.3], [0.2, 0.3]), ℎ5|([0.2, 
0.3], [0.2, 0.3], [0.2, 0.4])}. 

(M, A) is an interval valued neutrosophic soft sets on E= {ℎ1ℎ2, ℎ1ℎ3, 
ℎ1ℎ4,ℎ1ℎ5,ℎ2ℎ3,ℎ2ℎ4, ℎ2ℎ5, ℎ3ℎ4,ℎ4ℎ5} which describe the value of two houses 
corresponding to the given parameters 𝑒1, 𝑒2 and 𝑒3. 

𝑀(𝑒1)={ℎ1ℎ3|([0.1, 0.2], [0.2, 0.3], [0.3, 0.4]), ℎ3ℎ4|([0.1, 0.2], [0.2, 0.5], [0.3, 
0.5]), ℎ1ℎ4 |([0.2, 0.3], [0.3, 0.4], [0.3, 0.5])}. 

𝑀(𝑒2)={ℎ1ℎ2|([0.2, 0.3], [0.2, 0.3], [0.2, 0.4]), ℎ1ℎ4|([0.2, 0.3], [0.2, 0.4], [0.2, 
0.4]), ℎ1ℎ5 |([0.1, 0.3], [0.3, 0.4], [0.3, 0.5]), ℎ2ℎ4|([0.2, 0.3], [0.2, 0.4], [0.4, 
0.5]), ℎ4ℎ5|([0.1, 0.2], [0.2, 0.4], [0.2, 0.5]), ℎ4ℎ3 |([0.2, 0.3], [0.2, 0.3], [0.3, 
0.4])}. 

𝑀(𝑒3)= {ℎ1ℎ2|([0.4, 0.6], [0.2, 0.3], [0.3, 0.4]), ℎ1ℎ4|([0.3, 0.5], [0.3, 0.4], [0.2, 
0.4]), ℎ2ℎ3 |([0.2, 0.3], [0.2, 0.5], [0.3, 0.4]), ℎ2ℎ5|([0.1, 0.2], [0.3, 0.4], [0.4, 
0.5]), ℎ2ℎ4|([0.2, 0.4], [0.3, 0.4], [0.5, 0.6]), ℎ3ℎ4 |([0.2, 0.3], [0.4, 0.5], [0.2, 
0.3])}. 

The interval valued neutrosophic soft sets𝐻(𝑒1), 𝐻(𝑒2), 𝐻(𝑒3)of interval valued 
neutrosophic graphs of G =(K, M, A) corresponding to the parameters𝑒1, 𝑒2, 𝑒3 respectively, 
as shown in Fig. 3.11. 

ℎ4 

<[0.3, 0.4],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.2, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.2,[ 0.2, 0.3],[0.3, 0.4]> 

ℎ1 
ℎ3 

<[0.1, 0.2],[ 0.2, 0.5],[0.3, 0.5]> <[0.2, 0.3],[ 0.3, 0.4],[0.3, 0.5]> 
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𝐻(𝑒1) 

𝐻(𝑒2) 

𝐻(𝑒3) 

Fig. 3.11: Interval valued neutrosophic soft graph G={ 𝐻(𝑒1), 𝐻(𝑒2), 𝐻(𝑒3)}. 

The interval valued neutrosophic graphs 𝐻(𝑒1), 𝐻(𝑒2), 𝐻(𝑒3) corresponding to the 
parameters “large”, “beautiful” and “green surrounding”, respectively are represented by the 
following incidence matrix. 

𝐻(𝑒1)=

⟦

< [0, 0 ], [0, 0 ], [0, 0 ] > < [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] > < [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.1, 0.2 ], [0.2, 0.3 ], [0.3, 0.4 ] >

< [0.2, 0.3 ], [0.3, 0.4 ], [0.3, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.1, 0.2 ], [0.2, 0.3 ], [0.3, 0.4 ] > < [0.2, 0.3 ], [0.3, 0.4 ], [0.3, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] > < [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.1, 0.2 ], [0.2, 0.5 ], [0.3, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.1, 0.2 ], [0.2, 0.5 ], [0.3, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

 

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

⟧ 

<[0.2, 0.3>, [0.2, 0.3], [0.3, 0.4] 

<[0.1, 0.2>, [0.3, 04], [0.4, 0.5] 

ℎ4 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.3],[ 0.4, 0.5],[0.2, 0.3]> 

ℎ3 

<[0.3, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

<[
0.

3,
 0

.5
],

[ 
0.

3
, 0

.4
],

[0
.2

, 0
.4

]>
 

<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]> <[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 

ℎ1 

<[0.4, 0.6],[ 0.2, 0.3],[0.3, 0.4]> 

ℎ2 

<[
0.

2,
 0

.3
],

[ 
0.

2
, 0

.5
,[

0.
3,

 0
.4

]>
 

<[0.2 0.4>, [0.3, 0.4], [0.5, 0.6] 

ℎ5

<[0.3, 0.4],[ 0.1, 0.2],[0.2, 0.4]> 

ℎ5 

<[
0

.1
, 0

.2
],

[ 
0

.3
, 0

.4
],

[0
.3

, 0
.5

]>
 

<[0.3, 0.4],[ 0.1, 0.2],[0.2, 0.3]> <[0.2, 0.5],[ 0.1, 0.3],[0.1, 0.3]> 

ℎ1 

<[0.2, 0.3],[ 0.2, 0.3],[0.2, 0.4]> 

ℎ2 

<[
0

.2
, 0

.3
],

[ 
0

.2
, 0

.4
],

[0
.4

, 0
.5

]>
 

<[0.3, 0.4],[ 0.2, 0.3],[0.1, 0.2]> 

<[0.1, 0.2],[ 0.2, 0.4],[0.2, 0.5]> 

ℎ4 

<[0.2, 0.3],[ 0.2, 0.4],[0.2, 0.4]> 

ℎ3 

<[0.2, 0.3],[ 0.2, 0.3],[0.3, 0.4]> 

<[0.2, 0.3],[ 0.2, 0.3],[0.3, 0.4]> 
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⟦

< [0, 0 ], [0, 0 ], [0, 0 ] > < [0.2, 0.3 ], [0.2, 0.3 ], [0.2, 0.4 ] >

< [0.2, 0.3 ], [0.2, 0.3 ], [0.2, 0.4 ] > < [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.2, 0.3 ], [0.2, 0.4 ], [0.2, 0.4 ] >

< [0.1, 0.3 ], [0.3, 0.4 ], [0.3, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.2, 0.3 ], [0.2, 0.4 ], [0.4, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] > < [0.2, 0.3 ], [0.2, 0.4 ], [0.2, 0.4 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] > < [0.2, 0.3 ], [0.2, 0.4 ], [0.4, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.2, 0.3 ], [0.2, 0.3 ], [0.3, 0.4 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.2, 0.3 ], [0.2, 0.3 ], [0.3, 0.4 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.1, 0.2 ], [0.2, 0.4 ], [0.2, 0.5 ] >

 

< [0.1, 0.3 ], [0.3, 0.4 ], [0.3, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.1, 0.2 ], [0.2, 0.4 ], [0.2, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

⟧ 

 And 𝐻(𝑒3)=

⟦

< [0, 0 ], [0, 0 ], [0, 0 ] > < [0.4, 0.6 ], [0.2, 0.3 ], [0.3, 0.4 ] >

< [0.4, 0.6 ], [0.2, 0.3 ], [0.3, 0.4 ] > < [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.3, 0.5 ], [0.3, 0.4 ], [0.2, 0.4 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.2, 0.3 ], [0.2, 0.5 ], [0.3, 0.4 ] >

< [0.2, 0.4 ], [0.3, 0.4 ], [0.5, 0.6 ] >

< [0.1, 0.2 ], [0.3, 0.4 ], [0.4, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] > < [0.3, 0.5 ], [0.3, 0.4 ], [0.2, 0.4 ] >

< [0.2, 0.3 ], [0.2, 0.5 ], [0.3, 0.4 ] > < [0.2, 0.4 ], [0.3, 0.4 ], [0.5, 0.6 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.2, 0.3 ], [0.4, 0.5 ], [0.2, 0.3 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.2, 0.3 ], [0.4, 0.5 ], [0.2, 0.3 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

 

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.1, 0.2 ], [0.3, 0.4 ], [0.4, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

⟧ 

After performing some operation (AND or OR); we obtain the resultant interval valued 
neutrosophic graph H(e), where e= e1 ∧ e2 ∧ e3. The incidence matrix of resultant interval 
neutrosophic soft graph is  
𝐻(𝑒3)=

⟦

< [0, 0 ], [0, 0 ], [0, 0 ] > < [0.2, 0.3 ], [0.2, 0.3 ], [0.3, 0.4 ] >

< [0, 0 ], [0.3, 0.4 ], [0.4, 0.5 ] > < [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0.2, 0.3 ], [0.3, 0.4] >

< [0, 0 ], [0.3, 0.4 ], [0.3, 0.5 ] >

< [0, 0 ], [0.3, 0.4 ], [0.3, 0.5 ] >

< [0, 0 ], [0.2, 0.5 ], [0.3, 0.4 ] >

< [0.2, 0.3 ], [0.3, 0.4 ], [0.5, 0.6 ] >

< [0, 0 ], [0.3, 0.4 ], [0.4, 0.5 ] >

< [0, 0 ], [0.2, 0.3 ], [0.3, 0.4 ] > < [0.2, 0.3 ], [0.3, 0.4 ], [0.3, 0.5 ] >

< [0, 0 ], [0.2, 0.5 ], [0.3, 0.4 ] > < [0, 0 ], [0.3, 0.4 ], [0.5, 0.6 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.1, 0.2 ], [0.4, 0.5 ], [0.3, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0.1, 0.2 ], [0.4, 0.5 ], [0.2, 0.3 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0.2, 0.4 ], [0.2, 0.5 ] >

 

< [0, 0 ], [0.3, 0.4 ], [0.4, 0.5 ] >

< [0, 0 ], [0.3, 0.4 ], [0.4, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

< [0, 0 ], [0.2, 0.4 ], [0.2, 0.5 ] >

< [0, 0 ], [0, 0 ], [0, 0 ] >

⟧ 

Sahin (2015) defined the average possible membership degree of element x to interval valued 
neutrosophic set𝐴 = 〈[𝑇𝐴

𝐿(𝑥), 𝑇𝐴
𝑈(𝑥)], [𝐼𝐴

𝐿(𝑥), 𝐼𝐴
𝑈(𝑥)], [𝐹𝐴

𝐿(𝑥), 𝐹𝐴
𝑈(𝑥)]〉 as follows:

𝑆𝑘(𝑥) =
1

3
[
𝑇𝐴

𝐿 (𝑥) + 𝑇𝐴
𝑈(𝑥)

2
+ 1 −

𝐼𝐴
𝐿 (𝑥) + 𝐼𝐴

𝑈(𝑥)

2
+ 1 −

𝐹𝐴
𝐿 (𝑥) + 𝐹𝑣𝐴

𝑈(𝑥)

2
] 

=
𝑇𝐴

𝐿(𝑥) + 𝑇𝐴
𝑈(𝑥) + 4 − 𝐼𝐴

𝐿(𝑥) − 𝐼𝐴
𝑈(𝑥) − 𝐹𝐴

𝐿(𝑥) − 𝐹𝐴
𝑈(𝑥)

6

Based on 𝑆𝑘(𝑥) we depictedthe Tabular representation of score value of incidence 
matrix of resultant interval valued neutrosophic graph H(e)with 𝑆𝑘andchoice valuefor each 
house ℎ𝑘 for k= 1, 2, 3, 4. 

 Table 2. Tabular representation of score values with choice values. 

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ𝑘
′

ℎ1 0.666 0.55 0.466 0.5 0.4 2,582 
ℎ2 0.4 0.666 0.433 0.366 0.4 2,265 
ℎ3 0.466 0.433 0.666 0.483 0.666 2,714 
ℎ4 0.416 0.45 0.433 0.666 0.45 2,415 
ℎ5 0.416 0.383 0.666 0.45 0.666 2,581 

𝐻(𝑒2)=
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Clearly, the maximum score value is 2,714, scored by the ℎ3 Mr. X, will buy the house 
ℎ3.

We present our method as an algorithm that is used in our application. 
Algorithm 

1. Input the set P of choice of parameters of Mr. X, A is subset of P.
2. Input the interval valued neutrosophic soft sets (K, A) and (M, A).
3. Construct the interval valued neutrosophic soft graph G = (K, M, A).
4. Compute the resultant interval valued neutrosophic soft graph

H(e) =⋂ 𝐻(𝑒𝑘 )𝑘  fore = ⋀ 𝑒𝑘𝑘 ∀ k.
5. Consider the interval valued neutrosophic graph H(e) and its incidence matrix form.
6. Compute the score 𝑆𝑘 of ℎ𝑘∀ k.
7. The decision is ℎ𝑘if ℎ𝑘

′ = max
𝑖

ℎ𝑘. 
8. If k has more than one value then any one of ℎ𝑘may be chosen.

5. CONCLUSION
Interval valued neutrosophic soft sets is a generalization of fuzzy soft sets, intuitionistic fuzzy 
soft sets and neutrosophic soft sets. The neutrosophic set model is an important tool for dealing 
with real scientific and engineering applications; it can handle not only incomplete information, 
but also the inconsistent information and indeterminate information which exists in real 
situations. Interval valued neutrosophic models give more precisions, flexibility and 
compatibility to the system as compared to the classical, fuzzy and/or intuitionistic fuzzy and 
single valued neutrosophic models. In this paper, we have introduced certain types of interval 
valued neutrosophic soft graphs, such as strong interval valued neutrosophic soft graph, 
complete interval valued neutrosophic soft graphs and complement of strong interval valued 
neutrosophic soft graphs. We introduced some operations such as Cartesian product, 
composition, intersection, union and join on an interval valued neutrosophic soft graphs. We 
presented an application of interval valued neutrosophic soft graphs in decision making. In 
future studies, we plan to extend our research to regular interval valued neutrosophic soft graphs 
and irregular interval valued neutrosophic soft graphs. 
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Abstract
Advances in the medical industry has become a major trend because of the new developments in information technologies. This
research offers a novel approach for estimating the smart medical devices (SMDs) selection process in a group decision making
(GDM) in a vague decision environment. The complexity of the selected decision criteria for the smart medical devices is a
significant feature of this analysis. To simulate these processes, a methodology that combines neutrosophics using bipolar numbers
with Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) under GDM is suggested. Neutrosophics with
TOPSIS approach is applied in the decision making process to deal with the vagueness, incomplete data and the uncertainty,
considering the decisions criteria in the data collected by the decision makers (DMs). In this research, the stress is placed upon
the choosing of sugar analyzing smart medical devices for diabetics’ patients. The main objective is to present the complications of
the problem, raising interest among specialists in the healthcare industry and assessing smart medical devices under different
evaluation criteria. The problem is formulated as a multi criteria decision type with seven alternatives and seven criteria, and then
edited as a multi criteria decision model with seven alternatives and seven criteria. The results of the neutrosophics with TOPSIS
model are analyzed, showing that the competence of the acquired results and the rankings are sufficiently stable. The results of the
suggested method are also compared with the neutrosophic extensions AHP andMOORAmodels in order to validate and prove the
acquired results. In addition, we used the SPSS program to check the stability of the variations in the rankings by the Spearman
coefficient of correlation. The selection methodology is applied on a numerical case, to prove the validity of the suggested approach.

Introduction

In the light of emerging digital technologies and their applica-
tions in medical systems, a rapid development is noticed in an
extensive number of medical devices. The healthcare manufac-
ture is revolutionizing how patients are cured by using techno-
logical advances. The leading factor of this transformation is
based on evolutions in actuator and sensor technology, becoming
more qualified in merging with electrical and chemical elements.
Developments in Nano and micro technology make it easier for
communicating with extrinsic systems, better data collecting,
creating tools, devices and apparatuses helping medical staff as
well as patients, more and better substances that can be vaccinat-
ed immediately into human body. These innovative ways of
remediation help curing health cases outside of a healthcare fa-
cility. Minimally invasive or noninvasive small scale medical
tools offer significant challenges to inspiring new smart and
powerful devices. Portable devices today can accurately measure
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the percentage of diabetes in the blood. Different medical tasks
and abilities are performed by medical robots. Digitalization is
revolutionizing the submission of healthcare services, both at
hospitals and at home, by using surgical robots for help during
more complex procedures or for simpler tasks, such as use a
diabetes analyzer, management of medicines to patients. In the
future, developedmedical devices can possibly enable patients to
connect healthcare services without the necessity of physically
attend the hospitals. In addition, smartphone applications help
patients to interact with medical devices connected to the pa-
tients, and help patients to remotely access these services.
Instead of patients visiting medical staff and hospitals to measure
percentage of diabetes in the blood, patients can use the portable
devices to measure the percentage of diabetes in the blood at
home, without discomfort and fatigue, especially after a break-
through in the manufacture of portable a diabetes analyzer. Also,
a diabetes analyzer can be connected to external smartphones for
analyzing the results more accurately. As a response to this mar-
ket growth of various devices of broad availability, the healthcare
industry is actively following new ways on how to select those
devices that best address the requirements of patients.
Occasionally, the requirements can be uncertain, ambiguous
and vague, as they are related with the expectations and demands
of human beings. Thus, MDs can be selected based on decision
criteria such as their accuracy, precision, and reliability. This
study aims to suggest a set of valuation criteria for the healthcare
industry in relationship to the selection and valuation of portable
diabetes analyzer devices and their results. There are many re-
sources that can be used for collecting the evaluation criteria,
such as the judgments of academic experts, industrial and deci-
sion makers, the current scientific literature or available regula-
tions. Decision making is mostly about choosing the preferable
choice between a set of alternatives by considering the influence
of many criteria altogether. In the last five decades, the multi
criteria decision making (MCDM) methodology became one of
the most important key in solving complicated and complex
decision problems in the existence of multiple criteria and alter-
natives [1]. The MCDM methodology can be used to resolve
multi valuation and ordering problems that combine a number of
inconsistent criteria. After this progress, several types of MCDM
methods are suggested to successfully solve various types of
decision making problems. This powerful methodology often
needs qualitative and quantitative data, which are used in the
measurement of obtainable alternatives. In multi MCDM prob-
lems, interdependency, mutuality and interactivity features be-
tween decision criteria are of a vague nature, which obscures
the task of a membership [2]. However, most methods proved
inadequate and inappropriate in solving and explaining real life
problems, mostly because they rely on crisp values. Many
MCDM methods use the fuzzy or the intuitionistic fuzzy set
theories to overcome this obstacle. Nevertheless, F and IF num-
bers are also not always appropriate. Classes of F and IF sets
proved to be efficient in some implementations. Nevertheless, in

our opinion that is a compromise, since the Neutrosophic set
offers major and better possibilities [3, 4]. The notion / concept
of neutrosophic set provides a substitute approach where there is
a lack of accuracy to the determinations imposed by the crisp sets
or traditional fuzzy sets, and in situations where the presented
information is not suitable to locate its inaccuracy. Neutrosophic
sets are very powerful and successful in overcoming situations
and cases in incomplete information environment, uncertainty,
vagueness and imprecision, and it is described by a membership
degree, an indeterminacy degree and a nonmembership degree
[5]. Therefore, neutrosophic sets introduce a qualified tool for
expressing DMs’ preferences and priorities, completely deter-
mining the membership function in situations where DM opin-
ions are subject to indeterminacy or lack of information. DMs
use linguistic variables expressed in two parts, where the first part
is employed to voice their preferences and the other part is used
to convey the confirmation degree of linguistic variable accord-
ing to each DM [6]. Neutrosophic set is becoming a scientific
key tool, receiving attention from many DMs and academic
researchers for developing and improving the neutrosophic
methodology [7–9]. Many decision problems faced in life re-
quire the contribution of more than one DM in the decision
making processes. Thus, most of MCDM methods are also ex-
tended to GDM. The key advantage of Neutrosophic sets over
the crisp or fuzzy and IFs is their capability to present the positive
and the negative designation of an element’s value on member-
ship, indeterminacymembership and nonmembership in the sets.
When DMs express their views and opinions, they generally rely
on information about more criteria and more alternatives that
become more complicated. To overcome these situations, a
widely accepted MCDM method is the TOPSIS method with a
major advantage due to its simplicity and ability to consider a
non-limited number of alternatives and criteria in the decision
making process [10]. Hence, using TOPSIS is very effective in
finding the expected utility of an uncertain situation, incomplete
information and vagueness. TOPSIS method defines a solution
at the shortest distance to the ideal solution and the greatest
distance from the negative-ideal solution, but it does not reflect
the proportional significance of these distances, as indicated in
Fig. 1.

The main accomplishments of this research are:

& The characterization and preparation of an effective eval-
uation framework to lead the medical industry towards the
suitable smart medical device selection.

& It also contributes to the literature by providing a novel
Neutrosophic with TOPSIS method under GDM setting,
by considering the interactions among medical device se-
lection criteria in a vague environment.

The structure of this research is summarized as follows. In
section 2, a review of related publications is given. Section 3
provides an introduction to the bipolar neutrosophic numbers
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and to the steps of the suggested method. Section 4 gives a
detailed commentary of the alternatives and evaluation criteria
in a numerical experiment, in which diabetes analyzer devices
are selected to present the execution of the applied method.
Finally, we close our research with some remarks.

Literature Review

Decision making in real life situations is the means of
selecting the best candidate from several options. DMs need
to consider multiple criteria in order to evaluate the best

Fig. 1 The ideal solution of
TOPSIS method

Fig. 2 The general
conceptualization of the
suggested method
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candidate. MCDM methods are recognized by scholars since
the early 1970s. In situation of multiple criteria or goals,
MCDMmethods include essential area of research to transact
with complex problems. Many MCDMmethods with charac-
teristic features have been suggested in the literature, such as
Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) [11], Analytic Hierarchy Process (AHP)
[12], Multi Objective Optimization on the basis of Ratio

Analysis (MOORA) [13, 14]. Many types of MCDM ap-
proaches have been successfully implemented to various types
of decision making problems. As these methods mostly work
with crisp sets, they have been seen imperfect to deal with
many decisions problems. Also, the task of identifying the
best alternative becomes more challenging for a DM, as deci-
sion making gets more complex. Many such mechanisms are
successfully extended to other environments. In the last two
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♦ Set of alternatives ( )
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decades, most studies in literature apply the fuzzy and IFs
theory due to its similarity to human reasoning [15, 16].
Following that, Smarandache introduced the concept of
neutrosophic set, which is the generalization of Atanassov
IFs, where to each element of the set is attributed a member-
ship value, an indeterminacy value and a membership value
[17]. Various types of MCDM approaches are integrated by
neutrosophic set. When compared to IFs, neutrosophic sets
have many advantages. Consequently, it is extensively studied
by many academics [18–27]. The specific method in this
study is presented in detail in the next section.

Methodology

The purpose of the suggested technique is to incubate a con-
ceptual framework for valuation of sugar analyzing smart
medical devices for diabetics’ patients with consideration to
predefined objectives. The following subsection comments on
neutrosophic and TOPSIS, respectively. Then, the suggested
method is presented.

Preliminaries

In this subsection, we give the basic definitions of
neutrosophic set and bipolar neutrosophic numbers (BNNs).

Bipolar Neutrosophic Set (BNS)

We give the definition of bipolar neutrosophic set (BNS), and
discuss some of its properties, including certainty, score and
accuracy functions [28–32].

Definition 2.1.1.1A bipolar neutrosophic set A in X is defined
as an object of the form A = {〈x,T+ (x), I+ (x), F+ (x), T− (x), I−

(x), F− (x) 〉: x ∈X}, where T+, I+,F+: X→ [1,0] and T−, I−, F−:
X→ [−1,0]. The positive membership degree T+ (x), I+ (x),F+

(x) denotes the truth membership, the indeterminate

membership and the false membership of an element x ∈ X
corresponding to a bipolar neutrosophic set A, and the nega-
tive membership degree T− (x), I− (x), F− (x) denotes the truth
membership, the indeterminate membership and the false
membership of an element x ∈ X to some implicit counter
property corresponding to a bipolar neutrosophic set A.

Definition 2.1.1.2 Let A1 = {〈x, Tþ
1 (x),Iþ1 (x), Fþ

1 (x), T−
1

(x),I−1 (x), F−
1 (x) 〉 and A2 = {〈x, Tþ

2 (x),Iþ2 (x), Fþ
2 (x), T−

2

(x),I−2 (x), F−
2 (x) 〉 be two bipolar neutrosophic sets. Then,

their union is defined as: (A1∪ A2)(x) = (max(Tþ
1 (x), Tþ

2

(x)),
Iþ1 xð ÞþIþ2 xð Þ

2 , min((Fþ
1 (x), Fþ

2 (x)), min(T−
1 (x), = Tþ

2

(x)),I
−
1 xð ÞþI−2 xð Þ

2 , max((F−
1 (x), F−

2 (x))), for all x ∈ X.

Definition 2.1.1.3 Let ~a1 = (Tþ
1 ; I

þ
1 ; F

þ
1 ; T

−
1 ; I

−
1 ; F

−
1 ) and ~a2 =

(Tþ
2 ; I

þ
2 ; F

þ
2 ; T

−
2 ; I

−
2 ; F

−
2 ) be two bipolar neutrosophic num-

bers. Then, the operations for NNs are defined as below:

i. λ~a1 ¼ 1− 1−Tþ
1

� �λ
; Iþ1
� �λ

; Fþ
1

� �λ
; – −T−

1

� �λ�
; – −I−1
� �λ

;

– 1− 1−F−
1

� �� �λÞÞ
ii.

~a
λ

1 ¼ Tþ
1

� �λ
; 1− 1−Iþ1

� �λ
; 1− 1−Fþ

1

� �λ
; – 1− 1−T−

1

� ��
λ

� �
;

�

– I−1Þλ
� �

; – −F−
1

� �λÞ
iii. ~a1 þ ~a2 ¼ Tþ

1 þ Tþ
2 –T

þ
1 Tþ

2 ; Iþ1 Iþ2 ; Fþ
1 Fþ

2 ;−T
−
1 T

−
2 ; –

�

–I−1–I
−
2–I

−
1 I

−
2

� �
; – –F−

1–F
−
2–F

−
1 F−

2

� �Þ

Determining the appropriate medical device (MDs) 

Safety Cost Flexibility Quality Ease of use Maintenance 
Requirements Service Life 

A1 A2 A3 A4 A5 A6 A7 

Goal 

Alternatives 

Criteria

Fig. 4 The hierarchy for selecting
the appropriate medical device

Table 1 Criteria weights according to all decision makers

DMs C1 C2 C3 C4 C5 C6 C7

DM1 〈VG〉 〈EB〉 〈P〉 〈EG〉 〈VG〉 〈B〉 〈AS〉
DM2 〈P〉 〈AS〉 〈MB〉 〈AS〉 〈MG〉 〈AS〉 〈EB〉
DM3 〈MB〉 〈B〉 〈VB〉 〈P〉 〈VB〉 〈MG〉 〈P〉
DM4 〈EG〉 〈MG〉 〈AS〉 〈VG〉 〈MB〉 〈EG〉 〈EG〉
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iv. ~a1:~a2 ¼ Tþ
1 Tþ

2 ; Iþ1 þ Iþ2 –I
þ
1 Iþ2 þ Fþ

1 þ Fþ
2 –F

þ
1 Fþ

2 ; –
�

–T−
1–T

−
2–T

−
1 T

−
2

� �
; –I−1 I

−
2 ; –F

−
1 F−

2Þ;where λ > 0:

Definition 2.1.1.4 Let ~a1 = (Tþ
1 ; I

þ
1 ; F

þ
1 ; T

−
1 ; I

−
1 ; F

−
1 ) be a

bipolar neutrosophic number. Then, the score function s (~a1
), accuracy function a (~a1 ) and certainty function c (~a1 ) of an
NBN are defined as follows:

~S ~a1
� �

¼ Tþ
1 þ 1−Iþ1 þ 1−Fþ

1 þ 1þ T−
1−I

−
1−F

−
1

� �
=6 ð1Þ

~a ~a1
� �

¼ Tþ
1 −F

þ
1 þ T−

1−F
−
1 ð2Þ

~c ~a1
� �

¼ Tþ
1 −F

−
1 ð3Þ

Definition 2.1.1.5 Let ~a1 = (Tþ
1 ; I

þ
1 ; F

þ
1 ; T

−
1 ; I

−
1 ; F

−
1 ) and ~a2 =

(Tþ
2 ; I

þ
2 ; F

þ
2 ; T

−
2 ; I

−
2 ; F

−
2 ) be two bipolar neutrosophic num-

bers. The comparison method can be defined as follows:

i. if ~s ~a1ð Þ > ~s ~a2ð Þ, then ~a1 is greater than ~a2, that is, ~a1 is
superior to ~a2, denoted by ~a1 >~a2

ii. ~s ~a1ð Þ =~s ~a2ð Þ and ~a ~a1ð Þ > ~a ~a2ð Þ, then ~a1 is greater than ~a2,
that is, ~a1 is superior to ~a2, denoted by ~a1 < ~a2;

iii. if~s ~a1ð Þ =~sð~a2 ), ~a ~a1ð Þ = ~a ~a2ð Þ ) and ~c (~a1 ) > ~c (~a2 ), then
~a1 is greater than ~a2, that is, ~a1 is superior to ~a2, denoted
by ~a1 >~a2;

iv. if~s ~a1ð Þ =~sð~a2 ), ~a ~a1ð Þ = ~a ~a2ð Þ ) and ~c (~a1 ) = ~c (~a2 ), then
~a1 is equal to ~a2, that is, ~a1 is indifferent to ~a2, denoted by
~a1 =~a2.

Definition 2.1.1.6 Let ~aj = (Tþ
j ; I

þ
j ; F

þ
j ; T

−
j ; I

−
j ; F

−
j ) (j = 1,

2,…, n) be a family of bipolar neutrosophic numbers. A map-
ping Aω: Qn → Q is called bipolar neutrosophic weighted
average operator if it satisfies the condition:

Aw ~a1; ~a2;…::; ~an
� �

¼ ∑n
j¼1 ω j~aj ¼ 1−∏n

j¼1 1−Tþ
j

� �ωj
;∏n

j¼1I
þωj
j ;∏n

j¼1

�

Fþωj
j ;−∏n

j¼1 −T−
j

� �ωj
;−1 ∏n

j¼1 1− −I−j
� �� �ωj

� �
;−

1−∏n
j¼1 1− −F−

j

� �� �ωj
� �

Þ;

where ωj is the weight of ~aj (j = 1,2,…, n), ωj ∈ [0,1] and∑n
j¼1

ωj =1.

The Suggested Method Procedure

In this section, the steps of the suggested bipolar neutrosophic
with TOPSIS framework are presented in details, and the gen-
eral conceptualization of the framework is exposed in Fig. 2.

The suggested framework consists of many steps, see
Fig. 3 below.

Step 1. Organize a committee of DMs and determine the
goal, the alternatives and the valuation criteria.

Suppose that DMs want to appreciate the collection of n
criteria and m alternatives. DMs are symbolized by DE =
{DM1, DM2, DM3, DM4}, where E = 1, 2, ..., E, and alterna-

Table 2 Criteria weights according to all decision makers by bipolar neutrosophic numbers

Criteria DM1 DM2 DM3 DM4

C1 [1.0,0.0,0.1, − 0.3, − 0.8, − 0.9] [0.7,0.6,0.5, − 0.2, − 0.5, − 0.6] [0.3, 0.1, 0.9, − 0.4, − 0.2, − 0.1] [0.9, 0.1, 0.0, 0.0, − 0.8, − 0.9]
C2 [0.1, 0.9, 0.8, − 0.9, − 0.2, − 0.1] [0.5, 0.2, 0.3, − 0.3, − 0.1, − 0.3] [0.4, 0.4, 0.3, − 0.5, − 0.2, − 0.1] [0.8, 0.5, 0.6, − 0.1, − 0.8, − 0.9]
C3 [0.7,0.6,0.5, − 0.2, − 0.5, − 0.6] [0.3, 0.1, 0.9, − 0.4, − 0.2, − 0.1] [0.2, 0.3, 0.4, − 0.8, − 0.6, − 0.4] [0.5, 0.2, 0.3, − 0.3, − 0.1, − 0.3]
C4 [0.9, 0.1, 0.0, 0.0, − 0.8, − 0.9] [0.5, 0.2, 0.3, − 0.3, − 0.1, − 0.3] [0.7,0.6,0.5, − 0.2, − 0.5, − 0.6] [1.0,0.0,0.1, − 0.3, − 0.8, − 0.9]
C5 [1.0,0.0,0.1, − 0.3, − 0.8, − 0.9] [0.8, 0.5, 0.6, − 0.1, − 0.8, − 0.9] [0.2, 0.3, 0.4, − 0.8, − 0.6, − 0.4] [0.3, 0.1, 0.9, − 0.4, − 0.2, − 0.1]
C6 [0.4, 0.4, 0.3, − 0.5, − 0.2, − 0.1] [0.5, 0.2, 0.3, − 0.3, − 0.1, − 0.3] [0.8, 0.5, 0.6, − 0.1, − 0.8, − 0.9] [0.9, 0.1, 0.0, 0.0, − 0.8, − 0.9]
C7 [0.5, 0.2, 0.3, − 0.3, − 0.1, − 0.3] [0.1, 0.9, 0.8, − 0.9, − 0.2, − 0.1] [0.7,0.6,0.5, − 0.2, − 0.5, − 0.6] [0.9, 0.1, 0.0, 0.0, − 0.8, − 0.9]

Table 3 The normalized criteria
weights Weight ~wn Aggregation weights in BNNs crisp Normalized

Weight

C1 [0.725, 0.2, 0.375, − 0.225, − 0.575, − 0.625] 0.6875 0.17

C2 [0.450, 0.50, 0.500, − 0.45, − 0.325, − 0.35] 0.4458 0.09

C3 [0.425, 0.3, 0.525, −0.425, −0.350, −0.350] 0.4792 0.11

C4 [0.775, 0.225, 0.225, − 0.20, − 0.55, − 0.675] 0.7250 0.21

C5 [0.575, 0.225, 0.500, − 0.4, − 0.600, − 0.575] 0.6042 0.14

C6 [0.650, 0.300, 0.3, − 0.225, − 0.475, − 0.550] 0.6417 0.15

C7 [0.550, 0.450, 0.40, − 0.35, − 0.400, − 0.475] 0.5375 0.13

Florentin Smarandache (ed.) Collected Papers, VI

514



tives by Ai = {A1, A2, ..., Am}, where i = 1, 2, ..., m, assessed
on n criteria cj = {c1, c2, .., cn}, j = 1, 2, ..., n.

Step 2. Depict and design the linguistic scales to describe
DMs, and set the alternatives.

Step 3. Obtain DMs’ judgments on each element.

Based on previously knowledge and experience, DMs are
demanded to convey their judgments. Every DM gives his /
her judgment on every of these elements.

Table 4 Ratings of alternatives and criteria by DMs

DMs Alternatives C1 C2 C3 C4 C5 C6 C7

DM1 ϕ1 〈P〉 〈MB〉 〈EG〉 〈EB〉 〈AS〉 〈VB〉 〈VG〉
ϕ2 〈EB〉 〈VG〉 〈P〉 〈B〉 〈VG〉 〈P〉 〈MG〉
ϕ3 〈EG〉 〈AS〉 〈MB〉 〈VG〉 〈P〉 〈MG〉 〈EG〉
ϕ4 〈AS〉 〈B〉 〈MG〉 〈VB〉 〈MB〉 〈EG〉 〈EB〉
ϕ5 〈EG〉 〈P〉 〈EG〉 〈EB〉 〈AS〉 〈VG〉 〈B〉
ϕ6 〈VG〉 〈B〉 〈AS〉 〈EG〉 〈EG〉 〈MB〉 〈VB〉
ϕ7 〈EB〉 〈MB〉 〈VG〉 〈MB〉 〈EB〉 〈EG〉 〈VG〉

DM2 ϕ1 〈MB〉 〈VG〉 〈VB〉 〈P〉 〈MG〉 〈EB〉 〈EG〉
ϕ2 〈AS〉 〈P〉 〈MB〉 〈EG〉 〈EB〉 〈EG〉 〈AS〉
ϕ3 〈MG〉 〈EG〉 〈AS〉 〈MG〉 〈MG〉 〈MG〉 〈VG〉
ϕ4 〈EB〉 〈VB〉 〈EB〉 〈EG〉 〈VG〉 〈EG〉 〈MB〉
ϕ5 〈MB〉 〈EG〉 〈VG〉 〈MB〉 〈VB〉 〈B〉 〈MG〉
ϕ6 〈VG〉 〈MG〉 〈MG〉 〈P〉 〈AS〉 〈EB〉 〈VB〉
ϕ7 〈P〉 〈AS〉 〈MG〉 〈EG〉 〈MG〉 〈MG〉 〈MG〉

DM3 ϕ1 〈B〉 〈EG〉 〈P〉 〈EG〉 〈VB〉 〈EG〉 〈P〉
ϕ2 〈MG〉 〈EG〉 〈MB〉 〈B〉 〈VG〉 〈EG〉 〈EG〉
ϕ3 〈VG〉 〈EB〉 〈EG〉 〈B〉 〈VB〉 〈MB〉 〈VG〉
ϕ4 〈AS〉 〈MG〉 〈VG〉 〈MG〉 〈MB〉 〈EB〉 〈AS〉
ϕ5 〈MB〉 〈AS〉 〈MG〉 〈EG〉 〈AS〉 〈VG〉 〈EG〉
ϕ6 〈EG〉 〈VB〉 〈MB〉 〈AS〉 〈EG〉 〈EG〉 〈EB〉
ϕ7 〈VG〉 〈B〉 〈P〉 〈EB〉 〈EB〉 〈MB〉 〈P〉

DM4 ϕ1 〈AS〉 〈P〉 〈VB〉 〈EG〉 〈MG〉 〈MG〉 〈VG〉
ϕ2 〈MG〉 〈AS〉 〈VG〉 〈EG〉 〈EB〉 〈EG〉 〈P〉
ϕ3 〈VG〉 〈MB〉 〈MG〉 〈EB〉 〈VG〉 〈MG〉 〈MB〉
ϕ4 〈MG〉 〈EB〉 〈EG〉 〈AS〉 〈EG〉 〈P〉 〈EB〉
ϕ5 〈EG〉 〈MG〉 〈P〉 〈VG〉 〈MB〉 〈AS〉 〈EG〉
ϕ6 〈MB〉 〈MB〉 〈EB〉 〈VB〉 〈MG〉 〈EB〉 〈VB〉
ϕ7 〈AS〉 〈MG〉 〈VG〉 〈AS〉 〈P〉 〈MG〉 〈MB〉

Table 5 The aggregated crisp values of decision matrix

Cn/ An C1 C2 C3 C4 C5 C6 C7

ϕ1 0.48 0.69 0.5 0.64 0.55 0.51 0.82

ϕ2 0.53 0.73 0.55 0.67 0.51 0.84 0.69

ϕ3 0.85 0.48 0.63 0.54 0.61 0.63 0.76

ϕ4 0.47 0.38 0.66 0.60 0.64 0.64 0.29

ϕ5 0.65 0.69 0.78 0.57 0.42 0.68 0.75

ϕ6 0.76 0.44 0.44 0.56 0.77 0.39 0.22

ϕ7 0.53 0.51 0.77 0.49 0.39 0.68 0.64
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Fig. 5 Criteria weights according to all decision makers
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a. Collect the judgments of DMs about each other and from
the viewpoint of the Kth DM

b. Gather the judgments on all the alternatives for every
criterion from the viewpoint of the Kth DM.

Step 4. Obtain the conversion of (BNNs) bipolar
neutrosophic numbers.

When all DMs give their valuations on each element, the
bipolar neutrosophic values preference scale in subsection 3.2
is used.

a. Transforming DMs’ linguistic valuations into bipolar
neutrosophic numbers for every DM provides judgment
with assistance of the linguistic weighting terms as shown
in subsection 3.2.

b. Building the preference relation matrix with the assistance
of BNNS to determine weights of criteria. DMs use the
linguistic terms shown in subsection 3.2 to evaluate their
opinions with respect to each criterion. Let Rk

ij be a (BN)
decision matrix of the Kth DMs for calculating weights of
criteria by opinions of DMs, then:

Rk
ij ¼

rk11 … rk1n
⋮ ⋱ ⋮
rkm1 … rkmn

2
4

3
5; k ϵ K ð4Þ

where rkij = [T+(x), I+(x), F+(x) T−(x), I−(x), F−(x)], k = 1, 2,
…, K, i = 1, 2, …, m, j = 1,2, …, n.

Step 5. Calculating the weights of DMs.

DMs’ judgments are collected by using the following equa-
tion:

rkij ¼
Tþ xð Þn1; Iþ xð Þn1; Fþ xð Þn1; T− xð Þn1; I− xð Þn1; F− xð Þn1
� 	

n
ð5Þ

Then, the score value after aggregating the opinions of
DMs for each criteria using Eq. (1) is calculated, and the
obtaining weights are normalized.

Step 6. Construct the evaluation matrix.

Build the evaluation matrix Ai × Cj with the assistance of
BNNS to evaluate the ratings of alternatives with respect to each
criterion. DMs use the linguistic terms shown in subsection 3.2.
Let Rk

ij be a (BN) decision matrix of the Kth DMs, then:

Rk
ij ¼

rk11 … rk1n
⋮ ⋱ ⋮
rkm1 … rkmn

2
4

3
5; k ϵ K ð6Þ

where rkij = [T+(x), I+(x), F+(x) T−(x), I−(x), F−(x)], k = 1, 2,…,
K, i = 1, 2,…, m, j = 1,2,…, n.

Step 7. Calculate the crisp value of matrix.

Use the de-neutrosophication Eq. (1) for transforming bi-
polar neutrosophic numbers into crisp values for each factor

Table 6 The normalized decision matrix

Cn/ An C1 C2 C3 C4 C5 C6 C7

ϕ1 0.30 0.43 0.31 0.40 0.34 0.32 0.51

ϕ2 0.31 0.42 0.32 0.39 0.29 0.48 0.40

ϕ3 0.49 0.28 0.36 0.31 0.35 0.36 0.44

ϕ4 0.33 0.26 0.46 0.42 0.45 0.45 0.20

ϕ5 0.37 0.40 0.45 0.33 0.24 0.39 0.43

ϕ6 0.53 0.31 0.31 0.39 0.53 0.27 0.15

ϕ7 0.34 0.33 0.50 0.32 0.25 0.44 0.41

Table 7 The weighted matrix

Cn/ An C1 C2 C3 C4 C5 C6 C7

Weight 0.17 0.09 0.11 0.21 0.14 0.15 0.13

ϕ1 0.051 0.039 0.034 0.084 0.048 0.048 0.066

ϕ2 0.053 0.038 0.035 0.081 0.041 0.072 0.052

ϕ3 0.083 0.025 0.040 0.065 0.049 0.054 0.057

ϕ4 0.056 0.023 0.051 0.088 0.063 0.068 0.026

ϕ5 0.063 0.036 0.050 0.069 0.034 0.059 0.056

ϕ6 0.090 0.028 0.034 0.081 0.074 0.041 0.019

ϕ7 0.058 0.030 0.055 0.067 0.035 0.066 0.053

Table 8 The TOPSIS result and ranking of alternatives

Cn/ An S+i S−i pi Rank

ϕ1 0.057 0.065 0.53 3

ϕ2 0.050 0.058 0.54 2

ϕ3 0.040 0.053 0.57 1

ϕ4 0.060 0.049 0.44 6

ϕ5 0.054 0.041 0.43 4

ϕ6 0.069 0.070 0.50 5

ϕ7 0.063 0.035 0.36 7
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rkij and compare the score values according to Definition
2.1.1.5.

Step 8. Aggregate the final evaluation matrix.

Using Eq. (7), aggregate the crisp values of evaluation
matrices into a final matrix.

~aij ¼
~aij

1
þ………:……þ ~aij

n

n
ð7Þ

Then, normalize the obtained matrix by Eq. (8).

Hrt ¼ xrtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

i¼1Xrt
2

q ; r ¼ 1; 2…m; t ¼ 1; 2…n: ð8Þ

After that, calculate the weight matrix by Eq. (9).

Qrt ¼ wz � Hrt ð9Þ
or using Eq. (10)

Aw ~a1; ~a2;…::; ~an
� �

¼ ∑n
j¼1 ω j~aj

¼ 1−∏n
j¼1 1−Tþ

j

� �ωj
;∏n

j¼1 Iþωj
j ;∏n

j¼1 Fþωj
j ;−∏n

j¼1 −T−
j

� �ωj
;−1 ∏n

j¼1 1− −I−j
� �� �ωj

� �
;− 1−∏n

j¼1 1− −F−
j

� �� �ωj
� �� � ð10Þ

Step 9. Define Ideal Solution A+, A−.

Calculate the positive and negative ideal solution using
Eqs. (11, 12).

Aþ ¼ < max δijji ¼ 1; 2;…;m
� �j j ϵ Jþ >;< min δijji ¼ 1; 2;…;m

� �j j ϵ J− >
� �

ð11Þ

A− ¼ < min δijji ¼ 1; 2;…;m
� �j j ϵ Jþ >;< max δijji ¼ 1; 2;…;m

� �j j ϵ J− >
� �

ð12Þ

Step 10. Positive and Negative Ideal Solution S+i, S
−
i.

Calculate the Euclidean distance between positive solution
(S+i) and negative ideal solution (S−i) using Eqs. (13, 14).

Sþi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

j¼1 δij−δ jþ
� �2q

i ¼ 1; 2;…;m; ð13Þ

S−i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

j¼1 δij−δ j−
� �2q

i ¼ 1; 2;…;m ð14Þ

Step 11. Rank the alternatives based on closeness
coefficient.

Pi ¼ S−i
Sþi þ S−i

i ¼ 1; 2;…;m ð15Þ

Step 12. Comparing the obtained results with other methods.
Step 13. Check the stability of variations in rankings by

Spearman coefficient of correlation.

Numerical Experiment

We introduced in this section a numerical case, which requires
methods and data analysis to test the competence and
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Fig. 6 The ranking of alternatives
by the suggested method
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efficiency of suggested framework for selection of appropriate
medical devices (MDs).

Case Study

Companies seek developing sugar analyzing devices for dia-
betics. Therefore, we introduce a practical case to select a
sugar analyzing device. There are four decision makers;
DM1, DM2, DM3 and DM4, and seven alternatives A1, A2,
A3,A4,A5, A6 and A7. For evaluating the SMDs alternatives,
seven criteria are considered as selection factors: C1(Safety),
C2 (Cost), (Flexibility), C4 (Quality), C5 (Ease of use),
C6(Maintenance Requirements) and C7(Service Life), as listed
in Fig. 4.

The Calculation Process of the Neutrosophic
with TOPSIS Technique

Step 1. Organize a committee of DMs and determine the
goal, alternatives and valuation criteria.

A committee consisting of four DMs is constructed to se-
lect the best alternatives of sugar analyzing smart medical
devices for diabetics, Ai = {A1, A2, A3, A4, A5, A6, A7},
offered by different medical device producers . These alterna-
tives are estimated based on seven criteria cj = {c1,c2 ,c3 ,c4 ,-
c5 ,c6 ,c7}, which are collected from comprehensive commen-
taries and DMs’ opinions.

Step 2, 3, 4. Determine the appropriate (LVs) linguistic
variables for weights (Wn) of criteria (Cn) and alternatives
(An) with regard to each criterion. Each linguistic variable
is a bipolar neutrosophic number (BNN). For criteria
weights and for compilation alternatives, the linguistic
variables are as follows: Excessively Good (EG) = 〈0.9,
0.1, 0.0, 0.0, −0.8, −0.9〉; where the first three numbers
present the positive membership degree T+(x),
I+(x), F+(x) 0.9, 0.1 and 0.0 respectively, T+(x) the truth
d eg r e e i n po s i t i v e membe r s h i p , I + ( x ) t h e
indetermininancy degree and finally F+(x) the falsity de-
gree. The last three numbers present the negative mem-
bership degree T−(x), I−(x), F−(x) 0.0, −0.8 and − 0.9 re-
spectively, where T−(x) the truth degree in negative mem-
bership, I−(x) the indetermininancy degree and finally
F−(x) the falsity degree. Very Good (VG) = 〈1.0, 0.0,
0.1, −0.3, −0.8, −0.9〉, Midst Good (MG) = 〈0.8, 0.5,
0.6, −0.1, −0.8, −0.9〉, Perfect (P) = 〈0.7, 0.6, 0.5, −0.2,
−0.5, −0.6〉, Approximately Similar (AS) = 〈0.5, 0.2,
0.3, −0.3, −0.1, −0.3〉, Bad (B) = 〈0.4, 0.4, 0.3, −0.5,
−0.2, −0.1〉, Midst Bad (MB) = 〈0.3, 0.1, 0.9, −0.4,
−0.2, −0.1〉, Very Bad (VB) = 〈0.2, 0.3, 0.4, −0.8, −0.6,
−0.4〉, Excessively Bad (EB) = 〈0.1, 0.9, 0.8, −0.9, −0.2,
−0.1〉.

Step 5. Calculating the weights of DMs

The prior (LVs) linguistic variables are used by experts and
(DMs) decision makers to clarify their priorities, preferences
and the confirmation degree of linguistic variable according to

Table 11 The weighted matrix under MOORA method

Cn/ An C1 C2 C3 C4 C5 C6 C7

ϕ1 0.051 0.039 0.034 0.084 0.048 0.048 0.066

ϕ2 0.053 0.038 0.035 0.081 0.041 0.072 0.052

ϕ3 0.083 0.025 0.040 0.065 0.049 0.054 0.057

ϕ4 0.056 0.023 0.051 0.088 0.063 0.068 0.026

ϕ5 0.063 0.036 0.050 0.069 0.034 0.059 0.056

ϕ6 0.090 0.028 0.034 0.081 0.074 0.041 0.019

ϕ7 0.058 0.030 0.055 0.067 0.035 0.066 0.053

Table 12 The ranking of
alternatives under
MOORA method

Alternatives P∗i Ranking

ϕ1 1.44 3

ϕ2 1.83 1

ϕ3 1.39 2

ϕ4 2.35 7

ϕ5 2.22 5

ϕ6 2.76 4

ϕ7 2.17 6

Table 10 The ranking of
alternatives under AHP
method

Alternatives Vi Ranking

ϕ1 0.59 3

ϕ2 0.64 2

ϕ3 0.65 5

ϕ4 0.54 1

ϕ5 0.63 7

ϕ6 0.52 4

ϕ7 0.56 6

Table 9 The aggregated crisp values of decision matrix using by AHP
method

Cn/ An C1 C2 C3 C4 C5 C6 C7

ϕ1 0.48 0.69 0.5 0.64 0.55 0.51 0.82

ϕ2 0.53 0.73 0.55 0.67 0.51 0.84 0.69

ϕ3 0.85 0.48 0.63 0.54 0.61 0.63 0.76

ϕ4 0.47 0.38 0.66 0.60 0.64 0.64 0.29

ϕ5 0.65 0.69 0.78 0.57 0.42 0.68 0.75

ϕ6 0.76 0.44 0.44 0.56 0.77 0.39 0.22

ϕ7 0.53 0.51 0.77 0.49 0.39 0.68 0.64
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each (DM) decision maker or expert. The Table 1 presents the
criteria weights according to all decision makers, after decid-
ing (LVs) linguistic variables to each decisionmaker or expert.

Convert the linguistic variables into bipolar neutrosophic
numbers as in Table 2. Use Eq. (5) to aggregate weights in
BNNs. Then, employ Eq. (1) to calculate the crisp weight
values. After that, make a normalization procedure on the
previous values, as in Table 3. The Fig. 5 shows the values
of weights that equals: w1 = 0.17, w2 = 0.09, w3 = 0.11, w4 =
0.21, w5 = 0.14, w6 = 0.15, w7 = 0.13.

Step 6. Construct the evaluation matrix.

Obtain the final decision matrix by making the aggregation
procedure of decision makers’ priorities and preferences, as in
Table 4.

Step 7, 8. Calculate the crisp values of matrices and
insert them into the aggregated matrix.

Let each decision maker construct the matrix by comparing
the five alternatives against each criterion, by utilizing the
bipolar neutrosophic scale, previously presented in Step 2 of
this section. Use Eq. (1) to progress towards de-
neutrosophication in order to transform the bipolar
neutrosophic numbers into their crisp forms. Then, aggregate
the matrices and get the last evaluation matrix, pertinent to
decision makers’ committee. Employ Eq. (7) to aggregate

crisp values of evaluation matrices into a final matrix, as in
Table 5.

Apply the normalization process by using Eq. (8) to obtain
the normalized evaluation matrix, as presented in Table 6.

Build theweightedmatrix bymultiplying the normalized eval-
uation matrix by the weights of criteria using Eq. (9), as in
Table 7.

Step 9. Define Ideal Solution A+, A−.

Define the ideal solutions using Eqs. (11) and (12) as follows:

Aþ ¼ 0:090; 0:039; 0:055; 0:088; 0:074; 0:072 and 0:066f g;
A− ¼ 0:051; 0:023; 0:034; 0:065; 0:034; 0:041 and 0:019f g:

Step 10. Positive and Negative Ideal Solution S+i, S
−
i.

Calculate the Euclidean distance between positive solution
(S+i) and negative ideal solution (S

−
i) using Eqs. (13) and (14)

as follows:

Sþ1 ¼ 0:057f g; Sþ2 ¼ 0:050f g; Sþ3 ¼ 0:040f g; Sþ4

¼ 0:060f g; Sþ5 ¼ 0:054f g; Sþ6 ¼ 0:069f g; Sþ7

¼ 0:063f g:
S−1 ¼ 0:065f g; S−2 ¼ 0:058f g; S−3 ¼ 0:053f g; S−4

¼ 0:049f g; S−5 ¼ 0:041f g; S−6 ¼ 0:070f g; S−7
¼ 0:035f g:

Step 11. Rank the alternatives based on closeness
coefficient.

Calculate the performance score using Eq. (15), and make
the last ranking of alternatives as presented in Table 8.

The order for the optimal alternatives of smart medical
devices is Alternative 3, Alternative 2, Alternative 1,
Alternative 6, Alternative 4, Alternative 5 and Alternative 7,
as drawn in Fig. 6.

A1 A2 A3 A4 A5 A6 A7
proposed method 3 2 1 6 4 5 7
AHP 3 2 5 1 7 4 6
MOORA 3 1 2 7 5 4 6
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Fig. 7 The ranking of alternatives
according to the three methods:
our method, AHP and MOORA

Table 13 The ranking of alternatives by methods

Alternatives Pros. Method (1) AHP (2) MOORA(3)

ϕ1 3 3 3

ϕ2 2 2 1

ϕ3 1 5 2

ϕ4 6 1 7

ϕ5 4 7 5

ϕ6 5 4 4

ϕ7 7 6 6
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Step 12. Comparing the obtained results with other
methods.

In this step, compare the results of suggested method with
the results obtained by other existing methods, such as analyt-
ic hierarchy process (AHP) or a method from multi objective
decision-making techniques, as MOORA, to validate our
model. It is known that AHP does not consider feedback and
interdependency among elements of problem. The compari-
son matrix of alternatives relevant to each sub-criterion is
presented in Table 9. The final ranking of alternatives by
AHP method is listed in Table 10.

In addition, we used MOORA technique to validate our
proposed approach that is the multi objective decision making
(MODM) techniques submitted by Esra and Işık [33]. The
equations that are applied in our computation of MOORA
method are founded in [13]. The MOORA normalized matrix
and ranking of alternatives are listed in Tables 11 and 12.

The proposed method and the other two methods used for
the ranking of alternatives are aggregated in Table 13 and
presented in Fig. 7. We used SPSS program to calculate the
correlation coefficient among the different techniques and the
proposed approach, as shown in Table 14.

It is clear that alternative 3 is the best alternative according
to the results of the three methods applied, including the pro-
posed method.

Concluding Remarks

Better health attention can be possible by tracking medical
requirements of patients. Nowadays, patients tend to measure
themselves their activity, and consequently the medical de-
vices are not solely designed for healthcare specialists.
Medical tools, such as cardiac monitors or sugar analysis,
are getting smarter and started to be incorporated into numer-
ous devices, e.g. smart watches or smartphones. This research
introduces the Neutrosophic TOPSIS for an MCDM problem
method, namely the selection of sugar analyzing device for
diabetics. Furthermore, the suggested method is applied to a
practical case to compare seven smart medical devices using
seven evaluation criteria to validate the suggested approach,
employing experts’ opinion and extensive literature review.
The suggested method produces more realistic and accurate
results than other MCDM techniques, because TOPSIS can
capture, implement and model interactions between selection

criteria. In addition, a collection of experts is often more ben-
eficial than a single one, in order to reduce partiality and bias
of individual opinions and judgments, and the use of
Neutrosophic values enhances the transaction of selection.
The Neutrosophic theory can help in preventing the loss of
data, present linguistic declarations into analytical models and
help in including of nonnumeric statements. To complete the
ranking of alternatives based on the information collected, we
employ the neutrosophic with TOPSIS method. The verifica-
tion and effectiveness of the suggested method are compared
with other methods. Eventually, the Spearman’s coefficient of
correlation is applied to determine the relation among the re-
sults obtained by comparison. Although the presented meth-
odology is used for the selection of sugar analyzing devices
for diabetics’ patients, it can also be applied for other SMD
valuations. Additional research could extend the suggested
methodology to other types of SMDs selection procedures.
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Abstract

The project selection is one of the most important phases of a project life cycle. The project selection is considered as a Multi-Criteria
Decision-Making (MCDM) problem. This research aims to study the integration between Technique for Order Preference by Similarity
to Ideal Solution (TOPSIS) into Decision-Making Trial and Evaluation Laboratory (DEMATEL) under neutrosophic environment to
provide a new technique for making a decision regarding the choice of appropriate project (project selection) as one of the most impor-
tant phases of the project life cycle. Projects are selected by comparing them against many criteria. Criteria are evaluated based on
expert’s opinion. Sometimes experts cannot give reliable information due to the non-deterministic environment. The neutrosophic set
theory will be used to handle and overcome the ambiguity or lack of confirmation of information. The criteria are weighted by DEMA-
TEL, then the best project alternative is selected using TOPSIS. In the proposed model, each pairwise comparison judgments is symbol-
ized as a trapezoidal neutrosophic number. Experts will focus only on (n � 1) judgments for n alternatives to overcome the difficulties of
[(n * (n � 1))/2] consistence judgments in case of increasing number of alternatives. A numerical example is developed to show the val-
idation of the suggested model in the neutrosophic environment.

Keywords: Project life cycle; Project selection; TOPSIS; DEMATEL; Neutrosophic set; Trapezoidal neutrosophic number
1. Introduction and related works

A project is a set of related activities that are employed
to accomplish some goals. Any project has a life cycle. It
has been widely recognized that the selection of a project
is a critical phase of project life cycle. A life cycle of a pro-
ject consists of four stages, as shown in Fig. 1. The fastest
and most important stage in the life cycle of a project is the
project selection after the identification and evaluation of
the project. Project life cycle always starts with the client
by choosing the appropriate project from a set of available
52
alternatives (projects) for investment or for any other pur-
poses. Once the project is selected, the second stage is the
planning of the project by defining and determining the
scope of the work, basic schedule, time tradeoffs, and
resource consideration in a project. The third stage is pro-
ject implementation, and finally, the project completion.

In this research, we focus on the fastest and most impor-
tant stage of the project life cycle, i.e. the project selection
phase. Project selection is considered as a multi-criteria
decision-making (MCDM) problem, where the choice of
the preferred project among several projects depends on
the differentiation between projects based on certain
criteria. There are many studies (Aragonés-Beltrán,
Chaparro-González, Pastor-Ferrando, & Pla-Rubio,
2
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2014; Greco, Figueira, & Ehrgott, 2005; Lee & Kim, 2000,
2001; Meredith & Mantel, 2011; Pohekar &
Ramachandran, 2004; San Cristóbal, 2011; Santhanam &
Kyparisis, 1995; Schwalbe, 2015; Zavadskas, Turskis,
Tamošaitiene, & Marina, 2008) that discussed the most
important criteria on which to choose the best project
among several projects. There are several important criteria
related to the project selection. These criteria are invest-
ment, rate of return, risk, likely profit, pay back, similarity
to existing businesses, expected life, flexibility, environmen-
tal impact, and competition, as shown in Fig. 2. Multi-
criteria evaluation for project selection is a comparison
between several alternatives of the project against some
of criteria, as shown in Fig. 3, where rarely would one
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project emerge as the best on all chosen criteria. If that
happens, it is a dominant project and it should be clearly
chosen, but if this is not the case, as it happens in most
of the real situations, we should compare the different alter-
natives on different sets of chosen criteria. The criteria
(Fig. 4) are divided into tangible criteria and intangible cri-
teria. The tangible criteria are the measurable criteria in
units (e.g., payback period criterion measured in years
and investments measured in millions of dollars, and so
on). The intangible criteria are non-measurable criteria
(such as risk measured not in a unit that may be expressed
by very high, high, medium, low or very low). In case of
intangible criteria, we should develop a scale. In this paper,
we use the scale of (0–1) instead of (1–9). There are many
techniques used for evaluated the criteria and selecting
the best alternative among several ones considering several
criteria such as AHP, ANP, Delphi, MOORA, and so on.
In this research, we weighted the criteria using the
neutrosophic DEMATEL and then select the best project
alternative using neutrosophic TOPSIS. Multi-criteria
decision-making problem (MCDM) is a formal and sys-
tematic way of decision-making on complex problems
(Daneshvar Rouyendegh, 2011). Hwang and Yoon
(Wang and Yoon, 1981) proposed one of the most used
methods for MCDM; this method is TOPSIS (Technique
for order preference by similarity to an ideal solution).
Then the proposed set theories have provided the different
multi-criteria decision-making methods. TOPSIS method is
used to weight and compare set of alternatives against a set
of criteria and select the best one. The alternatives are com-
pared by the distance between alternatives and the optimal
solution, where the best alternative is of the shortest dis-
tance from the optimal solution and the worst alternative
is of the largest distance from the optimal solution. Many
research focus on MCDM methods used fuzzy data
(Bayrak, Celebi, & Tas�kin, 2007; Carlsson and Fullér,
1996; Chan, Kumar, Tiwari, Lau, & Choy, 2008; Chen,
2000; Chu, 2002; Haq & Kannan, 2006; Izadikhah, 2009;
Jahanshahloo, Lotfi, & Izadikhah, 2006a, 2006b; Önüt,
Kara, & Is�ik, 2009; Tsaur, Chang, & Yen, 2002). Fuzzy
sets focus only on the membership value and don’t aware
about non membership functions and indeterminacy value.
Fuzzy sets unable to deal with ambiguity and non deter-
ministic conditions. So we used neutrosophic set to deal
and overcome the lack of certain information and uncer-
tainty conditions. Boran, Genç, Kurt, and Akay (2009)
suggested TOPSIS method under intuitionistic fuzzy
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environment. Ye (2010) extended the TOPSIS technique in
interval-valued intuitionistic fuzzy sets. Science and
Human Affairs Program of the Battelle Memorial Institute
of Geneva founded DEMATEL method in the period from
1972 to 1979. Today it’s become one of the most widely
used tool for evaluating and weighting different criteria
related to specific problem Chiu, Chen, Tzeng, & Shyu,
2006; Liou, Tzeng, & Chang, 2007; Tzeng, Chiang, & Li,
2007; Wu and Lee, 2007; Lin and Tzeng, 2009). Yang,
Shieh, Leu, and Tzeng (2008) applied DEMATEL to study
and analyze the relationship of reasons and effect among
weighted criteria or to conclude interrelationship among
factors (Broumi, Bakali, Talea, & Smarandache, 2016).
In this research, we combine the TOPSIS into DEMATEL
under neutrosophic set to solve the project selection
problem.

2. Preliminaries

Neutrosophic theory was developed by Florentin
Smarandache in 1998. In this section, we present defini-
tions involving neutrosophic sets, single-valued neutro-
sophic sets, trapezoidal neutrosophic numbers, and
operations on trapezoidal neutrosophic numbers.

Definition 1 El-Hefenawy, Metwally, Ahmed, & El-
Henawy, 2016.. Let X be a space of points and x 2 X. A
neutrosophic set A in X is defined by a truth-membership
function T A(x), an indeterminacy-membership function
IA(x) and a falsity-membership function F A(x), T A(x),
IA(x) and F A(x) are real standard or real nonstandard
subsets of ]�0, 1+[. That is T A(x):X?]�0, 1+

[IA(x):X?]-0, 1+[ and F A(x):X?]-0, 1+[. There is no
restriction on the sum of T A(x), IA(x) and F A(x), so 0� �
sup (x) + sup x � 3+.
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Definition 2 (Abdel-Baset, Hezam, & Smarandache, 2016;
El-Hefenawy et al., 2016; Hezam, Abdel-Baset, &

Smarandache, 2015; Saaty, 2006.). Let X be a universe of
discourse. A single valued neutrosophic set A over X is
an object taking the form A = {hx, T A(x), IA(x), F A(x),i:x
2 X}, where T A(x):X? [0, 1], IA(x):X? [0, 1] and F A(x):
X?[0, 1] with 0� T A(x) + IA(x) + F A(x) �3 for all x 2
X. The intervals T A(x), IA(x) and F A(x) represent the
truth-membership degree, the indeterminacy-membership
degree and the falsity membership degree of x to A, respec-
tively. For convenience, a Single Valued Neutrosophic
(SVN) number is represented by A= (a, b, c), where a, b,
c2 [0, 1] and a + b + c � 3.

Definition 3 Mahdi, Riley, Fereig, & Alex, 2002.. Suppose
aa, ha, ba e [0, 1] and a1, a2, a3, a4� R, where a1 � a2 �
a3 � a4. Then, a single valued trapezoidal neutrosophic
number a=h(a1, a2, a3, a4); aa, ha, bai is a special neutro-
sophic set on the real line set R, whose truth-
membership, indeterminacy-membership and falsity-
membership functions are defined as:

T aðxÞ ¼

aa
x�a1
a2�a1

� �
ða1 � x � a2Þ

aa ða2 � x � a3Þ
aa

a4�x
a4�a3

� �
ða3 � x � a4Þ

0 otherwise

8>>>>>>><
>>>>>>>:

ð1Þ

IaðxÞ ¼

ða2�xþha x�a1ð ÞÞ
ða2�a1Þ ða1 � x � a2Þ
aa ða2 � x � a3Þ

ðx�a3þha a4�xð ÞÞ
ða4�a3Þ ða3 � x � a4Þ
1 otherwise

8>>>>><
>>>>>:

ð2Þ
4
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F aðxÞ ¼

ða2�xþba x�a1ð ÞÞ
ða2�a1Þ ða1 � x � a2Þ
aa ða2 � x � a3Þ

ðx�a3þba a4�xð ÞÞ
ða4�a3Þ ða3 � x � a4Þ
1 otherwise;

8>>>><
>>>>:

ð3Þ

where aa, ha and ba typify the maximum truth-membership
degree, the minimum indeterminacy-membership degree
and the minimum falsity-membership degree, respectively.
A single valued trapezoidal neutrosophic number a =
h(a1, a2, a3, a4); aa, ha, bai may express an ill-defined quan-
tity of the range, which is approximately equal to the inter-
val [a2, a3].

Definition 4 (Izadikhah, 2009; Liou et al., 2007.). Let a =

h(a1, a2, a3, a4); aa, ha, bai and b = h(b1, b2, b3, b4); ab, hb,
bbi be two single valued trapezoidal neutrosophic numbers,
and Y – 0 be any real number. Then:

1. Addition of two trapezoidal neutrosophic numbers:
aþ b ¼ hða1 þ b1; a2 þ b2; a3 þ b3; a4 þ b4Þ; aa�a�ab; ha�a�hb;ba�a�bbi

2. Subtraction of two trapezoidal neutrosophic numbers:
Determine the problem and select the 
experts. 

Start 
a� b ¼ hða1 � b4; a2 � b3; a3 � b2; a4 � b1Þ; aa�a�ab; ha�a�hb;ba�a�bbi

3. Inverse of trapezoidal neutrosophic numbers:

a�1 ¼ ð 1
;
1
;
1
;
1

� �
; aa; ha; bai where ða–0Þ
a4 a3 a2 a1

Iden�fy all projects alterna�ve and the 
important criteria affecting the project 

selec�on problem. 

Weight the criteria using Neutrosophic 
DEMATEL technique 
4. Multiplication of trapezoidal neutrosophic numbers by
constant value:

Y a ¼ h Ya1;Ya2;Ya3;Ya4ð Þ; aa; ha; bai if ðY > 0Þ�
Rank the project alterna�ves using 
neutrosophic TOPSIS techniques 

Select the appropriate project and make a 
decision 
h Ya4;Ya3;Ya2;Ya1ð Þ; aa; ha; bai if ðY < 0Þ

5. Division of two trapezoidal neutrosophic numbers:

a1
b4
; a2b3 ;

a3
b2
; a2b1

� �
; a~aKa~b; h~avh~b; b~aV b~b

D E
if ða4 > 0; b4 > 0Þ� �D E

8>>>><
Stop 

Fig. 5. The framework of the proposed model.
~a
~b
¼ a4

b4
; a3b3 ;

a2
b2
; a1b1 ; a~aKa~b; h~avh~b; b~aV b~b if ða4 < 0; b4 > 0Þ

a4
b1
; a3b2 ;

a2
b3
; a1b4

� �
; a~aKa~b; h~avh~b; b~aV b~b

D E
if ða4 < 0; b4 < 0Þ

>>>>:

6. Multiplication of trapezoidal neutrosophic numbers:
~a~b ¼
a1b1; a2b2; a3b3; a4b4ð Þ; a~aKa~b; h~avh~b; b~aV b~bh i if ða4 >
a1b4; a2b3; a3b2; a4b1ð Þ; a~aKa~b; h~avh~b; b~aV b~bh i if ða4 <
a4b4; a3b3; a2b2; a1b1ð Þ; a~aKa~b; h~avh~b; b~aV b~bh i if ða4 <

8><
>:
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3. Methodology

Fuzzy set theory was applied in many studies, but it
Collected Papers, VI
focuses only on membership value. The intuitionistic fuzzy
set theory developed by Atanassov, deals with membership
and non-membership value. The neutrosophic set theory is
developed by Smarandache, and it treats the uncertainty
and ambiguity by adding the indeterminacy besides truthi-
ness and falsity values. In this section, the framework of the
proposed model is shown in Fig. 5, we present the pro-
posed TOPSIS - DEMATEL based on the neutrosophic
set model as follows:

3.1. The neutrosophic DEMATEL technique

Step1: We start with neutrosophic DEMATEL method
for evaluating and weighting the important criteria affect-
ing the project selection problem. To weight the criteria,
we should do the following:

1. Select those experts who have great experiences in pro-
ject management.
0; b4 > 0Þ
0; b4 > 0Þ
0; b4 < 0Þ



Table 1
Pairwise comparison among criteria with the degree of (a, b, and h).

C Y1 Y2 . . . Yn

Y1 (L11, m11l, m11u, u11; a, b, h) (L12, m12l, m12u, u12; a, b, h) . . . (L1n, m1nl, m1nu, u1n; a, b, h)
Y2 (L21, m21l, m21u, u21; a, b, h) (L22, m22l, m22u, u22; a, b, h) . . . (L2n, m2nl, m2nu, u2n; a, b, h)
. . . . . .. . .. . . . . .. . .. . . . . . . . .. . .. . .
Yn (Ln1, mn1l, mn1u, un1; a, b, h) (Ln2, mn2l, mn2u, un2; a, b, h) . . . (Lnn, mnnl, mnnu, unn; a, b, h)

Table 2
Crisp value relative to each expert.

Criteria Y1 Y2 . . . Yn

Y1 CV11 CV12 . . . CV1n

Y2 CV21 CV22 . . . CV2n

. . . . . .. . .. . . . . .. . .. . . . . . . . .. . .. . .
Yn CVn1 CVn2 . . . CVnn
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2. List and identify the most important criteria affecting
the project selection problem.

3. Each expert makes a pairwise comparison among the
important related criteria (Y1, Y2, . . ., Yn) in a trape-
zoidal neutrosophic number (lnm, mnml, mnmu, unm),
and also express the maximum truth-membership degree
(a), the minimum indeterminacy-membership degree (b),
and the minimum falsity membership degree (h) of single
valued neutrosophic numbers (lnm, mnml, mnmu, unm; a,
b, h), using a scale form(0–1) and focusing only on
(n�1) consensus judgments (Abdel-Basset, Mohamed,
& Sangaiah, 2017), as shown in Table 1.

4. Calculate the crisp value of each expert’s opinion, as
shown in Table 2, using the following equations:

SðaijÞ ¼ 1=16½a1þ b1þ c1þ d1� � ð2þ a a�h a�b aÞ ð4Þ
Table 4
Crisp value of pairwise comparison relative to each expert.

Y1 Y2 . . . Yn

P1 CV11 CV12 . . . CV1n

P2 CV21 CV22 . . . CV2n

. . . . . .. . .. . . . . .. . .. . . . . . . . .. . .. . .

Pm CVm1 CVm2 . . . CVmn
AðaijÞ ¼ 1=16½a1þ b1þ c1þ d1� � ð2þ a a�h aþb aÞ ð5Þ

5. Combine all experts’ opinions in one integration matrix
and calculate the average of expert’s opinions by divid-
ing all experts’ opinion for each criterion by the number
of experts (n) considered in the problem. Calculate aver-
age value for each value for each expert by dividing each
value by the number of experts (n) as shown in Eq. (6),
and then combine all averaged values of the all of
expert’s opinion in one matrix called the initial directed
relation matrix A, where a is n � n matrix of pairwise
comparisons by all expert, S = [Sij]n*n, where S is the
degree of each criterion i on criterion j.
Table 3
Decision matrix of pairwise comparisons based for each expert.

Y1 Y2

P1 (l11, m11l, m11u, u11; a, b, h) (l12, m12l, m12u, u
P2 (l21, m21l, m21u, u21; a, b, h) (l22, m22l, m22u, u
. . . . . .. . .. . . . . .. . .. . .

Pm (lm1, mm1l, mm1u, um1; a, b, h) (lm2, mm2l, mm2u,
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CV11 ¼ CV11n1þ CV11n2þ � � � þ CV11nm ð6Þ
12;

22;

um

6

n

6. Normalizing the initial direct relation matrix (A) using
Eqs. (7) and (8).

K ¼ 1

Max 1 � i � nð ÞPn aij
ð7Þ
j¼1

S ¼ K�A ð8Þ

7. Obtaining the total relation matrix (T) by applying Eq.
(9), where I is the identity matrix of the same size of S
matrix obtained in the previous step.
T ¼ S� ðI � SÞ�1 ð9Þ
8. Calculate the sum of rows (D) and the sum of columns
(R), then calculate (R + D) and (R � D), furthermore
make a causal diagram between (R + D) and (R � D),
and arrange the criteria relative to their importance by
weighting them.

Step 2: After weighting the criteria, we apply the neutro-
sophic TOPSIS method to compare between the set of
projects alternatives against set weighted criteria obtained
from step 1. To select the best project among several
projects using neutrosophic TOPSIS, we should do the
following:

1. Obtain the decision matrix between different project
alternatives(Pi) and criteria (Yj) based on the opinion
. . . Yn

a, b, h) . . . (l1n, m1nl, m1nu, u1n; a, b, h)
a, b, h) . . . (l2n, m2nl, m2nu, u2n; a, b, h)

. . . . . .. . .. . .

2; a, b, h) . . . (lmn, mmnl, mmnu, umn; a, b, h)



Main 
criteria for 

fighter 
aircraft 

selection 

Y1
Ferry range 
(in nautical 

miles) Y2
Aquisition 

cost (in 
million 
dollars)

Y3
Maximum 
speed in 

mach 
numbersY4

Maximum 
payload  in 

(lbs)

Y5
Reliability 
(high-low)

Y6
Maneuvera

bility
(high-low)

Fig. 6. Main criteria for fighter aircraft selection problem example.
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of decision makers based on trapezoidal neutrosophic
single values with (a, b, h)and after using the numerical
scale (0–1) for intangible criteria, as shown in Fig. 3 and
expressed in Table 3.

2. Determine the crisp value of the decision matrix
obtained in the previous matrix by Eqs. (4) and (5), to
obtain the following Table 4.

3. In Table 4, we evaluated each project alternative (Pi) by
a set of criteria (Yj) because the criteria have not the
same measuring units, and some of them are tangible
and some are not tangible, as shown in the introduction.
The next step is getting the normalized decision matrix,
R, using the equation (10). The elements of normalized
decision matrix are fractions between 0 and 1.

rij ¼ Yij=sqroot ðsum; i ¼ 1; � � � ::; n of Y2
ijÞ ð10Þ
er
t.

.4
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5. Obtain IDEAL (A ) and Negative IDEAL (A ) solu-

tions from the weighted decision matrix V. where (A*)
is the best possibilities for each criterion among all alter-
natives in V and it’s the largest value if profit and the
smallest value in case of cost criterion measures. And
(A�) is the worst possibilities for each criterion among
all alternatives in V and it’s the smallest value if profit
criterion measure and largest if cost measurable criterion.
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Table 6
The crisp matrix for expert 1.

Y1 Y2 Y3 Y4 Y5 Y6

Y1 0.5 0.261 0.425 0.375 0.368 0.203
Y2 0.27 0.5 0.1 0.25 0.166 0.158
Y3 0.216 0.255 0.5 0.261 0.22 0.214
Y4 0.375 0.191 0.13 0.5 0.263 0.371
Y5 0.1 0.169 0.261 0.219 0.5 0.158
Y6 0.188 0.191 0.191 0.244 0.255 0.5
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6. Calculate the separation measures from ideal (Si
*) and

negative ideal (Si
�) Eqs. (12) and (13) solution for all

alternatives i = 1, . . .,m. where:
Y
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solution (Ci

*, i = 1,. . .., m) by Eq. (14). The closeness rat-
ing is a number between 0 and 1with 0 being the worst
possible alternative and 1 being the best possible
alternative.
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1. Make a decision for selecting the preference alternative
project and determine the preference order by arranging
alternatives in descending order, based on the relative
closeness value for each alternative.
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4. Illustrative example

This example illustrates the process of evaluating several
projects and selects the best project using neutrosophic
TOPSIS-DEMATEL, which is employed for weighting
the different criteria affecting the process of projects evalu-
ation. Then, a comparison is performed between the alter-
native projects and the weighted criteria. In this example,
we consider four projects under the fighter aircraft selec-
tion. We consider six important criteria affecting the fighter
aircraft selection. The six important criteria and their mea-
surable units are presented in Fig. 6.

First, we apply the neutrosophic DEMATEL technique
for weighting the main six criteria (in Fig. 6) for this prob-
lem, and then we apply the TOPSIS technique in the neu-
trosophic environment to select the best project. For
more details, we follow the next steps:

Step 1: Start with neutrosophic DEMATEL by imple-
menting the following:

1. Select the experts in project management field; we select
three experts in this example.
T P Y Y Y Y Y Y
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Table 8
The crisp matrix for the second expert 2.

Y1 Y2 Y3 Y4 Y5 Y6

Y1 0.5 0.273 0.42 0.263 0.236 0.368
Y2 0.281 0.5 0.175 0.25 0.125 0.158
Y3 0.244 0.321 0.5 0.285 0.214 0.181
Y4 0.266 0.275 0.191 0.5 0.359 0.358
Y5 0.13 0.131 0.138 0.341 0.5 0.202
Y6 0.216 0.214 0.12 0.122 0.281 0.5
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2. Identify the main criteria affecting the fighter aircraft
selection problem, as presented in Fig. 6.

3. Make pairwise comparison matrix for each expert
based on the trapezoidal neutrosophic number to eval-
uate each criterion against the others, as shown in
Tables 5, 7, and 9.

4. Calculate the crisp value for each pairwise comparison
matrix (for each expert opinion) using Eqs. (4), and (5).
These crisp values are presented in Tables 6, 8, and 10.

5. Generate the initial directed matrix (s) by integrating
the three matrices of expert’s opinion using Eq. (6).
The initial directed matrix is displayed in Table 11.

6. Generate the generalized direct relation matrix by nor-
malizing the initial directed matrix using Eq. (7) to get
the value of K, and then apply Eq. (8) to get the gener-
alized direct relationmatrix, as carried forth in Table 12.
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7. Calculate the total relation matrix using Eq. (9), as
introduced in Table 13, where (I) is the identity matrix.

8. Calculate the sum of each row and column in the total
relation matrix (T), then draw causal diagram between
the summation of rows and columns as a horizontal
line and the differences between rows and column as
vertical axes, as pictured in Fig. 7.
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Table 10
The crisp matrix for the third expert.

Y1 Y2 Y3 Y4 Y5 Y6

Y1 0.5 0.331 0.381 0.282 0.236 0.309
Y2 0.248 0.5 0.2 0.225 0.125 0.123
Y3 0.213 0.261 0.5 0.288 0.238 0.202
Y4 0.27 0.263 0.234 0.5 0.359 0.426
Y5 0.13 0.19 0.22 0.263 0.5 0.238
Y6 0.234 0.214 0.15 0.117 0.248 0.5

Table 11
The initial directed matrix.

Y1 Y2 Y3 Y4 Y5 Y6

Y1 0.5 0.288 0.409 0.307 0.28 0.293
Y2 0.266 0.5 0.158 0.242 0.139 0.146
Y3 0.224 0.279 0.5 0.278 0.224 0.199
Y4 0.304 0.243 0.185 0.5 0.327 0.385
Y5 0.12 0.163 0.206 0.274 0.5 0.199
Y6 0.213 0.206 0.153 0.161 0.261 0.5

Table 12
The generalized direct relation matrix X.

Y1 Y2 Y3 Y4 Y5 Y6

Y1 0.2405 0.138528 0.196729 0.147667 0.13468 0.140933
Y2 0.127946 0.2405 0.075998 0.116402 0.066859 0.070226
Y3 0.107744 0.134199 0.2405 0.133718 0.107744 0.095719
Y4 0.146224 0.116883 0.088985 0.2405 0.157287 0.185185
Y5 0.05772 0.078403 0.099086 0.131794 0.2405 0.095719
Y6 0.102453 0.099086 0.073593 0.077441 0.125541 0.2405
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Table 13
The total relation matri

Y1

Y1 0.9547
Y2 0.6164
Y3 0.6711
Y4 0.7956
Y5 0.5102
Y6 0.5746
Col + Row
x T.

Y2 Y3 Y4 Y5

0.8651 0.9025 0.9166 0.888
0.7566 0.5401 0.6411 0.568
0.7220 0.8108 0.7538 0.710
0.7783 0.7128 0.9574 0.864
0.5502 0.5513 0.6478 0.766
0.5861 0.5315 0.5870 0.642
Col-Row

Col-Row
1
 9.5413
 �1.2961

Fig. 7. The causal diagram for the six criteria.
2
 7.9533
 0.5633
3
 8.4096
 �0.3116

4
 9.5075
 �0.5001
Table 14
5
 8.0609
 0.8179
The decision matrix of the fighter aircraft selection.
6
 8.1078
 0.7266
Y1 Y2 Y3 Y4 Y5 Y6
P1 1500� 5.5� 2� 20,000� Avg� V.high�

P2 2700� 6.5� 2.5� 18,000� Low� Avg�

P3 200� 4.5� 1.8� 21,000� High� High�

P4 1800� 5� 2.2� 20,000� Avg� Avg�
9. Weight the six criteria based on the causal diagram. The
importance of all criteria is evaluated and ranked based
on the expert’s opinion and introduced in the causal
Y6

0 0.8918
0 0.5728
1 0.6928
1 0.8956
4 0.5956
8 0.7686
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diagram as follows: the reliability criterion is the most
important criterion for project selection (Y5), and the
least important criterion is the ferry range (Y1).
Based on the expert’s opinion and neutrosophic
DEMATEL method, the weights of considered criteria
relative to their importance are (0.1, 0.2, 0.1, 0.1, 0.3,
and 0.2).

Step 2: Apply the Neutrosophic TOPSIS for ranking the
four projects and select the best one, by performing the
following:

1. Obtain the decision matrix between the four project
alternatives (P1-P4) and the six criteria (Y1-Y6)
[Tables 14–17]. These values are crisp values, based
on the opinion of decision-makers expressed by trape-
zoidal neutrosophic single values with (a, b, h), using
the numerical scale (0–1) for intangible criteria
[Fig. 8].
Table 15
The decision matrix of the fighter aircraft selection with the numerical
scale of intangible criteria.

Y1 Y2 Y3 Y4 Y5 Y6

P1 1500� 5.5� 2� 20,000� 0.5� 0.9�

P2 2700� 6.5� 2.5� 18,000� 0.3� 0.5�

P3 200� 4.5� 1.8� 21,000� 0.7� 0.7�

P4 1800� 5� 2.2� 20,000� 0.5� 0.5�

0
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2. Generate the normalized decision matrix (R) using Eq.
(10), as presented in Table 18; notice that all rij is
between 0 and 1.

W= (0.1, 0.2, 0.1, 0.1, 0.3, 0.2)

3. Obtain the weighted decision matrix V by multiplying
each column of R with the corresponding criterion
weight (the output of step 1), using Eq. (11), as pre-
sented in Table 19.

4. In the weighted matrix (Table 19), we determine for
each criterion the best value (the largest value) and
the worst value (the smallest value). This is done
for all benefits criteria such as (Y1, Y3, Y4, Y5,
and Y6), but in case of cost criteria we select the
smallest value as the best value, and the largest
value as the worst value, such as criterion Y2 in
our example, where Y2 represents the acquisition
cost. Obtain the ideal (the best possible solution)
and negative (the worst possible solution) ideal solu-
tion A*, and A�.
A* = (0.078886, 0.072335, 0.05809, 0.063816, 0.18124,
0.152606)
A� = (0.004985, 0.137315, 0.039623, 0.03697, 0.105724,
0.057398)

5. Calculate the separation measures from ideal and nega-
tive ideal solution Si*, Si� using Eqs. (12) and (13), as
shown in Table 20.

6. Compute the relative closeness to the ideal solution for
each alternative by using Eq. (14); the relative closeness
values are expressed in Table 21:

7. Finally, rank four alternatives based on their relative
closeness value. Determine the preference order by
arranging the alternatives of the relative closeness
values for alternatives in the descending order of
Ci*, i = 1, 2, 3, 4. Thus, the rank of alternatives in
the fighter aircraft selection problem using neutro-
sophic TOPSIS-DEMATEL emerges as A1, A4, A3,
and A2.



Table 17
The equivalent crisp values of the decision matrix.

Y1 Y2 Y3 Y4 Y5 Y6

P1 596.25 2.10375 0.7875 8718.75 0.19125 0.41875
P2 1175 3.15 1.0125 6221.25 0.150938 0.182813
P3 74.25 1.659375 0.690625 7288.75 0.239063 0.26
P4 690.625 1.986875 0.95625 10738.75 0.25875 0.1575

Table 18
The normalized decision matrix.

Y1 Y2 Y3 Y4 Y5 Y6

P1 0.400302 0.458533 0.451807 0.518117 0.446533 0.763028
P2 0.788855 0.686574 0.580895 0.369702 0.352412 0.333114
P3 0.049849 0.361677 0.396228 0.433139 0.558167 0.473761
P4 0.463662 0.433059 0.548623 0.638157 0.604133 0.28699

Table 19
The weighted decision matrix V, with best and worst values.

Y1 Y2 Y3 Y4 Y5 Y6

P1 0.04003 0.091707 0.045181 0.051812 0.13396 0.152606

P2 0.078886 0.137315 0.05809 0.03697 0.105724 0.066623
P3 0.004985 0.072335 0.039623 0.043314 0.16745 0.094752
P4 0.046366 0.086612 0.054862 0.063816 0.18124 0.057398

Table 20
The separation measures from ideal and negative
ideal solution Si*, and Si�.

Separation measures from

Ideal solution Negative ideal solution

S1* = 0.0666 S1� = 0.1158
S2* =0.1343 S2� = 0.0767
S3* = 0.0988 S3� = 0.0973
S4* = 0.1017 S4� = 0.1046

Table 21
The relative closeness to the ideal
solution for each alternative.

Alternatives Relative closeness value

1 C1* = 0.634868
2 C2* = 0.363507
3 C3* = 0.496175
4 C4* = 0.507029
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5. Conclusion and future work

Neutrosophic set is the most comprehensive set, which
includes both fuzzy set and intuitionistic fuzzy set, as it
considers the indeterminacy function in addition to truth-
membership and falsity membership, being suitable in ana-
lyzing real situations. Also, in real life situations, accurate
judgments are rarely since ambiguity and uncertainty sur-
round the decision-making process. To solve the problem
53
of project selection, the important criteria should be iden-
tified well, and then the selection process should be per-
formed among several alternative projects. In this
research, we considered parameters of TOPSIS-
DEMATEL comparison matrices as trapezoidal neutro-
sophic numbers. TOPSIS is combined with the DEMA-
TEL for more powerful and accurate weighted criteria,
helping the selection of the best project alternative. Neutro-
sophic TOPSIS-DEMATEL model presented here is used
for assisting the decision of project selection phase of pro-
ject life cycle. We consider only (n-1) consensus judgment
for each expert, for n numbers of alternatives. As well,
we consider the (0–1) scale for intangible criteria. The pro-
ject selection is a very important phase of any project life
cycle after identification and appraisal of projects. In the
future, we enhance the proposed model to solve the differ-
ent phases of a project’s life cycle. Moreover, we plan to
solve the selection project problem with more complex
techniques dealing with Multi-Criteria Decision-Making
problems.
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a b s t r a c t

This paper proposes an advanced type of neutrosophic technique, called type 2 neutrosophic numbers,
and defines some of its operational rules. The type 2 neutrosophic number weighted averaging operator
is determined in order to collective the type 2 neutrosophic number set, inferring some properties of the
suggested operator. The operator is employed in a MADM problem to collect the type 2 neutrosophic
numbers based classification values of each alternative over the features. The convergent classification
values of every alternative are arranged with the assistance of score and accuracy values with the aim to
detect the superior alternative.We introduce an illuminating example to confirm the suggested approach
for multi attribute decision making issues, ordering the alternatives based on the accuracy function.
Selecting an appropriate alternative among the selection options is a difficult activity for decisionmakers,
since it is complicated to express attributes as crisp numbers. To tackle the problem, type 2 neutrosophic
numbers can be efficiently used to estimate information in the decision making process. The type 2
neutrosophic numbers can accurately describe real cognitive information. We propose a novel T2NN-
TOPSIS strategy combining type 2 neutrosophic numbers and TOPSIS under group decision making as
application of T2NN, suggesting a type 2 neutrosophic number expression for linguistic terms. Finally,
we provide a real case dealing with a decision making problem based on the proposed T2NN-TOPSIS
methodology to prove the efficiency and the applicability of the type 2 neutrosophic number.

1. Introduction

Fuzzy theory was established on the notion of membership
function to take linguistic variables into consideration. The theory

Abbreviations: T2NN, Type 2 neutrosophic number; T2NNWA, Type 2
neutrosophic number weighted averaging; NPIS, Neutrosophic positive ideal
solution; NNIS, Neutrosophic negative ideal solution; GDM, Group decision
making; TOPSIS, Technique for order preference by similarity to ideal solution;
SVN, Single valued neutrosophic; ANP, Analytical network process; MDM, Multi
decision making; MADM, Multi attribute decision making; MAGDM, Multi
attribute group decision making; MCDM, Multicriteria decision making

seeks to deem uncertain data which can be related with exis-
tent fuzziness of peoples’ observations and perceptions. The re-
sults indicate that they are strongly affected by self-regulation in
such circumstances. Fuzzy has confirmed functionality in dealing
with vagueness and ambiguity of human intellect and expression
while decision making. Hence, the Neutrosophic is an extension
of the fuzzy theory and intuitionistic fuzzy set (IFS). Smarandache
proposed the neutrosophic sets in [1,2], attracting the attention
of many scholars. The neutrosophic sets proved to be a valid
workspace in describing incompatible and indefinite information.
z(T, I, F) is a Type-1 Neutrosophic Number. But z((TT, TI, TF), (IT,
II, IF), (FT, FI, FF)) is a Type-2 Neutrosophic Number, which means
that each neutrosophic component T, I, and F is split into its truth,
indeterminacy, and falsehood subparts. The procedure of splitting
may be executed recurrently, as many times as needed, obtaining
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a general Type-n Neutrosophic Number, for any integer n ≥ 1.
Here, we use the type 2 neutrosophic number as advancement of
neutrosophic number to solve MCDM problems.

A neutrosophic set has more possibility strength than other
forming mathematical apparatus, such as fuzzy set [3], interval
valued intuitionistic fuzzy set (IVIFS) [4] or IFS [5]. Smarandache
combined the degree of indeterminacy as independent element in
IFS and defined the neutrosophic set [6] as a generalization of IFSs.
Georgiev [7] questioned that the neutrosophic logic is qualified
for preserving formal operators, since there is no standardiza-
tion base for the elements T, I and F. However, fuzzy sets and
IFSs cannot deal with certain types of uncertain information, such
as incompatible, indefinite, or incomplete information. Smaran-
dache [8] recognized neutrosophic set as a generalization of IFS,
whichperforms a significant role to transact unclear, unpredictable
and indeterminate information in the real world. The truth, in-
determinacy and falsity degrees exist in the non-standard item
interval suitable for each element of the universe [8]. In these days,
Neutrosophic received attentions frommany researches were pro-
ceed to develop, improve and expand the neutrosophic theory [9–
16]. The neutrosophic set expanded to many branches, such as
topology, image conversion or social science. We used single val-
ued neutrosophic set [17] (SVNS), a subclass of neutrosophic set,
in which every component of the universe is described by the
truth, indeterminacy and falsity memberships existing in the ac-
tual unit interval. Liu and Liu [18] introduced neutrosophic number
generalized weighted power averaging operator (NNGWPAO) and
suggested a MAGDM strategy in neutrosophic number environ-
ment. Peng et al. [19] suggested a MAGDM strategy constructed
on neutrosophic number generalized hybrid weighted averaging
operator. Ye [20] introducedweighted arithmetic average operator
for simplified neutrosophic sets. Hence, we will refer to TOPSIS
methodology that is a widespread strategy to transact MAGDM.
TOPSIS [21] helps choosing the best selection, which is the nearest
to the quixotic solution and the farthest from the negative quixotic
solution. Information of attributes that aggregated from experts
and decision maker/makers is the base of the TOPSIS strategy.
In crisp setting, an extended TOPSIS strategy for MAGDM under
GDM was established by Shih [22]. A TOPSIS strategy for group
decision making was suggested by Hatami [23]. Ravasan et al. [24]
developed a fuzzy TOPSIS strategy for an e-banking outsourcing
strategy selection in fuzzy environment. Banaeian et al. [25] intro-
duced a fuzzy TOPSIS for GDM for green supplier selection for an
actual company from the agri-food sector. In intuitionistic fuzzy
environment, Büyüközkan et al. [26] elaborated an MAGDM for
supplier electionwith TOPSIS strategy. Gupta et al. [27] established
a protracted TOPSIS method under interval-valued intuitionistic
fuzzy environment.Wang et al. [28] suggested a TOPSIS strategy for
MAGDM in single valued neutrosophic environment. Ju et al. [29]
propounded a TOPSIS strategy for MAGDM established on SVN lin-
guistic numbers. A TOPSIS strategy was presented in neutrosophic
cubic set environment by Pramanik et al. [30]. A TOPSIS strategy for
MADM in bipolar neutrosophic set environment was put forward
by Dey et al. [31]. Abdel-Basset et al. [32] suggested an ANP-TOPSIS
strategy for supplier selection problems with interval valued neu-
trosophic. TOPSIS strategy is yet to approach T2NN environment.
To fill the research gap, we improve a MAGDM strategy built

on TOPSIS in type 2 neutrosophic number environment, namely
T2NN-TOPSIS strategy to solve MAGDM issues.

Contribution of this paper:

• We state a T2NN, score function and accuracy function of
T2NN, and prove its basic properties.

• We define T2NNWA to aggregate T2NN decision matrices.
• We propose linguistic terms to present T2NN.
• We suggest a tangential function to locate unidentified

weights of attributes in T2NN setting.
• We develop a T2NN-TOPSIS strategy to solve MAGDM prob-

lems in T2NN environment.
• The proposed T2NN-TOPSIS is comprehensive, presenting all

vague and incomplete information about all elements.
• We present an illustrative model of a MADM problem.

Table 1 below provides a literature review. Section 2 introduces
several basic concepts of T2NN, operations on T2NN, applications
of T2NNWA operator to MADM, two properties on T2NNWA and
a numerical example. Section 3 clarifies the procedure for TOPSIS-
T2NNmethodology for the evaluation suppliers. Section 4 provides
a real example based on the proposed T2NN-TOPSIS strategy. Sec-
tion 5 concludes the research.

2. Preliminaries

We introduce several basic concepts of T2NN, operations on
T2NN, applications of T2NNWA operator to MADM, and two prop-
erties on T2NNWA.

Definition 1. Let Z be the limited universe of discourse and F [0, 1]
be the set of all triangular neutrosophic numbers on F [0, 1]. A
type 2 neutrosophic number set (T2NNS) Ũ in Z is represented
by Ũ =

{⟨
z, T̃Ũ (z) , ĨŨ (z) , F̃Ũ (z) | z ∈ Z

⟩}
, where T̃Ũ (z) : Z →

F [0, 1] , ĨŨ (z) : Z → F [0, 1] , F̃Ũ (z) : Z → F [0, 1]. A T2NNS
T̃Ã (z) =

(
TTŨ (z) , TIŨ (z) , TFŨ (z)

)
, ĨŨ (z) =

(
ITŨ (z) , IIŨ (z) , IFŨ (z)

)
,

F̃Ũ (z) =

(
FTŨ (z) , FIŨ (z) , FFŨ (z)

)
, respectively, denote the truth,

indeterminacy, and falsity memberships of z in Ũ and for every
z ∈ Z: 0 ≤ T̃Ũ (z)3+ ĨŨ (z)3+ F̃Ũ (z)3 ≤ 3; for convenience, we con-
sider that Ũ=

⟨(
TTŨ (z) , TIŨ (z) , TFŨ (z)

)
,

(
ITŨ (z) , IIŨ (z) , IFŨ (z)

)
,(

FTŨ (z) , FIŨ (z) , FFŨ (z)
)⟩

as a type 2 neutrosophic number.

Definition 2. Suppose Ũ1=

⟨(
TTŨ1

(z) , TIŨ1
(z) , TFŨ1

(z)
)

,(
ITŨ1

(z) , IIŨ1
(z) , IFŨ1

(z)
)

,

(
FTŨ1

(z) , FIŨ1
(z) , FFŨ1

(z)
)⟩

and Ũ2 =⟨(
TTŨ2

(z) , TIŨ2
(z) , TFŨ2

(z)
)

,

(
ITŨ2

(z) , IIŨ2
(z) , IFŨ2

(z)
)

,(
FTŨ2

(z) , FIŨ2
(z) , FFŨ2

(z)
)⟩

are two T2NNS in the set real num-
bers. Then the procedures are defined as Eqs. (1)–(4) in Box I.

The procedures defined in Definition 2 satisfy the following
properties:

1. Ũ1⊕ Ũ2 = Ũ2⊕ Ũ1, Ũ1 ⊗ Ũ2 = Ũ2 ⊗ Ũ1;
2. δ(Ũ1 ⊕ Ũ2) = δŨ1 ⊕ δŨ2, (Ũ1 ⊗ Ũ2)δ = Ũδ

1 ⊗ Ũδ
2 for δ > 0,

and
3. δ1Ũ1 ⊕ δ2Ũ1 = (δ1 + δ2)Ũ1, Ũ

δ1
1 ⊕ Ũδ2

1 = Ũ(δ1+δ2)
1 for δ1, δ2 >0.

Definition 3. Suppose that Ũ1 =

⟨(
TTŨ1

(z) , TIŨ1
(z) , TFŨ1

(z)
)

,(
ITŨ1

(z) , IIŨ1
(z) , IFŨ1

(z)
)

,

(
FTŨ1

(z), FIŨ1
(z) , FFŨ1

(z)
)⟩

are T2NNS

in the set of real numbers, the score function S(Ũ1) of Ũ1 is defined
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Table 1
Literature review.
References Methods GDM Application

type
Objective of the study

Peng, X. and J.
Dai [33]

SVN–TOPSIS – Methodology
proposal

A new axiomatic definition of
single-valued neutrosophic
distance measure and
similarity measure

Pouresmaeil, H.,
et al. [34]

TOPSIS and SVN X Methodology
proposal

Multiple attribute decision
making

Selvachandran,
G., et al. [35]

TOPSIS-MDM–SVN Sets – Methodology
proposal

New aggregation operator
proposal

Biswas, P., et al.
[36]

Neutrosophic TOPSIS X Methodology
proposal

New aggregation operator
proposal

Biswas, P., et al.
[37]

TOPSIS for MAGDM under
SVN

X Methodology
proposal

A new strategy for MAGDM
problems

Broumi, S., et al.
[38]

TOPSIS method for MADM
based on interval
neutrosophic

– Methodology
proposal

TOPSIS solve the MADM

Smarandache, F.
and S. Pramanik
[39]

Neutrosophic under bi-polar
neutrosophic

– Methodology
proposal

Select the most desirable
alternative

1. Ũ1 ⊕ Ũ2

=

⟨ ⎛⎝ (
TTŨ1

(z) + TTŨ2
(z) − TTŨ1

(z) .TTŨ2
(z)

)
,

(
TIŨ1

(z) + TIŨ2
(z) − TIŨ1

(z) .TIŨ2
(z)

)
,(

TFŨ1
(z) + TFŨ2

(z) − TFŨ1
(z) .TFŨ2

(z)
) ⎞⎠ ,(

ITŨ1
(z) .ITŨ2

(z) , IIŨ1
(z) .IIŨ2

(z) , IFŨ1
(z) .IFŨ2

(z)
)

,

(
FTŨ1

(z) .FTŨ2
(z) , FIŨ1

(z) .FIŨ2
(z) , FFŨ1

(z) .FFŨ2
(z)

)
⟩

(1)

2. Ũ1 ⊗ Ũ2

=

⟨
((

TTŨ1
(z) .TTŨ2

(z) , TIŨ1
(z) .TIŨ2

(z) , TFŨ1
(z) .TFŨ2

(z)
))

,⎛⎝ (
ITŨ1

(z) + ITŨ2
(z) − ITŨ1

(z) .ITŨ2
(z)

)
,

(
IIŨ1

(z) + IIŨ2
(z) − IIŨ1

(z) .IIŨ2
(z)

)
,(

IFŨ1
(z) + IFŨ2

(z) − IFŨ1
(z) .IFŨ2

(z)
) ⎞⎠⎛⎝ (

FTŨ1
(z) + FTŨ2

(z) − FTŨ1
(z) .FTŨ2

(z)
)

,

(
FIŨ1

(z) + FIŨ2
(z) − FIŨ1

(z) .FIŨ2
(z)

)
,(

FFŨ1
(z) + FFŨ2

(z) − FFŨ1
(z) .FFŨ2

(z)
) ⎞⎠

⟩
(2)

3. δŨ

=

⟨ (
1 − (1 − TTŨ1

(z))δ, 1 − (1 − TIŨ1
(z))δ, 1 − (1 − TFŨ1

(z))δ
)

,((
ITŨ1

(z)
)δ

,

(
IIŨ1

(z)
)δ

,

(
IFŨ1

(z)
)δ

)
,((

FTŨ1
(z)

)δ

,

(
FIŨ1

(z)
)δ

,

(
FFŨ1

(z)
)δ

)
⟩

for δ > 0 (3)

4. Ũδ

=

⟨
((

TTŨ1
(z)

)δ

,

(
TIŨ1

(z)
)δ

,

(
TFŨ1

(z)
)δ

)
,(

1 −

(
1 − ITŨ1

(z)
)δ

, 1 −

(
1 − IIŨ1

(z)
)δ

, 1 −

(
1 − IFŨ1

(z)
)δ

)
,(

1 −

(
1 − FTŨ1

(z)
)δ

, 1 −

(
1 − FIŨ1

(z)
)δ

, 1 −

(
1 − FFŨ1

(z)
)δ

)
⟩

for δ > 0 (4)

Box I.

as follows:

S(Ũ1) =
1
12

⟨
8 +

(
TTŨ1

(z) + 2
(
TIŨ1

(z)
)

+ TFŨ1
(z)

)
−

(
ITŨ1

(z) + 2
(
IIŨ1

(z)
)

+ IFŨ1
(z)

)
−

(
FTŨ1

(z) + 2
(
FIŨ1

(z)
)

+ FFŨ1
(z)

)⟩
(5)

A(Ũ1) =
1
4

⟨(
TTŨ1

(z) + 2
(
TIŨ1

(z)
)

+ TFŨ1
(z)

)
−

(
FTŨ1

(z) + 2
(
FIŨ1

(z)
)

+ FFŨ1
(z)

)⟩
(6)
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T2NNWAω(Ũ1, Ũ2, . . . , Ũn) = ω1Ũ1 ⊕ ω2Ũ2 ⊕ . . . ωnŨn = ⊕
n
p=1(ωpŨp)

=

⟨
⎛⎝1 −

n∏
p=1

(
1 − TTp (z)

)ωp
, 1 −

n∏
p=1

(
1 − TIp (z)

)ωp
, 1 −

n∏
p=1

(
1 − TFp (z)

)ωp

⎞⎠ ,⎛⎝ n∏
p=1

(
ITp (z)

)ωp
,

n∏
p=1

(
IIp (z)

)ωp
,

n∏
p=1

(
IFp (z)

)ωp

⎞⎠ ,⎛⎝ n∏
p=1

(
FTp (z)

)ωp
,

n∏
p=1

(
FIp (z)

)ωp
,

n∏
p=1

(
FFp (z)

)ωp

⎞⎠

⟩
(11)

Box II.

Definition 4. Suppose that Ũ1 =

⟨(
TTŨ1

(z) , TIŨ1
(z) , TFŨ1

(z)
)

,(
ITŨ1

(z) , IIŨ1
(z) , IFŨ1

(z)
)

,

(
FTŨ1

(z) , FIŨ1
(z) , FFŨ1

(z)
)⟩

and Ũ2 =⟨(
TTŨ2

(z) , TIŨ2
(z) , TFŨ2

(z)
)

,

(
ITŨ2

(z) , IIŨ2
(z) , IFŨ2

(z)
)

,(
FTŨ2

(z) , FIŨ2
(z) , FFŨ2

(z)
)⟩

are two T2NNS in the set of real num-

bers. Suppose that S(Ũi) and A(Ũi) are the score and accuracy
functions of T2NNS Ũi(i= 1, 2), then the order relations are defined
as follows:

1. If S̃(Ũ1) > S̃(Ũ2), then Ũ1 is greater than Ũ2, that is Ũ1 is
superior to Ũ2, denoted by Ũ1> Ũ2 ;

2. If S̃(Ũ1) = S̃(Ũ2), Ã(Ũ1) > Ã(Ũ2) )then Ũ1 is superior than Ũ2,
that is Ũ1 is superior to Ũ2, denoted by Ũ1>Ũ2;

3. If S̃(Ũ1) = S̃(Ũ2), Ã(Ũ1) = Ã(Ũ2) ) then Ũ1 is equal to Ũ2, that
is Ũ1 is indifferent to Ũ2, denoted by Ũ1 = Ũ2;

Example 1. Consider two T2NNS in the group of real numbers:
Ũ1 =

⟨(
TTŨ1

(z) , TIŨ1
(z) , TFŨ1

(z)
)

,

(
ITŨ1

(z) , IIŨ1
(z) , IFŨ1

(z)
)

,(
FTŨ1

(z) , FIŨ1
(z) , FFŨ1

(z)
)⟩

and Ũ2 =

⟨(
TTŨ2

(z) , TIŨ2
(z) , TFŨ2

(z)
)

,(
ITŨ2

(z) , IIŨ2
(z) , IFŨ2

(z)
)

,

(
FTŨ2

(z) , FIŨ2
(z) , FFŨ2

(z)
)⟩

Ũ1 =

⟨(0.65, 0.70, 0.75) , (0.20, 0.15, 0.30) , (0.15, 0.20, 0.10)⟩, Ũ2 =

⟨(0.45, 0.40, 0.55) , (0.35, 0.45, 0.30) , (0.25, 0.35, 0.40)⟩. From
Eqs. (5) and (6), we get the following outcomes:

1. Score value of S̃(Ũ1) = (8 + (2.8 − 0.8 − .065)) /12 =

0.78, and S̃(Ũ2) = (8 + (1.8 − 1.55 − 1.35)) /12 = 0.58;
2. Accuracy value of A(Ũ1) = (2.8 − 0.65) /4 = 0.54, and

A(Ũ2) = (1.8 − 1.35) /4 = 0.11; it is obvious that A1 > A2.

Example 2. Consider two T2NNS in the set of real numbers:
Ũ1 = ⟨(0.50, 0.20, 0.35) , (0.30, 0.45, 0.30) , (0.10, 0.25, 0.35)⟩,
Ũ2 = ⟨(0.15, 0.60, 0.20) , (0.35, 0.20, 0.30) , (0.45, 0.35, 0.20)⟩.
From Eqs. (5) and (6), we obtain the following results:

1. Score value of S̃(Ũ1) = (8 + (1.25 − 1.5 − 0.95)) /12 =

0.57, and S̃(Ũ2) = (8 + (1.55 − 1.05 − 1.35)) /12 = 0.60;
2. Accuracy value of A(Ũ1) = (1.25 − 0.95) /4 = 0.075, and

A(Ũ2) = (1.55 − 1.35) /12 = 0.05; it is obvious that A2 >
A1.

2.1. Aggregation of type 2 neutrosophic number

In this part, we recall some basic descriptions of aggregation
operators for real numbers.

Definition 5 ([40]). Suppose that ω: (Z)n → Z , and αp(= 1, 2, . . . ,
n) = 1 are a group of numbers. The weighted averaging operator

ωAω is defined as:

ωAω(α1, α2, . . . , αn) =

n∑
p=1

ωpαp, (7)

where Z is the set of numbers, and ω = (ω1, ω2, . . . , ωn)T is
the weight vector of αp(p = 1, 2, . . . , n) such that ωp ∈ [0, 1]
(p = 1, 2, . . . , n) and

∑n
p=1 ωp = 1.

Definition 6 ([40]). Suppose that ω: (Z)n → Z and αp(p =

1, 2, . . . , n) are a group of numbers. The weighted averaging op-
erator ωAω is defined as:

ωAω(α1, α2, . . . , αn)=
n∏

p=1

α
ωp
p , (8)

Where Z is the set of number, and ω = (ω1, ω2, . . . , ωn)T is
the weight vector of αp(p = 1, 2, . . . , n) such that ωp ∈ [0, 1]
(p = 1, 2, . . . , n) and

∑n
p=1 ωp = 1. Based on Definitions 5 and 6,

we suggest the next aggregation operator of T2NNS to be used in
decision making.

Definition 7. Suppose that Ũp =

⟨(
TTŨp (z) , TIŨp (z) , TFŨp (z)

)
,(

ITŨp (z) , IIŨp (z) , IFŨp (z)
)

,

(
FTŨp (z) , FIŨp (z) , FFŨp (z)

)⟩
(p = 1, 2, . . . , n) is a collection T2NNS in the set of numbers and
let us have T2NNWA: Θn

→ Θ . A type 2 neutrosophic number
weighted averaging (T2NNWA) operator denoted by T2NNWA
(Ũ1, Ũ2, . . . , Ũn) is defined as T2NNWAω

(Ũ1, Ũ2, . . . , Ũn) = ω1Ũ1 ⊕ ω2Ũ2 ⊕ . . . ωnŨn = ⊕
n
p=1(ωpŨp), (9)

Where ωp ∈ [0, 1] is the weight vector of Up(p = 1, 2, . . . , n) such
that

∑n
p=1 ωp = 1. Ifω = (1/n, 1/n, . . . , 1/n)T, then the T2NNWA

(Ũ1, Ũ2, . . . , Ũn) operator decrease to type 2neutrosophic number
averaging (T2NNA) operator: T2NNA

(Ũ1, Ũ2, . . . , Ũn) =
1
n
(Ũ1 ⊕ Ũ2 ⊕ · · · ⊕ Ũn) (10)

Now, we can enunciate the following theorem by using the
basic procedures of T2NNVs expressed in Definition 2.

Theorem 1. Let Ũp =
⟨(
TTp (z) , TIp (z) , TFp (z)

)
,
(
ITp (z) , IIp (z) ,

IFp (z)
)
,
(
FTp (z) , FIp (z) , FFp (z)

)⟩
(p = 1, 2, . . . , n) be a group

T2NNS in the set of numbers. Then the combined value obtained by
T2NNWA is also a T2NNV, and T2NNWAω(Ũ1, Ũ2, . . . , Ũn) is given
as Eq. (11) in Box II, where ωp ∈ [0, 1] is the weight vector of
Up(p = 1, 2, . . . , n) such that

∑n
p=1 ωp = 1.
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=

⟨ (
1 −

(
1 − TT1 (z)

)ω1 , 1 −
(
1 − TI1 (z)

)ω1 , 1 −
(
1 − TF1 (z)

)ω1
)
,((

IT1 (z)
)ω1 ,

(
II1 (z)

)ω1 ,
(
IF1 (z)

)ω1
)
,
((
FT1 (z)

)ω1 ,
(
FI1 (z)

)ω1 ,
(
FF1 (z)

)ω1
) ⟩

(12)

=

⟨
⎛⎝1 −

1∏
p=1

(
1 − TTp (z)

)ωp
, 1 −

1∏
p=1

(
1 − TIp (z)

)ωp
, 1 −

1∏
p=1

(
1 − TFp (z)

)ωp

⎞⎠ ,⎛⎝ 1∏
p=1

(
ITp (z)

)ωp
,

1∏
p=1

(
IIp (z)

)ωp
,

1∏
p=1

(
IFp (z)

)ωp

⎞⎠ ,⎛⎝ 1∏
p=1

(
FTp (z)

)ωp
,

1∏
p=1

(
FIp (z)

)ωp
,

1∏
p=1

(
FFp (z)

)ωp

⎞⎠

⟩
(13)

Box III.

⊕
2
p=1 (ωpŨp) = ω1Ũ1 ⊕ ω2Ũ2

=

⟨ ⟨ (
1 −

(
1 − TT1 (z)

)ω1 , 1 −
(
1 − TI1 (z)

)ω1 , 1 −
(
1 − TF1 (z)

)ω1
)
,((

IT1 (z)
)ω1 ,

(
II1 (z)

)ω1 ,
(
IF1 (z)

)ω1
)
,
((
FT1 (z)

)ω1 ,
(
FI1 (z)

)ω1 ,
(
FF1 (z)

)ω1
) ⟩

⊕⟨ (
1 −

(
1 − TT2 (z)

)ω2 , 1 −
(
1 − TI2 (z)

)ω2 , 1 −
(
1 − TF2 (z)

)ω2
)
,((

IT2 (z)
)ω2 ,

(
II2 (z)

)ω2 ,
(
IF2 (z)

)ω2
)
,
((
FT2 (z)

)ω2 ,
(
FI2 (z)

)ω2 ,
(
FF2 (z)

)ω2
) ⟩

⟩
(14)

=

⟨
⎛⎜⎜⎜⎜⎜⎜⎝

( (
1 −

(
1 − TT1 (z)

)ω1
)
+

(
1 −

(
1 − TT2 (z)

)ω2
)

−
(
1 −

(
1 − TT1 (z)

)ω1
)
.
(
1 −

(
1 − TT2 (z)

)ω2
) )

,( (
1 −

(
1 − TI1 (z)

)ω1
)
+

(
1 −

(
1 − TI2 (z)

)ω2
)

−
(
1 −

(
1 − TI1 (z)

)ω1
)
.
(
1 −

(
1 − TI2 (z)

)ω2
) )

,( (
1 −

(
1 − TF1 (z)

)ω1
)
+

(
1 −

(
1 − TF2 (z)

)ω2
)

−
(
1 −

(
1 − TF1 (z)

)ω1
)
.
(
1 −

(
1 − TF2 (z)

)ω2
) )

⎞⎟⎟⎟⎟⎟⎟⎠ ,

((
IT1 (z)

)ω1
(
IT2 (z)

)ω2 ,
(
II1 (z)

)ω1
(
II2 (z)

)ω2 ,
(
IF1 (z)

)ω1
(
IF2 (z)

)ω2
)
,((

FT1 (z)
)ω1

(
FT2 (z)

)ω2 ,
(
FI1 (z)

)ω1
(
FI2 (z)

)ω2 ,
(
FF1 (z)

)ω1
(
FF2 (z)

)ω2
)

⟩

=

⟨
⎛⎝1 −

2∏
p=1

(
1 − TTp (z)

)ωp
, 1 −

2∏
p=1

(
1 − TIp (z)

)ωp
, 1 −

2∏
p=1

(
1 − TFp (z)

)ωp

⎞⎠ ,⎛⎝ 2∏
p=1

(
ITp (z)

)ωp
,

2∏
p=1

(
IIp (z)

)ωp
,

2∏
p=1

(
IFp (z)

)ωp

⎞⎠ ,⎛⎝ 2∏
p=1

(
FTp (z)

)ωp
,

2∏
p=1

(
FIp (z)

)ωp
,

2∏
p=1

(
FFp (z)

)ωp

⎞⎠

⟩
(15)

Box IV.

Proof.We verify the theorem by mathematical induction.
1. When n = 1, it is a normal case. We mention it here for

clarification only (see Eqs. (12) and (13) in Box III).
Consequently, the theorem is true for n = 1.
2. When n = 2, we have Eqs. (14) and (15) in Box IV. Conse-

quently, the theorem is true for n = 2.
3. When n = k, we suppose that Eq. (11) is also true.
Then, T2NNWA (Ũ1, Ũ2, . . . , Ũk) is given as Eq. (16) in Box V.
4.When n = k+1, we have T2NNWA (Ũ1, Ũ2, . . . , Ũk+1) given

as Eq. (17) in Box VI.
We notice that the theorem is true for n = k + 1. So, by

mathematical induction, we can say that Eq. (11) holds for all
values of n. As the components of all three membership functions

of Ũp belong to [0, 1], the following relations are valid:

0≤

⎛⎝1 −

k∏
p=1

(
1 − TFp (z)

)ωp

⎞⎠≤1, 0≤

⎛⎝ k∏
p=1

(
IFp (z)

)ωp

⎞⎠≤1,

0≤

⎛⎝ k∏
p=1

(
FFp (z)

)ωp

⎞⎠≤1. (18)

It follows that this relation completes the proof of Theorem 1.

0≤

⟨⎛⎝1 −

k∏
p=1

(
1 − TFp (z)

)ωp

⎞⎠ +

⎛⎝ k∏
p=1

(
IFp (z)

)ωp

⎞⎠
+

⎛⎝ k∏
p=1

(
FFp (z)

)ωp

⎞⎠⟩
≤3.
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T2NNWA(Ũ1, Ũ2, . . . , Ũk) = ω1Ũ1 ⊕ ω2Ũ ⊕ . . . ωnŨn = ⊕
k
p=1(ωpŨp)

=

⟨
⎛⎝1 −

k∏
p=1

(
1 − TTp (z)

)ωp
, 1 −

k∏
p=1

(
1 − TIp (z)

)ωp
, 1 −

k∏
p=1

(
1 − TFp (z)

)ωp

⎞⎠ ,⎛⎝ k∏
p=1

(
ITp (z)

)ωp
,

k∏
p=1

(
IIp (z)

)ωp
,

k∏
p=1

(
IFp (z)

)ωp

⎞⎠ ,⎛⎝ k∏
p=1

(
FTp (z)

)ωp
,

k∏
p=1

(
FIp (z)

)ωp
,

k∏
p=1

(
FFp (z)

)ωp

⎞⎠

⟩
(16)

Box V.

T2NNWA(Ũ1, Ũ2, . . . , Ũk+1) = ⊕
n
p=1(ωpŨp) ⊕ (ωk+1Ũk+1)

=

⟨

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
1 −

k∏
p=1

(
1 − TTp (z)

)ωp
+ 1 −

k∏
p=1

(
1 − TTk+1 (z)

)ωk+1

−1 −

k∏
p=1

(
1 − TTp (z)

)ωp 1 −

k∏
p=1

(
1 − TTk+1 (z)

)ωk+1

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
1 −

k∏
p=1

(
1 − TIp (z)

)ωp
+ 1 −

k∏
p=1

(
1 − TIk+1 (z)

)ωk+1

−1 −

k∏
p=1

(
1 − TIp (z)

)ωp 1 −

k∏
p=1

(
1 − TIk+1 (z)

)ωk+1

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
1 −

k∏
p=1

(
1 − TFp (z)

)ωp
+ 1 −

k∏
p=1

(
1 − TFk+1 (z)

)ωk+1

−1 −

k∏
p=1

(
1 − TFp (z)

)ωp 1 −

k∏
p=1

(
1 − TFk+1 (z)

)ωk+1

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛⎝ k∏
p=1

(
ITp (z)

)ωp
.

ωp+1(
ITp (z)

)
k + 1

,

k∏
p=1

(
IIp (z)

)ωp
.

ωp+1(
IIp (z)

)
k + 1

,

k∏
p=1

(
IFp (z)

)ωp
.

ωp+1(
IFp (z)

)
k + 1

⎞⎠ ,⎛⎝ k∏
p=1

(
FTp (z)

)ωp
.

ωp+1(
FTp (z)

)
k + 1

,

k∏
p=1

(
FIp (z)

)ωp
.

ωp+1(
FIp (z)

)
k + 1

,

k∏
p=1

(
FFp (z)

)ωp
.

ωp+1(
FFp (z)

)
k + 1

⎞⎠

⟩

=

⟨
⎛⎝1 −

k+1∏
p=1

(
1 − TTp (z)

)ωp
, 1 −

k+1∏
p=1

(
1 − TIp (z)

)ωp
, 1 −

k+1∏
p=1

(
1 − TFp (z)

)ωp

⎞⎠ ,⎛⎝k+1∏
p=1

(
ITp (z)

)ωp
,

k+1∏
p=1

(
IIp (z)

)ωp
,

k+1∏
p=1

(
IFp (z)

)ωp

⎞⎠ ,⎛⎝k+1∏
p=1

(
FTp (z)

)ωp
,

k+1∏
p=1

(
FIp (z)

)ωp
,

k+1∏
p=1

(
FFp (z)

)ωp

⎞⎠

⟩
(17)

Box VI.

2.2. Now, we will refer to one property to confirm the T2NNWA
operator

Property 1 (Boundedness). if all Ũp(p = 1, 2, . . ., η) are equal Ũp =

Ũ =
⟨(
TTp (z) , TIp (z) , TFp (z)

)
,
(
ITp (z) , IIp (z) , IFp (z)

)
,
(
FTp (z) ,

FIp (z) , FFp (z)
)⟩
, for all p, then T2NNWA Ũp(p = 1, 2, . . . , n ) = Ũ.

Suppose Ũ+

=

⟨
(
max

p

(
TTp (z)

)
, max

p

(
TIp (z)

)
, max

p

(
TFp (z)

))
,(

min
p

(
ITp (z)

)
, min

p

(
IIp (z)

)
, min

p

(
IFp (z)

))
,(

min
p

(
FTp (z)

)
, min

p

(
FIp (z)

)
, min

p

(
FFp (z)

))
⟩
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S(Ũ)≤
1
12

⟨ 8 +

(
max

p

(
TTp (z)

)
+ 2.max

p

(
TIp (z)

)
+ max

p

(
TFp (z)

))
−

(
min

p

(
ITp (z)

)
+ 2.min

p

(
IIp (z)

)
+ min

p

(
IFp (z)

))
−

(
min

p

(
FTp (z)

)
+ 2.min

p

(
FIp (z)

)
+ min

p

(
FFp (z)

))
⟩

= S(Ũ+) (22)

Box VII.

Suppose Ũ−

=

⟨
(
min

p

(
TTp (z)

)
, min

p

(
TIp (z)

)
, min

p

(
TFp (z)

))
,(

max
p

(
ITp (z)

)
, max

p

(
IIp (z)

)
, max

p

(
IFp (z)

))
,(

max
p

(
FTp (z)

)
, max

p

(
FIp (z)

)
, max

p

(
FFp (z)

))
⟩

For all p = 1, 2, . . ., n. Then, Ũ−
≤T2NNWAŨp(p = 1, 2, . . ., n)

≤Ũ+. Now, we demonstrate that:

min
p

(
TFp (z)

)
≤

(
TFp (z)

)
≤max

p

(
TFp (z)

)
,

min
p

(
IFp (z)

)
≤

(
IFp (z)

)
≤max

p

(
IFp (z)

)
,

min
p

(
FFp (z)

)
≤

(
FFp (z)

)
≤max

p

(
FFp (z)

)
, for all p = 1, 2, . . ., n.

(19)

Then,1−
∏n

p=1

(
1 − minp

(
TFp (z)

))ωp
≤1−

∏n
p=1

(
1 −

(
TFp (z)

) )ωp

≤1−
∏n

p=1

(
1 − maxp

(
TFp (z)

))ωp
=1−

(
1 − minp

(
TFp (z)

))∑n
p=1 ωp

≤ 1−
∏n

p=1

(
1 −

(
TFp (z)

) )ωp
≤ 1−

(
1 − maxp

(
TFp (z)

))∑n
p=1 ωp

=

minp
(
TFp (z)

)
≤ 1 −

∏n
p=1

(
1 −

(
TFp (z)

) )ωp
≤ maxp

(
TFp (z)

)
.

Then, from Eq. (19), we have for p = 1, 2, . . ., n.

n∏
p=1

min
p

(
IFp (z)

)ωp
≤

n∏
p=1

(
IFp (z)

)ωp
≤

n∏
p=1

max
p

(
IFp (z)

)ωp

=

n∏
p=1

min
p

(
IFp (z)

)∑n
p=1 ωp

≤

n∏
p=1

(
IFp (z)

)ωp
≤

n∏
p=1

max
p

(
IFp (z)

)∑n
p=1 ωp

= min
p

(
IFp (z)

)
≤

n∏
p=1

(
IFp (z)

)ωp
≤max

p

(
IFp (z)

)
and

n∏
p=1

min
p

(
FFp (z)

)ωp
≤

n∏
p=1

(
FFp (z)

)ωp
≤

n∏
p=1

max
p

(
FFp (z)

)ωp

=

n∏
p=1

min
p

(
FFp (z)

)∑n
p=1 ωp

≤

n∏
p=1

(
FFp (z)

)ωp

≤

n∏
p=1

max
p

(
FFp (z)

)∑n
p=1 ωp

= min
p

(
FFp (z)

)
≤

n∏
p=1

(
FFp (z)

)ωp
≤max

p

(
FFp (z)

)
. (20)

Then, for minp
(
TTp (z)

)
≤

(
TTp (z)

)
≤ maxp

(
TTp (z)

)
, we prove the

following:

n∏
p=1

min
p

(
TTp (z)

)ωp
≤

n∏
p=1

(
TTp (z)

)ωp
≤

n∏
p=1

max
p

(
TTp (z)

)ωp

=

n∏
p=1

min
p

(
TTp (z)

)∑n
p=1 ωp

≤

n∏
p=1

(
TTp (z)

)ωp

≤

n∏
p=1

max
p

(
TTp (z)

)∑n
p=1 ωp

= min
p

(
TTp (z)

)
≤

n∏
p=1

(
TTp (z)

)ωp
≤max

p

(
TTp (z)

)
and

n∏
p=1

min
p

(
TTp (z)

)ωp
≤

n∏
p=1

(
TTp (z)

)ωp
≤

n∏
p=1

max
p

(
TTp (z)

)ωp

=

n∏
p=1

min
p

(
TTp (z)

)∑n
p=1 ωp

≤

n∏
p=1

(
TTp (z)

)ωp

≤

n∏
p=1

max
p

(
TTp (z)

)∑n
p=1 ωp

= min
p

(
TTp (z)

)
≤

n∏
p=1

(
TTp (z)

)ωp
≤max

p

(
TTp (z)

)
. (21)

Likewise, from previous Eqs. (19)–(21).
Then, for

⟨(
TTp (z) , TIp (z) , TFp (z)

)
,
(
ITp (z) , IIp (z) , IFp (z)

)
,(

FTp (z) , FIp (z) , FFp (z)
)⟩

(p = 1, 2, . . . , n). Similarly, we have:
minp

(
TIp (z)

)
≤

(
TIp (z)

)
≤maxp

(
TIp (z)

)
,minp

(
FTp (z)

)
≤

(
FTp (z)

)
≤maxp

(
FTp (z)

)
, minp

(
FIp (z)

)
≤

(
FIp (z)

)
≤ maxp

(
FIp (z)

)
,

minp
(
ITp (z)

)
≤

(
ITp (z)

)
≤maxp

(
ITp (z)

)
, minp

(
IIp (z)

)
≤

(
IIp (z)

)
≤maxp

(
IIp (z)

)
, for p = 1, 2, . . . , n.

Then, suppose that T2NNW Aω Ũp(p = 1, 2,. . . , n ) = Ũ =⟨(
TTp (z) , TIp (z) , TFp (z)

)
,
(
ITp (z) , IIp (z) , IFp (z)

)
,
(
FTp (z) , FIp (z) ,

FFp (z)
)⟩
, and the score function of Ũ = S(Ũ) =

1
12

⟨
8 +

(
TTŨ1

(z)

+2
(
TIŨ1

(z)
)

+ TFŨ1
(z)

)
−

(
ITŨ1

(z) + 2
(
IIŨ1

(z)
)

+ IFŨ1
(z)

)
−(

FTŨ1
(z) + 2

(
FIŨ1

(z)
)

+ FFŨ1
(z)

)⟩
from this,we have Eq. (22) given

in Box VII.
Also, S(Ũ) =

1
12

⟨
8 +

(
TTŨ1

(z) + 2
(
TIŨ1

(z)
)

+ TFŨ1
(z)

)
−

(
ITŨ1

(z) + 2
(
IIŨ1

(z)
)

+ IFŨ1
(z)

)
−

(
FTŨ1

(z) + 2
(
FIŨ1

(z)
)

+FFŨ1
(z)

)⟩
. From this, we have Eq. (23) given in BoxVIII. Also, S(Ũ) =

1
12

⟨
8 +

(
TTŨ1

(z) + 2
(
TIŨ1

(z)
)

+ TFŨ1
(z)

)
−

(
ITŨ1

(z) + 2(
IIŨ1

(z)
)

+ IFŨ1
(z)

)
−

(
FTŨ1

(z) + 2
(
FIŨ1

(z)
)

+ FFŨ1
(z)

)⟩
. From

this, we have Eq. (24) given in Box IX.
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S(Ũ) ≥
1
12

⟨ 8 +

(
max

p

(
TTp (z)

)
+ 2.max

p

(
TIp (z)

)
+ max

p

(
TFp (z)

))
−

(
min

p

(
ITp (z)

)
+ 2.min

p

(
IIp (z)

)
+ min

p

(
IFp (z)

))
−

(
min

p

(
FTp (z)

)
+ 2.min

p

(
FIp (z)

)
+ min

p

(
FFp (z)

))
⟩

= S(Ũ−) (23)

Box VIII.

S(Ũ) =
1
12

⟨ 8 +

(
max

p

(
TTp (z)

)
+ 2max

p

(
TIp (z)

)
+ max

p

(
TFp (z)

))
−

(
min

p

(
ITp (z)

)
+ 2min

p

(
IIp (z)

)
+ min

p

(
IFp (z)

))
−

(
min

p

(
FTp (z)

)
+ 2min

p

(
FIp (z)

)
+ min

p

(
FFp (z)

))
⟩

= S(Ũ+) (24)

Box IX.

Therefore, we found the following cases: S(Ũ) < S(Ũ+), S(Ũ)
<S(Ũ−) and S(Ũ) = S(Ũ+), hence

Ũ− < T2NNWA Ũp(p = 1, 2, . . . , n) < Ũ+ (25)

By using the previous equations and by proving the score value,
we can prove in the same way the accuracy value using this equa-
tion:A(Ũ1) =

1
4

⟨(
TTŨ1

(z) + 2
(
TIŨ1

(z)
)

+ TFŨ1
(z)

)
−

(
FTŨ1

(z) +

2
(
FIŨ1

(z)
)

+ FFŨ1
(z)

)⟩
.

Property 2 (Idempotency). if all Ũp(p = 1, 2, . . ., n) are equal
Ũp = Ũ =

⟨(
TTp (z) , TIp (z) , TFp (z)

)
,
(
ITp (z) , IIp (z) , IFp (z)

)
,(

FTp (z) , FIp (z) , FFp (z)
)⟩
, for all p, then T2NNWA Ũp(p = 1, 2, . . . ,

n ) = Ũ. From Eq. (11), we have T2NNWA Ũp(p = 1, 2, . . . , n) given in
Box X).

Consequently,⟨(
TTp (z) , TIp (z) , TFp (z)

)
,
(
ITp (z) , IIp (z) , IFp (z)

)
,(

FTp (z) , FIp (z) , FFp (z)
)⟩

= Ũ.

This proves Property 2.

Example 3. Consider the following four T2NN values. Using the
T2NNWA operator defined in Eq. (11), we can aggregate (Ũ1, Ũ2,

Ũ3, and Ũ4) with weight vector ω = (0.25, 0.20, 0.35, 0.20) as
Ũ = T2NNWA(Ũ1, Ũ2, Ũ3, andŨ4) = ω1Ũ1⊕ω2Ũ2⊕ω3Ũ3⊕ω4Ũ4.
Ũ1, Ũ2, Ũ3 and Ũ4 are given in Box XI. After aggregation, we find
that Ũall

=
⟨(
TTp (z) , TIp (z) , TFp (z)

)
,

(
ITp (z) , IIp (z) , IFp (z)

)
,(

FTp (z) , FIp (z) , FFp (z)
)⟩

= ⟨(0.881, 0.710, 0.768) , (0.2851, 0.0872, 0.2093) ,

(0.0941, 0.2163, 0.2268)⟩

2.3. Application of T2NNWA operator to MADM

Consider a MADM issue in which we have the collection of φi =

{φ1, φ2, . . . , φn} suitable alternatives, where i = 1, 2, . . . , m, as-
sessed on n criteriaŒip = {Œi1, Œi2, .., Œin}, p = 1, 2, . . . , n. Assume
that ωp ={ω1, ω2,. . . , ωp} is the weight vector of attributes, where
ωp > 0 and sum

∑n
p=1 ωp = 1 for p = 1, 2, . . . , n. The standing of

all alternatives φi = {φ1, φ2, . . ., φn} with regard to the attributes
Œip = {Œi1, Œi2, . . . , Œin}, p = 1, 2, . . . , n have been supposed in
T2NN values based relation matrix R =

(
kip

)
m×n, as in Table 2.

Furthermore, in the relation matrix R =
(
kip

)
m×n, the stand-

ing Ãip =
⟨(
TTip (z) , TIip (z) , TFip (z)

)
,
(
ITip (z) , IIip (z) , IFip (z)

)
,(

FTip (z) , FIip (z) , FFip (z)
)⟩
represents a T2NN value, where the type

2 neutrosophic number
(
TTip (z) , TIip (z) , TFip (z)

)
signifies the de-

gree an alternative satisfies the attribute Œip = Œi1,Œi2, . . . ,
Œin, p = 1, 2, . . . , η, with three degrees of truth (truth, inde-
terminacy, and falsity). Also,

(
ITip (z) , IIip (z) , IFip (z)

)
signifies the

degree an alternative is undefined about the attribute Œip =

Œi1,Œi2, . . . ,Œin, p = 1, 2, . . . , n , where the uncertain degree
contains three degrees of indeterminacy (truth, indeterminacy,
and falsity). Also,

(
FTip (z) , FIip (z) , FFip (z)

)
introduces the degree

an alternative does not satisfy the attribute Œip = {Œi1, Œi2, ..,
Œin}, p = 1, 2, . . . , n, where the unsatisfied degree contains
three degrees of dissatisfaction (truth, indeterminacy, and falsity).
We improve a functional approach for solving MADM problems
based on the T2NNWA, in which we rank the alternatives over the
attributes. The graphical schema of the developed technique for
MADM is shown in Fig. 1.

2.4. Numerical case

In this section, a mathematical example of data and methods
is presented to check the competence and efficiency of submitted
framework for selection the best alternative. Currently in Egypt,
people seek for choosing the best bank to operate banking trans-
actions such as deposit their money, withdraw financial loans,
transfer of money, change currencies, etc. This section presents a
numerical case to select the best bank for citizens and investors.
There are four evaluation alternativesφ1,φ2,φ3 andφ4, five criteria
are considered as selection factors Œi1 (Reputation and elegance),
Œi2 (Customer service), Œi3 (Place of the bank and its branches),
Œi4 (Fees), Œi5 (Offers). The classification of alternatives φi (i =

1, 2, . . . , 4) with regard to Œii(i = 1, 2, . . . , 5) are expressed with
T2NN values, as presented in Table 3. We suppose that ω =

(0.20, 0.25, 0.30, 0.15, 0.10)T is the proportional weight for crite-
ria Œii (i = 1, 2, . . . , 5).
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T2NNWAŨp(p = 1, 2, . . ., n) = T2NNWA(Ũ1, Ũ2, . . . , Ũk+1) = ⊕
n
p=1(ωpŨp)

=

⟨
⎛⎝1 −

n∏
p=1

(
1 − TTp (z)

)ωp
, 1 −

n∏
p=1

(
1 − TIp (z)

)ωp
, 1 −

n∏
p=1

(
1 − TFp (z)

)ωp

⎞⎠ ,⎛⎝ n∏
p=1

(
ITp (z)

)ωp
,

n∏
p=1

(
IIp (z)

)ωp
,

n∏
p=1

(
IFp (z)

)ωp

⎞⎠ ,⎛⎝ n∏
p=1

(
FTp (z)

)ωp
,

n∏
p=1

(
FIp (z)

)ωp
,

n∏
p=1

(
FFp (z)

)ωp

⎞⎠

⟩

=

⟨ (
1 −

(
1 − TTp (z)

)∑n
p=1 ωp

, 1 −
(
1 − TIp (z)

)∑n
p=1 ωp

, 1 −
(
1 − TFp (z)

)∑n
p=1 ωp

)
,((

ITp (z)
)∑n

p=1 ωp
,

(
IIp (z)

)∑n
p=1 ωp

,
(
IFp (z)

)∑n
p=1 ωp

)
,((

FTp (z)
)∑n

p=1 ωp
,

(
FIp (z)

)∑n
p=1 ωp

,
(
FFp (z)

)∑n
p=1 ωp

)
⟩

Box X.

Ũ1 = ⟨(0.75, 0.65, 0.95) , (0.30, 0.15, 0.20) , (0.15, 0.25, 0.20)⟩ ,

Ũ2 = ⟨(0.85, 0.75, 0.65) , (0.20, 0.10, 0.25) , (0.10, 0.30, 0.25)⟩ ,

Ũ3 = ⟨(0.90, 0.70, 0.65) , (0.30, 0.05, 0.20) , (0.05, 0.25, 0.20)⟩ ,

Ũ4 = ⟨(0.95, 0.70, 0.60) , (0.35, 0.10, 0.20) , (0.15, 0.10, 0.30)⟩

=

⟨
⎛⎝ (

1 − (1 − 0.75)0.25 (1 − 0.85)0.20 (1 − 0.90)0.35 (1 − 0.95)0.20
)
,(

1 − (1 − 0.65)0.25 (1 − 0.75)0.20 (1 − 0.70)0.35 (1 − 0.75)0.20
)
,(

1 − (1 − 0.95)0.25 (1 − 0.65)0.20 (1 − 0.60)0.35 (1 − 0.60)0.20
)

⎞⎠,⎛⎝ (
(0.30)0.25 (0.20)0.20 x (0.30)0.35 (0.35)0.20

)
,(

(0.15)0.25 (0.10)0.20 (0.05)0.35 (0.10)0.20
)
,(

(0.20)0.25 (0.25)0.20 (0.20)0.35 (0.20)0.20
)

⎞⎠,⎛⎝ (
(0.15)0.25 (0.10)0.20 (0.05)0.35 (0.15)0.20

)
,(

(0.25)0.25 (0.30)0.20 (0.25)0.35 (0.10)0.20
)
,(

(0.20)0.25 (0.25)0.20 (0.20)0.35 (0.30)0.20
)

⎞⎠

⟩

=

⟨
(

(1 − 0.707 × 0.684 × 0.447 × 0.549) , (1 − 0.769 × 0.758 × 0.656 × 0.758) ,

(1 − 0.473 × 0.811 × 0.726 × 0.833)

)
(

(0.740 × 0.725 × 0.656 × 0.811) , (0.622 × 0.631 × 0.350 × 0.631) ,

(0.669 × 0.758 × 0.569 × 0.725)

)
(

(0.622 × 0.631 × 0.350 × 0.684) , (0.707 × 0.786 × 0.616 × 0.631) ,

(0.669 × 0.758 × 0.569 × 0.786)

)
⟩

Box XI.

Table 2
Type 2 neutrosophic number value based relation matrix.

Œi1 Œi2 . . . Œin

φ1

⟨(
TT11 (z) , TI11 (z) , TF11 (z)

)
,(

IT11 (z) , II11 (z) , IF11 (z)
)
,(

FT11 (z) , FI11 (z) , FF11 (z)
)

⟩ ⟨(
TT12 (z) , TI12 (z) , TF12 (z)

)
,(

IT12 (z) , II12 (z) , IF12 (z)
)
,(

FT12 (z) , FI12 (z) , FF12 (z)
)

⟩
. . .

⟨(
TT1n (z) , TI1n (z) , TF1n (z)

)
,(

IT1n (z) , II1n (z) , IF1n (z)
)
,(

FT1n (z) , FI1n (z) , FF1n (z)
)

⟩

φ2

⟨(
TT21 (z) , TI21 (z) , TF21 (z)

)
,(

IT21 (z) , II21 (z) , IF21 (z)
)
,(

FT21 (z) , FI21 (z) , FF21 (z)
)

⟩ ⟨(
TT22 (z) , TI22 (z) , TF22 (z)

)
,(

IT22 (z) , II22 (z) , IF22 (z)
)
,(

FT22 (z) , FI22 (z) , FF22 (z)
)

⟩
. . .

⟨(
TT2n (z) , TI2n (z) , TF2n (z)

)
,(

IT2n (z) , II2n (z) , IF2n (z)
)
,(

FT2n (z) , FI2n (z) , FF2n (z)
)

⟩
. . . . . . . . . . . . . . .

φm

⟨(
TTm1 (z) , TIm1 (z) , TFm1 (z)

)
,(

ITm1 (z) , IIm1 (z) , IFm1 (z)
)
,(

FTm1 (z) , FIm1 (z) , FFm1 (z)
)

⟩ ⟨(
TTm2 (z) , TIm2 (z) , TFm2 (z)

)
,(

ITm2 (z) , IIm2 (z) , IFm2 (z)
)
,(

FTm2 (z) , FIm2 (z) , FFm2 (z)
)

⟩
. . .

⟨(
TTmn (z) , TImn (z) , TFmn (z)

)
,(

ITmn (z) , IImn (z) , IFmn (z)
)
,(

FTmn (z) , FImn (z) , FFmn (z)
)

⟩
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Fig. 1. The general framework of the submitted method.

Table 3
Decision matrix between alternatives and criteria using T2NN values.

Œi1 Œi2 Œi3 Œi4 Œi5

φ1

⟨
(0.75, 0.80, 0.85) ,

(0.20, 0.15, 0.30) ,

(0.10, 0.15, 0.20)

⟩ ⟨
(0.65, 0.70, 0.75) ,

(0.40, 0.45, 0.50) ,

(0.35, 0.40, 0.35)

⟩ ⟨
(0.85, 0.90, 0.95) ,

(0.30, 0.35, 0.40) ,

(0.25, 0.40, 0.35)

⟩ ⟨
(0.50, 0.40, 0.55) ,

(0.10, 0.15, 0.30) ,

(0.10, 0.20, 0.20)

⟩ ⟨
(0.30, 0.45, 0.25) ,

(0.20, 0.10, 0.30) ,

(0.10, 0.25, 0.20)

⟩

φ2

⟨
(0.60, 0.50, 0.65) ,

(0.30, 0.25, 0.30) ,

(0.20, 0.30, 0.25)

⟩ ⟨
(0.65, 0.70, 0.75) ,

(0.10, 0.15, 0.20) ,

(0.05, 0.10, 0.15)

⟩ ⟨
(0.45, 0.35, 0.50) ,

(0.15, 0.10, 0.10) ,

(0.20, 0.30, 0.25)

⟩ ⟨
(0.45, 0.50, 0.60) ,

(0.30, 0.20, 0.30) ,

(0.25, 0.30, 0.25)

⟩ ⟨
(0.50, 0.45, 0.35) ,

(0.30, 0.25, 0.30) ,

(0.20, 0.30, 0.25)

⟩

φ3

⟨
(0.45, 0.50, 0.80) ,

(0.15, 0.30, 0.55) ,

(0.55, 0.20, 0.25)

⟩ ⟨
(0.40, 0.45, 0.50) ,

(0.15, 0.20, 0.25) ,

(0.10, 0.15, 0.20)

⟩ ⟨
(0.40, 0.45, 0.60) ,

(0.05, 0.20, 0.25) ,

(0.40, 0.20, 0.25)

⟩ ⟨
(0.45, 0.80, 0.90) ,

(0.40, 0.70, 0.55) ,

(0.55, 0.20, 0.40)

⟩ ⟨
(0.80, 0.50, 0.80) ,

(0.45, 0.30, 0.55) ,

(0.55, 0.20, 0.25)

⟩

φ4

⟨
(0.85, 0.70, 0.95) ,

(0.60, 0.50, 0.65) ,

(0.45, 0.15, 0.35)

⟩ ⟨
(0.60, 0.65, 0.70) ,

(0.35, 0.40, 0.45) ,

(0.30, 0.40, 0.45)

⟩ ⟨
(0.95, 0.70, 0.80) ,

(0.15, 0.10, 0.30) ,

(0.30, 0.35, 0.30)

⟩ ⟨
(0.90, 0.70, 0.95) ,

(0.60, 0.40, 0.65) ,

(0.45, 0.15, 0.35)

⟩ ⟨
(0.65, 0.70, 0.80) ,

(0.40, 0.35, 0.25) ,

(0.15, 0.15, 0.20)

⟩

Table 4
Aggregated T2NN values based classification.

Aggregating values

φ1 ⟨(0.7131, 0.7654, 0.8302) , (0.2420, 0.2444, 0.3716) , (0.1801, 0.2827, 0.2721)⟩
φ2 ⟨(0.5434, 0.5193, 0.6113) , (0.1852, 0.1616, 0.1950) , (0.1462, 0.2280, 0.2200)⟩
φ3 ⟨(0.4785, 0.5408, 0.7210) , (0.1395, 0.2726, 0.3565) , (0.3264, 0.1861, 0.2537)⟩
φ4 ⟨(0.8588, 0.6882, 0.8638) , (0.3322, 0.2723, 0.4273) , (0.3226, 0.2472, 0.3365)⟩

We apply the proposed aggregation operator T2NNWA to solve
the best bank selection issue by using the next procedures.

Step 1. Collect the classification values of the alternatives φi(i = 1,
2, 3, 4) defined in the previous matrix with T2NNWA operator that
is located by Eq. (11) and the values introduced in Table 4.

Step 2. Compute the score value and the accuracy value of alterna-
tives φi(i = 1, 2, 3, 4) by applying Eq. (5) and Eq. (6), as shown in
Table 5.

Step 3. Ranking the alternatives based on score values, we found
that alternative φ1 is the best alternative, and the classification of
alternatives is : φ1 > φ4 > φ2 > φ3.

Table 5
The score and accuracy values of alternatives.

Score values Accuracy values

φ1 0.8382 0.5141
φ2 0.7809 0.3428
φ3 0.7775 0.3322
φ4 0.8288 0.4864

3. The proposed method procedure

Wenow suggest an orderly approach to TOPSIS technique to the
neutrosophic environment under type 2 of neutrosophic number.
We found that the GDM problem can be easily solved by this
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Fig. 2. The general framework for applying TOPSIS using type 2 neutrosophic number.

Table 6
Semantic terms for the significance weight of each criteria.
Linguistic variables The type 2 neutrosophic number scale for relative importance

of each criteria [(TT , TI , TF), (IT , II , IF), (FT , FI , FF)]

Weakly important (WI) ⟨(0.20, 0.30, 0.20) , (0.60, 0.70, 0.80) , (0.45, 0.75, 0.75)⟩
Equal important (EI) ⟨(0.40, 0.30, 0.25) , (0.45, 0.55, 0.40) , (0.45, 0.60, 0.55)⟩
Strong important (SI) ⟨(0.65, 0.55, 0.55) , (0.40, 0.45, 0.55) , (0.35, 0.40, 0.35)⟩
Very strongly important (VSI) ⟨(0.80, 0.75, 0.70) , (0.20, 0.15, 0.30) , (0.15, 0.10, 0.20)⟩
Absolutely important (AI) ⟨(0.90, 0.85, 0.95) , (0.10, 0.15, 0.10) , (0.05, 0.05, 0.10)⟩

method under advanced neutrosophic environment. The general
conceptualization of framework is displayed in Fig. 2.

The suggested framework consists ofmanyphases, as presented
in Fig. 2.

Phase 1. Establish a group of Exs and decide the goal, alternatives
and criteria.

• Assume that EXs want to estimate the combination of n
criteria and m alternatives EXs are symbolized by ExE = {Ex1, Ex2,
Ex3}, where E = 1, 2, . . . , E, and alternatives by Alti = {Alt1, Alt2, . . . ,
Altm}, where i = 1, 2, . . . , m, assessed on n criteria Œip = {Œi1, Œi2,
.., Œin}, p = 1, 2, . . . , n .

Phase 2. Depict and design the linguistic scales.

• Obtain Exs’ judgments on each element. Based on previous
knowledge and experience on the topic, Exs are wanted to
convey their judgments. Every Ex gives his/her judgment
linguistically on all of these elements.

• Transform EXs’ linguistic evaluations into type 2 neutro-
sophic numbers for every Ex providing his judgment with
assistance of the linguistic terms.

• The significance weights of different criteria and the ordering
of specific criteria are deemed as linguistic terms. These lin-
guistic terms can be presented in type 2neutrosophic number
as in Tables 6 and 7. The significance weight of each criterion
can be obtained either by direct allocation or indirectly by
pairwise comparisons [41]. Herein, we propose that the ex-
perts and decision makers use the linguistic terms presented

in Tables 6 and 7 to evaluate theweight of the criteria and the
classification of alternativeswith account to different criteria.

• Build the preference relation matrix to locate the weights of
criteria. Exs use the linguistic terms presented in Table 6 to
assess the opinions of Exs with regard to each criterion.

• A neutrosophic multicriteria GDM problem can be briefly
expressed in matrix:

Format as Ã =

⎡⎣
Œip . . . Œin

Ex1 z̃11 . . . z̃1n
...

...
. . .

...

Exm z̃m1 . . . z̃mn

⎤⎦ (26)

ω̃ = [ω̃1, ω̃2, . . ., ω̃n] (27)

Where z̃ip =
⟨(
TTip (z) , TIip (z) , TFip (z)

)
, (ITip (z) , IIip (z) ,

IFip (z)),
(
FTip (z) , FIip (z) , FFip (z)

)⟩
, i = 1, 2. . .,m, p = 1,

2, . . ., n, where z̃ip, ∀i,p and ω̃p, p = 1, 2. . ., n are linguistic
terms. These linguistic terms can be described by type 2
neutrosophic number.

– Calculating the weights of Exs. Exs’ judgments are col-
lected by using the equation given in Box XII.

– Calculate the score value after aggregating the opinions
of Exs for each criteria using Eq. (5). Then, normalize the
obtained weights.

Phase 3. Construct the evaluation matrix.
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z̃ip =

[
TTip (z) , TIip (z) , TFip (z) , ITip (z) , IIip (z) , IFip (z) , FTip (z) , FIip (z) , FFip (z)

]
n

(28)

Box XII.

Table 7
Linguistic variables for the classification.
Linguistic variables The type - 2 neutrosophic number scale for relative importance

of comparison matrix [(TT , TI , TF), (IT , II , IF), (FT , FI , FF)]

Very Bad (VB) ⟨(0.20, 0.20, 0.10) , (0.65, 0.80, 0.85) , (0.45, 0.80, 0.70)⟩
Bad (B) ⟨(0.35, 0.35, 0.10) , (0.50, 0.75, 0.80) , (0.50, 0.75, 0.65)⟩
Medium Bad (MB) ⟨(0.50, 0.30, 0.50) , (0.50, 0.35, 0.45) , (0.45, 0.30, 0.60)⟩
Medium (M) ⟨(0.40, 0.45, 0.50) , (0.40, 0.45, 0.50) , (0.35, 0.40, 0.45)⟩
Medium Good (MG) ⟨(0.60, 0.45, 0.50) , (0.20, 0.15, 0.25) , (0.10, 0.25, 0.15)⟩
Good (G) ⟨(0.70, 0.75, 0.80) , (0.15, 0.20, 0.25) , (0.10, 0.15, 0.20)⟩
Very Good (VG) ⟨(0.95, 0.90, 0.95) , (0.10, 0.10, 0.05) , (0.05, 0.05, 0.05)⟩

• Build the evaluation matrix Ai × Œip to assess the classifica-
tion of alternatives with respect to each criterion. Exs use the
linguistic terms shown in Table 7.

Format as R̃ =

⎡⎣
Œip . . . Œin

Alt1 z̃11 . . . z̃1n
...

...
. . .

...

Altm z̃m1 . . . z̃mn

⎤⎦ (29)

• Aggregate the final evaluationmatrix using Eq. (1) divided by
3.

• Use the de-neutrosophication Eq. (5) for transforming type 2
neutrosophic number to the crisp value for each factor z̃ip.

• Then, normalize the obtained matrix by Eq. (30)

ỹip =
z̃ip√∑m
i=1 Z̃

2
ip

; i = 1, 2, . . .,m; p = 1, 2, . . ., n. (30)

• Compute the weighted matrix by multiplying Eq. (27) by the
normalized matrix as in Eq. (31).

Zip = ωp × NMip (31)

Phase 4. Rank the alternatives

• We can describe the neutrosophic positive ideal solution
(NPIS, A∗) and Neutrosophic negative ideal solution (NNIS,
A−)

A∗
= {< max(δip|i = 1, 2, . . . , m)|pϵp+ >,

< min(δip|i = 1, 2, . . . ,m)|pϵp− >} (32)
A−

= {< min(δip|i = 1, 2, . . . ,m)|pϵp+ >,

< max(δip|i = 1, 2, . . . ,m)|pϵp− >} (33)

Where p+ related with the criteria that have a profitable ef-
fect and p− relatedwith the criteria that have a non-beneficial
effect.

• The dimension of each alternative from A∗ and A− can be
currently computed as:

d∗

i =

√ n∑
p=1

(Ãip − A∗
p)2, i = 1, 2, . . . , m, (34)

d−

i =

√ n∑
p=1

(Ãip − A−
p )2, i = 1, 2, . . . , m, (35)

• A proximity factor is defined to locate the classification sys-
tem of all available alternatives once the d∗

i and d−

i of each

alternative Ai = (1, 2, . . . ,m) have been computed. The prox-
imity coefficient of every available alternative is computed
as:

CCi =
d−

i

d+

i + d−

i
i = 1, 2, . . . , m (36)

Clearly, an alternative Ai is closer to the (NPIS, A∗) and further
from (NNIS, A−). Thus, according to the closeness coefficient,
we can decide the classification order of all alternatives and
select the superior one from a set of available alternatives.

4. Real case study

We introduce a numerical case which implicates methods and
data analysis to test the competence and the efficiency of suggested
framework for selection of the best supplier to import cars, per-
formed on an importing company in Egypt, Ghabbour Company,
founded in 1960 and based in Cairo. Egypt the Corporation seeks
to increase the numbers of suppliers. For this purpose, the execu-
tive managers suggested some alternatives such as Alt1 India, Alt2
Japan, Alt3 China, Alt4 USA and Alt5 Germany. Consequently, the
organization must evaluate suppliers and their sustainability. For
this study, the corporation determined themost important criteria
as beingŒi1 competency,Œi2 capacity,Œi3 commitment,Œi4 con-
trol, Œi5 cash, Œi6 cost, Œi7 consistency and Œi8 communication
for comparing alternatives and select the best alternative. These
criteria are considered by three experts. The experts are: strategic
expert, marketing expert and manufacturing expert, all with more
than ten years of experience in this field. The hierarchical construc-
tion of this decision problem is presented in Fig. 3. The suggested
technique is employed to solve this issue and the computational
steps are as follows:

Phase 1. Organize a group of Exs and determine goals, alternatives
and criteria.

•A group consisting of three Exs, symbolized by ExE = (Ex1, Ex2,
Ex3), is constructed to select the best supplier which the Ghabbour
Company can deal with it for importing motors. Alternatives are
introduced as Ai = (Alt1, Alt2, Alt3, Alt4, Alt5). These alternatives
are estimated based on eight criteria Œip = (Œi1, Œi2, Œi3, Œi4,
Œi5, Œi6,Œi7,Œi8), which are collected from a comprehensive
literature and EXs’ opinions.

Phase 2. Depict and design the linguistic scales.

• Obtain Exs’ judgments on each element. Based on the pre-
viously knowledge and experience on the topics, Exs are
demanded to convey their judgments. Every Ex gives his
judgment linguistically on every of these elements. Then,
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Fig. 3. The hierarchy of the problem.

Table 8
The weight of criteria by experts.
EXs Œi1 Œi2 Œi3 Œi4 Œi5 Œi6 Œi7 Œi8
Ex1 ⟨SI⟩ ⟨WI⟩ ⟨SI⟩ ⟨SI⟩ ⟨AI⟩ ⟨EI⟩ ⟨EI⟩ ⟨EI⟩
Ex2 ⟨VSI⟩ ⟨EI⟩ ⟨VSI⟩ ⟨AI⟩ ⟨SI⟩ ⟨SI⟩ ⟨WI⟩ ⟨SI⟩
Ex3 ⟨AI⟩ ⟨EI⟩ ⟨VSI⟩ ⟨AI⟩ ⟨SI⟩ ⟨EI⟩ ⟨EI⟩ ⟨VSI⟩

transformEXs’ linguistic evaluations into type 2 neutrosophic
numbers as in Tables 6 and 7.

• Build the preference relation matrix to locate the weights of
criteria using Eq. (26) as presented in Table 8. EXs employ the
semantic terms displayed in Table 6 to assess the opinions of
EXs with consideration to every criterion.

• Calculate the weights of Exs; Exs’ judgments are collected by
using Eq. (28). Then, calculate the score value after aggregat-
ing the opinions of Exs for each criteria using Eq. (5). Then,
normalize the obtaining weights as presented in Table 9.

Phase 3. Create the valuation matrix.

• Form the valuation matrix Ai × Œij using Eq. (29) to assess
the ratings of alternatives with esteem to every criterion, as
in Table 10. Exs use the linguistic terms presented in Table 7.

• Aggregate the final evaluation matrix using Eq. (1) as in
Table 11.

• Use the de-neutrosophication Eq. (5) for transforming type 2
neutrosophic numbers to the crisp values, as shown in Table 12.

• Then, construct the normalized decisionmatrix by Eq. (30), as
presented in Table 13.

• Compute the weighted matrix by multiplying Eq. (27) by the
normalized matrix as in Eq. (31), as shown in Table 14.

Phase 4. Rank the alternatives

• We can define the neutrosophic positive ideal solution (NPIS,
A∗) and the Neutrosophic negative ideal solution (NNIS, A−)
by Eqs. (32) and (33).

Table 10
Classification of alternatives and criteria by EXs.
Exs Altn Œi1 Œi2 Œi3 Œi4 Œi5 Œi6 Œi7 Œi8

Ex1

Alt1 ⟨MG⟩ ⟨G⟩ ⟨VG⟩ ⟨MG⟩ ⟨B⟩ ⟨VG⟩ ⟨VB⟩ ⟨VG⟩

Alt2 ⟨VB⟩ ⟨VG⟩ ⟨G⟩ ⟨B⟩ ⟨MG⟩ ⟨G⟩ ⟨G⟩ ⟨G⟩

Alt3 ⟨MG⟩ ⟨MG⟩ ⟨MG⟩ ⟨M⟩ ⟨B⟩ ⟨MG⟩ ⟨G⟩ ⟨MG⟩

Alt4 ⟨G⟩ ⟨MB⟩ ⟨VG⟩ ⟨MG⟩ ⟨VG⟩ ⟨VG⟩ ⟨MG⟩ ⟨VG⟩

Alt5 ⟨VB⟩ ⟨B⟩ ⟨B⟩ ⟨VG⟩ ⟨VB⟩ ⟨MG⟩ ⟨MG⟩ ⟨M⟩

Ex2

Alt1 ⟨G⟩ ⟨MB⟩ ⟨MB⟩ ⟨VG⟩ ⟨VG⟩ ⟨VG⟩ ⟨MG⟩ ⟨G⟩

Alt2 ⟨MB⟩ ⟨VB⟩ ⟨G⟩ ⟨M⟩ ⟨M⟩ ⟨G⟩ ⟨VB⟩ ⟨MG⟩

Alt3 ⟨VG⟩ ⟨MG⟩ ⟨VG⟩ ⟨MG⟩ ⟨VB⟩ ⟨MG⟩ ⟨G⟩ ⟨VG⟩

Alt4 ⟨VG⟩ ⟨VB⟩ ⟨VG⟩ ⟨VG⟩ ⟨MB⟩ ⟨VB⟩ ⟨MB⟩ ⟨VG⟩

Alt5 ⟨MB⟩ ⟨B⟩ ⟨VG⟩ ⟨VG⟩ ⟨VB⟩ ⟨VG⟩ ⟨MB⟩ ⟨M⟩

Ex3

Alt1 ⟨VG⟩ ⟨B⟩ ⟨VG⟩ ⟨VG⟩ ⟨G⟩ ⟨VG⟩ ⟨VG⟩ ⟨VG⟩

Alt2 ⟨M⟩ ⟨VG⟩ ⟨MB⟩ ⟨MB⟩ ⟨MG⟩ ⟨M⟩ ⟨M⟩ ⟨M⟩

Alt3 ⟨G⟩ ⟨B⟩ ⟨MG⟩ ⟨MG⟩ ⟨VB⟩ ⟨B⟩ ⟨MG⟩ ⟨G⟩

Alt4 ⟨B⟩ ⟨MB⟩ ⟨VG⟩ ⟨MB⟩ ⟨MG⟩ ⟨M⟩ ⟨G⟩ ⟨VG⟩

Alt5 ⟨MB⟩ ⟨VG⟩ ⟨M⟩ ⟨MB⟩ ⟨MG⟩ ⟨VG⟩ ⟨MB⟩ ⟨MB⟩

Fig. 4. Ranking the alternatives according to the best supplier.

• The distance of each alternative from A∗ and A− can be cur-
rently calculated by Eqs. (34) and (35) as: d∗

= (0.021, 0.016,
0.012, 0.012, and 0.018), d−

= {0.011, 0.017, 0.019, 0.022, and
0.017).

• The proximity coefficient of each available alternative is com-
puted by Eq. (36) as in Table 15.

• The ordering for the optimal alternatives of selecting the best
supplier is: Alt3, Alt4, Alt2, Alt5, and Alt1, as presented in Fig. 4.

5. Concluding remarks

MADM issues generally occur in difficult environments related
to uncertainty and imprecise data. The type 2 neutrosophic num-
ber is an efficient tool to dealwith expert’s impreciseness or incom-
pleteness, and the decisionmaker’s appreciations and assessments
over alternative with esteem to attribute. In the first part of the
article, we present the proposed method, introducing the type 2
neutrosophic number and defining its operations, properties and

Table 9
The final results of normalized criteria weights.
Weight ω̃n Aggregation weight by T2NN Crisp Normalized

weight

Œi1 ⟨(0.78, 0.72, 0.73) , (0.23, 0.25, 0.32) , (0.18, 0.18, 0.22)⟩ 0.7617 0.16
Œi2 ⟨(0.33, 0.30, 0.23) , (0.50, 0.60, 0.53) , (0.45, 0.65, 0.62)⟩ 0.3800 0.08
Œi3 ⟨(0.75, 0.68, 0.65) , (0.27, 0.25, 0.38) , (0.22, 0.20, 0.25)⟩ 0.7283 0.15
Œi4 ⟨(0.82, 0.75, 0.82) , (0.20, 0.25, 0.25) , (0.15, 0.17, 0.18)⟩ 0.7933 0.17
Œi5 ⟨(0.73, 0.65, 0.68) , (0.30, 0.35, 0.40) , (0.25, 0.28, 0.27)⟩ 0.6858 0.14
Œi6 ⟨(0.48, 0.38, 0.35) , (0.43, 0.52, 0.45) , (0.42, 0.53, 0.48)⟩ 0.4758 0.10
Œi7 ⟨(0.33, 0.30, 0.23) , (0.50, 0.60, 0.53) , (0.45, 0.65, 0.62)⟩ 0.3800 0.08
Œi8 ⟨(0.62, 0.53, 0.50) , (0.35, 0.38, 0.42) , (0.32, 0.37, 0.37)⟩ 0.6017 0.12
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Table 11
The consolidated decision matrix.
EXs Œi1 Œi2 Œi3 Œi4

Alt1

⟨
(0.617, 0.599, 0.623) ,

(0.013, 0.001, 0.014) ,

(0.003, 0.005, 0.005)

⟩ ⟨
(0.476, 0.440, 0.453) ,

(0.013, 0.018, 0.030) ,

(0.008, 0.011, 0.026)

⟩ ⟨
(0.650, 0.619, 0.650) ,

(0.003, 0.004, 0.004) ,

(0.001, 0.008, 0.005)

⟩ ⟨
(0.653, 0.629, 0.650) ,

(0.006, 0.005, 0.006) ,

(0.008, 0.006, 0.001)

⟩

Alt2

⟨
(0.353, 0.308, 0.358) ,

(0.043, 0.042, 0.064) ,

(0.024, 0.032, 0.063)

⟩ ⟨
(0.640, 0.613, 0.637) ,

(0.002, 0.003, 0.007) ,

(0.004, 0.007, 0.006)

⟩ ⟨
(0.552, 0.544, 0.593) ,

(0.004, 0.005, 0.009) ,

(0.002, 0.002, 0.008)

⟩ ⟨
(0.393, 0.351, 0.358) ,

(0.033, 0.039, 0.060) ,

(0.026, 0.030, 0.059)

⟩

Alt3

⟨
(0.617, 0.599, 0.623) ,

(0.013, 0.001, 0.014) ,

(0.003, 0.005, 0.005)

⟩ ⟨
(0.475, 0.393, 0.358) ,

(0.006, 0.006, 0.017) ,

(0.002, 0.016, 0.005)

⟩ ⟨
(0.603, 0.539, 0.571) ,

(0.001, 0.008, 0.001) ,

(0.001, 0.001, 0.004)

⟩ ⟨
(0.485, 0.420, 0.458) ,

(0.005, 0.003, 0.011) ,

(0.001, 0.008, 0.003)

⟩

Alt4

⟨
(0.589, 0.588, 0.591) ,

(0.006, 0.005, 0.003) ,

(0.008, 0.005, 0.002)

⟩ ⟨
(0.383, 0.261, 0.358) ,

(0.054, 0.003, 0.057) ,

(0.030, 0.024, 0.084)

⟩ ⟨
(0.664, 0.657, 0.664) ,

(0.003, 0.003, 0.004) ,

(0.004, 0.004, 0.004)

⟩ ⟨
(0.588, 0.510, 0.571) ,

(0.003, 0.001, 0.002) ,

(0.008, 0.001, 0.002)

⟩

Alt5

⟨
(0.383, 0.261, 0.358) ,

(0.054, 0.003, 0.057) ,

(0.030, 0.024, 0.084)

⟩ ⟨
(0.511, 0.497, 0.380) ,

(0.008, 0.019, 0.011) ,

(0.004, 0.009, 0.007)

⟩ ⟨
(0.522, 0.519, 0.501) ,

(0.007, 0.011, 0.007) ,

(0.003, 0.005, 0.005)

⟩ ⟨
(0.650, 0.619, 0.650) ,

(0.002, 0.001, 0.004) ,

(0.004, 0.003, 0.005)

⟩
EXs Œi5 Œi6 Œi7 Œi8

Alt1

⟨
(0.589, 0.588, 0.591) ,

(0.006, 0.005, 0.003) ,

(0.008, 0.005, 0.002)

⟩ ⟨
(0.664, 0.657, 0.664) ,

(0.003, 0.003, 0.004) ,

(0.004, 0.004, 0.004)

⟩ ⟨
(0.545, 0.490, 0.501) ,

(0.004, 0.004, 0.004) ,

(0.003, 0.001, 0.002)

⟩ ⟨
(0.656, 0.648, 0.659) ,

(0.005, 0.007, 0.003) ,

(0.008, 0.001, 0.002)

⟩

Alt2

⟨
(0.485, 0.420, 0.458) ,

(0.005, 0.003, 0.011) ,

(0.001, 0.008, 0.003)

⟩ ⟨
(0.535, 0.566, 0.593) ,

(0.003, 0.006, 0.021) ,

(0.001, 0.003, 0.006)

⟩ ⟨
(0.415, 0.444, 0.453) ,

(0.013, 0.024, 0.035) ,

(0.005, 0.016, 0.021)

⟩ ⟨
(0.511, 0.499, 0.533) ,

(0.004, 0.005, 0.010) ,

(0.001, 0.005, 0.005)

⟩

Alt3

⟨
(0.245, 0.245, 0.099) ,

(0.070, 0.160, 0.193) ,

(0.034, 0.160, 0.106)

⟩ ⟨
(0.408, 0.365, 0.232) ,

(0.017, 0.028, 0.053) ,

(0.008, 0.047, 0.021)

⟩ ⟨
(0.535, 0.566, 0.593) ,

(0.003, 0.006, 0.021) ,

(0.001, 0.003, 0.006)

⟩ ⟨
(0.617, 0.599, 0.623) ,

(0.013, 0.001, 0.014) ,

(0.003, 0.005, 0.005)

⟩

Alt4

⟨
(0.588, 0.510, 0.571) ,

(0.003, 0.001, 0.002) ,

(0.008, 0.001, 0.002)

⟩ ⟨
(0.491, 0.490, 0.501) ,

(0.008, 0.012, 0.007) ,

(0.003, 0.005, 0.005)

⟩ ⟨
(0.530, 0.466, 0.533) ,

(0.005, 0.004, 0.009) ,

(0.002, 0.004, 0.006)

⟩ ⟨
(0.664, 0.657, 0.664) ,

(0.003, 0.003, 0.004) ,

(0.004, 0.004, 0.004)

⟩

Alt5

⟨
(0.325, 0.277, 0.232) ,

(0.028, 0.032, 0.060) ,

(0.007, 0.053, 0.025)

⟩ ⟨
(0.653, 0.629, 0.650) ,

(0.006, 0.005, 0.006) ,

(0.008, 0.006, 0.001)

⟩ ⟨
(0.483, 0.337, 0.458) ,

(0.017, 0.006, 0.017) ,

(0.007, 0.008, 0.018)

⟩ ⟨
(0.407, 0.380, 0.458) ,

(0.027, 0.024, 0.038) ,

(0.018, 0.016, 0.041)

⟩

Table 12
The final aggregated matrix.
Œin/Altn Œi1 Œi2 Œi3 Œi4 Œi5 Œi6 Œi7 Œi8
Alt1 0.8659 0.8061 0.8751 0.8765 0.8598 0.8844 0.8336 0.8814
Alt2 0.7488 0.8720 0.8497 0.7614 0.8118 0.8509 0.8002 0.8385
Alt3 0.8659 0.7954 0.8523 0.8118 0.6493 0.7600 0.8509 0.8759
Alt4 0.8597 0.7487 0.8844 0.8467 0.8467 0.8263 0.8298 0.8844
Alt5 0.7487 0.8166 0.8339 0.8763 0.7351 0.8765 0.7940 0.7851

Table 13
The normalized decision matrix.
Œin/Altn Œi1 Œi2 Œi3 Œi4 Œi5 Œi6 Œi7 Œi8
Alt1 0.34 0.31 0.33 0.34 0.33 0.34 0.32 0.35
Alt2 0.32 0.38 0.37 0.32 0.35 0.36 0.34 0.36
Alt3 0.38 0.35 0.37 0.36 0.28 0.33 0.37 0.39
Alt4 0.36 0.31 0.37 0.35 0.35 0.35 0.35 0.37
Alt5 0.32 0.35 0.36 0.38 0.32 0.38 0.34 0.33

functioning rules. Then, we suggest an aggregation operator, called
T2NNWA operator, the score function and the accuracy function,
and apply them to solve a MADM problem under neutrosophic
environment using type 2 neutrosophic numbers. We discuss two
properties of the T2NNWA operator. Finally, the competence, the
performance and the applicability of the suggested technique is

illustrated with the best bank selection problem to do some bank-
ing transactions. In the second part, we present a powerful ap-
plication of the proposed method under GDM in neutrosophic
environment and employ the TOPSIS method in the neutrosophic
environment by the type 2 neutrosophic numbers. We apply the
proposed method in a problem of selection of the best supplier
for importing cars. The method can be easily used to compute and
rank the alternatives under group decision making process. The
suggested technique can be as well employed in other decision
making issues, such as pattern recognition, medical diagnosis, per-
sonnel selection, information project selection, material selection
and other management decision problems.

Table 14
The weighted matrix.
Œin/Altn Œi1 Œi2 Œi3 Œi4 Œi5 Œi6 Œi7 Œi8
Alt1 0.0544 0.0248 0.0495 0.0578 0.0462 0.0340 0.0256 0.0420
Alt2 0.0512 0.0304 0.0555 0.0544 0.0490 0.0360 0.0272 0.0432
Alt3 0.0608 0.0280 0.0555 0.0612 0.0392 0.0330 0.0296 0.0468
Alt4 0.0576 0.0248 0.0555 0.0595 0.0490 0.0350 0.0280 0.0444
Alt5 0.0512 0.0280 0.0540 0.0664 0.0448 0.0380 0.0272 0.0396
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Table 15
The final result of ranking.
Œin/Altn D+

i D−

i Œii Arranging

Alt1 0.021 0.011 0.34 5
Alt2 0.016 0.017 0.52 3
Alt3 0.012 0.022 0.65 1
Alt4 0.012 0.019 0.62 2
Alt5 0.018 0.017 0.48 4
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A B S T R A C T

Sustainable supplier selections have been improved by an increased number of multi criteria group
decision making (MCGDM) methods and techniques. This paper provides a multi criteria group decision
making (MCGDM) proposed technique of the ANP (analytical network process) method and the VIKOR
(ViseKriterijumska Optimizacija I Kompromisno Resenje) method under neutrosophic environment for
dealing with incomplete information and high order imprecision. This is done by using of the triangular
neutrosophic numbers (TriNs) to present the linguistic variables based on opinions of experts and
decision makers. The aim is to solve the problem of supplier selection in sustainable supplier chain
management (SSCM). The suggested technique consists of two phases. First, we use the ANP method to
calculate the weights of criteria and sub criteria. Second, with the aid of VIKOR method and with obtained
weights of the criteria and sub criteria from step one, we can find the solution. A case study is used to
present the decision process in detail. Our proposed method is compared directly with the entropy
method to justify our approach. We also use genetic algorithm to compute predicted values for five
selected cities while varying economic, environmental and social criteria. Explanations of forecasted
outputs and limitation for research have been presented. Our objective is to demonstrate that our
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proposal can calculate key measurement for major imp
reliable forecasted outcomes.

1. Introduction

Due to the competitions for economic growth, many countries
and cities have exploited more natural resources. In the process of
doing so, it has caused environmental issues and hazards, such as
air pollution and water contamination. Therefore, companies,
corporations and any members in the community of manufactur-
ing have the growing social responsibilities, due to the depletion of
natural resources, climate change and environmental hazards. To
make a balance, the recommendation is to have green suppliers
who are able to contribute to economic development and maintain

good business ethics. The type of work and the systems green
suppliers do, are known as sustainable supplier chain management
(SSCM). There are three factors determining the extents of success
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rt and export cities, as well as to provide fair and

of SSCM, namely social, economic and environment factors, which
can be used to evaluate sustainable suppliers systematically [1,2].

The majority of businesses and investors takes risk all the times.
This is particularly true if foreign investors have no much
knowledge about a city or a country, and they tend to rely on
information given to them by their networks and local govern-
ments. To help businesses and investors avoid medium and high
risk cases, the multi criteria group decision making (MCGDM)
methods and techniques can be used to evaluate sustainable
suppliers as follows. First, researchers could use mathematical
operations and fuzzy predilection relations. One specific example
is the fuzzy multiple criteria hierarchical group decision-making
problems presented by Chen and Lee [3,4]. Second, an integrated
methodology based on analytic network process (ANP) and VIKOR
(ViseKriterijumska Optimizacija I Kompromisno Resenje) can be
used to evaluate supplier selection [5,6]. Third, TODIM (an
acronym in Portuguese of interactive and multi criteria decision
making) approach is developed for supplier evaluation based on

interval type 2 fuzzy sets by Qin [7].

It has become a trend for researchers and scientists to perform a
multiplicity of studies, particularly in the relative area of
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evaluation and supplier selection, together with the fuzzy research
[8]. The following methods can be used to analyze supplier
selection, such as Decision-making Trial and Evaluation Laboratory
(DEMATEL), TOPSIS, TODIM, analytic hierarchy process (AHP),
analytic network process (ANP), DEA and their subsets. There are
three ways in the mainstream research as follows. First, the process
of selecting the suppliers can be adopted by combining different
methods, such Fuzzy Delphi and AHP-DEMATEL method [9], and
combining AHP and TOPSIS under the fuzzy environment for
evaluation suppliers [10]. Second, another alternative can be relied
on one method, such as structured MCGDM under the intuition-
istic fuzzy environment. Researchers in this area focus on
mathematical operations and intuitionistic fuzzy predilection
relations. Third, VIKOR method can be used under the intuitionistic
fuzzy to find suitable suppliers with their locations [11]. Among
these three mainstream, one thing in common is that the
intuitionistic fuzzy environment for the evaluation of suppliers
[12,13]. The majority of researchers used traditional fuzzy and
intuitionistic fuzzy set to handle the incomplete information,
vague data and the ambiguity of expert’s judgment in order to
solve MCGDM problems.

For the common approaches, we can locate the weights of
criteria for resolving MCGDM problems which have unknown
weights. To gain the weights in many MCDM problems, the AHP
method is often excessively used. The reason is that AHP method
assumes that the criteria are mutually independent, since there are
no interactions between sub-criteria. Additionally, a usual problem
is that much decision information is unclear and vague within the
operation of decision making. It is commonly known that fuzzy and
IFs can model these uncertainty and vague information well.
Meanwhile the results of decision making should be more rigorous
to be useful for the sustainable expansion of the company.
Obviously, fuzzy and IFs cannot illustrate the linguistic imprecision
and ambiguity of experts’ opinions.

Due to intense market competition, increased consumer
demand, and faster replication of the product, there are more
factors which cannot be revealed easily in the sustainable supplier
valuation process. Therefore, we plan to prepare to develop a
Fig. 1. Model structure
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method which can be more effective in sustainable supplier
evaluation. The aim is to include a fair, step-by-step and logical
measurement on important factors. This is our motivation for this
research. To fulfill our motivation, we can adopt neutrosophic
research in our proposed method to integrate ANP and VIKOR
methods together. Neutrosophic is very effective in dealing with
incomplete information, as well as unclear and vague data. Hence,
experts and decision makers use neutrosophic to denote informa-
tion in an uncertain environment [14]. The notion of neutrosophic
set was suggested by Smarandache [15–17] to make the concept of
IFs general. Many researchers head for solving MCGDM problems
under the neutrosophic environment because the accuracy of the
results [18–20].

The main achievements of this research are:

� Considering the significance of integrating of ANP method and
VIKOR method under the environment of neutrosophic.

� Recognizing the most effective and detailed criteria for supplier’s
selection.

� Demonstrating the case study of analyzing social, economic and
environmental factors to select the best suppliers for importing,
and its predictive analysis.

The model can be closer to the actual decision making problems
because being different from AHP method, the ANP depicts
relations among elements and interdependencies and feedback.
The ANP produces more accurate weights and more reasonable
outputs. Additionally, the solution offered by VIKOR method is a
feasible solution closest to the ideal solution. Besides, we should
take the accessibility of the proposed method into consideration,
so that we can use (TriNs) to depict the uncertain information
instead of real numbers. Thus, to overcome these disadvantages,
this paper seeks to develop an integrated ANP (Saaty 1980) and
VIKOR (Opricovic 1998) method under neutrosophic environment
to transact with sustainable supplier selections problems. The
structure of this paper is as follows: Section 2 reviews the ANP
method and the difference between ANP and AHP methods.
Section 3 presents the VIKOR method. Section 4 clarifies the
 for AHP and ANP.



Fig. 3. Ideal and compromise solutions.
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preliminaries of neutrosophic. Section 5 clarifies the procedure for
the proposed ANP-VIKOR method for the evaluation of the
suppliers. Section 6 describe a case study to certify the practicality
of the ANP-VIKOR method. Section 7 shows our evaluation based
on predicted outcomes and Section 8 present discussion about
research contributions and limitations. Section 9 concludes this
paper with our contributions and future work.

2. The ANP method

There are a lot of multi-criteria decision making (MCDM)
techniques such as the analytic network process (ANP) [21] that is
modified based on the (AHP) method [22]. The (ANP) consider the
dependency and feedback between elements of the problem that it
sophisticated by Saaty in 1996. The (ANP) makes models of the
decision making problems as networks not as hierarchies. From
disadvantages of the analytic hierarchy it’s not assumed the effect
of criteria on the alternatives. But the feedback and dependencies
are considered in the (ANP) method. In Fig. 1, we present the
difference between AHP and ANP.

The Fig. 1 shows how the hierarchy of the AHP is presented and
the higher element depends on the lower element but in the
network there exist dependencies between elements of the
problem that can be inner or outer dependencies. So, the analytic
network process is appropriate for complex problem. We present
in Fig. 2 the main process in ANP method.

3. The VIKOR method

Opricovic has developed the VIKOR method [23] and later
sophisticated it for multi criteria optimization of difficult systems
and complex problems [24–26]. When solving MADM problems to
get compromise solutions, we use the VIKOR method which is
considered an effective tool for solving problems that contain a set
of clashing criteria. The next form MP metric is considered the
original formula for developing the VIKOR technique.

MPj ¼
Xn
i¼1

wiðA� � AijÞ
ðA�

i � A�
iÞ

� �( )1
p

; 1 � M � 1; j ¼ 1; 2 . . . J ð1Þ

In the previous MP metric, A�
i = min Aij, A�

i = max Aij,
respectively, clarify the best and worst values wi = (i = 1, 2, . . . ,I)
are the conformable weights of the attributes. The dimension
between alternative Ai to the perfect solution are noted by MPj. The
Fig. 2. Main process in ANP.
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VIKOR method is interested in finding a compromise solution
satisfying the maximized utility of the entire group and Fig. 3
shows that compromise solution.

4. Basic and fundamental concepts of neutrosophic

This section shows the basic definitions of neutrosophic set.
Definition 1. [27,28] Any neutrosophic set N in X, has a truth-

membership function TN xð Þ, an indeterminacy-membership func-
tion INðxÞ and a falsity-membership function FNðxÞ. Where X is a
space of points and x2. TN xð Þ, INðxÞ and FNðxÞ are real subsets of]�0,
1+ [. The sum of TN xð Þ, INðxÞ and FNðxÞ has no constraints so 0-� sup
TN xð Þ + sup INðxÞ + sup FNðxÞ �3+.

Definition 2. [27,29] A single valued neutrosophic set N over X
taking the form N={hx, TN xð Þ, INðxÞ, FNðxÞ i:x2X}, where X be a
universe of discourse, TN xð Þ:X→[0,1], INðxÞ :X→[0,1] and FNðxÞ :
X→[0,1] with 0� TN xð Þ+ INðxÞ + FNðxÞ �3 for all x2X. For
convenience, a single valued neutrosophic number is represented
by N= (n1, n2, n3), where n1, n2, n3 2 [0,1] and n1 + n2 + n3 � 3.

Definition 3. [30,31] Suppose that a~n , u~n , b~n e ½0; 1� and
n1; n2; n3e R where n1 � n2 � n3.Then a single valued triangular
neutrosophic number, ~n = ðn1; n2; n3Þ; a~n ; u~n ; b~n iÞ

��
is a special

neutrosophic set on the real line set R; whose truth-membership,
indeterminacy-membership and falsity-membership functions are
defined as:

T~n ðxÞ ¼

a~n
x � n1

n2 � n1

� �
ðn1 � x � n2 Þ

a~n ð x ¼ n2 Þ
a~n

n3 � x
n3 � n2

� �
ðn2 < x � n3Þ

0 otherwise ;

8>>>>>><
>>>>>>:

ð2Þ

I~n xð Þ ¼

n2 � x þ u ~n x � n1ð Þð Þ
n2 � n1ð Þ n1 � x � n2ð Þ

u~n x ¼ n2ð Þ
x � n2 þ u~n n3 � xð Þð Þ

n3 � n2ð Þ n2 < x � n3ð Þ
1 otherwise

8>>>>>><
>>>>>>:

ð3Þ

F~n xð Þ ¼

n2 � x þ b~n x � n1ð Þð Þ
ðn2 � n1Þ n1 � x � n2ð Þ

b~n x ¼ n2ð Þ
x � n2 þ b~n ðn3 � xÞð Þ

ðn3 � n2Þ
n2 < x � n3ð Þ

1 otherwise :

8>>>>>><
>>>>>>:

ð4Þ

a~n ; u~n And b~n exemplify the superior degree of truth-member-
ship, lower indeterminacy and falsity membership degree. A single



Table 1
The triangular neutrosophic scale for comprise matrix.

Linguistic term Triangular Neutrosophic Scale

Low influence (LF) ð0:1; 0:2; 0:3Þ; 0:5 ; 0:1; 0:3h ih Þ
ð0:2; 0:3; 0:4Þ; 0:8 ; 0:2; 0:3h ih Þ

Fairly low influence (FLF) ð0:3; 0:4; 0:5Þ; 1:0 ; 0:1; 0:1h ih Þ
Medium influence (MF) ð0:4; 0:5; 0:6Þ; 0:7; 0:3; 0:2h ih Þ
Fairly high influence (FHF) ð0:5; 0:6; 0:7Þ; 0:9 ; 0:2; 0:1h ih Þ
High influence (HF) 0:6; 0:7; 0:8ð Þ; 0:8 ; 0:3; 0:5h ih Þ
Strong influence (SF) ð0:7; 0:8; 0:9Þ; 0:8 ; 0:3; 0:5h ih Þ

ð0:8; 0:9; 1:0Þ; 0:9 ; 0:2; 0:3h ih Þ
ð0:9; 1:0; 1:0Þ; 0:1 ; 0:2; 0:2h ih Þ
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valued triangular neutrosophic number ~n =
ðn1; n2; n3Þ; a~n ; u~n ; b~n iÞ
��

may express an ill-defined quantity
about n; which is approximately equal to n.

Definition 4. [28,30] Let ~a = ða1; a2; a3Þ; a~a ; u~a ; b~a iÞ
��

and ~b =
ðb1; b2; b3 Þ; a~b ; u~b ; b~b iÞ
��

be two single valued triangular neu-
trosophic numbers and g 6¼ 0 be any real number. Then,

1 The addition of two numbers is as follows:

~aþ~b ¼ a1 þ b1 ; a2 þ b2; a3 þ b3ð Þ; a~a ^a~b ; u~a_u~b ; b~a _b~b iÞ
��

2 The subtraction of two numbers is as follows:

~a � ~b ¼ a1 � b3 ; a2 � b2 ; a3 � b1ð Þ; a~a ^a~b ; u~a_u~b ; b~a _b~b iÞ
��

3 Inverse of a neutrosophic number is as follows:

~a�1 ¼ 1
a3
;
1
a2
;
1
a1

� �
; a~a ; u~a ; b~a iÞ; Where ~a 6¼ 0ð Þ

��

4 The multiplication of a neutrosophic number by a fixed value is
as follows:

g~a ¼
a3
g
;
a2
g
;
a1
g

� �
; a~a ; u~a ; b~a

� �� �
if g < 0ð Þ

a3
g
;
a2
g
;
a1
g

� �
; a~a ; u~a ; b~a

� �� �
if g < 0ð Þ

8>><
>>:

5 The division of a triangular neutrosophic number by fixed value

~a
g
¼

a1
g
;
a2
g
;
a3
g

� �
; a~a ; u~a ; b~a

� �� �
ifð g > 0Þ

a3
g
;
a2
g
;
a1
g

� �
; a~a ; u~a ; b~a iÞ if g < 0ð Þ

��
8>><
>>:

6 Division of two numbers is as follows:

~a
~b
¼

a3
g
;
a2
g
;
a1
g

� �
; a~a ; u~a ; b~a

� �� �
if g < 0ð Þ

a3
g
;
a2
g
;
a1
g

� �
; a~a ; u~a ; b~a

� �� �
if g < 0ð Þ

a3
g
;
a2
g
;
a1
g

� �
; a~a ; u~a ; b~a

� �� �
if g < 0ð Þ

8>>>>>><
>>>>>>:

7 Multiplication of two numbers is as follows:

~a~b ¼
a1b1 ; a2b2; a3b3ð Þ; a~a^a~b ; u~a_u~b ; b~a _b~b

� 	� 

if a3 > 0; b3 > 0ð Þ

a1b3 ; a2b2; a3b1ð Þ; a~a^a~b ; u~a_u~b ; b~a _b~b

� 	� 

if a3 < 0; b3 > 0ð Þ

a3b3; a2b2; a1b1ð Þ; a~a^a~b ; u~a_u~b ; b~a _b~b

� 	� 

if a3 < 0; b3 < 0ð Þ

8<
:

5. The ANP and VIKOIR methods

5.1. The functionality of linguistic variables

Words have more extent to describe the semantic and
sentimental expressions compared with numbers. This research
chooses triangular neutrosophic numbers which includes nine
parameters to model linguistic variables. The (TriN) scales that are
used in this proposed research are exhibited in Table 1.

5.2. The suggested method

In this section, the steps of the suggested triangular neutro-
sophic ANP-VIKOR framework are presented with detail. The
suggested framework consists of five phases which contain many
stages as follows:

Phase 1: Build a representative structure of ANP model to
define the goal.

Before the process of decision making starts establish a panel of
experts, e = [e1, e2, . . . ., en] for any MCGDM problem. It should
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reach a convention on what the goal is before the process starts. In
any evaluation of a sustainable supplier, the goal is to find out the
best suppliers for the corporation. So, determine the criteria of the
problem from experts’ opinions, target group survey and literature
reviews and surveys to confirm these criteria. Then, determine the
alternatives of the problem by introducing the best suppliers and
choosing the best alternative. Before that, all the problems were
presented by AHP which assumes that these criteria affect goal and
alternatives and depend on criteria but in the real problem may be
interdependency between elements of the problem criteria, sub
criteria and alternatives. Concisely to overcome this drawback of
AHP we used the Analytical network process that presents the
problem in the network model to show the interdependency
between elements such as feedback, interaction and circular
relationships as exhibited in Fig. 4.

Phase 2: Compute the weights of the criteria and sub criteria of
the problem.

This phase is considered the main phase in the solution of the
problem and weighting the criteria.

Step 1. Each expert structure comparisons matrices on the same
problem and aggregate matrices which are on the same problem
element.

Step 2. In this step, experts compare all overall objectives
criteria with sub criteria. Also criteria with alternatives and the
interdependencies are considered in the comparison matrices
between all elements.

C1 C2 . . . : Cn weights

C1
C2
. . .
. . .
. . .
Cn

C1
C21
. . .
. . .
. . .
Cn1

C12
C22
. . .
. . .
. . .
Cn2

. . .
. . .
. . .
. . .
. . .
. . .

C1m
C2m
. . .
. . .
. . .
Cnm

w1
w2
. . .
. . .
. . .
w n

2
6666664

3
7777775

ð5Þ

The previous matrix shows the relationships between the
criteria and calculating of weights and the following shows how
present weights of sub criteria relevant to each criteria and
calculating the local weight by Eq. (8). We obtain the global weight
by multiplying Eq. (5) by the weights in Eq. (8).

In the suggested method, the triangular neutrosophic numbers
are used to present the pairwise comparisons matrices as exhibited
in Table 1. On the contrary, the ANP in traditional using of Saaty
[32] scale of a nine point to represent the comparisons of matrices.

Step 3. Transform the comparisons matrices of the triangular
neutrosophic numbers into crisp values by using the following Eqs.
(5) and (6). Then, check the (CR) for each matrix which should be
less than 0.1 [33].

Score function:

S ~aij
� �

¼ 1
8

a1 þ b1 þ c1½ � � ð2 þ a~a � u~a � b~a Þ ð6Þ



Fig. 4. Interdependencies in ANP.
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Accuracy function:

A ~aij
� �

¼ 1
8

a1 þ b1 þ c1½ � � ð2 þ a~a � u~a þ b~a Þ ð7Þ

Step 4. Determine weight by calculating the eigenvector of
matrices which will be used in the constructing of the super matrix
of interdependencies.

C1 C2 . . . : Cn

C11
C21
. . .
. . .
. . .
Cn1

w11
w21
. . .
. . .
. . .
wn1

w12
w22
. . .
. . .
. . .
wn2

. . .
. . .
. . .
. . .
. . .
. . .

w1m
w2m
. . .
. . .
. . .

wnm

w11
w21
. . .
. . .
. . .
wn1

w12
w22
. . .
. . .
. . .
wn2

. . .
. . .
. . .
. . .
. . .
. . .

w1m
w2m
. . .
. . .
. . .

wnm

w11
w21
. . .
. . .
. . .
wn1

w12
w22
. . .
. . .
. . .
wn2

. . .
. . .
. . .
. . .
. . .
. . .

w1m
w2m
. . .
. . .
. . .

wnm

2
6666664

3
7777775

ð8Þ

Wlocal ¼ ½WC11 ; WC12 . . . WC1n ; WC21 ; WC22 . . . WC2n ; WC31 ;

WC32 . . . WC3n �T ð9Þ
Step 5. In this step, we calculate the weights for the criteria.

Firstly, to obtain the local weight for the sub criteria multiplying
the weight of interdependence of criteria by the local weight
obtained from experts’ comparison matrices of criteria relevant to
objective. Secondly, the global weight is calculated by multiplying
the inner interdependent weight of the criterion to which it
belongs by the local weight.

Phase 3: Rank the alternatives of the problem by using the
VIKOR technique

Step 1. Every expert from three experts makes the separated
evaluation matrix which consists of alternatives compared to
criteria. Then, aggregate the three separated evaluation matrices
by each expert into one matrix by using Eq. (10).

~Xij ¼ ~Xij
1 þ . . . . . . . . . : . . . . . . þ

~Xij
n

n
ð10Þ
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Step 2. Determine the cost attributes and the benefits attributes
of the sub criteria in the problem.

Step 3. Make indexes value being dimensionless, set decision-
making matrix by using Eqs. (11) and (12).

The cost type indicators are calculated as follow:

Zij ¼
Min Xij

Xij

� �
ð11Þ

The benefit type indicators are calculated as follow:

Zij ¼
Xij

Max Xij

� �
ð12Þ

Step 5. Calculating the positive and negative ideal solutions
using the Eqs. (13) and

(14).
Calculate the best and worst values which are:
For all cost criteria, i.e. i e cc

A�
i ¼ min Xij and A�

i ¼ max Xij ð13Þ
For all benefit criteria, i.e. i e cb

A�
i ¼ Xij and A�

i ¼ min Xij ð14Þ

The adjustment solution Ac is the practical solution that is the
"relative" to the ideal A� and adjustment means a convention
determined by mutual renunciations by D A1 = A�

1 - Ac
1 and D A2 =

A�
2 - Ac

2.
Step 6. From here, we start using the weighted which are

obtained from the ANP method.

WGlobal ¼ ½WC11 ; WC12 . . . WC1n ; WC21 ; WC22 . . . WC2n ; WC31 ;

WC32 . . . WC3n �T ð15Þ
And the evaluation matrix for alternatives relevant to sub

criteria after applies the two equations (13, 14) for cost criteria and
benefit criteria as follows:

C1 C2 . . . : Cn
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A1
A2
. . .
. . .
. . .
An

C11
C21
. . .
. . .
. . .
Cn1

C12
C22
. . .
. . .
. . .
Cn2

. . .
. . .
. . .
. . .
. . .
. . .

C1m
C2m
. . .
. . .
. . .
Cnm

C11
C21
. . .
. . .
. . .
Cn1

C12
C22
. . .
. . .
. . .
Cn2

. . .
. . .
. . .
. . .
. . .
. . .

C1m
C2m
. . .
. . .
. . .
Cnm

C11
C21
. . .
. . .
. . .
Cn1

C12
C22
. . .
. . .
. . .
Cn2

. . .
. . .
. . .
. . .
. . .
. . .

C1m
C2m
. . .
. . .
. . .
Cnm

2
6666664

3
7777775

ð16Þ

Step 7. Calculate the value of Si , Ri and Q i

From the previous two Eqs. (11) and (12), we can obtain the

following Si and Ri which are segregation of ith with the better

value and the segregation of ith with the worst value by two
equations exhibited as the following:

Si ¼
XN

x¼1

XnN

y¼1
wcxy

d A�
xy ; Xij

 

d A�

xy ; A�
xy

 

!

ð17Þ

Ri ¼ max xy wcxy
d A�

xy ; Xij
 


d A�
xy ; A�

xy
 


( )
ð18Þ

Q i ¼ m
Si � Si

�

Si
� � Si

� þ ð1 � mÞ Ri � Ri
�

Ri
� � Ri

� ð19Þ

In Eq. (19) m mean the weight of the strategy of the maximum
group utility that equal 0.5 where S�, S�, R�, R� calculating as
follows:

S�q ¼ maxq Sq
� �

and S�q ¼ minqfSqg ð20Þ

R�
q ¼ maxq Rq

� �
and R�

q ¼ minqfRqg ð21Þ
Step 8. Contemplate the suppliers
Respectively, rank the Si , Ri and Qi and there are two

conditions to satisfy before the alternative in the first position in
Qi ranking suggested as the adjustment’s solutions. There are two
conditions that should be satisfied:

Case 1

Q S2
� �

� Q ðS1Þ � 1
M � 1

ð22Þ

In which, M is the number of alternative suppliers in the

problem and S2 in the Q ranking list means the alternative with the
second position.

Case 2: agreeable persistence

In the ranking list of Q the alternative S1 should be the superior
in the S or R. Go to the extra phase to get the compromises solution,
if either condition is not satisfied. When case 1 is not satisfied, the
maximum values of M need to be searched with the following
relationship:

Q SN
� �

� Q S1
� �

<
1

M � 1
ð23Þ

And when case 2 is not satisfied, then both S1 and S2 are
adjustment solutions.

Phase 4: Sorting the alternatives again using of VIKOR method
combined with entropy Method.

Numerical illustration for the previous supplier selection
problem:

Step 1. Calculate the Tij for the matrix

Tij ¼
vijPm

j¼1
vij

ð24Þ
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Step 2. Calculate the entropy value tij for the matrix

tij ¼ �k
Xm
i¼1

tijlnðtijÞ ð25Þ

K ¼ 1
lnðmÞ ; m ¼ number of alternatives ð26Þ

Step 3. Calculate the weights
Calculate the weights as the following:

Wj ¼
ð1 � tijÞPn

j¼1
ð1 � tijÞ

ð27Þ

Step 4. Calculate the value of Si , Ri and Q i

In this step, follow step 3 to step 8 as in the previous
illustrations. Then, start to sort the alternatives again after entropy
method.

Step 5. Ending
Finally, the diagrammatic clarification of the offered framework

is exhibited in Fig. 5.

6. The case study: results and analysis

In this section, the results are analyzed and presented as
follows. The suggested structure has been applied to a real
sustainable supplier selection problem of an import company.

This study has been conducted on a large importing company in
Egypt. The United corporation for importing and exporting was
founded in 2005 and is based in Port Said, Egypt. The corporation
imports a lot of products such as hardware, electrical devices, toys,
housewares et cetera from different countries. The corporation is
seeking to increase the import rate and sales. The corporation is
seeking to import from one of the largest countries in East Asia that
is called the Asian Tigers and choose the best supplier. It must be
considered the values of the society and citizenship and religious
values in the products they import and be satisfaction of all citizens
in terms of the social factor and be environmentally friendly
products and a low financial cost affordable to citizens. Therefore,
the corporation must evaluate available suppliers and their
sustainability to select the best supplier to import from it. So,
for this study the corporation collected information about the
factors (economic, environment and social) that are considered by
three experts. The experts are: strategic expert, marketing expert
and Manufacturing expert with more than seven years of
experience in this field. The suppliers are five and denoted by
five cities respectively: A1 Qingdao City (mainland China’s base for
green suppliers), A2 Singapore, A3 Johor Bahru (Malaysia), A4 Taipei
City and A5 Hong Kong City. These five are considered as part of
“Active Asian Economic Cities” (AAECs) due to its developed
economy and active import and export businesses, particularly the
establishment of green suppliers and recycling businesses.

Phase 1: Understanding of the problem.
Identify the criteria, the sub criteria and the alternatives of the

available suppliers of the problem as exhibited in Fig. 6. In addition,
we can determine how to apply the ANP and how criteria and sub
criteria influence each other.

Phase 2: Compute the weights of the elements of the problem.
In this phase, opinions of experts presented in the comparisons

matrices between criteria relevant to sub criteria and alternatives
relevant to sub criteria and present the comparison matrices using
of the (TRiNs) to deal with vague and incomplete information using
of scales exhibited in Table 1. All the following tables from 1 to 21
presented how to calculate the weight between elements of the
case study we studied (Table 2).



Fig. 5. The proposed framework of the model phases.
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Adding the membership to values (truthiness, falsity, indeter-
minacy) to values that is presented in Table 3.

The next step is to convert the neutrosophic values to the crisp
values in the matrix. Results are presented in Table 3 by Eq. (6). This
is called the deneutrosophication function (Tables 4–10).

All the following matrices from 2 to 22 are consistent by
checking the consistency ratio and the consistency ratio (CR) less
than 0.1 in all matrices.

Hence, we calculated the comparative importance of the
criteria on the base of their interdependence, which was calculated
by using the matrix in Table 11 and the preferences of Table 4 as
follows:

wfactor ¼
economic ðECÞ
social ðSOÞ

environment ðENÞ

2
4

3
5

¼
0:37 0:35 0:34
0:31 0:34 0:30
0:32 0:31 0:36

2
4

3
5 �

0:26
0:36
0:38

2
4

3
5 ¼

0:36
0:31
0:33

2
4

3
5
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From the previous matrix, it is clear that the inner inter-
dependencies of criteria effect on its weights. It’s obvious that, the
weights of main criteria changed from (0.26, 0.36, and 0.38) to
(0.36, 0.31, and 0.33). Therefore, when evaluating and selecting the
suppliers the most significant factor is the economic (EC) criteria
followed by social (SO) criteria and environmental (EN) criteria
according to decision makers and experts.

Let’s start the comparison matrices to calculate the local
weights of sub criteria relevant to their clusters (criteria), showed
in Tables 12–14 (Tables 15–20).

Economic factors (EC):

� c11 (cost of product “CP”)
� c12 (Revenue on product “RP”)
� c13 (Transportation cost “CO”)

Social factors (SO):

� c21 (Vocational health and safety systems “VS”)
� c22 (Information revelation “IR”)



Fig. 6. Typical structure for determining the weights of sub criteria and selecting the best alternatives.
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� c23 (Ethical issues and legal compliance “EL”)

Environmental factors (EN):

� c31 (Trash management “TM”)
� c32 (Green manufacturing “GM”)
� c33 (Green packing and labeling “GL”)

Concisely, the previous matrices showed the local weight of sub-
criteria by inner interdependency to each criterion. So, we obtain the
Table 2
Pairwise comparison of factors and local weight.

Factors Economic (EC) Social (SC) Environmental (EN)

Economic (EC) 0:5; 0:5; 0:5h ih Þ 0:4; 0:5; 0:6h ih Þ 0:9; 1:0; 1:0h ih Þ
Social (SC) 0:6; 0:7; 0:8h ih Þ 0:5; 0:5; 0:5h ih Þ ð0:7; 0:8; 0:9h ih Þ
Environmental (EN) ð0:8; 0:9; 1:0h ih Þ ð0:3; 0:4; 0:5h ih Þ 0:5; 0:5; 0:5h ih Þ
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global weight of sub-criteria by multiplying local weight by the inner
interdependent weight of the criterion showed in Table 21.

We obtain the global weight of sub criteria as follow WGlobal ¼
½0:13; 0:09; 0:14; 0:06; 0:15; 0:10; 0:16; 0:07; 0:11�T. Fig. 7 shows
the local and global weights of sub criteria (Tables 22 and 23).

Phase 3: Sorting alternatives of problems.
Every expert from the set of experts makes the evaluation matrix

via the comparison between the five alternatives relative to each sub
criteria by using the (TriNs) scale in Table 1. We can then convert every
matrix into crisp value then aggregate the matrices into one matrix
using Eq. (10) then obtain the matrix as exhibited in Table 24.

Establishing decision- making matrix by making indicators
value being dimensionless where the following are benefits
attributes the greater value being better.

� c11 (cost of product “CP”)
� c13 (Transportation cost “CO”)



Table 3
Pairwise comparison matrix with the memberships.

Factors Economic (EC) Social (SC) Environmental (EN)

Economic (EC) 0:5; 0:5; 0:5h ih Þ ð0:4; 0:5; 0:6Þ; 0:7; 0:3; 0:2h ih Þ ð0:9; 1:0; 1:0Þ; 0:1 ; 0:2; 0:2h ih Þ
Social (SC) 0:6; 0:7; 0:8ð Þ; 0:8 ; 0:3; 0:5h ih Þ 0:5; 0:5; 0:5h ih Þ ð0:7; 0:8; 0:9Þ; 0:8 ; 0:3; 0:5h ih Þ
Environmental (EN) ð0:8; 0:9; 1:0Þ; 0:9 ; 0:2; 0:3h ih Þ ð0:3; 0:4; 0:5Þ; 1:0 ; 0:1; 0:1h ih Þ 0:5; 0:5; 0:5h ih Þ

Table 4
Pairwise comparison of factors and local weight.

Factors Economic (EC) Social (SC) Environmental (EN) Weights

Economic (EC) 0:5 0:41 0:62 0.26
Social (SC) 0:58 0:5 0:61 0.36
Environmental (EN) 0:81 0:42 0:5 0.38

Table 5
Calculating the membership and crisp value of economic (EC) factor matrix relative to other factors.

Economic (EC) factor Economic (EC) Social (SC) Environmental (EN)

Economic (EC) 0:5; 0:5; 0:5h ih Þ ð0:3; 0:4; 0:5Þ; 1:0 ; 0:1; 0:1h ih Þ 0:6; 0:7; 0:8ð Þ; 0:8 ; 0:3; 0:5h ih Þ
Social (SC) ð0:2; 0:3; 0:4Þ; 0:8 ; 0:2; 0:3h ih Þ 0:5; 0:5; 0:5h ih Þ ð0:7; 0:8; 0:9Þ; 0:8 ; 0:3; 0:5h ih Þ
Environmental (EN) ð0:1; 0:2; 0:3Þ; 0:5 ; 0:1; 0:3h ih Þ ð0:8; 0:9; 1:0Þ; 0:9 ; 0:2; 0:3h ih Þ 0:5; 0:5; 0:5h ih Þ

Table 6
Interdependency matrix of the main factors relative to economic (EC) factor.

Economic
Factor

Economic (EC) Social (SC) Environmental (EN) Weights

Economic (EC) 0:5 0:42 0:55 0.37
Social (SC) 0:26 0:5 0:60 0.31
Environmental (EN) 0:16 0:81 0:5 0.32

Table 7
Calculating the memberships and crisp value of Social (SC) factor matrix relative to other factors.

Social (SC) Factor Economic (EC) Social (SC) Environmental (EN)

Economic (EC) 0:5; 0:5; 0:5h ih Þ ð0:3; 0:4; 0:5Þ; 1:0 ; 0:1; 0:1h ih Þ 0:8; 0:9; 1:0ð Þ; 09 ; 0:2; 0:3h ih Þ
Social (SC) 0:6; 0:7; 0:8ð Þ; 0:8 ; 0:3; 0:5h ih Þ 0:5; 0:5; 0:5h ih Þ ð0:7; 0:8; 0:9Þ; 0:8 ; 0:3; 0:5h ih Þ
Environmental (EN) ð0:4; 0:5; 0:6Þ; 0:7 ; 0:3; 0:2h ih Þ ð0:9; 1:0; 1:0Þ; 0:1 ; 0:2; 0:2h ih Þ 0:5; 0:5; 0:5h ih Þ

Table 8
Interdependency matrix of the main factors relative to social (SC) factor.

Social (SC)
Factor

Economic (EC) Social (SC) Environmental (EN) Weights

Economic (EC) 0:5 0:42 0:81 0.35
Social (SC) 0:55 0:5 0:60 0.34
Environmental (EN) 0:41 0:61 0:5 0.30

Table 9
Calculating the memberships and crisp value of Environmental (EN) factor matrix relative to other factors.

Environmental (EN)Factor Economic (EC) Social (SC) Environmental (EN)

Economic (EC) 0:5; 0:5; 0:5h ih Þ ð0:4; 0:5; 0:6Þ; 0:7 ; 0:3; 0:2h ih Þ 0:8; 0:9; 1:0ð Þ; 09 ; 0:2; 0:3h ih Þ
Social (SC) 0:2; 0:3; 0:4ð Þ; 0:8 ; 0:2; 0:3h ih Þ 0:5; 0:5; 0:5h ih Þ ð0:8; 0:9; 1:0Þ; 0:9 ; 0:2; 0:3h ih Þ
Environmental (EN) ð0:7; 0:8; 0:9Þ; 0:8 ; 0:3; 0:5h ih Þ ð0:5; 0:6; 0:7Þ; 0:9 ; 0:2; 0:1h ih Þ 0:5; 0:5; 0:5h ih Þ
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Table 10
Interdependency matrix of the main factors relative to Environmental (EN) factor.

Environmental (EN) Economic
(EC)

Social
(SC)

Environmental
(EN)

Weights

Economic (EC) 0:5 0:41 0:81 0.34
Social (SC) 0:26 0:5 0:81 0.30
Environmental (EN) 0:60 0:59 0:5 0.36

Table 11
The comparative influence of decision criteria, EC, SC, EN.

criteria Economic (EC) Social (SC) Environmental (EN)

Economic (EC) 0:37 0:35 0:34
Social (SC) 0:31 0:34 0:30
Environmental (EN) 0:32 0:30 0:36

Table 12
The comparison matrix between sub criteria of environmental (EN) criteria.

Economic (EC)Factor C11= CP C12 / RP C13 / CO

C11= CP 0:5; 0:5; 0:5h ih Þ 0:6; 0:7; 0:8h ih Þ 0:9; 1:0; 1:0h ih Þ
C12 / RP 0:4; 0:5; 0:6h ih Þ 0:5; 0:5; 0:5h ih Þ 0:8; 0:9; 1:0h ih Þ
C13 / CO 0:7; 0:8; 0:9h ih Þ 0:1; 0:2; 0:3h ih Þ 0:5; 0:5; 0:5h ih Þ
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� c31 (Trash management “TM”)
� c32 (Green manufacturing “GM”)
� c33 (Green packing and labeling “GL”)

The following are cost attributes the smaller value being better.

� c21 (Vocational health and safety systems “VS”)
Table 13
The comparison matrix between sub criteria of environmental (EN) criteria via using t

Economic (EC)Factor C11= CP

C11= CP 0:5; 0:5; 0:5h ih Þ
C12 / RP 0:4; 0:5; 0:6ð Þ; 0:7 ; 0:3; 0:2h ih Þ 

C13 / CO ð0:7; 0:8; 0:9Þ; 0:8 ; 0:3; 0:5h ih Þ 

Table 14
The local weight of sub criteria of environmental (EN) criteria.

Economic (EC)Factor C11= CP C12 / RP

C11= CP 0:5; 0:5; 0:5h ih Þ ð0:4; 0:5h h
C12 / RP 0:2; 0:3; 0:4ð Þ; 0:8 ; 0:2; 0:3h ih Þ 0:5; 0:5; h h 

C13 / CO ð0:7; 0:8; 0:9Þ; 0:8 ; 0:3; 0:5h ih Þ ð0:5; 0:6h h 

Table 15
The comparison matrix between sub criteria of social (SO) criteria.

Social (SO)Factor C21/ VS

C21/ VS 0:5; 0:5; 0:5h ih Þ
C22 / IR 0:9; 1:0; 1:0h ih Þ
C23 / EL 0:4; 0:5; 0:6h ih Þ

Table 16
The comparison matrix between sub criteria of social (SO) criteria via using the memb

Social (SO)Factor C21/ VS

C21/ VS 0:5; 0:5; 0:5h ih Þ 

C22 / IR 0:9; 1:0; 1:0ð Þ; 0:1 ; 0:2; 0:2h ih Þ
C23 / EL ð0:4; 0:5; 0:6Þ; 0:7 ; 0:3; 0:2h ih Þ
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� c22 (Information revelation “IR”)
� c23 (Ethical issues and legal compliance “EL”)
� c12 (Revenue on product “RP”)

Calculating the positive and negative ideal solutions
The next step is to calculate the positive and negative ideal

solutions (A� ; A�) from the previous matrix using Eqs. (13) and
(14) as follows: The positive ideal solutions are A� = (1,1,1,1,1,1,1,1,
and 1) and the negative ideal solutions are A� = (0.63, 0.73, 0.57,
0.51, 0.60, 0.62, 0.62, 0.40, and 0.60) (Tables 25 and 26).

Step 6: calculating the S, R, Q for each alternative
Calculating the S, R, and Q for each alternative using Eqs. (17)–

(21) as shown in the following Table 27.
In the previous Table 27 it is showed a list of alternatives Q after

using the equations. From the results showed follows that the two

conditions are satisfied. The first condition: Q (S2) - Q (S1) � 1
M�1

that presented 0.334 – 0.051 � 1
5�1. Then, the second condition that

the first order value of Q is the first order value of R also of S as
showed in Table 28.

Ranking of S for values are: A2 > A5 > A1 > A3 > A4

Ranking of R for values are: A2 > A3 > A4 > A5 > A1

Ranking of Q for values are: A2 > A5 > A3 > A1 > A4

Hence, the final ranking of the alternatives A2 > A5 > A3 > A1 >

A4 is presented. In other words, Taipei City is considered the best
supplier for importing and dealing with company compared to
other competitors. The worst choice is the city of Singapore as
exhibited in Fig. 8. This is identical to the reality since Singapore
has no natural resources and heavily relies on

Phase 4: Sorting the alternatives again using of VIKOR method
combined with entropy method.

Numerical illustration for the previous supplier selection
problem are as follows:
he memberships.

C12 / RP C13 / CO

ð0:6; 0:7; 0:8Þ; 0:8; 0:4; 0:3h ih Þ 0:9; 1:0; 1:0ð Þ; 0:1 ; 0:2; 0:2h ih Þ
0:5; 0:5; 0:5h ih Þ ð0:8; 0:9; 1:0Þ; 0:9 ; 0:2; 0:3h ih Þ
ð0:1; 0:2; 0:3Þ; 0:5 ; 0:1; 0:3h ih Þ 0:5; 0:5; 0:5h ih Þ

C13 / CO Weights

; 0:6Þ; 0:7 ; 0:3; 0:2iÞ 0:8; 0:9; 1:0ð Þ; 09 ; 0:2; 0:3h ih Þ 0.35
0:5iÞ ð0:8; 0:9; 1:0Þ; 0:9 ; 0:2; 0:3h ih Þ 0.26
; 0:7Þ; 0:9 ; 0:2; 0:1iÞ 0:5; 0:5; 0:5h ih Þ 0.39

C22 / IR C23 / EL

0:1; 0:2; 0:3h ih Þ 0:2; 0:3; 0:4h ih Þ
0:5; 0:5; 0:5h ih Þ 0:8; 0:9; 1:0h ih Þ
0:3; 0:4; 0:5h ih Þ 0:5; 0:5; 0:5h ih Þ

erships.

C22 / IR C23 / EL

ð0:1; 0:2; 0:3Þ; 0:5 ; 0:1; 0:3h ih Þ ð0:2; 0:3; 0:4Þ; 0:8 ; 0:2; 0:3h ih Þ
0:5; 0:5; 0:5h ih Þ ð0:8; 0:9; 1:0Þ; 0:9 ; 0:2; 0:3h ih Þ
ð03; 0:4; 0:5Þ; 1:0 ; 0:0; 0:2h ih Þ 0:5; 0:5; 0:5h ih Þ



Table 17
The local weight of sub criteria of social (SO) criteria.

Social (SO)Factor C21/ VS C22 / IR C23 / EL Weights

C21/ VS 0:5 0:16 0:26 0.22
C22 / IR 0:61 0:5 0:81 0.47
C23 / EL 0:41 0:42 0:5 0.31

Table 18
The comparison matrix between sub criteria of environmental (EN) criteria.

Environmental (EN)Factor C31 / TM C32 / GM C33 / GL

C31 / TM 0:5; 0:5; 0:5h ih Þ 0:8; 0:9; 1:0h ih Þ 0:8; 0:9; 1:0h ih Þ
C32 / GM 0:1; 0:2; 0:3h ih Þ 0:5; 0:5; 0:5h ih Þ 0:5; 0:6; 0:7h ih Þ
C33 / GL 0:6; 0:7; 0:8h ih Þ 04; 0:5; 0:6h ih Þ 0:5; 0:5; 0:5h ih Þ
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Step 1. Calculate the Tij for the matrix
Calculate the Tij by the using of Eq. (24) as in the following

Table 29.
Step 2. Calculate the entropy value tij for the matrix
Calculate the entropy value tij for the matrix using the two Eqs.

(25) and (26)
Let m = 5, then k = 1

ln5, k = 0.621,

Then, we calculate the value of tij =
Pm
i¼1

tij lnðtijÞ as the following

for each column as the following:

Xm
i¼1

ti1lnðti1Þ ¼ �1:603;
Xm
i¼1

ti2ln ti2ð Þ ¼ �1:602;

Xm
i¼1

ti3lnðti3Þ ¼ � 1:589;
Xm
i¼1

ti4lnðti4Þ ¼ �1:580;
Table 19
The comparison matrix between sub criteria of environmental (EN) criteria via using t

Environmental (EN)Factor C31 / TM

C31 / TM 0:5; 0:5; 0:5h ih Þ
C32 / GM ð0:1; 0:2; 0:3Þ; 0:5 ; 0:1; 0:3h ih Þ 

C33 / GL ð0:6; 0:7; 0:8Þ; 0:8 ; 0:4; 0:3h ih Þ 

Table 20
The local weight of sub criteria of environmental (EN) criteria.

Environmental (EN)Factor C31 / TM

C31 / TM 0:5
C32 / GM 0:16
C33 / GL 0:55

Table 21
The global weights of all sub-criteria.

Criteria and local weight Sub-criteria

Economic (EC) criteria
(0.36)

c11 (cost of product “CP”)
c12 (Revenue on product “RP”)
c13 (Transportation cost “CO”)

Social (SO) criteria
(0.31)

c21 (Vocational health and safet
c22 (Information revelation “IR”
c23 (Ethical issues and legal com

Environmental (EN) criteria (0.33) c31 (Trash management “TM”) 

c32 (Green manufacturing “GM”

c33 (Green packing and labeling
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Xm
i¼1

ti5lnðti5Þ ¼ �1:591;
Xm
i¼1

ti6lnðti6Þ ¼ �1:596;

Xm
i¼1

ti7lnðti7Þ ¼ �1:594;
Xm
i¼1

ti8lnðti8Þ ¼ �1:564;

Xm
i¼1

ti9lnðti9Þ ¼ �1:593;

Then, we calculate the entropy value by using Eq. (25)
t1 = (�0.621) (�1.603) = 0.995, t2= (�0.621) (�1.602) = 0.994,
t3= (�0.621) (�1.589) = 0.986, t4 = (�0.621) (�1.580) = 0.981,
t5= (�0.621) (�1.591) = 0.988, t6 = (�0.621) (�1.596) = 0.991,
t7= (�0.621) (�1.594) = 0.989, t8 = (�0.621) (�1.564) = 0.971,
t9 = (�0.621) (�1.593) = 0.989,
Step 3. Calculate the weights
Calculate the weights using Eq. (27)
w1 = 0.043, w2 = 0.052, w3 = 0.121, w4 = 0.164, w5 = 0.103,

w6 = 0.078,
w7 = 0.095, w8 = 0.250, w9 = 0.095.
W = [0.043, 0.052 0.121, 0.164, 0.103, 0.078, 0.095, 0.250, 0.095]
Step 4. Calculate the value of Si , Ri and Q i

In this step, follow step 3 to step 8 as in the previous
illustrations. Then, we can start to sort the alternatives again after
adopting entropy method (Table 30).

Calculating the S, R, and Q for each alternative using Eqs. (17)–
(21) as shown in the following Table 31 and Fig. 9 present the
ranking of alternatives using of entropy method.

The previous Table 27 showed a list of alternatives Q after using
the equations. From the results showed follows that the first

condition is not satisfied Q (S2) - Q (S1) � 1
M�1 that presented 0.191 –

0.075 � 1
5�1. So, we achieve this condition by this Eq. Q (Sr) - Q (S1)
he memberships.

C32 / GM C33 / GL

ð0:8; 0:9; 1:0Þ; 0:9 ; 0:2; 0:3h ih Þ ð0:8; 0:9; 1:0Þ; 0:9 ; 0:2; 0:3h ih Þ
0:5; 0:5; 0:5h ih Þ ð0:5; 0:6; 0:7Þ; 0:9 ; 0:2; 0:1h ih Þ
ð04; 0:5; 0:6Þ; 0:7 ; 0:3; 0:2h ih Þ 0:5; 0:5; 0:5h ih Þ

C32 / GM C33 / GL Weights

0:82 0:81 0.45
0:5 0:59 0.24
0:40 0:5 0.31

Local weight Global weight

0.35 0.13
0.26 0.09
0.39 0.14

y systems “VS”) 0.22 0.06
) 0.47 0.15
pliance “EL”) 0.31 0.10

0.45 0.16
) 0.24 0.07

 “GL”) 0.31 0.11



Fig. 7. Presenting the local and global weights of sub criteria.

Table 22
The evaluation matrix for alternatives with sub-criteria.

Experts Alternatives Sub-criteria

C11= CP C12 / RP C13 / CO C21/ VS C22 / IR C23 / EL C31 / TM C32 / GM C33 / GL

Expert 1 A1 SFh ih Þ SFh ih Þ FHFh ih Þ MFh ih Þ LFh ih Þ LFh ih Þ FLFh ih Þ FHFh ih Þ SFh ih Þ
A2 LFh ih Þ LFh ih Þ FLFh ih Þ MFh ih Þ FHFh ih Þ HFh ih Þ SFh ih Þ SFh ih Þ SFh ih Þ
A3 FHFh ih Þ HFh ih Þ FLFh ih Þ HFh ih Þ SFh ih Þ MFh ih Þ LFh ih Þ SFh ih Þ HFh ih Þ
A4 SFh ih Þ SFh ih Þ SFh ih Þ LFh ih Þ HFh ih Þ SFh ih Þ SFh ih Þ LFh ih Þ MFh ih Þ
A5 LFh ih Þ MFh ih Þ HFh ih Þ SFh ih Þ MFh ih Þ SFh ih Þ SFh ih Þ MFh ih Þ SFh ih Þ

Expert 2 A1 SFh ih Þ FLFh ih Þ FHFh ih Þ LFh ih Þ SFh ih Þ MFh ih Þ LFh ih Þ FHFh ih Þ MFh ih Þ
A2 MFh ih Þ SFh ih Þ SFh ih Þ MFh ih Þ FLFh ih Þ FHFh ih Þ HFh ih Þ SFh ih Þ SFh ih Þ
A3 FHFh ih Þ LFh ih Þ LFh ih Þ SFh ih Þ HFh ih Þ HFh ih Þ SFh ih Þ LFh ih Þ LFh ih Þ
A4 LFh ih Þ MFh ih Þ HFh ih Þ FHFh ih Þ SFh ih Þ SFh ih Þ MFh ih Þ FLFh ih Þ FHFh ih Þ
A5 SFh ih Þ SFh ih Þ HFh ih Þ SFh ih Þ HFh ih Þ LFh ih Þ FLFh ih Þ SFh ih Þ SFh ih Þ

Expert 3 A1 FLFh ih Þ LFh ih Þ LFh ih Þ FHFh ih Þ SFh ih Þ FHFh ih Þ SFh ih Þ MFh ih Þ SFh ih Þ
A2 SFh ih Þ FHFh ih Þ HFh ih Þ SFh ih Þ LFh ih Þ FLFh ih Þ LFh ih Þ MFh ih Þ SFh ih Þ
A3 LFh ih Þ SFh ih Þ MFh ih Þ SFh ih Þ HFh ih Þ FLFh ih Þ FHFh ih Þ HFh ih Þ SFh ih Þ
A4 SFh ih Þ HFh ih Þ SFh ih Þ LFh ih Þ SFh ih Þ SFh ih Þ SFh ih Þ LFh ih Þ SFh ih Þ
A5 SFh ih Þ MFh ih Þ SFh ih Þ MFh ih Þ MFh ih Þ HFh ih Þ LFh ih Þ SFh ih Þ SFh ih Þ

Table 23
The crisp value for the evaluation matrix for alternatives with sub-criteria Aggregation of the evaluation matrix for the alternatives with sub criteria of the three experts using
Eq. (10).

Experts Alternatives Sub-criteria

C11= CP C12 / RP C13 / CO C21/ VS C22 / IR C23 / EL C31 / TM C32 / GM C33 / GL

Expert1 A1 0.61 0.62 0:61 0:43 0:26 0:18 0:44 0:61 0:60
A2 0:18 0:26 0:44 0:43 0:61 0:57 0:60 0:81 0.62
A3 0:61 0:57 0:44 0:57 0:81 0:43 0:18 0.62 0:57
A4 0:81 0:81 0.62 0:18 0:57 0:81 0:81 0:18 0:43
A5 0:26 0:43 0:57 0:81 0:43 0.62 0.62 0:43 0:81

Expert 2 A1 0.62 0.44 0.61 0:18 0.62 0:43 0:18 0.61 0:43
A2 0:43 0.62 0:81 0:43 0.44 0.61 0.63 0.62 0.62
A3 0.61 0:18 0:26 0.62 0:57 0:57 0.62 0:26 0:18
A4 0:26 0:43 0:57 0.61 0:81 0.62 0:43 0.44 0.61
A5 0.62 0.62 0:57 0.62 0:57 0:26 0.44 0:81 0.62

Expert 3 A1 0:44 0:26 0:18 0:61 0.62 0:61 0.61 0:43 0:60
A2 0:60 0:61 0:57 0:81 0:26 0:44 0:18 0:43 0:81
A3 0:18 0:81 0:43 0.62 0:57 0:44 0:61 0:57 0:60
A4 0:81 0:57 0:81 0:18 0:81 0.62 0:81 0:18 0:60
A5 0.62 0:43 0.62 0:43 0:43 0:57 0:26 0:81 0:81
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Table 25
The value of the cost and the benefit attributes.

The cost and benefit attributes Alternatives Sub-criteria
C11= CP C12 / RP C13 / CO C21/ VS C22 / IR C23 / EL C31 / TM C32 / GM C33 / GL

A1 0.87 1.0 0.70 0.78 0.88 1.0 0.62 0.83 0.72
A2 0.63 0.89 0.91 0.57 1.0 0.80 0.69 0.93 0.90
A3 0.75 0.84 0.57 0.53 0.67 0.85 0.69 0.71 0.60
A4 1.0 0.73 1.0 1.0 0.60 0.62 1.0 0.40 0.73
A5 0.79 0.91 0.88 0.51 0.91 0.85 0.65 1.0 1.0

Table 26
The value of the cost and the benefit attributes and the global weight.

Sub criteria
and
weights

C11= CP C12 / RP C13 / CO C21/ VS C22 / IR C23 / EL C31 / TM C32 / GM C33 / GL
0.13 0.09 0.14 0.06 0.15 0.10 0.16 0.07 0.11

A1 0.87 1.0 0.70 0.78 0.88 1.0 0.62 0.83 0.72
A2 0.63 0.89 0.91 0.57 1.0 0.80 0.69 0.93 0.90
A3 0.75 0.84 0.57 0.53 0.67 0.85 0.69 0.71 0.60
A4 1.0 0.73 1.0 1.0 0.60 0.62 1.0 0.40 0.73
A5 0.79 0.91 0.88 0.51 0.91 0.85 0.65 1.0 1.0

Table 27
The evaluation value of each alternative S, R, Q.

A1 A2 A3 A4 A5

S 0.472 0.424 0.772 0.934 0.467
R 0.16 0.13 0.14 0.15 0.15
Q 0.547 0.051 0.507 0.834 0.334

Table 24
The aggregation matrix of experts’ opinions for alternatives with sub-criteria.

Aggregation
matrix

Alternatives Sub-criteria

C11= CP C12 / RP C13 / CO C21/ VS C22 / IR C23 / EL C31 / TM C32 / GM C33 / GL

Experts A1 0.55 0.44 0.47 0.41 0.5 0.41 0.42 0.56 0.54
A2 0.40 0.49 0.61 0.56 0.44 0.51 0.47 0.62 0.68
A3 0.47 0.52 0.38 0.60 0.65 0.48 0.47 0.48 0.45
A4 0.63 0.60 0.67 0.32 0.73 0.66 0.68 0.27 0.55
A5 0.5 0.48 0.59 0.62 0.48 0.48 0.44 0.67 0.75

Table 28
Ranking of alternatives.

Alternatives S R Q

A1 A2 A2 A2

A2 A5 A3 A5

A3 A1 A4 A3

A4 A3 A5 A1

A5 A4 A1 A4
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� 1
M�1 that presented 0.727- 0.075 � 1

5�1. Then, the second
condition that the first order value of Q is the first order value of R
as showed in Table 31. Therefore, the final ranking of the
alternatives A1 > A2 > A5 > A3 > A4 as exhibited in Table 32
and the two final ranking presented in Table 33.

7. Evaluation based on forecasted analysis

In this section, the objective is to forecast the future
perspectives of the five “Active Asian Economic Cities” (AAECs)
in places, particularly when we have changed the emphasis for the
economic, social and environmental criteria. This is similar to the
scenario-based prediction, since it is important for the decision-
561
makers and policy-makers to know all possible consequences, so
that the alternative recommendations can be given as soon as
possible to minimize any potential loss.

The method of the predicted value is based on the
development of the genetic algorithm, which can be useful to
blend with deep learning, machine learning and artificial intelli-
gence [34]. Genetic algorithm is very effective to predict the
outcomes as follows.

There are inputs required: 1) the outputs of phase 1–4 in Fig. 5;
2) the mean scores of experts for all scenarios in Fig. 6; and 3) the
poll of the general public with at least 300 samples per
participating city. For the third category, it was taken and
measured based on different websites reflecting the poll opinions
of the people in the participating city. The general public reflected
their opinions based on specific questions related to our research.
The availability of the government data can be even more useful.
However, since each city’s forecasted data can vary extensively, the
opinions polls on the populations of the city will be a more neutral
and effective. Big data methods can analyze all the data analysis
very quickly and accurately.

The term “Everythingworks” means if the algorithm can
calculate the forecasted results automatically. It needs to be
initialized (false) before starting. The term “results” contain the
forecasted values of the five AAECs. The term “Call” is to start the
forecasting process. When the forecasted simulation starts
smoothly, then “results” equals to one, the algorithm begins to
perform calculations, known as “Compute()”, based on all input
data. Sometimes errors may happen during the forecasting
process. “Check()” is used to identify any errors. If no errors are
found, it returns to the results. The algorithm will stop when all
forecasting work has been analyzed, and update all status.
Eventually, the final forecasted outputs are given.



Table 29
The value of Tij by entropy method.

Alternatives Sub-criteria

C11= CP C12 / RP C13 / CO C21/ VS C22 / IR C23 / EL C31 / TM C32 / GM C33 / GL

A1 0.22 0.17 0.17 0.16 0.18 0.16 0.17 0.22 0.18
A2 0.16 0.19 0.22 0.22 0.16 0.20 0.19 0.24 0.23
A3 0.18 0.21 0.14 0.24 0.23 0.19 0.19 0.18 0.15
A4 0.25 0.24 0.25 0.13 0.26 0.26 0.27 0.10 0.19
A5 0.20 0.19 0.22 0.25 0.17 0.19 0.18 0.26 0.25

Table 30
The value of the cost and the benefit attributes and weight obtained by entropy method.

Sub criteria and weights C11= CP C12 / RP C13 / CO C21/ VS C22 / IR C23 / EL C31 / TM C32 / GM C33 / GL
0.043 0.052 0.121 0.164 0.103 0.078 0.095 0.250 0.095

A1 0.87 1.0 0.70 0.78 0.88 1.0 0.62 0.83 0.72
A2 0.63 0.89 0.91 0.57 1.0 0.80 0.69 0.93 0.90
A3 0.75 0.84 0.57 0.53 0.67 0.85 0.69 0.71 0.60
A4 1.0 0.73 1.0 1.0 0.60 0.62 1.0 0.40 0.73
A5 0.79 0.91 0.88 0.51 0.91 0.85 0.65 1.0 1.0

Table 31
The evaluation value of each alternative S, R, Q.

A1 A2 A3 A4 A5

S 0.436 0.405 0.747 0.547 0.381
R 0.095 0.144 0.157 0.250 0.164
Q 0.075 0.191 0.700 0.727 0.223

Fig. 8. Ranking the alternatives using the ANP and VIKOR methods.
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For the parameters, values in Fig. 9 are used as the input values,
since they can be used as the starting points for forecasting. Three
factors, Economic (EC), Social (S) and Environment (EV), are used
by the analysis. This paper’s focus is not to demonstrate neural
Fig. 9. Ranking the alternatives using entropy m
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network training with many simulations, but the use of predictive
method to identify the forecasted results, and understand the
rationale and explanations behind. Three scenarios will be
presented as follows.

1) Scenario 1: Economic: 30%; Social: 30% and Environment:
40%

Environmental hazards can post threats to the health of the
population and increase medical burden. Therefore, more govern-
ments have spent more resources and efforts on the environments.
Economic development will not go ahead if they do not pass
environmental checks and evaluations. Fig. 10 shows the predicted
ranking of these five AAERs. Compared to Fig. 9, Qingdao City,
ethod under the neutrosophic environment.



Table 32
Ranking of alternatives by entropy method.

Alternatives S R Q

A1 A5 A1 A1

A2 A2 A2 A2

A3 A1 A3 A5

A4 A4 A5 A3

A5 A3 A4 A4

Table 33
Comparison of the two methods.

Method Ranking of Alternatives

Method 1: Using of ANP and VIKOR A2 > A5 > A3 > A1 > A4

Method 2: Using of ANP and VIKOR with entropy A1 > A2 > A5 > A3 > A4
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Singapore and Hong Kong City can perform better. Johor Bahru and
Taipei City can perform lower than values in Fig. 9. The possible
reasons include the facts that in some AAECs, economic improve-
ments are based on destructing the environments. When the
environmental agenda has been the center of attention, it can affect
the import and export businesses. For example, the lower scores
experienced in Qingdao City can be due to the trade wars with USA,
and the prohibitions from the Chinese government dealing with
suppliers involved in certain sectors, such as recycling businesses. As
a result, some of these businesses diverted to Taipei City.

The predicted value of Taipei City stays high while taking more
recycling business suppliers. However, due to the environmental
awareness and restrictions, scores are lower than in Fig. 9.
Fig. 11. The predicted ranking the alternatives using entropy method

Fig. 10. The predicted ranking the alternatives using entropy method un

563
Hong Kong City stays higher than in Fig. 9 because more people
from mainland China and abroad visit it and it has more demands
and expectations on supplier management, particularly for
recycling businesses. On the other hand, cases between Johor
Bahru and Singapore are different. Johor Bahru has lower taxes,
legal requirements and costs to process green wastes and recycling
businesses. It is also 10 km away from Singapore. Thus, it is
common for Singaporean businesses to operate in Johor Bahru.

2) Scenario 2: Economic: 40%; Social: 30% and Environment:
30%

In this scenario, the emphasis is on economic development over
social and environmental criteria. This is common in Asia that
many AAECs focus on economic development over all other factors.
Fig. 11 shows the predicted results. Comparing with Fig. 10, the
values of all AAECs go up, particularly Qingdao City, with
significant values exceeding 0.35. Fig. 11 is close to the situations
in the economy of East Asia and Southeast Asia, since some AAECs
have better economic performance due to their government’s
policies and focus. Scores between Hong Kong City and Qingdao
City are very close. After returning to China as the motherland,
Hong Kong City has better economic performances (Fig. 12).

Singapore’s focus is not on supply chain management. Some
Singaporean businesses man do that in Johor Bahru due to
lower tax, labor fees and more relaxed laws. Hence, Singapore
has a lower score and Johor Bahru has a higher score. This
observation is consistent with Fig. 10. It is common for
businesses to have their offices in a more economic area and
their main business operations in a developing region due to
the benefits of lower taxes, lower labor and material costs and
less restricted laws.
 under the neutrosophic environment, with economic emphasis.

der the neutrosophic environment, with environmental emphasis.



Fig. 12. The predicted ranking the alternatives using entropy method under the neutrosophic environment, with social emphasis.
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3) Scenario 3: Social: 40%; Economic: 30% and Environment:
30%

The third scenario is focused on the social emphasis. It means
the general public has more influences on the economic
development. Fig. 11 shows Qingdao City has the lowest score,
since a lot of policies are dependent on the government. Any
decisions from the government can influence and even overturn
the market demands and response. Singapore has the second
lowest values. After the post-Lee Kuan Yew era, Singapore has
become more liberal and allows free trade without government
interference. However, there are still rooms for development.
These may include lowering some taxes for smart manufacturing
sector, since they may need green inputs and generate environ-
mental-friendly outputs for recycling purposes.

Taipei City has the highest score due to the freedom to do free-
trade with any cities. Since the decision from Qingdao City is not to
take in more wastes, Taipei City has taken over recycling
businesses. This is the same as Johor Bahru, the second best
performer. However, despite of their higher scores, it is also partly
because they have lower labor fees and transaction fees. Some
international businesses seem to take more advantages of that.
Additionally, Hong Kong City performs better in this aspect, as it
has accelerated economic development and has strengthened its
recycling businesses.

8. Discussion

8.1. Research contributions

This paper presents our neutrosophic analysis. It starts with the
theory and the systematic steps to analyze. We use both the ANP-
VIKOR framework and expert review, and apply social, economic
and environmental factors in our analysis. We then demonstrate
scores in each factor and apply it to macroeconomic cases.
Furthermore, we develop a Genetic algorithm to predict the scores
for five selected AAECs. By varying social, economic and
environmental factors, we get different predicted outputs, which
can help decision-makers to make better and more accurate
decisions. We provide our rationale and explanations for scores in
our predictive analysis.

8.2. Limitation of this research

While no research work can be perfect, the limitation of this
research is as follows. First, our neutrosophic analysis requires the
inputs from the experts before getting the required scores by
hands. It is not easy to find experts meeting our requirements.
Second, the forecasted results may improve its validity by having
more input from the general public’s polls, which tend to be harder
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to collect. Even if we use the web crawling method collecting and
analyzing data from different sources, it may not present the best
outputs.

Third, this only shows one aspects of analysis for those five
AAECs. Qingdao City can perform much better in other aspects of
economic development. One obvious reason for its low score is due
to the trade war with USA and the prohibition of Chinese
government on certain goods and regulations. If those policy-
related criteria are not included, they may have different
performance measurement, however, that is not the focus of this
research. Similarly, even though Taipei City and Johor Bahru
perform well, it is also partly because of the cheaper labor and
transaction fees than their competing cities. The average salary in
first-tier cities in mainland China has already surpassed the mean
average salary in Taipei City. Johor Bahru also offers cheaper
alternative with more options not bound by regulations than
Singapore. However, the geo-economic research is not our focus.
Our objective is to demonstrate that our proposed method can
calculate key measurement for major import cities and provide fair
and reliable forecasted outcomes.

9. Conclusion and future work

Among several problems in MCGDM, the most concerning
problem is the selection process of the sustainable suppliers. As a
result, we proposed a new framework involving with four phases
for solving this problem. Our framework could integrate two
techniques ANP and VIKOR in neutrosophic environment by using
triangular neutrosophic numbers to present the linguist variables.
Neutrosophic number could consider all aspects of making a
decision (i.e. agree, not sure and falsity). The ANP method used to
weight the elements of the problem as it considered the feedback
and interdependencies. We used the VIKOR to rank alternatives to
avoid comparisons in ANP. The proposed framework is suitable for
implementing in real cases. respectively, we listed phases where
the first phase included how to select the experts and shows that it
is not an easy process, presented criteria, sub criteria and
alternatives that must be identified, the inner and outer
interdependencies that should be determined and the feedback.
The second phase is the calculating of the weights of criteria by
using of the ANP method because it considered the interdepen-
dencies and feedback between elements. The third phase, ranks
the alternatives using the VIKOR method. In the last phase,
comparing the result of the suggested ANP and VIKOR technique by
other method, such as entropy method, to notice the difference in
the results of ranking of the alternatives. Finally, the suggested
framework of the ANP and VIKOR technique was used to solve a
real case study about an importing corporation and select the best
supplier, which depend on accurate information integrated by
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experts. The final ranking of alternatives showed that Taipei City
has the best suppliers for imports. According to the results, Taipei
City is considered the best in the manufacturing process of its
products, based on the three factors: economic, environment and
social. Singapore is considered the worst alternative. We also use
genetic algorithm to compute predicted values for those five AAECs
while varying economic, environmental and social criteria.
Forecasted results show Taipei city was still considered the best
option, followed by Johr Bahru. Qingdao city and Singapore are
considered the worst performer. However, this research only
shows one aspect of each participating city’s development and
supplier strategy. In summary, we successfully demonstrated our
proposed work as a valid and useful method for importing cities
and provide forecasted outcomes.

Future work will include the development of a more robust
Genetic algorithm to predict more AAECs including Tokyo,
Shanghai, Seoul and other cities specializing in imports and
exports. More cases will be analyzed and discussed to gain a deeper
understanding on social, economic and environmental develop-
ments in AAECs. We plan to develop our work so that it can be
applied to more economically active cities and offer more accurate
analysis and forecasted outputs.
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ABSTRACT In this paper, a special type of polysemantic words, that is, words with multiple meanings
for the same part of speech, are analyzed under the name of neutrosophic words. These words represent
the most difficult cases for the disambiguation algorithms as they represent the most ambiguous natural
language utterances. For approximate their meanings, we developed a semantic representation framework
made by means of concepts from neutrosophic theory and entropy measure in which we incorporate sense
related data. We show the advantages of the proposed framework in a sentiment classification task.

INDEX TERMS Neutrosophic sets, semantic word representation, sentiment classification.

I. INTRODUCTION
Every natural language word can have multiple realisations
from the part-of-speech point of view, and for each of
its possible parts-of-speech, it can have multiple meanings
(especially the English words). Each sense creates a ‘‘sub-
dimension’’ in the word’s space determined by the part-
of-speech to which it belongs in the given statement. The
polysemantic words (words with multiple senses) can be
described by several spaces (one space for each possible
part-of-speech) and each space can include several subspaces
determined by the meanings the word can have. In this man-
ner, every dimension describes a certain facet of the analysed
word. It is also true that certain senses are more frequent than
others and in this manner they can force a certain facet to be
more prominent than others.

We need a comprehensive and unitary study for natural lan-
guage words formulated as a Multicriteria Decision Making
problem [1] in which uncertainty is inevitably involved due
to the subjectivity of humans [2]. It has been shown that
different senses of the same word usually imply differ-
ent sentiment orientations for the word under analysis. For
instance, the word ‘‘good’’: in ‘‘good man’’ produces a posi-
tive utterancewhile in ‘‘good fight’’ indicates a negative state-
ment. As a direct consequence we need studies that address
both the interaction between word sense disambiguation and

sentiment analysis. These are quite new studies in the lit-
erature as the researchers in this area must be intrigued by
the usability of sense level information in sentiment analysis.
Some researchers take this approach and compute the polarity
score for each word sense [3], [4].

The present paper proposes a novel approach for word
sentiment classification by extracting a set of semantic data
from the SentiWordNet in order to compute a final estimation
of the word polarity. SentiWordNet [3], [5] is a well-known
freely available lexical resource for sentiment analysis which
annotates each sense of a word with three polarity scores.
These polarity scores represent the positivity, objectivity and
negativity degrees of the annotated word sense ranging from
0 to 1 with their sum up to one. SentiWordNet (SWN) was
built on the semantically-oriented WordNet [6], [7], which
in its primary form, that is for English language, comprises
155287 words and 117659 senses.

There are two main approaches for sentiment analysis:
machine learning and knowledge-based. From the machine
learning perspective, the Support Vector Machines (SVM)
classification (see, for example, [8], [9]) has the best clas-
sification performance for sentiment analysis [10], [11] out-
performing both the Naïve Bayes and Maximum entropy
classification methods. The knowledge-based methods usu-
ally make use of the most common sense of the words
and in this manner an improvement of accuracy over the
baseline was observed [12]. Also, the overall polarities of
different senses in each part-of-speech tag categories are also
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determined [13]. However, the commonly used n-gram
features are not robust enough and show widely varying
behaviour across different domains [14].

The method we propose in this paper offers a knowledge-
based solution for semantic word representationwhich targets
sentiment classification and makes use of the general con-
cepts of neutrosophic theory and entropymeasure. A previous
study that applies neutrosophic theory in sentiment analysis
domain is given in [15]. In this paper we concentrate our
approach by keeping in mind only the most difficult cases
for sentiment classification. They are represented by a special
class of polysemantic words with different meanings for the
same part-of-speech realisation. In the present paper these
words are named neutrosophic words because their represen-
tation involves the core concepts of neutrosophic theory.

With this article we are in line with the neutrosphic word
representations firstly proposed in [16] and then refined in
[17] in which the SentiWordNet (shortly SWN) sentiment
scores are interpreted as truth-fullness degrees. The study
proposed in this paper also makes use of the SWN polarity
scores of each word’s sense, this time in order to determine
the overall sentiment score value. The involved computations
apply entropy on the words’ sentiment scores as a measure of
disorder for the words’ polarities.

The paper is organised as follows: the Related Works
section overviews the most commonly used multi-space rep-
resentation techniques in neutrosophy. Section III presents
the proposed semantic-level representation which treats the
words as union of neutrosophic sets. In Section IV we show
how this type of representation can be used in conjunction
with a sentiment analysis study. Section V exemplifies all the
involved theoretical concepts on a study case also providing
the obtained results and the last section is dedicated to the
conclusions and our future directions.

II. RELATED WORKS
The concept of multi-space was introduced by Smarandache
in 1969 [18] by following the idea of hybrid mathematics -
especially hybrid geometry [19], [20] for combining different
fields into a unifying field [21]–[24].

Let � be a universe of discourse and a subset S ⊆ �. Let
[0, 1] be a closed interval and three subsets T , I ,F ⊆ [0, 1].
Then, a relationship of an element x ∈ S with respect to
the subset S is x(T , I ,F), which means the following: the
confidence set of x is T , the indefinite set of x is I , and the
failing set of x is F . A set S, together with the corresponding
three subsets T , I ,F for each element x in S, is said to be a
neutrosophic set [19], [25].

Let6 be a set and A1, A2, . . ., Ak ⊆ 6. Define 3k functions
f z1 , f

z
2 , . . ., f zk by f zi : Ai → [0, 1], 1 ≤ i ≤ k , where

z ∈ {T , I ,F}. If we denote by (Ai; f Ti , f Ii , f Fi ) the subset Ai
together with three functions f Ti , f Ii , f

F
i , 1 ≤ i ≤ k , then [19]:

k⋃
i=1

(Ai; f Ti , f Ii , f Fi )

is a union of neutrosophic sets which are generalizations of
classical sets.

Indeed, if we take f Ti = 1, f Ii = f Fi = 0 for i = 1, k we
obtain [19]:

k⋃
i=1

(Ai; f Ti , f Ii , f Fi ) =
k⋃
i=1

Ai

and correspondingly, for f Ti = f Ii = 0, f Fi = 1, i = 1, k we
obtain the complementary sets [19]:

k⋃
i=1

(Ai; f Ti , f Ii , f Fi ) =
k⋃
i=1

Ai

The appurtenance and non-appurtenance is obtained if
there is an integer s such that f Ti = 1, f Ii = f Fi = 0, 1 ≤ i ≤ s,
but f Tj = f Ij = 0, f Fj = 1, s+ 1 ≤ j ≤ k .

k⋃
i=1

(Ai; f Ti , f Ii , f Fi ) =
s⋃
i=1

Ai ∪
k⋃

i=s+1

Ai

The general neutrosophic set is obtained if there is an
integer l such that f Tl 6= 1 for 1 ≤ l ≤ s, or f Fl 6= 1 for
s < l ≤ n. The resulted union cannot be represented by
abstract sets.

III. SEMANTIC-LEVEL REPRESENTATION FOR WORDS
As we have already pointed out in the Introduction section,
a word is not a simple data, it can have several (syntactic)
attributes and can support more than one semantic interpre-
tations. Metaphorically speaking a word is like a diamond: it
can brighter a life or, by contrary, it can cut and destroy. But,
from our study point of view, a word is just an entity that can
have multiple semantic facets.

As we have already pointed out, a word can have more
than one part-of-speech, like the word ‘‘good’’ which can
be adjective, noun or adverb and to which we dedicate an
extensive study in the Section V. There are programs that can
automatically identify the part-of-speech of a certain word in
a given context. These programs are named Part-Of-Speech
Taggers and for most of the languages their accuracy is quite
high (more than 90%).

On contrary, determining the meaning of a polysemous
word in a specific context - that is, performing a disambigua-
tion on the word’s senses, can be a laborious task. In spite
of the great number of existing disambiguation algorithms,
the problem of word sense disambiguation remains an open
one [26]. For some languages like English the accuracy of the
disambiguation algorithms does not overcome 75%.

It is obviously that we need to model indeterminacy in
the semantic word representations. This is the reason why,
in the present study we choose to model word representations
using neutrosophic theory as, in contrast to intuitionistic
fuzzy sets and also interval valued intuitionistic fuzzy sets,
indeterminacy degree of an element is explicitly expressed
by the neutrosophic sets [27]. Moreover, in [29] the authors
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state that single valued neutrosophic (SVN) set is a better
tool to deal with incomplete, inconsistent and indetermi-
nate information than fuzzy set (FS) and intuitionistic FS
(IFS). With the present study we are in line with these
assumptions continuing also our previous works in which
the natural language words are modelled as single-valued
neutrosophic sets in order to approximate their ambiguous
meaning [16], [17].

In the representation we propose in this paper a word can
have multiple dimensions organised on several plans:
• the POS plans are determined by the possible part of
speech data of the word

• each POS plan can have several sense units, determined
by the possible word’s senses under that POS data

• finally, each sense unit is made of some components
(sentiment scores) which describe the sense meaning
polarity

A. WORDS AS UNION OF NEUTROSOPHIC SETS
The first step in creating a semantic representation is to decide
what features to use and how to encode these features. From
the features set a word can have, in this study we consider the
part-of-speech as the syntactic feature and the word’s sense(s)
as its semantic interpretation(s).

In what follows, we name semantic facets or simply facets -
all the word’s data based on which the semantic interpretation
can be defined. Using concepts from neutrosophic sets theory
[30] we propose the following semantic representation of a
word.
Definition 1: The semantic representation of a word by

means neutrosophic theory concepts is defined as:

w =
k⋃
i=1

(sensei; f Ti , f Ii , f Fi )

where:
• k represents the number of senses the word can have
• f Ti , f Ii ,f

F
i : Facets → [0, 1] are the membership

functions for the sensei, i = 1, k , such that:
– f Ti represents the membership degree,
– f Ii represents the indeterminacy degree and
– f Fi is the degree of nonmembership degree

• Facets set includes all the data that characterise the word
from the semantic point of view.

In this assertion, aword becomes a union of neutrosophic sets.
For the ith sense of the word w, the membership functions of
the word’s semantic facets fulfil the following properties:

∀x ∈ Facets : f Ti (x)+ f Ii (x)+ f
F
i (x) = 1 (1)

and if Facets = {x1, . . . , xm} then:
m∑
j=1

f Ti (xj)+ f Ii (xj)+ f
F
i (xj) = m (2)

In order to include the information about the part-of-speech
data (shortly POS data) we need to refine the representation

given in Definition 1. We consider the general case in which
a word can have n possible parts of speech POS1, . . . ,POSn,
with n ≥ 1, and for each part of speech POSj the word
can have kj senses, kj ≥ 1. The representation given in
Definition 1 becomes:

w =
k1⋃
i=1

(sensei;POS1; f
T
i;POS1 , f

I
i;POS1 , f

F
i;POS1 ) ∪ . . .

. . . ∪

kn⋃
i=1

(sensei;POSn; f
T
i;POSn , f

I
i;POSn , f

F
i;POSn ) (3)

Using the representation given in Equation 3, the senses
corresponding to a certain part of speech POSj with j ∈
{1, . . . n}, can be obtained as follows:

(w)POSj = w ∩ (w)POSj

=

kj⋃
i=1

(sensei;POSj; f
T
i;POSj , f

I
i;POSj , f

F
i;POSj ) (4)

Furthermore, we can apply another filtering on word rep-
resentation given in Equation 4 if we consider the case in
which a specific sense of the word w results to be realised
in a given context. Let us note this sense with sensem;POSj
with m ∈ {1, kj}. By applying concepts from neutrosophic
sets theory we obtain:

f Tm;POSj = 1, f Im;POSj= f
F
m;POSj = 0 and f Tl;POSj= f

I
l;POSj = 0,

f Fl;POSj = 1 for l 6= m, l,m = 1, kj

which implies:

(w)POSj =
kj⋃
i=1

(sensei;POSj; f
T
i;POSj , f

I
i;POSj , f

F
i;POSj )

= (sensem;POSj; 1, 0, 0) ∪
⋃
l 6=m

(sensel;POSj; 0, 0, 1)

= sensem;POSj ∪
⋃
l 6=m

sensel;POSj

= sensem;POSj = (m-th sense of w)POSj (5)

The representation given in Equation 5 corresponds to the
most unambiguous case, more precisely to the situation in
which we know both the word’s part of speech (noted here
with POSj) and the word sense (noted with sensem;POSj ).

But, the problems with natural language processing comes
from ambiguity - when we could not identify (using auto-
matic tools) which sense is realised in the given context
from the set of the word’s possible senses (noted here with
∪
kj
i=1sensei;POSj ). This ambiguity case is depicted by the gen-

eral case given in Equation 3.
In what follows we will use a simplified form of Equa-

tion 3 in which POSj data is removed from the annotations
sequences corresponding to the senses and membership func-
tions. Thus, Equation 3 becomes:

(w)POSj =
kj⋃
i=1

(sensei; f Ti , f Ii , f Fi ) (6)
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In the next section we present a method by means of which
we can eliminate the ‘‘noises’’ from an ambiguous semantic
word representation, more precisely, a representation that
includes more than one possible sense. We resolve these
issues using Neutrosophic Theory and Entropy measure. Our
proposal is described in conjunction with a sentiment analysis
study in which the semantic word representation has the form
of a three sentiment scores tuple.

IV. WORD SEMANTIC REPRESENTATION WITH
SENTIMENT SCORES
Sense discrimination addresses words with multiple senses
and is done in conjunction with a particular context in which
only one sense is realised. This analysis has a semantic nature
and is quite difficult to perform it using automatic tools,
especially if the realisation context is poor in information
that could filter the correct word meaning from the set of
possible ones. In order to exemplify our proposal we choose
to interpret the word semantics from a sentiment analysis the
point of view. Thus, each sense of a word will be represented
using its sentiment scores.

In what follows, let us consider the approach firstly pro-
posed in [16] and then extended in [17] in which a word w
is interpreted as a single-value neutrosophic set constructed
upon its sentiment scores which describe the word’s sense-
level polarity information being denoted in what follows with
(sc+, sc0, sc−), where:

• sc+ denotes the word positive score,
• sc0 represents the word neutral score and
• sc− stands for the word negative score.

As in [16] and [17] we use SentiWordNet lexical resource for
providing the required information for the sentiment scores
of the English words.

For a word w with kj senses under a POSj part-of-speech
realisation, the semantic representation is defined as a union
of the tuples: sensei = (sc+i , sc0i , sc−i ) with i ∈ {1, . . . , kj}.
The Equation 6 becomes:

(w)POSj =
kj⋃
i=1

((sc+i , sc0i , sc−i ); f
T
i , f Ii , f Fi ) (7)

with sc+i , sc0i , sc−i ∈ [0, 1]. The semantic representation
given in Equation 7 implies that each word’s sense will
include three facets: the positive, the neutral and the neg-
ative one. By preserving the notation where + stands for
positive, 0 for neutral and − for negative facet, we take
Facets = {+, 0,−}.

The representation given in Equation 7 can be rewritten as:

(w)POSj =
kj⋃
i=1

((sc+i , sc0i , sc−i ); ({f
T
i (x)}x∈Facets),

({f Ii (x)}x∈Facets), ({f
F
i (x)}x∈Facets)) (8)

where f Ti (x), f Ii (x) and f Fi (x) represents the membership
functions corresponding to the facet x of the ith sense,

x ∈ Facets and ({f Mi (x)}x∈Facets) briefly notes the member-

ship functions

f Mi (+)
f Mi (0)
f Mi (−)

, M ∈ {T , I , F}.

Remark: For the representation given in Equation 8,
the default case corresponds to the maximum certainty case
where no imprecision occurs which, in terms of membership
function is depicted by f Ti ({+ | 0 | −}i) = 1, f Ii ({+ | 0 |
−}i) = 0, f Fi ({+ | 0 | −}i) = 0, i = 1, kj.
We preface the study that addresses the multi-facets words

by enumerating the form in which the one facet words are
represented in our proposal. These words are the extreme
cases of our study and every neutrosophic study provides
them.
Case 1: If sc+i = 1, sc0i = sc−i = 0 and f Ti ({+ | 0 |
−}i) = 1, f Ii ({+ | 0 | −}i) = 0, f Fi ({+ | 0 | −}i) = 0 for
every i = 1, kj then:

(w)POSj =
kj⋃
i=1

(1, 0, 0);

1
1
1

 ,

0
0
0

 ,

0
0
0

 = (1, 0, 0)

The interpretation of Case 1 is: for all the senses correspond-
ing to the POSj part-of-speech the word w is pure positive.
Case 2: If sc+i = sc0i = 0, sc−i = 1 and f Ti ({+ | 0 |
−}i) = 1, f Ii ({+ | 0 | −}i) = 0, f Fi ({+ | 0 | −}i) = 0 for
every i = 1, kj then:

(w)POSj =
kj⋃
i=1

(0, 0, 1);

1
1
1

 ,

0
0
0

 ,

0
0
0

 = (0, 0, 1)

The interpretation of Case 2 is: for all the senses correspond-
ing to the POSj part-of-speech the word w is pure negative.
Case 3: If sc+i = sc−i = 0, sc0i = 1 and f Ti ({+ | 0 |
−}i) = 1, f Ii ({+ | 0 | −}i) = 0, f Fi ({+ | 0 | −}i) = 0 for
every i = 1, kj then:

(w)POSj =
kj⋃
i=1

(0, 1, 0);

1
1
1

 ,

0
0
0

 ,

0
0
0

 = (0, 1, 0)

The interpretation of Case 3 is: for all the senses correspond-
ing to the POSj part-of-speech the word w is pure neutral.
These three cases correspond to the non-ambiguous words,

that is, words with a unique sense (one semantic represen-
tation) or similar semantic representations for all of their
possible senses.

Since in a natural language there are many words (espe-
cially in English) with multiple senses - the polysemantic
words, in what follows we will concentrate our study only
on these words. For the polysemantic words we get different
semantic representations that must be resolved by dealing
with many degrees of uncertainties. In this case, the simple
reunion of their semantic dimensions is a general neutro-
sophic set that cannot be formalised using abstract set the-
ories. For this reason, in the next definition we introduce the
concept of neutrosophic word in conjunction with a sentiment
analysis.
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Definition 2: A neutrosophic word is a polysemantic word
that under the same part of speech realization has at least two
different sentiment polarities which means:

(∃(w)POSj with kj > 1 senses)∧ (∃i1, i2 ∈ {1, . . . , kj}, i1 6=
i2: sensei1 6= sensei2 )

Different sense tuples imply different sentiment scores and
we obtain:

(∃(w)POSj with kj > 1 senses)∧ [∃i1, i2 ∈ {1, . . . , kj}, i1 6=
i2: (sc+i1 , sc0i1 , sc−i1 ) 6= (sc+i2 , sc0i2 , sc−i2 )]

As a direct consequence, the semantic representation of
neutrosophic words is:

(w)POSj =
⋃

i∈{i1,i2,...}

((sc+i , sc0i , sc−i ); ({f
T
i (x)}x∈Facets),

({f Ii (x)}x∈Facets), ({f
F
i (x)}x∈Facets))

with sc+i1 6= sc+i2 or sc0i1 6= sc0i2 or sc−i1 6= sc−i2 and
f Ti1 ({+ | 0 | −}), f

T
i2
({+ | 0 | −}) > 0, i1 6= i2. By the fact

that the membership degrees are greater than 0, we obtain for
a neutrosophic word w the necessity of having (at least) two
different sentiment representations for the same (w)POSj .

The neutrosophic theory means from the very beginning
dealing with uncertainty. This is also true for the neutrosophic
words. These words can be evidenced in case of an imprecise
disambiguation mechanism which fails in recognising what
sense is realised in the given context even if the part-of-speech
data is correctly provided.

In our approach, a neutrosophic word is synonym with a
word that has different sense facets and for which we cannot
establish a unique semantic representation. For the chosen
sentiment analysis exemplification, different sense facets for
a word means different sentiment scores tuples.

In the next section we exemplify how the proposed method
works. We show that using the neutrosophic sets theory and
applying the entropy measure on the word representations we
can identify the word’s sentiment facet with respect to the
given part-of-speech.

A. ENTROPY AS A MEASURE OF UNCERTAINTY FOR THE
NEUTROSOPHIC WORDS REPRESENTATIONS
Fuzzy entropy, distance measure and similarity measure are
three basic concepts used in fuzzy sets theory [27]. Among
them, Entropy is an efficient tool to model uncertainty [28]
or, in layman terms, Entropy is a measure of disorder. It can
be used in order to measure how disorganised an input val-
ues set is by calculating the entropy of their values/labels.
Entropy is high if the input values are highly varied and low if
many input data have the same value. In mathematical terms,
Entropy is defined as the sum of the probability of each input
values or labels times the log probability of that label:

E(labels) = −
∑

l∈labels

P(l)log2P(l) (9)

where P(l) is the frequency probability of the label item in the
considered data and labels denotes the set of possible labels.
From this definition we obtain that labels with low fre-

quency do not affect much the entropy (becauseP(l) is small).

The same result for labels with high frequency as in their case,
log2P(l) is small. Only when the inputs have wide varieties of
labels (and as a direct consequence, these many labels have a
medium frequency) the entropy is high because neither P(l)
nor log2P(l) is small.
Entropy has values between 0 and 1 and high entropy val-

ues stand for high levels of disorder or ‘‘low level of purity’’.
Following this property, we can qualify the uncertainty of the
words’ semantic nature by applying the entropy measure on
their sense representation labels: the higher the values for
entropy measure the higher the level of uncertainty for the
analyzed word representations.

The neutrosophic word is a concept with more than one
possible sense for at least one of its possible part-of-speech
data. On the other hand, entropy is a measure of uncertainty.
Between the possible senses we can have certain similarity
degrees and the entropy measure can be used in order to
determine how similar or dissimilar these senses are.

The most common manner to unify a set of possible repre-
sentations into a single one is to consider only the maximum
(or the minimum) value or to average the values (in our case,
the sentiment scores) as in the following formula:

Avg

 kj⋃
i=1

(sc+i , sc0i , sc−i )


=

 1
kj

kj∑
i=1

sc+i ,
1
kj

kj∑
i=1

sc0i ,
1
kj

kj∑
i=1

sc−i

 (10)

where kj notes the number of senses for the analysed word.
But this method of unifying different representation can be
trustful only if the averaged values are not very dissimilar
with the initial ones.
Example 1:Let us consider a wordwwith two extreme sen-

timent scores tuples: (0, 0, 1) and (1, 0, 0). Overall, we obtain
two different facets: in the first representation we have a pure
positive word while in the second we get a pure negative
word. If wemerge these two representation by averaging their
sentiment scores values we get (0.5, 0, 0.5) - a representation
that could be interpreted as a neutral word. Definitely this
would be a wrong classification for a strong sentiment word.

We define a bijective mapping for labelling the senti-
ment score values to a set of three strength degrees, SD =
{low,medium, high}. We obtain sd : [0, 1]→ SD with:

sd(score) =


low, if score< 0.4
medium, if score∈ [0.4, 0.6]
high, if score> 0.6

Mapping the score values to the SD labels we get ‘‘low’’
label for a small score, ‘‘medium’’ for not a small but also
not a high score and ‘‘high’’ for a big score. Using these
strength degrees we can qualify by means of the entropy
measure calculated as in Equation 9 how disorganised the
scores values are from the point of view of the sentiment
strength. All the involved operations are given inAlgorithm 1.
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Algorithm 1Merging Multiple Semantic Representations of
a Neutrosophic Word (w)POSj

INPUT: ∪
kj
i=1(sc+i , sc0i , sc−i )

for each x in Facets:
Entropy(x)← E(∪

kj
i=1sd(scxi ))

Avg(x)← Avg(∪
kj
i=1scxi )←

1
kj

∑kj
i=1 scxi

f T (x)← 1− Entropy(x)
f I (x)← Entropy(x)
f F (x)← 0

endfor

OUTPUT: ∪x∈FacetsAvg(x), f T (x), f I (x), f F (x)

We can now give the manner in which the multiple repre-
sentations of a neutrosophic word (w)POSj can be unified into
a unique sentiment representation Avg(w)POSj based on the
values provided by Algorithm 1:

Avg((w)POSj )

= Avg

 kj⋃
i=1

(sc+i , sc0i , sc−i );

1
1
1

 ,

0
0
0

 ,

0
0
0


= (

(
Avg(∪

kj
i=1sc+i ),Avg(∪

kj
i=1sc0i ),Avg(∪

kj
i=1sc−i )

)
;

({f T (x)}x∈Facets), ({f I (x)}x∈Facets), ({f F (x)}x∈Facets))

(11)

In Algorithm 1 we model the degrees of trustfulness for
the resulted average scores representation by means of the
membership functions, such that ∀x ∈ Facets:
• If the entropy Entropy(x) is small (the minimum value
is 0) then the average value Avg(x) can approximate
with high degree of certainty the initial word’s sentiment
scores; in this case the membership function for the
facet x is set to a big value (almost 1) as f T (x) ←
1− Entropy(x).

• If the entropy Entropy(x) is high (the maximum value is
1) then the membership function is set to a small value
(almost 0) while the indeterminacy degree f I (x) is set to
be equal with the entropy function value.

• For preserving the sum of the membership functions to
value 1 (see Equation 1), the nonmembership degree
f F (x) for the facet x is always 0.

For the case given in Example 1we obtain that the entropy
corresponding to the positive and negative scores is equal to
its maximum value: E(+) = E(−) = 1, while the entropy for
the neutral scores is zero. The resulted average representation
can be written as follows:

Avg(w) = ((Avg(∪2i=1 sc+i ),Avg(∪
2
i=1 sc0i ),

Avg(∪2i=1 sc−i )); f
T , f I , f F )

= ((0.5, 0, 0.5); f T , f I , f F )

=

(0.5, 0, 0.5);

0
1
0

 ,

1
0
1

 ,

0
0
0

 (12)

The representation given in Equation 12 tells more about
what the word is not than about the type the word is as
we consider Example 1 only for showing why the simple
unification of multiple representations by averaging their
values is not always enough. As one can observe, the repre-
sentation given in Equation 12 tells with maximum certainty
that the word is not a neutral word. For the obtained positive
and negative scores the indeterminacy membership functions
have maximum values, illustrating in this way a maximum
indeterminacy degree. This extreme case is quite rarely, being
presented only for its theoretical purpose.

In the next section we apply the proposed method on a
real data: a neutrosophic word in its all possible parts of
speech. With this complex case we show that the method
described in this article succeeds in merging multiple and
diverse semantic word representations.

V. STUDY CASE
The word ‘‘good’’ appears in WordNet with three different
parts of speech (noun, adjective, and adverb) and with many
senses for each of its syntactic labels. We consider this word
represents a perfect example for the neutrosophic word con-
cept introduced in this paper and for this reason we dedicate
the study case to it.

In Table 1 are given all the senses the word ‘‘good’’ can
have, grouped upon the part-of-speech data. Each sense is
given together with the sentiment scores extracted from Sen-
tiWordNet and also with its definition and some examples (as
they are given in WordNet).

In Table 2 we gather all the data extracted from SentiWord-
Net: the word’s parts of speech, the three facets given by the
corresponding sentiment scores and the distributions among
the senses of the sentiment scores. We also give the entropy
measures for each word’s facet in all the three parts of speech
and also the average values of the sentiment scores.

By applying Algorithm 1 on the SentiWordNet scores of
theword ‘‘good’’ we obtain the following representations (see
also Table 2):

Avg((good)ADJ )

= (
(
Avg(∪21i=1sc+i ),Avg(∪

21
i=1sc0i ),Avg(∪

21
i=1sc−i )

)
;

f TADJ , f
I
ADJ , f

F
ADJ )

=

(
(0.61, 0.38, 0); f TADJ , f

I
ADJ , f

F
ADJ

)
=

(0.61, 0.38, 0);

0.59
0.59
1

 ,

0.41
0.41
0

 ,

0
0
0

 (13)

Avg((good)NOUN )

= (
(
Avg(∪4i=1sc+i ),Avg(∪

4
i=1sc0i ),Avg(∪

4
i=1sc−i )

)
;

f TNOUN , f INOUN , f FNOUN )

=

(
(0.5, 0.5, 0); f TADJ , f

I
ADJ , f

F
ADJ

)
=

(0.5, 0.5, 0);

0.25
0.25
1

 ,

0.75
0.75
0

 ,

0
0
0

 (14)
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TABLE 1. The SentiWordNet data for the word ‘‘good’’.

Avg((good)ADV )

= (
(
Avg(∪2i=1sc+i ),Avg(∪

2
i=1sc0i ),Avg(∪

2
i=1sc−i )

)
;

f TADV , f IADV , f FADV )

=

(
(0.18, 0.81, 0); f TADV , f IADV , f FADV

)
=

(0.18, 0.81, 0);

0.59
0.59
1

 ,

0.41
0.41
0

 ,

0
0
0

 (15)

These results can be interpreted as follows: no matter its
part of speech realisation, we can precisely say that the word
‘‘good’’ is NOT a negative word. Two possible facets remain:

TABLE 2. The semantic representations of the word ‘‘good’’. The negative
scores, being not representative (the greatest value is 0.12), are omitted
in the listing.

the positive and the neutral. From the results obtained in
Equations 13 and 15 we can conclude:
• the word ‘‘good’’ as adverb is a neutral word because
its neutral average score is 0.81 with f TADV (0) = 0.59,
a value that exceeds by far its positive average score
(0.18 with f TADV (+) = 0.59)

• the word ‘‘good’’ as adjective is a positive word because
its positive average score is 0.61 with f TADJ (+) =
0.59 while the neutral average score is only 0.38, with
f TADJ (0) = 0.59

As a noun, we can consider it positive or neutral word,
in both cases with high indeterminate degrees: f INOUN (+) =
f INOUN (0) = 0.75, its average positive and neutral scores
equal with 0.5 (see Equation 14). This is the case when
additional filters taken from the context in which the word
occurs must be applied in order to establish the word semantic
facet.

VI. CONCLUSION AND FUTURE WORK
As pointed out in [31] each object has a corresponding (fuzzy,
intuitionistic fuzzy, or neutrosophic) degree of appurtenance
to a set of classification classes, with respect to its attributes’
values.
In the present paper we propose a method that determines

the appurtenance degrees of the semantic facets of a natural
language word based on the entropy measure. We apply the
proposed method on a real data: a polysemantic word in its
all possible parts of speech. We prove with this complex
study case that the method succeeds in merging multiple
and diverse semantic word representations by filtering the
‘‘noises’’ through the entropy function values. The proposed
method can be improved in case of high entropy values when
additional filters must be applied by taken into account the
word contextual data. The developing of these additional
filters represents the trigger of our future studies.
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Abstract In this paper, we first introduce novel concepts

of m-polar neutrosophic set (MPNS) and topological

structure on m-polar neutrosophic set by combining the m-

polar fuzzy set (MPFS) and neutrosophic set. Then, we

investigate several characterizations of m-polar neutro-

sophic set and establish its various operations with the help

of examples. We propose score functions for the compar-

ison of m-polar neutrosophic numbers (MPNNs). We

establish m-polar neutrosophic topology and define inte-

rior, closure, exterior, and frontier for m-polar neutrosophic

sets (MPNSs) with illustrative examples. We discuss some

results with counter examples, which hold for classical set

theory, but do not hold for m-polar neutrosophic set theory.

We introduce a cosine similarity measure and a set theo-

retic similarity measure for m-polar neutrosophic sets

(MPNSs). Furthermore, we present three algorithms for

multi-criteria decision-making (MCDM) in medical diag-

nosis and clustering analysis under uncertainty by using m-

polar neutrosophic sets (MPNSs) and m-polar neutrosophic

topology. Lastly, we present advantages, validity, flexibil-

ity, and comparison of our proposed algorithms with the

existing techniques.

Keywords m-Polar neutrosphic set � Score functions for

MPNNs � m-Polar neutrosphic topological space �
Similarity measures for MPNSs � Multi-criteria decision-

making for medical diagnosis � Multi-criteria decision-

making for clustering analysis

1 Introduction and Background

Multi-criteria decision-making (MCDM) is a process that

explicitly evaluates best alternative(s) among the feasible

options. In archaic times, decisions were framed without

handling the uncertainties in the data, which may lead to

inadequate results to the real-life operational situations. If

we amass the data and deduce the result without handling

hesitations, then given results will be ambivalent, indefi-

nite, or equivocal. MCDM is an integral part in modern

management, business, medical diagnosis, and many other

real-world problems. Essentially, rational or sound decision

is necessary for a decision-maker. Every decision-maker

takes hundreds of decisions subconsciously or consciously

making it as the central part of his execution. Medical

diagnosis with MCDM provides solutions for the doctors to

determine symptoms of disease and kind of illness. MCDM

is used in solving problems that contain complex and

multiple criteria. In MCDM, we have to identify the

problem by determining the possible alternatives, evaluate

each alternative based upon the criteria given by the

decision-maker or group of decision-makers and lastly

select the best alternative. MCDM problems under fuzzy

environment were first introduced by Bellman and Zadeh

in (1970) [4]. A number of useful mathematical tools such

as fuzzy sets, m-polar fuzzy sets, neutrosophic sets, and

soft sets have been developed to deal with uncertainties and

ambiguities for multi-criteria decision-making problems.
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Zadeh introduced fuzzy set [48] as a significant math-

ematical model to characterize and assembling of the

objects whose boundary is ambiguous. A fuzzy set F in the

reference setQ is represented by a mapping r : Q ! ½0; 1�.
In real-life problems, we face various situations including

uncertainties and ambiguities. For instance, if we speak

about the ‘‘beautiful cities of a country’’ then the exact

decision is ambiguous. Some cities are very beautiful,

some of them are medium beautiful, and some are less

beautiful. The criteria of being ‘‘beautiful’’ can be changed

according to the decision-maker’s choice. In these situa-

tions, the classical set theory fails and we use fuzzy set

theory to treat these type of hesitations in the decision-

making problems. We use linguistic terms to relate a real-

world situation to the fuzzy numeric value and accumulate

the input in the form of fuzzy numbers or fuzzy sets.

After Zadeh, many extensions of fuzzy sets have been

presented and investigated such as, intuitionistic fuzzy sets

(IFSs) [3], single valued neutrosophic sets (SVNSs)

[28–30, 35], picture fuzzy sets [8], bipolar fuzzy sets

(BPFSs) [50–52], m-polar fuzzy sets (MPFSs) [5], interval-

valued fuzzy sets (IVFSs) [49], and Pythagorean fuzzy sets

(PFSs) [42–44]. A neutrosophic set N is defined by

N ¼ fh1;Að1Þ;Sð1Þ;Yð1Þi; 1 2 Qg, where A;S;Y :

Q !��0; 1þ½ and �0�Að1Þ þSð1Þ þYð1Þ� 3þ. The

neutrosophic set yields the value from real standard or non-

standard subsets of ��0; 1þ½. It is difficult to utilize these

values in daily life science and technology problems. Con-

sequently, the neutrosophic set which takes the value from

the subset of [0, 1] is to be regarded here. An abstraction of

bipolar fuzzy set was inaugurated by Chen [5] named as

MPFS. An MPFS C in a non-empty universal set Q is a

function C : Q ! ½0; 1�m, symbolized by C ¼
fh1;PioKð1Þi : 1 2 Q; i ¼ 1; 2; 3; . . .;mg where Pi :

½0; 1�m ! ½0; 1� is the ith projection mathematical function

ði 2 mÞ.C/ð1Þ ¼ ð0; 0; . . .; 0Þ is the smallest value in ½0; 1�m ,
and C

eX
ð1Þ ¼ ð1; 1; . . .; 1Þ is the greatest value in ½0; 1�m.

In the last few decades, many mathematicians worked

on similarity measures, correlation coefficients, topological

spaces, aggregation operators, and decision-making appli-

cations. These structures have different formulae according

to the different sets and give better solutions to decision-

making problems. It has numerous applications in the field

of pattern recognition, medical diagnosis, artificial intelli-

gence, social sciences, business, and multi-attribute deci-

sion-making problems.

Akram et al. [1] presented certain applications of m-

polar fuzzy sets in the decision-making problems. Ali

et al. [2] presented various properties of soft sets and rough

sets with fuzzy soft sets. Garg [10] introduced new gen-

eralized Pythagorean fuzzy information aggregation using

Einstein operations and established its application to

decision-making problems. Garg [11] introduced general-

ized intuitionistic fuzzy interactive geometric interaction

operators using Einstein t-norm and t-conorm and their

application to decision-making. Karaaslan [15] introduced

neutrosophic soft sets with its applications in decision-

making. Xu et al. [41] established clustering algorithm for

intuitionistic fuzzy sets and presented its applications for

clustering. Jose and Kuriaskose [14] investigated aggre-

gation operators with the corresponding score function for

MCDM in the context of IFNs. Mahmood et al. [19]

established generalized aggregation operators for cubic

hesitant fuzzy numbers (CHFNs) and use it into MCDM

problems. In 1968, Chang [7] introduced fuzzy topology on

fuzzy sets. After fuzzy topology, many researchers have

been introduced topologies and their properties on different

hybrid structures of fuzzy sets. Pao-Ming and Ying-Ming

[20, 21] introduced the structure of neighborhood of fuzzy-

point. They provided the concept of fuzzy quasi-coincident

and Q-neighborhood. They also discussed important

properties of fuzzy topological space by using fuzzy

Q-neighborhood. Shabir and Naz [31] established soft

topological spaces. Deli et al. [9] introduced bipolar neu-

trosophic sets and their application based on multi-criteria

decision-making problems. Riaz and Hashmi [23–25]

developed fixed point theorems of fuzzy neutrosophic soft

(FNS) mapping with its decision-making. They established

multi-attribute group decision-making (MAGDM) for

agribusiness by using various cubic m-polar fuzzy aver-

aging aggregation operators. They introduced a novel

structure of linear Diophantine fuzzy set as a generalization

of intuitionistic fuzzy set, Pythagorean fuzzy set, and

q-rung orthopair fuzzy set with its applications in multi-

attribute decision-making problems. Riaz et al. [26, 27]

introduced N-soft topology and its applications to multi-

criteria group decision-making (MCGDM). They estab-

lished cubic bipolar fuzzy ordered weighted geometric

aggregation operators and presented their applications by

using internal and external bipolar fuzzy information.

Feng et al. [12, 13] introduced properties of soft sets

combined with fuzzy soft sets and multi-attribute decision-

making (MADM) models in the environment of general-

ized intuitionistic fuzzy soft sets and fuzzy soft sets. Liu

et al. [16] established hesitant intuitionistic fuzzy linguistic

operators and presented its MAGDM problems. Wei et al.

[36] invented hesitant triangular fuzzy operators in MADM

problems. Wei et al. [37, 38] worked on similarity mea-

sures on picture fuzzy sets and correlation coefficient to the

interval-valued intuitionistic fuzzy sets with application in

decision-making problems. Ye [45–47] introduced priori-

tized aggregation operators in the context of interval-val-

ued hesitant fuzzy numbers (IVHFNs) and established it on

MAGDM algorithms. He also established MCDM methods

for interval neutrosophic sets and correlation coefficient
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under single-value neutrosophic environment. He estab-

lished cosine similarity measures for intuitionistic fuzzy

sets with application in decision-making problems. Zhang

et al. [53] introduced aggregation operators with MCDM

by using interval-valued fuzzy neutrosophic sets (IVFNSs).

An extended TOPSIS method for decision-making was

developed by Chi and Lui [6] on IVFNSs. Zhao et al. [55]

introduced generalized aggregation operators in the context

of intuitionistic fuzzy sets. Zhang et al. [54] established

various results on clustering approach to intuitionistic

fuzzy sets. Peng et al. [22] introduced Pythagorean fuzzy

information measures and established interesting results on

Pythagorean fuzzy sets. They introduced clustering algo-

rithm for Pythagorean fuzzy sets and presented numerous

applications on Pythagorean fuzzy input data. Li and

Cheng [17] established new similarity measures of IFSs

and its applications to pattern recognition. Lin et al. [18]

studied hesitant fuzzy linguistic information and presented

its application to models of selecting an ERP system.

Salton and McGill [32] introduced modern information

retrieval. Singh [33] established correlation coefficients of

picture fuzzy sets. Son [34] inaugurated a novel distributed

picture fuzzy clustering method on picture fuzzy sets. Xu

and Chen [39, 40] established correlation, distance, and

similarity measures on intuitionistic fuzzy sets.

In this era, experts think that the universe is moving

towards multi-polarity. Therefore, it comes as no surprise

that multi-polarity in data and information plays a vital role

in various fields of science and technology. In neurobiol-

ogy, multi-polar neurons in brain gather a great deal of

information from other neurons. In information technology,

multi-polar technology can be exploited to operate large-

scale systems. In some real-life situations, we have to deal

with the dissatisfaction and indeterminacy grades for the

alternatives of the reference set. For instance, in the oper-

ation of throwing up a ballot, there exist some people who

vote in favor, some of them vote against, and some abstain.

In the area of electrical engineering, we deal with the

conductors and non-conductors, but there also exist some

substances which are insulators. These types of situations

can easily handled by using neutrosophic set theory. In

some real-life applications, we have to deal with multi-

polarity, truth values, indeterminacy, and falsity grades

of alternatives. To deal with these type of hesitations and

uncertainties, we establish the idea of m-polar neutrosophic

set (MPNS).

Themotivation and objectives of this extended and hybrid

work are given step by step in the whole manuscript. We

establish that other hybrid structures of fuzzy sets become

special cases of MPNS under some suitable conditions. We

discuss about the robustness, flexibility, simplicity, and

superiority of our suggested model and algorithms. This

model is most generalized form and use to collect data at a

large scale and applicable in medical, engineering, artificial

intelligence, agriculture, and other daily life problems. In

future, this work can be gone easily for other approaches and

different types of hybrid structures.

The scheme of this manuscript is organized as follows.

Section 2, implies a novel idea of m-polar neutrosophic set

(MPNS). We establish some of its operations, score func-

tion, and improved score function. In Sect. 3, we use

MPNS to establish m-polar neutrosophic topological space

(MPNTS). We define various topological structures such as

interior, closure, exterior, and frontier for MPNSs with the

help of illustrations. We establish various results with their

counter examples, which holds for classical set theory, but

do not hold for m-polar neutrosophic set theory. We

introduce cosine similarity measure and set theoretic sim-

ilarity measure for MPNSs. In Sect. 4, we establish some

methods for the solution of MCDM problems based on

medical diagnosis and clustering analysis using MPNTS

and MPNSs. We propose three algorithms with linguistic

information based on m-polar neutrosophic data using

MPNTS, similarity measures, and clustering analysis. It is

interesting to note that first two algorithms for medical

diagnosis yield the same result. Furthermore, we present

advantages, simplicity, flexibility, and validity of the pro-

posed algorithms. We give a brief discussion and com-

parative analysis of our proposed approach with some

existing methodologies. In the end, the conclusion of this

work is summarized in Sect. 5.

2 m-Polar Neutrosophic Set (MPNS)

Chen et al. [5] have proposed the concept of m-polar fuzzy

set (MPFS) in 2014, which have the capability to deal with

the data having vagueness and uncertainty under multi-

criteria, multi-source, multi-sensor, and multi-polar infor-

mation. Smarandache [30] extended the neutrosophic set,

respectively, to neutrosophic overset (when some neutro-

sophic component is [ 1), neutrosophic underset (when

some neutrosophic component is \0), and to neutrosophic

offset (when some neutrosophic components are off the

interval [0, 1], i.e., some neutrosophic component [ 1 and

other neutrosophic component \0). In 2016, Smarandache

introduced the neutrosophic tripolar set and neutrosophic

multi-polar set, also the neutrosophic tripolar graph and

neutrosophic multi-polar graph [30].

The membership grades of m-polar fuzzy sets range over

the interval ½0; 1�m, which represent m criteria of the object,

but it cannot deal with the falsity and indeterminacy part of

the object.

Neutrosophic set (NS) deals with truth, falsity, and

indeterminacy for one criteria of the alternative, but cannot
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deal with the multi-criteria, multi-source, multi-polar

information fusion of the alternatives. To overcome this

problem, we introduce a new model of m-polar neutro-

sophic set (MPNS) by combining the concepts of m-polar

fuzzy set (MPFS) and neutrosophic set (NS). MPNS has the

ability to deal with the m criteria and to deal with the truth,

falsity, and indeterminacy grades for each alternative. In

fact, m-polar neutrosophic set is an extension of bipolar

neutrosophic set introduced by Deli et al. [9]. We establish

various properties and operations on m-polar neutrosophic

sets. We propose score functions for the comparison of m-

polar neutrosophic numbers (MPNNs). In the whole

manuscript, we use Q as a fixed sample space and D as an

indexing set. We use A;S and Y as membership, inde-

terminacy, and non-membership grades, respectively.

Definition 2.1 An object MN in the reference set Q is

called m-polar neutrosophic set (MPNS), if it can be

expressed as

MN ¼ f�1; hAað1Þ;Sað1Þ;Yað1Þi
�

: 1 2 Q; a ¼ 1; 2; 3; . . .;mg

where Aa;Sa;Ya : Q ! ½0; 1� and 0�Aað1Þ þSað1Þþ
Yað1Þ� 3; a ¼ 1; 2; 3; . . .;m. This condition shows that all

the three grades Aa;Sa and Ya; ða ¼ 1; 2; 3; . . .;mÞ are

independent and represents the truth, indeterminacy, and

falsity of the considered object or alternative for multiple

criteria, respectively. Simply an m-polar neutrosophic

number (MPNN) can be represented as I ¼
�hAa;Sa;Yai

�

, where 0�Aa þSa þYa � 3; a ¼ 1; 2;

3; . . .;m. In tabular form, the MPNS can be represented as

Table 1.

Example 2.2 Let Q ¼ f11; 12; 13g be the collection of

some well-known smart phones. Then 4-polar neutrosophic

set in Q can be written as

MN ¼
n

ð11; h0:512; 0:231; 0:321i; h0:653; 0:223; 0:116i;
h0:875; 0:114; 0:243i; h0:961; 0:115; 0:431iÞ;
ð12; h0:657; 0:114; 0:226i; h0:765; 0:224; 0:245i;
h0:875; 0:465; 0:213i; h0:961; 0:141; 0:212iÞ;
ð13; h0:876; 0:221; 0:321i; h0:657; 0:115; 0:116i;
h0:987; 0:114; 0:322i; h0:675; 0:221; 0:423iÞ

o

:

In this set, multi-polarity (m = 1,2,3,4) of each altternative

1 shows its characteristic or qualities according to the

considered criteria such as

a1 ¼ affordable; a2 ¼ longlastingbattery;

a3 ¼ extrastorage; a4 ¼ goodcameraquality:

For each 1 and each of its criteria, we have neutrosophic

values to represent the truth, indeterminacy, and falsity of

corresponding alternative according to the considered

criteria under the influence of expert’s opinion. In the set

MN for 11 the first triplet h0:512; 0:231; 0:321i shows that
the smart phone 11 has 51:2% truth value, 23:1% indeter-

minacy, and 32:1% falsity value for the criteria ‘‘afford-

able.’’ Similarly, we can see the values for all alternatives

corresponding to the other criteria.

There is a relationship between MPNS and other hybrid

structures of fuzzy set. This relationship can be elaborated

in the given flow chart diagram of Fig. 1, where

a ¼ 1; 2; 3; . . .;m.

Definition 2.3 An MPNS MN is said to be an empty

MPNS, if Aað1Þ ¼ 0;Sað1Þ ¼ 1 and Yað1Þ ¼ 1; 8a ¼
1; 2; 3; . . .;m and it can be written as

0MN ¼ f1; ðh0; 1; 1i; h0; 1; 1i; � � � ; h0; 1; 1iÞ : 1 2 Qg
and for absolute MPNS we have Aað1Þ ¼ 1;Sað1Þ ¼ 0 and

Yað1Þ ¼ 0; 8a ¼ 1; 2; 3; . . .;m and it can be written as

Fig. 1 Relationship between MPNS and other hybrid fuzzy sets

Table 1 Tabular representation

of m-polar neutrosophic set
MN MPNS

11
�hA1ð11Þ;S1ð11Þ;Y1ð11Þi; hA2ð11Þ;S2ð11Þ;Y2ð11Þi; � � � ; hAmð11Þ;Smð11Þ;Ymð11Þi

�

12
�hA1ð12Þ;S1ð12Þ;Y1ð12Þi; hA2ð12Þ;S2ð12Þ;Y2ð12Þi; � � � ; hAmð12Þ;Smð12Þ;Ymð12Þi

�

� � � � � � � � � � � � � � � � � � � � � � � �
1N

�hA1ð1NÞ;S1ð1NÞ;Y1ð1NÞi; hA2ð1NÞ;S2ð1NÞ;Y2ð1NÞi; � � � ; hAmð1NÞ;Smð1NÞ;Ymð1NÞi
�
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1MN ¼ f1; ðh1; 0; 0i; h1; 0; 0i; � � � ; h1; 0; 0iÞ : 1 2 Qg
The assembling of all MPNSs in Q is represented as

mpnðQÞ.
Now we define some operations for MPNSs.

Definition 2.4 Let MN;MN}
2 mpnðQÞ, where

MN ¼ �

1; hAað1Þ;Sað1Þ;Yað1Þi
�

: 1 2 Q; a ¼ 1; 2; 3; . . .;m
� �

MN}
¼ �

1; h}Aað1Þ; }Sað1Þ; }Yað1Þi
�

: 1 2 Q; a ¼ 1; 2; 3; . . .;m
� �

; } 2 D

then:

(i) Mc
N ¼ �

1; hYað1Þ; 1�Sað1Þ;Aað1Þi
�

: 1 2 Q; a ¼ 1; 2; 3; . . .;m
� �

(ii) MN1
¼ MN2

, h1Aað1Þ; 1Sað1Þ; 1Yað1Þi ¼ h2Aað1Þ; 2Sað1Þ; 2Yað1Þi; 1 2 Q;

a ¼ 1; 2; 3; . . .;m

(iii) MN1
� MN2

, 1Aað1Þ� 2Aað1Þ; 1Sað1Þ� 2Sað1Þ; 1Yað1Þ� 2Yað1Þ; 1 2 Q;

a ¼ 1; 2; 3; . . .;m

(iv)
S

}
MN}

¼ fð1; � sup
}

}Aað1Þ; inf
}

}Sað1Þ; inf
}

}Yað1Þ
�Þ; 1 2 Q; } 2 D;

a ¼ 1; 2; 3; . . .;mg
(v) T

}
MN}

¼ fð1; � inf
}

}Aað1Þ; sup
}

}Sað1Þ; sup
}

}Yað1Þ
�Þ; 1 2 Q; } 2 D; a ¼ 1; 2; 3; . . .;mg

Example 2.5 Consider two 4-polar neutrosophic setsMN1

and MN2
given in tabular form as Table 2.

Now we calculate complement, union, and intersection

by using Definition 2.4 and results can be seen in tabular

form as Table 3.

In order to deal with multi-criteria decision-making

problems with m-polar neutrosophic numbers (MPNNs),

we define some score functions for the ranking of

MPNNs.

Definition 2.6 Let I ¼ �hAa;Sa;Yai; a ¼ 1; 2; 3; . . .;m
�

be an MPNN, then its score functions are given as:

£1ðIÞ ¼ 1

2m

�

mþ
X

m

a¼1

ðAa � 2Sa �YaÞ
	

; £1ðIÞ 2 ½0; 1�

£2ðIÞ ¼ 1

m

X

m

a¼1

ðAa � 2Sa �YaÞ; £2ðIÞ 2 ½�1; 1�

In the case, when score value of two MPNNs is same, we

define an improved score function for the ranking of

MPNNs given as

£3ðIÞ ¼ 1

2m

�

mþ
X

m

a¼1

�ðAa � 2Sa �YaÞð2�Aa �YaÞ
�

	

;

£3ðIÞ 2 ½�1; 1�:

In the case, when Aa þYa ¼ 1; 8 a ¼ 1; 2; . . .;m, then

£3ðIÞ reduces to £1ðIÞ.
Definition 2.7 Let I1 and I2 be two MPNNs, then the

following order relation between the score values of

MPNNs hold:

(a) If £1ðI1Þ � £1ðI2Þ then I1 � I2.

(b) If £1ðI1Þ ¼ £1ðI2Þ then
(1) If £2ðI1Þ � £2ðI2Þ then I1 � I2.

(2) If £2ðI1Þ ¼ £2ðI2Þ then
(i) If £3ðI1Þ � £3ðI2Þ then I1 � I2.

(ii) If £3ðI1Þ 	 £3ðI2Þ then I1 	 I2.

(iii) If £3ðI1Þ ¼ £3ðI2Þ then I1 
I2.

Example 2.8 Consider two 2-polar neutrosophic numbers

I1 and I2 given in tabular form as Table 4.

Then by using Definition 2.6 £1ðI1Þ ¼ 1
2ð2Þ ½2þ 0:5�

2ð0:3Þ � 0:4þ 0:5� 2ð0:1Þ � 0:8� ¼ 0:25. Similarly,

£1ðI2Þ ¼ 0:25. This shows that £1 fails to give the ranking

between both 2PNNs. Now we will use second score

function £2. By using Definition 2.6, we obtain the score

values £2ðI1Þ ¼ �0:5 ¼ £2ðI2Þ. This shows that £2 also

fails to evaluate the ranking. Now we will use improved

score function for the ranking of 2PNNs. After calcula-

Table 2 4-polar neutrosophic

sets MN1
and MN2

Q 4PNSs

MN1

�h0:611; 0:111; 0:251i; h0:821; 0:631; 0:111i; h0:721; 0:381; 0:591i; h0:211; 0:321; 0:411i�

MN2

�h0:321; 0:621; 0:511i; h0:831; 0:111; 0:921i; h0:521; 0:431; 0:391i; h0:181; 0:931; 0:821i�

Table 3 Complement, union,

and intersection of 4-polar

neutrosophic sets

Q 4PNSs

Mc
N

�h0:251; 0:889; 0:611i; h0:111; 0:369; 0:821i; h0:591; 0:619; 0:721i; h0:411; 0:679; 0:211i�

MN1
[MN2

�h0:611; 0:111; 0:251i; h0:831; 0:111; 0:111i; h0:721; 0:381; 0:391i; h0:211; 0:321; 0:411i�

MN1
\MN2

�h0:321; 0:621; 0:511i; h0:821; 0:631; 0:921i; h0:521; 0:431; 0:591i; h0:181; 0:931; 0:821i�

Table 4 2-polar neutrosophic numbers I1 and I2

Q 2PNNs

I1

�h0:5; 0:3; 0:4i; h0:5; 0:1; 0:8i�

I2

�h0:2; 0:3; 0:1i; h0:2; 0:1; 0:5i�
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tions, we get £3ðI1Þ ¼ 0:275 and £3ðI2Þ ¼ 0:125. Hence

£3ðI1Þ � £3ðI2Þ, so I1 � I2.

Remark

• For null MPNN 0I we have £3ð0IÞ ¼ �1.

• For absolute MPNN 1I we have £3ð1IÞ ¼ 1.

Proposition 2.9 Let MN 2 mpnðQÞ, and 0MN and
1MN be null and absolute MPNSs. Then the following

axioms hold:

(i) MN � MN [MN,

(ii) MN \MN � MN,

(iii) MN [ 0MN ¼ MN,

(iv) MN \ 0MN ¼ 0MN,

(v) MN [ 1MN ¼ 1MN,

(vi) MN \ 1MN ¼ MN

Proof The proof is obvious and can be proved by Defi-

nition 2.4. h

Proposition 2.10 Let MN1
;MN1

;MN3
2 mpnðQÞ, then

the following results hold:

(i) MN1
[MN2

¼ MN2
[MN1

,

(ii) MN1
\MN2

¼ MN2
\MN1

,

(iii) MN1
[ ðMN2

[MN3
Þ ¼ ðMN1

[MN2
Þ [MN3

,

(iv) MN1
\ ðMN2

\MN3
Þ ¼ ðMN1

\MN2
Þ \MN3

,

(v) ðMN1
[MN2

Þc ¼ Mc
N1

\Mc
N2
,

(vi) ðMN1
\MN2

Þc ¼ Mc
N1

[Mc
N2

Proof The proof is obvious and can be proved by Defi-

nition 2.4. h

3 m-Polar Neutrosophic Topology

In this section, we introduce the m-polar neutrosophic

topology on m-polar neutrosophic set and discuss interior,

closure, exterior, and frontier of MPNSs with the help of

illustrations. We introduce various results which hold for

classical set theory, but do not hold for MPN data. We

present a cosine similarity measure and set theoretic sim-

ilarity measure to find the similarity between MPNSs.

3.1 m-Polar Neutrosophic Topological Space

In mathematics, topology is concerned with the alterna-

tives of a geometric object that are kept under continuous

deformations, such as stretching, twisting, crumpling, and

bending, but not tearing or gluing. ‘‘A topological space is

a set endowed with a structure, called a topology, which

allows defining continuous deformation of subspaces and

more broadly, all kinds of continuity.’’ The concept of

topology can be defined by using sets, continuous func-

tions, manifolds, algebra, differentiable functions, differ-

ential geometry, etc. It has numerous applications in

biology, medical diagnosis, physics, computer science,

robotics, game theory, and fiber art.

The question arises here that why we use m-polar neu-

trosophic topological space? Crisp topological space can-

not deal with the uncertainties and imprecision in the

decision-making problems. To handle these ambiguities,

Chang [7] introduced fuzzy topological spaces in 1968.

After that, many mathematicians established topological

spaces on other hybrid structures of fuzzy sets. Every

topological space has its own boundaries, e.g., neutro-

sophic topological space cannot deals with the multiple

criteria or multi-polarity of alternatives. m-polar topologi-

cal space cannot deal with the indeterminacy part and

dissatisfaction part of alternatives in decision-making

problems. To remove these restrictions, we introduce m-

polar neutrosophic topological space (MPNTS) by com-

bining the m-polar fuzzy sets and neutrosophic sets.

MPNTS handle these hesitations in the input data by

treating with the multi-polarity, membership, non-mem-

bership, and indeterminacy grades for the decision-making

problems. The motivation of our projected model is given

step by step in the whole manuscript, especially in Sect. 4.

Definition 3.1 Let Q be the non-empty reference set and

mpnðQÞ be the collection of all MPNSs in Q. Then the

collection T MN
containing MPNSs is called m-polar neu-

trosophic topology (MPNT) if it satisfies the following

properties:

(i) 0MN;
1MN 2 T MN

.

(ii) If ðMNÞ} 2 T MN
; 8} 2 D, then

S

}2D
ðMNÞ} 2 T MN

.

(iii) If MN1
;MN2

2 T MN
, then MN1

\MN2
2 T MN

.

Then the pair ðQ; T MN
Þ is called MPNTS. The members

of T MN
are called open MPNSs and their complements are

called closed MPNSs.

Theorem 3.2 Let ðQ; T MN
Þ be an MPNTS. Then the

following conditions are satisfied:

(i) 0MN and 1MN are open MPNSs.

(ii) Union of any number of open MPNSs is open.
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(iii) Intersection of finite number of closed MPNSs is

closed.

Proof The proof is obvious. h

Example 3.3 Let Q ¼ f11; 12; 13; 14g be an assembling of

books. Then mpnðQÞ be the collection of all MPNSs in Q.

We consider two 3-polar neutrosophic subsets of mpnðQÞ
given as

MN1
¼
n

ð11; h0:871; 0:451; 0:412i; h0:317; 0:412; 0:321i;
h0:187; 0:213; 0:118iÞ; ð12; h0:547; 0:158; 0:413i;
h0:518; 0:152; 0:118i; h0:618; 0:418; 0:321iÞ;
ð13; h0:618; 0:341; 0:231i; h0:815; 0:118; 0:527i;
h0:511; 0:431; 0:215iÞ; ð14; h0:518; 0:391; 0:812i;
h0:815; 0:321; 0:415i; h0:911; 0:321; 0:512iÞ

o

MN2
¼
n

ð11; h0:611; 0:512; 0:611i; h0:218; 0:531; 0:415i;
h0:035; 0:311; 0:211iÞ; ð12; h0:212; 0:218; 0:513i;
h0:435; 0:218; 0:315i; h0:519; 0:511; 0:438iÞ;
ð13; h0:418; 0:432; 0:321i; h0:639; 0:218; 0:357i;
h0:211; 0:531; 0:316iÞ; ð14; h0:219; 0:491; 0:815i;
h0:716; 0:421; 0:518i; h0:712; 0:421; 0:618iÞ

o

Then clearly the collection T MN
¼ f0MN;

1MN;MN1
;

MN2
g is 3-polar neutrosophic topological space.

Definition 3.4 Let ðQ; T MN
Þ and ðQ; T 0

MN
Þ be two

MPNTSs in Q. Two MPNTSs are said to be comparable if

T MN
� T 0

MN
or T 0

MN
� T MN

.

If T MN
� T 0

MN
, then T MN

is courser or weaker than

T 0
MN

and T 0
MN

is stronger and finer than T MN
.

Theorem 3.5 Let ðQ; T MN
Þ be an MPNTS. Then the

following conditions are satisfied:

(i) 0MN and 1MN are closed MPNSs.

(ii) Intersection of any number of closed MPNSs is

closed.

(iii) Union of finite number of closed MPNSs is closed.

Proof

(i) ð1MNÞc ¼ 0MN and ð0MNÞc ¼ 1MN are both

open and closed MPNSs.

(ii) If fMNa : Mc
Na

2 T MN
; a 2 Dg is an assembling of

closed MPNSs then ðT
a2D

MNaÞc ¼
S

a2D
Mc

Na
is open.

This shows that
T

a2D
MNa is closed MPNS.

(iii) Since MNb
is closed for b ¼ 1; 2; . . .; z, then

ðS
z

b¼1

MNb
Þc ¼ T

z

b¼1

Mc
Nb

is open MPNS. Thus

S

z

b¼1

MNb
is closed MPNS.

h

Definition 3.6 Let ðQ; T MN
Þ be MPNTS and

MN 2 mpnð1MNÞ, then interior of MN is denoted as

Mo
N and defined as the union of all open MPN subsets

contained in MN. It is the greatest open MPNS contained

in MN.

Example 3.7 We consider the 3-polar neutrosophic topo-

logical space constructed in Example 3.3 and let MN3
2

mpnðQÞ given as

MN3
¼ fð11; h0:713; 0:412; 0:311i; h0:318; 0:418; 0:311i;
h0:451; 0:211; 0:218iÞ; ð12; h0:312; 0:117; 0:418i;
h0:513; 0:212; 0:218i; h0:613; 0:411; 0:438iÞ;
ð13; h0:518; 0:321; 0:311i; h0:718; 0:118; 0:257i;
h0:317; 0:461; 0:217iÞ; ð11; h0:319; 0:219; 0:615i;
h0:719; 0:321; 0:418i; h0:811; 0:321; 0:417iÞg

Then Mo
N3

¼ oMN [MN2
¼ MN2

is open MPNS.

Theorem 3.8 Let ðQ; T MN
Þ be MPNTS and

MN 2 mpnðQÞ. Then MN is open MPNS , Mo
N ¼ MN.

Proof If MN is open MPNS then greatest open MPNS

contained in MN is itself MN. Thus Mo
N ¼ MN.

Conversely, if Mo
N ¼ MN then Mo

N is open MPNS.

This implies that MN is open MPNS. h

Theorem 3.9 Let ðQ; T MN
Þ be MPNTS and

MN1
;MN2

2 mpnð1MNÞ , then
(i) ðMo

N1
Þo ¼ Mo

N1
,

(ii) MN1
� MN2

) Mo
N1

� Mo
N2
,

(iii) ðMN1
\MN2

Þo ¼ Mo
N1

\Mo
N2
,

(iv) ðMN1
[MN2

Þo � Mo
N1

[Mo
N2
.

Proof The proof is obvious. h
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Definition 3.10 Let ðQ; T MN
Þ be MPNTS and

MN 2 mpnðQÞ, then the closure of MN is denoted by

MN and defined by intersection of all closed-MPN

supersets of MN. It is the smallest closed-MPN superset of

MN.

Example 3.11 We consider the 3-polar neutrosophic

topological space constructed in Example 3.3, then closed

MPNSs are given as,

oMc
N ¼ 1MN;

1Mc

N ¼ oMN;

Mc
N1

¼ fð11; h0:412; 0:549; 0:871i; h0:321; 0:588; 0:317i;
h0:118; 0:787; 0:187iÞ; ð12; h0:413; 0:842; 0:547i;
h0:118; 0:848; 0:518i; h0:321; 0:582; 0:618iÞ;
ð13; h0:231; 0:659; 0:618i; h0:257; 0:882; 0:815i;
h0:215; 0:569; 0:511iÞ; ð14; h0:812; 0:609; 0:518i;
h0:415; 0:679; 0:815i; h0:512; 0:679; 0:911iÞg

Mc
N2

¼ fð11; h0:611; 0:488; 0:611i; h0:415; 0:487; 0:218i;
h0:211; 0:689; 0:035iÞ; ð12; h0:513; 0:782; 0:212i;
h0:315; 0:782; 0:435i; h0:438; 0:489; 0:519iÞ;
ð13; h0:321; 0:568; 0:418i; h0:357; 0:782; 0:639i;
h0:316; 0:469; 0:211iÞ; ð14; h0:815; 0:509; 0:219i;
h0:518; 0:579; 0:716i; h0:618; 0:579; 0:712iÞg

Let MN4
2 mpnð1MNÞ given as

MN4
¼ fð11; h0:319; 0:615; 0:888i; h0:217; 0:618; 0:411i;
h0:115; 0:817; 0:345iÞ; ð12; h0:312; 0:888; 0:617i;
h0:113; 0:878; 0:678i; h0:231; 0:598; 0:765iÞ;
ð13; h0:112; 0:767; 0:887i; h0:213; 0:889; 0:889i;
h0:114; 0:667; 0:665iÞ; ð14; h0:319; 0:768; 0:615i;
h0:321; 0:778; 0:898i; h0:435; 0:767; 0:987iÞg

Then MN4
¼ 1MN \Mc

N1
\Mc

N2
¼ Mc

N1
is closed

MPNS.

Theorem 3.12 Let ðQ; T MN
Þ be MPNTS and

MN 2 mpnðQÞ. MN is closed MPNS , MN ¼ MN.

Proof The proof is obvious. h

Definition 3.13 Let MN be an MPN-subset of ðQ; T MN
Þ,

then its frontier or boundary is defined by FrðMNÞ ¼
MN \Mc

N.

Definition 3.14 Let MN be an MPN-subset of ðQ; T MN
Þ,

then its exterior can be represented as ExtðMNÞ and

defined as ExtðMNÞ ¼ ðMNÞc ¼ ðMc
NÞo.

Example 3.15 We consider the MPNTS constructed in

Example 3.3 and consider the MPNSs MN3
and MN4

given in Examples 3.7 and 3.11. Then by using previous

definitions we can write that

Mo
N3

¼ MN2
;MN3

¼ 1MN;

FrðMN3
Þ ¼ 1MN;ExtðMN3

Þ ¼ 0MN;

Mo
N4

¼ 0MN;MN4
¼ Mc

N1
;

FrðMN4
Þ ¼ Mc

N1
;ExtðMN4

Þ ¼ MN1
:

Now, we present some results which do not hold in

MPNTS but hold in crisp set theory due to the law of

contradiction and law of excluded middle.

Remark

(i) In MPNTS, the members of discrete topology are

infinite due to the infinite subsets of an arbitrary

MPNS.

(ii) In MPNTS law of contradictionMN \Mc
N ¼ 0MN

and law of excluded middle MN [Mc
N ¼ 1MN do

not hold in general. In Example 3.15, we can

observe that MN3
\Mc

N3
6¼ 0MN and

MN3
[Mc

N3
6¼ 1MN.

(iii) In m-polar neutrosophic set theory, an assembling

T MN
¼ f0MN;

1MN;MN;Mc
Ng is not an MPNTS

in general. But this result hold in classical set theory.

This result can be easily seen by using Example

3.15.

Theorem 3.16 Let MN 2 mpnð1MNÞ, then
(1) ðMo

NÞc ¼ ðMc
NÞ,

(2) ðMNÞc ¼ ðMc
NÞo,

(3) ExtðMc
NÞ ¼ Mo

N,

(4) ExtðMNÞ ¼ ðMc
NÞo,

(5) ExtðMNÞ [ FrðMNÞ [Mo
N 6¼ 1MN,

(6) FrðMNÞ ¼ FrðMc
NÞ,

(7) Mo
N \ FrðMNÞ 6¼ 0MN.

Proof

(1) and (2): are obvious.

(3) ExtðMc
NÞ ¼ ðMc

NÞc
) ExtðMc

NÞ ¼ ½ðMc
NÞc�o

) ExtðMc
NÞ ¼ Mo

N.

(4) ExtðMNÞ ¼ ðMNÞc
) ExtðMNÞ ¼ ðMc

NÞo.
(5) ExtðMNÞ [ FrðMNÞ [Mo

N 6¼ 1MN. By Example

3.15, we can see that MN1
[Mc

N1
[ 0MN 6¼ 1MN.

(6) FrðMc
NÞ ¼ ðMc

NÞ \ ½ðMc
NÞ�c
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) FrðMc
NÞ ¼ ðMc

NÞ \ ðMNÞ ¼ FrðMNÞ.
(7) Mo

N \ FrðMNÞ 6¼ 0MN. Example 3.15 shows that

MN2
\ 1MN 6¼ 0MN.

h

3.2 Similarity Measures

In this part, we present two different formulae for simi-

larity measures between MPNSs. This concept will help us

in the forthcoming section of multi-criteria decision-

making.

Definition 3.17 (Cosine similarity measure for MPNSs)

We define the cosine similarity measure for m-polar neu-

trosophic sets based on Bhattacharyas distance [32, 47].

Suppose that MN1
;MN2

2 mpnðMNÞ, in Q ¼ f11;
12; . . .; 1lg. A cosine similarity measure between MN1

MN2
is given as

C1
MPNSðMN1

;MN2
Þ ¼ 1

ml

X

l

g¼1

X

m

a¼1

1Aað1gÞ2Aað1gÞ þ 1Sað1gÞ2Sað1gÞ þ 1Yað1gÞ2Yað1gÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1Aað1gÞÞ2 þ ð1Sað1gÞÞ2 þ ð1Yað1gÞÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2Aað1gÞÞ2 þ ð2Sað1gÞÞ2 þ ð2Yað1gÞÞ2
q :

C1
MPNS satisfies the following properties,

(1) 0�C1
MPNS � 1,

(2) C1
MPNSðMN1

;MN2
Þ ¼ C1

MPNSðMN2
;MN1

Þ,
(3) C1

MPNSðMN1
;MN2

Þ ¼ 1 if MN1
¼ MN2

,

(4) If MN1
� MN2

� MN3
then

C1
MPNSðMN1

;MN3
Þ�C1

MPNSðMN1
;MN2

Þ and
C1
MPNSðMN1

;MN3
Þ�C1

MPNSðMN2
;MN3

Þ. The proof
of these properties can be easily done by using the

above definition.

Definition 3.18 (Set theoretic similarity measure of

MPNSs) We define the set theoretic similarity measure for

m-polar neutrosophic sets based on set theoretic viewpoint

[40]. Suppose that MN1
;MN2

2 mpnðMNÞ, in

Q ¼ f11; 12; . . .; 1lg. A set theoretic similarity measure

between MN1
MN2

is given as

C2
MPNSðMN1

;MN2
Þ ¼ 1

ml

X

l

g¼1

X

m

a¼1

1Aað1gÞ2Aað1gÞ þ 1Sað1gÞ2Sað1gÞ þ 1Yað1gÞ2Yað1gÞ
max½ð1Aað1gÞÞ2 þ ð1Sað1gÞÞ2 þ ð1Yað1gÞÞ2; ð2Aað1gÞÞ2 þ ð2Sað1gÞÞ2 þ ð2Yað1gÞÞ2�

:

C2
MPNS satisfies the following properties,

(1) 0�C2
MPNS � 1,

(2) C2
MPNSðMN1

;MN2
Þ ¼ C2

MPNSðMN2
;MN1

Þ,
(3) C2

MPNSðMN1
;MN2

Þ ¼ 1 if MN1
¼ MN2

,

(4) If MN1
� MN2

� MN3
then

C2
MPNSðMN1

;MN3
Þ�C2

MPNSðMN1
;MN2

Þ and
C2
MPNSðMN1

;MN3
Þ�CMPNSðMN ;MNÞ. The

proof of these properties can be easily done by using

the above definition.

4 Multi-criteria Decision-Making Under m-Polar
Neutrosophic Data

Multi-criteria decision-making (MCDM) is a process to

find an optimal alternative that has the highest degree of

satisfaction from a set of feasible alternatives characterized

by multiple criteria, and these kinds of MCDM problems

arise in many real-world situations. In this section, we

discuss two applications of medical diagnosis and cluster-

ing analysis of students with the help of m-polar fuzzy

neutrosophic data. We present three novel algorithms for

multi-criteria decision-making (MCDM) with linguistic

information based on the MPNTS and MPFNSs for medi-

cal diagnosis and clustering analysis.

In each algorithm, we use m-polar neutrosophic input

data. Firstly, we collect input information for every algo-

rithm in the form of linguistic variables and then convert

them into m-polar neutrosophic numbers (MPNNs) by

using fuzzy logics. When our data set is covered into

proposed m-polar neutrosophic numeric values, then we

apply each algorithm one by one. At last, we get better

results for medical diagnosis and clustering analysis.

4.1 MCDM for Medical Diagnosis

In this part of our manuscript, we establish two different

techniques based on MPNTS and on similarity measures to

investigate the disease with m-polar neutrosophic

information.
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Proposed Technique of Algorithm 1

In this algorithm, rating of each criteria according to the

corresponding alternative is constructed by using m-polar

neutrosophic information for MCDM and given in input

matrix (can be taken in tabular form by using m-polar

neutrosophic numbers) as

P ¼½Ia
gn�r�s ¼ ½hAa

gn;S
a
gn;Y

a
gni�r�s; a ¼ 1; 2; 3; . . .;m

P ¼½Ia
gn�r�s ¼

ðhAa
11;S

a
11;Y

a
11iÞ ðhAa

12;S
a
12;Y

a
12iÞ � � � ðhAa

1s;S
a
1s;Y

a
1siÞ

ðhAa
21;S

a
21;Y

a
21iÞ ðhAa

22;S
a
22;Y

a
22iÞ � � � ðhAa

2s;S
a
2s;Y

a
2siÞ

..

. ..
. . .

. ..
.

ðhAa
r1;S

a
r1;Y

a
r1iÞ ðhAa

r2;S
a
r2;Y

a
r2iÞ � � � ðhAa

rs;S
a
rs;Y

a
rsiÞ

0

B

B

B

B

@

1

C

C

C

C

A

ð1Þ
In matrix P, the entries Aa

gn;S
a
gn , and Ya

gn represent truth,

indeterminacy, and falsity membership grades for alterna-

tive ðg corresponding to the criteria Cn, where g ¼ 1; 2;

3; . . .; r; n ¼ 1; 2; 3; . . .; s. These grades satisfies the fol-

lowing properties under MPN environment.

(1) 0�Aa
gn � 1; 0�Sa

gn � 1; 0�Ya
gn � 1.

(2) 0�Aa
gn þSa

gn þYa
gn � 3, for

g ¼ 1; 2; 3; . . .; r; n ¼ 1; 2; 3; . . .; s; a ¼ 1; 2; 3. . .;m.

The rating of each criteria corresponding to the alternative

for m-triplets is illustrated in this work. The input decision

matrices In; n ¼ 1; 2; 3; . . .; z for z number of experts can

be written by using m-polar neutrosophic data same as

Equation 2. Then we construct an m-polar neutrosophic

topological space T MN by using experts data

In; n ¼ 1; 2; 3; . . .; z. Find interior Po of MPN-matrix P

under the constructed T MN
. Then we calculate score

values of all the alternatives in Po. We rank these fuzzy

values and choose alternative having maximum fuzzy

value as an optimal decision. The step-wise description of

this proposed technique is given as Algorithm 1.

4.1.1 Proposed Technique of Algorithm 2:

In this algorithm, rating of each criteria according to the

corresponding alternative is constructed by using m-polar

neutrosophic information for MCDM and given in input

matrix (can be taken in tabular form by using m-polar

neutrosophic numbers) as

P ¼½Ia
gn�r�s ¼ ½hAa

gn;S
a
gn;Y

a
gni�r�s; a ¼ 1; 2; 3; . . .;m

P ¼½Ia
gn�r�s ¼

ðhAa
11;S

a
11;Y

a
11iÞ ðhAa

12;S
a
12;Y

a
12iÞ � � � ðhAa

1s;S
a
1s;Y

a
1siÞ

ðhAa
21;S

a
21;Y

a
21iÞ ðhAa

22;S
a
22;Y

a
22iÞ � � � ðhAa

2s;S
a
2s;Y

a
2siÞ

..

. ..
. . .

. ..
.

ðhAa
r1;S

a
r1;Y

a
r1iÞ ðhAa

r2;S
a
r2;Y

a
r2iÞ � � � ðhAa

rs;S
a
rs;Y

a
rsiÞ

0

B

B

B

B

@

1

C

C

C

C

A

ð2Þ
In matrixP, the entriesAa

gn;S
a
gn , andY

a
gn represents truth,

indeterminacy, and falsity membership grades for alterna-

tive ðg corresponding to the criteria Cn, where g ¼ 1; 2;

3; . . .; r; n ¼ 1; 2; 3; . . .; s. These grades satisfies the fol-

lowing properties under MPN environment.

(1) 0�Aa
gn � 1; 0�Sa

gn � 1; 0�Ya
gn � 1.

(2) 0�Aa
gn þSa

gn þYa
gn � 3, for

g ¼ 1; 2; 3; . . .; r; n ¼ 1; 2; 3; . . .; s; a ¼ 1; 2; 3. . .;m.
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The rating of each criteria corresponding to the alternative

for m-triplets is illustrated in this work. The input decision

matrices In; n ¼ 1; 2; 3; . . .; z for z number of experts can

be written by using m-polar neutrosophic data same as

Equation 2. We calculate cosine similarity measure and set

theoretic similarity measure between In; n ¼ 1; 2; 3; . . .; z

and P. We choose the m-polar neutrosophic sets from

In; n ¼ 1; 2; 3; . . .; z having highest cosine similarity mea-

sure and highest set theoretic similarity measure. Then we

calculate score values of all the alternatives in the selected

sets from In; n ¼ 1; 2; 3; . . .; z. We rank these fuzzy values

and choose alternative having maximum fuzzy value as an

optimal decision. The step-wise description of this pro-

posed technique is given as Algorithm 2.

The flow chart diagram of proposed algorithms can be

seen in Fig. 2.

4.1.2 Numerical example

Suppose that a patient is facing some health issues and the

symptoms are temperature, headache, fatigue, loss of

appetite, stomach pain, inadequate immune system, mus-

cle, and joint pain. According to the doctor’s opinion, all

these symptoms lead to the following diseases Tuberculo-

sis, Hepatitis C, and Typhoid fever. Let us consider the set

Q ¼ fð1; ð2; ð3g of the alternatives consisting of three

diseases and the set Z ¼ fJ ;J ;J ;J g of symptoms,

where

ð1 ¼ Tuberculosis; ð2 ¼ Hepatitis C; ð3 ¼ Typhoid fever;

J 1 ¼ Fever; J 2 ¼ Poor immune system

J 3 ¼ Muscle and joint pain, fatigue;

J 4 ¼ Unintentional weight loss; loss of appetite

We input the data of patient according to his doctor in

the form of 4-polar neutrosophic set for each disease cor-

responding to every symptom. In this data, the numeric

values corresponding to each symptom show that how

many chances he have to be suffered from the considered

disease. In Table 5 for disease ð1 ¼Tuberculosis, the first

triplet h0:635; 0:115; 0:114i shows that according to

his symptom ‘‘J 1 ¼fever’’ patient has 63; 5% truth chan-

ces, 11:5% indeterminacy, and 11:4% falsity chances to

have tuberculosis. Similarly, we can observe all values of

patient according to his symptoms for all diseases.

We consider that we have ‘‘z=3’’ highly qualified

experts, then according to these experts the data of each

disease corresponding to each symptom is given in tabular

form of 4-polar neutrosophic sets as Tables 6, 7, and 8.

Each In; n ¼ 1; 2; 3 representing the data of each disease

corresponding to each symptom according to 3 experts.

This means that for expert I1 and disease ð1 ¼tuberculosis
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the first triplet h0:511; 0:311; 0:213i shows that according

to symptom ‘‘J 1 ¼ fever’’ there are 63; 5% truth chances,

11:5% indeterminacy, and 11:4% falsity chances to have

tuberculosis. On the same pattern, we can observe all

values of diseases according to the corresponding symp-

toms for each expert.

4.1.3 Solution by using Algorithm 1

Now we construct 4-polar neutrosophic topological space

T MN
on In; n ¼ 1; 2; 3 given as T MN ¼ fI1;I2;I3;

0MN;
1MNg. We find the interior Po of P by using

Definition 3.6 under the 4PNTS T MN
. Thus

Po ¼ 0MN [ I1 [ I2 ¼ I2. Now we use Definition 2.6

on I2 to find scores of all the diseases ðd; d ¼ 1; 2; 3:

£1ðI2ð1Þ ¼
1

2� 4
ð4þ ð0:611� 2ð0:213Þ � 0:118Þ

þ ð0:711� 2ð0:321Þ � 0:118Þ
þ ð0:412� 2ð0:511Þ � 0:611Þ
þ ð0:813� 2ð0:211Þ � 0:341ÞÞ ¼ 0:3558:

Similarly, we can find £1ðI2ð2Þ ¼ 0:662 and

£1ðI2ð3Þ ¼ 0:3691. By Definition 2.7 we can write that

ð2 � ð3 � ð1. Hence, patient is suffering from Hepatitis C.

Graphically results can be seen as Fig. 3.

Fig. 2 Flowchart diagram of proposed algorithm 1 and algorithm 2

Table 5 4-Polar neutrosophic

data of patient P
P 4-polar neutrosophic sets

ð1
�h0:635; 0:115; 0:114i; h0:813; 0:239; 0:115i; h0:513; 0:431; 0:513i h0:911; 0:119; 0:238i�

ð2
�h0:739; 0:119; 0:115i; h0:923; 0:111; 0:108i; h0:889; 0:108; 0:117i; h0:835; 0:113; 0:218i�

ð3
�h0:919; 0:113; 0:122i; h0:818; 0:112; 0:211i; h0:611; 0:513; 0:618i; h0:713; 0:218; 0:319i�

Table 6 4-polar neutrosophic

data for expert I1

I1 4-polar neutrosophic sets

ð1
�h0:511; 0:311; 0:213i; h0:631; 0:431; 0:211i; h0:328; 0:611; 0:782i h0:713; 0:348; 0:411i�

ð2
�h0:638; 0:324; 0:237i; h0:816; 0:118; 0:119i; h0:717; 0:115; 0:218i; h0:719; 0:222; 0:249i�

ð3
�h0:889; 0:212; 0:213i; h0:699; 0:189; 0:232i; h0:413; 0:718; 0:818i; h0:518; 0:421; 0:518i�

Table 7 4-polar neutrosophic

data for expert I2

I2 4-polar neutrosophic sets

ð1
�h0:611; 0:213; 0:118i; h0:711; 0:321; 0:118i; h0:412; 0:511; 0:611i h0:813; 0:211; 0:341i�

ð2
�h0:718; 0:211; 0:117i; h0:916; 0:113; 0:112i; h0:817; 0:113; 0:211i; h0:815; 0:211; 0:234i�

ð3
�h0:918; 0:116; 0:132i; h0:713; 0:116; 0:213i; h0:511; 0:611; 0:713i; h0:613; 0:321; 0:416i�

Table 8 4-polar neutrosophic

data for expert I3

I3 4-polar neutrosophic sets

ð1
�h0:711; 0:118; 0:108i; h0:811; 0:213; 0:108i; h0:512; 0:421; 0:521i h0:815; 0:118; 0:213i�

ð2
�h0:723; 0:119; 0:111i; h0:928; 0:112; 0:110i; h0:888; 0:111; 0:119i; h0:889; 0:181; 0:201i�

ð3
�h0:929; 0:115; 0:128i; h0:813; 0:112; 0:211i; h0:611; 0:511; 0:613i; h0:718; 0:213; 0:325i�
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4.1.4 Solution by using Algorithm 2

Now by using Tables 5, 6, 7, and 8, we find cosine simi-

larity measures between ðI1;PÞ; ðI2;PÞ and ðI3;PÞ by

using Definition 3.17 given as

C1
MPNSðI2;PÞ

¼ 1

3� 4

 

ð0:611Þð0:635Þ þ ð0:213Þð0:115Þ þ ð0:118Þð0:114Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:611Þ2 þ ð0:213Þ2 þ ð0:118Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:635Þ2 þ ð0:115Þ2 þ ð0:114Þ2
q

þ ð0:711Þð0:813Þ þ ð0:321Þð0:329Þ þ ð0:118Þð0:115Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:711Þ2 þ ð0:321Þ2 þ ð0:118Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:813Þ2 þ ð0:329Þ2 þ ð0:115Þ2
q þ � � �

þ ð0:613Þð0:713Þ þ ð0:321Þð0:218Þ þ ð0:416Þð0:319Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:613Þ2 þ ð0:321Þ2 þ ð0:416Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:713Þ2 þ ð0:218Þ2 þ ð0:319Þ2
q

!

:

C1
MPNSðI2;PÞ ¼ 11:89053

12
¼ 0:990878. Similarly, we can

find similarity between other MPNSs given as

C1
MPNSðI1;PÞ ¼ 11:50807

12
¼ 0:95900, C1

MPNSðI3;PÞ ¼
11:996
12

¼ 0:99966 . This shows that C1
MPNSðI3;PÞ � C1

MPNS

ðI2;PÞ � C1
MPNSðI1;PÞ . From this ranking it is clear to

see that opinion of expertI3 is most related and similar to the

condition of patient P. So, we select I3 and calculate score

values of all diseases ðd; d ¼ 1; 2; 3 by using Definition 2.6.

This implies that £1ðI3ð1Þ ¼ 0:5198, £1ðI3ð2Þ ¼ 0:7301 ,

£1ðI3ð3Þ ¼ 0:4977 . By Definition 2.7 we can write that

ð2 � ð1 � ð3. Hence patient is suffering from Hepatitis C.

Now, we use set theoretic similarity measure C2
MPNS to

find similarity between ðI1;PÞ; ðI2;PÞ and ðI3;PÞ by

using Definition 3.18 given as

C2
MPNSðI2;PÞ

¼ 1

3� 4

 

ð0:611Þð0:635Þ þ ð0:213Þð0:115Þ þ ð0:118Þð0:114Þ
maxðð0:611Þ2 þ ð0:213Þ2 þ ð0:118Þ2; ð0:635Þ2 þ ð0:115Þ2 þ ð0:114Þ2Þ

þ ð0:711Þð0:813Þ þ ð0:321Þð0:329Þ þ ð0:118Þð0:115Þ
maxðð0:711Þ2 þ ð0:321Þ2 þ ð0:118Þ2; ð0:813Þ2 þ ð0:329Þ2 þ ð0:115Þ2Þ þ � � �

þ ð0:613Þð0:713Þ þ ð0:321Þð0:218Þ þ ð0:416Þð0:319Þ
maxðð0:613Þ2 þ ð0:321Þ2 þ ð0:416Þ2; ð0:713Þ2 þ ð0:218Þ2 þ ð0:319Þ2Þ

!

:

C2
MPNSðI2;PÞ ¼ 10:44972

12
¼ 0:87081. Similarly, we can find

similarity between other MPNSs given as C2
MPNSðI1;PÞ ¼

10:51971
12

¼ 0:87664, C2
MPNSðI3;PÞ ¼ 11:2283

12
¼ 0:9355. This

shows that C2
MPNSðI3;PÞ � C2

MPNSðI1;PÞ � C2
MPNS

ðI2;PÞ. From this ranking it is clear to see that opinion of

expert I3 is most related and similar to the condition of

patient P. So, we select I3 and calculate score values of all

diseases ðd; d ¼ 1; 2; 3 by using Definition 2.6. This

implies that £1ðI3ð1Þ ¼ 0:5198, £1ðI3ð2Þ ¼ 0:7301,

£1ðI3ð3Þ ¼ 0:4977. By Definition 2.7 we can write that

ð2 � ð1 � ð3. Hence patient is suffering from Hepatitis C.

Graphically results can be seen as Fig 4.

4.1.5 Discussion and Comparison Analysis:

In this section, we discuss advantages validity, simplicity,

flexibility, and superiority of our proposed approach and

algorithms. We also give a brief comparison analysis of

proposed method with existing approaches.

Advantages of Proposed Approach

Now we discuss some advantages of the proposed

techniques based on MPNSs.

(i) Validity of the Method

The suggested method is valid and suitable for all types

of input data. we present two novel algorithms in this

manuscript one for MPNTS and other for similarity mea-

sures. We introduced two similarity measures between

MPNSs. It is interesting to note that both algorithms and

both formulas of similarity gives the same result (see

Table 9). In this work, both algorithms have their own

importance and can be used according to the requirement

of decision-maker. Both algorithms are valid and give best

decision in multi-criteria decision-making (MCDM)

problems.

(ii) Simplicity and Flexibility Dealing with Different

Criteria

In MCDM problems, we experience different types of

criteria and input data according to the given situations. The

proposed algorithms are simple and easy to understand

which can be applied easily on whatever type of alternatives

andmeasures. Both algorithms are flexible and easily altered

according to the different situations, inputs, and outputs.

There is a slightly difference between the ranking of the

proposed approaches because different formulae have

Fig. 3 Ranking of alternatives under MPNTS
Fig. 4 Ranking of attributes under similarity measures
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different ordering strategies, so they can afford the slightly

different effect according to their deliberations.

(iii) Superiority of Proposed Method

From all above discussion, we observe that our proposed

models of m-polar neutrosophic set and m-polar neutro-

sophic topological space are superior to existing approaches

including fuzzy neutrosophic sets, m-polar intuitionistic

fuzzy sets, interval-valued m-polar fuzzy sets and m-polar

fuzzy sets. Moreover, many hybrid structures of fuzzy sets

become the special cases of m-polar neutrosophic set with

the addition of some suitable conditions (see Fig. 1). So our

proposed approach is valid, flexible, simple, and superior to

other hybrid structures of fuzzy sets.

Comparison Analysis

(1) In our proposed method, we define m-polar

neutrosophic topological space and two algorithms

based on MPN input data. The impressive point of

this model is that we can use it for mathematical

modeling at a large scale or ‘‘m’’ numbers of criteria

with its truth, falsity, and indeterminacy part. These

m-degrees basically show the corresponding

properties or any set criteria about the alternatives.

As in giving numerical example, we use m ¼ 4 to

analyze the data for four symptoms appearing to the

patient. The value of ‘‘m’’ can be taken as large as

possible, which is not possible for other approaches.

Moreover, many hybrid structures of fuzzy set

become the special cases of m-polar neutrosophic set

with the addition of some suitable conditions (see

Fig. 1).

(2) Table 10 as given above listing the results of the

comparison in the final ranking of top 3 alternatives

(diseases). As it could be observed in the comparison

Table 10, the best selection made by the proposed

methods is comparable to already established methods

which is expressive in itself and approves the reliability

and validity of the proposed method. Now the question

turns out that whywe need to specify a novel algorithm

based on this novel structure? There are many

arguments which show that proposed operator is

more suitable than other existing methods. As we

know that intuitionistic fuzzy sets, picture fuzzy sets,

fuzzy sets, hesitant fuzzy sets, neutrosophic sets, and

other existing hybrid structures of fuzzy sets have some

limitations and not able to present full information

about the situation. But our proposed model ofm-polar

neutrosophic set is most suitable for MCDM methods

and deals with multi-criteria having truth,

indeterminacy, and falsity values. Due to the addition

of neutrosophic nature in multi-polarity, these three

grades go independent of each other and give a lot of

information about the multiple criteria for

the alternatives.

Table 10 Comparison of proposed algorithms with some existing approaches

Methods Similarity measures on sets Ranking of alternatives

Wei [37] Picture fuzzy set ð2 � ð1 � ð3

Xu and Chen [39, 40] Intuitionistic fuzzy set and correlation measures ð2 � ð1 � ð3

Ye [45] Correlation coefficient of neutrosophic set ð2 � ð1 � ð3

Ye [47] Intuitionistic fuzzy set ð2 � ð3 � ð1

Li and Cheng [17] Intuitionistic fuzzy set ð2 � ð3 � ð1

Lin [18] Hesitant fuzzy linguistic information ð2 � ð1 � ð3

Wei [38] Interval-valued intuitionistic fuzzy set ð2 � ð3 � ð1

Proposed algorithm1 m-Polar neutrosophic topological space ð2 � ð3 � ð1

Proposed algorithm2 Cosine similarity on m-polar neutrosophic sets ð2 � ð1 � ð3

Proposed algorithm2 Set theooretic similarity on m-polar neutrosophic sets ð2 � ð1 � ð3

Table 9 Score values for optimal choice under both algorithms

Algorithm Method ð1 ð2 ð3 Ranking of alternatives

Algorithm1 m-Polar neutrosophic topological space 0.3558 0.622 0.3691 ð2 � ð3 � ð1

Algorithm2 Cosine similarity on m-polar neutrosophic sets 0.5198 0.7301 0.4977 ð2 � ð1 � ð3

Algorithm2 Set theoretic similarity on m-polar neutrosophic sets 0.5198 0.7301 0.4977 ð2 � ð1 � ð3
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(3) The similarity measures for other existing hybrid

structures of fuzzy set become special cases of

similarity measures of m-polar neutrosophic set. So,

this model is more generalized and can easily deal

with the problems involving intuitionistic,

neutrosophy, hesitant, picture, and fuzziness of

alternatives. The constructed topological space on

MPNS becomes superior to existing topological

spaces and easily deals with the problems in

MCDM methods.

4.2 Clustering Analysis in Multi-criteria Decision-

Making

We introduce a novel clustering algorithm under m-polar

neutrosophic environment to solve multi-criteria decision-

making problem. Before this, we revise some basic

concepts.

Definition 4.1 [41] Let MNf
be ‘‘q’’ m-polar neutro-

sophic sets (MPNSs), then G ¼ ðgbfÞq�q is said to be

similarity matrix, where gbf ¼ CðMNb
;MNf

Þ represents

the similarity measure of MPNSs MNb
and MNf

and

satisfy the following:

(1) 0� gbf � 1;b; f ¼ 1; 2; 3; . . .; q,

(2) gbb ¼ 1; b ¼ 1; 2; 3; . . .; q,

(3) gbf ¼ gfb; b; f ¼ 1; 2; 3; . . .; q.

Definition 4.2 [41] Let G ¼ ðgbfÞq�q be the similarity

matrix. Then G2 ¼ G  G ¼ ðgbfÞq�q is said to be a com-

position matrix of G, where
gbf ¼ max

d
fminfgbd; gdfgg; b; f ¼ 1; 2; 3; . . .; q

Theorem 4.3 [41] Let G ¼ ðgbfÞq�q be a similarity

matrix, then after a finite compositions ðG ! G2 !
G4 ! � � � ! G2d ! � � �Þ, 9 a positive integer d such that

G2d ¼ G2ðdþ1Þ
. G2d is an equivalence similarity matrix.

Definition 4.4 [41] Let G ¼ ðgbfÞq�q be an equivalence

similarity matrix. Then Gð ¼ ðgðbfÞq�q is said to be ð-cut-

ting matrix of G, where

gðbf ¼
0 ifgbf\ð

1 ifgbf � ð

�

b; f ¼ 1; 2; 3; . . .; q and ð is confidence level with

ð 2 ½0; 1�.
Now, we use these basic ideas for the construction of a

novel clustering algorithm based on MPNSs given as

algorithm 3. In the constructed numerical example of

clustering analysis, we discuss algorithm 3 with more detail

and clarity.
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4.2.1 Numerical Example

Suppose that Q ¼ fMN1
;MN2

;MN3
;MN4

;MN5
;MN6

;

MN7
g be the collection of seven students. They take an

admission in a Science project learning academy for the

preparation of a national competition on Science projects.

Every student is evaluated on the basis of some important

educational parameters, which are set according to the

experts of that academy. To get fair assessment of these

students, the evaluation committee establish the set of

decision variables given as Z ¼ fg1; g2; g3g, where
g1 ¼ Intellectually curious; g2 ¼ Obedient and punctual;

g3 ¼ Experience

Experts need to categorize the students according to these

parameters and create their clustering corresponding to

different sections of that academy. We subdivide these

parameters into further criteria given as

• ‘‘Intellectually curious’’ student may be creative and

give his original ideas.

• ‘‘Obedient and punctual’’ may be hard-working and

honest.

• ‘‘Experience’’ means that some students have high or

medium high experience.

In tabular form, this information can be seen as Table 11.

Some linguistic terms are defined to convert verbal

description of experts about Z into mathematical language

given in Table 12.

Experts select the weight vector ‘‘}’’ for the strength of

established decision variables as } ¼ ð0:60; 0:25; 0:15ÞT .
To clarify the differences of the opinion of experts and to

cover the input data, we construct 2-polar neutrosophic sets

given in Table 13. The flow chart diagram of proposed

algorithm is given in Fig. 5.

Now, we calculate similarity measure C between ele-

ments of Table 13 and construct similarity matrix.

Table 11 Characteristics of decision variables

Decision variables Characteristics for 2-polar

neutrosophic soft set

Intellectually curious hcreative; originalityi
Obedient and punctual hhard� working; honesti
Experience hhigh;mediumhighi

Table 12 Linguistic terms for rating criteria for weight vector

Linguistic terms (LTs) Fuzzy numbers

Good/G 0:60� x� 1

Medium good/MG 0:20� x\0:60

Medium/M 0:10� x\0:20

Medium bad/MB 0:05� x\0:10

Bad/B 0� x\0:05

Fig. 5 Flow chart diagram of proposed algorithm 3 for clustering

Table 13 2-Polar neutrosophic input table

Students g1 g2 g3

MN1

�h0:81; 0:21; 0:11i; h0:89; 0:23; 0:38i� �h0:78; 0:32; 0:17i; h0:83; 0:21; 0:11i� �h0:61; 0:42; 0:31i; h0:71; 0:31; 0:41i�

MN2

�h0:73; 0:23; 0:18i; h0:79; 0:21; 0:31i� �h0:79; 0:23; 0:14i; h0:81; 0:31; 0:21i� �h0:83; 0:31; 0:18i; h0:73; 0:41; 0:37i�

MN3

�h0:91; 0:11; 0:15i; h0:86; 0:31; 0:24i� �h0:83; 0:21; 0:43i; h0:89; 0:21; 0:41i� �h0:72; 0:43; 0:39i; h0:69; 0:41; 0:43i�

MN4

�h0:74; 0:31; 0:44i; h0:79; 0:37; 0:28i� �h0:79; 0:28; 0:32i; h0:73; 0:41; 0:28i� �h0:81; 0:31; 0:21i; h0:83; 0:19; 0:22i�

MN5

�h0:93; 0:11; 0:18i; h0:91; 0:12; 0:15i� �h0:91; 0:21; 0:31i; h0:89; 0:15; 0:19i� �h0:89; 0:21; 0:23i; h0:87; 0:23; 0:24i�

MN6

�h0:78; 0:21; 0:37i; h0:75; 0:21; 0:41i� �h0:82; 0:31; 0:34i; h0:79; 0:25; 0:42i� �h0:88; 0:28; 0:23i; h0:75; 0:21; 0:15i�

MN7

�h0:79; 0:28; 0:15i; h0:83; 0:15; 0:19i� �h0:86; 0:23; 0:31i; h0:87; 0:13; 0:31i� �h0:89; 0:31; 0:24i; h0:79; 0:28; 0:24i�
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G ¼

0:1000 0:9339 0:9100 0:8670 0:8863 0:9055 0:9092

0:9339 0:1000 0:8860 0:9130 0:8903 0:9207 0:9388

0:9100 0:8860 0:1000 0:8634 0:9145 0:8771 0:9100

0:8670 0:9130 0:8634 0:1000 0:8535 0:9204 0:8973

0:8863 0:8903 0:9145 0:8535 0:1000 0:8701 0:9354

0:9055 0:9207 0:8771 0:9204 0:8701 0:1000 0:9085

0:9092 0:9388 0:9100 0:8973 0:9354 0:9085 0:1000

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

G2 ¼

0:1000 0:9339 0:9100 0:9130 0:9100 0:9207 0:9339

0:9339 0:1000 0:9100 0:9204 0:9354 0:9207 0:9388

0:9100 0:9100 0:1000 0:8973 0:9145 0:9100 0:9145

0:9130 0:9204 0:8973 0:1000 0:8973 0:9204 0:9130

0:9100 0:9354 0:9145 0:8973 0:1000 0:9085 0:9354

0:9207 0:9207 0:9100 0:9204 0:9085 0:1000 0:9207

0:9339 0:9388 0:9145 0:9130 0:9354 0:9207 0:1000

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

As G2 *G, so we move towards the further calculations.

G4 ¼

0:1000 0:9339 0:9145 0:9204 0:9339 0:9207 0:9339

0:9339 0:1000 0:9145 0:9204 0:9354 0:9207 0:9388

0:9145 0:9145 0:1000 0:9130 0:9145 0:9145 0:9145

0:9204 0:9204 0:9130 0:1000 0:9204 0:9204 0:9204

0:9339 0:9354 0:9145 0:9204 0:1000 0:9207 0:9354

0:9207 0:9207 0:9145 0:9204 0:9207 0:1000 0:9388

0:9339 0:9388 0:9145 0:9204 0:9354 0:9388 0:1000

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

G8 ¼

0:1000 0:9339 0:9145 0:9204 0:9339 0:9339 0:9339

0:9339 0:1000 0:9145 0:9204 0:9354 0:9339 0:9388

0:9145 0:9145 0:1000 0:9145 0:9145 0:9145 0:9145

0:9204 0:9204 0:9145 0:1000 0:9204 0:9204 0:9204

0:9339 0:9354 0:9145 0:9204 0:1000 0:9354 0:9354

0:9339 0:9339 0:9145 0:9204 0:9354 0:1000 0:9388

0:9339 0:9388 0:9145 0:9204 0:9354 0:9388 0:1000

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

G16 ¼

0:1000 0:9339 0:9145 0:9204 0:9339 0:9339 0:9339

0:9339 0:1000 0:9145 0:9204 0:9354 0:9339 0:9388

0:9145 0:9145 0:1000 0:9145 0:9145 0:9145 0:9145

0:9204 0:9204 0:9145 0:1000 0:9204 0:9204 0:9204

0:9339 0:9354 0:9145 0:9204 0:1000 0:9354 0:9354

0:9339 0:9388 0:9145 0:9204 0:9354 0:1000 0:9388

0:9339 0:9388 0:9145 0:9204 0:9354 0:9388 0:1000

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

G32 ¼

0:1000 0:9339 0:9145 0:9204 0:9339 0:9339 0:9339

0:9339 0:1000 0:9145 0:9204 0:9354 0:9339 0:9388

0:9145 0:9145 0:1000 0:9145 0:9145 0:9145 0:9145

0:9204 0:9204 0:9145 0:1000 0:9204 0:9204 0:9204

0:9339 0:9354 0:9145 0:9204 0:1000 0:9354 0:9354

0:9339 0:9388 0:9145 0:9204 0:9354 0:1000 0:9388

0:9339 0:9388 0:9145 0:9204 0:9354 0:9388 0:1000

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

It is clear that G32 ¼ G16  G16 ¼ G16 is an equivalence

similarity matrix. Since the confidence level ð has a strong

connection with the elements of the equivalence similarity

matrix. For ð we construct ð-cutting matrix Gð. Different ð

produces different Gð and different clustering for the uni-

versal set Q. For different values of ð different clustering

results are given in Table 14.

The clustering effect diagram for different ð-cutting of

seven students can be seen in Fig. 6. This means that by

utilizing this novel algorithm experts of academy can easily

classify the students corresponding to different sections of

the academy according to their ability. All the clustering

depend upon the parameter ð, which is confidence level

and selected according to the opinions and suggestions of

experts.

4.2.2 Comparison

Now, we compare our proposed method with some exist-

ing approaches and we see that our proposed approach has

the following advantages.

Table 14 The clustering results

of seven students
Confidence level ð Clusters

0:9388\ð� 1 fMN1
g; fMN2

g; fMN3
g; fMN4

g; fMN5
g; fMN6

g; fMN7
g

0:9354\ð� 0:9388 fMN1
g; fMN2

;MN6
;MN7

g; fMN3
g; fMN4

g; fMN5
g

0:9339\ð� 0:9354 fMN1
g; fMN2

;MN5
;MN6

;MN7
g; fMN3

g; fMN4
g

0:9204\ð� 0:9339 fMN1
;MN2

;MN5
;MN6

;MN7
g; fMN3

g; fMN4
g

0:9145\ð� 0:9204 fMN1
;MN2

;MN4
;MN5

;MN6
;MN7

g; fMN3
g

0� ð� 0:9145 fMN1
;MN2

;MN3
;MN4

;MN5
;MN6

;MN7
g;

Fig. 6 The clustering effect diagram of seven students
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(1) By using the methods of Xu et al. [41] and Zhang

et al. [54], we cannot handle the multi-polar input

data and cannot deal with the indeterminacy part of

the alternatives. They used intuitionistic fuzzy sets

(IFSs) for the clustering of input data. In our

proposed approach, we deal our clustering with the

multiple data with the truth, indeterminacy, and

falsity part of the alternatives. So, our method is more

efficient and deal with numerous applications having

multiple data.

(2) Peng et al. [22] presented the clustering idea on

Pythagorean fuzzy sets (PFSs). They increased the

domain of Xu et al. [41] and Zhang et al. [54]

approaches, but they cannot handle the multi-polar

input data and cannot deal with the indeterminacy

part of the alternatives. Our proposed method

removes these restrictions and can easily handle

multi-criteria decision-making problems.

(3) According to Peng et al. [22] research idea, Zhang

et al. [54] produced the loss of too much information

in the data during the calculation by using

intuitionistic fuzzy similarity degrees. This loss

effects upon the final result of clustering. Our

proposed approach does not lose any input data

during the calculations and produces accurate and

appropriate results. This comparison is given in

tabular form in Table 15.

5 Conclusion

Decision analysis has been intensively examined by

numerous scholars and researchers. The techniques devel-

oped for this task mainly depend on the type of decision

problem under consideration. Most of its relating issues are

associated with uncertain, imprecise and multi-polar

information, which cannot be tackled properly through

fuzzy set. To overcome this particular deficiency of fuzzy

sets, Chen et al. [5] have proposed the concept of m-polar

fuzzy set (MPFS) in 2014, which has the capability to deal

with the data having vagueness and uncertainty under

multi-polar information. Neutrosophic set deals with the

MCDM methods having truth, falsity, and indeterminacy

grades for the corresponding alternatives. In this manu-

script, we have established the idea of m-polar neutro-

sophic set (MPNS) by combining the two independent

concepts of m-polar fuzzy set and neutrosophic set. We

have established the notion of m-polar neutrosophic

topology and defined interior, closure, exterior, and frontier

in the context of MPNSs with the help of illustrations. We

have presented cosine similarity measure and set theoretic

similarity measure to find the similarity between MPNSs.

Three novel algorithms for multi-criteria decision-making

(MCDM) with linguistic information have been developed

on the basis of MPNTS, similarity measures, and clustering

analysis. Furthermore, we have presented advantages,

simplicity, flexibility, and validity of the proposed algo-

rithms. We have discussed and compared our results with

some existing methodologies.
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ABSTRACT. Nowadays, the performance and business
operations of organizations are closely linked to the quality of their 
websites compared to the competition. With growing market 
competition, the quality of websites becomes a significant 
component and is increasingly being explored and identified as the 
main factor of comparative advantage over the competition and the 
maintenance of good customer relationships. A multiple criteria 
decision-making approach based on the use of bipolar neutrosophic 
numbers and the Hamming distance is proposed in this paper. The 
main aim of this article is to emphasize the fact that MCDM models 
with a smaller number of criteria can be formed without a loss of 
precision by applying bipolar neutrosophic numbers. In addition to 
this, the three variants for ranging bipolar neutrosophic numbers 
based on the Hamming distance and a distance from the ideal point 
are proposed. The applicability of the proposed approach is 
considered in the case of website evaluation. 

KEYWORDS: bipolar neutrosophic set, Hamming distance, 
MCDM. 

An Innovative Approach to Evaluation of the Quality 
of Websites in the Tourism Industry: a Novel MCDM 
Approach Based on Bipolar Neutrosophic Numbers 

and the Hamming Distance 

Dragiša Stanujkić, Darjan Karabasevic, Florentin Smarandache, 
Edmundas Kazimieras Zavadskas, Mladjan Maksimovic 
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Maksimovic (2019). An Innovative Approach to Evaluation of the Quality of Websites in the Tourism Industry: a 
Novel MCDM Approach Based on Bipolar Neutrosophic Numbers and the Hamming Distance. Transformations 
in Business & Economics, 18(1)(46), 149-162 

Introduction 

The beginnings of the Internet use in tourism are considered to be the revolutionary 
changes that have completely transformed the tourism sector. Today, an increasing number of 
customers avoid traditional intermediaries when buying products and services in tourism – 
customers first obtain information on products and services and then buy them online. 

The rapid developments of the Internet, the expansion of its availability and its 
integration with other technologies have led to significant changes in consumer behaviour 
when buying products and services in tourism (Verma, 2010).  
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Nowadays, the performance and business operations of organizations are closely 
linked to the quality of their websites compared to the competition. With growing market 
competition, the quality of websites becomes a significant component and is increasingly 
being explored and identified as the main factor of comparative advantage over the 
competition. Websites could be also important for maintenance of good customer 
relationships. 

Therefore, the measuring of the quality of an organization’s website is of particular 
importance for the organization. Based on the evaluation of the website quality, organizations 
may receive feedback on the segment which they need to improve in order to be ahead of the 
competition. The significance of the quality evaluation, especially when websites are 
concerned, are highlighted by Hsu et al., (2018), Abbasi et al., (2018), Chen et al., (2017), 
Tian, Wang (2017), Wang et al. (2015), Al-Qeisi et al. (2014), Parasuraman et al. (1985) and 
so on. 

A Multiple Criteria Evaluation (MCE), often referred to as Multiple Criteria Decision 
Analysis (MCDA), refers to the evaluation of alternatives in relation to several our often 
mutually conflicting criteria of a larger number. 

Compared to Multiple Criteria Decision Making (MCDM), which is usually carried 
out with the aim of selecting one out of a set of available alternatives, the primary goal of the 
MCE is more often the ranking or determination of the relative importance of alternatives. 
Such an approach can be very useful in a competitive environment, especially when taking 
into consideration the fact that the entry of new players may affect the positions of the 
existing players in the market. 

In the MCE, as well as in the MCDM, the selected set of evaluation criteria and their 
relative significance have a significant impact on the results of the evaluation. It is also known 
that a more accurate evaluation can be made by using a greater number of evaluation criteria. 
However, an increase in the number of the evaluation criteria can affect the increasing 
complexity of a proposed decision-making model, which can have a negative impact on the 
effectiveness and real usage of proposed MCE models. 

Certain possibilities of forming the decision-making models based on the use of a 
smaller number of evaluation criteria, without losing precision, can be obtained based on the 
use of grey, fuzzy or neutrosophic numbers. In the decision-making models formed in such a 
manner, certain types of grey, fuzzy or neurotrophic numbers can be used to collect the ratings 
obtained from respondents. 

Therefore, the rest of this article is structured as follows: in the first section, some 
significant elements of the neutrosophic sets theory are considered, with a special emphasis on 
the bipolar neutrosophic sets, whereas in the second section, certain approaches to the 
evaluation of websites are considered, with the aim of defining an effective set of evaluation 
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criteria containing as small a number of evaluation criteria as possible. In Section Three, a 
framework for the evaluation of the quality of websites is proposed, and in Section Four, its 
use is illustrated with the aim to demonstrate its practical usability. Finally, conclusions are 
given. 

1. The Basic Concepts of a Bipolar Neutrosophic Set

As is previously mentioned, Zadeh (1965) proposed fuzzy set theory and introduced 
the membership function. 

Definition 1. A Fuzzy Set (Zadeh, 1965). Let X be a nonempty set. Then, a fuzzy set 
A in X is a set of ordered pairs:  









= XxxxA A  )( ,  , (1) 

where the membership function )(xA
+ denotes the degree of the membership of an 

element x to the set A, and 1] ,0[)( xA . 
Atanassov (1986) extended the concept of fuzzy set theory and introduced 

intuitionistic fuzzy sets, which are characterized by using the membership and non-
membership functions.  

Definition 2. An Intuitionistic Fuzzy Set (Atanassov, 1986). Let X be a nonempty 
set. Then, an intuitionistic fuzzy set is defined as follows: 









= XxxxxA AA  )(),( ,  , (2) 

where: )(xA  and )(xA represent the degree of the membership and the degree of the
non-membership of the element x to the set A, respectively; 1] ,0[)( xA  and 1] ,0[)( xA , 
where )(xA  and )(xA satisfy the following condition .1)()(0 + xx AA 

In Intuitionistic Set Theory, Atanassov (1986) also implicitly introduced the 
indeterminacy-membership function )(xA , which is defined as )()(1)( xxx AAA  −−= . 

Lee (2000) introduced the notion of bipolar fuzzy sets by extending the concept of 
fuzzy sets, where the degree of the membership is expanded from [0, 1] to [-1, 1]. 

Definition 3. A Bipolar Fuzzy Set (Lee, 2000). Let X be a nonempty set. Then, a 
bipolar fuzzy set is defined as follows: 









= −+ XxxxxA AA  )(),( ,  , (3) 

where: the positive membership function )(xA
+  denotes the satisfaction degree of the 

element x to the property corresponding to a bipolar-valued fuzzy set, and the negative 
membership function )(xA

− , denotes the degree of the satisfaction degree of the element x to a
corresponding complementary bipolar-valued fuzzy set, respectively; ]1 ,0[: →+ XA  and 

]0 ,1[: −→− XA . 
Smarandache (1999) introduced the neutrosophic sets theory, as the generalization of 

fuzzy sets and intuitionistic fuzzy sets. 
Definition 4. Neutrosophic Sets (Smarandache, 1999). Let X be a nonempty set. 

Then, Neutrosophic Set (NS) A in X is defined as:  
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= XxxFxIxTxA AAA  )(),(),( , , (4) 

where: TA(x), IA(x) and FA(x), denote the truth-membership TA(x), the indeterminacy-
membership IA(x) and the falsity-membership functions FA(x), and [1,0]:,, +−→XFIT AAA . 

In contrast to intuitionistic sets, the restriction regarding to the sum of the membership 
functions is eliminated, so that −0 TA(x)+IA(x)+UA(x) + 3 . 

In 2015, Deli et al. (2015) introduced Bipolar Neutrosophic Sets (BNS) by 
generalizing the concept of bipolar fuzzy sets. Deli et al. (2015) also defined the Score, 
Certainty and Accuracy functions, as well as the Bipolar Neutrosophic Weighted Average and 
the Bipolar Neutrosophic Weighted Geometric operators for the BNS. 

Definition 5. Bipolar Neutrosophic Sets (Deli et al., 2015). Let X be a nonempty set. 
Then, a BNS A in X is as follows: 









= −−−+++ XxxFxIxTxFxIxTxA AAAAAA  )(),(),(),(),(),( , , (5) 

where: )(),(),( xFxIxT +++ denote the membership, the indeterminate membership and 
the falsity membership of x to the BNS A, and )(),(),( xFxIxT −−−  denote the membership, the 
indeterminate membership and the falsity membership of x to a complemenry BNS; 

]0,1[:,, →+++ XFIT and ]0,1[:,, −→−−− XFIT .
Deli et al. (2015) also introduced the Bipolar Neutrosophic Number (BNN), which can 

be denoted as follows = −−−+++ fitfita , , ,, , for convenience. 
Definition 6. (Deli et al., 2015) Let = −−−+++

1111111 , , ,, , fitfita and 
= −−−+++

2222221 , , ,, , fitfita  be two BNNs and 0 . The basic operations for these numbers are 
as follows: 

−−−−−−−−−−+=+ ++++++++−−++++++++ )(),(,,,, 21212121212121212121 ffffiiiittffiittttaa  (6) 

−−−−−−−+−+= −−−−−−−−++++++++++
21212121212121212121 ,),(,,, ffiittttffffiiiittaa (7) 

−−−−−−−−−−= −−−+++ )))(1(1(,)(,)(,)(,)(,)1(1 1111111
 fitfita (8) 

−−−−−−−−−−−−= −−−+++  )(,)(),))(1(1(,)1(1 ,)1(1 ,)( 1111111 fitfita (9) 
Definition 7. (Deli et al., 2015) Let = −−−+++ fitfita , , ,, , be a BNN. The score 

function s(a) of an BNN is as follows: 
6/)111()(

+−−+++ −−++−+−+= fitfits a . (10) 

Definition 8. (Deli et al., 2015) Let = −−−+++
jjjjjjj fitfita , , ,, , be a collection of BNNs. 

The Bipolar Neutrosophic Weighted Average Operator (Aw) of the n dimensions is a mapping 
QQA nw →:  as follows: 














−−−−−−−−−−−−=
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where: wj is the element j of the weighting vector, ]1 ,0[jw  and 11 = =
n
j jw . 

Definition 8. Let = −−−+++
1111111 , , ,, , fitfita and = −−−+++

2222222 , , ,, , fitfita  be two BNNs. 
The Hamming distance between a1 and a2 is as follows: 








 −+−+−+−+−+−= −−−−−−++++++ ||||||||||||
6
1),( 21212121212121 ffiittffiittaad H (12) 

2. Choosing Criteria for Evaluating Websites

In a business environment, websites can have different purposes. Moreover, a website 
must often play multiple roles, such as: providing information to customers, acquiring and 
retaining new customers, and so on. In addition to the said, the fact that customers cannot be 
treated as homogeneous groups and that specific customer groups can have their own specific 
needs and requirements should not be ignored. 

Therefore, designing, developing and maintaining an adequate website is not an easy 
task to do at all. After using a website for the very first time, many useful pieces of 
information about its functionality can be obtained by using the website’s analytics tools, as 
well as visitors’ comments. 

Additionally, based on the Service Quality Model, i.e. the SERVQUAL Model, 
proposed by Parasuraman et al. (1998), several specialized models for the evaluation of 
websites were proposed, such as: WebQyal (Barnes, Vidgen 2000), SITEQUAL (Yoo, 
Donthu, 2001), eTailQ (Wolfinbarger, Gilly, 2001) and E-S-SERVQUAL (Parasuraman et al., 
2005). 

The alleged models, as well as the other models developed based on them, are 
successfully used to evaluate numerous websites, particularly so e-commerce, e-marketing 
and e-banking websites. 

As a significant characteristic of the above-mentioned models, it can be emphasized 
that they use several dimensions and sub-dimensions for determining customer satisfaction. In 
the MCA and/or MCDM terminology, this means that evaluation is based on the use of 
multiple criteria, which have their own sub-criteria. 

The evaluation models based on the use of MCDM methods can also be emphasized as 
a significant approach to the determination of the quality of websites. For example, Sun, Lin 
(2009) evaluated shopping websites by used fuzzy TOPSIS method, whereas Tsai (2010) 
evaluated a national park website by using the ANP and VIKOR methods. 

These are not isolated research studies related to the use of the MCDM methods for 
evaluating websites. The following can be mentioned as some of earlier studies: Lee, Kozar 
(2006) and Bilsel et al. (2006), who used the AHP and PROMETHEE II for websites ranking. 

There are also a number of recent research studies, such as those by: Abdel-Basset et 
al. (2018), who used the VIKOR method and neutrosophic numbers for evaluating e-
government websites; and Stanujkic et al. (2017), who proposed a group multiple-criteria 
approach for evaluating hotels’  websites, based on the use of triangular intuitionistic fuzzy 
numbers. Stanujkic et al. (2016) also proposed an approach for evaluating websites quality, 
based on the use of single-valued neutrosophic numbers. 

As has been mentioned earlier, the selected set of evaluation criteria can significantly 
affect the characteristics of a proposed MCA/MCDM model. Therefore, the problem of 
selecting an adequate set of evaluation criteria for evaluating website has been considered in 
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many previous studies. Kapoun (1998) and Lydia (2009) can be mentioned as some of such 
studies. 

According to Kapoun (1998), the following criteria can be used for evaluating a 
website: Accuracy, Authority, Objectivity, Currency, and Coverage. Kapoun’s set of criteria 
is often used, and based on it, similar sets of criteria are proposed. For example, Lydia (2009) 
adds the sixth criterion, Appearance, while the CRAAP test is proposed at the California State 
University of Chico, which suggests the use of the following criteria: Currency, Relevance, 
Authority, Accuracy, and Purpose. 

However, there are also studies where appropriate, or specialized, sets of criteria are 
proposed for the evaluation of different types of websites. For example, Chung, Law (2003) 
proposed the following six criteria for evaluating websites in the hotel industry: Facilities 
Information, Customer Contact Information, Reservation Information, Surrounding Area 
Information, and Website Management, and for each criterion, appropriate sub-criteria are 
defined. Contrary to this, Herrero, San Martin (2012) suggested that only three criteria, 
namely: Information, Interactivity, and Navigability should be used. 

A set of criteria proposed by the Webby Awards1, can also be listed as a significant set 
of criteria for evaluating websites. This set of criteria includes the following criteria: Content, 
Structure and Navigation, Visual Design, Interactivity, Functionality, Innovation, and Overall 
Experience. 

As a result, there are different approaches to selecting the criteria for websites 
evaluation: the use of a number of criteria and sub-criteria contrary to the use of a smaller 
number of criteria; the use of a standard set of criteria against the use of specialized sets of 
criteria, etc. 

The choice of an appropriate set of evaluation selection criteria is very important for 
the successful solving of each MCA/MCDM problem. The use of a larger number of criteria 
usually leads to the formation of more precise models; on the one hand, a larger number of 
criteria can be less desirable if certain data should be collected through a survey. 

In contrast to the said, a smaller number of criteria can be much more efficient when 
certain data should be collected through a survey, on the one hand, whereas on the other, the 
usage of a smaller number of criteria may require the use of significantly more complex 
criteria. 

Neutrosophic numbers, particularly bipolar neutrosophic numbers, contain more 
information than crisp numbers, or fuzzy numbers, for which reason their application can be 
very beneficial when a small number of evaluation criteria are used. 

Therefore, in this approach, the following three criteria are selected out of the set 
proposed by the Webby Awards: Structure and Navigation, Content and Visual Design. 

3. The Alternative Procedure for Ranking Alternatives Based on the Hamming Distance

Deli et al. (2015) proposed a MCDM approach to the selection of the best alternative 
based on the use of the score, certainty and accuracy functions, as well the Aw and Gw 
operators. 

In this paper, an approach based on the use of the Hamming distance is proposed. The 
detailed step-by-step procedure of the proposed approach can be described through the 

1  http://webbyawards.com/judging-criteria/ 
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following steps: 
Step 1. Identify available alternatives and select a set of evaluation criteria. In this 

step, a team of experts identifies a set of available alternatives and defines the criteria for their 
evaluation. 

Step 2. Determine the relative importance of evaluation criteria. In the literature, 
many techniques are proposed for determining the weights of criteria, such as pair-wise 
comparisons (Saaty, 1980), SWARA (Kersuliene et al., 2010), the Best-Worst Method 
(Rezaei, 2015), R-SWARA (Zavadskas et al., 2018) and PIPRECIA (Stanujkic et al., 2017). 
In this approach, any of the mentioned techniques can be used for determining the weights of 
the criteria. 

Step 3. Construct a bipolar neutrosophic decision-making matrix, and do it for each 
decision-maker. In this step, each decision-maker forms his/her evaluation matrix, in which 
matrix alternatives are evaluated by using BNNs. As a result of these activities, each decision-
maker forms his/her evaluation matrix, whose elements are BNNs. 

The specificity of the BNSs is used in this step to perform a two-phase evaluation of 
the alternatives in relation to each criterion, where satisfaction is measured in the first phase 
and dissatisfaction in the second.  

By using such an approach, respondents are enabled to carry out a sufficiently precise 
evaluation based on a smaller number of evaluation criteria. 

Step 4. Construct a group bipolar neutrosophic decision-making matrix. The 
integration of the individual evaluation matrices into a group decision-making matrix can be 
carried out by using an aggregation operator. In this approach, the use of the Aw aggregation 
operator is proposed for aggregating individual evaluation matrices into a group decision-
making matrix. 

After this step, the most appropriate alternative can be determined in several ways. As 
one of the most commonly used approaches, the approach based on the use of the score 
function can be specified. In such an approach, the value of the score function of each of the 
considered alternatives could be determined by applying Eq. (10). After that, the alternative 
with the highest value of the score function is the most acceptable one. 

In addition to this, an increasing use of fuzzy sets theory, as well as its previously 
mentioned extensions, has had a significant impact on proposing the numerous extensions of 
the TOPSIS and VIKOR methods, as well as the extensions of the other MCDM methods. As 
a result, some other approaches are often proposed, out of which the approaches based on the 
distance from the ideal point can be especially emphasized. Therefore, as an alternative to 
applying the score function for ranking alternatives, the three variants of the distance-based 
approaches are considered in the remaining part of the paper, where all of the three variants 
are based on the Hamming distance. 

The first variant. In the first of the three proposed variants, the ideal point is formed 
as follows: =+ 1 ,0 ,0 ,0 ,0 ,1a . After that, the Hamming distances of the alternatives to the 
ideal point are determined by applying Eq. (12). 

In this approach, the alternative with the smallest Hamming distance is the most 
preferable one. 

The second variant. In the second variant, the ideal point is determined much more 
realistically, i.e. in the following manner: 

= −−−++++
ijiijiijiijiijiiji

fitfita min,max,max,min,min,max (13) 
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After that, similarly as in the first variant, the Hamming distance is determined for 
each alternative, and the best alternative is that with the smallest distance from the ideal point. 

The third variant. Unlike the previous two variants, the third variant is based on the 
use of the well-known approach proposed in the TOPSIS method, i.e. the determination of the 
distances of the alternatives from the ideal and the anti-ideal points, and the determination of 
the relative closeness Ci of each such alternative, as follows: 

−+

−

+
=

ii

i
i dd

dc (14) 

In the proposed approach, 
+
id and 

−
id denote the Hamming distance of the alternative i 

from the ideal and the anti-deal points, respectively, the ideal point being determined as in the 
previous variant, and the anti-ideal point being determined as follows: 

= −−−++++
ijiijiijiijiijiiji

fitfita max,min,min,max,max,min (15) 

Finally, the most acceptable alternative based on the third variant is the alternative that 
has the highest Ci. 

4. A Numerical Illustration

In this numerical illustration, the proposed approach is used to evaluate the websites of 
the four regional tourism organizations, at the following web addresses: 

− http://tookladovo.rs, 
− http://www.toom.rs, 
− http://tobor.rs, and 
− http://toon.org.rs. 

The evaluation was made in order to compare the quality of the website of one of the 
mentioned tourism organizations in relation to the others, whereby the respondents were not 
awarded with the main goal of the evaluation in advance. For the same reason, the order of the 
alternatives in the remaining segment of the numerical example is not identical with the 
appearance of the aforementioned alternatives. 

In order to create the conditions for conducting this study, several potential 
respondents were introduced by applying bipolar intuitionist sets and the SWARA method. 

For the purpose of this consideration, the responses obtained from the three selected 
respondents are chosen. The opinions related to the weights of the criteria, the weights of 
criteria and the ratings obtained from the first of the three respondents are presented in Table 
1 and Table 2.  

Table 1. The opinions and the weights of the criteria obtained from the first of the three respondents 

Criteria sj kj qj wj 

Structure and Navigation C1 1.00 1.00 0.30 
Content C2 1.20 0.80 1.25 0.37 
Visual Design C3 0.90 1.10 1.14 0.34 

2.90 3.39 
Source: own calculations. 
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Table 2. The ratings obtained from the first of the three respondents 

C1 C2 C3 

wj 0.30 0.37 0.34 
A1 <0.7, 0.2, 0.3, -0.3, 0, 0> <0.7, 0, 0.1, -0.2, 0, 0> <0.7, 0.1, 0, -0.3, 0, 0> 
A2 <0.7, 0, 0.2, -0.2, 0, -0.1> <0.6, 0, 0.1, -0.3, 0, 0> <0.4, 0, 0.2, -0.2, 0, 0> 
A3 <0.6, 0, 0, -0.7, 0, 0> <0.7, 0, 0, -0.4, 0, 0> <0.4, 0, 0.2, -0.2, 0, 0> 
A4 <0.9, 0, 0, -0.7, 0, 0> <0.3, 0.2, 0, -0.1, 0, 0> <0.6, 0, 0, 0, 0, 0> 

Source: own calculations. 

The opinions obtained from the three surveys, as well as the appropriate weights, are 
accounted for in Table 3. 

Table 3. The opinions and the weights of criteria obtained from the three respondents 
E1 E1 E1

sj wj sj wj sj wj

C1 0.30 0.34 0.38 
C2 1.20 0.37 1.00 0.34 1.10 0.34 
C3 0.90 0.34 0.90 0.31 1.20 0.28 

Source: own calculations. 

The group criteria weights calculated as the average value of the criteria weight from 
Table 3 are shown in Table 4. 

Table 4. The group criteria weights 
wj

C1 0.34 
C2 0.35 
C3 0.31 

Source: own calculations. 

The ratings of the alternatives expressed in terms of the BNNs obtained from the 
second and the third respondents are given in Table 5 and Table 6. 

Table 5. The ratings obtained from the second respondent 

C1 C2 C3 

A1 <0.7, 0.2, 0.3, -0.3, 0, 0> <0.7, 0, 0.1, -0.2, 0, 0> <0.7, 0.1, 0, -0.3, 0, 0> 
A2 <0.7, 0, 0.2, -0.2, 0, -0.1> <0.6, 0, 0.1, -0.3, 0, 0> <0.4, 0, 0.2, -0.2, 0, 0> 
A3 <0.6, 0, 0, -0.7, 0, 0> <0.7, 0, 0, -0.4, 0, 0> <0.4, 0, 0.2, -0.2, 0, 0> 
A4 <0.9, 0, 0, -0.7, 0, 0> <0.3, 0.2, 0, -0.1, 0, 0> <0.6, 0, 0, 0, 0, 0> 

Source: own calculations. 
Table 6. The ratings obtained from the third respondent 

C1 C2 C3 

A1 <0.7, 0.2, 0.3, -0.3, 0, 0> <0.9, 0, 0, 0, 0, 0> <0.5, 0, 0.1, -0.2, 0, 0> 
A2 <0.7, 0, 0.2, -0.2, 0, -0.1> <0.9, 0, 0.3, -0.1, 0, 0> <0.5, 0, 0, -0.3, 0, 0> 
A3 <0.6, 0, 0, -0.7, 0, 0> <0.9, 0, 0.2, -0.5, 0, -0.3> <0.5, 0, 0, -0.7, 0, -0.2> 
A4 <0.9, 0, 0, -0.7, 0, 0> <0.3, 0.2, 0, 0, 0, 0> <0.5, 0, 0, 0, 0, 0> 

Source: own calculations. 
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The group ratings calculated by applying Eq. (11) are accounted for in Table 7. In this 
calculation, the following weights are assigned to the respondents: wE1=0.35, wE2=0.33, and 
wE3=0.32. 

Table 7. The group ratings 

C1 C2 C3 

A1 <0.7, 0.2, 0.3, -0.3, 0, 0> <0.79, 0, 0, 0, 0, 0> <0.65, 0, 0, -0.26, 0, 0> 
A2 <0.7, 0, 0.2, -0.2, 0, -0.85> <0.74, 0, 0.14, -0.21, 0, 0> <0.43, 0, 0, -0.23, 0, 0> 
A3 <0.6, 0, 0, -0.7, 0, 0> <0.79, 0, 0, -0.43, 0, -0.68> <0.43, 0, 0, -0.3, 0, -0.6> 
A4 <0.9, 0, 0, -0.7, 0, 0> <0.3, 0.2, 0, 0, 0, 0> <0.57,0,0,0,0,0> 

Source: own calculations. 

The overall ratings calculated by applying Eq. (11), as well as the ranking order of the 
alternatives, are presented in Table 8.  

Table 8. The overall ratings, the score and the ranking order of the considered alternatives 

Overall ratings Si Rank 

A1 <0.72, 0, 0, 0, 0, 0> 3.72 3 

A2 <0.65, 0, 0, -0.21, 0, -0.95> 4.39 1 

A3 <0.64, 0, 0, -0.45, 0, -0.98> 4.17 2 

A4 <0.69, 0, 0, 0, 0, 0> 3.69 4 
Source: own calculations. 

As can be seen from Table 8, the most acceptable alternative based on the Score 
Function is the alternative denoted as A2. 

The results achieved by using the Hamming distance and the three proposed variants 
are considered in the rest of this section. The results obtained by using the first of the three 
considered variants are demonstrated in Table 9. 

Table 9. The overall ratings, the Hamming distances and the ranking order of the considered alternatives 

Overall ratings dH Rank 

a+ <1, 0, 0, 0, 0, 0> 

A1 <0.72, 0, 0, 0, 0, 0> 0.21 3 

A2 <0.65, 0, 0, -0.21, 0, -0.95> 0.10 1 

A3 <0.64, 0, 0, -0.45, 0, -0.98> 0.14 2 

A4 <0.69, 0, 0, 0, 0, 0> 0.22 4 
Source: own calculations. 

As can be seen from Table 9, the ranking orders obtained by using the Score Function 
and the first of the three proposed variants based on the Hamming distance are identical. 

The results obtained by using the second of the three considered variants are shown in 
Table 10. 
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Table 10. The ranking of the alternatives based on the second of the three proposed variants 

Overall ratings dH Rank 

a+ <0.72, 0, 0, 0, 0, -0.98> 

A1 <0.72, 0, 0, 0, 0, 0> 0.16 3 

A2 <0.65, 0, 0, -0.21, 0, -0.95> 0.05 1 

A3 <0.64, 0, 0, -0.45, 0, -0.98> 0.09 2 

A4 <0.69, 0, 0, 0, 0, 0> 0.17 4 
Source: own calculations. 

As can be seen from Table 10, the ranking orders obtained by using the second variant 
of the three proposed variants based on the Hamming distance is the same as in the previously 
considered cases. However, we should be careful because Stanujkic (2013) indicates that, in 
some cases, the ideal point may have an effect on the ranking order of alternatives. 

Ultimately, the results obtained by applying the third proposed variant are shown in 
Table 11. 

Table 11. The ranking of the alternatives based on the third of the three proposed variants 

Overall ratings 
+
id

−
id - Ci Rank 

a+ <0.72, 0, 0, 0, 0, -0.98> 
a- <0.64, 0, 0, -0.45, 0, 0> 

A1 <0.72, 0, 0, 0, 0, 0> 0.16 0.09 0.35 3 

A2 <0.65, 0, 0, -0.21, 0, -0.95> 0.05 0.20 0.79 1 

A3 <0.64, 0, 0, -0.45, 0, -0.98> 0.09 0.16 0.65 2 

A4 <0.69, 0, 0, 0, 0, 0> 0.17 0.08 0.33 4 
Source: own calculations. 

The results shown in Table 11 also confirm the fact that the ranking results obtained 
by using the third variant based on the Hamming distance are identical with the results 
obtained by using the procedure for ranking BNNs, proposed by Deli et al. (2015). 

Conclusion 

Bipolar neutrosophic numbers contain more information than the other types of fuzzy 
or crisp numbers. In addition, these numbers can be used to carry out a two-phase evaluation 
of the alternative in relation to the selected criteria, where satisfaction is measured in the first 
phase and dissatisfaction in the second. 

By applying such an approach, respondents are enabled to perform a sufficiently 
precise evaluation, based on a smaller number of criteria. 

However, it should be emphasized that the use of bipolar neutrosophic numbers is not 
so simple in the case of pre-unmanaged subjects. 

This paper also proposes a group multiple criteria approach based on the Hamming 
distance application. The numerical illustration shows that the application of this approach 
generates the same ranking results as is the case with the application of the Score, which 
confirms the applicability of the proposed approach. 
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Abstract. Many real time problems are based on uncertainity and chaotic environment. To demonstrate this ambiguous suitua-
tion more precisely we intend to amalgamate the ideas of chaos theory and neutrosophy. Neutrosophy is a flourishing arena 
which conceptualizes the notions of true, falsity and indeterminacy attributes of an event. Chaos theory is another branch 
which brings out the concepts of periodic point, orbit and sensitive of a set. Hence in this paper we focus on the introducing the 
idea of chaotic periodic points, orbit sets, sensitive functions under neutrosophic settings. We start with defining a neutrosoph-
ic chaotic space and enlist its properties, As a futher extension we coin neutrosophic chaotic continuous functions and discuss 
its charaterizations and their interrelationships. We have also illustrated the above said concepts with suitable examples. 

Keywords: Neutrosophic periodic points, neutrosophic orbit sets, neutrosophic chaotic sets, neutrosophic sensitive functions, 
neutrosophic orbit extremally disconnected spaces.

1 Introduction 

The introduction of the idea of fuzzy set was introduced in the year 1965 by Zadeh[16]. He proposed that each 
element in a fuzzy set has a degree of membership. Following this concept K.Atanassov[1,2,3] in 1983 
introduced the idea of intuitionistic fuzzy set on a universe X as a generalization of fuzzy set. Here besides the 
degree of membership a degree of non-membership for each element is also defined. Smarandache[11,12] 
originally gave the definition of a neutrosophic set and neutrosophic logic. The neutrosophic logic is a formal 
frame trying to measure the truth, indeterminacy and falsehood. The significance of neutrosophy is that it finds 
and indispensible place in decision making. Several authors[7, 8, 9, 10] have done remarkable achievements in 
this area. One of the prime discoveries of the 20th century which has been widely investigated with significant 
progress and achievements is the theory of  Chaos and fractals.It has become an exciting emerging 
interdisciplinary area in which a broad spectrum of technologies and methodologies have emerged to deal with 
large-scale, complex and dynamical systems and problems. In 1989, R.L. Deveney[4] defined chaotic function in 
general metric space. A breakthrough in the conventional general topology was intiated by T. Thrivikraman and 
P.B. Vinod Kumar[15] by defining Chaos and fractals in general topological spaces. M. Kousalyaparasakthi, E. 
Roja, M.K. Uma[6] introduced the above said idea to  intuitionistic chaotic continuous functions. Tethering 
around this concept we introduce neutrosophic periodic points, neutrosophic orbit sets, neutrosophic sensitive 
functions, neutrosophic clopen chaotic sets and neutrossophic chaos spaces. The concepts of neutrosophic 
chaotic continuous functions, neutrosophic chaotic* continuous functions, neutrosophic chaotic** continuous 
functions, neutrosophic chaotic*** continuous functions are introduced and studied. Some interrelation are 
discussed with suitable examples. Also the concept of neutrosophic orbit extremally disconnected spaces, 
neutrosophic chaotic extremally disconnected spaces, neutrosophic orbit irresolute function are discussed. 

2 Preliminaries 
2.1 Definition [12] 

Let X be a non empty set. A neutrosophic set (NS for short) V is an object having the form V = <x, V1, V2, 
V3> where V1, V2, V3 represent the degree of membership, the degree of indeterminacy and the degree of non-
membership respectively of each element x ∈ X to the set V. 

2.2 Definition [12] 
Let X be a non empty set, U = <x, U1, U2, U3> and V = <x, V1, V2, V3> be neutrosophic sets on X, and let {Vi: i
∈ J} be an arbitrary family of neutrosophic sets in X, where Vi = <x, V1, V2, V3>   
(i) U ⊆ V   U1 ⊆ V1, U2 ⊇ V2 and U3 ⊇ V3
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(ii) U = V   U ⊆ V and V ⊆ U. 

(iii) V = <x, V3, V2, V1>  
(iv)U∩V=<x, U1∩V1, U2∪V2, U3∪V3>
(v) U∪V=<x, U1∪V1, U2∩V2, U3∩V3> 
(vi) ∪Vi = <x, ∪Vi

1, ∩Vi
2, ∩Vi

3>
(vii) ∩Vi = <x, ∩Vi

1, ∪Vi
2, ∪Vi

3>

(viii)U − V = U ∩ V .  
(ix) φN = <x, φ, X, X>; XN = <x, X, φ, φ >. 

2.3 Definition [14] 
A neutrosophic topology (NT for short) on a nonempty set X is a family τ of neutrosophic set in X satisfying the 
following axioms:  
(i) φN, XN ∈ τ.  
(ii) T1∩ T2 ∈ τ for any T1, T2 ∈ τ.  
(iii) ∪Ti ∈ τ for any arbitrary family {Ti : i∈J} ⊆ τ. 
In this case the pair (X, τ) is called a neutrosophic topological space (NTS for short) and any neutrosophic set in 
τ is called a neutrosophic open set (NOS for short) in X. The complement V of a neutrosophic open set V is 
called a neutrosophic closed set (NCS for short) in X. 

2.4 Definition [14] 
Let (X, τ) be a neutrosophic topological space and V = <X, V1, V2, V3> be a set in X. Then the closure and inte-
rior of V are defined by  
Ncl(V) = ∩{M : M is a neutrosophic closed set in X and V ⊆ M},  
Nint(V) = ∪{N : N is a neutrosophic open set in X and N ⊆ V}. 
It can be also shown that Ncl(V) is a neutrosophic closed set and Nint(V) is a neutrosophic open set in X, and V 
is a neutrosophic closed set in X iff Ncl(V) = V; and V is a neutrosophic open set in X iff Nint(V) = V. 
Where Ncl - neutrosophic closure and Nint – neutrosophic interior 

2.5 Definition [5] 
(a) If V = <y,V1,V2,V3> is a neutrosophic set in Y , then the preimage of V under f, denoted by f−1(V), is the neu-
trosophic set in X defined by f−1(V) = <x,f−1(V1),f−1(V2),f−1(V3)>.  
(b) If U = <x,U1,U2,U3> is a neutrosophic set in X, then the image of U under f, denoted by f(U), is the neutro-
sophic set in Y defined by f(U) = <y,f(U1),f(U2),Y-f(X-U3)> where  

f(U1)=





 





otherwise

yfifU
yfx

0

)(sup 11

)(1 

f(U2)=





 





otherwise

yfifU
yfx

0

)(sup 12

)(1 

Y-f(X-U3)= 





 





otherwise

yfifU
yfx

1

)(inf 13

)(1 

2.6 Definition [13]  
Let (X, τ) and (Y,σ) be any two neutrosophic topological spaces and let f : X → Y be a function. Then f is said to 
be continuous if and only if the preimage of each neutrosophic set in σ is a neutrosophic set in τ. 
2.7 Definition [13]  
Let (X, τ) and (Y,σ) be two neutrosophic topological spaces and let f : (X, τ) → (Y,σ) be a function. Then f is 
said to be open iff the image of each neutrosophic set in τ is a neutrosophic set in σ. 
2.8 Definition [4]  
Orbit of a point x in X under the mapping f is Of(x)={x, f(x), f 2(x),...}
2.9 Definition [4]  
x in X is called a periodic point of f if fn(x) =x, for some n ∈ Z+. Smallest of these n is called period of x. 
2.10 Definition [4]  
f is sensitive if for each  >0   (a)   (b) y and (c) n  Z+  d(x,y)<   and d(fn(x),fn(y))>  .
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2.11 Definition [4]  
f is chaotic on (X,d) if (i) Periodic points of f are dense in X (ii) Orbit of x is dense in X for some x in X and 
(iii) f is sensitive.  
2.12 Definition [15]  
Let (X, τ) be a topological space and f : (X, τ) → (X, τ) be continuous map. Then f is sensitive at x ∈ X if given 
any open set U containing x   (i) y ∈ U (ii) n ∈ Z+ and (iii) an open set V   fn(x) ∈ V , fn(y) cl(V ). We say
that f is sensitive on a F if f|F is sensitive at every point of F. 
2.13 Definition [15]  
Let (X, τ) be a topological space and F ∈ K(X). Let f : F → F be a continuous. Then f is chaotic on F if  

(i) cl(Of(x)) = F for some x ∈ F.  
(ii) periodic points of f are dense in F. 
(iii) f ∈ S(F). 

2.14 Definition [15] 

(i) C(F) = {f : F → F | f is chaotic on F} and (ii) CH(X) = {F ∈ NK(X) | C(F)  φ}. 

2.15 Definition [15] 

A topological space (X, τ) is called a chaos space if CH(X)  φ. The members of CH(X) are called chaotic sets. 

3 Characterizations of neutrosophic chaotic continuous functions 

3.1 Definition  
Let (X, τ) be a neutrosophic topological space and V =<X,V1,V2,V3> be a neutrosophic set of X. 
(i) Ncl(V) denotes neutrosophic closure of V.  
(ii) Nint(V) denotes neutrosophic interior of V.   
(iii) NK(X) denotes the collection of all non empty neutrosophic compact sets of X.  
(iv) clopen denotes closed and open 
3.2 Definition  
Let (X, τ) be a neutrosophic topological space. An orbit of a point x in X under the function f : (X, τ) → (X, τ) is 
denoted and defined as Of(x) = {x,f1(x),f2(x),...fn(x)} for x ∈ X and n ∈ Z+.
3.3 Example  
Let X = {p,q,r}. Let f : X → X be a function defined by f(p) = q, f(q) = r, and f(r) = p. If n = 1, then the orbit 
points Of(p) = {p,q}, Of(q) = {q,r} and Of(r) = {p,r}. If n = 2, then the orbit points Of(p) = X, Of(q) = X and Of(r) 
= X. 
3.4 Definition  
Let (X, τ) be a neutrosophic topological space. A neutrosophic orbit set in X under the function f : (X, τ) → (X, 
τ) is denoted and defined as NOf(x) = <x,OfT(x),OfI(x),OfF(x)> for x ∈ X. 
3.5 Example  
Let X = {p,q,r,s}. Let f : X → X be a function defined by f(p) = <q,s,q>, f(q) = <s,p.r>, f(r) = <p,q,s> and f(s) = 
<r,r,p>. If n = 1, then the neutrosophic orbit sets NOf(p) = <x,{p,q},{p,s},{p,q}>, NOf(q) = 
<x,{q,s},{q,p},{q,r}>, NOf(r) = <x,{p,r},{q,r},{r,s}> and NOf(s) = <x,{r,s},{r,s},{p,s}>. If n = 2, then the neu-
trosophic orbit sets NOf(p) = <x,{p,q,s},{p,r,s},{p,q,r}>, NOf(q) = <x,{q,r,s},{p,q,s},{q,r,s}>, NOf(r) = 
<x,{p,q,r},{p,q,r},{p,r,s}> and NOf(s) =<x,{p,r,s},{q,r,s},{p,q,s}>. If n = 3, then the neutrosophic orbit sets 
NOf(a) = <x,X,X,X>, NOf(b) =<x,X,X,X>, NOf(c) = <x,X,X,X>and NOf(d) =<x,X,X,X>. 
3.6 Definition  
Let (X, τ) be a neutrosophic topological space and f : (X, τ) → (X, τ) be a neutrosophic continuous function. 
Then f is said to be neutrosophic sensitive at x ∈ X if given any neutrosophic open set U = <x,U1,U2,U3> con-
taining x   a neutrosophic open set V = <x,V1,V2,V3>   fn(x) ∈ V , fn(y) Ncl(V ) and y ∈ U, n ∈ Z+. We say
that f is neutrosophic sensitive on a neutrosophic compact set F = <x,F1,F2.F3> if f|F is neutrosophic sensitive at 
every point of F. 
3.7 Example  
Let X = {p,q,r,s}. Then the neutrosophic sets P, Q, R and S are defined by P = <x,{p,r,s},{p,q,r},{p,r,s}>, Q = 
<x,{r,s},{p,r},{p,s}>, R = <x,{r,s},{p,q,r},{p,r,s}> and S = <x,{p,r,s},{p,r},{p,s}>. Then the family τ = 
{XN,φN,P,Q,R,S} is neutrosophic topology on X. Clearly, (X, τ) is an neutrosophic topological space. Let f : (X, 
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τ) → (X, τ) be a function defined by f(p) = <r,q,s> f(q) = <s,s,r>, f(r) =< q,p,p> and f(s) = <p,r,q>. Let x = p and 
y = r. If n = 1,3,5, then the neutrosophic open set P = <x,{p,r,s},{p,q,r},{p,r,s}> containing x there exists an 
neutrosophic open set R = <x,{r,s},{p,q,r},{p,r,s}> such that fn(x) ∈ R,fn(y) Ncl(R) and y ∈ P. Hence the
function f is called neutrosophic sensitive. 
3.8 Notation  
Let (X, τ) be a neutrosophic topological space. Let F = <x,F1,F2,F3> ⊆ XN then S(F) = <x,S(F)1,S(F)2,S(F)3>
where S(F)1 = {f | f is neutrosophic sensitive on F}, S(F)2 = {f | f is indeterminacy neutrosophic sensitive on F} 
and S(F)3 = {f | f is not neutrosophic sensitive on F}. 
3.9 Definition  
Let (X, τ) be a two neutrosophic topological space. Let f : (X, τ) → (X, τ) be a function. A neutrosophic periodic 
set is denoted and defined as NPf(x) = <x,{x ∈ X | fn

T(x) = x},{x ∈ X | fn
I(x) = x},{x ∈ X | fn

F(x) = x}>
3.10 Example  
Let X = {p,q,r}. Let f : X → X be a function defined by f(p) = <p,q,r>, f(q) = <r,p,q> and f(r) = <q,r,p>. If n = 1, 
then the neutrosophic periodic set NPf(p) = <x,{p},{q},{r}>, NPf(q) = <x,{r},{p},{q}>and NPf(q) = 
<x,{q},{r},{p}>. If n = 2, then the neutrosophic periodic sets NPf(p) = <x,{p},{p},{p}>,  NPf(q) = 
<x,{q},{q},{q}> and NPf(r) = <x,{r},{r},{r}>. 
3.11 Definition  
Let (X, τ) be a neutrosophic topological space. A neutrosophic set V = <X,V1,V2,V3> of X is said to be a 
neutrosophic dense in X, if Ncl(V) = X. 
3.12 Definition  
Let (X, τ) be a neutrosophic topological space and F = <x,F1,F2,F3> ∈ NK(X). Let f : F → F be a neutrosophic 
continuous function. Then f is said to be neutrosophic chaotic on F if  

(i) Ncl(NOf(x)) = F for some x ∈ F.  
(ii) neutrosophic periodic points of f are neutrosophic dense in F. That is, Ncl(NPf(x)) = F. 
(iii) f ∈ S(F). 

3.13 Notation  
Let (X, τ) be a neutrosophic topological space then C(F) = <x,C(F)1,C(F)2,C(F)3> where C(F)1 = {f : F → F | f is 
neutrosophic chaotic on F}, C(F)2 = {f : F → F | f is indeterminacy neutrosophic chaotic on F},and C(F)3 = {f : F 
→ F | f is not neutrosophic chaotic on F}. 
3.14 Notation  
Let (X, τ) be a neutrosophic topological space then CH(X) = {F = <x,F1,F2,F3> ∈ NK(X) | C(F)  φ}. 
3.15 Definition  
A neutrosophic topological space (X, τ) is called a neutrosophic chaos space if CH(X)  φ. The members of 
CH(X) are called neutrosophic chaotic sets. 
3.16 Definition  
Let (X, τ) be a neutrosophic topological space. A neutrosophic set V = <x,V1,V2,V3> is neutrosophic clopen if it 
is both neutrosophic open and neutrosophic closed. 
3.17 Definition  
Let (X, τ) be a neutrosophic topological space.  

(i)        A neutrosophic open orbit set is a neutrosophic set which is both neutrosophic open and neutro-
sophic orbit.  

(ii)        A neutrosophic closed orbit set is a neutrosophic set which is both neutrosophic closed and neutro-
sophic orbit.  

(iii)        A neutrosophic clopen orbit set is a neutrosophic set which is both neutrosophic clopen and neutro-
sophic orbit. 

3.18 Definition  
Let (X, τ) be a neutrosophic topological space. 

(i)        A neutrosophic open chaotic set is a neutrosophic set which is both neutrosophic open and neutro-
sophic chaotic.  

(ii)        A neutrosophic closed chaotic set is a neutrosophic set which is both neutrosophic closed and neu-
trosophic chaotic.  

(iii)        A neutrosophic clopen chaotic set is a neutrosophic set which is both neutrosophic clopen and neu-
trosophic chaotic. 

3.19 Definition  
Let (X, τ) and (X,σ) be any two neutrosophic chaos spaces. A function f : (X, τ) → (X,σ) is said to be neutro-
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sophic chaotic continuous if for each periodic point x ∈ X and each neutrosophic clopen chaotic set F = 
<x,F1,F2,F3> of f(x)   a neutrosophic open orbit set NOf(x) of the periodic point x   f(NOf(x)) ⊆ F.
3.20 Example  
Let X={p,q,r,s}. Then the neutrosophic sets M,N,O,P,Q and R are defined by M=<x,{q,r},{r},{p,r}>, 
N=<x,{p},{p,q},{p,s}>, O=<x,{p,q,r},φ,{p}>, P=<x,φ,{p,q,r},{p,r,s}>, Q=<x,{p,q,r},{r},{p}>, 
R=<x,{p},{r},{p,q,r}>. Let τ={XN,φN,M,N,O,P} and σ = {XN,φN,Q,R} be a neutrosophic topologies on X. 
Clearly (X, τ) and (X,σ) be any two neutrosophic chaos spaces. The function f : (X, τ) → (X, σ) is defined by 
f(p) = <p,q,s> f(q) = <r,s,r>, f(r) =< q,r,p> and f(s) = <s,p,q>. Now the function f is called neutrosophic chaotic 
continuous.      
3.21 Theorem  
Let (X, τ) and (X,σ) be any two neutrosophic chaos spaces. Let f : (X, τ) → (X,σ) be a function. Then the 
following statements are equivalent: 

(i)  f is neutrosophic chaotic continuous.  
(ii)  Inverse image of every neutrosophic clopen chaotic set of (X,σ) is a neutrosophic open orbit set of 

(X, τ).  
(iii)        Inverse image of every neutrosophic clopen chaotic set of (X,σ) is a neutrosophic clopen orbit set of 

(X, τ). 

Proof  
(i)⇒ (ii) Let F = <x,F1,F2,F3>  be a neutrosophic clopen chaotic set of (X, σ) and the periodic point x ∈ f−1(F). 
Then f(x) ∈ F. Since f is neutrosophic chaotic continuous,   a neutrosophic open orbit set NOf(x) of (X, τ)   x 
∈ NOf(x), f(NOf(x)) ⊆ F. That is,  x ∈ NOf(x) ⊆ f−1(F). Now, f−1(F) = ∪{NOf(x) : x ∈ f−1(F)}. Since f−1(F) is
union of neutrosophic open orbit sets. Therefore, f−1(F) is an neutrosophic open orbit set.  
(ii) ⇒ (iii) Let F be a neutrosophic clopen chaotic set of (X, σ). Then X − F is also a neutrosophic clopen chaotic 
set, By (ii) f−1(X − F) is neutrosophic open orbit in (X, τ). So X − f−1(F) is a neutrosophic open orbit set in (X, τ). 
Hence, f−1(F) is neutrosophic closed orbit in (X, τ). By (ii), f−1(F) is a neutrosophic open orbit set of (X, τ). 
Therefore, f−1(F) is both neutrosophic open orbit and neutrosophic closed orbit in (X, τ). Hence, f−1(F) is a 
neutrosophic clopen orbit set of (X, τ).  
(iii) ⇒ (i) Let x be a periodic point, x ∈ X and F be a neutrosophic clopen chaotic set containing f(x) then f−1(F) 
is a neutrosophic open orbit set of (X, τ) containing x and f(f−1(F)) ⊆ F. Hence, f is neutrosophic chaotic 
continuous. 
3.22 Definition  
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. A function f : (X, τ) → (X, σ) is said to be 
neutrosophic chaotic* continuous if for each periodic point x ∈ X and each neutrosophic closed chaotic set F 
containing f(x),   neutrosophic open orbit set NOf(x) containing x   f(Ncl(NOf(x))) ⊆ F. 
3.23 Theorem 
A neutrosophic chaotic continuous function is a neutrosophic chaotic* continuous function.  
Proof Since f is a neutrosophic chaotic continuous function, F is a neutrosophic clopen chaotic set containing 
f(x),   a neutrosophic open orbit set NOf(x) containing x   f(NOf(x)) ⊆ F. Then f−1(F) is a neutrosophic clopen
chaotic set of (X, σ). By (iii) of Theorem 3.21., f−1(F) is a neutrosophic clopen orbit set in (X, τ). Therefore, F is 
a neutrosophic closed chaotic set containing f(x) and f−1(F) is a neutrosophic open orbit set   f(f−1(F)) ⊆ F. 
Since f−1(F) is neutrosophic closed orbit set, Ncl(f−1(F)) = f−1(F). This implies that, f(Ncl(f−1(F))) ⊆ F. Hence, f is 
a neutrosophic chaotic* continuous function. 
3.24 Remark 
The converse of Theorem 3.23. need not be true as shown in Example 3.25. 
3.25 Example 
Let X={p,q,r,s}. Then the neutrosophic sets M,N,O,P,Q,R,S and T are defined by M=<x,{p,r},{q,r},{r}>, 
N=<x,{r},{q},{p,q,r}>, O=<x,{r},{q,r},{p,q,r}>, P=<x,{p,r},{q},{r}>, Q=<x,{p,q,s},{q,s},{p,r}>, 
R=<x,{q,s},{p,q},{q,r}>, S=<x,{q,s},{p,q,s},{p,q,r}>  and T=<x,{p,q,s},{q},{r}>. Let τ={XN,φN,M,N,O,P} and 
σ = {XN,φN,Q,R,S,T} be a neutrosophic topologies on X. Clearly (X, τ) and (X,σ) be any two neutrosophic chaos 
spaces. The function f : (X, τ) → (X, σ) is defined by f(p) = <q,p,s> f(q) = <s,r,p>, f(r) =< p,q,r> and f(s) = 
<r,s,q>. Now the function f is neutrosophic chaotic* continuous but not neutrosophic chaotic continuous. Hence, 
neutrosophic chaotic* continuous function need not be neutrosophic chaotic continuous function.     
3.26 Definition  
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. A function f : (X, τ) → (X, σ) is said to be 
neutrosophic chaotic** continuous if for each periodic point x ∈ X and each neutrosophic closed chaotic set F of 
f(x),   a neutrosophic open orbit set NOf(x) of the periodic point x   f(NOf(x)) ⊆ Nint(F). 
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4 Properties of neutrosophic chaotic continuous functions 
4.1 Definition 
A neutrosophic chaos space (X, τ) is said to be a neutrosophic orbit extremally disconnected space if the . 

3.27 Theorem 
A neutrosophic chaotic continuous function is a neutrosophic chaotic** continuous function.  
Proof Since f is a neutrosophic chaotic continuous function, F is a neutrosophic clopen chaotic set containing 
f(x),   a neutrosophic open orbit set NOf(x) containing x   f(NOf(x)) ⊆ F. Since F is a neutrosophic open orbit 
set in (X, σ), F = Nint(F). This implies that, f(NOf(x)) ⊆ Nint(F). Hence, f is an neutrosophic chaotic** 
continuous function. 
3.28 Remark 
The converse of Theorem 3.27 need not be true as shown in the Example 3.29. 
3.29 Example 
Let X={p,q,r,s}. Then the neutrosophic sets M,N,O,P,Q,R,S and T are defined by M=<x,{q,r},{r},{p,r}>, 
N=<x,{p,s},{p,q},{p,q}>,O=<x,φ,{p,q,r},{p,q,r}>,P=<x,X,φ,{p}>,Q=<x,{p,q,r},{r},{p,s}>,R=<x,{q},{q,r},{p,r
}>, S=<x,{p,q,r},{r},{p}>  and T=<x,{q},{r},{p,r,s}>. Let τ={XN,φN,M,N,O,P} and  σ = {XN,φN,Q,R,S,T} be a 
neutrosophic topologies on X. Clearly (X, τ) and (X,σ) be any two neutrosophic chaos spaces. The function 
f : (X, τ) → (X, σ) is defined by f(p) = <p,q,s> f(q) = <r,s,r>, f(r) =< q,r,p> and f(s) = <s,p,q>. Now the function 
f is neutrosophic chaotic** continuous but not neutrosophic chaotic continuous. Hence, neutrosophic chaotic** 
continuous function need not be neutrosophic chaotic continuous function.   
3.30 Definition 
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. A function f : (X, τ) → (X, σ) is said to be a 
neutrosophic chaotic*** continuous if for each periodic point x ∈ X and each neutrosophic closed chaotic set F 
of f(x)   a neutrosophic clopen orbit set NOf(x) of the periodic point x   f(Nint(NOf(x))) ⊆ F.  
3.31 Theorem 
A neutrosophic chaotic continuous function is a neutrosophic chaotic*** continuous function.  
Proof Since f is a neutrosophic chaotic continuous function, F is a neutrosophic clopen chaotic set containing 
f(x),   a neutrosophic open orbit set NOf(x) containing x   f(NOf(x)) ⊆ F. This implies that, NOf(x) ⊆ f−1(F).
Then, f−1(F) is a neutrosophic clopen chaotic set of (X, σ). By (iii) of Theorem 3.21, f−1(F) is a neutrosophic 
clopen orbit set in (X, τ). Therefore, F is a neutrosophic closed chaotic set containing f(x) and f−1(F) is a 
neutrosophic open orbit set   f(f−1(F)) ⊆ F. Since f−1(F) is neutrosophic open orbit set, Nint(f−1(F)) = f−1(F). This 
implies that, f(Nint(f−1(F))) ⊆ F. Hence, f is a neutrosophic chaotic*** continuous function. 
3.32 Remark 
The converse of Theorem 3.31 need not be true as shown in the Example 3.33. 
3.33 Example 
Let X={p,q,r,s}. Then the neutrosophic sets M,N,O,P,Q,R,S and T are defined by M=<x,{q,r},{r},{p,r}>, 
N=<x,{p,r},{r},{q,r}>, O=<x,{p,q,r},{r},{r}>, P=<x,{r},{r},{p,q,r}>, Q=<x,{p,q,r},{q,r},{p,s}>, 
R=<x,{q,r},{p,q},{r,s}>, S=<x,    {p,q,r},{r},{p}> and T=<x,{q},{r},{p,r,s}>. Let τ={XN,φN,M,N,O,P} and  σ = 
{XN,φN,Q,R,S,T} be a neutrosophic topologies on X. Clearly (X, τ) and (X,σ) be any two neutrosophic chaos 
spaces. The function f : (X, τ) → (X, σ) is defined by f(p) = <p,q,s> f(q) = <r,s,r>, f(r) =< q,r,p> and f(s) = 
<s,p,q>. Now the function f is neutrosophic chaotic*** continuous but not neutrosophic chaotic continuous. 
Hence, neutrosophic chaotic*** continuous function need not be neutrosophic chaotic continuous function.   
3.34 Remark 
The interrelation among the functions introduced are given clearly in the following diagram. 

Figure 1:  

Neutrosophic chaotic*** continuous 

Neutrosophic chaotic  
continuous 

Neutrosophic chaotic* continuous Neutrosophic chaotic** continuous 
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neutrosophic closure of every neutrosophic open orbit set is neutrosophic open orbit. 
4.2 Theorem 
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. If f : (X, τ) → (X, σ) is a neutrosophic chaotic 
continuous function and (X, τ) is a neutrosophic orbit extremally disconnected space then f is a neutrosophic 
chaotic* continuous function.  
Proof Let x be a periodic point and x ∈ X. Since f is neutrosophic chaotic continuous, F = <x,F1,F2,F3> is a 
neutrosophic clopen chaotic set of (X, σ),   a neutrosophic open orbit set NOf(x) of (X, τ) containing x   
f(NOf(x)) ⊆ F. Therefore, NOf(x) is a neutrosophic open orbit set NOf(x) of (X, τ). Since (X, τ) is neutrosophic 
orbit extremally disconnected, Ncl(NOf(x)) is a neutrosophic open orbit set. Therefore, F is a neutrosophic closed 
chaotic set containing f(x)   a neutrosophic open orbit set Ncl(NOf(x))   f(Ncl(NOf(x))) ⊆ F. Hence, f is 
neutrosophic chaotic* continuous. 
4.3 Definition 
A neutrosophic chaos space (X, τ) is said to be neutrosophic chaotic 0- dimensional if it has a neutrosophic base 
consisting of neutrosophic clopen chaotic sets. 
4.4 Theorem 
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. Let f : (X, τ) → (X, σ) be a neutrosophic chaotic*** 
continuous function. If (X, σ) is neutrosophic chaotic 0-dimensional then f is a neutrosophic chaotic continuous 
function.  
Proof Let the periodic point x ∈ X. Since (X, σ) is neutrosophic chaotic 0-dimensional,   a neutrosophic clopen 
chaotic set F = <x,F1,F2,F3> in (X, σ). Since f is a neutrosophic chaotic*** continuous function,   a
neutrosophic clopen orbit set NOf(x)   f(Nint(NOf(x))) ⊆ F. Since NOf(x) is a neutrosophic open orbit set, 
Nint(NOf(x) = NOf(x). This implies that, f(NOf(x)) ⊆ F. Therefore, f is neutrosophic chaotic continuous. 
4.5 Definition 
A neutrosophic chaos space (X, τ) is said to be a neutrosophic orbit connected space if XN cannot be expressed 
as the union of two neutrosophic open orbit sets NOf(x) and NOf(y), x,y ∈ X of (X, τ) with NOf(x) ∩NOf(y) φN. 
4.6 Definition 
A neutrosophic chaos space (X, τ) is said to be a neutrosophic chaotic connected space if XN cannot be expressed 
as the union of two neutrosophic open chaotic sets U = <x,U1,U2,U3> and V = <x,V1,V2,V3>  of (X, τ) with U∩V 

 φN. 
4.7 Theorem 
A neutrosophic chaotic continuous image of a neutrosophic orbit connected space is a neutrosophic chaotic 
connected space.  
Proof Let (X, σ) be neutrosophic chaotic disconnected. Let F1 = <x, 3

1
2

1
1

1 ,, FFF > and F2 = <x, 3
2

2
2

1
2 ,, FFF >  be 

a neutrosophic chaotic disconnected sets of (X, σ). Then F1 φN and F2  φN are neutrosophic clopen chaotic 
sets in (X, σ) and YN= F1∪F2 where F1 ∩ F2 = φN . Now, XN = f−1(YN) = f−1(F1 ∪ F2) = f−1(F1) ∪ f−1(F2).Since f is
neutrosophic chaotic continuous, f−1(F1) and f−1(F2) are neutrosophic open orbit sets in (X, τ). Also
f−1(F1)∩f−1(F2) = φN. Therefore, (X, τ) is not neutrosophic orbit connected. Which is a contradiction. Hence, (X,
σ) is neutrosophic chaotic connected. 
4.8 Theorem 
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. If f : (X, τ) → (X, σ) is a neutrosophic chaotic 
continuous function and NOf(x) is neutrosophic open orbit set then the restriction f|NOf(x) : NOf(x) → (X, σ) is 
neutrosophic chaotic continuous.  
Proof Let F = <x,F1,F2,F3> be a neutrosophic clopen chaotic set in (X, σ). Then, (f|NOf(x))−1(F) = f−1(F) ∩
NOf(x). Since f is neutrosophic chaotic continuous, f−1(F) is neutrosophic open orbit in (X, τ) and NOf(x) is a
neutrosophic open orbit set. This implies that, f−1(F) ∩ NOf(x) is a neutrosophic open orbit set. Therefore,
(f|NOf(x))−1(F) is neutrosophic open orbit in (X, τ). Hence, f|NOf(x) is neutrosophic chaotic continuous.
4.9 Definition 
Let (X, τ) be a neutrosophic chaos space. If a family {NOf(xi) : i ∈ J} of neutrosophic open orbit set in (X, τ) 
satisfies the condition ∪NOf(xi) = XN, then it is called a neutrosophic open orbit cover of (X, τ).  
4.10 Theorem 
Let {NOf(x)γ : γ ∈ Γ} be any neutrosophic open orbit cover of a neutrosophic chaos space (X, τ). A function f : 
(X, τ) → (X, σ) is a neutrosophic chaotic continuous function if and only if the restriction f|NOf(x)γ : NOf(x)γ → 
(X, σ) is neutrosophic chaotic continuous for each γ ∈ Γ.  
Proof Let γ be an arbitrarily fixed index and NOf(x)γ be a neutrosophic open orbit set of (X, τ). Let the periodic 
point x ∈ NOf(x)γ and F = <x,F1,F2,F3> is neutrosophic clopen chaotic set containing (f|NOf(x)γ)(x) = f(x). Since
f is neutrosophic chaotic continuous there exists a neutrosophic open orbit set NOf(x) containing x such that 
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f(NOf(x)) ⊆ F. Since (NOf(x)γ) is neutrosophic open orbit cover in (X, τ), x ∈ NOf(x)∩NOf(x)γ and 
(f|NOf(x)γ)(NOf(x) ∩ (NOf(x)γ) = f(NOf(x) ∩ (NOf(x)γ)) ⊂ f(NOf(x) ⊂ F. Hence f|NOf(x)γ is a neutrosophic cha-
otic continuous function. Conversely, let the periodic point x ∈ X and F be a neutrosophic chaotic set containing 
f(x). There exists an γ ∈ Γ such that x ∈ NOf(x)γ. Since (f|NOf(x)γ) : NOf(x)γ → (X, σ) is neutrosophic chaotic 
continuous, there exists a NOf(x) ∈ NOf(x)γ containing x such that (f|NOf(x)γ)(NOf(x)) ⊆ F. Since NOf(x) is neu-
trosophic open orbit in (X, τ), f(NOf(x)) ⊆ F. Hence, f is neutrosophic chaotic continuous. 
4.11 Theorem 
If a function f : (X, τ) →  (X, σ)λ is neutrosophic chaotic continuous then Pλ◦ f : (X, τ) → (X, σ)λ is neutro-
sophic chaotic continuous for each λ ∈ Λ, where Pλ is the projection of  (X, σ)λ onto (X, σ)λ.  
Proof Let Fλ = <x, 321 ,,


FFF > be any neutrosophic clopen chaotic set of (X, σ)λ. Then 1


P  (Fλ) is a neutro-

sophic clopen chaotic set in  (X, σ)λ and hence (Pλ ◦ f)−1(Fλ) = f−1( 1


P (Fλ)) is a neutrosophic open orbit set in 
(X, τ). Therefore, Pλ ◦ f is neutrosophic chaotic continuous. 
4.12 Theorem 
If a function f :  (X, τ)λ →  (X, σ)λ is neutrosophic chaotic continuous then fλ : (X, τ)λ → (X, σ)λ is a neutro-
sophic chaotic continuous function for each λ ∈ Λ.  
Proof Let Fλ =<x, 321 ,,


FFF > be any neutrosophic clopen chaotic set of (X, σ)λ. Then 1


P   (Fλ) is neutrosoph-

ic clopen chaotic in  (X, σ)λ and f−1( 1


P (Fλ)) = 1


f (Fλ)×  {(X, τ)α : α ∈ Λ − {λ}}. Since f is neutrosophic 

chaotic continuous, f−1( 1


P (Fλ)) is a neutrosophic open orbit set in  (X, τ)λ. Since the projection Pλ of  (X, 

τ)λ onto (X, τ)λ is a neutrosophic open function, 1


f (Fλ) is neutrosophic open orbit in (X, τ)λ. Hence, fλ is neu-
trosophic chaotic continuous. 
4.13 Definition 
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. A function f : (X, τ) → (X, σ) is said to be neutro-
sophic chaotic irresolute if for each neutrosophic clopen chaotic set F = <x,F1,F2,F3> in (X, σ), f−1(A) is a neutro-
sophic clopen chaotic set of (X, τ). 
4.14 Theorem 
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. If f : (X, τ) → (X, σ) is a neutrosophic chaotic con-
tinuous function and g : (X, σ) → (X, ) is a neutrosophic chaotic irresolute function, then g ◦ f : (X, τ) → 
(X, ) is neutrosophic chaotic continuous. 
Proof Let F = <x,F1,F2,F3> be a neutrosophic clopen set of (X, ). Since g is neutrosophic chaotic irresolute, 
g−1(F) is neutrosophic clopen chaotic set of (X, σ). Since f is neutrosophic chaotic continuous, f−1(g−1(F)) = (g ◦ 
f)−1(F) is a neutrosophic open orbit set of (X, τ) such that f−1(g−1(F)) ⊆ F. Hence g ◦ f is neutrosophic chaotic 
continuous. 
4.15 Definition 
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. A function f : (X, τ) → (X, σ) is said to be neutro-
sophic orbit irresolute if for each neutrosophic open orbit set NOf(x) in (X, σ), f−1(NOf(x)) is a neutrosophic open
orbit set of (X, τ). 
4.16 Definition 
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. Let f : (X, τ) → (X, σ) be a function. Then f is said 
to be a neutrosophic open orbit function if the image of every neutrosophic open orbit set in (X, τ) is neutrosoph-
ic open orbit in (X, σ). 
4.17 Theorem 
Let f : (X, τ) → (X, σ) be neutrosophic orbit irresolute, surjective and neutrosophic open orbit function. Then g ◦ 
f : (X, τ) → (X, ) is neutrosophic chaotic continuous iff  g : (X, σ) → (X, ) is neutrosophic chaotic continuous. 

Proof Let Fλ =<x, 321 ,,


FFF > be a neutrosophic clopen chaotic set of (X, ). Since g is neutrosophic chaotic 
continuous, g−1(F) is neutrosophic open orbit in (X, σ). Since f is neutrosophic orbit irresolute, f−1(g−1(F)) = (g ◦ 
f)−1(F) is neutrosophic open orbit in (X, τ). Hence g ◦ f is neutrosophic chaotic continuous. Conversely, let g ◦ f : 
(X, τ) → (X, ) be  neutrosophic chaotic continuous function. Let F be a neutrosophic clopen chaotic set of 
(X, ), then (g ◦ f)−1(F) is a neutrosophic open orbit set of (X, τ). Since f is neutrosophic open orbit and surjec-
tive, f(f−1(g−1(F)) is a neutrosophic open orbit set of (X, σ). Therefore, g−1(F) is a neutrosophic open orbit set in 
(X, σ). Hence, g is neutrosophic chaotic continuous. 
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Conclusion 
In this paper, characterization of neutrosophic chaotic continuous functions are studied. Some interrelations are 
discussed with suitable examples. Also, neutrosophic orbit, extremally disconnected spaces and neutrosophic 
chaotic zero-dimensional spaces has been discussed with some interesting properties. This paper paves way in 
future to introduce and study the notions of neutrosophic orbit Co-kernal spaces, neutrosophic hardly open orbit 
spaces, neutrosophic orbit quasi regular spaces and neutrosophic orbit strongly complete spaces, neutrosophic 
orbit Co-kernal function, neutrosophic hardly open orbit function for which the above discussed set form the ba-
sis. 
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Abstract: Neutrosophic cubic sets (NCs) are amore generalized version of neutrosophic sets(Ns)
and interval neutrosophic sets (INs). Neutrosophic cubic setsare better placed to express consistent,
indeterminate and inconsistent information, which provides a better platform to deal with incomplete,
inconsistent and vague data. Aggregation operators play a key role in daily life, and in relation
to science and engineering problems. In this paper we defined the algebraic and Einstein sum,
multiplication and scalar multiplication, score and accuracy functions. Using these operations
we defined geometric aggregation operators and Einstein geometric aggregation operators. First,
we defined the algebraic and Einstein operators of addition, multiplication and scalar multiplication.
We defined score and accuracy function to compare neutrosophic cubic values. Then we definedthe
neutrosophic cubic weighted geometric operator (NCWG), neutrosophic cubic ordered weighted
geometric operator (NCOWG), neutrosophic cubic Einstein weighted geometric operator (NCEWG),
and neutrosophic cubic Einstein ordered weighted geometric operator (NCEOWG) over neutrosophic
cubic sets. A multi-criteria decision making method is developed as an application to these operators.
This method is then applied to a daily life problem.

Keywords: neutrosophic cubic weighted geometric operator (NCWG); neutrosophic cubic ordered
weighted geometric operator (NCOWG); neutrosophic cubic Einstein weighted geometric operator
(NCEWG); neutrosophic cubic Einstein ordered weighted geometric operator (NCEOWG)

Neutrosophic Cubic Einstein Geometric Aggregation 
Operators with Application to Multi-Criteria Decision 

Making Method 

Majid Khan, Muhammad Gulistan, Naveed Yaqoob, Madad Khan, 
Florentin Smarandache 

Majid Khan, Muhammad Gulistan, Naveed Yaqoob, Madad Khan, Florentin Smarandache (2019). Neutrosophic 
Cubic Einstein Geometric Aggregation Operators with Application to Multi-Criteria Decision Making Method. 
Symmetry, 11, 247; DOI: 10.3390/sym11020247 

Florentin Smarandache (ed.) Collected Papers, VI

626

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-6438-1047
https://orcid.org/0000-0002-5560-5926
http://dx.doi.org/10.3390/sym11020247
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/11/2/247?type=check_update&version=2


1. Introduction

The theory of fuzzy sets was introduced by Zadeh [1].Soon after, it attracted experts of sciences
and engineering due to its possibilistic behavior. The applicability of fuzzy sets extended it to interval
valued fuzzy sets(IVFs) [2,3]. In 1986, K. Atnassov developed the theory of intuitionistic fuzzy sets [4],
which were further extended to interval valued intuitionistic fuzzy sets in 1989 [5]. In 2012, Y.B.
Jun generalized the idea of fuzzy sets and intuitionistic fuzzy sets to form cubic sets [6]. Smarandache
presented his theory regarding the inconsistent and indeterminate behavior of data in 1999, and named
it the neutrosophic set [7]. Neutrosophic sets consist of three components:Truth, indeterminate and
falsehood, which provides a more general platform to deal with vague and insufficient data. In 2005,
Wang et al. [8] presented the idea of interval valued neutrosophic sets. Interval valued neutrosophic
sets provide a range to experts which makes them more comfortable with making the choice. Jun et al.
defined the neutrosophic cubic set [9,10]. Neutrosophic cubic sets are a generalization of neutrosophic
sets and interval neutrosophic sets. They enable us to choose both interval values and single value
membership. This characteristic of neutrosophic cubic sets enables us to deal with uncertain and vague
data more efficiently.

Decision making is one of the most important factors in scienceand day-to-day life as well.
Aggregation operators are an imperative part of modern decision making. A lack of data or information
makes it difficult for decision makers to take an appropriatedecision. This uncertain situation can
be minimized using the vague nature neutrosophic cubic set and its extensions. Neutrosophic cubic
set (NCs) are a more generalized version of neutrosophic sets (Ns) and interval neutrosophic sets
(INs). Neutrosophic cubic setsare better placed to express consistent, indeterminate, and inconsistent
information, which provides a better platform to deal with incomplete, inconsistent, and vague data.
Aggregation operators have a key role in daily life, science and engineering problems. Zhan et al. [11]
in their workapplications of neutrosophic cubic sets in multi-criteria decision making in 2017.
Banerjee et al. [12] usedgrey rational analysis in their workGRA for multi attribute decision making in
neutrosophic cubic set environment in 2017.Lu and Ye [13] definedcosine measure for neutrosophic
cubic sets for multiple attribte decision making in 2017. Pramanik et al. [14] defined neutrosophic cubic
MCGDM method based on similarity measurein 2017. Shi and Ye [15] defined Dombi aggregation
operators of neutrosophic cubic set for multiple attribute deicision makingin 2018. Baolin et al. [16]
applied Einstein aggregations onneutrosophic sets in a novel generalized simplified neutrosophic
number Einstein aggregation operator 2018. Alot of work has been done and is being done by different
researchers in decision making using neutrosophic cubic sets.

In this paper, we define algebraic and Einstein sum, multiplication and scalar multiplication,
score and accuracy functions. Using these operations, we define geometric aggregation operators
and Einstein geometric aggregation operators. First, we define algebraic and Einstein operators of
addition, multiplication and scalar multiplication. We then define score and accuracy functions to
compare neutrosophic cubic values. Following this, we propose a neutrosophic cubic ordered weighted
geometric operator (NCOWG), neutrosophic cubic Einstein weighted geometric operator (NCEWG),
and a neutrosophic cubic Einstein ordered weighted geometric operator (NCEOWG) over neutrosophic
cubic sets. A multi-criteria decision making method is then developed as an application for these
operators. This method is then applied to a daily life problem.

2. Preliminaries

This section consists of two parts: Notations, which consists of notations with their descriptions
and some previous definitions; and results. We recommend the reader to see [1–3,6–9,16].

2.1. Notations

This section consists of some notations with their descriptions, as shown in Table 1.
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Table 1. Some notations with their descriptions.

S. No Notation Description

1 U Ground set
2 u Element of ground set (U).
3 ψ Fuzzy set

4 Ψ̃ =
[
ΨL, ΨU] Interval valued fuzzy set which is an interval of [0,1]. The left

extreme ψL is referred as lower fuzzy and right extreme ψU is
referred as upper fuzzy function.

5 (TN , IN , FN) components of neutrosophic sets each one is fuzzy sets.

6
(

T̃N , ĨN , F̃N

) The components of interval neutrosophic each one is an interval
valued fuzzy set.

7
(

T̃N , ĨN , F̃N , TN , IN , FN

)
The components of neutrosophic cubic set. Referred to 5 and 6.

8 Γ∗, Γ t-conorm, t-norm
9 ⊕,⊗ Algebraic sum, product
10 ⊕E,⊗E Einstein sum, product

2.2. Pre-Defined Definitions

This section consists of some predefined definitions and results.

Definition 1 [1]. A mapping ψ:U → [0, 1] is called a fuzzy set, and ψ(u) is called a membership function,
simply denoted by ψ.

Definition 2 [2,3]. A mapping Ψ̃ : U → D[0, 1] , where D[0, 1] is the interval
value of [0, 1], called the interval valued fuzzy set(IVF). For all u ∈ U Ψ̃(u) ={[

ψL(u), ψU(u)
]
|ψL(u), ψU(u) ∈ [0, 1] and ψL(u) ≤ ψU(u)

}
is membership degree of u in Ψ̃. This is

simply denoted by Ψ̃ =
[
ΨL, ΨU].

Definition 3 [6]. A structure C =
{(

u, Ψ̃(u), Ψ(u)
)
|u ∈ U

}
is a cubic set in U in which Ψ̃(u) is IVF in U,

that is, Ψ̃ =
[
ΨL, ΨU] and Ψ is a fuzzy set in U. This can be simply denoted by C =

(
Ψ̃, Ψ

)
. CU denotes the

collection of cubic sets in U.

Definition 4 [7]. A structure N = {(TN(u), IN(u), FN(u))|u ∈ U} is a neutrosophic set(Ns), where
{TN(u), IN(u), FN(u) ∈ [0, 1]} are called truth, indeterminacy and falsity functions, respectively.This can be
simply denoted by N = (TN , IN , FN).

Definition 5 [8]. An interval neutrosophic set (INs) in U is a structure
N =

{(
T̃N(u), ĨN(u), F̃N(u)

)
|u ∈ U

}
, where

{
T̃N(u), ĨN(u), F̃N(u) ∈ D[0, 1]

}
is calledtruth,

indeterminacy an falsity functionin U, respectively. This can be simply denoted by N =
(

T̃N , ĨN , F̃N

)
.

For convenience, we denote N =
(

T̃N , ĨN , F̃N

)
by N =

(
T̃N =

[
TL

N , TU
N
]
, ĨN =

[
IL
N , IU

N
]
, F̃N =

[
FL

N , FU
N
])

.

Definition 6 [9]. A structure N =
{(

u, T̃N(u), ĨN(u), F̃N(u), TN(u), IN(u), FN(u)
)
|u ∈ U

}
is

neutrosophic cubic set(NCs) in U, in which
(

T̃N =
[
TL

N , TU
N
]
, ĨN =

[
IL
N , IU

N
]
, F̃N =

[
FL

N , FU
N
])

is an interval

neutrosophic set and (TN , IN , FN) is a neutrosophic set in U. Simply denoted by N =
(

T̃N , ĨN , F̃N , TN , IN , FN

)
,

[0, 0] ≤ T̃N + ĨN + F̃N ≤ [3, 3] and 0 ≤ TN + IN + FN ≤ 3. NU denotes the collection of neutrosophic cubic
sets in U. Simply denoted by N =

(
T̃N , ĨN , F̃N , TN , IN , FN

)
.

Definition 7 [16]. The t-operators are basically union and intersection operators in the theory of fuzzy sets,
which are denoted by t-conorm (Γ∗) and t-norm (Γ), respectively. The role of t-operators is very important in
fuzzy theory and its applications.
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Definition 8 [16]. Γ∗ : [0, 1]× [0, 1]→ [0, 1] is called t-conorm if it satisfies the following axioms:

Axiom 1. Γ∗(1, u) = 1 and Γ∗(0, u) = 0;
Axiom 2. Γ∗(u, v) = Γ∗(v, u) for all a and b;
Axiom 3. Γ∗(u, Γ∗(v, w)) = Γ∗(Γ∗(u, v), w) for all a, b and c;
Axiom 4. If u ≤ u′ and v ≤ v′, then Γ∗(u, v) ≤ Γ∗(u′, v′).

Most known t-conorms are as follows:

1. The default t-conorm: Γ∗max(u, v) = max(u, v).
2. The bounded t-conorm: Γ∗bounded(u, v) = min(1, u + v).
3. The algebraic t-conorm: Γ∗algebraic(u, v) = u + v− uv.

Definition 9 [16]. Γ : [0, 1]× [0, 1]→ [0, 1] is called t-norm if it satisfies the following axioms:

Axiom 5. Γ(1, u) = u and Γ(0, u) = 0;
Axiom 6. Γ(u, v) = Γ(v, u) for all a and b;
Axiom 7. Γ(u, Γ(v, w)) = Γ(Γ(u, v), w) for all a, b and c;
Axiom 8. If u ≤ u′ and v ≤ v′, then Γ(u, v) ≤ Γ(u′, v′).

Most well known t-norms are as follows:

1. The default t-norm: Γmin(u, v) = min(u, v).
2. The bounded t-norm: Γbounded(u, v) = max(0, u + v− 1).
3. The algebraic t-norm: Γalgebraic(u, v) = uv.

If Γ∗(u, v), Γ(u, v) are continuous and Γ∗(u, u) > u, Γ(u, u) < u, then Γ∗ and Γ are said to be
Archimedes t-conorm and t-norm, respectively. Any pair of dual t-conorm (Γ∗) and t-norm (Γ) is used.
It is known that t-norms and t-conorms operators satisfy the condition of conjunction and disjunction
operators, respectively. However, the algebraic operations, like algebraic sum and product, are not
unique and may correspond to union and intersection. The t-conorms and t-norms families have
a vast range, which corresponds to unions and intersections. Among these, the Einstein sum and
Einstein product are good choices since they give the smooth approximation like algebraic sum and
algebraic product, respectively. Einstein sum ⊕E and Einstein product ⊗E are examples of t-conorm
and t-norm, respectively:

Γ∗E(u, v) =
u + v

1 + uv

ΓE(u, v) =
uv

1 + (1− u)(1− v)

Group decision making is an important aspect of decision making theory. We are often in
situationsin which we have to deal with more then one expert, attribute and alternative. Motivated
by such situations, a multi-attribute decision making method for more then one expert is proposed
on neutrosophic cubic aggregation operators.This whole work consisted of six sections. In Section 3,
we define some algebraicEinstein operations and score and accuracy functions, along with some
important results and examples. On the basis of these definitions and results, we define geometric
and Einstein geometric aggregation operators on neutrosophic cubic sets in Section 4. In Section 5,
an algorithm is proposed based on neutrosophic cubic geometric and Einstein geometric aggregation
operators to deal with multi-attribute decision making problems. In the final section, a numerical
example from daily life is presented as an application of the work.

3. Operations on Neutrosophic Cubic Sets

In this section, we introduce some new operations on neutrosophic cubic sets which are further
used in the article.
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3.1. Algebraic Addition, Multiplication and Scalar Multiplication

We introduce the algebraic addition, multiplication, and scalar multiplication on neutrosophic
cubic sets(NCs). An important result of exponential multlipliction is established on the basis of these
defintions, which provides the basis to define neutrosophic cubic geometric aggregation operators.

Definition 10. The sum of two neutrosophic cubic sets(NCs), A =
(

T̃A, ĨA, F̃A, TA, IA, FA

)
, where T̃A =[

TL
A, TU

A
]
, ĨA =

[
IL
A, IU

A
]
, F̃A =

[
FL

A, FU
A
]
, and B =

(
T̃B, ĨB, F̃B, TB, IB, FB

)
, where T̃B =

[
TL

B , TU
B
]
, ĨB =[

IL
B , IU

B
]
, F̃B =

[
FL

B , FU
B
]

is defined as

A⊕ B =


[
TL

A + TL
B − TL

ATL
B , TU

A + TU
B − TU

A TU
B
]
,[

IL
A + IL

B − IL
A IL

B , IU
A + IU

B − IU
A IU

B
]
,[

FL
AFL

B , FU
A FU

B
]
,

TATB, IA IB, FA + FB − FAFB



Definition 11. The product between two neutrosophic cubic sets (NCs), A =
(

T̃A, ĨA, F̃A, TA, IA, FA

)
,

where T̃A =
[
TL

A, TU
A
]
, ĨA =

[
IL
A, IU

A
]
, F̃A =

[
FL

A, FU
A
]

and B =
(

T̃B, ĨB, F̃B, TB, IB, FB

)
, where T̃B =[

TL
B , TU

B
]
, ĨB =

[
IL
B , IU

B
]
, F̃B =

[
FL

B , FU
B
]

is defined as

A⊗ B =


[
TL

ATL
B , TU

A TU
B
]
,[

IL
A IL

B , IU
A IU

B
]
,[

FL
A + FL

B − FL
AFL

B , FU
A + FU

B − FU
A FU

B
]
,

TA + TB − TATB, IA + IB − IA IB, FAFB



Definition 12. The scalar multiplication on a neutrosophic cubic set (NCs), A =
(

T̃A, ĨA, F̃A, TA, IA, FA

)
,

where T̃A =
[
TL

A, TU
A
]
, ĨA =

[
IL
A, IU

A
]
, F̃A =

[
FL

A, FU
A
]
, and a Scalar k is defined as

kA =



[
1− (1− TL

A)
k, 1− (1− TU

A )
k
]
,[

1− (1− IL
A)

k, 1− (1− IU
A )

k
]
,[(

FL
A
)k,
(

FU
A
)k
]
,

(TA)
k, (IA)

k, 1− (1− FA)
k



The following result is established to deal with the exponential multiplication on neutrosophic
cubic values. This result enables us to define geometric aggregation operators along some important
results on neutrosophic cubic sets.

Theorem 1. Let A =
(

T̃A, ĨA, F̃A, TA, IA, FA

)
, where T̃A =

[
TL

A, TU
A
]
, ĨA =

[
IL
A, IU

A
]
, F̃A =

[
FL

A, FU
A
]
, be a

neutrosophic cubic value, then the exponential operation can be defined by

Ak =



[
(TL

A)
k, (TU

A )k
]
,[

(IL
A)

k, (IU
A )k
]
,[

1−
(
1− FL

A
)k, 1−

(
1− FU

A
)k
]
,

1− (1− TA)
k, 1− (1− IA)

k, (FA)
k


where Ak = A⊗ A⊗, . . .⊗ A(k− times), and Ak is a neutrosophic cubic value for every positive value of k.
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Proof. We prove the theorem by mathematical induction, as the k = 1, A1 = A result holds.We assume
that for k = m the result is true:

Am =



[
(TL

A)
m, (TU

A )m
]
,[

(IL
A)

m, (IU
A )m

]
,[

1−
(
1− FL

A
)m, 1−

(
1− FU

A
)m
]
,

1− (1− TA)
m, 1− (1− IA)

m, (FA)
m


That is Am is neutrosophic cubic value. We prove that for k = m + 1 is also neutrosophic

cubic value.
Since

Am ⊗ A =



[
(TL

A)
m, (TU

A )m
]
,[

(IL
A)

m, (IU
A )m

]
,[

1−
(
1− FL

A
)m, 1−

(
1− FU

A
)m
]
,

1− (1− TA)
m, 1− (1− IA)

m, (FA)
m

⊗

[
(TL

A), (T
U
A )
]
,[

(IL
A), (IU

A )
]
,[

FL
A, FU

A
]
,

TA, IA, FA



=



[
(TL

A)
m+1, (TU

A )m+1
]
,[

(IL
A)

m+1, (IU
A )m+1

]
,[

1−
(
1− FL

A
)m

+ FL
A −

(
1−

(
1− FL

A
)m
)

FL
A, 1−

(
1− FU

A
)m

+ FU
A −

(
1−

(
1− FU

A
)m
)

FU
A

]
,

1− (1− TA)
m + TA −

(
1− (1− TA)

m)TA, 1− (1− IA)
m + IA −

(
1− (1− IA)

m IA
)
, (FA)

m+1



=



[
(TL

A)
m+1, (TU

A )m+1
]
,[

(IL
A)

m+1, (IU
A )m+1

]
,[

1−
(
1− FL

A
)m

+ FL
A − FL

A +
(
1− FL

A
)mFL

A, 1−
(
1− FU

A
)m

+ FU
A − FU

A +
(
1− FU

A
)mFU

A

]
,

1− (1− TA)
m + TA − TA + (1− TA)

mTA, 1− (1− IA)
m + IA − IA + (1− IA)

m IA, (FA)
m+1



=



[
(TL

A)
m+1, (TU

A )m+1
]
,[

(IL
A)

m+1, (IU
A )m+1

]
,[

1−
(
1− FL

A
)m

+
(
1− FL

A
)mFL

A, 1−
(
1− FU

A
)m

+
(
1− FU

A
)mFU

A

]
,

1− (1− TA)
m + (1− TA)

mTA, 1− (1− IA)
m + (1− IA)

m IA, (FA)
m+1



=



[
(TL

A)
m+1, (TU

A )m+1
]
,[

(IL
A)

m+1, (IU
A )m+1

]
,[

1−
(
1− FL

A
)m(1− FL

A
)
, 1−

(
1− FU

A
)m(1− FU

A
)]

,

1− (1− TA)
m(1− TA), 1− (1− IA)

m(1− IA), (FA)
m+1



=



[
(TL

A)
m+1, (TU

A )m+1
]
,[

(IL
A)

m+1, (IU
A )m+1

]
,[

1−
(
1− FL

A
)m+1, 1−

(
1− FU

A
)m+1

]
,

1− (1− TA)
m+1, 1− (1− IA)

m+1, (FA)
m+1


= Am+1.

�

3.2. Einstein Addition, Multiplication and Scalar Multiplication

Taking into account the dual t-conorm (Γ∗) and t-norm (Γ), the Einstein operations of union,
intersection, addition, multiplication and scalar multiplication are defined on the neutrosophic cubic
sets.An important result of Einstein exponential multlipliction is established on the basis of these
defintions, which provides the base with which to define neutrosophic cubic Einstein geometric
aggregation operators.
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Definition 13. The Einstein union between two neutrosophic cubic sets (NCs), A =
(

T̃A, ĨA, F̃A, TA, IA, FA

)
where T̃A =

[
TL

A, TU
A
]
, ĨA =

[
IL
A, IU

A
]
, F̃A =

[
FL

A, FU
A
]
, and B =

(
T̃B, ĨB, F̃B, TB, IB, FB

)
where T̃B =[

TL
B , TU

B
]
, ĨB =

[
IL
B , IU

B
]
, F̃B =

[
FL

B , FU
B
]

is defined as

A ∨ B =
(

Γ
{

T̃A, T̃B

}
, Γ
{

ĨA, ĨB

}
, Γ∗
{

F̃A, F̃B

}
, Γ∗{TA, TB}, Γ∗{IA, IB}, Γ{FA, FB}

)
Definition 14. The Einstein intersection between two neutrosophic cubic sets(NCS), A =(

T̃A, ĨA, F̃A, TA, IA, FA

)
, where T̃A =

[
TL

A, TU
A
]
, ĨA =

[
IL
A, IU

A
]
, F̃A =

[
FL

A, FU
A
]

and B =(
T̃B, ĨB, F̃B, TB, IB, FB

)
, where T̃B =

[
TL

B , TU
B
]
, ĨB =

[
IL
B , IU

B
]
, F̃B =

[
FL

B , FU
B
]

is defined as

A ∧ B =
(

Γ∗
{

T̃A, T̃B

}
, Γ∗
{

ĨA, ĨB

}
, Γ
{

F̃A, F̃B

}
, Γ{TA, TB}, Γ{IA, IB}, Γ∗{FA, FB}

)
.

On the basis of Einstein union and intersection the Einstein sum and product is defined over
neutrosophic cubic values.

Definition 15. The Einstein sum between two neutrosophic cubic sets (NCS), A =
(

T̃A, ĨA, F̃A, TA, IA, FA

)
,

where T̃A =
[
TL

A, TU
A
]
, ĨA =

[
IL
A, IU

A
]
, F̃A =

[
FL

A, FU
A
]

and B =
(

T̃B, ĨB, F̃B, TB, IB, FB

)
, where T̃B =[

TL
B , TU

B
]
, ĨB =

[
IL
B , IU

B
]
, F̃B =

[
FL

B , FU
B
]

is defined as

A⊕E B =



[
TL

A+TL
B

1+TL
ATL

B
, TU

A +TU
B

1+TU
A TU

B

]
,[

IL
A+IL

B
1+IL

A IL
B

, IU
A+IU

B
1+IU

A IU
B

]
,[

FL
A FL

B
1+(1−FL

A)(1−FL
B )

, FU
A FU

B
1+(1−FU

A )(1−FU
B )

]
TATB

1+(1−TA)(1−TB)
, IA IB

1+(1−IA)(1−IB)
, FA+FB

1+FA FB


Definition 16. The Einstein product between two neutrosophic cubic sets (NCS), A =(

T̃A, ĨA, F̃A, TA, IA, FA

)
, where T̃A =

[
TL

A, TU
A
]
, ĨA =

[
IL
A, IU

A
]
, F̃A =

[
FL

A, FU
A
]

and B =(
T̃B, ĨB, F̃B, TB, IB, FB

)
, where T̃B =

[
TL

B , TU
B
]
, ĨB =

[
IL
B , IU

B
]
, F̃B =

[
FL

B , FU
B
]

is defined as

A⊗E B =



[
TL

ATL
B

1+(1−TL
A)(1−TL

B)
, TU

A TU
B

1+(1−TU
A )(1−TU

B )

]
,[

IL
A IL

B
1+(1−IL

A)(1−IL
B)

, IU
A IU

B
1+(1−IU

A )(1−IU
B )

]
,[

FL
A+FL

B
1+FL

A FL
B

, FU
A +FU

B
1+FU

A FU
B

]
TA+TB

1+TATB
, IA+IB

1+IA IB
, FA FB

1+(1−FA)(1−FB)



Definition 17. The scalar multiplication on a neutrosophic cubic set(NCS), A =
(

T̃A, ĨA, F̃A, TA, IA, FA

)
,

where T̃A =
[
TL

A, TU
A
]
, ĨA =

[
IL
A, IU

A
]
, F̃A =

[
FL

A, FU
A
]
, and scalar k is defined as
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kE A =



[
(1+TL

A)
k−(1−TL

A)
k

(1+TL
A)

k
+(1−TL

A)
k , (1+TU

A )
k−(1−TU

A )
k

(1+TU
A )

k
+(1−TU

A )
k

]
,[

(1+IL
A)

k−(1−IL
A)

k

(1+IL
A)

k
+(1−IL

A)
k , (1+IU

A )
k−(1−IU

A )
k

(1+IU
A )

k
+(1−IU

A )
k

]
,[

2(FL
A)

k

(2−FL
A)

k
+(FL

A)
k ,

2(FU
A )

k

(2−FU
A )

k
+(FU

A )
k

]
,

2(TA)
k

(2−TA)
k+(TA)

k , 2(IA)
k

(2−IA)
k+(IA)

k , (1+FA)
k−(1−FA)

k

(1+FA)
k+(1−FA)

k


After defining the scalar multiplication over the neutrosophic cubic set, we established the

following result, which deals with the Einstein exponential multiplication on neutrosophic cubic
values. This result enabled us to define Einstein geometric aggregation operators along with some
important results on neutrosophic cubic sets.

Theorem 2. Let A =
(

T̃A, ĨA, F̃A, TA, IA, FA

)
, where T̃A =

[
TL

A, TU
A
]
, ĨA =

[
IL
A, IU

A
]
, F̃A =

[
FL

A, FU
A
]
, be a

neutrosophic cubic value, then the exponential operation defined by

AEk
=



[
2(TL

A)
k

2(−TL
A)

k
+(TL

A)
k , 2(TU

A )k

(2−TU
A )

k
+(TU

A )
k

]
,[

2(IL
A)

k

(2−IL
A)

k
+(IL

A)
k , 2(IU

A )k

(2−IU
A )

k
+(IU

A )
k

]
,[

(1+FL
A)

k−(1−FL
A)

k

(1+FL
A)

k
+(1−FL

A)
k , (1+FU

A )
k−(1−FU

A )
k

(1+FU
A )

k
+(1−FU

A )
k

]
,

(1+TA)
k−(1−TA)

k

(1+TA)
k+(1−TA)

k , (1+IA)
k−(1−IA)

k

(1+IA)
k+(1−IA)

k , 2(FA)
k

(2−FA)
k+(FA)

k


where AEk

= A⊗E A⊗E . . .⊗E A(k− times), moreover AEk
is a neutrosophic cubic value for every positive

value of k.

Proof. We prove the theorem by mathematical induction. For k = 1

AE =



[
2(TL

A)

(2−TL
A)+(TL

A)
, 2(TU

A )

(2−TU
A )+(TU

A )

]
,[

2(IL
A)

(2−IL
A)+(IL

A)
, 2(IU

A )

(2−IU
A )+(IU

A )

]
,[

(1+FL
A)−(1−FL

A)

(1+FL
A)+(1−FL

A)
, (1+FU

A )−(1−FU
A )

(1+FU
A )+(1−FU

A )

]
,

(1+TA)−(1−TA)
(1+TA)+(1−TA)

, (1+IA)−(1−IA)
(1+IA)+(1−IA)

, 2(FA)
(2−FA)+(FA)


We observe that the components TL

A, TU
A , IL

A, IU
A , FA are of the form 2x

(2−x)+x , and FL
A, FU

A , TA, IA are

of the form (1+y)−(1−y)
(1+y)+(1−y) ,

For all x, y ∈ [0, 1], clearly x = 2x
(2−x)+x and y = (1+y)−(1−y)

(1+y)+(1−y)

Hence AE is neutrosophic cubic value.
Assuming k = m is a neutrosophic cubic value i.e.,

AEm
=



[
2(TL

A)
m

(2−TL
A)

m
+(TL

A)
m , 2(TU

A )m

(2−TU
A )

m
+(TU

A )
m

]
,[

2(IL
A)

m

(2−IL
A)

m
+(IL

A)
m , 2(IU

A )m

(2−IU
A )

m
+(IU

A )
m

]
,[

(1+FL
A)

m−(1−FL
A)

m

(1+FL
A)

m
+(1−FL

A)
m , (1+FU

A )
m−(1−FU

A )
m

(1+FU
A )

m
+(1−FU

A )
m

]
,

(1+TA)
m−(1−TA)

m

(1+TA)
m+(1−TA)

m , (1+IA)
m−(1−IA)

m

(1+IA)
m+(1−IA)

m , 2(FA)
m

(2−FA)
m+(FA)

m
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is a neutrosophic cubic value. Then we prove AEk+1
is neutrosophic cubic value.

Consider,

AEm ⊗E AE =



[
2(TL

A)m

(2−TL
A)

m
+(TL

A)
m , 2(TU

A )m

(2−TU
A )

m
+(TU

A )
m

]
,[

2(IL
A)m

(2−IL
A)

m
+(IL

A)
m , 2(IU

A )m

(2−IU
A )

m
+(IU

A )
m

]
,[

(1+FL
A)

m−(1−FL
A)

m

(1+FL
A)

m
+(1−FL

A)
m , (1+FU

A )
m−(1−FU

A )
m

(1+FU
A )

m
+(1−FU

A )
m

]
,

(1+TA)m−(1−TA)m

(1+TA)m+(1−TA)m , (1+IA)m−(1−IA)m

(1+IA)m+(1−IA)m , 2(FA)m

(2−FA)m+(FA)m


⊗E



[
2(TL

A)

(2−TL
A)+(TL

A)
, 2(TU

A )

(2−TU
A )+(TU

A )

]
,[

2(IL
A)1

(2−IL
A)+(IL

A)
, 2(IU

A )1

(2−IU
A )+(IU

A )

]
,[

(1+FL
A)−(1−FL

A)

(1+FL
A)+(1−FL

A)
, (1+FU

A )−(1−FU
A )

(1+FU
A )+(1−FU

A )

]
,

(1+TA)−(1−TA)
(1+TA)+(1−TA)

, (1+IA)−(1−IA)
(1+IA)+(1−IA)

, 2(FA)
(2−FA)+(FA)



=




4(TL

A)
m+1(

(2−TL
A)

m
+(TL

A)
m)
((2−TL

A)+TL
A)

1+

(
1−

2(TL
A)

m

(2−TL
A)

m
+(TL

A)
m

)(
1−

2TL
A

(2−TL
A)+TL

A

) ,

4(TU
A )

m+1(
(2−TU

A )
m
+(TU

A )
m)
((2−TU

A )+TU
A )

1+

(
1−

2(TU
A )

m

(2−TU
A )

m
+(TU

A )
m

)(
1−

2TU
A

(2−TU
A )+TU

A

)
,


4(IL

A)
m+1(

(2−IL
A)

m
+(IL

A)
m)
((2−IL

A)+IL
A)

1+

(
1−

2(IL
A)

m

(2−IL
A)

m
+(IL

A)
m

)(
1−

2IL
A

(2−IL
A)+IL

A

) ,

4(IU
A )

m+1(
(2−IU

A )
m
+(IU

A )
m)
((2−IU

A )+IU
A)

1+

(
1−

2(IU
A )

m

(2−IU
A )

m
+(IU

A)
m

)(
1−

2IU
A

(2−IU
A )+IU

A

)
,


(

(1+FL
A)

m−(1−FL
A)

m

(1+FL
A)

m
+(1−FL

A)
m

)
+

(
(1+FL

A)−(1−FL
A)

(1+FL
A)+(1−FL

A)

)
1+

(
(1+FL

A)
m−(1−FL

A)
m

(1+FL
A)

m
+(1−FL

A)
m

)(
(1+FL

A)−(1−FL
A)

(1+FL
A)+(1−FL

A)

) ,

(
(1+FU

A )
m−(1−FU

A )
m

(1+FU
A )

m
+(1−FU

A )
m

)
+

(
(1+FU

A )−(1−FU
A )

(1+FU
A )+(1−FU

A )

)
1+

(
(1+FU

A )
m−(1−FU

A )
m

(1+FU
A )

m
+(1−FU

A )
m

)(
(1+FU

A )−(1−FU
A )

(1+FU
A )+(1−FU

A )

)
,

(
(1+TA)m−(1−TA)m

(1+TA)m+(1−TA)m

)
+
(
(1+TA)−(1−TA)
(1+TA)+(1−TA)

)
1+
(

(1+TA)m−(1−TA)m

(1+TA)m+(1−TA)m

)(
(1+TA)−(1−TA)
(1+TA)+(1−TA)

) ,

(
(1+IA)m−(1−IA)m

(1+IA)m+(1−IA)m

)
+
(
(1+IA)−(1−IA)
(1+IA)+(1−IA)

)
1+
(

(1+IA)m−(1−IA)m

(1+IA)m+(1−IA)m

)(
(1+IA)−(1−IA)
(1+IA)+(1−IA)

) ,

4(FA)
m+1

((2−FA)m+(FA)
m)((2−FA)+FA)

1+
(

1− 2(FA)
m

(2−FA)m+(FA)
m

)(
1− 2FA

(2−FA)+FA

)



=




4(TL

A)
m+1(

(2−TL
A)

m
+(TL

A)
m)
((2−TL

A)+TL
A)

1+

(
(2−TL

A)
m
+(TL

A)
m
−2(TL

A)
m

(2−TL
A)

m
+(TL

A)
m

)(
(2−TL

A)+TL
A−2TL

A
(2−TL

A)+TL
A

) ,

4(TU
A )

m+1(
(2−TU

A )
m
+(TU

A )
m)
((2−TU

A )+TU
A )

1+

(
(2−TU

A )
m
+(TU

A )
m
−2(TU

A )
m

(2−TU
A )

m
+(TU

A )
m

)(
(2−TU

A )+TU
A−2TU

A
(2−TU

A )+TU
A

)
,


4(IL

A)
m+1(

(2−IL
A)

m
+(IL

A)
m)
((2−IL

A)+IL
A)

1+

(
(2−IL

A)
m
+(IL

A)
m
−2(IL

A)
m

(2−IL
A)

m
+(IL

A)
m

)(
(2−IL

A)+IL
A−2IL

A
(2−IL

A)+IL
A

) ,

4(IU
A)

m+1(
(2−IU

A )
m
+(IU

A)
m)
((2−IU

A )+IU
A)

1+

(
(2−IU

A )
m
+(IU

A)
m
−2(IU

A)
m

(2−IU
A )

m
+(IU

A)
m

)(
(2−IU

A )+IU
A−2IU

A
(2−IU

A )+IU
A

)
,



(
(1+FL

A)
m
−(1−FL

A)
m)
((1+FL

A)+(1−FL
A))+

(
(1+FL

A)
m
+(1−FL

A)
m)
((1+FL

A)−(1−FL
A))

((1+FL
A)

m
+(1−FL

A)
m)((1+FL

A)+(1−FL
A))(

(1+FL
A)

m
+(1−FL

A)
m)
((1+FL

A)+(1−FL
A))+(1+FL

A)
m+1

−(1+FL
A)

m
(1−FL

A)−(1−FL
A)

m
(1+FL

A)+(1−FL
A)

m+1

((1+FL
A)

m
+(1−FL

A)
m)((1+FL

A)+(1−FL
A))

,

(
(1+FU

A )
m
−(1−FU

A )
m)
((1+FU

A )+(1−FU
A ))+

(
(1+FU

A )
m
+(1−FU

A )
m)
((1+FU

A )−(1−FU
A ))

((1+FU
A )

m
+(1−FU

A )
m)((1+FU

A )+(1−FU
A ))(

(1+FU
A )

m
+(1−FU

A )
m)
((1+FU

A )+(1−FU
A ))+(1+FU

A )
m+1

−(1+FU
A )

m
(1−FU

A )−(1−FU
A )

m
(1+FU

A )+(1−FU
A )

m+1

((1+FU
A )

m
+(1−FU

A )
m)((1+FU

A )+(1−FU
A ))


,

((1+TA)
m−(1−TA)

m)((1+TA)+(1−TA))+((1+TA)
m
+(1−TA)

m)((1+TA)−(1−TA))

((1+TA)m+(1−TA)m)((1+TA)+(1−TA))

((1+TA)
m
+(1−TA)

m)((1+TA)+(1−TA))+(1+TA)
m+1−(1+TA)

m(1−TA)−(1−TA)
m(1+TA)+(1−TA)

m+1

((1+TA)m+(1−TA)m)((1+TA)+(1−TA))

,

((1+IA)
m−(1−IA)

m)((1+IA)+(1−IA))+((1+IA)
m
+(1−IA)

m)((1+IA)−(1−IA))

((1+IA)m+(1−IA)m)((1+IA)+(1−IA))

((1+IA)
m
+(1−IA)

m)((1+IA)+(1−IA))+(1+IA)
m+1−(1+IA)

m(1−IA)−(1−IA)
m(1+IA)+(1−IA)

m+1

((1+IA)m+(1−IA)m)((1+IA)+(1−IA))

,

4(FA)
m+1

((2−FA)m+(FA)
m)((2−FA)+FA)

1+
(

(2−FA)m+(FA)
m−2(FA)

m

(2−FA)m+(FA)
m

)(
(2−FA)+FA−2FA

(2−FA)+FA

)
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=





4(TL
A)

m+1(
(2−TL

A)
m
+(TL

A)
m)
((2−TL

A)+TL
A)((

(2−TL
A)

m
+(TL

A)
m)
((2−TL

A)+TL
A)
)
+
((

(2−TL
A)

m−(TL
A)

m)
((2−TL

A)−TL
A)
)

(
(2−TL

A)
m
+(TL

A)
m)
((2−TL

A)+TL
A)

,

4(TU
A )

m+1(
(2−TU

A )
m
+(TU

A )
m)
((2−TU

A )+TU
A )((

(2−TU
A )

m
+(TU

A )
m)
((2−TU

A )+TU
A )

)
+
((

(2−TU
A )

m−(TU
A )

m)
((2−TU

A )−TU
A )

)
(
(2−TU

A )
m
+(TU

A )
m)
((2−TU

A )+TU
A )


,



4(IL
A)

m+1(
(2−IL

A)
m
+(IL

A)
m)
((2−IL

A)+IL
A)((

(2−IL
A)

m
+(IL

A)
m)
((2−IL

A)+IL
A)
)
+
((

(2−IL
A)

m−(IL
A)

m)
((2−IL

A)−IL
A)
)

(
(2−IL

A)
m
+(IL

A)
m)
((2−IL

A)+IL
A)

,

4(IU
A)

m+1(
(2−IU

A )
m
+(IU

A )
m)
((2−IU

A )+IU
A)((

(2−IU
A )

m
+(IU

A )
m)
((2−IU

A )+IU
A)

)
+
((

(2−IU
A )

m−(IU
A)

m)
((2−IU

A )−IU
A)

)
(
(2−IU

A )
m
+(IU

A )
m)
((2−IU

A )+IU
A)


,



(
1 + FL

A
)m+1

+
(
1 + FL

A
)m(1− FL

A
)
−
(
1− FL

A
)m(1 + FL

A
)
−
(
1− FL

A
)m+1

+(
1 + FL

A
)m+1 −

(
1 + FL

A
)m(1− FL

A
)
+
(
1− FL

A
)m(1 + FL

A
)
−
(
1− FL

A
)m+1(

1 + FL
A
)m+1

+
(
1 + FL

A
)m(1− FL

A
)
−
(
1− FL

A
)m(1 + FL

A
)
+
(
1− FL

A
)m+1

+(
1 + FL

A
)m+1 −

(
1 + FL

A
)m(1− FL

A
)
+
(
1− FL

A
)m(1 + FL

A
)
+
(
1− FL

A
)m+1

,

(
1 + FU

A
)m+1

+
(
1 + FU

A
)m(1− FU

A
)
−
(
1− FU

A
)m(1 + FU

A
)
−
(
1− FU

A
)m+1

+(
1 + FU

A
)m+1 −

(
1 + FU

A
)m(1− FU

A
)
+
(
1− FU

A
)m(1 + FU

A
)
−
(
1− FU

A
)m+1(

1 + FU
A
)m+1

+
(
1 + FU

A
)m(1− FU

A
)
−
(
1− FU

A
)m(1 + FU

A
)
+
(
1− FU

A
)m+1

+(
1 + FU

A
)m+1 −

(
1 + FU

A
)m(1− FU

A
)
+
(
1− FU

A
)m(1 + FU

A
)
+
(
1− FU

A
)m+1


,

(1 + TA)
m+1 + (1 + TA)

m(1− TA)− (1− TA)
m(1 + TA)− (1− TA)

m+1+

(1 + TA)
m+1 − (1 + TA)

m(1− TA) + (1− TA)
m(1 + TA)− (1− TA)

m+1

(1 + TA)
m+1 + (1 + TA)

m(1− TA)− (1− TA)
m(1 + TA) + (1− TA)

m+1+

(1 + TA)
m+1 − (1 + TA)

m(1− TA) + (1− TA)
m(1 + TA) + (1− TA)

m+1

,

(1 + IA)
m+1 + (1 + IA)

m(1− IA)− (1− IA)
m(1 + IA)− (1− IA)

m+1+

(1 + IA)
m+1 − (1 + IA)

m(1− IA) + (1− IA)
m(1 + IA)− (1− IA)

m+1

(1 + IA)
m+1 + (1 + IA)

m(1− IA)− (1− IA)
m(1 + IA) + (1− IA)

m+1+

(1 + IA)
m+1 − (1 + IA)

m(1− IA) + (1− IA)
m(1 + IA) + (1− IA)

m+1

,

4(FA)
m+1

((2−FA)m+(FA)
m)((2−FA)+FA)

(((2−FA)m+(FA)
m)((2−FA)+FA))+(((2−FA)m−(FA)

m)((2−FA)−FA))
((2−FA)m+(FA)

m)((2−FA)+FA)



=




4(TL

A)
m+1

(2−TL
A)

m+1
+TL

A(2−TL
A)

m
+(TL

A)
m+1

+TLm
A (2−TL

A)+
(
(2−TL

A)
m+1−TL

A(2−TL
A)

m
+(TL

A)
m+1−(TL

A)
m
(2−TL

A)
) ,

4(TU
A )

m+1

(2−TU
A )

m+1
+TU

A (2−TU
A )

m
+(TU

A )
m+1

+TUm
A (2−TU

A )+
(
(2−TU

A )
m+1−TU

A (2−TU
A )

m
+(TU

A )
m+1−(TU

A )
m
(2−TU

A )
)

,


4(IL

A)
m+1

(2−IL
A)

m+1
+IL

A(2−IL
A)

m
+(IL

A)
m+1

+ILm
A (2−IL

A)+
(
(2−IL

A)
m+1−IL

A(2−IL
A)

m
+(IL

A)
m+1−(IL

A)
m
(2−IL

A)
) ,

4(IU
A )

m+1

(2−IU
A )

m+1
+IU

A (2−IU
A )

m
+(IU

A )
m+1

+IUm
A (2−IU

A )+
(
(2−IU

A )
m+1−IU

A (2−IU
A )

m
+(IU

A )
m+1−(IU

A )
m
(2−IU

A )
)

,

[
2
(
(1+FL

A)
m+1−(1−FL

A)
m+1

)
2
(
(1+FL

A)
m+1

+(1−FL
A)

m+1
) ,

2
(
(1+FU

A )
m+1−(1−FU

A )
m+1

)
2
(
(1+FU

A )
m+1

+(1−FU
A )

m+1
)
]

,

2((1+TA)
m+1−(1−TA)

m+1)
2((1+TA)

m+1+(1−TA)
m+1)

,

2((1+IA)
m+1−(1−IA)

m+1)
2((1+IA)

m+1+(1−IA)
m+1)

,

4(FA)
m+1

(2−FA)
m+1+FA(2−FA)

m+(FA)
m+1+Fm

A (2−FA)+
(
(2−FA)

m+1−FA(2−FA)
m+(FA)

m+1−(FA)
m(2−FA)

)
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=



[
4(TL

A)
m+1

2
(
(2−TL

A)
m+1

+(TL
A)

m+1) ,
4(TU

A )
m+1

2
(
(2−TU

A )
m+1

+(TU
A )

m+1)
]

,[
4(IL

A)
m+1

2
(
(2−IL

A)
m+1

+(IL
A)

m+1) ,
4(IU

A )
m+1

2
(
(2−IU

A )
m+1

+(IU
A )

m+1)
]

,[ (
(1+FL

A)
m+1−(1−FL

A)
m+1)(

(1+FL
A)

m+1
+(1−FL

A)
m+1) ,

(
(1+FU

A )
m+1−(1−FU

A )
m+1)(

(1+FU
A )

m+1
+(1−FU

A )
m+1)

]
,(

(1+TA)
m+1−(1−TA)

m+1
)

(
(1+TA)

m+1+(1−TA)
m+1

) ,(
(1+IA)

m+1−(1−IA)
m+1

)
(
(1+IA)

m+1+(1−IA)
m+1

) ,

4(FA)
m+1

2
(
(2−FA)

m+1+(FA)
m+1

)



=



[
2(TL

A)
m+1(

(2−TL
A)

m+1
+(TL

A)
m+1) ,

2(TU
A )

m+1(
(2−TU

A )
m+1

+(TU
A )

m+1)
]

,[
2(IL

A)
m+1(

(2−IL
A)

m+1
+(IL

A)
m+1) ,

2(IU
A )

m+1(
(2−IU

A )
m+1

+(IU
A )

m+1)
]

,[ (
(1+FL

A)
m+1−(1−FL

A)
m+1)(

(1+FL
A)

m+1
+(1−FL

A)
m+1) ,

(
(1+FU

A )
m+1−(1−FU

A )
m+1)(

(1+FU
A )

m+1
+(1−FU

A )
m+1)

]
,(

(1+TA)
m+1−(1−TA)

m+1
)

(
(1+TA)

m+1+(1−TA)
m+1

) ,(
(1+IA)

m+1−(1−IA)
m+1

)
(
(1+IA)

m+1+(1−IA)
m+1

) ,

2(FA)
m+1(

(2−FA)
m+1+(FA)

m+1
)


Which shows that k = m + 1 is a neutrosophic cubic value. �

3.3. Score and Accuracy Function of Neutrosophic Cubic Set

For the comparison of two neutrosophic values, the score and accuracy function are defined.
The score function is used tocompare two neutrosophic cubic values; sometimes the score of
two neutrosophic cubic values becomes equal, although they have different components of truth,
indeterminancy and falsity functions. This situation can be overcome by the help of an accuracy
function. The following definition, along with examples, providesa better view of understanding to
the reader.

Definition 18. Let N =
(

T̃N , ĨN , F̃N , TN , IN , FN

)
, where T̃N =

[
TL

N , TU
N
]
, ĨN =

[
IL
N , IU

N
]
, F̃N =

[
FL

N , FU
N
]
,

be a neutrosophic cubic value and we define the score function as

S(N) =
[

TL
N − FL

N + TU
N − FU

N + TN − FN

]
Sometimes the situation arises that the score of two neutrosophic cubic values are equal. In such a

situation, a comparison is made on the basis of an accuracy function.

Definition 19. Let N =
(

T̃N , ĨN , F̃N , TN , IN , FN

)
, where T̃N =

[
TL

N , TU
N
]
, ĨN =

[
IL
N , IU

N
]
, F̃N =

[
FL

N , FU
N
]
,

be a neutrosophic cubic value, the accuracy function is defined as

H(u) =
1
9

{
TL

N + IL
N + FL

N + TU
N + IU

N + FU
N + TN + IN + FN

}
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The following definition is accomplished for the comparison relation of the neutrosophic
cubic values.

Definition 20. Let N1 and N2 be two neutrosophic cubic values, where SN1 and SN2 are scores and HN1 and
HN2 are accuracy functions of N1 and N2, respectively.

1. If SN1 > SN2 ⇒ N1 > N2

2. If SN1 = SN2 and HN1 > HN2 ⇒ N1 > N2 HN1 = HN2 ⇒ N1 = N2

Example 1. Let N1 = ([0.5, 0.9][0.6, 0.9][0.1, 0.4], 0.3, 0.4, 0.4) and N2 =

([0.2, 0.8][0.5, 0.9][0.4, 0.8], 0.4, 0.45, 0.8) be two neutrosophic sets.
Then

SN1 = 0.8, and SN2 = −0.6

SN1 > SN2 ⇒ N1 > N2

In the following example the score funtions are equal, so accuracy functions are used to compare
neutrosophic cubic values.

Example 2. Let N1 = ([0.4, 0.9][0.5, 0.8][0.1, 0.7], 0.4, 0.5, 0.8) and N2 =

([0.4, 0.6][0.5, 0.9][0.6, 0.7], 0.7, 0.5, 0.3) be two neutrosophic sets.

SN1 = 0.1, SN2 = 0.1

SN1 = SN2 ⇒ N1 = N2

HN1 = 0.566, HN2 = 0.577

HN1 < HN2 ⇒ N1 < N2

4. Neutrosophic Cubic Geometric and Einstein Geometric Aggregation Operators

In this section, we introduce the concept of neutrosophic cubic geometric aggregation operators
and neutrosophic cubic Einstein geometric aggregation operators.

This section consists of two sub-sections: In Section 4.1, the neutrosophic cubic geometric
aggregation operators are defined on the basis of Section 3.1; and in Section 4.2, the neutrosophic cubic
Einstein geometric aggregation operators are defined on the basis of Section 3.2.

4.1. Neutrosophic Cubic Weighted Geometric Aggregation Operator

We define neutrosophic cubic geometric aggregation operators using Section 3.1.

Definition 21. We define the neutrosophic cubic weighted geometric operator(NCWG) as

NCWG : Rm → R defined by NCWGw(N1, N2, . . . , Nm) =
m
⊗

j=1
N

wj
j

where the weight W = (w1, w2, . . . , wm)T of corresponding neutrosophic cubic values is such that each

wj ∈ [0, 1] and
m

∑ wj
j=1

= 1.

In NCWG, the neutrosophic cubic values are first weighted then aggregated.
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Definition 22. We define the neutrosophic cubic ordered weighted geometric operator(NCOWG) as

NCOWG : Rm → R defined by NCOWGw(N1, N2, . . . , Nm) =
m
⊗

j=1
N

wj
(γ)j

where N(γ)j
are descending ordered neutrosophic cubic values, and the weight W = (w1, w2, . . . , wm)T of

corresponding neutrosophic cubic values Nj(j = 1, 2, 3, . . . , m) is such that each wj ∈ [0, 1] and
m

∑ wj
j=1

= 1.

In NCOWG, the neutrosophic cubic values are first arranged in decending order, weighted and
then aggregated.

Theorem 3. Let Nj =
(

T̃Nj , ĨNj , F̃Nj , TNj , INj , FNj

)
, where T̃Nj =

[
TL

Nj
, TU

Nj

]
, ĨNj =

[
IL
Nj

, IU
Nj

]
, F̃Nj =[

FL
Nj

, FU
Nj

]
(j = 1, 2, . . . , n) are a collection of neutrosophic cubic values, then neutrosophic cubic weighted

geometric(NCWG) operator of Nj is also a neutrosophic cubic value and

NCWG(Nj) =



[
m
∏
j=1

(
TL

Nj

)wj
,

m
∏
j=1

(
TU

Nj

)wj

]
,[

m
∏
j=1

(
IL
Nj

)wj
,

m
∏
j=1

(
IU
Nj

)wj

]
[

1−
m
∏
j=1

(1− FL
Nj
)

wj , 1−
m
∏
j=1

(1− FU
Nj
)

wj

]
1−

m
∏
j=1

(1−
(

TNj

)
)

wj
, 1−

m
∏
j=1

(1−
(

INj

)
)

wj
,

m
∏
j=1

(
FNj

)wj


where the weight W = (w1, w2, . . . , wm)T of Nj(j = 1, 2, 3, . . . , m) such that wj ∈ [0, 1] and

m
∑ wj

j=1
= 1.

Proof. By mathematical induction for m = 2, using

2
⊗

j=1
N

wj
j = Nw1

1 ⊗ Nw2
2

=


[
(TL

Nj
)

w1 , (TU
Nj
)w1
]
,[

(IL
Nj
)

w1 , (IU
Nj
)w1
]
,[

1−
(

1− FL
Nj

)w1
, 1−

(
1− FU

Nj

)w1
]
,

1−
(

1−
(

TNj

))w1
, 1−

(
1−

(
INj

))w1
,
(

FNj

)w1

⊗


[
(TL

Nj
)

w2 , (TU
Nj
)w2
]
,[

(IL
Nj
)

w2 , (IU
Nj
)w2
]
,[

1−
(

1− FL
Nj

)w2
, 1−

(
1− FU

Nj

)w2
]
,

1−
(

1−
(

TNj

))w2
, 1−

(
1−

(
INj

))w2
, (FNj )

w2



=



[
2

∏
j=1

(TL
Nj
)

wj ,
2

∏
j=1

(TU
Nj
)

wj

]
,[

2
∏
j=1

(IL
Nj
)

wj ,
2

∏
j=1

(IU
Nj
)

wj

]
,[

1−
2

∏
j=1

(
1− FL

Nj

)wj
,

2
∏
j=1

(
FU

Nj

)wj

]
,

1−
2

∏
j=1

(
1− TNj

)wj
, 1−

2
∏
j=1

(
1− INj

)wj
,

2
∏
j=1

(
FNj

)wj
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For m = n, we have

n
⊗

j=1
N

wj
j =



[
n
∏
j=1

(TL
Nj
)

wj ,
n
∏
j=1

(TU
Nj
)

wj

]
,[

n
∏
j=1

(IL
Nj
)

wj ,
n
∏
j=1

(IU
Nj
)

wj

]
,[

1−
n
∏
j=1

(
1− FL

Nj

)wj
,

n
∏
j=1

(
FU

Nj

)wj

]
,

1−
n
∏
j=1

(
1− TNj

)wj
, 1−

n
∏
j=1

(
1− INj

)wj
,

n
∏
j=1

(
FNj

)wj


We prove the result holds for m = n + 1,

Nwn+1
n+1 =



[
(TL

Nn+1
)

wn+1 , (TU
Nn+1

)wn+1
]
,[

(IL
Nj+1

)
wj+1 , (IU

Nj+1
)wj+1

]
,[

1−
(

1− FL
Nn+1

)wn+1
, 1−

(
1− FU

Nn+1

)wn+1
]
,

1−
(
1− TNn+1

)wn+1 , 1−
(
1− INn+1

)wn+1 , (FNn+1)
wn+1


n
⊗

j=1
N

wj
j ⊕ Nwn+1

n+1

=



[
n
∏
j=1

(TL
Nj
)

wj ,
n
∏
j=1

(TU
Nj
)

wj

]
,[

n
∏
j=1

(IL
Nj
)

wj ,
n
∏
j=1

(IU
Nj
)

wj

]
,[

1−
n
∏
j=1

(
1− FL

Nj

)wj
,

n
∏
j=1

(
FU

Nj

)wj

]
,

1−
n
∏
j=1

(
1− TNj

)wj
, 1−

n
∏
j=1

(
1− INj

)wj
,

n
∏
j=1

(
FNj

)wj


⊕



[
(TL

Nn+1
)

wn+1 , (TU
Nn+1

)wn+1
]
,[

(IL
Nj+1

)
wj+1 , (IU

Nj+1
)wj+1

]
,[

1−
(

1− FL
Nn+1

)wn+1
, 1−

(
1− FU

Nn+1

)wn+1
]
,

1−
(
1− TNn+1

)wn+1 , 1−
(
1− INn+1

)wn+1 , (FNn+1 )
wn+1



n+1
⊗

j=1
N

wj
j =



[
n
∏
j=1

(
TL

Nj

)wj
(

TL
Nm+1

)wm+1
,

n
∏
j=1

(
TU

Nj

)wj
(

TU
Nm+1

)wm+1

]
,[

n
∏
j=1

(
IL
Nj

)wj
(

IL
Nm+1

)wm+1
,

n
∏
j=1

(
IU
Nj

)wj
(

IU
Nm+1

)wm+1

]
,

1−
n
∏
j=1

(1− FL
Nj
)

wj + 1− (1− FL
Nm+1

)
wm+1−(

1−
n
∏
j=1

(1− FL
Nj
)

wj

)(
1− (1− FL

Nm+1
)

wm+1
)

,

1−
n
∏
j=1

(1− FU
Nj
)

wj + 1− (1− FU
Nm+1

)
wm+1−(

1−
n
∏
j=1

(1− FU
Nj
)

wj

)(
1− (1− FU

Nm+1
)

wm+1
)

,


,

1−
n
∏
j=1

(
1− TNj

)wj
+ 1−

(
1− TNm+1

)wm+1−(
1−

n
∏
j=1

(
1− TNj

)wj

)(
1−

(
1− TNm+1

)wm+1
)

1−
n
∏
j=1

(
1− INj

)wj
+ 1−

(
1− INm+1

)wm+1−(
1−

n
∏
j=1

(
1− INj

)wj

)(
1−

(
1− INm+1

)wm+1
)

n
∏
j=1

(
FNj

)wj(
FNm+1

)wm+1
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=



[
n+1
∏
j=1

(
TL

Nj

)wj
,

n+1
∏
j=1

(
TU

Nj

)wj

]
[

n+1
∏
j=1

(
IL
Nj

)wj
,

n+1
∏
j=1

(
IU
Nj

)wj

]
,

2−
n+1
∏
j=1

(1− FL
Nj
)

wj − 1 +
n
∏
j=1

(1− FL
Nj
)

wj + (1− FL
Nm+1

)
wm+1

−
(

n
∏
j=1

(1− FL
Nj
)

wj

)
(1− FL

Nm+1
)

wm+1 ,

2−
n+1
∏
j=1

(1− FU
Nj
)

wj − 1 +
n+1
∏
j=1

(1− FU
Nj
)

wj + (1− FU
Nm+1

)
wm+1

−
(

n
∏
j=1

(1− FU
Nj
)

wj

)
(1− FU

Nm+1
)

wm+1


,

2−
n+1
∏
j=1

(1− TNj)
wj − 1 +

n
∏
j=1

(1− TNj)
wj + (1− TNm+1)

wm+1

−
(

n
∏
j=1

(1− TNj)
wj

)
(1− TNm+1)

wm+1 ,

2−
n+1
∏
j=1

(1− INj)
wj − 1 +

n
∏
j=1

(1− INj)
wj + (1− INm+1)

wm+1

−
(

n
∏
j=1

(1− INj)
wj

)
(1− INm+1)

wm+1

,
n+1
∏
j=1

(
FNj

)wj



=



[
n+1
∏
J=1

(
TL

Nj

)wj
,

n+1
∏
J=1

(
TU

Nj

)wj

]
[

n+1
∏
J=1

(
IL
Nj

)wj
,

n+1
∏
J=1

(
IU
Nj

)wj

]
,[

1−
n+1
∏
J=1

(
1− FL

Nj

)wj
, 1−

n+1
∏
J=1

(
1− FU

Nj

)wj

]
,

, 1−
n+1
∏
J=1

(
1− TNj

)wj
, 1−

n+1
∏
J=1

(
1− INj

)wj
,

n+1
∏
J=1

(
1− FNj

)wj


�

Theorem 4. Let Nj =
(

T̃Nj , ĨNj , F̃Nj , TNj , INj , FNj

)
, where T̃Nj =

[
TL

Nj
, TU

Nj

]
, ĨNj =

[
IL
Nj

, IU
Nj

]
, F̃Nj =[

FL
Nj

, FU
Nj

]
, (j = 1, 2, . . . , m) is a collection of neutrosophic cubic values The weight W = (w1, w2, . . . , wm)T

of Nj(j = 1, 2, 3, . . . , m), be such that wj ∈ [0, 1] and
m

∑ wj
j=1

= 1.

1. Idempotency: If for all Nj =
(

T̃Nj , ĨNj , F̃Nj , TNj , INj , FNj

)
, where T̃Nj =

[
TL

Nj
, TU

Nj

]
,

ĨNj =
[

IL
Nj

, IU
Nj

]
, F̃Nj =

[
FL

Nj
, FU

Nj

]
, (j = 1, 2, . . . , m) are equal, that is, Nj = N for all k, then NCW

Gw(N1, N2, . . . , Nm) = N

2. Monotonicity: Let Bj =
(

T̃Bj , ĨBj , F̃Bj , TBj , IBj , FBj

)
where T̃Bj =

[
TL

Bj
, TU

Bj

]
,

ĨBj =
[

IL
Bj

, IU
Bj

]
, F̃Bj =

[
FL

Bj
, FU

Bj

]
(j = 1, 2, . . . , m) is the collection of neutrosophic cubic values.

If SBj(u) ≥ SNj(u) and Bj(u) ≥ Nj(u) then NCWGw(N1, N2, . . . , Nm) ≤ NCWGw(B1, B2, . . . , Bm).
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3. Boundary: N− ≤ NCWGw{(N1)T , (N2)T , . . . , (Nm)T} ≤ N+, where

N− =

{
min

j
TL

Nj
, min

j
IL
Nj

, 1−max
j

FL
Nj

, min
j

TNj , min
j

INj , 1−max
j

FL
Nj

, min
j

TNj , min
j

INj , 1−max
j

FL
Nj

}
,

N+ =

max
j

TU
Nj

, max
j

IU
Nj

, 1−min
j

FU
Nj

, max
j

TNj , max
j

INj , 1−min
j

FNj , maxTNj

j
, maxINj

j
, 1−min

j
FNj


Proof.

1. Idempotent: Since Nj = N, so

NCWG(Nj) =



[
m
∏
j=1

(
TL

N
)wj ,

m
∏
j=1

(
TU

N
)wj

]
,[

m
∏
j=1

(
IL
N
)wj ,

m
∏
j=1

(
IU
N
)wj

]
,[

1−
m
∏
j=1

(
1− FL

N
)wj , 1−

m
∏
j=1

(
1− FL

N
)wj

]
,

1−
m
∏
j=1

(1− TN)
wj , 1−

m
∏
j=1

(1− IN)
wj ,

m
∏
j=1

(FN)
wj



=



(TL
N)

m
∑

j=1
wj

, (TU
N )

m
∑

j=1
wj

,(IL
N)

m
∑

j=1
wj

, (IU
N )

m
∑

j=1
wj

,1−
(
1− FL

N
) m

∑
j=1

wj
, 1−

(
1− FU

N
) m

∑
j=1

wj

,

1− (1− TN)

m
∑

j=1
wj

, 1− (1− IN)

m
∑

j=1
wj

, (FN)

m
∑

j=1
wj


=
(

T̃N , ĨN , F̃N , TN , IN , FN

)
2. Monotonicity: Since NCOWG is strictly monotone function.
3. Boundary: Let u = minN− and y = maxN+, then by monotonicity we have

u ≤ NCOWA(Nj) ≤ y⇒ N− ≤ NCOWG(Nj) ≤ N+ .

�

Theorem 5. Let Nj =
(

T̃Nj , ĨNj , F̃Nj , TNj , INj , FNj

)
, whereT̃Nj =

[
TL

Nj
, TU

Nj

]
, ĨNj =

[
IL
Nj

, IU
Nj

]
, F̃Nj =[

FL
Nj

, FU
Nj

]
, (j = 1, 2, . . . , n) be the collection of neutrosophic cubic values and W = (w1, w2, . . . , wn)T is

the weight of the NCOWG, with wj ∈ [0, 1] and
m

∑ wj
j=1

= 1.

1. If W= (1, 0, . . . , 0)T , then NCOWG(N1, N2, . . . , Nn) = maxNj

2. If W= (0, 0, . . . , 1)T , then NCOWG(N1, N2, . . . , Nn) = minNj

3. If wj = 1, wl = 0, and j 6= l, then NCOWG(N1, N2, . . . , Nn) = Nj

where Nj is the jth largest of (N1, N2, . . . , Nn).

Proof. Since in NCOWG the neutrosophic values are ordered in descending order. �
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4.2. Neutrosophic Cubic Einstein Weighted Geometric Aggregation Operator

We define neutrosophic cubic Einstein geometric aggregation operators using Section 3.2.

Definition 23. The neutrosophic cubic Einstein weighted geometric operator(NCEWA) is defined as

NCEWG : Rm → R , defined by NCEWGw(N1, N2, . . . , Nm) =
m
⊗

j=1

(
NE

j

)wj

where, W = (w1, w2, . . . , wm)T is the weight of Nj(j = 1, 2, 3, . . . , m), such that wj ∈ [0, 1] and
m

∑ wj
j=1

= 1.

That is, first all the neutrosophic values are weighted then aggregated using Einstein operations.

Definition 24. Order neutrosophic cubic Einstein weighted geometric operator(NCEOWG) is defined as

NCEOWG : Rm → R by NCEOWGw(N1, N2, . . . , Nm) =
m
⊗

j=1

(
BE

j

)wj

where Bj is the jth largest, W = (w1, w2, . . . , wm)T is the weight of Nj(j = 1, 2, 3, . . . , m), such that

wj ∈ [0, 1] and
m

∑ wj
j=1

= 1.

That is, first all the neutrosophic values are ordered and then weighted, after ordering weighted
values are aggregated using Einstein operations.The fundamental concept of ordered weighted
operators is to rearrange the neutrosophic cubic values in descending order.

Theorem 6. Let Nj =
(

T̃Nj , ĨNj , F̃Nj , TNj , INj , FNj

)
, where T̃Nj =

[
TL

Nj
, TU

Nj

]
, ĨNj =

[
IL
Nj

, IU
Nj

]
,

F̃Nj =
[

FL
Nj

, FU
Nj

]
, (j = 1, 2, . . . , m) is a collection of neutrosophic cubic values, then their Einstein weighted

geometric aggregated value by NCEWG operator is also a neutrosophic cubic value, and

NCEWG(Nj) =



 2
m
∏
j=1

(
TL

Nj

)wj

m
∏
j=1

(
2−TL

Nj

)wj
+

m
∏
j=1

(
TL

Nj

)wj ,
2

m
∏
j=1

(
TU

Nj

)wj

m
∏
j=1

(
2−TU

Nj

)wj
+

m
∏
j=1

(
TU

Nj

)wj

,

 2
m
∏
j=1

(
IL
Nj

)wj

m
∏
j=1

(
2−IL

Nj

)wj
+

m
∏
j=1

(
IL
Nj

)wj ,
2

m
∏
j=1

(
IU
Nj

)wj

m
∏
j=1

(
2−IU

Nj

)wj
+

m
∏
j=1

(
IU
Nj

)wj

,


m
∏
j=1

(
1+FL

Nj

)wj
−

m
∏
j=1

(
1−FL

Nj

)wj

m
∏
j=1

(
1+FL

Nj

)wj
+

m
∏
j=1

(
1−FL

Nj

)wj ,

m
∏
j=1

(
1+FU

Nj

)wj
−

m
∏
j=1

(
1−FU

Nj

)wj

m
∏
j=1

(
1+FU

Nj

)wj
+

m
∏
j=1

(
1−FU

Nj

)wj

,

m
∏
j=1

(
1+TNj

)wj−
m
∏
j=1

(
1−TNj

)wj

m
∏
j=1

(
1+TNj

)wj
+

m
∏
j=1

(
1−TNj

)wj
,

m
∏
j=1

(
1+INj

)wj−
m
∏
j=1

(
1−INj

)wj

m
∏
j=1

(
1+INj

)wj
+

m
∏
j=1

(
1−INj

)wj
,

2
m
∏
j=1

(
FNj

)wj

m
∏
j=1

(
2−FNj

)wj
+

m
∏
j=1

(
FNj

)wj


where W = (w1, w2, . . . , wm)T is the weight vector of Nj(j = 1, 2, 3, . . . , m), such that wj ∈ [0, 1] and

m
∑ wj

j=1
= 1.
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Proof. We use mathematical induction to prove this result, for m = 2, using definition (Einstein sum
and Einstein scalar multiplication).

(
NE

1

)w1
=



[
2
(

TL
N1

)w1(
2−TL

N1

)w1
+TL

N1

,
2
(

TU
N1

)w1(
2−TU

N1

)w1
+TU

N1

]
,[

2
(

IL
N1

)w1(
2−IL

N1

)w1
+IL

N1

,
2
(

IU
N1

)w1(
2−IU

N1

)w1
+IU

N1

]
,[

(1+FL
N1

)
w1−(1−FL

N1
)

w1

(1+FL
N1

)
w1+(1−FL

N1
)

w1 ,
(1+FU

N1
)

w1−(1−FU
N1

)
w1

(1+FU
N1

)
w1+(1−FU

N1
)

w1

]
,

(1+TN1 )
w1−(1−TN1 )

w1

(1+TN1 )
w1+(1−TN1 )

w1 ,
(1+IN1 )

w1−(1−IN1 )
w1

(1+IN1 )
w1+(1−IN1 )

w1 ,

2(FN1)
w1

(2−FN1)
w1+FN1



(
NE

2

)w2
=



[
2
(

TL
N2

)w2(
2−TL

N2

)w2
+TL

N2

,
2
(

TU
N2

)w2(
2−TU

N2

)w2
+TU

N2

]
,[

2
(

IL
N2

)w2(
2−IL

N2

)w2
+IL

N2

,
2
(

IU
N2

)w2(
2−IU

N2

)w2
+IU

N2

]
,[

(1+FL
N2

)
w2−(1−FL

N2
)

w2

(1+FL
N2

)
w2+(1−FL

N2
)

w2 ,
(1+FU

N2
)

w2−(1−FU
N2

)
w2

(1+FU
N2

)
w2+(1−FU

N2
)

w2

]
,

(1+TN2 )
w2−(1−TN2 )

w2

(1+TN2 )
w2+(1−TN2 )

w2 ,
(1+IN2 )

w2−(1−IN2 )
w2

(1+IN2 )
w2+(1−IN2 )

w2 ,

2(FN2)
w2

(2−FN2)
w2+FN2



2
⊗

j=1

(
NE

j

)wj
=



 2
2
∏
j=1

(
TL

Nj

)wj

2
∏
j=1

(
2−TL

Nj

)wj
+

2
∏
j=1

(
TL

Nj

)wj ,
2

2
∏
j=1

(
TU

Nj

)wj

2
∏
j=1

(
2−TU

Nj

)wj
+

2
∏
j=1

(
TU

Nj

)wj

,

 2
2
∏
j=1

(
IL
Nj

)wj

2
∏
j=1

(
2−IL

Nj

)wj
+

2
∏
j=1

(
IL
Nj

)wj ,
2

2
∏
j=1

(
IU
Nj

)wj

2
∏
j=1

(
2−IU

Nj

)wj
+

2
∏
j=1

(
IU
Nj

)wj

,


2
∏
j=1

(
1+FL

Nj

)wj
−

2
∏
j=1

(
1−FL

Nj

)wj

2
∏
j=1

(
1+FL

Nj

)wj
+

2
∏
j=1

(
1−FL

Nj

)wj ,

2
∏
j=1

(
1+FU

Nj

)wj
−

2
∏
j=1

(
1−FU

Nj

)wj

2
∏
j=1

(
1+FU

Nj

)wj
+

2
∏
j=1

(
1−FU

Nj

)wj

,

2
∏
j=1

(
1+TNj

)wj−
2
∏
j=1

(
1−TNj

)wj

2
∏
j=1

(
1+TNj

)wj
+

2
∏
j=1

(
1−TNj

)wj
,

2
∏
j=1

(
1+INj

)wj−
2
∏
j=1

(
1−INj

)wj

2
∏
j=1

(
1+INj

)wj
+

2
∏
j=1

(
1−INj

)wj
,

2
2
∏
j=1

(
FNj

)wj

2
∏
j=1

(
2−FNj

)wj
+

2
∏
j=1

(
FNj

)wj
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for m = n

n
⊗

j=1

(
NE

j

)wj
=



 2
n
∏
j=1

(
TL

Nj

)wj

n
∏
j=1

(
2−TL

Nj

)wj
+

n
∏
j=1

(
TL

Nj

)wj ,
2

n
∏
j=1

(
TU

Nj

)wj

n
∏
j=1

(
2−TU

Nj

)wj
+

n
∏
j=1

(
TU

Nj

)wj

,

 2
n
∏
j=1

(
IL
Nj

)wj

n
∏
j=1

(
2−IL

Nj

)wj
+

n
∏
j=1

(
IL
Nj

)wj ,
2

n
∏
j=1

(
IU
Nj

)wj

n
∏
j=1

(
2−IU

Nj

)wj
+

n
∏
j=1

(
IU
Nj

)wj

,


n
∏
j=1

(
1+FL

Nj

)wj
−

n
∏
j=1

(
1−FL

Nj

)wj

n
∏
j=1

(
1+FL

Nj

)wj
+

n
∏
j=1

(
1−FL

Nj

)wj ,

n
∏
j=1

(
1+FU

Nj

)wj
−

n
∏
j=1

(
1−FU

Nj

)wj

n
∏
j=1

(
1+FU

Nj

)wj
+

n
∏
j=1

(
1−FU

Nj

)wj

,

n
∏
j=1

(
1+TNj

)wj−
n
∏
j=1

(
1−TNj

)wj

n
∏
j=1

(
1+TNj

)wj
+

n
∏
j=1

(
1−TNj

)wj
,

n
∏
j=1

(
1+INj

)wj−
n
∏
j=1

(
1−INj

)wj

n
∏
j=1

(
1+INj

)wj
+

n
∏
j=1

(
1−INj

)wj
,

2
n
∏
j=1

(
FNj

)wj

n
∏
j=1

(
2−FNj

)wj
+

n
∏
j=1

(
FNj

)wj


We prove the result holds for m = n + 1

as
(

NE
n+1

)wn+1
=



[
2
(

TL
Nn+1

)wn+1(
2−TL

Nn+1

)wn+1
+
(

TL
Nn+1

)wn+1 ,
2
(

TU
Nn+1

)wn+1(
2−TU

Nn+1

)wn+1
+
(

TU
Nn+1

)wn+1

]
,[

2
(

IL
Nn+1

)wn+1(
2−IL

Nn+1

)wn+1
+
(

IL
Nn+1

)wn+1 ,
2
(

IU
Nn+1

)wn+1(
2−IU

Nn+1

)wn+1
+
(

IU
Nn+1

)wn+1

]
,[

(1+FL
Nn+1

)
wn+1−(1−FL

Nn+1
)

wn+1

(1+FL
Nn+1

)
wn+1+(1−FL

Nn+1
)

wn+1 ,
(1+FU

Nn+1
)

wn+1−(1−FU
Nn+1

)
wn+1

(1+FU
Nn+1

)
wn+1+(1−FU

Nn+1
)

wn+1

]
,

(1+TNn+1 )
wn+1−(1−TNn+1 )

wn+1

(1+TNn+1 )
wn+1+(1−TNn+1 )

wn+1 ,
(1+INn+1 )

wn+1−(1−INn+1 )
wn+1

(1+INn+1 )
wn+1+(1−INn+1 )

wn+1 ,

2
(

FNn+1

)wn+1(
2−FNn+1

)wn+1
+
(

FNn+1

)wn+1


so

n
⊗
j=1

(
NE

j

)wj ⊗E
(

NE
m+1

)wm+1 =

 2
n
∏

j=1

(
TL

Nj

)wj

n
∏

j=1

(
2−TL

Nj

)wj
+

n
∏

j=1

(
TL

Nj

)wj ,
2

n
∏

j=1

(
TU

Nj

)wj

n
∏

j=1

(
2−TU

Nj

)wj
+

n
∏

j=1

(
TU

Nj

)wj

,

 2
n
∏

j=1

(
IL
Nj

)wj

n
∏

j=1

(
2−IL

Nj

)wj
+

n
∏

j=1

(
IL
Nj

)wj ,
2

n
∏

j=1

(
IU
Nj

)wj

n
∏

j=1

(
2−IU

Nj

)wj
+

n
∏

j=1

(
IU
Nj

)wj

,


n
∏

j=1

(
1+FL

Nj

)wj
−

n
∏

j=1

(
1−FL

Nj

)wj

n
∏

j=1

(
1+FL

Nj

)wj
+

n
∏

j=1

(
1−FL

Nj

)wj ,

n
∏

j=1

(
1+FU

Nj

)wj
−

n
∏

j=1

(
1−FU

Nj

)wj

n
∏

j=1

(
1+FU

Nj

)wj
+

n
∏

j=1

(
1−FU

Nj

)wj

,

n
∏

j=1

(
1+TNj

)wj−
n
∏

j=1

(
1−TNj

)wj

n
∏

j=1

(
1+TNj

)wj
+

n
∏

j=1

(
1−TNj

)wj ,

n
∏

j=1

(
1+INj

)wj−
n
∏

j=1

(
1−INj

)wj

n
∏

j=1

(
1+INj

)wj
+

n
∏

j=1

(
1−INj

)wj ,

2
n
∏

j=1

(
FNj

)wj

n
∏

j=1

(
2−FNj

)wj
+

n
∏

j=1

(
FNj

)wj



⊕E



 2
(

TL
Nn+1

)wn+1

(
2−TL

Nn+1

)wn+1
+

(
TL

Nn+1

)wn+1 ,
2
(

TU
Nn+1

)wn+1

(
2−TU

Nn+1

)wn+1
+

(
TU

Nn+1

)wn+1

, 2
(

IL
Nn+1

)wn+1

(
2−IL

Nn+1

)wn+1
+

(
IL
Nn+1

)wn+1 ,
2
(

IU
Nn+1

)wn+1

(
2−IU

Nn+1

)wn+1
+

(
IU
Nn+1

)wn+1

,[
(1+FL

Nn+1
)
wn+1−(1−FL

Nn+1
)
wn+1

(1+FL
Nn+1

)
wn+1 +(1−FL

Nn+1
)
wn+1 ,

(1+FU
Nn+1

)
wn+1−(1−FU

Nn+1
)
wn+1

(1+FU
Nn+1

)
wn+1 +(1−FU

Nn+1
)
wn+1

]
,

(1+TNn+1
)
wn+1−(1−TNn+1

)
wn+1

(1+TNn+1
)
wn+1 +(1−TNn+1

)
wn+1 ,

(1+INn+1
)
wn+1−(1−INn+1

)
wn+1

(1+INn+1
)
wn+1 +(1−INn+1

)
wn+1 ,

2
(

FNn+1

)wn+1

(
2−FNn+1

)wn+1
+

(
FNn+1

)wn+1
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n+1
⊗

j=1

(
NE

j

)wj
=



 2
n+1
∏
j=1

(
TL

Nj

)wj

n+1
∏
j=1

(
2−TL

Nj

)wj
+

n+1
∏
j=1

(
TL

Nj

)wj ,
2

n+1
∏
j=1

(
TU

Nj

)wj

n+1
∏
j=1

(
2−TU

Nj

)wj
+

n+1
∏
j=1

(
TU

Nj

)wj

,

 2
n+1
∏
j=1

(
IL
Nj

)wj

n+1
∏
j=1

(
2−IL

Nj

)wj
+

n+1
∏
j=1

(
IL
Nj

)wj ,
2

n+1
∏
j=1

(
IU
Nj

)wj

n+1
∏
j=1

(
2−IU

Nj

)wj
+

n+1
∏
j=1

(
IU
Nj

)wj

,


n+1
∏
j=1

(
1+FL

Nj

)wj
−

n+1
∏
j=1

(
1−FL

Nj

)wj

n+1
∏
j=1

(
1+FL

Nj

)wj
+

n+1
∏
j=1

(
1−FL

Nj

)wj ,

n+1
∏
j=1

(
1+FU

Nj

)wj
−

n+1
∏
j=1

(
1−FU

Nj

)wj

n+1
∏
j=1

(
1+FU

Nj

)wj
+

n+1
∏
j=1

(
1−FU

Nj

)wj

,

n+1
∏
j=1

(
1+TNj

)wj−
n+1
∏
j=1

(
1−TNj

)wj

n+1
∏
j=1

(
1+TNj

)wj
+

n+1
∏
j=1

(
1−TNj

)wj
,

n+1
∏
j=1

(
1+INj

)wj−
n+1
∏
j=1

(
1−INj

)wj

n+1
∏
j=1

(
1+INj

)wj
+

n+1
∏
j=1

(
1−INj

)wj
,

2
n+1
∏
j=1

(
FNj

)wj

n+1
∏
j=1

(
2−FNj

)wj
+

n+1
∏
j=1

(
FNj

)wj


so result holds for all values of m. �

Theorem 7. LetNj =
(

T̃Nj , ĨNj , F̃Nj , TNj , INj , FNj

)
, where T̃Nj =

[
TL

Nj
, TU

Nj

]
,

ĨNj =
[

IL
Nj

, IU
Nj

]
, F̃Nj =

[
FL

Nj
, FU

Nj

]
, (j = 1, 2, . . . , m) is a collection of neutrosophic cubic values and

W = (w1, w2, . . . , wm)T is a weight vector of Nj(j = 1, 2, 3, . . . , m), withwj ∈ [0, 1] and
m

∑ wj
j=1

= 1.

1. Idempotency: If for all Nj =
(

T̃Nj , ĨNj , F̃Nj , TNj , INj , FNj

)
, where T̃Nj =

[
TL

Nj
, TU

Nj

]
,

ĨNj =
[

IL
Nj

, IU
Nj

]
, F̃Nj =

[
FL

Nj
, FU

Nj

]
, (j = 1, 2, . . . , m) are equal, that is, Nj = N for all k, then

NCEWGw(N1, N2, . . . , Nm) = N

2. Monotonicity: Let Bj =
(

T̃Bj , ĨBj , F̃Bj , TBj , IBj , FBj

)
, where T̃Bj =

[
TL

Bj
, TU

Bj

]
,

ĨBj =
[

IL
Bj

, IU
Bj

]
, F̃Bj =

[
FL

Bj
, FU

Bj

]
(j = 1, 2, . . . , m) be the collection of cubic values. If SB(u) ≥ SN(u)

and Bj(u) ≥ Nj(u) then NCW Gw(N1, N2, . . . , Nm) ≤ NCWGw(B1, B2, . . . , Bm)

3. Boundary: N− ≤ NCWGw{(N1)T , (N2)T , . . . , (Nm)T} ≤ N+, where

N− =

{
min

j
TL

Nj
, min

j
IL
Nj

, 1−max
j

FL
Nj

, min
j

TNj , min
j

INj , 1−max
j

FL
Nj

}
,

N+ =

{
max

j
TU

Nj
, max

j
IU
Nj

, 1−min
j

FU
Nj

, max
j

TNj , max
j

INj , 1−min
j

FNj

}

Proof. Followed by Theorem 2. �

Theorem 8. Let Nj =
(

T̃Nj , ĨNj , F̃Nj , TNj , INj , FNj

)
, where T̃Nj =

[
TL

Nj
, TU

Nj

]
,

ĨNj =
[

IL
Nj

, IU
Nj

]
, F̃Nj =

[
FL

Nj
, FU

Nj

]
, (j = 1, 2, . . . , m) be a collection of neutrosophic cubic values and

W = (w1, w2, . . . , wm)T is a weight vector of the NCOWA, with wj ∈ [0, 1] and
m

∑ wj
j=1

= 1.

1. If w= (1, 0, . . . , 0)T , then NCEOWG (N1, N2, . . . , Nm) = max Nj

2. If w(0, 0, . . . , 1)T , then NCEOWG (N1, N2, . . . , Nm) = minNj

3. If wj = 1, wj = 0, and j 6= j, then NCEOWG (N1, N2, . . . , Nm) = Nj

where Nj is the jth largest of (N1, N2, . . . , Nm).
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Proof. Followed by Theorem 3. �

5. An Application of Neutrosophic cubic Geometric and Einstein Geometric Aggregation
Operator to Group Decision Making Problems

Group decision making is an important factor of decision making theory. We are often in a
situation with more then one expert, attribute and alternative to deal with. Motivated by such
situations, a multi-attribute decision making method for more then one expert is proposed in
this section.

In this section, we develop an algorithm for group decision making problems using the geometric
and Einstein geometric aggregations (NCWG and NCEWG) under the neutrosophic cubic environment.

Algorithm. Let F = {F1, F2, . . . , Fn} be the set of n alternatives, H = {H1, H2, . . . , Hm} be the m

attributes subject to their corresponding weight W = {w1, w2, . . . , wm} such that wj ∈ [0, 1] and
m
∑

j=1
wj = 1,

and D = {D1, D2, ...Dr} be the r decision makers with their corresponding weight V = {v1, v2, . . . , vr}.
such that vj ∈ [0, 1] and

r
∑

j=1
vj = 1 The method has the following steps:

Step1. First, we construct neutrosophic cubic decision matrices for each decision maker
D(s) =

[
N(s)

ij

]
n×m

(s = 1, 2, . . . , r).

Step2. All decision matrices are aggregated to a single matrix consisting of m attributes, by NCWG and
NCEWG corresponding to the weight assigned to the decision maker.

Step3. By using aggregation operators like NCWG and NCEWG, the decision matrix is aggregated by the
weight assigned to the m attributes.

Step4. The n alternatives are ranked according to their scores and arranged in descending order to select
the alternative with highest score.

6. Application

Mobile companies play a vital role in Pakistan’s stock market. The performance of these companies
affects resources of capital market and have become a common concern of shareholders, government
authorities, creditors and other stakeholders. In this example, an investor company wants to invest
his capital levy in listed companies. They acquire two types of experts: Attorney and market maker.
The attorney is acquired to look at the legal matters and the market maker is aquired to provide his
expertise in capital market matters. Data are collected on the basis of stock market analysis and growth
in different areas. Let the listed mobile companies be (x1) Zong, (x2) Jazz, (x3) Telenor and (x4)

Ufone, which have higher ratios of earnings than the others available in the market, from the three
alternatives of (A1) stock market trends, (A2) policy directions and (A3) the annual performance.
The two experts evaluated the mobile companies

(
xj, j = 1, 2, 3, 4

)
with respect to the corresponding

attributes (Ai, i = 1, 2, 3), and proposed their decision making matrices consisting of neutrosophic
cubic values in Equation (1) and Equation (2). The Equation (3) represents the single matrix as the
aggregation of Equtiona1 and Equation (2) by NCWG or NCEWG. The Equation (4) is obtained by
applying NCWG or NCEWG on attributes. The decision matrices are aggregated to a single decision
matrix. At the end we rank the alternatives according to their score to get the desirable alternative(s).

Step 1. We construct the decision maker matrices in Equations (1) and (2).
Equation (1): Decision making matrix for the first expert(attorney) Da is
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A1 A2 A3

X1

(
[0.2, 0.6], [0.4, 0.6],
[0.5, 0.8], 0.7, 0.4, 0.3

) (
[0.1, 0.4], [0.5, 0.8],
[0.4, 0.8], 0.6, 0.7, 0.5

) (
[0.4, 0.6], [0.2, 0.7],
[0.5, 0.9], 0.4, 0.5, 0.3

)

X2

(
[0.3, 0.5], [0.6, 0.9],
[0.3, 0.6], 0.3, 0.6, 0.7

) (
[0.5, 0.9], [0.1, 0.3],
[0.4, 0.8], 0.8, 0.3, 0.6

) (
[0.2, 0.7], [0.1, 0.6],
[0.4, 0.7], 0.5, 0.4, 0.7

)

X3

(
[0.6, 0.9], [0.2, 0.7],
[0.4, 0.9], 0.5, 0.5, 0.6

) (
[0.2, 0.6], [0.7, 0.3],
[0.3, 0.8], 0.4, 0.6, 0.5

) (
[0.5, 0.9], [0.7, 0.9],
[0.1, 0.5], 0.5, 0.6, 0.4

)

X4

(
[0.4, 0.8], [0.5, 0.9],
[0.3, 0.8], 0.5, 0.8, 0.5

) (
[0.2, 0.7], [0.4, 0.9],
[0.5, 0.7], 0.6, 0.4, 0.5

) (
[0.3, 0.5], [0.5, 0.9],
[0.7, 0.3], 0.3, 0.3, 0.8

)


(1)

Equation (2): Decision making matrix for the second expert(market maker) Dm is

A1 A2 A3

X1

(
[0.3, 0.6], [0.2, 0.6],
[0.2, 0.6], 0.8, 0.7, 0.2

) (
[0.3, 0.8], [0.4, 0.8],
[0.3, 0.8], 0.6, 0.7, 0.4

) (
[0.2, 0.7], [0.2, 0.6],
[0.3, 0.8], 0.5, 0.3, 0.5

)

X2

(
[0.2, 0.5], [0.6, 0.9],
[0.7, 0.3], 0.4, 0.8, 0.7

) (
[0.4, 0.9], [0.1, 0.4],
[0.5, 0.8], 0.6, 0.5, 0.7

) (
[0.4, 0.9], [0.1, 0.4],
[0.5, 0.8], 0.6, 0.5, 0.7

)

X3

(
[0.5, 0.9], [0.2, 0.6],
[0.3, 0.8], 0.7, 0.7, 0.8

) (
[0.2, 0.5], [0.2, 0.7],
[0.5, 0.8], 0.6, 0.7, 0.2

) (
[0.3, 0.5], [0.3, 0.9],
[0.2, 0.5], 0.6, 0.5, 0.4

)

X4

(
[0.3, 0.5], [0.3, 0.9],
[0.2, 0.5], 0.6, 0.5, 0.4

) (
[0.4, 0.7], [0.2, 0.8],
[0.7, 0.3], 0.6, 0.7, 0.7

) (
[0.2, 0.6], [0.5, 0.9],
[0.2, 0.8], 0.4, 0.4, 0.8

)


(2)

Step2. Let W = (0.4, 0.6)T , then the single matrix corresponding to weight W by use of NCWG
operator is

Equation (3): The single decision matrix.

A1 A2 A3

X1


[0.2551, 0.6000],
[0.2885, 0.6732],
[0.3371, 0.6968],

0.7647, 0.6041, 0.2352




[0.1933, 0.6062],
[0.4430, 0.8001],
[0.3418, 0.8680],

0.6000, 0.7000, 0.4772




[0.2638, 0.6581],
[0.1999, 0.6381],
[0.3881, 0.8484],

0.4621, 0.3881, 0.2223



X2


[0.2352, 0.5577],
[0.6000, 0.9000],
[0.3000, 0.6634],

0.3618, 0.7360, 0.7000




[0.2352, 0.5577],
[0.6000, 0.9000],
[0.3000, 0.6634],

0.3618, 0.7360, 0.7000




[0.5253, 0.8670],
[0.1515, 0.6000],
[0.4621, 0.8448],

0.3371, 0.4621, 0.3301



X3


[0.5378, 0.9000],
[0.3565, 0.8385],
[0.3418, 0.8484],

0.6319, 0.6319, 0.7130




[0.2000, 0.5378],
[0.2352, 0.7000],
[0.4279, 0.8000],

0.5295, 0.6634, 0.2885




[0.3680, 0.6325],
[0.4210, 0.9000],
[0.1614, 0.5000],

0.5626, 0.5426, 0.4000



X4


[0.5101, 0.8000],
[0.3465, 0.6325],
[0.2416, 0.7449],

0.5000, 0.6133, 0.3807




[0.3031, 0.7000],
[0.2639, 0.8385],
[0.3881, 0.7000],

0.6000, 0.6041, 0.6118




[0.2352, 0.5578],
[0.5000, 0.9000],
[0.2416, 0.7647],

0.3618, 0.3618, 0.8000





(3)

Step3. Let the weight of attributes are W = {0.35, 0.30, 0.35}, using NCWG operators on attributes
A’s we get Equation (4),
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NCWG =



X1


[0.2375, 0.6195],
[0.2885, 0.7916],
[0.3567, 0.8146],

0.6315, 0.5757, 0.2851



X2


[0.4426, 0.7657],
[0.2165, 0.5915],
[0.5382, 0.7804],

0.4827, 0.5729, 0.5282



X3


[0.3500, 0.6616],
[0.3335, 0.8142],
[0.3131, 0.7498],

0.5791, 0.6133, 0.4439



X4


[0.3327, 0.6774],
[0.3630, 0.7787],
[0.2888, 0.7396],

0.4906, 0.5359, 0.5692





(4)

Step4. Using the score function we rank the alternatives as:
S(X1) = 0.0321, S(X2) = 0.0548, S(X3) = 0.0839 and S(X4) = −0.0969, X3 > X2 > X1 > X4

The most desirable alternative is X3.

7. Conclusions

Dealing with real life problems, decision makers encounter incomplete and vague data.
The characteristics of neutrosophic cubic sets enablesdecision makers to deal with such a situation.
Consequently, for each situation we defined the algebraic and Einstein sum, product and scalar
multiplication. It is often difficult to compare two or more neutrosophic cubic values. The score and
accuracy functions are defined to compare the neutrosophic cubic values values. Using these operations
we defined neutrosophic cubic geometric, neutrosophic cubic weighted geometric, neutrosophic cubic
Einstein geometric, and neutrosophic cubic Einstein weighted geometric aggregation operators with
some useful properties. In the next section, a multi-criteria decision making algorithm was constructed.
In the last section, a daily life problem was solved usingmulti-criteria decision making method
(MCDM). This paper is based on some basic definitions and aggregation operators, which can be
further extended to new horizons, like neutrosophic cubic hybrid geometric and neutrosophic cubic
Einstein hybrid geometric aggregation operators.
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Neutrosophic Image Segmentation 
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the forms of texture, intensity or color. If two pixels belong to adja-
cent regions, their characteristics differ [48]. Therefore, image seg-

mentation is performed in order to locate objects and boundaries. 
It leads to the assignment of a specific label to each pixel in an 
image. Regional based segmentation selects a seed pixel and then 
merges similar pixels around it. Then, there are segmentation tech-
niques based on clustering like K-Means. However, they have their 
own limitations in the form of overlapping images, computational 
cost, difficulty in estimating, etc. Hence, more sophisticated meth-
ods are used such as image segmentation using fuzzy algorithms, 
pattern recognition [42] and machine learning [43]. However, 
these advanced methods have limitations like lack of robustness 
and variability. Hence, there is a need to present a method of image 
segmentation that is contemporary and a step ahead. We present 
neutrosophic image segmentation as a result [47].

Factorized Directional Bandpass; NSC, Neutrosophic Similarity Clustering; SVM,
Support vector machine; FOM, Figure of Merit; ROC, Receiver operating character-
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This paper explores various properties of Neutrosophic sets (NS) and proposes a novel idea on Image

Sudan Jha, Le Hoang Son, Raghvendra Kumar, Ishaani Priyadarshini, Florentin 
Smarandache, Hoang Viet Long (2019). Neutrosophic Image Segmentation with Dice 
Coefficients. Measurement 134, 762-772; DOI: 10.1016/j.measurement.2018.11.006 
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using NS. A theoretical Neutrosophic model is proposed to reduce uncertainty from miss-
des, we also tackle the problem of image segmentation with fewer assumptions. Min-Max
is used to reduce any uncertain noise in an image due to a number of factors during image

xt, we apply activation functions to resolve the non-linearity in the image followed by the
mbership functions. These sets are then transformed and compared with others to find sim-
issimilarities. Neutrosophic Sets and Dice’s Coefficients are fused to ensure proper evalua-
ainty of the missing data and their indeterminacy for image segmentation. The proposed
erimentally validated.

Abbreviations: NS, Neutrosophic Sets; DScore, Dice’s Coefficients; NL, Neutro-
sophic Logic; NM, Neutrosophic Measure; NI, Neutrosophic Integral; NP, Neutro-
sophic Probability; FS, Fuzzy Set; IFS, Intuitionistic Fuzzy Set; RS, Rough Set; INS,
Interval Valued NS; GPU, Graphics processing units; ABC, Artificial Bee Colony; FDB,
istic; T, E, C, R, P, D, t, I, f, F, X, Threshold based, Edge-based, Cluster-based, Region-
based, PDE-based, Deep-learning based, truth, numerical indeterminacy, falsehood,
falsehood membership function, universe of discourse; SNS, Soft Neutrosophic Sets.
1. Introduction

An image incorporates information which is needed to analyze
through the process of Image Segmentation. Partitioning of an
image into several of these segments (pixels or super-pixels) which
is confined to a particular region bound by some characteristics in
Neutrosophic science incorporates neutrosophic logic (NL) and
its applications in many fields. It is conceivable to characterize
the neutrosophic measure (NM), neutrosophic integral (NI), neu-
trosophic probability (NP) in light of the fact that there are differ-
ent kinds of indeterminacies we have to highlight [50–54]. NM is a
speculation of the established measure for the situation where the
space containing some indeterminacy whereas NP is a speculation
of the established and uncertain probabilities. A few traditional
probability rules are balanced as NP rules. Moreover, they
can be shown by different particular methodologies along with
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the likelihood theory, fuzzy set (FS) [1], rough set (RS) [2], intu-
itionistic fuzzy set (IFS) [3], and neutrosophic set (NS) [3]. Molodt-
sov [4] successfully proposed a novel delicate set theory by
utilizing traditional sets since it has been brought up that delicate
sets are not appropriate to manage dubious and fuzzy parameters.
IFSs can just deal with inadequate data in light of the fact that the
whole of degree genuine, indeterminacy and false is one in IFSs.
However, NSs can deal with the uncertain and contrasting data
which exist regularly in conviction frameworks in NS since inde-
terminacy is evaluated with free truth-membership,
indeterminacy-membership and lie membership [5]. NSs can han-
dle inadequate data, yet not the uncertain and contrasting data
which exist normally in genuine circumstances. Several other
related research papers featured neutrosophic science [49,50].
Broumi and Smarandache [6] presented the idea of correlation
coefficients of interval valued NS (INS). Solis and Panoutsos [7]
exhibited another system for making Granular Computing,
Neural-Fuzzy displaying structures by means of Neutrosophic
Logic to sort-out the problem of vulnerability amid the information
granulation process.

The previous works focused on specific characteristics like tex-
ture, intensity or color. However, they have limitations in the form
of overlapping images, computational cost, difficulty in estimating,
etc. Hence, we use Dice’s Coefficients (DScore) to resolve earlier
sophisticated methods and to ensure proper evaluation of uncer-
tainty of the missing data for image segmentation. Specifically,
we propose new definitions regarding various features of an image
using membership functions, activating them and then applying
fitness functions. A universe of discourse has been defined, and
subsequently the subsets are used with pixels as the most impor-
tant parameters. We use fuzzy set partially and neutrosophic
set along with rigorous mathematical operations on real numbers
with real standard subsets. They involve crisping an image into
smaller non-overlapping subsets so that the characteristics of the
image can be explored at a molecular level for better analysis.
Mathematical modeling is done for better accuracy for identifying
an object. This is our contribution in this paper.

The rest of the paper is organized as follows: Section 2 presents
the background of the paper. Section 3 shows the proposed
method. Sections 4 and 5 give experiments and conclusions.
2. Literature review

In this section, we list out a few of the existing works that target
the process of image segmentation. Taha and Hanbury [31] pro-
posed an efficient evaluation tool for 3D medical image segmenta-
tion. Some of the metrics considered for this research are
sensitivity, specificity, rand index, Jaccard index, average distance,
probabilistic distance, etc. Thai et al. [32] presented a filter design
and performance evaluation for fingerprint image segmentation
using the factorized directional bandpass (FDB) segmentation
method. A systematic performance comparison was conducted
between the FDB method and other fingerprint image segmenta-
tion algorithms. For evaluation, the metrics considered are a num-
ber of orientations in Angular pass filter, Order of Butterworth
bandpass filter, constant for selecting morphology threshold, the
number of neighboring blocks, etc. Several aspects of fingerprint
image quality may affect segmentation (dryness, ghost fingerprint,
small scale noise, image artifacts, scars and creases). Accurate ver-
ification may become difficult due to distortions or overlapping of
images. Bose and Mali [33] proposed an image segmentation algo-
rithm based on Fuzzy Based Artificial Bee Colony and Fuzzy C
means. It takes randomized characters and performs better in
terms of convergence, time complexity, robustness and accuracy.
The images considered for the research are synthetic, medical
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and texture images whose segmentation are difficult due to noise
and ambiguous. Validity index and time complexity have been
used to validate the superiority of the proposed work. The pro-
posed work is well supported by the experimental results, but
there could be several limitations of using the Artificial Bee Colony
method. It does not take any secondary information and may
require new fitness tests on new algorithm parameters. Since it
performs a higher number of object evaluations, it may be very
slow during sequential processing.

Moftah et al. [34] introduced adaptive k-means clustering algo-
rithm for image segmentation. The idea is to perform image seg-
mentation based on identifying target objects by virtue of
optimizations so as to maintain optimum results during iterations.
It is an extension to the traditional k-means clustering algorithm
so as to increase effectiveness and efficiency. The experimental
results exhibit the overall performance of the adaptive clustering
algorithm in terms of entropy, standard deviation, mean, circular-
ity, orientation and solidity. The major drawback is the fact that
there were three samples considered, out of which for only one
sample the proposed algorithm showed significant increase. For
the other two samples, there was not much improvement. Liu
et al. [35] presented a modified particle swarm optimization tech-
nique for image segmentation. The aim is to address the issue of
computational expense by applying strategies to improve the per-
formance of the initial particle swarm optimization technique. 16
standard test images have been considered in the experimental
analysis, which validated that the modified technique is much
more superior than the original method in terms of performance
and quality. The parameters considered are twelve benchmark
functions like quadric, rosenbrock, step, quadric noise, ratrigin,
noncontinuous restrain, etc. The issue with the proposed method
is the small dataset an only 30 independent runs that have been
considered for validating the research, which questions the robust-
ness and application in real world scenarios.

Ayyoub et al. [36] proposed a GPU based implementation of the
fuzzy C-means algorithm for image segmentation to address the
issue of large data set and slow processing. The idea is to introduce
a parallel processing unit to validate the same. A faster variant of
fuzzy-c means has been implemented on different GPU cards i.e.,
Tesla M2070 and Tesla K20m. Experimental analysis reveals that
the proposed technique is significantly fast. Speed up, execution
time, performance and memory are some parameters which vali-
date the experimental analysis. Due to parallel processing, the pro-
cess may be computationally expensive. Kloster et al. [37]
suggested an image segmentation and outline feature extraction
tool for microscopic analysis. The tool SHERPA (SHapE Recognition,
Processing and Analysis) could identify and measure objects, and
incorporate functions like object identification and feature extrac-
tion. It could also perform full image analysis, multiple segmenta-
tion methods, matching an object against templates, object scoring
andprocessing largebatchof images. Several parameterswere taken
into consideration for the same, some of which are area, parameter,
width, height, optimization method, standard deviation, ellipticity,
roundness, compactness etc. The issuewith the proposed technique
is that it cannot deal with texture and structural features; thereby
questioning its versatility and identification specificity.

Chen et al. [38] suggested an interactive image segmentation
method in hand gesture recognition so as to recognize the rate of
hand gestures effectively. The Gaussian mixture model has been
used for image modelling, whereas Gibbs random field is associ-
ated with image segmentation and minimization of Gibbs energy
for optimal segmentation. The result has been tested on an image
dataset and compared with others. The parameters considered are
region accuracy and boundary accuracy. Five hand gestures have
been relied on for experimental analysis. The limitation of the pro-
posed research work is that it cannot handle issues like highlights,
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shadows and image distortions. Yu et al. [39] introduced a Seman-
tic Image Segmentation Method with Multiple Adjacency Trees and
Multiscale Features. A segment-based classifier and conditional
random field are deployed in order to generate large scale regions,
whose features have been used for training a region-based classi-
fier. For capturing context, a multiple adjacency tree model has
been suggested where each tree denotes a relevant region which
can be further generated graphs. Relying on a few assumptions,
some inference can be made. MSRC-21 and Stanford background
datasets have been used for experimentations. The accuracy is
determined by Support Vector Machines. The limitation of this
research work lies in the assumptions made in order to make infer-
ences. Further, using SVM has its own limitations like slow pro-
cessing time.

Guo et al. [40] suggested a novel image segmentation approach
based on neutrosophic c-means clustering and indeterminacy fil-
tering. The idea is to transfer the image into neutrosophic domain
and then the indeterminacy value of the neutrosophic image,
devise an indeterminacy filter. Neutrosophic c-means clustering
then clusters the pixels into several groups to find intensity. After
the indeterminacy filtering operation, segmentation results are
produced. The neutrosophic similarity clustering (NSC) segmenta-
tion algorithm has been compared to the proposed method quan-
titatively. Signal to noise ratio and misclassification error measure
are some parameters considered for this research. Figure of Merit
(FOM) has been used to measure the difference between the real
results with the ideal segmentation result and the difference is
not significant. Other works can be found in [23–29,41,46,55–67].
3. Methodology

3.1. Ideas

A universe of discourse is defined, and subsequently the subsets
have been used using pixels as the pixels are the most important
parameters for any image segmentation. We use Neutrosophic
set along with DScore with rigorous mathematical operations on
real numbers with real standard subsets. It involves crisping an
image into smaller non-overlapping subsets for better analysis. A
new definition of DScore is shown as:

Dscore ¼ S \ T
S [ T

where S is the area of segmentation of the object using our method
and T is the manual or original area of segmentation of the object or
the ground truth value. To calculate DScore, we have assumed the
following parameters which are applicable to all images:

Threshold based = ‘‘T”,
Edge-based = ‘‘E”,
Cluster-based = ‘‘C”,
Region-based = ‘‘R”,
PDE-based = ‘‘P”,
Deep-learning based = ‘‘D”.

Here the (t, I, f) -NS is referred as t = truth, I = numerical indeter-
minacy, f = falsehood. The (t, I, f) [3] are non-identical from the
Neutrosophic Algebraic Structures (NAS) defined in the form of A
+ bI, where I = literal Indeterminacy. We render the image as I-
NAS i.e., this is an algebraic structure established on indeterminacy
‘‘I” only. However, we can merge them and get the (t, I, f) -INAS.
This means that the algebraic structures based on Neutrosophic
Ontology (NoU) in the form a + bI where a and b are the real num-
bers, a is the determinant part on N, bI is the in-determinant part of
N, bI # mI + nI = (m + n) I, 0∙I = 0, I^n = I for integer n � 1, I/
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I = undefined. When a, b are real numbers, then a + bI gives real
numbers as results. If at least one of a, b is a complex number, then
a + bI is known as a N complex number. These structures, in any
field of learning, are considered from a NL perspective, i.e., from
the truth-indeterminacy-falsehood (t, i, f) values [7,25,27,28].

3.2. Support Neutrosophic set (SNS)

Let X be a nonempty set, where x 2 X, called the universe of dis-
course. First, let us define some terms about fuzzy set and Neutro-
sophic set. Here, we use mathematical operations on real numbers.
Let A1 and A2 be two real standard or non-standard subsets, then
we can apply some basic set operations such as [8–24]:

A1þ A2 ¼ xjx ¼ a1þ a2; a1 2 A1; a2 2 A2f g

A1� A2 ¼ xjx ¼ a1� a2; a1 2 A1; a2 2 A2f g
Now, we perform complementary operations and compute the

Cross Product of the two sets, A1 and A2:

A2� ¼ 1þ� �� A2 ¼ xjx ¼ 1� a2; a2 2 A2f g

A1� A2 ¼ xjx ¼ a1� a2; a1 2 A1; a2 2 A2f g
Given a subset Y of a partially ordered set X, the Infimum, rep-

resented as in (Y), is the is greatest element in X, that is, X ({all ele-
ments in Y}, Conversely, The Suprema of Z on a partially ordered
set X, represented as sup (Z), is the smallest element in X that is,
X ({all elements in Z}, Therefore, we can define the logical opera-
tions in terms of Infimum and supreme as follows:

Infimum: A1 _ A2 = [max {Inf (A1), Inf (A2)}, max {sup (A1), sup
(A2)}].

Suprema: A1 ^ A2 = [min{inf(A1) , inf(A2)} , min{sup(A1) , sup
(A2)}].

Observation: Applying Demorgan’s Laws, let us consider two
cases:

1. If inf(A1) � inf(A2) and sup(A1) � sup(A2).

Case 1 above implies that complement of inf(A2) is less than
complement of inf(A1) and same for the suprema. From above def-
initions, we prove that

A1 ^ A2 ¼ A1; A1 _ A2 ¼ A3

2. If inf(A1) � inf(A2) � sup(A1) � sup(A2).

Then, the logical operations can be expressed as the set of infi-
mums and suprema.

Definition 1: A fuzzy set A on the universe X is a function which
maps each element in the universe with a truth value [0,1] +, also
called the degree of membership of an element.

Definition 2: A Neutrosophic set A on the universe X is a func-
tion which maps each element with various set membership func-
tions, such as truth membership function T, indeterminacy-
membership function I and falsehood membership function F, each
representing a truth value. Combining a Neutrosophic set with a
fuzzy set leads to a new concept called support-Neutrosophic set
(SNS). In which, there are four membership functions of each ele-
ment in a given set.

Definition 3: A support Neutrosophic set (SNS) in the universe
X is a function of four membership functions each corresponding to
truth values of either 0 or 1. We denote support Neutrosophic set
(SNS) as:

A ¼ x; T xð Þ; I xð Þ; F xð Þ; S xð Þð Þjx 2 Xf g:
2
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If universe X is continuous then the SNS is the integration of the
mapping between each membership function divided by the ele-
ments over the entire universe X

A ¼
Z

< T xð Þ; I xð Þ; F xð Þ; S xð Þ > =x:

If universe X is discrete, then, SNS can be written as the sum of
each membership divided by the elements of the universe. If T(x)
= I(x) = F(x) = S(x) = 0, then x is called the worst element. If T(x) = I(x)
= F(x) = S(x) = 1, then x is called the best element.

Observations:

1. If the support membership function S(x) attains a constant
value c, in a universe of truth labels [0,1] + then the support
Neutrosophic set reduces to a Neutrosophic set.

2. A support-Neutrosophic set is called a standard Neutrosophic
set if all the membership functions belong from the set [0,1]
and the sum of the functions is less than 1 always.

3. A support-Neutrosophic set is called an intuitionistic fuzzy set if
the truth T(x) and falsity FA(x) membership functions belong to
[0,1] with their sum less than 1 and the Indeterminacy function
I (x) is zero.

4. A constant SNS set can be represented using four symbols hav-
ing a value between [0,1].

Definition 4: The complement of a SNS set A is denoted by c(A).
Here, the truth membership function of c(A) is equal to the Falsity
membership function, and vice versa, which is obvious as we are
taking the complement of the SNS set. The indeterminacy set of
the complementary SNS set is equal to the complement of each ele-
ment of the original indeterminacy function. The same goes for the
support membership function.

Definition 5: A SNS set A is a subset SNS set B if and only if the
following conditions are satisfied:

1. The infimum and suprema of T(x) for set A is less than the infi-
mum and suprema of T(x) for set B.

2. The infimum and suprema of F(x) of set A is greater than the
infimum and suprema for F(x) of set B.

3. The infimum and suprema of S(x) for set A is less than the infi-
mum and suprema of S(x) of set B.

Definition 6: The intersection of two SNS sets A and B is
D ¼ A \ B, defined as follows:

1. The T (x), I (x) and S (x) of D is defined as the corresponding
AND functions of the sets A and B.

2. The F (x) of D is defined as the corresponding OR functions of
sets A and B.

Example 1: Let U = {x1, x2, x3, x4} be the universe of discourse.
Then the support Neutrosophic set A is defined as the sum of all
membership functions divided over each element of the universe.
Let A = <[0.5,0.8]. [0.4,0.6], [0.2,0.7], [0.7,0.9] >/x1 +. . .., where, T
(x) = [0.5,0.8], I(x) = [0.4,0.6], F (x) = [0.2,0.7] and S (x) = [0.7,0.9].
Then the complement of SNS set A, c (A), is given as c (A) = <
[0.2,0.7], [0.4,0.6], [0.5,0.8], [0.1,0.3]>, Here, we see that T(x) of c
(A) = F (x) of A, and F (x) of A = T(x) of c (A)

Definition 7 (Distance between support-Neutrosophic sets):
Let X = {x1, x2, x3. . .., x (n)} be the universe set. We define; two
support Neutrosophic sets A and B over X which is a universe of
discourse.

1. The Hamming distance – It is calculated as the sum of the dif-
ference between each corresponding membership function
value averaged over all the elements in the universe set.
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2. The Euclidean distance – It is calculated as the sum of squares of
the difference of the corresponding membership functions aver-
aged over all the elements in the universe U.

3.3. The proposed method

Neutrosophic Sets can be applied on images to acquire under-
standing on indeterminate and missing data. That is, we are able
to apply Neutrosophic sets on missing pixels and still be able to
extract information about them. Our method uses activation func-
tions to extract features in a from set of pixels such as edges and
circles and then use membership functions to derive useful proper-
ties on shades and gradients. A Neutrosophic image Ia can be
defined as a set of membership functions, Ts, Is and Fs. Each image
consists of pixel coordinates P (x, y) defined on arbitrary axes.
Therefore, each pixel can be assigned membership value with Ts
representing the foreground Is representing the pixel intensity
and Fs representing the background or the channels. Given an
image Ia, subjected to various kinds of noise, which can be handled
by normalization to standardize the pixels. We used non-linear
normalization to account for missing and indeterminate data.

I nð Þ ¼ Max að Þ �Min að Þ � 1=exp 1þ I að Þ � b
a

� �
þMin að Þ ð1Þ

where I (n) is the normalized image with reduced noise, Max (a) and
Min (a) are the maximum and minimum pixel intensities in the
image, b is the range of pixel intensity values around which image
I (a) is centered, a is the width of the input image which is same as
the total number of pixels in the image with noise reduction. We
apply activation functions to find non-linearity on the segments
of the image and found patterns by applying them sequentially on
each row. Using Eq. (1), we use a filter size of 2 * 2 with stride 1
and apply a non-linear sigmoid activation function, which serves
two purposes:

1. Firstly, it captures shapes such as lines and edges, which are
crucial for object detection.

2. Secondly, it squashes each pixel value in the range [0,1] to be
used by membership functions. Thus, we apply a non-linear sig-
moid activation function S (z) as below:

S zð Þ ¼ 1= 1þ exp �zð Þð Þ ð2Þ
where z is the mean pixel intensity value of the filter which is being
activated. From Eq. (2), it is clear that the filters are sets of pixel val-
ues based on indeterminacy used to deal with indeterminate and
missing data. But for better and smoother segmentation, we used
a Gaussian function to smooth out the curves for standardization
which is depicted in Eq. (3).

G I x; yð Þð Þ ¼ 1
2pr2 exp � x2 þ y2

� �
2r2

� �
ð3Þ

From this equation, we see that

1. If the indeterminacy intensities are low, the variance around
the neighborhood is low as well.

2. This results in lowering down the value of rwhich make a less
smooth transition around the edges.

3. If r is large, the current filter neighborhood pixels become
smoother.

Therefore, in order to reduce the lowering value of r, the fol-
lowing equation is used. This is a linear variance function used to
transform the filter values to parameter values (Crisping)

r ¼ f I x; yð Þð Þ ¼ m � I x; yð Þ þ n ð4Þ
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where m and n are parameters of the linear function which are used
to transform the indeterminacy level to parameter level. A 2� 2 fil-
ter is a square filter consisting of 4 pixels. We take the mean of
these four-pixel values and apply the Gaussian standardization
and the activation function. Using the activated values on pixel
intensities, we define the truth and indeterminacy membership
functionality on the local neighborhood as:

T x; yð Þ ¼ i x; yð Þ � i minð Þ
i maxð Þ � i minð Þ ð5Þ

I x; yð Þ ¼ gd x; yð Þ � gd minð Þ
gd maxð Þ � gd minð Þ ð6Þ

where I(x,y) corresponds to the intensity of pixel P(x,y) and gd(x,y)
corresponds to the gradient magnitude of pixel P(x,y).

Proposed Algorithm: The entire algorithm can be summarized
in the following steps:

Step 1: Normalize the Image using Min-Max Method.
Step 2: Apply activation function on successive pixels over the
entire image using Gaussian filtering.
Step 3: Find the regions of interest by capturing pixels with
higher scores after activation.
Step 4: Compute the membership functions T, I and F by Eqs.
((2), (5), (6)).
Step 5: From the Neutrosophic sets for each object to be
identified.
Step 6: Perform De-Neutrosophication and Contrast Reduction
to re-construct the objects of interest in the image.
Step 7: Present the results in a Tabular form of fitness scores or
values.

The above algorithm can be used for any number of images. For
large datasets, we can perform automated using various programs
and check the algorithm’s accuracy. We can determine the accu-
racy of our model using Dice’s coefficient.

3.4. An illustrative example

In the grayscale image (Fig. 1), it is evident that the background
is distorted and not visible. This corresponds to our falsehood
membership function to be nearly undefined [30]. The foreground
of the image is well defined around the region of the crow, which is
the main focus on segmentation. Our goal is to segment each fea-
ture such as, the distorted or indeterminate bushes in the back-
ground, the features of the crow such as its beak, feathers and its
tail, etc. We start by normalizing the image to standardize it and
reduce any unnecessary noise in the background. We apply non-
Fig. 1. Original image to be used for segmentation.
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linear normalization function in each row and column pixels by
using the sigmoid function to transform them to deal with indeter-
minate pixel values such as the bush near the crow. After normal-
ization, we see that the indeterminacy still prevails, but has
improved significantly accordingly with the foreground image.
Now, we apply the sigmoid activation functions by taking 2 � 2 fil-
ters to account for the various shapes and edges. We start by
applying them from the top-left corner and increment each filter
by a stride of 1.

For understanding how this works, we take a small filter seg-
ment near the head of the crow. Applying the activation function,
near the neighborhood, we find that outside the region of the head,
the value of the activation function is significantly low compared
to its corresponding filter value after that. We also find that this
pattern persists till the end. From this, we can find the edges signif-
icantly easier for segmentation.

After applying the activation function, the pixel intensities are
squashed between [0,1]. We prepare Neutrosophic sets by defining
the truth, indeterminacy and falsehood membership functions. We
take each row of the image as a set of Neutrosophics values (Fig. 2).
The truth membership function T accounts for the intensity of the
pixels in the foreground. We normalize the foreground by using
the Min-Max method. In our example, the foreground consists of
the crow. The truth membership function defines the patterns in
the crow.

The indeterminacy membership function I use the gradients or
shades of the neighboring pixels into account (Fig. 3). Therefore, it
is a function that defines the lower saturation regions in our image
such as the bushes in our example.

The falsehood membership function F operates in the back-
ground as opposed to the truth membership function. It would
mainly serve by applying the filters on a colored image which
has more than one channel. In our image, we have three channels,
the falsehood membership function is same as the truth member-
ship function T for each channel. We then define a Neutrosophic
set A by combining these three functions for each pixel x in the
pixel-space X. Here the universe of discourse X is the set of all pix-
els in the image, also called as the pixel-space of the image.

A ¼ x; T xð Þ; I xð Þ; F xð Þð Þjx 2 Xf g ð7Þ

Now, using this Neutrosophic set, we define a fitness function L,
also called Loss function, which will determine the quality of our
output generation. This involves the calculation of average Neutro-
sophic values of each membership function. This analysis shows
better insights such as segmentation score etc.

L ¼ T xð Þ þ I xð Þ þ F xð Þ
3

� 	
for all x 2 X ð8Þ
Fig. 2. Truth values after normalization in image.
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Fig. 3. Indeterminate values in image.
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As we apply the activation functions to downgrade our image, it
may look distorted, due to which we need to reconstruct the image
for better clarity. Here we use, de-Neutrosophication and contrast
reduction to backtrack to a better image clarification. A Neutro-
sophic set N can be transformed to a de-Neutrosophic set by the
following transformation

H xð Þ ¼ a � T xð Þ þ b � F xð Þ
4

þ c � I xð Þ
2

ð9Þ
den H xð Þð Þ ¼
R b
a H xð Þ � xdxR b

a H xð Þdx
ð10Þ

Here, a;bandc are parameters where 0 � a;b; c � 1 and
aþ bþ c ¼ 1, den (H (x)) is the de-Neutrosophic set which is calcu-
lated using the center of gravity method. The de-Neutrosophic set
consists of the pixel values corresponding to the objects we want
to segment. Hence, they can be transformed and compared with
other images for better understanding of the model. Let N and M
be two Neutrosophic sets, we can find similarities with them using
set theory. Using intersect, we can find similarities between two
sets.

A ¼ N \MjT Nð Þ ^ T Mð Þ; I Nð Þ ^ I Mð Þ; F Nð Þ _ F Mð Þ ð11Þ
Using Union, it might be possible to combine two pixel sets as

well.

B ¼ N [MjT Nð Þ _ T Mð Þ; I Nð Þ _ I Mð Þ; F Nð Þ ^ F Mð Þ ð12Þ
Using complement, we can get the negative of an image.

C ¼ N jT Nð Þ ¼ Fc Nð Þ; F Nð Þ ¼ Tc Nð Þ; Ic Nð Þ ¼ 1þ � I Nð Þ ð13Þ

We now use the contrast reduction methods from the Eqs.
((11)–(13)) to further clarify the image. We found that by using
maximum clarity, the model had accurately identified the object
in the frame.
Fig. 4. Normalized image using non-linear Min-Max Method.

Table 1
Observations of bush, head and tail from original image 1.

Type Parameters of various types of observations

Bush Length
(0.23,0.82,0.23)

Width
(0.1,0.5,0.1)

Tip
(0.02,0.09,0.02)

Head Break
(0.86, 0.78,0.86)

Crown
(0.96,0.54,0.96)

Eyes
(0.23,0.67,0.23)

Tail Hand
(0.36,0.25,0.36)

Legs
(0.24,0.35,0.24)

Fingers
(0.48,0.89,0.48)
4. Result and discussions

In this section, we focus on extracting the image of the crow
[30] to discard other relevant features so that there are no external
noises. The Python library OpenCV is a scientific library for solving
problems in the computer vision domain. OpenCV takes an image
as input and produces an array representing its pixel values as out-
put. The pixel values are in the range (0–255). The original image is
converted into its corresponding pixel formats by using OpenCV 2
function imread () converting it to a numpy array. The pseudocode
for it can be given as below:
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Import cv2

im = imread(‘file.jpg’)
The image can be converted to grayscale format
im_gray = cv2.cvtColor(im, cv2.BGR2GRAY)
In order to flip an image vertically, we can use OpenCV flip()

function which helps us in rotating the image by certain
degree. The image can be rotated vertically by 180 degrees. The
pseudocode is given as follows:

im_flip = cv2.flip(im, 1)
The image can be rescaled to a certain degree using OpenCV

rescale() function. We rescaled the image to 1.5x to better
analyze our images using the proposed method. The
followingpseudocode can be used to rescale any image.

r = 1.5 * im.shape[1]
Dim = (100, int(im.shape[0] * r)
resized = cv2.resize(im, dim, interpolation = cv2.INTER_AREA)

Firstly, we use normalization to reduce any kind of internal noise.
This gives us a better understanding of the objects in the frame,
such as the blurred bushes in the background. We use the Min-
Max Scaler normalization technique, which is a non-linear normal-
ization process to reduce noise. Let I(X) be the image where X is the
pixel-space set or the universe of discourse. Let X = {x1, x2, x3 . . .. xn}
where xi represents pixels of the flattened image. Then, for the
above image we have:

N x ið Þð Þ ¼ 255� 0ð Þ � 1=exp 1þ x ið Þ � 1001ð Þ=1395ð Þ þ 0 ð16Þ
Using the Min-Max Normalization technique (Fig. 4), it becomes

easier to interpret data and reduce noise and other factors which
hinder Image processing in general. Therefore, using Normalization
is a good start on reducing complexity. For the above image, we get
the following normalized image:

We then apply the sigmoid activation function on each Gaus-
sian filter as weights successively on each pixel. Then we compare
each output value by the adjacent one. If the adjacent value is less



Fig. 5. (a–c): The observational result following Table 2.

Table 2
Observations of bush, head and tail by flipping the original image 1 upside down.

Type Parameters of various types of observations

Bush Length
(0.56,0.78,0.0.56)

Width
(0.21,0.4,0.21)

Tip
(0.07, 0.12,0.07)

Head Break
(0.87, 0.65,0.87)

Crown
(0.75,0.65,0.75)

Eyes
(0.25,0.78,0.25)

Tail Hand
(0.40,0.89,0.40)

Legs
(0.27,0.37,0.27)

Fingers
(0.50,0.87,0.50)

Table 3
Observations of bush, head and tail by rescaling the original image by 1.5 � times.

Type Parameters of various types of observations

Bush Length
(0.89,0.74,0.0.89)

Width
(0.30,0.47,0.30)

Tip
(0.89, 0.88,0.89)

Head Break
(0.56, 0.23,0.0.56)

Crown
(0.78,0.68,0.78)

Eyes
(0.52,0.34,0.52)

Tail Hand
(0.60,0.64,0.60)

Legs
(0.67,0.75,0.67)

Fingers
(0.50,0.78,0.50)
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compared to the next pixel, we start to prepare our Neutrosophic
set from the next pixel till the end of the pattern. Given a pixel
x ið Þ 2 X, the sigmoid activation function is calculated for each
Gaussian filter separately.

G I x; yð Þð Þ ¼ 1
2pr2 exp � x2 þ y2

� �
2r2

� �
ð17Þ
S x ið Þð Þ ¼ 1= 1þ exp x ið Þð Þð Þ ð18Þ
R I x; yð Þð Þ ¼ G I x; yð Þð Þ � S x ið Þð Þ ð19Þ

Hare, R (I (x, y)) represents the transformed Image after applying
the activation function. The Gaussian function keeps track whether
the pixels are changing or not. According to those observations, we
can pick the pixels which we are interested in and from their corre-
sponding Neutrosophic sets. We form Neutrosophic sets for three
sections named, Bush, Head and Tail, each corresponding to the
bush, the crow’s head, and tail. We then transform the image by
rescaling and flipping the image and computing the Neutrosophic
Fig. 6. (a–c): The Observationa
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values for each transformed image. For the original image, we find
the following observations (Table 1):

Referring to Fig. 5(a)–(c), it can be inferred that the orientation
of length is in proportion with that of Tip and Width whereas the
orientation for Head are almost same. But if we infer to the orien-
tation of Tail, the Tail is highly proportional with respect to Tail
Legs and tail Heads (Table 2).

Referring to Fig. 6(a)–(c), it can be inferred that the orientation
of length for head is almost consistent whereas the length is high-
est for ‘‘Tail”. The reason is due to upside down position of the orig-
inal image. Likewise, the orientation for Tip gradually increases
from Bush to Tail. If we infer to the orientation of Head, it is very
clear that the Head is highly proportional with respect to Tail
and Bush. We now rescale the image by 1.5 times i.e., the original
image � 1.5 times. The observations are tabulated as below
(Table 3).

Referring to Fig. 7(a)–(c), it can be inferred that the orientation
of Tip, Width and length are almost consistent for all the three i.e.,
Bush, Head and Tail. Thus, this result infers to the fact that even if
we change and rescale our image, the Neutrosophic sets do not
l result following Table 2.
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Fig. 7. (a–c): The Observational result following Table 4.

Fig. 8. Final image showing object of interest (crow) in a frame.

Table 4
Comparison for different image orientations using Dscore with neutrosophic sets.

Parameters of various types of observations taken using the
DScore

Orientation Bush Head Tail

Normal Length
(0.21,0.75,0.19)
Width
(0.09,0.3,0.03)
Tip (0.01,
0.04,0.03)

Beak
(0.66,0.68,0.68)
Crown
(0.86,0.24,0.76)
Eyes
(0.13,0.37,0.32)

Hand
(0.21,0.12,0.13)
Legs
(0.16,0.23,0.14)
Fingers
(0.24,0.67,0.29)

Upside
Down

Length (0.46,0.38,
0.0.46) Width
(0.11,0.3,0.16), Tip
(0.04, 0.08,0.04)

Beak (0.75,
0.63,0.76), Crown
(0.64,0.46,0.64),
Eyes
(0.16,0.68,0.15)

Hand
(0.31,0.69,0.20),
Legs
(0.21,0.27,0.19),
Fingers
(0.43,0.65,0.42)

Rescaling
(1.5x)

Length (0.67,0.67,
0.0.71) Width
(0.20,0.37,0.21),
Tip (0.79,
0.78,0.69)

Beak (0.46, 0.13,
0.0.46), Crown
(0.63,0.62,0.65),
Eyes
(0.42,0.30,0.42)

Hand
(0.44,0.44,0.48),
Legs
(0.61,0.67,0.48),
Fingers
(0.49,0.65,0.46)
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change much, i.e., whatever be the pixel data presented in the
same image, the final sets will not alter much. Hence, our observa-
tions closely resemble with that of the theoretical observation.
Now, the above data can be normalized and cumulatively tabu-
lated as below (Fig. 8).
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From the above observations (Table 4), we find that even if we
change and rescale our image, the Neutrosophic sets do not change
much. This means that however, be the data presented, the final
sets will not change much at all and we will get roughly the same
results always. This can be proved easily using properties of Neu-
trosophic sets. Hence, our observations closely resemble the theo-
retical observations. The below image is the final image after
performing all the steps, which shows us the object crow in the
frame which is of best interest to us. The comparison between
the various segmentation methods with the descriptions as well
as advantages and disadvantages are indicated in Table 5.

The Segmentation Method for Threshold based using DScore is
observed to be 0.56 whereas using Neutrosophic sets, we obtained
0.78 which is much better accurate value in comparison all other
segmentation methods (Table 6).

Now we have shown this analysis with the help of bar graph
visualization (Fig. 9).

The proposed method performs better than others as it requires
less computation power and time to find the results (Table 7). The
results were verified and validated by humans and the method
works fine. It is important to note that this method takes very
few assumptions about the data provided. The data can be pre-
sented with indeterminate form and in different orientations and
sizes. The model works on these types of scenarios as well, which
makes it unique from other previous works done on Image Seg-
mentation using Neutrosophic sets. In medical diagnosis as an
example, most of the data is indeterminate and come in various
orientations as well. Sometimes, we need to use sonar projections
of certain organs of the body which are captured better at certain



Table 5
Comparison between the various types of image segmentation methods.

Segmentation
Methods

Description Advantages Disadvantages

Threshold
based

Find particular
threshold values
of the image

No need to hold
the previous
image related
information

Highly dependent
on peaks, simplest
method

Edge-based Discontinuity
detection

Relevant for
images having
good contrast

Not suitable a
large

Cluster-based Homogeneous
clusters

Use of
membership
function to
address the real-
life problems

The evaluating
membership
function is not an
easy task

Region-based Based on splitting
image into
consistent regions

More protective
for noise

Expensive in
terms of memory
and time

PDE-based Used differential
equations

Fastest method Computational
complexity is
higher than
previous methods

Deep-learning
based

Replication of
learning process
for decision
making

Simple programs Training data time
is too high

Proposed
Work

Finding the
regions of interest
(ROI) by capturing
pixels with higher
scores after
activation to
compute the
membership
functions T, I and
F

This method can
be applied to any
number of
images and any
type of typical
problem (blurred
images)

No need to
training, so it is
less time
consuming than
deep learning
approaches

Table 6
Comparison between the various types of image segmentation methods and our
proposed model in terms of DScore value.

Segmentation methods Average D-score

Threshold based 0.56
Edge-based 0.62
Cluster-based 0.64
Region-based 0.67
PDE-based 0.70
Deep-learning based 0.73
Neutrosophic sets-based (Proposed work) 0.78

Fig. 9. Graphical representation of methods in terms of DScore.

Table 7
Comparison of the proposed work with existing ones.

No. Authors Existing methods Proposed method

1. Liang-
Chieh
Chen
et al. [44]

- Used benchmarking of
pre-release Cityscapes
dataset

- Performance is 63.1%

- We have used three ori-
entations of sample
crow images and the
datasets were generated
by ourselves (Section 4)

- Performance is 78% as
depicted in Table 7

2. Ma et al.
[13]

- Used a generalized
interval of Neutro-
sophic set values
(higher number of
assumptions)

- Aggregated the interval
Neutrosophic linguistic
information.

- Performance is 71%

- Very less assumptions
made in our paper, due
to which the results are
more absolute than their
work

- The model works on dif-
ferent types of scenarios
as well, which makes it
unique from them on
Image Segmentation
using Neutrosophic sets
because priority has
been given to each Neu-
trosophic Set values
(pixels) generated

- Performance is 78%
3. Irfan Deli

et al. [45]
- Define the concepts of

cut sets of SVN-
numbers

- Applied to single val-
ued trapezoidal neutro-
sophic numbers

- Developed a ranking
method by using the
concept of values and
ambiguities

- Our paper defines basic
concepts of Neutro-
sophic Set theory and

- Applicable in various
membership functions
and fitness functions

- Applied to multiple sets
of values

- Multiple set of values
experimented for differ-
ent image orientations

- No ambiguities
- We concluded with the

absolute performance
value of 78%
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orientations only. The same is true for X-ray images as well. In
these types of scenarios, Neutrosophic sets can be used effectively
to analyze the problems. In the future, we can optimize this
65
algorithm further to be applied to various other domains and sur-
pass the current state-of-the-art deep neural networks.
5. Conclusion

This paper explores the idea of applying Neutrosophic sets to
the domain of Image Segmentation. We firstly discussed various
properties of Neutrosophic sets and then lay out to tackle the prob-
lem of image segmentation with fewer assumptions. To accom-
plish this, we first used Min-Max Normalization to reduce any
uncertain noise in the image that may be caused due to a number
of factors during image capturing. Then, we applied activation
functions to account for non-linearities in the image. We then com-
puted the membership functions on different regions and formed
the Neutrosophic sets. These sets are then transformed and com-
pared with other sets to find similarities and dissimilarities.

Throughout the entire paper, we used images of a crow and pre-
sented our findings. It is worth noting that Neutrosophic sets can
be applied to datasets with missing data with different orienta-
tions. This calls for a better understanding of Neutrosophic systems
and their further research on solving complex problems simply and
replace the current state-of-the-art methodologies. Using Neutro-
sophic Sets and using Dice’s Coefficients (DScore), this paper has
resolved earlier sophisticated methods and ensured the proper
evaluation of the uncertainty of the missing data and their indeter-
minacy with various results to prove effectiveness for the image
processing and segmentation.
8
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The proposed work could be refined further in order to achieve
better results. Several other parameters may be considered for the
same:

1. Neutrosophic sets (NS) can be remarkably used along with neu-
ral networks to get in depth of various fields. Natural Language
Processing, Image Captioning etc are few of them.

2. Digital Communication have used lots of research to reduce
internal noise in an image. They have also used many filters
apart from quantization and sampling to reduce the noise and
errors in an image. However, the Neutrosophic Set theory can
be extensively used to predict indeterminacy and normalize
them using various membership functions.

3. NS can be used for noise detection and minimization using var-
ious factors, such as poor lighting, dust particles blockage, etc.
by normalization.

4. In short, the NS concept is best suitable in working conditions,
i.e., the real time problems. For example, in medical diagnosis, it
is very important to reduce noise before we perform any Image
Processing as it is impossible to find best. We used an existing
method for reducing noise which has proved effective in X-
ray images significantly high.
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Abstract: We define an ordinary single valued neutrosophic topology and obtain some of its basic
properties. In addition, we introduce the concept of an ordinary single valued neutrosophic subspace.
Next, we define the ordinary single valued neutrosophic neighborhood system and we show that
an ordinary single valued neutrosophic neighborhood system has the same properties in a classical
neighborhood system. Finally, we introduce the concepts of an ordinary single valued neutrosophic
base and an ordinary single valued neutrosophic subbase, and obtain two characterizations of an
ordinary single valued neutrosophic base and one characterization of an ordinary single valued
neutrosophic subbase.

Keywords: ordinary single valued neutrosophic (co)topology; ordinary single valued neutrosophic
subspace; α-level; ordinary single valued neutrosophic neighborhood system; ordinary single valued
neutrosophic base; ordinary single valued neutrosophic subbase

1. Introduction

In 1965, Zadeh [1] introduced the concept of fuzzy sets as the generalization of an ordinary set.
In 1986, Chang [2] was the first to introduce the notion of a fuzzy topology by using fuzzy sets.
After that, many researchers [3–13] have investigated several properties in fuzzy topological spaces.

However, in their definitions of fuzzy topology, fuzziness in the notion of openness of a fuzzy
set was absent. In 1992, Samanta et al. [14,15] introduced the concept of gradation of openness
(closedness) of fuzzy sets in X in two different ways, and gave definitions of a smooth topology and
a smooth co-topology on X satisfying some axioms of gradation of openness and some axioms of
gradation of closedness of fuzzy sets in X, respectively. After then, Ramadan [16] defined level sets
of a smooth topology and smooth continuity, and studied some of their properties. Demirci [17]
defined a smooth neighborhood system and a smooth Q-neighborhood system, and investigated
their properties. Chattopadhyay and Samanta [18] introduced a fuzzy closure operator in smooth
topological spaces. In addition, they defined smooth compactness in the sense of Lowen [8,9],
and obtained its properties. Peters [19] gave the concept of initial smooth fuzzy structures and
found its properties. He [20] also introduced a smooth topology in the sense of Lowen [8] and proved
that the collection of smooth topologies forms a complete lattice. Al Tahan et al. [21] defined a
topology such that the hyperoperation is pseudocontinuous, and showed that there is no relation in
general between pseudotopological and strongly pseudotopological hypergroupoids. In addition,
Onassanya and Hošková-Mayerová [22] investigated some topological properties of α-level subsets’
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topology of a fuzzy subset. Moreover, Çoker and Demirci [23], and Samanta and Mondal [24,25]
defined intuitionistic gradation of openness (in short IGO) of fuzzy sets in Šostak’s sense [26] by
using intuitionistic fuzzy sets introduced by Atanassov [27]. They mainly dealt with intuitionistic
gradation of openness of fuzzy sets in the sense of Chang. However, in 2010, Lim et al. [28] investigated
intuitionistic smooth topological spaces in Lowen’s sense. Recently, Kim et al. [29] studied continuities
and neighborhood systems in intuitionistic smooth topological spaces. In addition, Choi et al. [30]
studied an interval-valued smooth topology by gradation of openness of interval-valued fuzzy sets
introduced by Gorzalczany [31] and Zadeh [32], respectively. In particular, Ying [33] introduced
the concept of the topology (called a fuzzifying topology) considering the degree of openness of
an ordinary subset of a set. In 2012, Lim et al. [34] studied general properties in ordinary smooth
topological spaces. In addition, they [35–37] investigated closures, interiors and compactness in
ordinary smooth topological spaces.

In 1998, Smarandache [38] defined the concept of a neutrusophic set as the generalization of
an intuitionistic fuzzy set. Salama et al. [39] introduced the concept of a neutrosophic crisp set and
neutrosophic crisp relation (see [40] for a neutrosophic crisp set theory). After that, Hur et al. [41,42]
introduced categories NSet(H) and NCSet consisting of neutrosophic sets and neutrosophic crisp sets,
respectively, and investigated them in a topological universe view-point. Smarandache [43] defined the
notion of neutrosophic topology on the non-standard interval and Lupiáñez proved that Smarandache’s
definitions of neutrsophic topology are not suitable as extensions of the intuitionistic fuzzy topology
(see Proposition 3 in [44,45]). In addition, Salama and Alblowi [46] defined a neutrosophic topology
and obtained some of its properties. Salama et al. [47] defined a neutrosophic crisp topology and
studied some of its properties. Wang et al. [48] introduced the notion of a single valued neutrosophic
set. Recently, Kim et al. [49] studied a single valued neutrosophic relation, a single valued neutrosophic
equivalence relation and a single valued neutrosophic partition.

In this paper, we define an ordinary single valued neutrosophic topology and obtain some of
its basic properties. In addition, we introduce the concept of an ordinary single valued neutrosophic
subspace. Next, we define the ordinary single valued neutrosophic neighborhood system and we show
that an ordinary single valued neutrosophic neighborhood system has the same properties in a classical
neighborhood system. Finally, we introduce the concepts of an ordinary single valued neutrosophic
base and an ordinary single valued neutrosophic subbase, and obtain two characterizations of an
ordinary single valued neutrosophic base and one characterization of an ordinary single valued
neutrosophic subbase.

2. Preliminaries

In this section, we introduce the concepts of single valued neutrosophic set, the complement of a
single valued neutrosophic set, the inclusion between two single valued neutrosophic sets, the union
and the intersection of them.

Definition 1 ([43]). Let X be a non-empty set. Then, A is called a neutrosophic set (in sort, NS) in X, if A has
the form A = (TA, IA, FA), where

TA : X →]−0, 1+[, IA : X →]−0, 1+[, FA : X →]−0, 1+[.

Since there is no restriction on the sum of TA(x), IA(x) and FA(x), for each x ∈ X,

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

Moreover, for each x ∈ X, TA(x) (resp., IA(x) and FA(x)) represent the degree of membership (resp.,
indeterminacy and non-membership) of x to A.
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From Example 2.1.1 in [17], we can see that every IFS (intutionistic fuzzy set) A in a non-empty
set X is an NS in X having the form

A = (TA, 1− (TA + FA), FA),

where (1− (TA + FA))(x) = 1− (TA(x) + FA(x)).

Definition 2 ([43]). Let A and B be two NSs in X. Then, we say that A is contained in B, denoted by A ⊂ B,
if, for each x ∈ X, in f TA(x) ≤ in f TB(x), sup TA(x) ≤ sup TB(x), in f IA(x) ≥ in f IB(x), sup IA(x) ≥
sup IB(x), in f FA(x) ≥ in f FB(x) and sup FA(x) ≥ sup FB(x).

Definition 3 ([48]). Let X be a space of points (objects) with a generic element in X denoted by x. Then,
A is called a single valued neutrosophic set (in short, SVNS) in X, if A has the form A = (TA, IA, FA),
where TA, IA, FA : X → [0, 1].

In this case, TA, IA, FA are called truth-membership function, indeterminacy-membership function,
falsity-membership function, respectively, and we will denote the set of all SVNSs in X as SVNS(X).

Furthermore, we will denote the empty SVNS (resp. the whole SVNS] in X as 0N (resp. 1N) and define by
0N(x) = (0, 1, 1) (resp. 1N = (1, 0, 0)), for each x ∈ X.

Definition 4 ([48]). Let A ∈ SVNS(X). Then, the complement of A, denoted by Ac, is an SVNS in X defined
as follows: for each x ∈ X,

TAc(x) = FA(x), IAc(x) = 1− IA(x) and FAc(x) = TA(x).

Definition 5 ([50]). Let A, B ∈ SVNS(X). Then,
(i) A is said to be contained in B, denoted by A ⊂ B, if, for each x ∈ X,

TA(x) ≤ TB(x), IA(x) ≥ IB(x) and FA(x) ≥ FB(x),

(ii) A is said to be equal to B, denoted by A = B, if A ⊂ B and B ⊂ A.

Definition 6 ([51]). Let A, B ∈ SVNS(X). Then,
(i) the intersection of A and B, denoted by A ∩ B, is a SVNS in X defined as:

A ∩ B = (TA ∧ TB, IA ∨ IB, FA ∨ FB),

where (TA ∧ TB)(x) = TA(x) ∧ TB(x), (FA ∨ FB) = FA(x) ∨ FB(x), for each x ∈ X,
(ii) the union of A and B, denoted by A ∪ B, is an SVNS in X defined as:

A ∪ B = (TA ∨ TB, IA ∧ IB, FA ∧ FB).

Remark 1. Definitions 5 and 6 are different from the corresponding definitions in [48].

Result 1 ([51], Proposition 2.1). Let A, B ∈ SVNS(X). Then,
(1) A ⊂ A ∪ B and B ⊂ A ∪ B,
(2) A ∩ B ⊂ A and A ∩ B ⊂ B,
(3) (Ac)c = A,
(4) (A ∪ B)c = Ac ∩ Bc, (A ∩ B)c = Ac ∪ Bc.

The following are immediate results of Definitions 5 and 6.

Proposition 1. Let A, B, C ∈ SVNS(X). Then,
(1) (Commutativity) A ∪ B = B ∪ A, A ∩ B = B ∩ A,
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(2) (Associativity) A ∪ (B ∪ C) = (A ∪ B) ∪ C, A ∩ (B ∩ C) = (A ∩ B) ∩ C,
(3) (Distributivity) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C), A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C),
(4) (Idempotency) A ∪ A = A, A ∩ A = A,
(5) (Absorption) A ∪ (A ∩ B) = A, A ∩ (A ∪ B) = A,
(5) (DeMorgan’s laws) (A ∪ B)c = Ac ∩ Bc, (A ∩ B)c = Ac ∪ Bc,
(7) A ∩ 0N = 0N , A ∪ 1N = 1N ,
(8) A ∪ 0N = A, A ∩ 1N = A.

Definition 7 (see [46]). Let {Aα}α∈Γ ⊂ SVNS(X). Then,
(i) the union of {Aα}α∈Γ, denoted by

⋃
α∈Γ Aα, is a single valued neutrosophic set in X defined as follows:

for each x ∈ X,
(
⋃

α∈Γ
Aα)(x) = (

∨
α∈Γ

TAα
(x),

∧
α∈Γ

IAα
(x),

∧
α∈Γ

FAα
(x)),

(ii) the intersection of {Aα}α∈Γ, denoted by
⋂

α∈Γ Aα, is a single valued neutrosophic set in X defined
as follows: for each x ∈ X,

(
⋂

α∈Γ
Aα)(x) = (

∧
α∈Γ

TAα
(x),

∨
α∈Γ

IAα
(x),

∨
α∈Γ

FAα
(x)).

The following are immediate results of the above definition.

Proposition 2. Let A ∈ SVNS(X) and let {Aα}α∈Γ ⊂ SVNS(X). Then,
(1) (Generalized Distributivity)

A ∪ (
⋂

α∈Γ
Aα) =

⋂
α∈Γ

(A ∪ Aα), A ∩ (
⋃

α∈Γ
Aα) =

⋃
α∈Γ

(A ∩ Aα),

(2) (Generalized DeMorgan’s laws)

(
⋃

α∈Γ
Aα)

c =
⋂

α∈Γ
Ac

α, (
⋂

α∈Γ
Aα)

c =
⋃

α∈Γ
Ac

α.

3. Ordinary Single Valued Neutrosophic Topology

In this section, we define an ordinary single valued neutrosophic topological space and obtain
some of its properties. Throughout this paper, we denote the set of all subsets (resp. fuzzy subsets) of
a set X as 2X (resp. IX).

For Tα, Iα, Fα ∈ I, α = (Tα, Iα, Fα) ∈ I × I × I is called a single valued neutrosophic value. For two
single valued neutrosophic values α and β,

(i) α ≤ β iff Tα ≤ Tβ, Iα ≥ Iβ and Fα ≥ Fβ,
(ii) α < β iff Tα < Tβ, Iα > Iβ and Fα > Fβ.
In particular, the form α∗ = (α, 1− α, 1− α) is called a single valued neutrosophic constant.
We denote the set of all single valued neutrosophic values (resp. constant) as SVNV (resp. SVNC)

(see [49]).

Definition 8. Let X be a nonempty set. Then, a mapping τ = (Tτ , Iτ , Fτ) : 2X → I × I × I is called
an ordinary single valued neutrosophic topology (in short, osvnt) on X if it satisfies the following axioms:
for any A, B ∈ 2X and each {Aα}α∈Γ ⊂ 2X ,

(OSVNT1) τ(φ) = τ(X) = (1, 0, 0),
(OSVNT2) Tτ(A ∩ B) ≥ Tτ(A) ∧ Tτ(B), Iτ(A ∩ B) ≤ Iτ(A) ∨ Iτ(B),

Fτ(A ∩ B) ≤ Fτ(A) ∨ Fτ(B),
(OSVNT3) Tτ(

⋃
α∈Γ Aα) ≥

∧
α∈Γ Tτ(Aα), Iτ(

⋃
α∈Γ Aα) ≤

∨
α∈Γ Iτ(Aα),

Fτ(
⋃

α∈Γ Aα) ≤
∨

α∈Γ Fτ(Aα).
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The pair (X, τ) is called an ordinary single valued neutrosophic topological space (in short, osvnts). We
denote the set of all ordinary single valued neutrosophic topologies on X as OSVNT(X).

Let 2 = {0, 1} and let τ : 2X → 2× 2× 2 satisfy the axioms in Definition 8. Since we can consider
as (1, 0, 0) = 1 and (0, 1, 1) = 0, τ ∈ T(X), where T(X) denotes the set of all classical topologies on X.
Thus, we can see that T(X) ⊂ OSVNT(X).

Example 1. (1) Let X = {a, b, c}. Then, 2X = {φ, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. We define the
mapping τ : 2X → I × I × I as follows:

τ(φ) = τ(X) = (1, 0, 0),
τ({a}) = (0.7, 0.3, 0.4), τ({b}) = (0.6, 0.2, 0.3), τ({c}) = (0.8, 0.1, 0.2),
τ({a, b}) = (0.6, 0.3, 0.4), τ({b, c}) = (0.7, 0.1, 0.2), τ({a, c}) = (0.8, 0.2, 0.3).

Then, we can easily see that τ ∈ OSVNT(X).
(2) Let X be a nonempty set. We define the mapping τφ : 2X → I × I × I as follows: for each A ∈ 2X ,

τφ(A) =

{
(1, 0, 0) if either A = φ or A = X,
(0, 1, 1) otherwise.

Then, clearly, τφ ∈ OSVT(X).
In this case, τφ (resp. (X, τφ)) is called the ordinary single valued neutrosophic indiscrete topology on X

(resp. the ordinary single valued neutrosophic indiscrete space].
(3) Let X be a nonempty set. We define the mapping τX : 2X → I × I × I as follows: for each A ∈ 2X ,

τX(A) = (1, 0, 0).

Then, clearly, τX ∈ OSVNT(X).
In this case, τX (resp. (X, τX)) is called the ordinary single valued neutrosophic discrete topology on X

(resp. the ordinary single valued neutrosophic discrete space].
(4) Let X be a set and let α = (Tα, Iα, Fα) ∈ SVNV be fixed, where Tα ∈ I1 and Iα, Fα ∈ I0. We define

the mapping τ : 2X → I × I × I as follows: for each A ∈ 2X ,

τ(A) =

{
(1, 0, 0) if either A = φ or Ac is finite,
α otherwise.

Then, we can easily see that τ ∈ OSVNT(X).
In this case, τ is called the α-ordinary single valued neutrosophic finite complement topology on X and will

be denoted by OSVNCo f (X). OSVNCo f (X) is of interest only when X is an infinite set because if X is finite,
then OSVNCo f (X) = τφ.

(5) Let X be an infinite set and let α = (Tα, Iα, Fα) ∈ SVNV be fixed, where Tα ∈ I1 and Iα, Fα ∈ I0.
We define the mapping τ : 2X → I × I × I as follows: for each A ∈ 2X ,

τ(A) =

{
(1, 0, 0) if either A = φ or Ac is countable,
α otherwise.

Then, clearly, τ ∈ OSVNT(X).
In this case, τ is called the α-ordinary single valued neutrosophic countable complement topology on X and

is denoted by OSVNCoc(X).
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(6) Let T be the topology generated by S = {(a, b] : a, b ∈ R, a < b} as a subbase, let T0 be the family of all
open sets of R with respect to the usual topology on R and let α = (Tα, Iα, Fα) ∈ SVNV be fixed, where Tα ∈ I1

and Iα, Fα ∈ I0. We define the mapping τ : 2R → I × I × I as follows: for each A ∈ IR,

τ(A) =


(1, 0, 0) if A ∈ T0,
α if A ∈ T \ T0,
(0, 1, 1) otherwise.

Then, we can easily see that τ ∈ OSVNT(X).
(7) Let T ∈ T(X). We define the mapping τT : 2X → I × I × I as follows : for each A ∈ 2X ,

τT(A) =

{
(1, 0, 0) if A ∈ T,
(0, 1, 1) otherwise.

Then, it is easily seen that τT ∈ OSVNT(X). Moreover, we can see that if T is the classical indiscrete
topology, then τT = τφ and if T is the classical discrete topology, then τT = τX .

Remark 2. (1) If I = 2, then we can think that Definition 8 also coincides with the known definition of
classical topology.

(2) Let (X, τ) be an osvnsts. We define two mappings [ ]τ, < > τ : 2X → I × I × I, respectively,
as follows : for each A ∈ 2X ,

([ ]τ)(A) = (Tτ(A), Iτ(A), 1− Tτ(A)), (< > τ)(A) = (1− Fτ(A), Iτ(A), Fτ(A)).

Then, we can easily see that [ ]τ, < > τ ∈ OSVNT(X).

Definition 9. Let X be a nonempty set. Then, a mapping C = (µC , νC) : 2X → I × I × I is called an
ordinary single valued neutrosophic cotopology (in short, osvnct) on X if it satisfies the following conditions:
for any A, B ∈ 2X and each {Aα}α∈Γ ⊂ 2X ,

(OSVNCT1) C(φ) = C(X) = (1, 0, 0),
(OSVNCT2) TC(A ∪ B) ≥ TC(A) ∧ TC(B), IC(A ∪ B) ≤ IC(A) ∨ IC(B),

FC(A ∪ B) ≤ FC(A) ∨ FC(B),
(OSVNCT3) TC(

⋂
α∈Γ

Aα) ≥
∧

α∈Γ
TC(Aα), IC(

⋂
α∈Γ

Aα) ≤
∨

α∈Γ
IC(Aα),

FC(
⋂

α∈Γ
Aα) ≤

∨
α∈Γ

FC(Aα).

The pair (X, C) is called an ordinary single valued neutrosophic cotopological space (in short, osvncts).

The following is an immediate result of Definitions 8 and 9.

Proposition 3. We define two mappings f : OSVNT(X) → OSVNCT(X) and g : OSVNCT(X) →
OSVNT(X) respectively as follows:

[ f (τ)](A) = τ(Ac) for any τ ∈ OSVNT(X) and any A ∈ 2X

and
[g(C)](A) = C(Ac) for any C ∈ OSVNCT(X) and any A ∈ 2X .

Then, f and g are well-defined. Moreover, g ◦ f = 1OSVNT(X) and f ◦ g = 1OSVNCT(X).

Remark 3. (1) For each τ ∈ OSVNT(X) and each C ∈ OSVNCT(X), let f (τ) = Cτ and g(C) = τC . Then,
from Proposition 3, we can see that τCτ

= τ and CτC = C.
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(2) Let (X, C) be an osvncts. We define two mappings [ ]C, < > C : 2X → I × I × I, respectively,
as follows: for each A ∈ 2X ,

([ ]C)(A) = (TC(A), IC(A), 1− TC(A)), (< > C)(A) = (1− FC(A), IC(A), FC(A)).

Then, we can easily see that [ ]C, < > C ∈ OSVNCT(X).

Definition 10. Let τ1 , τ2 ∈ OSVNT(X) and let C1, C2 ∈ OSVNCT(X).
(i) We say that τ1 is finer than τ2 or τ2 is coarser than τ1 , denoted by τ2 � τ1 , if τ2(A) ≤ τ1(A), i.e.,

for each A ∈ 2X ,
Tτ2

(A) ≤ Tτ1
(A), Iτ2

(A) ≥ Iτ1
(A), Fτ2

(A) ≥ Fτ1
(A).

(ii) We say that C1 is finer than C2 or C2 is coarser than C1, denoted by C2 � C1, if C2(A) ≤ C1(A), i.e.,
for each A ∈ 2X ,

TC2
(A) ≤ TC1

(A), IC2
(A) ≥ IC1

(A), FC2
(A) ≥ FC1

(A).

We can easily see that τ1 is finer than τ2 if and only if Cτ1
is finer than Cτ2

, and (OSVNT(X),�)
and (OSVNCT(X),�) are posets, respectively.

From Example 1 (2) and (3), it is obvious that τφ is the coarsest ordinary single valued neutrosophic
topology on X and τX is the finest ordinary single valued neutrosophic topology on X.

Proposition 4. If {τα}α∈Γ ⊂ OSVNT(X), then
⋂

α∈Γ τα ∈ OSVNT(X),
where [

⋂
α∈Γ τα ](A) = (

∧
α∈Γ Tτα

(A),
∨

α∈Γ Iτα
(A),

∨
α∈Γ Fτα

(A)), ∀ A ∈ 2X .

Proof. Let τ =
⋂

α∈Γ τα and let α ∈ Γ. Since τα ∈ OSVNT(X), τα(X) = τα(φ) = (1, 0, 0), i.e.,

Tτα
(X) = Tτα

(φ) = 1, Iτα
(X) = Iτα

(φ) = 0, Fτα
(X) = Fτα

(φ) = 0.

Then, Tτ(X) =
∧

α∈Γ Tτα
(X) = 1, Iτ(X) =

∨
α∈Γ Iτα

(X) = 0 = Fτ(X). Similarly, we have Tτ(φ) = 1,
Iτ(φ) = 0 = Fτ(φ). Thus, the condition (OSVNT1) holds.

Let A, B ∈ 2X . Then,

Tτ(A ∩ B) =
∧

α∈Γ Tτα
(A ∩ B) [By the definition of τ]

≥ ∧
α∈Γ(Tτα

(A) ∧ Tτα
(B)) [Since τα ∈ OSVNT(X)]

= (
∧

α∈Γ Tτα(A)) ∧ (
∧

α∈Γ Tτα(B))
= Tτ(A) ∧ Tτ(B) [By the definition of τ]

and

Iτ(A ∩ B) =
∨

α∈Γ Iτα
(A ∩ B) [By the definition of τ]

≤ ∨
α∈Γ(Iτα

(A) ∨ Iτα
(B)) [Since τα ∈ OSVNT(X)]

= (
∨

α∈Γ Iτα(A)) ∨ (
∨

α∈Γ Iτα(B))
= Iτ(A) ∨ Iτ(B). [By the definition of τ]

Similarly, we have Fτ(A ∩ B) ≤ Fτ(A) ∨ Fτ(B). Thus, the condition (OSVNT2) holds:
Now, let {Aj}j∈J ⊂ 2X . Then,

Tτ(
⋃

j∈J Aj) =
∧

α∈Γ Tτα
(
⋃

j∈J Aj) [By the definition of τ]
≥ ∧

α∈Γ(
∧

j∈J Tτα
(Aj)) [Since τα ∈ OSVNT(X)]

=
∧

j∈J(
∧

α∈Γ Tτα
(Aj))

=
∧

j∈J [
⋂

α∈Γ Tτα
](Aj) [By the definition of τ]

=
∨

j∈J Tτ(Aj)

and
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Iτ(
⋃

j∈J Aj) =
∨

α∈Γ Iτα
(
⋃

j∈J Aj) [By the definition of τ]
≤ ∨

α∈Γ(
∨

j∈J Iτα
(Aj)) [Since τα ∈ OSVNT(X)]

=
∨

j∈J(
∨

α∈Γ Iτα
(Aj))

=
∨

j∈J [
⋃

α∈Γ Iτα
](Aj) [By the definition of τ]

=
∨

j∈J Iτ(Aj).

Similarly, we have Fτ(
⋃

j∈J Aj) ≤
∨

j∈J Fτ(Aj). Thus, the condition (OSVNT3) holds. This
completes the proof.

From Definition 10 and Proposition 4, we have the following.

Proposition 5. (OSVNT(X),�) is a meet complete lattice with the least element τφ and the greatest
element τX .

Definition 11. Let (X, τ) be an osvnts and let α ∈ SVNV. We define two sets [τ]α and [τ]∗α as
follows, respectively:

(i) [τ]α = {A ∈ 2X : Tτ(A) ≥ Tα, Iτ(A) ≤ Iα, Iτ(A) ≤ Fα},
(ii) [τ]∗α = {A ∈ 2X : Tτ(A) > Tα, Iτ(A) < Iα, Fτ(A) < Fα}.

In this case, [τ]α (resp. [τ]∗α) is called the α-level (resp. strong α-level] of τ. If α = (0, 1, 1),
then [τ](0,1,1) = 2X, i.e., [τ](0,1,1) is the classical discrete topology on X and if α = (1, 0, 0),
then [τ]∗(1,0,0) = φ. Moreover, we can easily see that for any α ∈ SVNV, [τ]∗α ⊂ [τ]α.

Lemma 1. Let τ ∈ OSVNT(X) and let α, β ∈ SVNV. Then,
(1) [τ]α ∈ T(X),
(2) if α ≤ β, then [τ]β ⊂ [τ]α,
(3) [τ]α =

⋂
β<α

[τ]β, where α ∈ I0 × I1 × I1,

(1)
′
[τ]∗α ∈ T(X), where α ∈ I1 × I0 × I0,

(2)
′

if α ≤ β, then [τ]∗β ⊂ [τ]∗α,

(3)
′
[τ]∗α =

⋃
β>(α

[τ]∗β, where α ∈ I1 × I0 × I0.

Proof. The proofs of (1), (1)
′
, (2) and (2)

′
are obvious from Definitions 8 and 11.

(3) From (2), {[τ]α}α∈I0×I1×I1 is a descending family of classical topologies on X. Then, clearly,
[τ]α ⊂

⋂
β<α[τ]β, for each α ∈ I0 × I1 × I1.

Suppose A /∈ [τ]α. Then, Tτ(A) < Tα or Iτ(A) > Iα or Fτ(A) > Fα. Thus,

there exists Tβ ∈ I0 such that Tτ(A) < Tβ < Tα

or

there exists Iβ ∈ I1 such that Iτ(A) > Iβ > Iα

or

there exists Fβ ∈ I1 such that Fτ(A) > Fβ > Fα.

Thus, A /∈ [τ]β, for some β ∈ SVNV such that β < α, i.e., A /∈
⋂

β<α

[τ]β. Hence,
⋂

β<α

[τ]β ⊂ [τ]α.

Therefore, [τ]α =
⋂

β<α

[τ]β.

(3)
′

The proof is similar to (3).

Florentin Smarandache (ed.) Collected Papers, VI

668



Remark 4. From (1) and (2) in Lemma 1, we can see that, for each τ ∈ OSVNT(X), {[τ]α}α∈SVNV is a
family of descending classical topologies called the α-level classical topologies on X with respect to τ.

The following is an immediate result of Lemma 1.

Corollary 1. Let (X, τ) be an osvnts. Then, [τ]α∗ =
⋂

β<α

[τ]β∗ for each α∗ ∈ SVNC, where α ∈ I0.

Lemma 2. (1) Let {τα}α∈SVNV be a descending family of classical topologies on X such that τ(0,1,1) is the
classical discrete topology on X. We define the mapping τ : 2X → I × I × I as follows: for each A ∈ 2X ,

τ(A) = (
∨

A∈τα

Tα,
∧

A∈τα

Iα,
∧

A∈τα

Fα).

Then, τ ∈ OSVNT(X).
(2) If τα =

⋂
β<α τα, for each α ∈ SVNV (α ∈ I0 × I1 × I1), then [τ]α = τα.

(3) If τα =
⋃

β>α τβ, for each α ∈ SVNV (α ∈ I1 × I0 × I0), then [τ]∗α = τα.

Proof. The proof is similar to Lemma 3.9 in [28].

The following is an immediate result of Lemma 2.

Corollary 2. Let {τα∗}α∈I0 be a descending family of classical topologies on X such that τ(0,1,1) is the classical
discrete topology on X. We define the mapping τ : 2X → I × I × I as follows: for each A ∈ 2X ,

τ(A) = (
∨

A∈τα∗

α,
∧

A∈τα∗

(1− α),
∧

A∈τα∗

(1− α)).

Then, τ ∈ OSVNT(X) and [τ]α∗ =
⋂

β<α τβ∗ = τα∗ ∀ α ∈ I0.

From Lemmas 1 and 2, we have the following result.

Proposition 6. Let τ ∈ OSVNT(X) and let [τ]α be the α-level classical topology on X with respect to τ.
We define the mapping η : 2X → I × I × I as follows: for each A ∈ 2X ,

η(A) = (
∨

A∈[τ]α
Tα,

∧
A∈[τ]α

Iα,
∧

A∈[τ]α
Fα).

Then, η = τ.

The fact that an ordinary single valued neutrosophic topological space fully determined by its
decomposition in classical topologies is restated in the following theorem.

Theorem 1. Let τ1 , τ2 ∈ OSVNT(X). Then, τ1 = τ2 if and only if [τ1 ]α = [τ2 ]α for each α ∈ SVNV,
or alternatively, if and only if [τ1 ]

∗
α = [τ2 ]

∗
α for each α ∈ SVNV.

Remark 5. In a similar way, we can construct an ordinary single valued neutrosophic cotopology C on a set X,
by using the α-levels,

[C]α = {A ∈ IX : TC (A) ≥ Tα, IC (A) ≤ Iα, FC (A) ≤ Fα}

and
[C]∗α = {A ∈ IX : TC (A) > Tα, IC (A) < Iα, FC (A) < Fα},

for each α ∈ SVNV.
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Definition 12. Let T ∈ T(X) and let τ ∈ OSVNT(X). Then, τ is said to be compatible with T if T = S(τ),
where S(τ) = {A ∈ 2X : Tτ(A) > 0, Iτ(A) < 1, Fτ(A) < 1}.

Example 2. (1) Let τφ be the ordinary single valued neutrosophic indiscrete topology on a nonempty set X and
let T0 be the classical indiscrete topology on X. Then, clearly,

S(τφ) = {A ∈ 2X : Tτφ(A) > 0, Iτφ(A) < 1, Fτφ(A) < 1} = {φ, X} = T0.

Thus, τφ is compatible with T0.
(2) Let τX be the ordinary single valued neutrosophic discrete topology on a nonempty set X and let T1 be

the classical discrete topology on X. Then, clearly,

S(τX) = {A ∈ 2X : TτX (A) > 0, IτX (A) < 1, FτX (A) < 1} = 2X = T1.

Thus, τX is compatible with T1.
(3) Let X be a nonempty set and let α ∈ SVNV be fixed, where α ∈ I0 × I1 × I1. We define the mapping

τ : 2X → I × I × I as follows: for each A ∈ 2X ,

τ(A) =

{
(1, 0, 0) if either A = φ or A = X,
α otherwise.

Then, clearly, τ ∈ OSVNT(X) and τ is compatible with T1.

Furthermore, every classical topology can be considered as an ordinary single valued neutrosophic
topology in the sense of the following result.

Proposition 7. Let (X, τ) be a classical topological space and and let α ∈ SVNV be fixed, where α ∈
I0 × I1 × I1. Then, there exists τα ∈ OSVNT(X) such that τα is compatible with T. Moreover, [τα]α = τ.

In this case, τα is called the α-th ordinary single valued neutrosophic topology on X and (X, τα)

is called the α-th ordinary single valued neutrosophic topological space.

Proof. Let α ∈ SVNV be fixed, where α ∈ I0 × I1 × I1 and we define the mapping τα : 2X → I × I × I
as follows: for each A ∈ 2X ,

τα(A) =


(1, 0, 0) if either A = φ or A = X,
α if A ∈ τ \ {φ, X},
(0, 1, 1) otherwise.

Then, we can easily see that τα ∈ OSVNT(X) and [τα]α = τ. Moreover, by the definition of τα,

S(τα) = {A ∈ 2X : Tτα(A) > 0, Iτα(A) < 1, Fτα(A) < 1} = τ.

Thus, τα is compatible with τ.

Proposition 8. Let (X, T) be a classical topological space, let C(T) be the set of all osvnts on X compatible
with T, let T̃ = T \ {φ, X} and let (I × I × I)T̃

(0,1,1) be the set of all mappings f : T̃ → I × I × I satisfying the

following conditions: for any A, B ∈ T̃ and each (Aj)j∈J ⊂ T̃,
(1) f (A) 6= (0, 1, 1),
(2) Tf (A ∩ B) ≥ Tf (A) ∧ Tf (B), I f (A ∩ B) ≤ I f (A) ∨ Tf (B),

Ff (A ∩ B) ≤ Ff (A) ∨ Ff (B),
(3) Tf (

⋃
j∈J Aj) ≥

∧
j∈J Tf (Aj), I f (

⋃
j∈J Aj) ≤

∨
j∈J I f (Aj),

Ff (
⋃

j∈J Aj) ≤
∨

j∈J Ff (Aj).
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Then, there is a one-to-one correspondence between C(T) and (I × I × I)T̃
(0,1,1).

Proof. We define the mapping F : (I × I × I)T̃
(0,1,1) → C(T) as follows: for each f ∈ (I × I × I)T̃

(0,1,1),

F( f ) = τf ,

where τf : 2X → I × I × I is the mapping defined by: for each A ∈ 2X ,

τf (A) =


(1, 0, 0) if either A = φ or A = X,
f (A) if A ∈ T̃,
(0, 1, 1) otherwise.

Then, we easily see that τf ∈ C(T).

Now, we define the mapping G : C(T)→ (I × I × I)T̃
(0,1,1) as follows: for each τ ∈ C(T),

G(τ) = fτ ,

where fτ : T̃ → I × I × I is the mapping defined by: for each A ∈ T̃,

fτ(A) = τ(A).

Then, clearly, fτ ∈ (I × I × I)T̃
(0,1,1). Furthermore, we can see that F ◦ G = idC(T) and G ◦ F =

id
(I×I×I)T̃

(0,1,1)
. Thus, C(T) is equipotent to I × I × I)T̃

(0,1,1). This completes the proof.

Proposition 9. Let (X, τ) be an osvnts and let Y ⊂ X. We define the mapping τY : 2Y → I× I× I as follows:
for each A ∈ 2Y,

τY(A) = (
∨

B∈2X , A=B∩Y

Tτ(B),
∧

B∈2X , A=B∩Y

Iτ(B),
∧

B∈2X , A=B∩Y

Fτ(B)).

Then, τY ∈ OSVNT(Y) and for each A ∈ 2Y,

TτY (A) ≥ Tτ(A), IτY (A) ≤ Iτ(A), FτY (A) ≤ Fτ(A).

In this case, (Y, τY) is called an ordinary single valued neutrosophic subspace of (X, τ) and τY is
called the induced ordinary single valued neutrosophic topology on A by τ.

Proof. It is obvious that the condition (OSVNT1) holds, i.e., τY(φ) = τY(Y) = (1, 0, 0).
Let A, B ∈ 2Y. Then, by proof of Proposition 5.1 in [34], TτY (A ∩ B) ≥ TτY (A) ∧ TτY (B).
Let us show that IτY (A ∩ B) ≤ IτY (A) ∨ IτY (B). Then,

IτY (A) ∨ IτY (B) = (
∧

C1∈2X , A=Y∩C1
Iτ(C1)) ∨ (

∧
C2∈2X , B=Y∩C2

Iτ(C2))

=
∧

C1, C1∈2X , A∩B=Y∩(C1∩C2)
[Iτ(C1) ∨ Iτ(C2)]

≥ ∧
C1, C1∈2X , A∩B=Y∩(C1∩C2)

Iτ(C1 ∩ C2)

= IτY (A ∩ B).

Similarly, we have FτY (A ∩ B) ≤ FτY (A) ∨ FτY (B). Thus, the condition (OSVNT2) holds.
Now, let {Aα}α∈Γ ⊂ 2Y. Then, by the proof of Proposition 5.1 in [34], TτY (

⋃
α∈Γ Aα) ≥∧

α∈Γ TτY (Aα). On the other hand,

IτY (
⋃

α∈Γ Aα) =
∧

Bα∈2X , (
⋃

α∈Γ Bα)∩Y=
⋃

α∈Γ Aα
Iτ(

⋃
α∈Γ Bα)

≤ ∧
Bα∈2X , (

⋃
α∈Γ Bα)∩Y=

⋃
α∈Γ Aα

[
∧

α∈Γ Iτ(Bα)]

=
∧

α∈Γ[
∧

Bα∈2X , (
⋃

α∈Γ Bα)∩Y=
⋃

α∈Γ Aα
Iτ(Bα)]
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=
∧

α∈Γ IτY (Aα).

Similarly, we have FτY (
⋃

α∈Γ Aα) ≤
∧

α∈Γ FτY (Aα). Thus, the condition (OSVNT3) holds. Thus,
τY ∈ OSVNT(Y).

Furthermore, we can easily see that for each A ∈ 2Y,

TτY (A) ≥ Tτ(A), IτY (A) ≤ Iτ(A), FτY (A) ≤ Fτ(A).

This completes the proof.

The following is an immediate result of Proposition 9.

Corollary 3. Let (Y, τY) be an ordinary single valued neutrosaophic subspace of (X, τ) and let A ∈ 2Y.
(1) CY(A) = (

∨
B∈2X ,A=B∩Y TC(B),

∧
B∈2X ,A=B∩Y IC(B),

∧
B∈2X ,A=B∩Y FC(B)), where CY(A) =

τY(Y− A).
(2) If Z ⊂ Y ⊂ X, then τZ = (τY )Z .

4. Ordinary Single Valued Neutrosophic Neighborhood Structures of a Point

In this section, we define an ordinary single valued neutrosophic neighborhood system of a point,
and prove that it has the same properties in a classical neighborhood system.

Definition 13. Let (X, τ) be an osvnts and let x ∈ X. Then, a mapping Nx : 2X → I × I × I is called the
ordinary single valued neutrosophic neighborhood system of x if, for each A ∈ 2X ,

A ∈ Nx := ∃B(B ∈ τ) ∧ (x ∈ B ⊂ A)),

i.e.,
[A ∈ Nx] = Nx(A) = (

∨
x∈B⊂A

Tτ(B),
∧

x∈B⊂A
Iτ(B),

∧
x∈B⊂A

Fτ(B)).

Lemma 3. Let (X, τ) be an osvnts and let A ∈ 2X . Then,∧
x∈A

∨
x∈B⊂A

Tτ(B) = Tτ(A),

∨
x∈A

∧
x∈B⊂A

Iτ(B) = Iτ(A)

and ∨
x∈A

∧
x∈B⊂A

Fτ(B) = Fτ(A).

Proof. By Theorem 3.1 in [33], it is obvious that
∧

x∈A
∨

x∈B⊂A Tτ(B) = Tτ(A).
On the other hand, it is clear that

∨
x∈A

∧
x∈B⊂A Iτ(B) ≥ Iτ(A). Now, letBx = {B ∈ 2X : x ∈ B ⊂ A}

and let f ∈ Πx∈ABx. Then, clearly,
⋃

x∈A f (x) = A. Thus,∨
x∈A

Iτ( f (x)) ≤ Iτ(
⋃

x∈A
f (x)) = Iτ(A).

Thus, ∨
x∈A

∧
x∈B⊂A

Iτ(B) =
∧

f∈Πx∈A

∨
x∈A

Iτ( f (x)) ≤ Iτ(A).

Hence,
∨

x∈A
∧

x∈B⊂A Iτ(B) = Iτ(A). Similarly, we have∨
x∈A

∧
x∈B⊂A

Fτ(B) = Fτ(A).
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Theorem 2. Let (X, τ) be an osvnts, let A ∈ 2X and let x ∈ X. Then,

|= (A ∈ τ)↔ ∀x(x ∈ A→ ∃B(B ∈ Nx)∧ (B ⊂ A)),

i.e.,
[A ∈ τ] = [∀x(x ∈ A→ ∃B(B ∈ Nx)∧ (B ⊂ A))],

i.e.,
[A ∈ τ] = (

∧
x∈A

∨
B⊂A

TNx(B),
∨

x∈A

∧
B⊂A

INx(B),
∨

x∈A

∧
B⊂A

FNx(B)).

Proof. From Theorem 3.1 in [33], it is clear that Tτ(A) =
∧

x∈A
∨

B⊂A TNx(B).
On the other hand,

Iτ(A) =
∨

x∈A
∧

x∈C⊂A Iτ(C) [By Lemma 3]
=

∨
x∈A

∧
B⊂A

∧
x∈C⊂B Iτ(C)

=
∨

x∈A
∧

B⊂A INx(B). [By Definition 13]

Similarly, we have Fτ(A) =
∨

x∈A
∧

B⊂A FNx(B). This completes the proof.

Definition 14. Let A be a single valued neutrosophic set in a set 2X. Then, A is said to be normal if there is
A0 ∈ 2X such that A(A0) = (1, 0, 0).

We will denote the set of all normal single valued neutrosophic sets in 2X as (I × I × I)2X

N .

From the following result, we can see that an ordinary single valued neutrosophic neighborhood
system has the same properties in a classical neighborhood system.

Theorem 3. Let (X, τ) be an osvnts and let N : X → (I × I × I)2X

N be the mapping given by N (x) = Nx,
for each x ∈ X. Then,N has the following properties:

(1) for any x ∈ X and A ∈ 2X, |= A ∈ Nx → x ∈ A,
(2) for any x ∈ X and A, B ∈ 2X, |= (A ∈ Nx)∧ (B ∈ Nx)→ A∩ B ∈ Nx,
(3) for any x ∈ X and A, B ∈ 2X, |= (A ⊂ B)→ (A ∈ Nx → B ∈ Nx),
(4) for any x ∈ X, |= (A ∈ Nx)→ ∃C((C ∈ Nx)∧ (C ⊂ A)∧ ∀y(y ∈ C→ C ∈ Ny)).
Conversely, if a mappingN : X→ (I × I × I)2X

N satisfies the above properties (2) and (3), then there is an
ordinary single valued neutrosophic topology τ : 2X → I × I × I on X defined as follows: for each A ∈ 2X,

A ∈ τ := ∀x(x ∈ A→ A ∈ Nx),

i.e.,
[A ∈ τ] = τ(A) = (

∧
x∈A

TNx(A),
∨

x∈A
INx(A),

∨
x∈A

FNx(A)).

In particular, ifN also satisfies the above properties (1) and (4), then, for each x ∈ X,Nx is an ordinary
single valued neutrosophic neighborhood system of x with respect to τ.

Proof. (1) Since A ∈ 2X, we can consider A as a special single valued neutrosophic set in x represented
by A = (χA, χAc , χAc). Then,

[x ∈ A] = A(x) = (χA(x), χAc(x), χAc(x)) = (1, 0, 0).
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On the other hand,

[A ∈ Nx] = (
∨

x∈C⊂A
Tτ(C),

∧
x∈C⊂A

Iτ(C),
∧

x∈C⊂A
Fτ(C)) ≤ (1, 0, 0).

Thus, [A ∈ Nx] ≤ [x ∈ A].
(2) By the definition ofNx,

[A∩ B ∈ Nx] = (
∨

x∈C⊂A∩B
Tτ(C),

∧
x∈C⊂A∩B

Iτ(C)),
∧

x∈C⊂A∩B
Fτ(C)).

From the proof of Theorem 3.2 (2) in [33], it is obvious that

TNx(A∩ B) ≥ TNx(A)∧ TNx(B).

Thus, it is sufficient to show that INx(A∩ B) ≤ INx(A)∨ INx(B):

INx(A∩ B) =
∧

x∈C⊂A∩B Iτ(C) =
∧

x∈C1⊂A, x∈C2⊂B Iτ(C1 ∩ C2)

≤ ∧
x∈C1⊂A, x∈C2⊂B(Iτ(C1)∨ Iτ(C2))

=
∧

x∈C1⊂A Iτ(C1)∨
∧

x∈C2⊂B Iτ(C2)

= INx(A)∨ INx(B).

Similarly, we have FNx(A∩ B) ≤ FNx(A)∨ FNx(B). On the other hand,

[(A ∈ Nx)∧ (B ∈ Nx)] = (TNx(A)∧ TNx(B), INx(A)∨ INx(B), FNx(A)∨ FNx(B)).

Thus, [A∩ B ∈ Nx] ≥ [(A ∈ Nx)∧ (B ∈ Nx)].
(3) From the definition ofNx, we can easily show that [A ∈ Nx] ≤ [B ∈ Nx].
(4) It is clear that

[∃C((C ∈ Nx)∧ (C ⊂ A)∧ ∀y(y ∈ C→ C ∈ Ny))]

= (
∨

C⊂A[TNx(C)∧
∧

y∈C TNy(C)],
∧

C⊂A[INx(C)∨
∨

y∈C INy(C)],∧
C⊂A[FNx(C)∨

∨
y∈C FNy(C)]).

Then, by the proof of Theorem 3.2 (4) in [33], it is obvious that∨
C⊂A

[TNx(C)∧
∧

y∈C
TNy(C)] ≥ TNx(A).

From Lemma 3,
∨

y∈C INy(C) =
∨

y∈C
∧

y∈D⊂C Iτ(D) = Iτ(C). Thus,∧
C⊂A[INx(C)∨

∨
y∈C INy(C)] =

∧
C⊂A[INx(C)∨ Iτ(C)] =

∧
C⊂A Iτ(C)

≤ ∧
x∈C⊂A Iτ(C) = INx(A).

Similarly, we have
∧

C⊂A[FNx(C)∨
∨

y∈C FNy(C)] ≤
∧

x∈C⊂A Fτ(C) = FNx(A). Thus,

[∃C((C ∈ Nx)∧ (C ⊂ A)∧ ∀y(y ∈ C→ C ∈ Ny))] ≥ [A ∈ Nx].

Conversely, supposeN satisfies the above properties (2) and (3) and let τ : 2X → I × I × I be the
mapping defined as follows: for each A ∈ 2X,

τ(A) = (
∧

x∈A
TNx(A),

∨
x∈A

INx(A),
∨

x∈A
FNx(A)).

Then, clearly, τ(φ) = (1, 0, 0). Since Nx is single valued neutrosophic normal, there is A0 ∈ 2X

such thatNx(A0) = (1, 0, 0). Thus,Nx(X) = (1, 0, 0). Thus,

τ(X) = (
∧

x∈X
TNx(X),

∨
x∈X

INx(X),
∨

x∈X
FNx(X)) = (1, 0, 0).
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Hence, τ satisfies the axiom (OSVNT1).
From the proof of Theorem 3.2 in [33], it is clear that Tτ(A∩ B) ≥ Tτ(A)∧ Tτ(B).
On the other hand,

Iτ(A∩ B) =
∨

x∈A∩B INx(A∩ B) ≤ ∨
x∈A∩B(INx(A)∨ INx(B))

=
∨

x∈A∩B INx(A)∨∨
x∈A∩B INx(B)

≤ ∨
x∈A INx(A)∨∨

x∈B INx(B)
= Iτ(A)∨ Iτ(B).

Similarly, we have Fτ(A∩ B) ≤ Fτ(A)∨ Fτ(B). Then, τ satisfies the axiom (OSVNT2). Moreover,
we can easily see that τ satisfies the axiom (OSVNT3). Thus, τ ∈ OSVNT(X).

Now, supposeN satisfies additionally the above properties (1) and (4). Then, from the proof of
Theorem 3.2 in [33], we have TNx(A) =

∨
x∈B⊂A Tτ(B) for each x ∈ X and each A ∈ 2X.

Let x ∈ X and let A ∈ 2X. Then, by property (4),

INx(A) ≥
∧

C⊂A
[INx(C)∨

∨
y∈C

INy(C)].

From the property (1), INx(C) = 1 for any x 6∈ C. Thus,

INx(A) ≥ ∧
x∈C⊂A[INx(C)∨

∨
y∈C INy(C)]

≥ ∧
x∈C⊂A

∨
y∈C INy(C)

=
∧

x∈B⊂A Iτ(B).

Now, suppose x ∈ C ⊂ A. Then, clearly,
∨

y∈C INy(C) ≥ INx(C) ≥ INx(A).
Thus, ∧

x∈B⊂A
Iτ(B) =

∧
x∈C⊂A

∨
y∈C

INy(C) ≥ INx(A).

Thus, INx(A) =
∧

x∈B⊂A Iτ(B). Similarly, we have FNx(A) =
∧

x∈B⊂A Fτ(B). This completes
the proof.

5. Ordinary Single Valued Neutrosophic Bases and Subbases

In this section, we define an ordinary single valued neutrosophic base and subbase for an ordinary
single valued neutrosophic topological space, and investigated general properties. Moreover, we obtain
two characterizations of an ordinary single valued neutrosophic base and one characterization of an
ordinary single valued neutrosophic subbase.

Definition 15. Let (X, τ) be an osvnts and let B : 2X → I × I × I be a mapping such that B ≤ τ, i.e.,
TB ≤ Tτ, IB ≥ Iτ, FB ≥ Fτ. Then, B is called an ordinary single valued neutrosophic base for τ if, for each
A ∈ 2X,

Tτ(A) =
∨

{Bα}α∈Γ⊂2X , A=
⋃

α∈Γ Bα

∧
α∈Γ

TB(Bα),

Iτ(A) =
∧

{Bα}α∈Γ⊂2X , A=
⋃

α∈Γ Bα

∨
α∈Γ

IB(Bα),

Fτ(A) =
∧

{Bα}α∈Γ⊂2X , A=
⋃

α∈Γ Bα

∨
α∈Γ

FB(Bα).

Example 3. (1) Let X be a set and let B : 2X → I × I × I be the mapping defined by:

B({x}) = (1, 0, 0) ∀x ∈ X.

Then, B is an ordinary single valued neutrosophic base for τX.
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(2) Let X = {a, b, c}, let α ∈ SVNV be fixed, where α ∈ I1 × I0 × I0 and let B : 2X → I × I × I be the
mapping as follows: for each A ∈ 2X,

B(A) =

{
(1, 0, 0) if either A = {a, b} or {b, c} or X,
α otherwise.

Then, B is not an ordinary single valued neutrosophic base for an osvnt on X.
Suppose that B is an ordinary single valued neutrosophic base for an osvnt τ on X. Then, clearly, B ≤ τ.

Moreover, τ({a, b}) = τ({b, c}) = (1, 0, 0). Thus,

Tτ({b}) = Tτ({a, b} ∩ τ({b, c}) ≥ Tτ({a, b} ∧ Tτ({b, c} = 1

and
Iτ({b}) = Iτ({a, b} ∩ τ({b, c}) ≤ Iτ({a, b} ∧ Iτ({b, c} = 0.

Similarly, we have Fτ({b}) = 0. Thus, τ({b}) = (1, 0, 0). On the other hand, by the definition of B,

Tτ({b}) =
∨

{Aα}α∈Γ⊂2X , {b}=⋃
α∈Γ Aα

∧
α∈Γ

TB(Aα) = Tα

and
Iτ({b}) =

∧
{Aα}α∈Γ⊂2X , {b}=⋃

α∈Γ Aα

∨
α∈Γ

IB(Aα) = Iα.

Similarly, we have Fτ({b}) = Fα. This is a contradiction. Hence, B is not an ordinary single valued
neutrosophic base for an osvnt on X

Theorem 4. Let (X, τ) be an osvnts and let B : 2X → I × I × I be a mapping such that B ≤ τ. Then, B is an
ordinary single valued neutrosophic base for τ if and only if for each x ∈ X and each A ∈ 2X,

TNx(A) ≤
∨

x∈B⊂A
TB(B),

INx(A) ≥
∧

x∈B⊂A
IB(B),

FNx(A) ≥
∧

x∈B⊂A
FB(B).

Proof. (⇒): Suppose B is an ordinary single valued neutrosophic base for τ. Let x ∈ X and let A ∈ 2X.
Then, by Theorem 4.4 in [34], it is obvious that TNx(A) ≤ ∨

x∈B⊂A TB(B). On the other hand,

INx(A) =
∧

x∈B⊂A Iτ(B) [By Definition 13]
=

∧
x∈B⊂A

∧
{Bα}α∈Γ⊂2X , B=

⋃
α∈Γ Bα

∨
α∈Γ IB(Bα). [By Definition 15]

If x ∈ B ⊂ A and B =
⋃

α∈Γ Bα, then there is α0 ∈ Γ such that x ∈ Bα0 . Thus,∨
α∈Γ

IB(Bα) ≥ IB(Bα0) ≥
∧

x∈B⊂A
IB(B).

Thus, INx(A) ≥ ∧
x∈B⊂A IB(B). Similarly, we have FNx(A) ≥ ∧

x∈B⊂A FB(B). Hence, the necessary
condition holds.

(⇐): Suppose the necessary condition holds. Then, by Theorem 4.4 in [34], it is clear that

Tτ(A) =
∨

{Bα}α∈Γ⊂2X , A=
⋃

α∈Γ Bα

∧
α∈Γ

TB(Bα).
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Let A ∈ 2X. Suppose A =
⋃

α∈Γ Bα and {Bα} ⊂ 2X. Then,

Iτ(A) ≤ ∨
α∈Γ Iτ(Bα) [By the axiom (OSVNT3)]

≤ ∨
α∈Γ IB(Bα). [Since B ≤ τ]

Thus,
Iτ(A) ≤

∧
{Bα}α∈Γ⊂2X , A=

⋃
α∈Γ Bα

∨
α∈Γ

IB(Bα). (1)

On the other hand,

Iτ(A) =
∨

x∈A
∧

x∈B⊂A Iτ(B) [By Lemma 3]
=

∨
x∈A INx(A) [By Definition 13]

=
∨

x∈A
∧

x∈B⊂A IB(B) [By the hypothesis]
=

∧
f∈Πx∈ABx

∨
x∈A IB( f (x)),

where Bx = {B ∈ 2X : x ∈ B ⊂ A}. Furthermore, A =
⋃

x∈A f (x) for each f ∈ Πx∈ABx. Thus,∧
f∈Πx∈ABx

∨
x∈A

IB( f (x)) =
∧

{Bα}α∈Γ⊂2X , A=
⋃

α∈Γ Bα

∨
α∈Γ

IB(Bα).

Hence,
Iτ(A) ≥

∧
{Bα}α∈Γ⊂2X , A=

⋃
α∈Γ Bα

∨
α∈Γ

IB(Bα). (2)

By (1) and (2), Iτ(A) =
∧
{Bα}α∈Γ⊂2X , A=

⋃
α∈Γ Bα

∨
α∈Γ IB(Bα). Similarly, we have Fτ(A) =∧

{Bα}α∈Γ⊂2X , A=
⋃

α∈Γ Bα

∨
α∈Γ FB(Bα). Therefore, B is an ordinary single valued neutrosophic base

for τ.

Theorem 5. Let B : 2X → I × I × I be a mapping. Then, B is an ordinary single valued neutrosophic base for
some oist τ on X if and only if it has the following conditions:

(1)
∨
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∧
α∈Γ TB(Bα) = 1,∧

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∨
α∈Γ IB(Bα) = 0,∧

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∨
α∈Γ FB(Bα) = 0,

(2) for any A1, A2 ∈ 2X and each x ∈ A1 ∩ A2,

TB(A1)∧ TB(A2) ≤
∨

x∈A⊂A1∩A2

TB(A),

IB(A1)∨ IB(A2) ≥
∧

x∈A⊂A1∩A2

IB(A),

FB(A1)∨ FB(A2) ≥
∧

x∈A⊂A1∩A2

FB(A).

In fact, τ : 2X → I × I × I is the mapping defined as follows: for each A ∈ 2X,

Tτ(A) =

{
1 i f A = φ∨
{Bα}α∈Γ⊂2X , A=

⋃
α∈Γ Bα

∧
α∈Γ TB(Bα) otherwise,

Iτ(A) =

{
0 i f A = φ∧
{Bα}α∈Γ⊂2X , A=

⋃
α∈Γ Bα

∨
α∈Γ IB(Bα) otherwise,

Fτ(A) =

{
0 i f A = φ∧
{Bα}α∈Γ⊂2X , A=

⋃
α∈Γ Bα

∨
α∈Γ FB(Bα) otherwise.

In this case, τ is called an ordinary single valued neutrosophic topology on X induced by B.
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Proof. (⇒): Suppose B is an ordinary single valued neutrosophic base for some osvnt τ on X. Then,
by Definition 15 and the axiom (OSVNT1),∨

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∧
α∈Γ

TB(Bα) = Tτ(X) = 1,

∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ

IB(Bα)) = Iτ(X) = 0,

∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ

FB(Bα)) = Fτ(X) = 0.

Thus, condition (1) holds.
Let A1, A2 ∈ 2X and let x ∈ A1 ∩ A2. Then, by the proof of Theorem 4.2 in [33], it is obvious that

TB(A1)∧ TB(A2) ≤
∨

x∈A⊂A1∩A2
TB(A). On the other hand,

IB(A1)∨ IB(A2) ≥ Iτ(A1)∨ Iτ(A2) ≥ Iτ(A1 ∩ A2) ≥ INx(A1 ∩ A2) ≥
∧

x∈A⊂A1∩A2

IB(A).

Thus,
IB(A1)∨ IB(A2) ≥

∧
x∈A⊂A1∩A2

IB(A).

Similarly, we have
FB(A1)∨ FB(A2) ≥

∧
x∈A⊂A1∩A2

FB(A).

Thus, condition (2) holds.
(⇐): Suppose the necessary conditions (1) and (2) are satisfied. Then, by the proof of Theorem 4.2

in [33], we can see that the following hold:

Tτ(X) = Tτ(φ) = 1,
Tτ(A∩ B) ≥ Tτ(A)∧ Tτ(B) for any A, B ∈ 2X

and

Tτ(
⋃

α∈Γ Aα) ≥
∧

α∈Γ Tτ(Aα) for each {Aα}α∈Γ ⊂ 2X.

From the definition of τ, it is obvious that Iτ(X) = Iτ(φ) = 0. Similarly, we have Fτ(X) = Fτ(φ) =

0. Thus, τ satisfies the axiom (OSVNT1).
Let {Aα}α∈Γ ⊂ 2X and let Bα = {{Bδα

: δα ∈ Γα} :
⋃

δα∈Γα
Bδα

= Aα}. Let f ∈ Πα∈ΓBα. Then,
clearly,

⋃
α∈Γ

⋃
Bδα∈ f (α) Bδα

=
⋃

α∈Γ Aα. Thus,

Iτ(
⋃

α∈Γ Aα) =
∧⋃

δ∈Γ Bδ=
⋃

α∈Γ Aα

∨
δ∈Γ IB(Bδ)

≤ ∧
f∈Πα∈ΓBα

∨
α∈Γ

∨
Bδα∈ f (α) IB(Bδα

)

=
∨

α∈Γ
∧
{Bδα :δα∈Γα}∈Bα

∨
δα∈Γα

IB(Bδα
)

=
∨

α∈Γ Iτ(Aα).

Similarly, we have Fτ(
⋃

α∈Γ Aα) ≤
∨

α∈Γ Fτ(Aα). Thus, τ satisfies the axiom (OSVNT3).
Now, let A, B ∈ 2X and suppose Iτ(A) < Iα and Iτ(B) < Iα for α ∈ SVNV. Then, there are

{Aα1 : α1 ∈ Γ1} and {Bα2 : α2 ∈ Γ2} such that
⋃

α1∈Γ1
Aα1 = A,

⋃
α2∈Γ2

Bα2 = B and IB(Aα1) < Iα for
each α1 ∈ Γ1, IB(Bα2) < Iα for each α2 ∈ Γ2. Let x ∈ A∩ B. Then, there are α1x ∈ Γ1 and α2x ∈ Γ2 such
that x ∈ Aα1x ∩ Bα2x . Thus, from the assumption,

Iα > IB(Aα1x)∨ IB(Bα2x) ≥
∧

x∈C⊂Aα1x∩Bα2x

IB(C).
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Moreover, there is Cx such that x ∈ Cx ⊂ Aα1x ∩ Bα2x ⊂ A∩ B and IB(Cx) < Iα. Since
⋃

x∈A∩B Cx =

A∩ B, we obtain
Iα ≥

∨
x∈A∩B

IB(Cx) ≥
∧

⋃
α∈Γ Bα=A∩B

∨
α∈Γ

IB(Bα) = Iτ(A∩ B).

Now, let Iβ = Iτ(A)∨ Iτ(B) and let n be any natural number, where Iβ ∈ I. Then, Iτ(A) < Iβ + 1/n
and Iτ(B) < Iβ + 1/n. Thus, Iτ(A ∩ B) ≤ Iβ + 1/n. Thus, Iτ(A ∩ B) ≤ Iβ = Iτ(A) ∨ Iτ(B). Similarly,
we have Fτ(A ∩ B) ≤ Fτ(A) ∨ Fτ(B). Hence, τ satisfies the axiom (OSVNT2). This completes the
proof.

Example 4. (1) Let X = {a, b, c} and let α ∈ SVNV be fixed, where α ∈ I1 × I0 × I0. We define the mapping
B : 2X → I × I × I as follows: for each A ∈ 2X,

TB(A) =

{
1 if A = {b} or {a, b} or {b, c}
Tα otherwise,

IB(A) =

{
0 if A = {b} or {a, b} or {b, c}
Iα otherwise,

FB(A) =

{
0 if A = {b} or {a, b} or {b, c}
Fα otherwise.

Then, we can easily see that B satisfies conditions (1) and (2) in Theorem 5. Thus, B is an ordinary single
valued neutrosophic base for an osvnt τ on X. In fact, τ : 2X → I× I× I is defined as follows: for each A ∈ 2X,

Tτ(A) =

{
1 if A ∈ {φ, {b}, {a, b}, {b, c}, X}
Tα otherwise,

Iτ(A) =

{
0 if A ∈ {φ, {b}, {a, b}, {b, c}, X}
Iα otherwise,

Fτ(A) =

{
0 if A ∈ {φ, {b}, {a, b}, {b, c}, X}
Fα otherwise.

(2) Let α ∈ SVNV be fixed, where α ∈ I1× I0× I0. We define the mapping B : 2R → I× I× I as follows:
for each A ∈ 2R,

TB(A) =

{
1 if A = (a, b) for a, b ∈ R with a ≤ b
Tα otherwise,

IB(A) =

{
0 if A = (a, b) for a, b ∈ R with a ≤ b
Iα otherwise,

FB(A) =

{
0 if A = (a, b) for a, b ∈ R with a ≤ b
Fα otherwise.

Then, it can be easily seen that B satisfies the conditions (1) and (2) in Theorem 5. Thus, B is an ordinary
single valued neutrosophic base for an osvnt τα on R.

In this case, τα is called the α-ordinary single valued neutrosophic usual topology on R.
(3) Let α ∈ SVNV be fixed, where α ∈ I1× I0× I0. We define the mapping B : 2R → I× I× I as follows:

for each A ∈ 2R,

TB(A) =

{
1 if A = [a, b) for a, b ∈ R with a ≤ b
Tα otherwise,
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IB(A) =

{
0 if A = [a, b) for a, b ∈ R with a ≤ b
Iα otherwise,

FB(A) =

{
0 if A = [a, b) for a, b ∈ R with a ≤ b
Fα otherwise.

Then, we can easily see that B satisfies the conditions (1) and (2) in Theorem 5. Thus, B is an ordinary
single valued neutrosophic base for an osvnt τl on R.

In this case, τl is called the α-ordinary single valued neutrosophic lower-limit topology on R.

Definition 16. Let τ1, τ2 ∈ OSVNT(X), and let B1 and B1 be ordinary single valued neutrosophic bases for
τ1 and τ2, respectively. Then, B1 and B1 are said to be equivalent if τ1 = τ2.

Theorem 6. Let τ1, τ2 ∈ OSVNT(X), and let B1 and B1 be ordinary single valued neutrosophic bases for τ1

and τ2 respectively. Then, τ1 is coarser than τ2, i.e.,

Tτ1 ≤ Tτ2 , Iτ1 ≥ Iτ2 , Fτ1 ≥ Fτ2

if and only if for each A ∈ 2X and each x ∈ A,

TB1(A) ≤
∨

x∈B⊂A
TB2(B), IB1(A) ≥

∧
x∈B⊂A

IB2(B), FB1(A) ≥
∧

x∈B⊂A
FB2(B).

Proof. (⇒): Suppose τ1 is coarser than τ2. For each x ∈ X, let x ∈ A ∈ 2X. Then, by Theorem 4.8
in [34], TB1(A) ≤ ∨

x∈B⊂A TB2(B). On the other hand,

IB1(A) ≥ Iτ1(A) [since B1 is an ordinary single valued neutrosophic base for τ1]
≥ Iτ2(A) [By the hypothesis]
=

∧
{Aα}α∈Γ⊂2X , A=

⋃
α∈Γ Aα

∨
α∈Γ IB2(Aα).

[Since B2 is an ordinary single valued neutrosophic base for τ2]

Since x ∈ A and A =
⋃

α∈Γ Aα, there is α0 ∈ Γ such that x ∈ Aα0 . Thus,∧
{Aα}α∈Γ⊂2X , A=

⋃
α∈Γ Aα

∨
α∈Γ

IB2(Aα) ≥ IB2(Aα0) ≥
∧

x∈B⊂A
IB2(B).

Thus, IB1(A) ≥ ∧
x∈B⊂A IB2(B). Similarly, we have FB1(A) ≥ ∧

x∈B⊂A FB2(B).
(⇐): Suppose the necessary condition holds. Then, by Theorem 4.8 in [34], Tτ1 ≤ Tτ2 . Let A ∈ 2X.

Then,

Iτ1(A) =
∨

x∈A
∧

x∈B⊂A IB1(B) [By Lemma 3]
≥ ∨

x∈A
∧

x∈B⊂A
∧

x∈C⊂B IB2(C) [By the hypothesis]
=

∧
x∈C⊂A

∨
x∈A IB2(C)

=
∧
{Cx}x∈A⊂2X , A=

⋃
x∈A Cx

∨
x∈A IB2(Cx)

= Iτ2(A).

Thus, Iτ1 ≥ Iτ2 . Similarly, we have Fτ1 ≥ Fτ2 . Thus, τ1 is coarser than τ2. This completes the
proof.

The following is an immediate result of Definition 16 and Theorem 6.

Corollary 4. Let B1 and B2 be ordinary single valued neutrosophic bases for two ordinary single valued
neutrosophic topologies on a set X, respectively. Then,

B1 and B2 are equivalent if and only if the following two conditions hold:
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(1) for each B1 ∈ 2X and each x ∈ B1,

TB1(B1) ≤
∨

x∈B2⊂B1

TB2(B2),

IB1(B1) ≥
∧

x∈B2⊂B1

IB2(B2),

FB1(B1) ≥
∧

x∈B2⊂B1

FB2(B2),

(2) for each B2 ∈ 2X and each x ∈ B2,

TB2(B2) ≤
∨

x∈B1⊂B2

TB1(B1),

IB2(B2) ≥
∧

x∈B1⊂B2

IB1(B1),

FB2(B2) ≥
∧

x∈B1⊂B2

FB1(B1).

It is obvious that every ordinary single valued neutrosophic topology itself forms an ordinary
single valued neutrosophic base. Then, the following provides a sufficient condition for one to see
if a mapping B : 2X → I × I × I such that TB ≤ Tτ, IB ≥ Iτ and FB ≥ Fτ is an ordinary single valued
neutrosophic base for τ ∈ OSVNT(X).

Proposition 10. Let (X, τ) be an osvnts and let B : 2X → I× I× I be a mapping such that TB ≤ Tτ, IB ≥ Iτ

and FB ≥ Fτ. For each A ∈ 2X and each x ∈ A, suppose Tτ(A) ≤ ∨
x∈B⊂A TB(B), Iτ(A) ≥ ∧

x∈B⊂A IB(B)
and Fτ(A) ≥ ∧

x∈B⊂A FB(B). Then, B is an ordinary single valued neutrosophic base for τ.

Proof. From the proof of Proposition 4.10 in [34], it is clear that the first part of the condition (1) of
Theorem 5 holds, i.e.,

∨
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∧
α∈Γ TB(Bα) = 1. On the other hand,∧

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∨
α∈Γ IB(Bα)

≥ ∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ Iτ(Bα) [since IB ≥ Iτ]

≥ ∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

Iτ(
⋃

α∈Γ Bα) [by the axiom (OSVNT3)]
= Iτ(X)

=
∨

x∈X
∧

x∈B⊂X Iτ(B) [By Lemma 3]
≥ ∨

x∈X
∧

x∈B⊂X
∧

x∈C⊂B IB(C) [By the hypothesis]
=

∧
x∈C⊂X

∨
x∈X IB(C)

=
∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ IB(Bα).

Since τ ∈ OSVNT(X), Iτ(X) = 0. Thus,
∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ IB(Bα) = 0. Similarly, we

have
∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ FB(Bα) = 0. Thus, condition (1) of Theorem 5 holds.

Now, let A1, A2 ∈ 2X and let x ∈ A1 ∩ A2. Then, by the proof of Proposition 4.10 in [34], it is
obvious that TB(A1)∧ TB(A2) ≤

∨
x∈A⊂A1∩A2

TB(A). On the other hand,

IB(A1)∨ IB(A2) ≥ Iτ(A1)∨ Iτ(A2) [Since IB ≥ Iτ]
≥ Iτ(A1 ∩ A2) [by the axiom (OSVNT2)]
≥ ∧

x∈A⊂A1∩A2
IB(A). [by the hypothesis]

Similarly, we have FB(A1) ∨ FB(A2) ≥
∧

x∈A⊂A1∩A2
FB(A). Thus, condition (2) of Theorem 5

holds. Thus, by Theorem 5, B is an ordinary single valued neutrosophic base for τ. This completes
the proof.
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Definition 17. Let (X, τ) be an osvnts and let' : 2X → I× I× I be a mapping. Then, ϕ is called an ordinary
single valued neutrosophic subbase for τ, if ϕu is an ordinary single valued neutrosophic base for τ, where
ϕu : 2X → I × I × I is the mapping defined as follows: for each A ∈ 2X,

Tϕu(A) =
∨

{Bα}@2X , A=
⋂

α∈Γ Bα

∧
α∈Γ

T'(Bα),

Iϕu(A) =
∧

{Bα}@2X , A=
⋂

α∈Γ Bα

∨
α∈Γ

I'(Bα),

Fϕu(A) =
∧

{Bα}@2X , A=
⋂

α∈Γ Bα

∨
α∈Γ

F'(Bα),

where @ stands for “a finite subset of".

Example 5. Let α ∈ SVNV be fixed, where α ∈ I1 × I0 × I0. We define the mapping ' : 2R → I × I × I
as follows: for each A ∈ 2R,

T'(A) =

{
1 if A = (a, ∞) or (−∞, b) or (a, b)
Tα otherwise,

I'(A) =

{
0 if A = (a, ∞) or (−∞, b) or (a, b)
Iα otherwise,

F'(A) =

{
0 if A = (a, ∞) or (−∞, b) or (a, b)
Fα otherwise,

where a, b ∈ R such that a < b. Then, we can easily see that ' is an ordinary single valued neutrosophic
subbase for the α-ordinary single valued neutrosophic usual topology Uα on R.

Theorem 7. Let ' : 2X → I × I × I be a mapping. Then, ' is an ordinary single valued neutrosophic subbase
for some osvnt if and only if ∨

{Bα}α∈Γ⊂2X , X=
⋃

α∈Γ Bα

∧
α∈Γ

T'(Bα) = 1,

∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ

I'(Bα) = 0,

∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ

F'(Bα) = 0.

Proof. (⇒): Suppose ' is an ordinary single valued neutrosophic subbase for some osvnt. Then,
by Definition 17, it is clear that the necessary condition holds.

(⇐): Suppose the necessary condition holds. We only show that ϕu satisfies the condition (2) in
Theorem 5. Let A, B ∈ 2X and x ∈ A∩ B. Then, by the proof of Theorem 4.3 in [33], it is obvious that
Tϕu(A)∧ Tϕu(B) ≤

∨
x∈C⊂A∩B Tϕu(C). On the other hand,

Iϕu(A)∨ Iϕu(B)
= (

∧⋂
α1∈Γ1

Bα1=A
∨

α1∈Γ1
I'(Bα1))∨ (

∧⋂
α2∈Γ2

Bα2=B
∨

α2∈Γ2
I'(Bα2))

=
∧⋂

α1∈Γ1
Bα1=A

∧⋂
α2∈Γ2

Bα2=B(
∨

α1∈Γ1
I'(Bα1)∨

∨
α2∈Γ2

I'(Bα2))

≥ ∧⋂
α∈Γ Bα=A∩B

∨
α∈Γ I'(Bα)

= Iϕu(A∩ B).
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Since x ∈ A ∩ B, Iϕu(A) ∨ Iϕu(B) ≥ Iϕu(A ∩ B) ≥ ∧
x∈C⊂A∩B Iϕu(C). Similarly, we have

Fϕu(A)∨ Fϕu(B) ≥ Fϕu(A∩ B) ≥ ∧
x∈C⊂A∩B Fϕu(C). Thus, ϕu satisfies the condition (2) in Theorem 5.

This completes the proof.

Example 6. Let X = {a, b, c, d, e} and let α ∈ SVNV be fixed, where α ∈ I1× I0× I0. We define the mapping
' : 2X → I × I × I as follows: for each A ∈ 2X,

T'(A) =

{
1 if A ∈ {{a}, {a, b, c}, {b, c, d}, {c, e}}
Tα otherwise,

I'(A) =

{
0 if A ∈ {{a}, {a, b, c}, {b, c, d}, {c, e}}
Iα otherwise,

F'(A) =

{
0 if A ∈ {{a}, {a, b, c}, {b, c, d}, {c, e}}
Fα otherwise.

Then, X = {a} ∪ {b, c, d} ∪ {c, e},

Tϕu({a}) = Tϕu({b, c, d}) = Tϕu({c, e}) = 1,
Iϕu({a}) = Iϕu({b, c, d}) = Iϕu({c, e}) = 0.
Fϕu({a}) = Fϕu({b, c, d}) = Fϕu({c, e}) = 0.

Thus, ∨
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∧
α∈Γ

T'(Bα) = 1,

∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ

I'(Bα) = 0,

∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ

F'(Bα) = 0.

Thus, by Theorem 7, ' is an ordinary single valued neutrosophic subbase for some osvnt.

The following is an immediate result of Corollary 4 and Theorem 7.

Proposition 11. '1, '2 : 2X → I × I × I be two mappings such that∨
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∧
α∈Γ

T'1(Bα) = 1,

∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ

I'1(Bα) = 0,

∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ

F'1(Bα) = 0

and ∨
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∧
α∈Γ

T'2(Bα) = 1,

∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ

I'2(Bα) = 0,

∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ

F'2(Bα) = 0.

Suppose the two conditions hold:
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(1) for each S1 ∈ 2X and each x ∈ S1,

T'1(S1) ≤
∨

x∈S2⊂S1

T'2(S2), I'1(S1) ≥
∧

x∈S2⊂S1

I'2(S2), F'1(S1) ≥
∧

x∈S2⊂S1

F'2(S2),

(2) for each S2 ∈ 2X and each x ∈ S2,

T'2(S2) ≤
∨

x∈S1⊂S2

T'1(S1), I'2(S2) ≥
∧

x∈S1⊂S2

I'1(S1), f'2(S2) ≥
∧

x∈S1⊂S2

f'1(S1).

Then, '1 and '2 are ordinary single valued neutrosophic subbases for the same ordinary single valued
neutrosophic topology on X.

6. Conclusions

In this paper, we defined an ordinary single valued neutrosophic topology and level set of
an osvnst to study some topological characteristics of neutrosophic sets and obtained some their
basic properties. In addition, we defined an ordinary single valued neutrosophic subspace. Next,
the concepts of an ordinary single valued neutrosophic neighborhood system and an ordinary single
valued neutrosophic base (or subbase) were introduced and studied. Their results are summarized
as follows:

First, an ordinary single valued neutrosophic neighborhood system has the same properties in a
classical neighborhood system (see Theorem 3).

Second, we found two characterizations of an ordinary single valued neutrosophic base
(see Theorems 4 and 5).

Third, we obtained one characterization of an ordinary single valued neutrosophic subbase
(see Theorem 7).

Finally, we expect that this paper can be a guidance for the research of separation axioms,
compactness, connectedness, etc. in ordinary single valued neutrosophic topological spaces.
In addition, one can deal with single valued neutrosophic topology from the viewpoint of lattices.
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26. Šostak, A. On a fuzzy topological structure. Rend. Circ. Mat. Palermo (2) Suppl. 1985, 89–103.
27. Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96.
28. Lim, P.K.; Kim, S.R.; Hur, K. Intuitionisic smooth topological spaces. J. Korean Inst. Intell. Syst. 2010, 20,

875–883.
29. Kim, S.R.; Lim, P.K.; Kim, J.; Hur, K. Continuities and neighborhood structures in intuitionistic fuzzy smooth

topological spaces. Ann. Fuzzy Math. Inform. 2018, 16, 33–54.
30. Choi, J.Y.; Kim, S.R.; Hur, K. Interval-valued smooth topological spaces. Honam Math. J. 2010, 32, 711–738.
31. Gorzalczany, M.B. A method of inference in approximate reasoning based on interval-valued fuzzy sets.

Fuzzy Sets Syst. 1987, 21, 1–17.
32. Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning I. Inform. Sci.

1975, 8, 199–249.
33. Ying, M.S. A new approach for fuzzy topology(I). Fuzzy Sets Syst. 1991, 39, 303–321.
34. Lim, P.K.; Ryou, B.G.; Hur, K. Ordinary smooth topological spaces. Int. J. Fuzzy Log. Intell. Syst.

2012, 12, 66–76.
35. Lee, J.G.; Lim, P.K.; Hur, K. Some topological structures in ordinary smooth topological spaces. J. Korean Inst.

Intell. Syst. 2012, 22, 799–805.
36. Lee, J.G.; Lim, P.K.; Hur, K. Closures and interiors redefined, and some types of compactness in ordinary

smooth topological spaces. J. Korean Inst. Intell. Syst. 2013, 23, 80–86.
37. Lee, J.G.; Hur, K.; Lim, P.K. Closure, interior and compactness in ordinary smooth topological spaces. Int. J.

Fuzzy Log. Intell. Syst. 2014, 14, 231–239.
38. Smarandache, F. Neutrosophy, Neutrisophic Property, Sets, and Logic; American Research Press: Rehoboth, DE,

USA, 1998.
39. Salama, A.A.; Broumi, S.; Smarandache, F. Some types of neutrosophic crisp sets and neutrosophic crisp

relations. I.J. Inf. Eng. Electron. Bus. 2014. Available online: http://www.mecs-press.org/ (accessed on
February 10, 2019).

40. Salama, A.A.; Smarandache, F. Neutrosophic Crisp Set Theory; The Educational Publisher Columbus:
Columbus, OH, USA, 2015.

41. Hur, K.; Lim, P.K.; Lee, J.G.; Kim, J. The category of neutrosophic crisp sets. Ann. Fuzzy Math. Inform.
2017, 14, 43–54.

42. Hur, K.; Lim, P.K.; Lee, J.G.; Kim, J. The category of neutrosophic sets. Neutrosophic Sets Syst. 2016, 14, 12–20.

Florentin Smarandache (ed.) Collected Papers, VI

685

http://www.mecs-press.org/


43. Smarandache, F. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic
Probability and Statistics, 6th ed.; InfoLearnQuest: Ann Arbor, USA, 2007. Available online: http://fs.gallup.
unm.edu/eBook-neutrosophics6.pdf (accessed on February 10, 2019).
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Abstract
Real-life decision-making problem has been demonstrated to cover the indeterminacy through single valued neutrosophic 
set. It is the extension of interval valued neutrosophic set. Most of the problems of real life involve some sort of uncertainty 
in it among which, one of the famous problem is finding a shortest path of the network. In this paper, a new score function 
is proposed for interval valued neutrosophic numbers and SPP is solved using interval valued neutrosophic numbers. Addi-
tionally, novel algorithms are proposed to find the neutrosophic shortest path by considering interval valued neutrosophic 
number, trapezoidal and triangular interval valued neutrosophic numbers for the length of the path in a network with illus-
trative example. Further, comparative analysis has been done for the proposed algorithm with the existing method with the 
shortcoming and advantage of the proposed method and it shows the effectiveness of the proposed algorithm.

Keywords Interval valued triangular neutrosophic number · Interval valued trapezoidal neutrosophic number · Ranking 
methods · Deneutrosophication · Neutrosophic shortest path problem · Network

Introduction and literature of review

In this part, introduction to the objective of the paper is given 
by presenting basic concepts and procedure of the shortest 
path problem (SPP) and the literature of review have been 
collected to know the recent work related to the presented 
concept which shows the novelty of the presented work

Introduction

SPP is the ultimate and popular problem in the different 
areas also it is the heart of the network flows. In conventional 
problem, the distance between the nodes is considered to be 
certain and for the uncertain environment fuzzy numbers 
can be adopted to get an optimized result. Computing the 
minimum cost of the path from every vertex is called sin-
gle source SPP. Especially in the process of finding shortest 
path, finding the path which has minimum number of bends 
is very important and will give the most optimized result. 
And the cost is the mapping of length and bends. The con-
ventional SPP is to catch the minimum cost path from initial 
to end node and the cost is the addition of the costs of the 
curves on the path [1, 2, 4].

The Shortest Path Problem in Interval Valued Trapezoidal 
and Triangular Neutrosophic Environment 

Junhui Kim, Florentin Smarandache, Jeong Gon Lee, Kul Hur 
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While applying in real time situations the vertices and 
the edges will be considered as follows. In transmission 
networks, telephone exchange, communication proficiency, 
satellites, work stations terminals and computers will be con-
sidered as the vertices and cables, wires and fiber optics will 
be treated as the arcs or paths and it is expected to meet trans-
mission requirements at the minimum cost whereas in traffic 
control management the cost is due to only the paths with 
heavy traffic [8]. In the established network every path has 
a weight which will extend the flow in a recurrence fashion. 
The fusion of costs and weights proposes different ways of 
cost minimizing cycles. There may be cycles with negative 
cost which allow raise to perpetual instances and cost of min-
imum infinity and weight minimizing cycles which permits 
rise to a sink in such a way that it is inexpensive to consume 
a flow in an infinite cycle rather than transit to the station.

SPP plays an essential role in combinatorial optimization 
due to its elemental aspects and a broad range of applications. 
Investigating shortest paths is an essential thing in communi-
cation, computer networks, manufacturing systems and trans-
portation. The weight of the path will represent the transporta-
tion timing from one end to other, i.e., the traveling time from 
the source to the destination. The efficiency of the transmis-
sion can be improved by speed up some of the routes to reduce 
the traveling time between some of the pairs of sources and 
terminals by minimizing the weights of the links. One needs 
some amount to reduce the traveling time by improving the 
road conditions for the faster traveling and the total cost sup-
posed to be less to face the needs of the speedup [9].

In all the SPP, the source and terminal nodes should sat-
isfy a set of conditions defined over a set of resources which 
associates to a quantity like the time, pickup of load by the 
vehicle or the duration of the break. The constraint of the 
resource will be given in the form of intervals which regulate 
the values that can be considered by the resources at each 
node on the path. SPP using complete graph can be encrypted 
as an assignment problem and is equivalent to an exceptional 
case of the assignment problem. Providing the shortest path 
is a necessary thing to the system of transport management, 
from a particular source node to the terminal node. The arc 
lengths are stimulated to represent time or cost of the trans-
portation rather the geographical distances [10, 11].

The technique of using fuzzy numbers can be adopted 
for the environment with uncertainty. Crisp number is 
obtained from fuzzy number using defuzzification function 
and it is widely used in an optimization methods. SPP is not 
restricted to the geometric distance. Even though it is fixed, 
the traveling time within the cities may be represented by 
fuzzy variable. Since the weight of the arcs is uncertain in 
almost all the communication and transportation networks, 
it cannot be designed into crisp graphs. Dubois and Prade 
solved fuzzy shortest path problem for the first time. The 
most crucial combinatorial optimization problem is to find 

the SP to the directed graph and its primary format unable 
to represent the situations where the value of the detached 
function should be found not only by the preference of each 
single arc [15–19].

Shortest path of the network can be found using neutro-
sophic set (NS) by considering edge weight as neutrosophic 
numbers (NNs) and that may be single and interval valued, 
and bipolar as well [21, 22]. Samarandache described about 
neutrosophic for the first time in the year 1995 and proposed 
an important mathematical mechanism called neutrosophic 
set theory to handle imprecise, uncertain and indeterminate 
problems which cannot be dealt by fuzzy and its various 
type. NS is obtained by three autonomous mapping such as 
truth (T), indeterminacy (I) and falsity (F) and takes values 
from  ]0−,  1+[. It is very difficult to utilize NS directly.

While getting uncertainty in the set of vertices and edge 
then fuzzy graph can be adopted for SPP, but if there is inde-
terminacy exist between the relation of nodes and vertices 
then neutrosophic will be the appropriate concept to deal the 
real life problems [23]. Since indeterminacy is also treated 
seriously, NSs can be able to handle uncertainty in a better 
way [35]. The model of the NS is an important mechanism to 
deal with real scientific and engineering as it is able to deal 
uncertain, inconsistent and also indeterminate information 
[36]. Route maintenance or supply with uncertainty is play-
ing a primary role in intelligent transport systems.

Due to inadequate data, as the stochastic shortest path 
needs accurate probability distributions, it is unable give the 
optimized result. Due to accuracy, adoptability and rapport 
to a system, single valued neutrosophic graph (SVNG) gets 
more attention and produce optimized solution than other 
types of fuzzy sets. Application of probabilities in machine 
learning is done by the score function. These functions play 
an essential role to find the minimum cost path in SPP and 
minimum spanning tree (MST) to UIVNGs (undirected 
interval valued neutrosophic graphs). When the data are in 
the form of intervals then that can dealt effectively by con-
sidering interval valued neutrosophic setting [40, 41]. Many 
group decision making methods including hybrid methods 
have been proposed to solve decision making problems such 
as supplier selection, project selection under triangular and 
trapezoidal neutrosophic environment [55–64].

The rest of the paper is arranged as follows. In Sect. 1.2, 
literature of review has been collected. In Sect. 2, over view 
of interval valued neutrosophic set is given. In Sect. 3, novel 
algorithms are proposed to find the neutrosophic shortest 
path under interval valued neutrosophic environment and 
interval valued triangular and trapezoidal neutrosophic 
environments with the help of proposed score function. In 
Sect. 4, shortcoming of the existing methods, advantages 
of the proposed method and comparative analysis are pre-
sented for the proposed method with the existing method. In 
Sect. 5, conclusion of the presented work is given.
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Literature of review

The authors of, Ahuja et al. [1] proposed a different model 
redistributive heap as a rapid algorithm to find SP of the 
network. Yang et al. [2] presented a graph-theoretic strat-
egy of rectilinear paths on bends and lengths. Ibarra and 
Zheng [3] proved that the single-origin shortest path prob-
lem for permutation graphs can be determined by order of 
the logarithmic of n. Arsham [4] examined the robustness 
of the shortest path problem. Tzoreff [5] examined the dis-
connected SPP with group path lengths. Batagelj et al. [6] 
proposed generalized SPP.

Zhang and Lin [7] introduced the calculation of the 
reverse SPP. Vasantha and Samaranadache [8] proposed pri-
mary neutrosophic algebraic framework. Also their utiliza-
tion to fuzzy and NEUTROSOPHIC models as well. Roditty 
and Zwick [9] acquired some results associated with effec-
tive forms of the SPP. Irnich and Desaulniers [10] proposed 
SPP with support force. Buckley and Jowers [11] intro-
duced SPP using the concept of fuzzy logic. Wastlund [12] 
analyzed the relationship between random assignment and 
SPP problem on the complete graph. Turner [13] attained 
strongly polynomial algorithms for a collection of SPP on 
acyclic and normal digraphs. Deng et al. [14] proposed fuzzy 
Dijkstra algorithm for SPP for imprecise environment.

Biswas et al. [15] introduced an algorithm for deriving 
shortest path in intuitionistic fuzzy environment. Arnautovic 
et al. [16] obtained the complement of the ant colony devel-
opment for the SPP using open MP and CUDA. Gabrel and 
Murat [17] presented different models, methods and princi-
ple for the stability of the SPP. Grigoryan and Harutyunyan 
[18] proposed SPP in the Knodel graph. Rostami et al. [19] 
proposed quadratic SPP. Randour et al. [20] presented algo-
rithms to incorporate the approaches with various securities 
on the length allocation of the paths instead of decreasing its 
normal value. Broumi et al. [21] solved SPP under neutro-
sophic setting using Dijkstra algorithm. Broumi et al. [22] 
introduced SPP based on triangular fuzzy neutrosophic 
environment.

Broumi et al. [23] proposed assertive types of SVNGs 
and examination of properties with validation and examples. 
Nancy and Harish [24] proposed an improved score func-
tion and applied in decision making process. Sahin and Liu 
[25] maximized method of deviation for neutrosophic deci-
sion making problem with a support of incomplete weight. 
Broumi et al. [26] proposed the measurements for SPP using 
SV-triangular neutrosophic numbers. Broumi et al. [27] cal-
culated MST in interval valued bipolar neutrosophic (IVBN) 
setting. Hu and Sotirov [28] proposed amenity of semi defi-
nite programming for the quadratic SPP and performed some 
arithmetic operations to solve the QSPP using branch and 
bound algorithm. Dragan and Leitert [29] solved SPP on 

minimal peculiarity. Zhang et al. [30] proposed stable SPP 
with circulated uncertainty.

Broumi et al. [31] solved SPP using SVNG. Broumi et al. 
[32] solved SSP under bipolar neutrosophic environment. 
Peng and Dai [33] proposed interval-based algorithms based 
on neutrosophic environment for decision making process. 
Liu and You [34] proposed muirhead mean operators and 
employed them in decision making problem. Smarandache 
[35] solved SPP using trapezoidal neutrosophic knowledge. 
Wang et al. [36] applied SV-trapezoidal neutrosophic prefer-
ence in decision making problem. Deli and Subas [37] pro-
posed a ranking method of SVNNs and applied in decision 
making problem. Broumi et al. [38] proposed matrix algo-
rithm for MST in undirected IVNG. Enayattabar et al. [39] 
applied Dijkstra algorithm to find the shortest path under 
IV Pythagorean fuzzy setting. Broumi et al. [40] proposed 
IVN soft graphs. Broumi et al. [41] proposed some notion 
with respect to neutrosophic set with triangular and trap-
ezoidal concept and primary operations as well. Also done a 
contingent analysis with the existing concepts and proposed 
neutrosophic numbers.

Broumi et al. [42] proposed an innovative system and 
technique for the planning of telephone network using NG. 
Broumi et al. [43] proposed SPP under interval valued neu-
trosophic setting. Bolturk and Kahraman [44] presented a 
novel IVN AHP with cosine similarity measure. Wang et al. 
[45] proposed interval neutrosophic set and logic in detail. 
Biswas et al. [46] proposed distance measure using interval 
trapezoidal neutrosophic numbers. Deli [47] given detailed 
work on expansion and contraction on conventional neutro-
sophic soft set. Deli [48] solved a decision making problem 
using interval valued neutrosophic soft numbers.

Deli [49] proposed theory of npn-soft set and its appli-
cation. Deli [50] proposed single valued trapezoidal neu-
trosophic operators and applied them in a decision making 
problem. Deli and Subas [51] proposed weighted geometric 
operators under single valued triangular neutrosophic num-
bers and applied in a decision making problem. Deli et al. 
[52] solved a decision making problem using neutrosophic 
soft sets. Basset et al. [53] proposed framework of hybrid 
neutrosophic group AND-TOPSIS for supplier selection. 
Chang et al. [54] experimented in detail about framework 
for the pattern of reuse necessary decision from theoretical 
perspective to practices.

Basset et al. [55] proposed a hybrid method of neutro-
sophic sets and method of DEMATEL to develop criteria 
for supplier selection. Basset et al. [56] proposed a struc-
ture based on VIKOR technique for e-government web-
site evaluation. Basset et al. [57] Introduced a framework 
to evaluate cloud computing services. Basset et al. [58] 
proposed a hybrid method for project selection under neu-
trosophic environment. Basset et al. [59] proposed a new 
method for a neutrosophic linear programming problem. 
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Basset et al. [60] proposed an economic tool for risk quan-
tification for supply chain. Basset et al. [61] proposed a 
framework for AHP-QFD to solve a supplier selection. 
Basset et  al. [62] proposed neutrosophic AHP-Delphi 
group decision model under trapezoidal neutrosophic 
numbers. Basset et al. [63] solved a group decision mak-
ing problem using neutrosophic analytic hierarchy process. 
Basset et al. [64] proposed a group decision making prob-
lem using triangular neutrosophic numbers. Kumar et al. 
[65] proposed an algorithm to solve neutrosophic short-
est path problem under triangular and trapezoidal neutro-
sophic environment.

From this literature review, to the best of our knowledge, 
there is no contribution of research for SPP using interval 
neutrosophic numbers under triangular and trapezoidal envi-
ronments. Additionally, this is the first study that SPP is 
solved by considering interval valued triangular and trap-
ezoidal neutrosophic numbers for the length of the arc for 
a given network.

Overview on interval valued neutrosophic 
set

Here, a brief description of some basic concepts on NSs, 
SVNSs, IVNSs and some existing ranking functions for 
IVNNs are given.

Definition 2.1 [35] NS is constructed by N =
{

< x;T
N
(x), I

N

(x),F
N
(x) >, x ∈ X

}

, where X be an universal set of elements 
x and TN(x), IN(x),FN(x) ∶ X →]

−0, 1+[ are the truth, indeter-
minacy and also falsity membership functions and satisfies 
the criterion,

Definition 2.2 [36] SVNS is defined by 
∙

N =

{

< x;T ∙

N
(x), I ∙

N

(x),F ∙

N
(x) >, x ∈ X

}

 and for every 

and the sum of these three is less than or equal to 3.

Definition 2.3 [45] An interval valued NS is defined by 
∙

N =

{

< x ∶

[

T
L
∙

N

(x), TU
∙

N

(x)

]

,

[

I
L
∙

N

(x), IU
∙

N

(x)

]

,

[

F
L
∙

N

(x),FU
∙

N

(x)

]

>, x ∈ X

}

 , where T ∙

N
(x) =

[

TL
∙

N

(x), TU
∙

N

(x)

]

⊆ [0, 1],

(1)−0 ≤ TN(x) + IN(x) + FN(x) ≤ 3+.

(2)x ∈ X, T ∙

N
(x), I ∙

N
(x),F ∙

N
(x) ∈ [0, 1],

(3)
I ∙

N
(x) =

[

I
L
∙

N

(x), I
U
∙

N

(x)

]

⊆ [0, 1],

F ∙

N
(x) =

[

F
L
∙

N

(x),F
U
∙

N

(x)

]

⊆ [0, 1] and

Now we assume some mathematical operations on IVNNs 
(interval valued neutrosophic numbers).

Definition 2.4 [45] Let 
∙

N1 =

{

< x ∶

[

T
L
∙

N1

, TU
∙

N1

]

,

[

I
L
∙

N1

, IU
∙

N1

]

,

[

F
L
∙

N1

,FU
∙

N1

]

>, x ∈ X

}

 and 
∙

N2 =

{

< x ∶

[

T
L
∙

N2

, TU
∙

N2

]

,

[

I
L
∙

N2

, IU
∙

N2

]

,

[

F
L
∙

N2

,FU
∙

N2

]

>, x ∈ X

}

 be two IVNNs and 𝛿 > 0 then we have

the following operational laws.

Deneutrosophication formulas for IVNNs: To compare two 
IVNNs 

∙

N1 and 
∙

N2 . We use the score function (SF) which rep-
resents a map from [N (R)] into the real line. In the literature 
there are some deneutrosophication formulas, here paper, we 
focus on some of types [24, 25, 33, 34, 44] defined as follows:

(4)0 ≤ sup T ∙

N
(x) + sup I ∙

N
(x) + supF ∙

N
(x) ≤ 3.

(5)

∙

N1 ⊕

∙

N2 =

⟨[

T
L
∙

N1

+ T
L
∙

N2

− T
L
∙

N1

T
L
∙

N2

, T
U
∙

N1

+ T
U
∙

N2

− T
U
∙

N1

T
U
∙

N2

]

,

[

I
L
∙

N1

I
L
∙

N2

, I
U
∙

N1

I
U
∙

N2

]

,

[

F
L
∙

N1

F
L
∙

N2

,F
U
∙

N1

F
U
∙

N2

]⟩

(6)

∙

N1 ⊗

∙

N2=

⟨[

T
L
∙

N1

T
L
∙

N2

, T
U
∙

N1

T
U
∙

N2

]

,

[

I
L
∙

N1

+ I
L
∙

N2

− I
L
∙

N1

I
L
∙

N2

, I
U
∙

N1

+ I
U
∙

N2

− I
U
∙

N1

I
U
∙

N2

]

,

[

F
L
∙

N1

+ F
L
∙

N2

− F
L
∙

N1

F
L
∙

N2

,F
U
∙

N1

+ F
U
∙

N2

− F
U
∙

N1

F
U
∙

N2

]⟩

(7)

�

∙

N =

⟨[

1 −
(

1 − T
L

N

)�

, 1 −
(

1 − T
U

N

)�
]

,

[

(

T
L

N

)�

,
(

T
U

N

)�
]

,

[

(

F
L

N

)�

,
(

F
U

N

)�
]⟩

(8)

Ṅ
𝛿
=

⟨[

(

T
L

N

)𝛿

,
(

T
U

N

)𝛿
]

,

[

1 −
(

1 − I
L

N

)𝛿

, 1 −
(

1 − I
U

N

)𝛿
]

,

[

1 −
(

1 − F
L

N

)𝛿

, 1 −
(

1 − F
U

N

)𝛿
]⟩

.

(9)

S
Bolturk

(

∙

N
1

)

=

(
(

T
L

x
+ T

U

x

)

2
+

(

1 −

(

I
L

x
+ I

U

x

)

2

)

∗

(

I
U

x

)

−

(
(

F
L

x
+ F

U

x

)

2

)

∗

(

1 − F
U

x

)

)

(10)

SRidvan

(

∙

N1

)

=

(

1

4

)

×

(

2 + TL
x
+ TU

x
− 2IL

x
− 2IU

x
− FL

x
− FU

x

)
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The ranking of 
∙

N1 and 
∙

N2 by SF is defined as follows:

 (i) 
∙

N1 ≺

∙

N2 if �
(

∙

N1

)

≺ �

(

∙

N2

)

 (ii) 
∙

N1 ≻

∙

N2 if �
(

∙

N1

)

≻ �

(

∙

N2

)

 (iii) 
∙

N1 =

∙

N2 if �
(

∙

N1

)

= �

(

∙

N2

)

Definition 2.5 [36] Let RN =

⟨[

RT ,RI ,RM ,RE

]

,
(

TR, IR,FR

)⟩

 
and SN =

⟨[

ST , SI , SM , SE
]

,
(

TS, IS,FS

)⟩

 be two trapezoidal
neutrosophic numbers (TpNNs) and � ≥ 0 , then

Definit ion 2.6 [36]  Le t  R =

[

RT ,RI ,RM ,RE

]

 and
RT ≤ RI ≤ RM ≤ RE then the centre of gravity (COG) in R is

Definition 2.7 [36] Let SN =

⟨[

ST , SI , SM , SE
]

,
(

TS, IS,FS

)⟩

 
be a TpNN then the score, accuracy and certainty functions 
are as follows

(11)

SPeng

(

∙

N1

)

=

[

2

3
+

(

TL
x
+ TU

x

)

6
−

(

IL
x
+ IU

x

)

6
−

(

FL
x
+ FU

x

)

6

]

(12)

SLiu

(

∙

N1

)

=

[

2 +

(

TL
x
+ TU

x

)

2
−

(

IL
x
+ IU

x

)

2
−

(

FL
x
+ FU

x

)

2

]

(13)

S
Harish

(

∙

N
1

)

=

(

1

8

)

×

[

4 +
(

T
L

x
+ T

U

x
− F

L

x
− F

U

x

−2I
L

x
− 2I

U

x

)(

4 − T
L

x
− T

U

x
− F

L

x
− F

U

x

)]

.

(14)
R
N
⊕ S

N
=

⟨[

R
T
+ S

T
,R

I
+ S

I
,R

M
+ S

M
,R

E
+ S

E

]

,
(

T
R
+ T

S
− T

R
T
S
, I

R
I
S
,F

R
F
S

)⟩

(15)

R
N
⊗ S

N
=

⟨[

R
T
⋅ S

T
,R

I
⋅ S

I
,R

M
⋅ S

M
,R

E
⋅ S

E

]

,
(

T
R
⋅ T

S
, I

R
+ I

S
− I

R
⋅ I

S
,F

R
+ F

S
− F

R
⋅ F

S

)⟩

(16)
�RN =

⟨

[

�RT , �RI , �RM , �RE

]

,
(

1 −
(

1 − TR
)�

,
(

IR
)�

,
(

FR

)�
)⟩

.

(17)

COG (R)

=

⎧

⎪

⎨

⎪

⎩

R if R
T
= R

I
= R

M
= R

E

1

3

�

R
T
+ R

I
+ R

M
+ R

E
−

R
E
R
M
−R

I
R
T

R
E
+R

M
−R

I
−R

T

�

otherwise

.

(18)�
(

SN
)

= COG(R) ×

(

2 + TS − IS − FS

)

3

Definition 2.8 [36] Let RN =

⟨[

RT ,RI ,RP

]

,
(

TR, IR,FR

)⟩

 be a
triangular neutrosophic number then the score and accuracy 
function are,

Definition 2.9 [46] Let N be a trapezoidal neutrosophic num-
ber in the set of real numbers with the truth, indeterminacy 
and falsity membership functions are defined by

w h e r e  tN = [tL, tU] ⊂ [0, 1], iN = [iL, iU] ⊂ [0, 1] a n d 
fN = [f L, f U] ⊂ [0, 1] are interval numbers. Then the number 
N can be denoted by 

(

[a, b, c, d];[tL, tU], [iL, iU], [f L, f U]
)

 and
is called interval valued trapezoidal neutrosophic number.

• If b = c in interval valued trapezoidal neutrosophic num-
ber then it becomes interval valued triangular neutrosophic
number.

(19)a
(

SN
)

= COG(R) ×
(

TS − FS

)

(20)C
(

SN
)

= COG(R) ×
(

TS
)

.

(21)�
(

RN

)

=

1

12

[

RT + 2 ⋅ RT + RP

]

×

[

2 + TR − IR − FR

]

(22)a
(

RN

)

=

1

12

[

RT + 2 ⋅ RT + RP

]

×

[

2 + TR − IR + FR

]

.

(23)TN(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(x−a)tN

b−a
, a ≤ x < b

tN , b ≤ x ≤ c
(d−x)tN

d−c
, c < x ≤ d

0 , otherwise

(24)IN(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

b−x+(x−a)tN

b−a
, a ≤ x < b

iN , b ≤ x ≤ c
x−c+(d−x)iN

d−c
, c < x ≤ d

0 , otherwise

(25)FN(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

b−x+(x−a)fN

b−a
, a ≤ x < b

fN , b ≤ x ≤ c
x−c+(d−x)fN

d−c
, c < x ≤ d

0 , otherwise

,
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Proposed improved algorithm and score 
function

To find the length of the arc, the following algorithm and 
score function are proposed as follows.

Improved algorithm to solve SPP under interval 
valued neutrosophic number

Step 1:  Determine the source node (SN) arc length 
l1 = ⟨[1, 1], [0, 0], [0, 0]⟩ and classify SN, node 1
by

Step 2: Find the  minimum of  the  length of 
n1 wi th  i t s  acquaintance  node us ing 
li = min

{

li ⊕ lij
}

, j = 2, 3,… , r.

Step 3:  If there is a minimum in the node and equating to 
the singular measure of i (i.e., i = k ), then classify 
that node j as [lj, k].

Step 4:  If the minimum value exists in the node matching 
to more values from i then it can be concluded that 
there are more IVN paths between SN ( i ) and DN 
( j ) and select any value of i.

Step 5:  Classify the destination node (DN) (node r ) by 
[lr, 1] . Then the interval valued neutrosophic dis-
tance (IVND) among SN lr.

Step 6:  Find the IVNSP between initial and terminal node 
according to [lr, 1] and check the label of n1 and is 
denoted by [la, d] . Classify node a and so on. Rerun 
the process until get n1.

Step 7:  By connecting all the nodes acquired by repeating 
the process in step 4, IVNSP can be found.

�

l1 = ⟨[1, 1], [0, 0], [0, 0]⟩,−
�

 Note: If �
(

Ni

)

< �
(

Np

)

 then the interval valued
neutrosophic number (IVNN) is the minimum of 
Np , where Ni, i = 1, 2,… , r is the set of IVNN and 
� is the score function.

Proposed score function

The novel SF for finding the minimum cost path under inter-
val valued neutrosophic shortest path (IVNSP) problem is 
provided as follows

Numerical example:
 For the edge 1–2: S

Nagarajan
(A⃛

1
) =

1

2
[(0.1 + 0.2) − (0.2)

(0.3) + (0.3 − 1)
2
+ (0.5)

]

= 0.125

 For the edge 1–3: S
Nagarajan

(A⃛
1
) =

1

2
[(0.2 + 0.4) − (0.3)

(0.5) + (0.5 − 1)
2
+ (0.2)

]

= 0.2.

Similarly for other edges.
Note: Formulas used in the proposed algorithms.
Score function used in the proposed algorithm under IVN 

environment and COG for TFN are

Computation of shortest path using IVNNs

Illustrate to the basic process of the improved algorithm, one 
simple example is shown.

(26)

�Nagarajan

(

∙

N1

)

=

1

2

[

(

TL
x
+ TU

x

)

−

(

IL
x
.IU
x

)

+

(

IU
x
− 1

)2
+

(

FU
x

)

]

.

(27)
�(�) = COG(R) ×

1

2

[

TL
+ TU

−

(

IL ⋅ IU
)

+

(

IU − 1
)2

+ FU
]

(28)

COG for TFN is
1

3

[

RT + 2RM + RE −

RM

(

RE − RI

)

(

RE − RI

)

]

.

Fig. 1  Interval-valued neutro-
sophic network
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Illustrative example
This section is based on a numerical problem adapted from 

Broumi et al. [40] to show the potential application of the pro-
posed algorithm and score function.

Consider a network Fig. 1 with six nodes and eight edges 
with SN, node 1 and DN, node 6. The interval valued neutro-
sophic distance is given in Table 1.

In this situation, we need to evaluate the shortest distance 
from SN, i.e., node 1 to DN, i.e., node 6.

Calculating the shortest path using proposed algorithm of 
interval valued neutrosophic path problem is given as follows.

Here r = 6 , since there are totally 6 nodes.
Let, l1 = ⟨[1, 1], [0, 0], [0, 0]⟩ and classify the SN

n1 =
�

⟨[1, 1], [0, 0], [0, 0]⟩,−
�

.
To find the value of lj, j = 2, 3, 4, 5, 6.

Iteration no. 1:
Since n2 has only n1 as the predecessor, let i = 1, j = 2 

in step 2.
To find l2:

Since, minimum occurs for i = 1 , classify the node 
n2 =

�

⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩, 1
�

.
Iteration no. 2:
Since n3 has two predecessors n1 and n2 , let  i = 1, 2& j = 3 

in step 2.
To find l3:

l2 = min
{

l1 ⊕ l12
}

=min{⟨[1, 1], [0, 0], [0, 0]⟩⊕ ⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩}

= ⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩.

l3 = min
{

l1 ⊕ l13, l2 ⊕ l23
}

= min{⟨[1, 1], [0, 0], [0, 0]⟩⊕ ⟨[0.2, 0.4], [0.3, 0.5], [0.1, 0.2]⟩ ,

⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩⊕ ⟨[0.3, 0.4], [0.1, 0.2], [0.3, 0.5]⟩}

= min{⟨[1 + 0.2 − 1(0.2), 1 + 0.4 − 1(0.4)],

[0(0.3), 0(0.5)], [0(0.1), 0(0.2)]⟩,

⟨[0.1 + 0.3 − (0.1)(0.3), 0.2 + 0.4 − (0.2)(0.4)],

[(0.2)(0.1), (0.3)(0.2)], [(0.4)(0.5), (0.5)(0.5)]⟩}

= min{⟨[1, 1], [0, 0], [0, 0]⟩ , ⟨[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]⟩}

= ⟨[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]⟩.

Since the score function values are,

and the minimum occurs for i = 2 , then classify the node 
n3 =

�

⟨[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]⟩, 2
�

.

Iteration no. 3:
Since n4 has one predecessors n3 , let i = 3& j = 4 in step 2.
To find the value of l4:

Since, minimum occurs for i = 3 , hence classify the node 
n4 =

�

⟨[0.6, 0.67], [0.004, 0.018], [0.048, 0.125]⟩, 3
�

.
Iteration no. 4:

Since n5 has two predecessors n2 and n3 , let i = 2, 3&j = 5 
in step 2.

To find the value of l5:

Since the score function values are,

�(⟨[1, 1], [0, 0], [0, 0]⟩

=

1

2

�

(1 + 1) − (0 × 0) + (0 − 1)
2
+ 0

�

= 1.5

�(⟨[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]⟩)

=

1

2

�

(0.37 + 0.52) − (0.02 × 0.06) + (0.06 − 1)
2
+ 0.25

�

= 0.9

l4 = min
{

l3 ⊕ l34
}

= min{⟨[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]⟩

⊕⟨[0.2, 0.3], [0.2, 0.5], [0.4, 0.5]⟩}

= ⟨[0.6, 0.67], [0.004, 0.018], [0.048, 0.125]⟩.

l5 = min
{

l2 ⊕ l25, l3 ⊕ l35
}

= min{⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩

⊕ ⟨[0.1, 0.3], [0.3, 0.4], [0.2, 0.3]⟩,

⟨[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]⟩

⊕⟨[0.3, 0.6], [0.1, 0.2], [0.1, 0.4]⟩}

= min{⟨[0.19, 0.47], [0.06, 0.12], [0.08, 0.15]⟩ ,

⟨[0.56, 0.81], [0.002, 0.012], [0.012, 0.1]⟩}

= ⟨[0.19, 0.47], [0.06, 0.12], [0.08, 0.15]⟩.

�(⟨[0.19, 0.47], [0.06, 0.12], [0.08, 0.15]⟩) = 0.75

Table 1  The details of edges 
information in term of IVNNs

Edges Interval valued neutrosophic distance Edges Interval valued neutrosophic distance

1–2 
(

e1

)

([0.1, 0.2], [0.2, 0.3], [0.4, 0.5]) 3–4 
(

e5

)

([0.2, 0.3], [0.2, 0.5], [0.4, 0.5])

1–3 
(

e2

)

([0.2, 0.4], [0.3, 0.5], [0.1, 0.2]) 3–5 
(

e6

)

([0.3, 0.6], [0.1, 0.2], [0.1, 0.4])

2–3 
(

e3

)

([0.3, 0.4], [0.1, 0.2], [0.3, 0.5]) 4–6 
(

e7

)

([0.4, 0.6], [0.2, 0.4], [0.1, 0.3])

2–5 
(

e4

)

([0.1, 0.3], [0.3, 0.4], [0.2, 0.3]) 5–6 
(

e8

)

([0.2, 0.3], [0.3, 0.4], [0.1, 0.5])
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and the minimum occurs for i = 2 , hence classify the node 
n5 =

�

⟨[0.19, 0.47], [0.06, 0.12], [0.08, 0.15]⟩, 2
�

Iteration no. 5:
Since n6 has two predecessors n4 and n5 , let 

i = 4, 5 & j = 6 in step 2.
To find the value of l6:

Since the score function values are,

and the minimum occurs for i = 5 hence classify 
n6 =

�

⟨[0.35, 0.63], [0.018, 0.048], [0.008, 0.075]⟩, 5
�

.

�(⟨[0.56, 0.81], [0.002, 0.012], [0.012, 0.1]⟩) = 1

l6 = min
{

l4 ⊕ l46, l5 ⊕ l56
}

= min{⟨[0.6, 0.67], [0.004, 0.018], [0.048, 0.125]⟩

⊕ ⟨[0.4, 0.6], [0.2, 0.4], [0.1, 0.3]⟩,

⟨[0.19, 0.47], [0.06, 0.12], [0.08, 0.15]⟩

⊕⟨[0.2, 0.3], [0.3, 0.4], [0.1, 0.5]⟩}

= min{⟨[0.76, 0.87], [0.008, 0.0018], [0.0048, 0.0375]⟩ ,

⟨[0.352, 0.63], [0.018, 0.048], [0.008, 0.075]⟩}

= ⟨[0.35, 0.63], [0.018, 0.048], [0.008, 0.075]⟩.

�(⟨[0.76, 0.87], [0.008, 0.0018], [0.0048, 0.0375]⟩) = 1

�(⟨⟨[0.352, 0.63], [0.018, 0.048], [0.008, 0.075]⟩⟩) = 0.82

Since n6 is the DN of the given network, IVNSP between 
n1 and n6 is ⟨[0.35, 0.63], [0.018, 0.048], [0.008, 0.075]⟩.

Now, IVNSP from n1 and n6 is obtained as follows.
Since, n6 =

�

⟨[0.35, 0.63], [0.018, 0.048], [0.008, 0.075]⟩,

5] ⇒ a person is coming from 5 → 6n5 =
�

⟨[0.19, 0.47], [0.06,

0.12], [0.08, 0.15]⟩, 2
�

⇒ a person is coming from 2 → 5

n2 =
�

⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩, 1
�

⇒a person is com-
ing from 1 → 2.

By joining all the acquired nodes, interval valued neu-
trosophic shortest path from n1 and n6 is obtained.

Hence IVNSP of the given network is 1 → 2 → 5 → 6.

The IVNS distance and IVNSP of all the nodes from 
SN node 1 in the below Table 2 and the classification of 
all the nodes are shown in Fig. 2.

The following table is formed using different deneutro-
sophic functions called score functions for all the possible 
edges and using proposed improved score function in the 
last column (Table 3).

According to the improved score function proposed in 
Sect. 3, the shortest path from node one to node six can be 
computed as follows (Table 4).

Therefore, the path P ∶ 1 → 2 → 5 → 6. is identified as 
the neutrosophic shortest path.

Algorithm: a new approach to find SPP using 
TpIVNN and TIVNN

Consider a directed and noncyclic graph, where the length of 
the arcs is represented by IVNN. The introduced algorithm 

Table 2  Interval valued 
neutrosophic shortest path

Node number (j) li IVNSP between 
jth and node 1

2 ⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩ 1 → 2

3 ⟨[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]⟩ 1 → 2 → 3

4 ⟨[0.6, 0.67], [0.004, 0.018], [0.048, 0.125]⟩ 1 → 2 → 3 → 4

5 ⟨[0.19, 0.47], [0.06, 0.12], [0.08, 0.15]⟩ 1 → 2 → 5

6 ⟨[0.35, 0.63], [0.018, 0.048], [0.008, 0.075]⟩ 1 → 2 → 5 → 6

Fig. 2  Interval-valued neutro-
sophic shortest path
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determines the shortest path from the initial node to the ter-
minal node. The algorithm is described as follows.

Step 1:  Let n be the total number of paths from the ini-
tial node to terminal one. Find the score function 
of every arc length for the given network using 
Eqs. (18), (19) and (24), (25).

Step 2:  Find all the available paths Pi, i = 1, 2,… , n and 
the corresponding path length. Also every n paths 
can be dealt as an arc which are represented by 
IVNN.

Step 3:  Find the sum of all score functions �
(

�i

)

 of each
available path.

Step 4:  The path which have minimum score value will 
represent an optimized interval valued shortest 
path by ranking in ascending order.

End
Note: TpIVNN-Trapezoidal interval valued neutro-

sophic number.
TIVNN-Triangular interval valued neutrosophic 

number.

Illustrative example to find the shortest path using TpIVNN

For the validation of the proposed algorithm, a network 
is adopted from Broumi et al. [43] and Kumar et al. [65].

Consider a network with six nodes and eight edges. The 
TpIVN cost is given below (Tables 5, 6).

Applying steps 1–4 of the proposed algorithm, it if 
found that 1 → 2 → 5 → 6 is IVNP with lowest cost 4.18 
and the IVNP is ⟨(4, 11, 15, 20); [0.35, 0.608], [0.018, 0.048],
[0.008, 0.075]⟩.

Illustrative example to find the shortest path using TIVNN

For the validation of the proposed algorithm, an example 
network is adopted from Broumi et al. [26, 35].

Consider a network with six nodes and eight edges. The 
TIVN cost is given below (Tables 7, 8).

Applying steps 1–4 of the proposed algorithm, it if found 
that 1 → 2 → 5 → 6 is IVNP with lowest cost 4.18 and the 
IVNP is ⟨(4, 11, 15); [0.35, 0.61], [0.02, 0.05], [0.01, 0.08]⟩.

Comparative study of the proposed 
algorithm

In this section, a comparative study is carried out with the 
shortcomings and advantage of the proposed algorithm 
and it shows the effectiveness of the proposed algorithm

Shortcoming of the existing method

The compared existing method is unable to handle the 
interval-based information about the length of the arc and 

Table 3  Different 
deneutrosophication value of 
edge (i, j)

Edges SRidvan [43] �Nagarajan

1–2 0.1 0.125
1–3 0.175 0.2
2–3 0.325 0.17
2–5 0.125 0.11
3–4 0.05 0.325
3–5 0.45 0.32
4–6 0.35 0.43
5–6 0.125 0.26

Table 4  Crisp path length for proposed algorithm

The proposed algorithm 
based �Nagarajan

Crisp path length Ranking

1 → 2 → 5 → 6 0.485 1
1 → 3 → 5 → 6 0.78 2
1 → 2 → 3 → 5 → 6 0.875 3
1 → 3 → 4 → 6 0.955 4
1 → 2 → 3 → 4 → 6 1.05 5

Table 5  Trapezoidal interval valued neutrosophic distance

Edges Trapezoidal interval valued neutrosophic distance Edges Trapezoidal interval valued neutrosophic distance

1–2 
(

e1

)

⟨(1, 2, 3, 4); [0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩ 3–4 
(

e5

)

⟨(2, 4, 8, 9); [0.2, 0.3], [0.2, 0.5], [0.4, 0.5]⟩

1–3 
(

e2

)

⟨(2, 5, 7, 8); [0.2, 0.4], [0.3, 0.5], [0.1, 0.2]⟩ 3–5 
(

e6

)

⟨(3, 4, 5, 10); [0.3, 0.6], [0.1, 0.2], [0.1, 0.4]⟩

2–3 
(

e3

)

⟨(3, 7, 8, 9); [0.3, 0.4], [0.1, 0.2], [0.3, 0.5]⟩ 4–6 
(

e7

)

⟨(7, 8, 9, 10); [0.4, 0.6], [0.2, 0.4], [0.1, 0.3]⟩

2–5 
(

e4

)

⟨(1, 5, 7, 9); [0.1, 0.3], [0.3, 0.4], [0.2, 0.3]⟩ 5–6 
(

e8

)

⟨(2, 4, 5, 7); [0.2, 0.3], [0.3, 0.4], [0.1, 0.5]⟩

Table 6  Available paths and its score value

Available path �
(

�i

)

Ranking

P1 ∶ 1 → 2 → 5 → 6 4.18 1
P2 ∶ 1 → 3 → 5 → 6 8.25 2
P4 ∶ 1 → 3 → 4 → 6 12.43 3
P3 ∶ 1 → 2 → 3 → 5 → 6 13.31 4
P5 ∶ 1 → 2 → 3 → 4 → 6 17.5 5
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shortest path cannot be obtained for interval-based neu-
trosophic network.

Advantage of the proposed algorithm

If the length of the path is interval-based one then the 
shortest path of the given network can be obtained by 
interval valued neutrosophic numbers for an optimized 
path. Since triangular and trapezoidal numbers are widely 
used in many of the real world applications for their sim-
plicity of computation, interval valued triangular and trap-
ezoidal neutrosophic numbers have been used to find the 
neutrosophic shortest path. This is the advantage of the 
proposed algorithm.

Comparative study of algorithm

This section provides a comparative study of the proposed 
algorithm with the existing method of for neutrosophic 
shortest path problems.

A comparison of the results between existing and new 
techniques is shown in Table 9.

The result shows that the proposed algorithm provides 
sequence of visited nodes which shown to be similar with 
neutrosophic shortest path.

The neutrosophic shor test  path (abbr.NSP) 
remains the same namely 1 → 2 → 5 → 6 , but the 
crisp shortest path length (CSPL) differs namely 
⟨[0.35, 0.60], [0.01, 0.04], [0.008, 0.075]⟩ , respectively. From
here we come to the conclusion that there exists no unique 
method for comparing neutrosophic numbers and different 
methods may satisfy different desirable criteria (Table 10).

Conclusion and future implication

The heart of the network community is nothing but the 
SPP. The objective of this problem is finding the minimum 
cost path among all other paths. This issue has been solved 
using many methods starts from conventional SPP with 
crisp weights. As many of the real world applications have 
uncertain vertices and edges fuzzy environment was use-
ful to handle this problem. But still fuzzy setting cannot 
handle indeterminacy of the information, neutrosophic sets 
are found to be the best choice to handle this issue and has 
applied successfully. In this paper, neutrosophic SPP has 
been solved under interval valued neutrosophic, trapezoidal 
and triangular interval valued neutrosophic environments 
as it handles interval values. Also an improved score func-
tion and center of gravity has been proposed and applied 
to find the minimum cost of the path. Our proposed score 
function is without having the lower membership of fal-
sity and which saves the time naturally. Further compara-
tive analysis is done for Broumi’s algorithm with different 

Table 7  Triangular interval valued neutrosophic distance

Edges Triangular interval valued neutrosophic distance Edges Triangular interval valued neutrosophic distance

1–2 
(

e1

)

⟨(1, 2, 3); [0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩ 3–4 
(

e5

)

⟨(2, 4, 8); [0.2, 0.3], [0.2, 0.5], [0.4, 0.5]⟩

1–3 
(

e2

)

⟨(2, 5, 7); [0.2, 0.4], [0.3, 0.5], [0.1, 0.2]⟩ 3–5 
(

e6

)

⟨(3, 4, 5); [0.3, 0.6], [0.1, 0.2], [0.1, 0.4]⟩

2–3 
(

e3

)

⟨(3, 7, 8); [0.3, 0.4], [0.1, 0.2], [0.3, 0.5]⟩ 4–6 
(

e7

)

⟨(7, 8, 9); [0.4, 0.6], [0.2, 0.4], [0.1, 0.3]⟩

2–5 
(

e4

)

⟨(1, 5, 7); [0.1, 0.3], [0.3, 0.4], [0.2, 0.3]⟩ 5–6 
(

e8

)

⟨(2, 4, 5); [0.2, 0.3], [0.3, 0.4], [0.1, 0.5]⟩

Table 8  Available paths and its score value

Available path �
(

�i

)

Ranking

P1 ∶ 1 → 2 → 5 → 6 4.9 1
P2 ∶ 1 → 3 → 5 → 6 8.27 2
P4 ∶ 1 → 3 → 4 → 6 11.1 3
P3 ∶ 1 → 2 → 3 → 5 → 6 12.86 4
P5 ∶ 1 → 2 → 3 → 4 → 6 15.69 5

Table 9  Comparison of sequence of nodes using neutrosophic short-
est path and our proposed algorithm

Algorithm of Broumi Path Crisp path length

SRidvan [43] 1 → 2 → 5 → 6 0.35
SNagarajan 1 → 2 → 5 → 6 0.485

Table 10  Sequence of nodes 
with shortest path length

Possible path Sequence of nodes Neutrosophic shortest path length

Neutrosophic shortest path with interval 
valued neutrosophic numbers [43]

1 → 2 → 5 → 6 ⟨[0.35, 0.60], [0.01, 0.04], [0.008, 0.075]⟩

Proposed algorithm on SNagarajan 1 → 2 → 5 → 6 ⟨[0.35, 0.60], [0.01, 0.04], [0.008, 0.075]⟩
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deneutrosophication function and proposed one. It is found 
that minimum cost is less compare than other existing 
method using proposed algorithms and score function. Also 
the proposed algorithm and improved score function have 
less computational complexity and saves the time. In future, 
the SPP would be extended to neutrosophic soft and rough 
set environments for interval-based path lengths. Also the 
proposed concept will be extended to complex neutrosophic 
environment.
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h i g h l i g h t s

• A new word-level similarity measure defined by means of the words’ sentiment scores.
• The similarity measure is defined without considering the words’ lexical category.
• The resulted scores correctly distance the neutral words from the sentiment words.

Keywords:
Word-level similarity
Neutrosophic sets
Sentiwordnet
Sentiment relatedness

a b s t r a c t

In the specialized literature, there are many approaches developed for capturing textual measures:
textual similarity, textual readability and textual sentiment. This paper proposes a new sentiment
similarity measures between pairs of words using a fuzzy-based approach in which words are
considered single-valued neutrosophic sets. We build our study with the aid of the lexical resource
SentiWordNet 3.0 as our intended scope is to design a new word-level similarity measure calculated
by means of the sentiment scores of the involved words. Our study pays attention to the polysemous
words because these words are a real challenge for any application that processes natural language
data. After our knowledge, this approach is quite new in the literature and the obtained results give
us hope for further investigations.

1. Introduction

Semantic textual similarity is a measure of the degree of
semantic equivalence between some pieces of texts [1]. This
measure is exploited in many natural language processing (NLP)
tasks, very actual at the present moment, such as paraphrase
recognition [2], tweets search [3], image retrieval by caption [4,5],
query reformulation [6] or automatic machine translation evalu-
ation [7]. In information retrieval (IR) the user’s query is usually
expressed by means of a short sequence of words based on
which the most similar documents related to the query must be
returned to the user.

On the other hand, textual sentiment analysis consists of mea-
suring the attitude or emotional affect of the text. Using this
kind of data very actual research fields such as affective com-
puting or sentiment analysis can understand and predict human
emotions [8] as their basic tasks are emotion recognition [9,10]

and polarity detection [11–14]. Emotion recognition means to
find a set of emotion triggers while polarity detection is usually
designed as a binary classifier with ‘‘positive’’ and ‘‘negative’’
outputs [15,16].

In a world full of indeterminacy [17] the reality cannot be
drawn only using two colours: ‘‘white’’ and ‘‘black’’ or ‘‘positive’’
and ‘‘negative’’ or ‘‘true’’ and ‘‘false’’ because uncertainty plays
a determinant role. Fuzzy set theory has been used in many
studies where uncertainty plays a determinant role. Natural lan-
guage texts contain large amount of uncertain information [18]
mainly caused by: 1. the polysemy of same words (for example,
the English word ‘‘line’’ has more than 20 distinct senses); 2.
the fact that different words can have the same mining (for
example ‘‘stomach pain’’ and ‘‘belly ache’’); 3. the ambiguities of
natural language construction which can happen at many levels
of analysis, both syntactic and semantic, which imply different
interpretations for the same words or phrases. If we consider
also the natural diversity in subjectivity of any natural language
utterance, we can conclude that this domain can be regarded as
uncertain one.

Word-level neutrosophic sentiment similarity 
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To deal with large amount of uncertain knowledge, many
fuzzy based systems have been developed, but they still re-
mained weak explored in the domain of identifying the sentiment
orientation of sentences. The detection of the polarity or sub-
jectivity predictors in written text usually implies to compute
the terms grade membership in various pre-defined or computed
categories [19,20]. These studies usually require a pre-defined
sentiment lexicon for detecting the sentiment words. If this step
ends successfully, they have to compute the distance between
the identified words and the class centroid in order to measure
the fuzzy membership [21–23]. Each membership function is
interpreted as the appurtenance degree of the analysed piece of
text to a certain sentiment class [24].

These systems could benefit from on a robust word-level
similarity component. Most of the existing approaches for deter-
mining the semantic similarity between words do not incorporate
the words’ sentiment information. The present study focuses on
the task of measuring the sentiment similarity at a word-level.

Sentiment similarity indicates the similarity of word pairs
from their underlying sentiments. In the linguistic literature,
sentiment similarity has not received enough attention. In fact,
the majority of previous works employed semantic similarity
as a measure to also compute the sentiment similarity of word
pairs [25,26]. Nevertheless, some works stated that sentiment
similarity can reflect better the similarity between sentiment
words than semantic similarity measures [27].

Following [28] we consider that the sentiment information
is crucial in finding the similarity between two concepts, in
particular, between two words. In this assumption, in this study
we propose a new sentiment similarity measure between pairs of
words using a neutrosophic approach [29–33] and with the aid of
the SentiWordNet 3.0 [34] lexical resource. Our intended scope is
to suggest a new measure for the sentiment similarity degree of
two words which takes into account not only the ‘‘positive’’ and
‘‘negative’’ sentiment labels but also their more refined derivates
such as: ‘‘objective’’, ‘‘weak positive’’, ‘‘weak negative’’, ‘‘strong
positive’’ and ‘‘strong negative’’.

1.1. Justification

An important number of word-level similarity measures were
defined using lexico-semantic information. Based on the syntactic
category of the involved words we can have a similarity measures
or a relatedness measures. Most similarity measures are computed
for words within the same category, usually for nouns and verbs.
Still, many similarity approaches consider the semantics and not
the lexical category in the process of similarity findings as in
the case when the verb ‘‘mary’’ should be found semantically
equivalent with nouns such as ‘‘wife’’ or ‘‘husband’’ [1] and not
necessarily with another verb.

Corresponding, the relatedness measures are used to compute
the similarity degree between words with different categories,
e.g. between a noun and a verb such as ‘‘tears’’ and ‘‘to cry’’ [35].
Nevertheless, this restriction is not always obey, as many word
similarity measures are developed without paying attention to
the syntactic category of the involved words [36]. When defining
our proposal we do not differentiate words upon their part of
speech as we consider the sentiment similarity just as the inverse
difference value between the sentiment polarities of two words.
Thus, in what follows, the terms similarity and relatedness will
be considered equivalent.

There is another important aspect of the proposed measure: it
has a symmetric dimension, following thus the key assumption
of the most similarity models even if this idea is not univer-
sally true, especially when it comes to model human similarity
judgments [37]. ‘‘Asymmetrical similarity occurs when an object

with many features is judged as less similar to a sparser object
than vice versa’’ [38] such as, for example, when comparing
a very frequent word with an infrequent word as ‘‘boat’’ with
‘‘dinghy’’ [37].

The reason we choose a symmetric measure to model the
proposed word-level similarity measure is determined by two
aspects of the study:

1. it treats the words as independent entities, defined only by
their SentiWordNet scores and therefore, additional infor-
mation such as word frequency are not considered

2. by following a neutrosophic approach, the proposed
method aggregates all the scores corresponding to all the
senses a word can have in a single-valued neutrosophic set
representation and thus, information about a particular
sense are not computed and the words are treated as
entities with a single facet

1.2. WordNet

WordNet thesaurus is a collection of nouns, verbs, adjectives
and adverbs, being a graph-formed dictionary with a unique
organization based on word sense and synonyms [39]. Graph-
based structures are widely used in natural language processing
applications such as [40,41]. In WordNet structure there are two
main forms of word representations: lemma and synset [42]. The
synsets are considered ‘‘logical groups of cognitive synonyms’’
or ‘‘logical groups of word forms’’ which are inter-connected by
‘‘semantic pointers’’ with the purpose of describing the semantic
relatedness between the connected synsets. These relations were
used to find similarity measures between word senses based on
the lengths of the relationships between them.

The ‘‘net’’ structure of the WordNet is constructed by means
of the lexical or conceptual links differentiated upon the part
of speech of the words from the connected synsets. The noun
synsets are connected through the ‘‘hyperonymy’’ (and its in-
verse,
‘‘hyponymy’’) and the ‘‘meronymy’’ (and its inverse, ‘‘holonymy’’)
relations. The verbs are linked through the ‘‘troponym’’, ‘‘hy-
pernym’’ and ‘‘entailment’’ relations. Adjectives point to their
antonyms or to the related nouns while adverbs are linked to
adjectives through the ‘‘pertainym’’ relation.

1.3. SentiWordNet as a sentiment lexicon

SentiWordNet extends the usability of WordNet to another
dimension, by mapping a large number of WordNet synsets to
sentiment scores indicating their ‘‘positivity’’, ‘‘negativity’’ and
‘‘objectivity’’ [42]. Always, the sum of these three values is 1.0.

Because SentiWordNet is built upon the WordNet data, the
common problem that is observed at WordNet appears also at
SentiWordNet senses: the too fine-grained synsets make hard
the distinguishing between the senses of a word. As a direct
consequence, the scoring of synsets are even more difficult to
predict. The main problem is how much the related synsets and
glosses or even the terms of the same synset share or not the
same sentiment.

Table 1 presents some sentiment scores examples of the most
positive and the most negative words’ senses in SentiWord-
Net [43]. It is important to mention that all the SentiWordNet
scores were obtained after weighting 8 classifiers and averaging
their classifications [44].

With the construction of this lexical resource, a wide category
of tasks, usually in the domain of Opinion Mining (or Sentiment
Analysis) started to take shape. Here are three categories of
tasks that can be implemented by making usage of the synsets
sentiment scores [44]:
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Table 1
Example of scores in SentiWordNet [43].
Synsets & Positive Negative Neutral
sentiment score score score score

good#1 (0.75, 0, 0.25) 0.75 0 0.25
superb#1 (0.875, 0, 0.125) 0.875 0 0.125
abject#1 (0, 1, 0) 0 1 0
bad#1 (0, 0.625, 0.325) 0 0.625 0.325
unfortunate#1 (0, 0.125, 0.875) 0 0.125 0.875

– subjectivity–objectivity polarity: its scope is to determine
whether the given text is subjective or objective [11,45];

– positivity–negativity polarity: its scope is to determine
whether the text is positive or negative on its subject
matter [11,46];

– strength of the positivity–negativity polarity: its scope is
to determine how positive or negative the given text is.
More precisely, these tasks have to decide if the opinion
expressed by a text is weakly or strongly positive/negative
[12,29];

– extracting opinions from a text, which firstly implies to
determine if the given text includes an opinion or not, and
(if it is the case) to determine the author of the opinion,
the opinion subject and/or the opinion type [26].

Sentiment analysis was defined for textual content analysis
but recent studies perform this kind of analysis on visual content
such as images and videos [4]. Performing sentiment analysis on
visual content implies to identify the ‘‘visual concepts that are
strongly related to sentiments’’ and to label these concepts with
few lexical terms (for example, in [4] the authors propose a visual
labelling mechanism by means of adjective-noun pairs as usually
opinion detection is based on the examination of adjectives in
sentences [19]).

This paper is dedicated to the problem of sentiment similarity
between pairs of words using a neutrosophic approach in which
a word is interpreted as a single-valued neutrosophic set [47,48].
At our knowledge, this is the second study that addresses the
problem of words sentiment data using neutrosophic concepts.
With the intended scope of filling the gap concerning the objec-
tivity aspect of some words, the previous study [49] addresses
the problem of the so-called ‘‘neutral words’’ with the aid of
neutrosophic measures applied on the words’ sentiment scores.

The study presented in this paper includes and extends the
work initiated in [49] as it addresses all types of words, whether
sentiment words or objective words. The proposed formalism
can be used in any sentiment analysis task as it determines the
sentiment polarity of a word by computing its similarity with
some seed words (words whose sentiment labels are known or
provided). The considered similarity measures can be of great
help also for the text similarity techniques that pair the words
of the involved texts in order to quantify the degree to which
the analysed texts are semantically related [1,50]. In these tech-
niques, pairs of text sequences are aligned based on the similarity
measures of their component words.

The remainder of the paper is organized as follows: in the
following section we summarize the most recent studies in the
domain of similarity measures with focus on the investigated
neutrosophic concepts. Section 3 describes the method we de-
signed for constructing a new word-level similarity measure us-
ing the sentiment scores of the involved words and applying the
neutrosophic theory. In Section 4 the evaluation results are given.
The final section sketches the conclusions and the future plan
directions.

2. Similarity measures. Related works

There is an important number of works concerning the seman-
tic similarity with different levels of granularity starting from the
word-to-word similarity to the document-to-document similarity
(important issue for any search engine) [1,35].

Many approaches have been proposed with the intended scope
of capturing the semantic similarity between words: Latent Se-
mantic Analysis (LSA) [51], Point-wise Mutual Information (PMI)
[52] (for estimate the sentiment orientation) or numerous Word-
Net based similarity measures. Much attention has recently been
given to calculating the similarity of word senses, in support of
various natural language learning and processing tasks. One can
use the shortest path or the Least Common Subsumer (LCS) depth
length algorithm to calculate the distance between the nodes
(words) as a measure of similarity between word senses [36,42].
One difficulty here is that some words have different meanings
(senses) in different contexts, and thus different scores for each
sense.

Such techniques can be applied within a semantic hierarchy,
or ontology, such as WordNet. WordNet acts as a thesaurus,
in that it groups words together based on their meanings. The
semantic distance between words can be estimated as the num-
ber of vertices that connect the two words. Another approach
makes usage of a large corpus (e.g. Wikipedia) to count the
terms that appear close to the words being analysed in order to
construct two vectors and compute a distance (e.g. cosine). In
this method, the similarity degree between the two entities is
given by the cosine value of the angle determined by their vectors
representation [53].

The similarity problems are also modelled using concepts from
fuzzy set theory and it is our belief (which will be further proved)
that neutrosophic theory, that was defined in order to generalize
the concepts of classic set and fuzzy set, offers more appropriate
tools. Indeed, in a Neutrosophic Set the indeterminacy, which
is so often encountered in real-life problems such as decision
support [54], is quantified explicitly [30,31] as it will be shown
in what follows.

2.1. Fuzzy and neutrosophic sets

A fuzzy set is built from a reference set called universe of
discourse which is never fuzzy. Let us consider U - the universe
of discourse. A fuzzy set A over U is defined as:

A = {(xi, µA(xi)) | xi ∈ U}

where µA(xi) ∈ [0, 1] represents the membership degree of the
element xi ∈ U in the set A [55,56].

Now, if we take A be a intuitionistic fuzzy set (IFS) in the
universe of discourse U , then the set A is defined as [57]:

A = {(x, µA(x), νA(x)) | x ∈ U}

where µA(x) : U → [0, 1] is the membership degree and
νA(x) : U → [0, 1] represents the non-membership degree of the
element x ∈ U in A, with 0 ≤ µA(x) + νA(x) ≤ 1.

The concept of neutrosophic set A in the universe of discourse
U is defined as an object having the form [47]:

A = {< x : tA(x), iA(x), fA(x) >, x ∈ U}

where the functions tA(x), iA(x), fA(x) : U → [0, 1] define respec-
tively the degree of membership, the degree of indeterminacy,
and the degree of non-membership of a generic element x ∈ U to
the set A.

If on a neutrosophic set A we impose the following condition
on the membership functions tA, iA, fA : U → [0, 1]:

0 ≤ tA + iA + fA ≤ 3, x ∈ A
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then the resulted set A ⊂ U is called a single-valued neutrosophic
set [58]. We can also write x(tA, iA, fA) ∈ A.

Corresponding to the notions of neutrosophic set and single-
valued neutrosophic set, similar works have been done on graph-
theory resulting the notions of neutrosophic graphs [59] and
single-valued neutrosophic graphs [60] and on number-theory
resulting the concept of neutrosophic numbers and single valued
trapezoidal neutrosophic number [61,62].

2.2. Neutrosophic similarity measures

Neutrosophic distance and similarity measures were applied
in many scientific fields such as decision making [63,64], pat-
tern recognition [65,66], medical diagnosis [67,68] or market
prediction [69].

In this section we enumerate the similarity measures together
with their complements — the distance measures, that are applied
and then compared in the proposed neutrosophic method for
words similarity (see Section 3).

Intuitionistic fuzzy similarity measure between two IFSs A and
B satisfies the following properties [70]:

(1) 0 ≤ S(A, B) ≤ 1
(2) S(A, B) = 1 if A = B
(3) S(A, B) = S(B, A)
(4) S(A, C) ≤ S(A, B) and S(A, C) ≤ S(B, C) if A ⊆ B ⊆ C for any

A, B, C - intuitionistic fuzzy sets.

We have that similarity and distance (dissimilarity) measures
are complementary, which implies S(A, B) = 1 − d(A, B).

Let A = {(x, µA(x), νA(x)) | x ∈ U}, B = {(x, µB(x), νB(x)) | x ∈

U} be two IFSs in the universe U = {x1, . . . , xn}. Several distance
measures between A and B were proposed in the literature, from
which we consider here only the Normalized Euclidean distance for
two IFSs [71]:

dIE(A, B) =

√ 1
2n

n∑
i=1

((µA(xi) − µB(xi))2 + (νA(xi) − νB(xi))2) (1)

which will be called in what follows as Intuitionistic Euclidean
distance measure.

In general a similarity measure between two single-value neu-
trosophic sets A and B is a function defined as [33,72,73]:

S : NS(X)2 → [0, 1]

where NS denotes the Neutrosophic Set concept.
The Euclidean distance or the Euclidean dissimilarity measure

between two single-value neutrosophic elements x1(t1A , i
1
A, f

1
A ),

x2(t2A , i
2
A, f

2
A ) ∈ A is defined as [72,73]:

dE(x1, x2) =

√
1
3
[(t1A − t2A )2 + (i1A − i2A)2 + (f 1A − f 2A )2] (2)

Properties of the Euclidean distance. If x1 and x2 are two neu-
trosophic elements and dE(x1, x2) denotes the Euclidean distance
as in definition (2), then the following properties are fulfilled:

1. dE(x1, x2) ∈ [0, 1]
2. dE(x1, x2) = 0 if and only if x1 = x2 (or t1A = t2A , i

1
A = i2A and

f 1A = f 2A )
3. dE(x1, x2) = 1 if and only if | t1A − t2A |=| i1A − i2A |=| f 1A − f 2A |

= 1
For examples: x1(1, 1, 1) and x2(0, 0, 0); or x1(1, 0, 0) and
x2(0, 1, 1); or x1(0, 1, 0) and x2(1, 0, 1), etc.

The Euclidean similarity measure or the complement of the
Euclidean distance between two neutrosophic elements x1(t1A , i

1
A,

f 1A ), x2(t
2
A , i

2
A, f

2
A ) ∈ A is defined as [72,73]:

sE(x1, x2) = 1 − dE(x1, x2)

= 1 −

√
1
3
[(t1A − t2A )2 + (i1A − i2A)2 + (f 1A − f 2A )2] (3)

Properties of the Euclidean similarity measure. If x1 and x2 are
two neutrosophic elements and sE(x1, x2) denotes the Euclidean
similarity measure as in definition (3), then the following prop-
erties are fulfilled:

1. sE(x1, x2) ∈ [0, 1]
2. sE(x1, x2) = 0 if and only if x1 = x2 (or t1A = t2A , i

1
A = i2A and

f 1A = f 2A )
3. sE(x1, x2) = 1 if and only if | t1A − t2A |=| i1A − i2A |=| f 1A − f 2A |

= 1
For examples: x1(1, 1, 1) and x2(0, 0, 0); or x1(1, 0, 0) and
x2(0, 1, 1); or x1(0, 1, 0) and x2(1, 0, 1), etc.

The Euclidean distance between two neutrosophic elements
can be extended to the Normalized Euclidean distance or Normal-
ized Euclidean dissimilarity measure as follows.

Let A and B be two single-valued neutrosophic sets from the
universe of discourse U ,

A = {xi ∈ U, where tA(xi), iA(xi), fA(xi) ∈ [0, 1], for 1 ≤ i ≤

n and n ≥ 1},
and
B = {xi ∈ U, where tB(xi), iB(xi), fB(xi) ∈ [0, 1], for 1 ≤ i ≤

n and n ≥ 1}
The Normalized Euclidean distance between the two single-

valued neutrosophic sets A and B is defined as [72–75]:

dnE(A, B) =

{
1
3n

n∑
i=1

(tA(xi) − tB(xi))2 + (iA(xi) − iB(xi))2

+ (fA(xi) − fB(xi))2
}

1
2 (4)

Properties of the Normalized Euclidean distance between two
Neutrosophic Sets. If A and B are two single-valued neutrosophic
sets then the Normalized Euclidean distance between A and B
follows the distance measures properties:

1. dnE(A, B) ∈ [0, 1]
2. dnE(A, B) = 0 if and only if A = B or for all i ∈ {1, 2, . . . , n},

tA(xi) = tB(xi), iA(xi) = iB(xi) and fA(xi) = fB(xi)
3. dnE(A, B) = 1 if and only if for all i ∈ {1, 2, . . . , n}, |

tA(xi) − tB(xi) |=| iA(xi) − iB(xi) |=| fA(xi) − fB(xi) |= 1

The Normalized Euclidean similarity measure or the complement
of the Normalized Euclidean distance between two single-valued
neutrosophic sets A and B is defined as [30,72–75]:

snE(A, B) = 1 − dnE(A, B) (5)

which implies

snE(A, B) = 1−
{

1
3n

n∑
i=1

(tA(xi) − tB(xi))2 + (iA(xi) − iB(xi))2

+ (fA(xi) − fB(xi))2
}

1
2 (6)

Properties of the Normalized Euclidean Similarity Measure be-
tween two Neutrosophic Sets If A and B are two single-valued neu-
trosophic sets then the Normalized Euclidean Similarity Measure
between A and B follows the similarity measures properties:

1. snE(A, B) ∈ [0, 1]
2. snE(A, B) = 0 if and only if A = B or for all i ∈ {1, 2, . . . , n},

tA(xi) = tB(xi), iA(xi) = iB(xi) and fA(xi) = fB(xi)
3. snE(A, B) = 1 if and only if for all i ∈ {1, 2, . . . , n}, |

tA(xi) − tB(xi) |=| iA(xi) − iB(xi) |=| fA(xi) − fB(xi) |= 1
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Another commonly used distance measure for two single-
valued neutrosophic sets A and B is Normalized Hamming distance
measure defined as [76]:

dnH (A, B) =
1
3n

n∑
i=1

(| tA(xi) − tB(xi) | + | iA(xi) − iB(xi) |

+ | fA(xi) − fB(xi) |) (7)

3. Proposed approach

In this section we present a method designed for determining
the semantic distance between pairs of words using a
neutrosophic approach in which a word is interpreted as a single-
valued neutrosophic set [47,48]. The semantic distances are de-
termined without taking into account the part of speech data of
the involved words. In our approach, the words are internally
represented as vectors of three values, their corresponding Sen-
tiWordNet scores (shortly, SWN scores). Thus, any lexical and
syntactical information about words is discarded.

In what follows we describe all the involved data, the theoret-
ical concepts and the representations used in the implementation
of the proposed similarity method.

3.1. Word-level neutrosophic sentiment similarity

In this study we address the problem of sentiment similarity
between pairs of words by following the neutrosophic approach
firstly proposed in [49] in which a word w is interpreted as a
single-valued neutrosophic set [47,48] having the representation:

w = (µtruth(w), µindeterminacy(w), µfalse(w)) (8)

where µtruth(w) denotes the truth membership degree of w,
µindeterminacy(w) represents the indeterminacy membership degree
of w and µfalse(w) represents the false membership degree of the
word w, with µtruth(w), µindeterminacy(w), µfalse(w) ∈ [0, 1].

Similar with [49] we use the SentiWordNet lexical resource
(shortly, SWN) in order to fuel the proposed approach with data.
More precisely, the three membership degrees of the words rep-
resentation (see Eq. (8)) are the positive, neutral and, correspond-
ingly, the negative scores provided by SentiWordNet.

Problem definition. We propose and evaluate a method for the
problem of determining the sentiment class of a word w by
measuring its distance from several seed words, one seed word
for each sentiment class. In this assumption, we propose the
usage of three semantic distances: Intuitionistic Euclidean distance,
Euclidean distance and Hamming distance. We work with 7 seed
words, each seed word being a representative sentiment word for
each of the seventh sentiment degrees: strong positive, positive,
weak positive, neutral, weak negative, negative and strong negative.
We prove that all the considered theoretical concepts work very
well as we apply and evaluate them on all the SentiWordNet
words (that is, 155 287 words).

If w1 and w2 are highly similar, we expect the semantic dis-
tance value to be closer to 0, otherwise semantic relatedness
value should be closer to 1. We consider SentiWordNet sentiment
scores as the only features of the words.

As we have already pointed out, in this approach, a word inter-
nal representation consists of its SWN scores. In this assumption,
a word w can be considered a single-valued neutrosophic set and
thus, all the properties involving this concept can be used and
applied.

In order to exemplify this assumption, let us consider the verb
‘‘scam’’. In the SWN dataset this word has a single entry, that is
it has a single SWN score triplet:

scam = (0, 0.125, 0.875)

By following the neutrosophic assumption in which a word is
considered a single-value neutrosophic set, the representation of
the word w becomes:

w(tw, iw, fw)

where:

– the degree of membership, tw , is the word positive score,
– the degree of indeterminate-membership, iw , is the word

neutral score,
– the degree of non-membership, fw , is the word negative

score.

Obviously the conditions imposed on these degree values are
preserved: tw , iw , fw ∈ [0, 1] and 0 ≤ tw + iw + fw = 1 ≤ 3.

For the considered example we have: tscam = 0, iscam = 0.125
and fscam = 0.875, which implies scam(0, 0.125, 0.875).

Let us now consider the general case in which a word w can
appear in more than one synset in the SentiWordNet lexicon,
meaning that the word has more than one sense. In this case we
have n SWN score triplets for a single word w, with n ≥ 1.

In order to construct the neutrosophic word representation,
a single scores triplet must be provided. For this reason, for
every word w with n senses, n ≥ 1, we implemented the
weighted average formula (after [77]) over all its positive, negative
and, respectively, neutral scores obtaining in this manner three
sentiment scores for all the three facets of a word sentiment
polarity:

• the overall positive score of the word w:

tw =
tw1 +

1
2 tw2 + · · · +

1
n twn

1 +
1
2 + · · · +

1
n

(9)

• the overall neutral score of the word w:

iw =
iw1 +

1
2 iw2 + · · · +

1
n iwn

1 +
1
2 + · · · +

1
n

(10)

• the overall negative score of the word w:

fw =
fw1 +

1
2 fw2 + · · · +

1
n fwn

1 +
1
2 + · · · +

1
n

(11)

where w1 denotes the first sense of the word w, w2 represents
the second sense of the word w, etc.

In order to calculate the overall scores of a word w we use
the weighted average formula because it considers frequencies of
the words’ senses: the score of the first sense (which is the most
frequent) is preserved entirely, while the rest of the scores, which
correspond to the less used senses, appear divided accordingly
(by 1/2, 1/3, etc.)

The sentiment class of a word is determined by computing
a single score upon these overall scores. This unique score will
represent the average of the differences between the positivity
and negativity scores calculated per each sense.

More precisely, for a word w with n senses, the single senti-
ment score is determined by following the already defined mech-
anism for words’ scores calculus based on SentiWordNet triplets
(see [42]) which implies to determine the average weighted dif-
ference between their positive and negative scores such as:

1
n

n∑
i=1

ωi(posi − negi)

where the weights ωi are chosen taking into account several word
characteristics which can carry different levels of importance in
conveying the described sentiment [42] (such as part of speech)
and n represents the number of synsets in which the word w
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Fig. 1. The sent−class function.

Fig. 2. The evaluate function.

appears, that is the number of its senses. The average is used in
order to ensure that the resulted scores are ranging between −1
and 1 [42].

Let us consider a word w with n senses, w1, w2, . . ., wn. In
this study the overall score of the word w is determined using
the formula [42,77]:

score =
(tw1 − fw1 ) +

1
2 (tw2 − fw2 ) + · · · +

1
n (twn − fwn )

1 +
1
2 + · · · +

1
n

(12)

As we have already pointed out, the values of score vary between
−1 (meaning that the word w is a ‘‘strong negative’’ word) and 1
(the word w is a ‘‘strong positive’’ word).

Usually sentiment analysis applications deal with binary (pos-
itive vs. negative) or ternary (positive vs. negative vs. objective)
classifications which normally leads to very good state-of-the-art
accuracy (more then 70%) [42]. In this study, using the sentiment
scores defined for the SentiWordNet synsets, we consider all the
degrees of sentiments referred in the literature:

– strong positive/negative word: great difference between the
positive/ negative scores and the negative/positive scores
of the word (usually, above 0.5)

– positive/negative word: the positive/negative scores are
greater than the negative/positive ones (the difference is
smaller than 0.5 but greater than 0.25)

– weak positive/negative word: small difference between the
positive/ negative scores and the negative/positive ones

– neutral word: the neutral scores subsume the positive and
negative scores.

We defined a set of rules in order to uniquely map the general
score of a word to one of the following sentiment classes: ‘‘strong
positive’’, ‘‘positive’’, ‘‘weak positive’’, ‘‘neutral’’, ‘‘weak negative’’,
‘‘negative’’, ‘‘strong negative’’. The rules are given in an algorithmic
form under the sent−class function in Fig. 1.

If w1 and w2 are two words: w1(tw1 , iw1 , fw1 ), w2(tw2 , iw2 , fw2 ),
the distance measures between w1 and w2 are as follows:

1. Intuitionistic Euclidean distance:

dIE(w1, w2) =

√
1
2
[(tw1 − tw2 )2 + (fw1 − fw2 )2] (13)

2. Euclidean distance:

dE(w1, w2)

=

√
1
3
[(tw1 − tw2 )2 + (iw1 − iw2 )2 + (fw1 − fw2 )2] (14)

3. Hamming distance:

dH (w1, w2) =
1
3

[
| tw1 − tw2 | + | iw1 − iw2 | + | fw1 − fw2 |

]
(15)

4. Experimental setup

We evaluate the accuracy of the considered mechanism by
implementing the Normalized Euclidean and, in order to give
terms of comparison, we also evaluate the Normalized Ham-
ming distance and Intuitionistic Euclidean distance in the same
scenario.

In Table 2 we give the values we impose on the distance
measures with respect to the sentiment classes of the involved
two words. The values of Table 2 are symmetrical and for this
reason only the values under the main diagonal are given.

Obviously, we considered the smallest distance values in cases
of words having the same sentiment class (these cases are given
on the diagonal). A strong value for distance value means that the
two words are completely dissimilar from the sentiment polarity
point of view. For example, a word having ‘‘negative’’ sentiment
class (or shortly, a negative word) and a word with ‘‘positive’’
sentiment class (a positive word) must have the distance value
d bigger than 0.65, where d cannot be greater than 1.

Based on Table 2 values, the evaluation of the distance values
with respect to the sentiment classes of the involved words is
depicted in Fig. 2.

For the evaluation scenario we chose seven ‘‘seed words’’,
one for each sentiment class and we iterate through the lexical
resource and calculate the distance measures between each of the
seven seed words and all the words that appear in SentiWordNet
(155287 words in total).

Resuming, the algorithmic form of the evaluation scenario for
the proposed word-level sentiment similarity method is given in
Fig. 3.

4.1. Evaluation scores

In Table 3 we present the selected seed words together with
the results obtained by implementing and evaluating all the three
distance measures proposed for this study: Normalized Euclidean
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Fig. 3. The evaluation scenario.

Table 2
The used distance measure values with respect to the words sentiment classes.
Strong positive [0, 0.2)
Positive [0, 0.3) [0, 0.2)
Weak positive [0.25, 0.5) [0, 0.3) [0, 0.2)
Neutral [0.3, 0.65) [0.3, 0.65) [0, 0.3) [0, 0.2)
Weak negative (0.65, 1] (0.65, 1] [0.25, 0.5) [0, 0.3) [0, 0.2)
Negative (0.65, 1] (0.65, 1] (0.65, 1] [0.3, 0.65) [0, 0.3) [0, 0.2)
Strong negative (0.65, 1] (0.65, 1] (0.65, 1] [0.3, 0.65) [0.25, 0.5) [0, 0.3) [0, 0.2)

Sent. classes Strong positive Positive Weak positive Neutral Weak negative Negative Strong negative

Table 3
Evaluation scores.
Seed word Similarity distance precision

Euclidean
distance

Hamming
distance

Intuitionistic
Euclidean
distance

Sent. class: Strong positive
Word: singable#a 0.8411 0.8580 0.8808
Overall scores: (0.75, 0.0, 0.25)

Sent. class: Positive
Word: spunky#a 0.7714 0.7725 0.8059
Overall scores: (0.5416, 0.2083, 0.25)

Sent. class: Weak positive
Word: immunized#a 0.0392 0.0608 0.1219
Overall scores: (0.5, 0.375, 0.125)

Sent. class: Neutral
Word: hydrostatic#a 0.9676 0.9489 0.9570
Overall scores: (0.0, 0.0, 1.0)

Sent. class: Weak negative
Word: misguided#a 0.0973 0.1070 0.1279
Overall scores: (0.25, 0.4583, 0.2916)

Sent. class: Negative
Word: reformable#a 0.8259 0.8260 0.8573
Overall scores: (0.125, 0.5, 0.375)

Sent. class: Strong negative
Word: unworkmanlike#a 0.8542 0.8764 0.8875
Overall scores: (0.0, 0.75, 0.25)

distance, Normalized Hamming distance and Intuitionistic Eu-
clidean distance measure.

The obtained accuracy results are mainly influenced by the
way in which the considered seed words can be distinguished
from the most preponderant words of this lexical resource, that
is from the neutral words as they are the most frequent words of
the SentiWordNet resource.

As it can be seen in Table 3 and Fig. 4 the considered distance
measures have a similar behaviour: all the distance measures
have more than 77% precision for the most of the considered seed
words, which is above the average precision (70%) recognized in
the specialized literature for the sentiment classifiers accuracy.

The highest precision (more than 74%) is achieved by applying
the distance measures between the neutral seed word and all the
SentiWordNet’s words. Also very good scores (more than 82%)
were achieved by applying the distances between the negative
seed word and SentiWordNet words, then we have the scores
corresponding to the strong positive seed word (more than 0.84
as precision) and finally the scores corresponding to the positive
seed word (more than 77% precision).

But these very good results were not achieved for the weak
positive seed word and weak negative seed word where the preci-
sion is almost zero. This failure can be caused by the fact that
these particular sentiment words cannot be distinguished very
well from the most preponderant words of SentiWordNet, that
is from the neutral words.

We can therefore conclude that all the considered distance
measures can distinguish very well the words of the most im-
portant sentiment classes from the point of view of a sentiment
classifier: the (strong) positive or negative words and the neutral
words. Still, the proposed measures are not capable for measur-
ing the similarity of weak sentiment words with the rest of the
sentiment words.

The most important conclusion that comes from the per-
formed experiment is that the behaviour of all the considered
distance measures is very similar — almost identical (see Fig. 4).
We interpret this result as a proof for the robustness of the
considered theory.

5. Conclusions and future work

In the latest years there has been developed a relatively large
number of word-to-word similarity studies that can be grouped
in two main categories: distance-oriented measures applied on
structured representations and metrics based on distributional
similarity learned from large text collections [50].

In this paper we propose a sentiment similarity method that
fits in the first category of similarity studies and which takes into
account only the sentiment aspects of the words and not their
lexical category. We follow here recent text similarity approaches
such as [1,28] defined around the same hypothesis which postu-
lates that knowing the sentiment is beneficial in measuring the
similarity.

Florentin Smarandache (ed.) Collected Papers, VI

705



Fig. 4. The graphical visualization of the similarity distances precision.

Our proposal is formalized in a domain that was never used
before for this kind of task — the neutrosophic theory, as it
uses neutrosophic sets for representing the sentiment aspects
of the words. The neutrosophic set is a generalization of the
intuitionistic fuzzy set concept, and thus our proposal is in line
with the recent fuzzy based studies that started to emerge for text
processing tasks [20,78,79]. Indeed, fuzzy logic is capable of deal-
ing with linguistic uncertainty as it considers the classification
problem to be a ‘‘degree of grey’’ problem rather than a ‘‘black
and white’’ problem [20] (the last one is the most used approach
in sentiment analysis tasks).

For this first approach we obtained very promising results.
Indeed, by applying distance measures on the neutrosophic words
representations we shown that we can thus obtain a similarity
method as we manage very clear to distinguish the words of the
most important sentiment classes from the rest of the considered
words: the SentiWordNet entries, that is, 155 287 words of all
possible sentiment classes.

We also plan to extend our study to sequences of words with
the intended scope of designing a method that can be applied for
measuring documents similarity.
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Abstract. The aim of this paper is to make a proposal for an 
easy–to–use approach to the evaluation of customer 
satisfaction in restaurants. In order to provide a reliable way 
to collect respondents’ real attitudes, an approach based on 
the use of smaller number of evaluation criteria and 
interactive questionnaire created in a spreadsheet file is 
proposed in this paper, whereby an easy-to-understand and 
simple-to-use procedure is proposed for determining weights 
of criteria. In addition to the said, the proposed approach 
applies the simplified SERVQUAL-based approach, for 
which reason a simplified version of the Weighted Sum 
Method based on the decision maker’s Preferred Levels of 
Performances is used for the final ranking of the alternatives. 
The usability of the proposed approach is considered in the 
case study intended for the evaluation of traditional 
restaurants in the city of Zajecar. 

Keywords: hospitality, restaurant industry, customer satisfaction, 
PIPRECIA, WS PLP approach 
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1. Introduction

The Serbian word “kafana” originates from the Turkish word “kahvehane”, which means “a place for drinking 
coffee”. Such places have emerged in the Balkan region under the influence of the Ottoman Empire in the 16th 
century. 

Under the influence of different cultures, kafana generated its specificity on the Balkan Peninsula, so that it also 
became a place where food was consumed and later a place where alcoholic drinks were served. Over time, 
kafanas have increasingly become and have found their place in the social and cultural life, as well as in business. 
Nowadays, kafanas continue to be a place where you meet your friends, a place for celebrations, talking about and 
discussing things and so on. Therefore, kafanas could be denoted as traditional Serbian restaurants. Compared 
with the other types of restaurants, kafanas have similarities to taverns and pubs, as places of a pleasant ambience. 

Certain new trends in the restaurant and food industry, as well as the growing presence of various cuisines, have 
had an impact on traditional Serbian restaurants. Fortunately, in some parts of Serbia, traditional Serbian 
restaurants somehow still resist unfortunately unstoppable trends. 

In the city of Zajecar, located in eastern Serbia, traditional restaurants are successfully resisting the actual trends 
and it is still possible for you to find good restaurants, such as: “Dva brata” (“The Two Brothers”), “Gradska 
Mehana” (The City Meyhane”), “Meda” (“The Bear”), “Roko” (“The Roko”) and so forth. 

The factors influencing the satisfaction of restaurants’ customers have been considered in many previous studies. 
Based on these studies, an approach to the determining of the significance of the relevant factors that influence 
customer satisfaction is proposed. 

The proposed approach also uses the concept of measuring the difference between expectations and perceptions, 
so it provides an easy identification of the criteria against which customer expectations are not met. Beside all of 
the above-said, the proposed model can also be used to determine the overall ratings of the considered 
alternatives, thus making a comparison with competitors. 

Based on all of the above-mentioned reasons that have been taken into account, the remaining part of this paper is 
organized as follows: In Section 2, a review of the relevant research studies is given. After that, in Section 3 and 
Section 4, the PIPRECIA and the WS PLP methods are considered. In Section 5, an empirical illustration of the 
evaluation of Serbian traditional restaurants, based on the integrated use of the PIPRECIA and the WS PLP 
methods, is presented in detail. Finally, the conclusions are given at the end of the paper. 

2. Literature Research

Measuring customer satisfaction could be very important in a competitive environment (e.g. Stepaniuk 2018; 
Raudeliūnienė et al. 2018). For the purpose of determining that, Parasuraman et al. (1988) proposed the Service 
Quality and Customer Satisfaction (SERVQUAL) model. On the basis of that model, many others more 
specialized models have been proposed later, such as: WebQual (Loiacono et al. 2002; Parasuraman et al. 2005), 
eTailQ Wolfinbarger and Gilly (2003), E-RecS-QUAL (Parasuraman et al. 2005), and eTransQual (Bauer et al. 
2006). 

The SERVQUAL model was used for determining the levels of customer satisfaction in many different areas. As 
one of these areas, tourism and hospitality can be mentioned. For example: Saleh and Ryan (1991) used 
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SERVQUAL to determine the gap between clients’ and the management’s perceptions in the hotel industry, 
whereas Devi Juwaheer (2004) explore the tourists' perceptions about hotels in Mauritius by using an adapted 
SQRVQUAL approach. Further, on the basis of the SERVQUAL model, Tribe and Snaith (1998) proposed the 
HOLSAT model, adapted for determining tourists’ satisfaction with their holidays. 

Besides, a number of other approaches have also been used to determine customer satisfaction in tourism and 
hospitality industry, such as: Chaturvedi (2017), Lee and Severt (2017), Engeset and Elvekrok (2015), Albayrak 
and Caber (2015), Chan et al. (2015), Bernini and Cagnone (2014), Battour et al. (2014). 

The SERVQUAL model has also been used in the restaurant industry for determining customer satisfaction. As 
some examples of these studies, the following can be mentioned: Liu at al (2017), Kurian and Muzumdar, (2017), 
Hanks et al (2017); Bufquin, et al. (2017), Saad Andaleeb and Conway (2006), Heung, et al. (2000), Lee and Hing 
(1995).  

Some other studies have also been dedicated to the restaurant industry. For example: Adam et al. (2015) 
investigates tourist satisfaction with Ghanaian restaurants based on a factor analysis, and Jung and Yoon (2013) 
investigate the relationship between employees’ satisfaction and customers’ satisfaction in a family restaurant.  

Dobrovolskienė et al. (2017) state that decision making is crucial to every aspect of business. Multiple-criteria 
decision-making (MCDM) is a scientific field that has undergone extremely rapid development over the last two 
decades. Multiple-criteria decision-making considers situations in which the decision-maker must choose one of 
the alternatives from a set of available alternatives and which are judged on the basis of a number of criteria. This 
is why MCDM contributes to easier decision-making and adoption of long-term and lasting solutions. 

MCDM has also been successfully applied in the hospitality industry. Chou et al. (2008) and Tzeng (2008) used 
MCDM models for selecting the restaurant location. Yildiz and Yildiz (2015) proposed a model for evaluating 
customer satisfaction in restaurants, based on the use of the AHP and TOPSIS methods. In their studies: Duarte 
Alonso et al. (2013), Chi et al. (2013), Kim et al. (2007), Yuksel and Yuksel (2003) and Jack Kivela (1997) 
investigate the criteria that have an impact on customer preferences and satisfaction. 

3. The PIPRECIA Method

The Step-wise Weight Assessment Ratio Analysis (SWARA) method was proposed by Kersuliene et al. (2010). 
The usability of the SWARA method has been proven in solving many MCDM problems, of which only several 
are mentioned: Zolfani et al. (2013), Zolfani and Saparauskas (2013), Stanujkic et al. (2017; 2015), Karabasevic 
et al. (2017), Mardani et al. (2017) and Juodagalviene et al. (2017). 

The SWARA method has a certain similarity with the prominent AHP method. The first similarity is that both 
methods can be used to completely solve MCDM problems or to only determine the weight of the criteria; the 
second is that both methods are based on the use of pairwise comparisons. 

However, the computational procedures of the SWARA and the AHP methods significantly differ from one 
another. Because of that, the SWARA method has some advantages, as well as some disadvantages, in 
comparison with the AHP method.  

As the main disadvantage of the SWARA method, the fact that its computational procedure does not include a 
procedure for determining the consistency of pairwise comparisons made can be mentioned. Contrary to that, a 
significantly lower number of pairwise comparisons required for solving an MCDM problem and for determining 
criteria weights, too, can be mentioned as an advantage of the SWARA method. 
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Its requirement that evaluation criteria should be sorted in descending order according to their expected 
significances, which can prove to be inadequate in some survey cases, can also be mentioned as the weakness of 
the SWARA method. Therefore, with the aim of extending the use of the SWARA method in the cases where a 
consensus on the expected significance of the criteria is not easy to reach, Stanujkic et al. (2017) proposed the use 
of the following equation for the purpose of determining the importance of criteria as follows: 
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where: sj denotes the comparative importance of the criterion j, and 1   jj CC denotes the significance of the 
criterion j in relation to the j-1 criterion. 

In an extension of the SWARA method, proposed under the name of PIPRECIA, Stanujkic et al. (2017) also 
mention that a lack an integrated procedure for checking the consistency in the ordinary SWARA method can 
successfully be compensated for by using Kendall’s Tau or Spearman’s Rank Correlation Coefficient. 

Because of all the foregoing, the PIPRECIA method has been chosen to be used in this approach. 

3.1. The Computational Procedure of the PIPRECIA Method 

The computational procedure of the PIPRECIA method can be shown as follows: 

Step 1. Choose the criteria on the basis of which an evaluation of alternatives will be carried out. 

Step 2. Set the value of the relative importance of the criteria by using Eq. (1), starting from the second criterion. 

Step 3. Calculate the coefficient kj for the criterion j as follows: 

jj sk  2 . (2) 
Step 4. Calculate the recalculated weight qj for the criterion j as follows: 
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where wj denotes the weight of the criterion j. 
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4. The WS PLP Approach

Based on the Weighted Sum Method (Churchman and Ackoff, 1954, MacCrimon, 1968), Stanujkic and 
Zavadskas (2015) proposed the Weighted Sum Preferred Levels of Performances (WS PLP) approach. 

The simplified computational procedure of the WS PLP approach for solving an MCDM problem that contains 
the m alternatives that are evaluated based on the n beneficial criteria (a higher value of the performance rating is 
desirable) can be shown as follows: 

Step 1. Evaluate the alternatives in relation to the selected criteria. 

Step 2. Set the preferred performance ratings for each criterion. 

Step 3. Calculate the normalized performance ratings of the alternatives as follows: 

 




jj

jij
ij xx

xx
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where: ijx  and ijr denote the performance rating and the normalized performance rating of the alternative i in 
relation to the criterion j, respectively; jx0  denotes the preferred performance rating of the criterion j; 
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Step 4. Calculate the overall performance rating of the alternatives as follows: 
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where iS denotes the overall performance rating of the alternative i, ]1,1[iS ; wj is the weight of the criterion j. 

In the proposed approach, the alternatives whose iS  is greater than or equal to zero make a set of the most 
appropriate alternatives, out of which one should be selected. 

5. A Case Study

In order to determine the preferences of the passionate visitors of Serbian traditional restaurants, a supervised 
survey has been performed in the city of Zajecar, located in Serbia, near the Romanian and the Bulgarian borders. 

In this study, the five previously mentioned restaurants have been evaluated on the basis of the six criteria adopted 
from Stanujkic et al. (2016): 

 C1 - the interior of the building and the friendly atmosphere,
 C2 - the helpfulness and friendliness of the staff,
 C3 - the variety of traditional food and drinks,
 C4 - the quality and taste of the food and drinks, including the manner of serving,
 C5 - the appropriate price for the quality of the services provided, and
 C6 - other.

In the proposed approach the criterion “other” is used to enable personalization. 
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The survey presented in this study was conducted by e-mail, or more precisely by using an interactive 
questionnaire created in a spreadsheet file. By using such an approach, the respondents can see the calculated 
weights of the criteria and can also modify his/her responses if he or she is not satisfied with the obtained results. 
In addition, by using such an approach, the obtained results can also be presented graphically, which can make 
easier to understand the procedure used for determining weights of criteria, and thus lead to obtaining more 
realistic views of the respondents. 

The interactive questionnaire was sent to the selected respondents known as the “bohemians” and/or frequent 
visitors of traditional Serbian restaurants. Out of the approximately 80 sent questionnaires, the 42 of them were 
returned, out of which only 30 questionnaires were selected as those properly filled in. 

The weights of the criteria calculated on the basis of the responses obtained from the two selected respondents are 
accounted for in Table 1 and Table 2. 

Table 1. The weights of the criteria obtained from the first respondent 
Criteria sj wj 

C1 The interior of the building and friendly atmosphere 0.13 
C2 The helpfulness and friendliness of the staff 1.10 0.15 
C3 The variety of traditional food and drinks 1.20 0.19 
C4 The quality and taste of the food and drinks, including the 

manner of serving 1.05 0.20 

C5 The appropriate price for the quality of the services 
provided 0.95 0.19 

C6 Other 0.70 0.14 
Source: Own calculations

Table 2. The weights of the criteria obtained from the second respondent 
Criteria sj wj 

C1 The interior of the building and friendly atmosphere 0.15 
C2 The helpfulness and friendliness of the staff 1.10 0.17 
C3 The variety of traditional food and drinks 0.90 0.16 
C4 The quality and taste of the food and drinks, including the 

manner of serving 1.15 0.18 

C5 The appropriate price for the quality of the services 
provided 0.95 0.17 

C6 Other 0.90 0.16 
Source: Own calculations

Some significant descriptive statistical parameters related to the weights of the criteria obtained by the conducted 
survey are presented in Table 3. 

Table 3. The descriptive statistics for the weights of the criteria 
Criteria Min Max Range Mean Standard Deviation Variance Screw Kurtosis 

C1 0.01 0.17 0.17 0.12 0.05 0.002 -0.84 -0.12 
C2 0.05 0.19 0.15 0.15 0.05 0.002 -0.77 -0.81 
C3 0.03 0.19 0.15 0.14 0.05 0.003 -0.52 -1.13 
C4 0.17 0.37 0.19 0.23 0.06 0.003 0.91 -0.27 
C5 0.17 0.35 0.18 0.22 0.06 0.003 0.76 -0.65 
C6 0.11 0.23 0.12 0.16 0.03 0.001 0.41 -0.77 

Source: Own calculations

Florentin Smarandache (ed.) Collected Papers, VI

714

http://jssidoi.org/jesi/
http://doi.org/10.9770/jesi.2019.6.3(5)


According to Table 3, the criteria C4 and C5 have significantly higher importance related to the other criteria, i.e. 
the quality and the taste of the food and the appropriate price are identified as the most significant criteria. 

The obtained correlation coefficient between the responses obtained from the respondents and the mean ranges 
between 0.44 and 0.98. 

Criterion C6 - "other" also has a high weight, which can be interpreted as follows: 

 in addition to the criteria C1 - C5 there are other criteria that affect satisfaction of restaurant customers, which
can be applied in much more sophisticated models, and

 criterion C6 can successfully substitute many less significant criteria and such enable forming an efficient
MCDM models based on the use of a smaller number of criteria.

In addition to the conducted research, the respondents also evaluated the five preselected traditional restaurants by 
using the five-point Likert Scale. The results obtained from the two of the above-mentioned respondents are 
accounted for in Tables 4 and 5. 

Table 4. The ratings obtained from the first respondent 
Alternatives Meda Dva 

brata MS Roko Nasa 
kafana Si Rank Criteria Expected 

C1 3 4 5 3 4 4 0.61 2 
C2 4 5 5 3 3 3 0.85 1 
C3 4 4 5 3 3 4 -0.09 5 
C4 3 5 5 3 4 3 0.20 3 
C5 3 5 4 2 4 4 0.20 4 
C6 2 3 4 3 3 3 0.61 2 

Source: Own calculations

Table 5. The ratings obtained from the second respondent 
Alternatives Meda Dva 

brata MS Roko Nasa 
kafana Si Rank Criteria Expected 

C1 4 4 4 2 2 4 0.32 1 
C2 5 5 4 3 3 4 -0.02 2 
C3 3 4 4 3 3 4 -0.42 4 
C4 5 5 4 4 3 4 -0.51 5 
C5 4 4 4 4 4 3 -0.04 3 
C6 3 4 3 3 3 4 0.32 1 

Source: Own calculations

Ranges between the maximum and minimum weights of criteria are also not negligible, as previously shown in 
Table 3. Therefore, the separate ranking list of considered alternatives has been formed for each respondent, in 
this approach, by using the WS PLP approach.  

In this way, the attitudes of the respondents do not drown into the group attitudes, obtained on the basis of the 
average weight of and average ratings, and remain clear until the end of the evaluation, where the final ranking of 
the considered alternative was made based on dominance theory. 
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The results achieved based on all properly filled questionnaires are shown in Table 6. The appearance of the 
considered alternative in the first position is given in Column I of Table 6. The appearance of the considered 
alternatives in the second and the third positions is given in Columns II and III of Table 6. 

Table 6. The number of the appearances of the alternatives in different positions 
Number of appearances at positions 

Alternatives I II III 
A1 15 7 3 
A2 12 6 6 
A3 1 1 9 
A4 4 10 7 
A5 0 4 5 

Source: Own calculations

According to Column I of Table 5, based on the dominance theory, the best-placed alternative is the alternative 
labelled as A1.  

In this approach, only the appearances on the first position are used for the determination of the best alternative, 
or more precisely, the most popular traditional restaurant. The appearances in the second, the third, as well as the 
other positions, could be used for a further analysis. 

The overall ratings, obtained by using WS PLP approach, can also be used for various analysis, especially when it 
is known that WS PLP approach Si < 0 indicates an alternative where expected customers' satisfaction has not 
been reached yet. 

 Conclusions 

The main objective of this paper is to determine the most significant criteria that have an influence on customers’ 
satisfaction in traditional Serbian restaurants, as well as weights of these criteria, and propose an easy–to–use 
approach for the evaluation of customers’ satisfaction in restaurants. 

For that reason, the newly proposed PIPRECIA method, that is an extension of the SWARA method, is proposed 
for determining the weight of criteria in order to provide an effective and simple-to-use procedure for gathering 
the attitudes of the examined respondents that will be as realistic as possible. 

The gaps between the expected and the achieved satisfaction obtained based on a set of criteria are used to 
determine the overall performance of any of the considered alternatives, which is done by applying the WS PLP 
approach. The final ranking of the alternatives is made by referring to dominance theory. 

The approach proposed in this paper has significant similarities to the proven SERVQUAL model or models like 
that one. However, it is based on the use of a significantly smaller number of evaluation criteria, which could 
allow the forming of the simplest questionnaires that could be more appropriate when preferences and ratings are 
collected through conducting surveys with ordinary respondents, i.e. those unprepared in advice for surveying. 

The usability of the proposed approach has been verified in the case study on the evaluation of traditional Serbian 
restaurants. The achieved results confirm the efficiency and usability of the proposed approach for solving 
similar, as well as numerous other, decision-making problems. 
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Abstract
In this paper, we discuss the minimum spanning tree (MST) problem of an undirected neutrosophic weighted connected 
graph in which a single-valued neutrosophic number, instead of a real number/fuzzy number, is assigned to each arc as its arc 
length.We define this type of MST as neutrosophic minimum spanning tree (NMST). We describe the utility of neutrosophic 
numbers as arc lengths and its application in different real world MST problems. Here, a new algorithm for designing the 
MST of a neutrosophic graph is introduced. In the proposed algorithm, we incorporate the uncertainty in Kruskal algorithm 
for designing MST using neutrosophic number as arc length. A score function is used to compare different NMSTs whose 
weights are computed using the addition operation of neutrosophic numbers. We compare this weight of the NMST with 
that of an equivalent classical MST with real numbers as arc lengths. Compared with the existing algorithms for NMST, the 
proposed algorithm is more efficient due to the fact that the addition operation and the ranking of neutrosophic number can 
be done in straightforward manners. The proposed algorithm is illustrated by numerical examples.

Keywords Neutrosophic sets · Neutrosophic graph · Score function · Spanning tree problem

1 Introduction

Zadeh (1965) introduced the theory of fuzzy sets, which 
capture natural phenomenon of imprecision and uncer-
tainty. The characteristic of fuzzy set, namely the member-
ship function, is a function whose range is between 0 and 
1. Since then, fuzzy sets has been used to model many real
life problems in various fields. Classical fuzzy set (type-1 
fuzzy set), whose membership degrees/functions are single 
values/classical sets, is not able to handle different kinds 
of uncertainty that appears in real life scenarios. Turksen 
(1986) introduced the idea of interval valued fuzzy sets and 
Atanassov (1986) proposed the intuitionistic fuzzy sets to 
handle with the lack of non-membership degrees of fuzzy 
sets. Intuitionistic fuzzy sets have been widely used in opti-
mization problems, decision making, neural network, medi-
cal diagnosis, and so forth. An intuitionistic fuzzy set is an 
extension of standard fuzzy set that assigns not only to each 
element a membership degree and but also a non-member-
ship degree. It is more flexible to handle the uncertainty of 
real life scenarios than the standard fuzzy set. The member-
ship degree, non-membership degree and hesitation degree 
of an element in the intuitionistic fuzzy set may not be a real 
number. Atanassov and Gargov (1989) extended the concept 
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of intuitionistic fuzzy sets to the interval valued intuitionis-
tic fuzzy sets to handle more uncertainty than intuitionistic 
fuzzy sets. To handle the uncertainty due to the hesitance in 
representing their preference over elements in an optimiza-
tion, hesitant fuzzy sets were proposed by Torra (2010) and 
Torra and Narukawa (2009).

Although the fuzzy set and fuzzy logic have been applied 
to solve many real life problems, it cannot represent many 
type of uncertainties properly. For example, uncertainties 
in the inconsistent information and indeterminate informa-
tion cannot be expressed by fuzzy set. If we want to know 
the opinion of a decision maker about a statement, deci-
sion maker may say that the possibility of truthfulness in 
the statement is 0.6, the possibility of false in the statement 
is 0.7 and the possibility of not sure is 0.4. This type of real 
life scenarios cannot be represented by fuzzy set. Therefore, 
we need some a new concept to handle this scenarios.

Smarandache (1998) proposed the concept of neutro-
sophic set (NS) from the philosophical point of view, to 
represent uncertain, imprecise, incomplete, inconsistent, and 
indeterminate information that exist in the real world prob-
lems.NS is characterized by a truth-membership function 
(t), an indeterminate-membership function (i) and a false-
membership function (f) independently, which are within 
the real standard or non-standard unit interval ]0, 1+[. The 
neutrosophic set model is an important tool for dealing with 
real scientific and engineering applications because it can 
handle not only incomplete information but also the incon-
sistent information and indeterminate information as shown 
in Broumi et al. (2016), Ngan et al. (2016), Wijayanto et al. 
(2016), Thanh et al. (2017), Phong and Son (2017), Ali et al. 
(2017, 2018a, b, c).

Minimum spanning tree (MST) is a fundamental and 
well-known optimization problem in graph theory (Chen 
and Chang 2001; Dey et al. 2015; Dey and Pal 2013). It 
aims to find the minimum weighted spanning tree of a 
weighted connected graph. MST has many real life appli-
cations, including communications, transportation, image 
processing, logistics, wireless telecommunication networks, 
cluster analysis, data storage and speech recognition. In the 
classical MST problem, the arc lengths are assumed to be 
fixed and decision maker uses crisp values to represent the 
arc lengths of a connected weighted graph. However, in real 
world scenarios, the arc length of a graph may represent a 
parameter which may not have a precise value, e.g., demand, 
cost, time, traffic frequencies, capacities, etc. (Pedrycz and 
Chen 2011, 2014, 2015; Dey et al. 2016). As an example 
on road networks, even though the geometric distance is 
fixed, arc length representing the vehicle travel time may 
fluctuate due to different weather condition, traffic flow or 
some other unexpected factors (Dey et al. 2016). Therefore, 
it becomes hard for decision makers to estimate proper edge 
cost in crisp values.

In general, decision makers use possible values of arc 
lengths in linguistic terms, approximate intervals, etc. In 
such real time scenarios, the arc lengths can be expressed 
as about 30 minute, around 30–90 min, nearly 90 min, 
between 90 and 110 min, etc. Fuzzy set is one of the most 
important mathematical tools to handle the uncertainty of 
the model (Chen 1996; Chen et al. 1997, 2001, 2006; Chen 
and Hsiao 2000; Wang and Chen 2008; Horng et al. 2005; 
Chen and Hong 2014). Most of the researchers have used 
type-1 fuzzy set to express those uncertain arc weights. 
Type-1 fuzzy set is unable to directly model properly such 
uncertainties because their membership values are totally 
crisp. Neutrosophic graph can be introduced as an alterna-
tive to fuzzy graph to deal with this uncertain situation.

The MST problem has received researchers attention 
over last decades and several approaches have been pro-
posed to solve MST problem in deterministic graphs. [See 
Kruskal (1956), Prim (1957), Bondy and Murty (1976), 
Dijkstra (1959) and Harel and Tarjan (1984)]. Kruskal 
(1956) algorithm is one of the simple and effective algo-
rithm to find the MST. We can calculate the MST using 
Kruskal algorithm if the arc costs of a graph are fixed. 
Uncertainty exists in almost every real life applications of 
MST problems. Uncertainty of parameters come from two 
different sources: randomness and vagueness or incom-
plete information. The randomness of a stochastic problem 
can be handled by probability theory. Due to this reason, 
some researches represent the arc of a MST problem as a 
random variables.

Ishii et al. (1981) described the MST problem with ran-
dom arc costs. Ishii and Matsutomi (1995) proposed a poly-
nomial time algorithm to solve the MST problem. In this 
algorithm, the parameters of the probability distributions 
of the arc costs are unknown and the parameters are esti-
mated by applying a confidence region from stochastic data. 
However, in many real world problems, the parameter val-
ues are vague or incomplete in nature. Itoh and Ishii (1996) 
first proposed the MST problem with fuzzy arc costs as a 
chance-constrained programming. Their idea was based on 
necessity measure. Chang and Lee (1999) introduced the 
MST problem whose arc costs are fuzzy. They used three 
approaches based on the overall existence ranking index for 
ranking fuzzy arc costs. Based on fuzzy set and probability 
theory, de Almeida et al. (2005) introduced a genetic algo-
rithm for MST problem with fuzzy parameters. Janiak and 
Kasperski (2008) proposed the MST where the arc costs are 
represented by fuzzy intervals. They applied the possibility 
theory to characterize and chose the arcs of a MST for a 
graph. Zhao et al. (2012) used intuitionistic fuzzy variables 
to represent the arc length of a intuitionistic fuzzy graph and 
developed an algorithm to solve this problem. Zhang and 
Xu (2012) described the MST problem with hesitant fuzzy 
variables and introduced an algorithmic approach to solve it.
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Recently, few researchers have used neutrosophic meth-
ods to find minimum spanning tree in neutrosophic envi-
ronment. Ye (2014) presented a method to find minimum 
spanning tree of a graph where nodes were samples are 
represented in the form of NSs and distance between two 
nodes represents the dissimilarity between the correspond-
ing samples. Kandasamy (2016) proposed a double-valued 
neutrosophic minimum spanning tree (DVN-MST) clus-
tering algorithm to cluster the data represented by double-
valued neutrosophic information. Mandal and Basu (2016) 
proposed a new approach of optimum spanning tree prob-
lems considering the inconsistency, incompleteness and 
indeterminacy of the information. They considered a net-
work problem with multiple criteria represented by weight 
of each edge in neutrosophic sets. It should be noted that 
the triangular fuzzy numbers and single-valued neutrosophic 
numbers are similar in mathematical notations, but totally 
different. To the best of our knowledge, no algorithm exists 
for MST with neutrosophic arc lengths.

The minimum spanning tree (MST) problem is one of the 
most well-known optimization problems in graph theory due 
to its importance to various applications. The uncertainty 
in the application of MST makes it difficult to find the edge 
weights exactly. Neutrosophic set and neutrosophic logic are 
renowned theories, with which one can handle and capture 
the natural phenomenon of the imprecision and uncertainty 
in the edge weights of the spanning tree. Neutrosophicness 
is explored as an alternative to fuzziness for describing 
uncertainty. The motivation of this work is to find an algo-
rithm for the minimum spanning tree of undirected neutro-
sophic graph which will be simple enough and efficient in 
real world scenarios or real life problems. In the past years, 
there were few methods in Ye (2014), Kandasamy (2016) 
and Mandal and Basu (2016), to find the MST of a neutro-
sophic graph. In these algorithms, they can obtain either the 
cost or the MST of the neutrosophic graph. It is the purpose 
of this paper to propose a new algorithm that can obtain 
both of them.

In this paper, we work on MST problem of undirected 
weighted graph whose arc lengths are represented by neutro-
sophic number. This work is unique of its kind as there is no 
such work in the literature done before. An undirected con-
nected neutrosophic graph is considered whose arc length is 
represented by neutrosophic number. We define this problem 
as the neutrosophic minimum spanning tree (NMST) prob-
lem. The NMST problem, involving addition and comparison 
operation of neutrosophic numbers, is quite different from the 
classical MST problem, which involves real numbers only. 
In an NMST problem, the weights of MST are neutrosophic 
numbers, and the task is to determine a spanning tree which 
is smaller than the others. It is not easy, as the comparison of 
neutrosophic numbers as an operation can be described in a 
wide variety of ways. We have introduced a modified Kruskal 

algorithm to solve the NMST problem. The proposed algo-
rithm is used to compute the MST of the neutrosophic graph 
and its cost. We use the score-based ranking method to choose 
the minimum arc associated with the lowest value of score. 
Compared with existing algorithms for NMST, the proposed 
algorithm is more efficient due to the fact that the addition 
operation and the ranking of neutrosophic number can be done 
is a easy and straight manner. A numerical example illustrates 
the proposed algorithm.

The rest of the paper is organized as follows. Section 2 
briefly introduces the concepts of neutrosophic sets, single-
valued neutrosophic sets and the score function of single-
valued neutrosophic number. A mathematical formulation of 
the NMST problem is given in Sect. 3. Section 4 proposes a 
novel approach for finding the minimum spanning tree of neu-
trosophic undirected graph. In Sect. 5, an illustrative example 
is presented to illustrate the proposed method. Finally, Sect. 6 
concludes the paper.

2  Preliminary

Definition 1 Let � be an universal set. The neutrosophic set 
A on the universal set � categorized in to three membership 
functions called the true TA(x) , indeterminate IA(x) and false 
FA(x) contained in real standard or non-standard subset of 
]−0, 1+[ , respectively (Smarandache 1998).

Definition 2 Let � be a universal set. The single-valued 
neutrosophic sets (SVNs) A on the universal � is denoted as 
following (Wang et al. 2010),

The functions TA(x) ∈ [0, 1] , IA(x) ∈ [0, 1] and FA(x) ∈ [0, 1]

are named as degree of truth, indeterminacy and falsity 
membership of x in A, satisfy the following condition:

Definition 3 Let A = (T , I,F) be a SVNs, a score function 
S, based on the truth-membership degree (T), an indeter-
minacy membership degree (I) and a falsity membership 
degree (F) is defined as follows (Garg 2016):

3  Problem formulation for NMST

A spanning tree of a connected graph G is a connected acy-
clic maximum sub-graph which includes all the nodes of 
G. Every spanning tree has exactly n − 1 arcs, where n is 

(1)−0 ≤ sup TA(x) + sup IA(x) + sup FA(x) ≤ 3+

(2)A = {⟨x ∶ TA(x), IA(x),FA(x)�x ∈ �⟩}

(3)−0 ≤ sup TA(x) + sup IA(x) + sup FA(x) ≤ 3+

(4)S(A) =
(1 + (T − 2I − F)(2 − T − F))

2
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the number of nodes of graph G. A MST problem is to find 
a spanning tree such that the sum of all its arc length is 
minimum. The classical MST problem considers the exact 
weights associated with the arcs of the graph. However, in 
real world scenarios the arc lengths may be imprecise due 
to lack of evidence or incompleteness. The effective way to 
handle with these imprecision is to consider a neutrosophic 
graph. Consider a neutrosophic graph G, consisting of n 
number of nodes V = 

{
v1, v2,… , vn

}
 and a finite set of m

number of arcs E ⊆ V × V  . Each arc of the graph is denoted 
by e, which is an order pair (i, j), where i, j ∈ V  and i ≠ j . 
If the arc e is present in the NMST then xe = 1, otherwise 
xe = 0. The cost of all the arcs of graph G is represented by 
number. We defined the MST of this neutrosophic graph as 
neutrosophic minimum spanning tree (NMST). The NMST 
is expressed as the following linear programming problem.

Subject to

Here, Ae is a neutrosophic set that represents the length of 
the arc e ∈ E and 

∑
 in Eq. (5) is the sum of a neutrosophic

sets. Equation (6) ensures that the number of edges in the 
NMST is n − 1 . In Eq. (7), �(s) = {(i, j|i ∈ s, j ∉ s)} is used
for the cutset of a subset of vertices s, i.e., the arcs that have 
one node in the set s and the other one outside the s. Thus, a 
spanning tree must have at least one arc in the cutset of any 
subset of the nodes.

4  Proposed algorithm for NMST

The proposed algorithm is an extension of the Kruskal algo-
rithm for MST problem. We have incorporated the concept of 
uncertainty in Kruskal algorithm using neutrosophic number 
as an edge weight. The classical Kruskal algorithm is a MST 
algorithm which determines an arc of the minimum cost that 
connects any two trees in the forest. This algorithm is a type 
of greedy algorithm in graph theory as it determines a MST 
for a connected weighted graph adding increasing cost arcs at 
each step. Two key matters are needed to address to modify 
the Kruskal algorithm to solve the NMST problem. The first 
is determining the addition operation of two edges to find the 
cost of the spanning and the second is to compare the costs of 
the spanning trees of two different spanning trees. Based on the 

(5)min
∑

e∈E

Aexe

(6)
∑

e∈E

xe = n − 1

(7)
∑

e∈𝛿(s)

xe ≥ 1 ∀s ⊂ V , � ≠ s ≠ V

(8)xe ∈ {0, 1} ∀e ∈ E

score function of neutrosophic number, the classical Kruskal 
algorithm can be easily modified to a neutrosophic Kruskal 
algorithm as follows.

In this algorithm, the variable T is used to represent the 
NMST and A is the set of all unvisited arc that are to be 
removed. n is the total number of vertices in the neutrosophic 
graph G. The main steps of the neutrosophic Kruskal algo-
rithm are shown as follows:

Step 1 The score value are computed for all the arc e ∈ E 
of G, using Eq. (4).

Step 2 Arrange all the arcs e ∈ E of G by their correspond-
ing score values: least score value first and largest score 
value last. The score values are used as the edge weights 
of the neutrosophic graph G.

Step 3 Choose the not-examined edge from the graph G. 
Add this chosen arc to the NMST if this will not make a 
cycle.

Step 4 Stop the process whenever n − 1 arcs have been 
added to the NMST.

Algorithm 1 Pseudocode of the proposed algorithm
for designing NMST
Input: A connected undirected weighted neutrosophic

graph
Output: The resultant NMST
1: Begin
2: T ← {∅} � T describes a set of edges, which is the

NMST.
3: for each arc e ∈ G do
4: Find the score value of each arc e using (4)
5: insert e into A
6: end for
7: while |T | ≤ n− 1 do
8: Choose an arc e form A with minimum score value.
9: if T ∪ e has no cycle then
10: T ← T ∪ e
11: end if
12: Remove e from A
13: end while
14: return T
15: End

The pseudocode of the proposed algorithm is given in 
Algorithm 1. We use an adjacency matrix to describe the 
neutrosophic graph. The linear searching method is used to 
determine the minimum weight edge based on the concept of 
score of neutrosophic number. The computational complexity 
of the proposed algorithm is O(V2).

5  Numerical example

We demonstrate our modified Kruskal algorithm step by step 
considering an example graph, shown in Fig. 2.
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First, we consider an undirected weighted graph shown 
in Fig. 1 and apply Kruskal algorithm to find the MST of G. 
The Kruskal algorithm finds the MST= {(a, c), (c, d), (b, d)} 
and the effective weight is 190.

The graph G1 consists of four nodes and five edges. The 
costs of all edges of the network are in the form of neutro-
sophic number. We do not find any graph in the literature 
whose edge costs are given in terms of neutrosophic num-
ber. For the graph, shown in Fig. 2, we have generated the 
values of neutrosophic number and assigned those values to 
the arcs of the graph randomly. We have to find the MST of 
the graph G.

 Step 1. There are five possible arcs in the graph G. They 
are, respectively:

i. (a, b)
ii. (a, c)

iii. (a, d)
iv. (b, d)

v. (c, d)

  Now we compute the score of every arc based on 
score function, as defined in Eq. (4). The ranks are, 

respectively, 0.27, −0.73 , 0.115, −0.06 and 0.66 for the 
arcs (a, b), (a, c), (a, d), (c, d) and (b, d). A stores this 
five arcs with their corresponding costs.

 Step 2. The arc (a, c) is the smallest arc as its score −0.73 
is lowest among all the values of score of all the arcs 
in A. The arc (a, c) is inserted in T and the (a, c) is 
removed from A. Now, the NMST T is {(a, c)}.

 Step 3. The arc (c, d) is the smallest arc as its score −0.06 
is lowest among all the values of score of all the arcs 
in A. The arc (c, d) is inserted in T and the (c, d) is 
removed from A. Now, the NMST T is {(a, c), (c, d)}.

 Step 4. The arc (a, d) is the smallest arc as its score 0.115 
is lowest among all the values of score of all the arcs 
in A. The arc (a, d) is not inserted in T because it cre-
ates a cycle. The arc (a, d) is removed from A. The arc 
(a, b) is the next smallest arc as its score 0.27 is lowest 
among all the values of score of all the arcs in A and 
the (a, d) is removed from A. Now, the NMST T is 
{(a, c), (c, d), (c, d)} . The cost of the NMST is −0.52.

We have also computed the MST of neutrosophic graph 
using binary programming. The result for same graph using 
binary programming with the same arc cost is computed. 
Our computed MST is same as the binary programming. It 
shows the effectiveness of the proposed approach. Here, we 
consider binary programming as we did not find, best of our 
knowledge, any existing algorithm for MST on neutrosophic 
graph.

Compared with existing algorithms for NMST, the pro-
posed algorithm is more efficient due to the fact that the 
addition operation and the ranking of neutrosophic number 
can be done is a easy and straight manner. In the existing 
literature, the works on neutrosophic graph were done by 
Ye (2014) and Mandal and Basu (2016) where similarity 
approaches were used to compare the path in a graph with 
neutrosophic set. The similarity measure of neutrosophic set 
approach has the limitation of time consumption. In these 
algorithms, they can obtain either the cost or the MST of the 
neutrosophic graph. However, the proposed method in this 
research can obtain both of them. This shows the advantages 
of the proposal.

6  Conclusion

This paper investigated the minimum spanning tree prob-
lem whose edges weights are represented by neutrosophic 
numbers. The main contribution of this study is to provide 
an algorithmic approach to find the minimum spanning tree 
in uncertain environment using neutrosophic numbers as arc 
lengths. We have incorporated the concept of uncertainty 
in Kruskal algorithm using neutrosophic number as an 
edge weight. The proposed algorithm finds the MST under 

Fig. 1  An undirected weighted connected classical graph

Fig. 2  An undirected neutrosophic graph
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neutrosophic edge weights based on the score values of 
neutrosophic numbers. A numerical example was presented 
to illustrate the mechanism of the proposed algorithm. The 
proposed algorithm for minimum spanning tree is simple 
enough and effective for real world scenarios. This work can 
be extended to the case of directed neutrosophic graphs and 
other types of neutrosophic graphs such as bipolar neutro-
sophic graphs, interval valued neutrosophic graphs.

In the future, the proposed algorithm can be applied to 
real world problems such as in supply chain management, 
transportation, etc. (Tsai et al. 2008; Chen and Chien 2011; 
Tsai et al. 2012; Chen and Kao 2013). It should be noted 
that the uncertainty in the arc length of a MST problem is 
not limited to the geometrical distance. For example, due to 
the several reason, the travel cost between two cities may be 
expressed as a neutrosophic numbers, even if the geometri-
cal distance is fixed. This observation further gives the light 
for possible expansion.
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ABSTRACT Personnel selection is a critical obstacle that influences the success of the enterprise. The
complexity of personnel selection is to determine efficiently the proper applicantion to fulfill enter-
prise requirements. The decision makers do their best to match enterprise requirements with the most
suitable applicant. Unfortunately, the numerous criterions, alternatives, and goals make the process of
choosing among several applicants is very complex and confusing to decision making. The environment
of decision making is a multi-criteria decision making surrounded by inconsistency and uncertainty. This
paper contributes to support personnel selection process by integrating neutrosophic analytical hierarchy
process (AHP)with the technique for order preference by similarity to an ideal solution (TOPSIS) to illustrate
an ideal solution amongst different alternatives. A case study on smart village Cairo Egypt is developed
based on decision maker’s judgments recommendations. The proposed study applies neutrosophic AHP and
TOPSIS to enhance the traditional methods of personnel selection to achieve the ideal solutions. By reaching
the ideal solutions, the smart village will enhance the resource management for attaining the goals to be a
successful enterprise. The proposed method demonstrates a great impact on the personnel selection process
rather than the traditional decision-making methods.

INDEX TERMS Personnel selection, multi-criteria decision making (MCDM), neutrosophic sets, analytic
hierarchy process (AHP), topsis.

I. INTRODUCTION
Human resources are considered to be the real wealth for any
organization. Personnel selection is a partial sector of human
resources that aimed to recommend the ideal candidate to
the right position on enterprise [1]. Indeed, the power of
personnel selection process manages the input quality in such
a way to improve human resource management. To keep
going on with globalization and competition, the personnel
selection processes need to be improved. Due to many enter-
prises have not enough capabilities for funding personnel
selection, the enterprises used to choose the candidates with
traditional and quickly methods [2]. Nowadays enterprises

must adequate with the business environmental factors and
organization responses which make the necessary to enhance
the methods for personnel selection. The researchers mention
three factors for the resources of IT which are human, busi-
ness, and technology resources. The strategies of choosing
persons altered according to enterprises police and funds.
Researchers perceive that IT infrastructure do not lead to
distinct important benefits, due to the complexity of mobility
and imitation [3]. However, human resources sector have
direct influence on the performance of enterprise. The asso-
ciation between IT skills and enterprise performance has
been divided into three groups human, business, and tech-
nology resources. Such that, researchers conducted in US
retail, human resources combined with IT would improve
the enterprises productivity and efficiency [4]. Hence, the
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enterprise that strength the human resource with efficient
personnel selection methods can handle internal communica-
tions between enterprise partners either internal or external
sides, in addition, can efficiently predict the requirements
of the competitive requirements [5], [6]. Fig.1 models the
process for traditional personnel selection. Therefore there
is a need to enhance the methods of personnel selection
among numerous alternatives by owning different technical
and commercial scope [7]–[10].

FIGURE 1. Ontology for traditional methods for personnel selection.

In Research, numerous methods used for personnel
selection such as interview, examination, mastery tests,
work sample tests, predictive index tests, and person-
ality trait quizzes, however there is shortage of the use
of MCDM techniques [3]. The enhancements methods
of personnel selection problems propose the use of
MCDMmethods [2], [7], [11]–[13]. TheMCDM can handle
complex problems and select the appropriate solution among
numerous of alternatives solutions with respect to enterprise’s
goals [14]. Sometimes not all candidates match enterprise’s
purposes, for this reason [15], mentions different patterns for
MCDM problems:

1) Identify problem statements.
2) Sort the problem: Classify candidates into related

groups.
3) Rank problem’s candidates.
4) Indicate problem candidates’ features.

Due to the complexity of human cognition, MCDM
methods of selection ideal candidates are surrounding with
vague, impression, inconsistency, and uncertainty [16].

Mostly decision makers do not have a clear conscious-
ness about all criterions in order to make the proper deci-
sions, which leads for challenges of MCDM methods.The
major categories ofMCDMareMulti-Criteria DecisionAnal-
ysis (MCDA) and the one of Multi-Objective Mathemat-
ical Programming (MOMP) [17]. First category, MCDA
is a method used to detect the relations between different
alternatives. The decision is taken based on the surrounding
criterions and alternatives. The criterions have some char-
acteristics such that, they can be measured and their
output can be clearly computed. The consequences of
outcome afford the ability of observations and facilities
of final decisions. Second category, MOMP deals with
numerous and conflict objectives and applies optimization
techniques to obtain possible solutions of decisions [18].
The alternatives have been formed using mathematical
methods.

AHP is a method to structure complex problems into
hierarchical structure to display relationship of goals,
alternatives, and criteria to aid decision maker to judge the
performance of decisions in such efficient manner [19].
However classical methods of AHP cannot handle the condi-
tions of vague, impression, and uncertainty. The fuzzy AHP
is proposed to handle the conditions of vague and impres-
sion, however fuzzy is working with membership function
which is very difficult for decision maker to detect in real
situations [20].

Neutrosophy is a new field in philosophy, which studies
the scope and origin of neutralities [21], [22]. Neutrosophic
is used to resolve numerous applications’ challenges such
as critical path problem in project management [23], [14].
Regularly, the preferences between criteria cannot be clearly
determined by decision makers in real life situations. The
contributions of the use of neutrosophic sets are to over-
come the conditions of uncertainty and inconsistency that
surrounding environment and affecting on decision maker’s
judgments. The degree of importance and weakness within
criteria and alternatives should be evaluated. The neutro-
sophic method has the ability to model the relationships and
dependents between criteria and alternatives. The neutro-
sophic theory can explicitly show decision maker’s knowl-
edge, reference, and judgments [24]. Neutrosophic are
an expansion of Intuitionistic Fuzzy Sets (IFS) that illus-
trate accurate perspectives and enhancing interpretation of
uncertainty [20]. The neutrosophic set is moving forward
by the use of membership of truth, indeterminacy, and
non-membership in a given set. The neutrosophic set illus-
trates the cases of indeterminacy that exists in real life situa-
tions to aid experts of decision makers to make accurate and
efficient judgments.

TOPSIS has been first proposed in [25], the method
depends on synthesizing the criteria like in AHP. The TOPSIS
is rely on dividing alternatives into two groups positive and
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negative solutions, the best solution has the shortest distance
from positive group of solutions and the longest distance from
negative group of solutions [26]. Considering the personnel
selection is an MCDM problem, the proposed model inte-
grates the AHP with TOPSIS by the use of neutrosophic
sets. The decision maker provides the basis judgments for
the selection problem. The judgments are obtained in envi-
ronment of inconsistency, and uncertainty. The proposed
framework handles the current challenges and recommends
the ideal solutions with respect to constraint of environment
criteria.

Section 2 reviews the literatures for the problem of
personnel selections neutrosophic AHP, and TOPSIS.
Section 3 presents the proposed methodology to aid decision
makers for selecting the appropriate applicant for achieving
enterprise goals. Section 4 provides an empirical application
to validate of proposed model. Section 5 summarizes the
research key point and assigns the research future work.

II. LITERATURE REVIEW
Many issues can affect the process of personnel selection
including changing in work, government, behavior, regula-
tions, the evolution technology, and others [8], [9], [27], [28].
The traditional methods of interview are validity, reliability,
interviewer differences, employment opportunity issues, and
decision-making processes. In addition to, the interview can
be used as an approach to help personnel and organiza-
tion effectiveness [29]. The personality judgments measures
are used to efficiently enhance the personnel selections
process [30]. Inside enterprise the managers identifies many
defects in the business relationships of IT [31]. The focus
on the deficiency of information technology managers effec-
tiveness, is leading to partial failures in enterprise business
relations [32]. In [33], demonstrates a problem in the depart-
ment which is the lack for the super-manager for communi-
cation skills that make negative impact on the organization
success. To overcome the negative impacts, the technical
capabilities should be considered. In [5], demonstrates the
effectiveness of Information technology to enterprise. The
enterprise IT resources are divided into infrastructure, human
resources, and enabled intangibles. The IT skills are classified
into soft skills such as interpersonal skills, creativity, and
time management, and technical skills such as marketing,
accounting, and emerging information technologies [34].
An model based for efficiency analysis are proposed for
ranking alternatives using the ordered weighted average
(OWA) aggregation operators for the purpose of improving
decision making processes [35].

Towards enhancing the decision maker’s judgments, deci-
sion support system tools are proposed to enhance the
personnel selection process [36], [37]. In [38], uses
the MCDM methods for personnel selection. The MCDM
methods are relying on an aggregating function which
represents ‘‘closeness to the ideal’’ solution [39]. AHP
decomposes obstacles into hierarchal structure in order to
obtain priorities and weights to enhance decision maker’s

judgments [40]. Due to vagueness and impression, the fuzzy
methods are provided to enhance the decision maker’s judg-
ments in the process of personnel selection [41]. The fuzzy
methods combined with AHP to solve information systems
problems for the personnel selections [42]. A fuzzy model
based on a two-level personnel selection, is proposed to
minimize subjective judgments in the methods of choosing
between proper candidates to be hired to enterprise [43].
An approach based on ranking fuzzy numbers by metric
distance and comparing the proposed method with other
methods. In addition, proposing a computer-based group
decision support system used three ranking methods for
improving personnel selection problem [44]. Fuzzy multiple
objective methods are illustrated in order to solve personnel
selection problems [45]. Fuzzy multi-objective Boolean
linear programming formulation is presented to show the
degree of importance for each alternative. A system for
personnel selection is based on fuzzy analytic hierarchy
for ranking the candidates to achieve the most appropriate
candidates [42]. In [46] focuses on the analytical thinking
approaches, an analytical network process is proposed to
handle the impression and ambiguity in the pairwise compar-
ison matrix to reduce the personnel selection biasness.

TOPSIS is proposed as the best solution that has the
shortest distance to positive solutions [33]. Traditionally
the weights of TOPSIS presented as crisp numbers which
cannot be applicable in real environment [47]. Refer-
ences [3] and [26] proposes TOPSIS methods for enhancing
personnel selection problems. A new TOPSIS based on
multi-criteria methods for ranking alternatives according to
veto threshold [3]. According to Karnik–Mendel (KM),
a fuzzy TOPSIS is proposed to obtain an accurate fuzzy rela-
tive closeness instead of crisp value in order to prevent loss
of information and efficiency [26]. In [2] and [48] illustrate
the method of TOPSIS with a fuzzy multi-criteria decision
making algorithms to allow managers to assess information
using linguistic and numerical scales with different data
sources for solving the personnel selection problems. The
AHP TOPSIS combined with fuzzy methods are mentioned
in the case of education committee, an integrated method of
fuzzy AHP and TOPSIS in an MCDM environment are used
to enhance the personnel selection of the training and educa-
tion staff [49]. For uncertainty and inconsistency conditions,
the AHP TOPSIS combined with neutrosophic are illustrated
in different fields like risks and supplier selections for aiding
decision makers to achieve to ideal decisions [50], [51].
We propose to be the first to integrate the neutrosophic
environment to AHP and TOPSIS techniques in personnel
selection.

III. METHODOLOGY
In our study, the integrating of TOPSIS with neutrosophic is
regard as a new contribution to make an ideal selection of
applicants in the personnel selection problem. As mentioned
in the literature review section, TOPSIS method is used
to solve the problem of personnel selection. The recent
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FIGURE 2. Mind map of personnel selection problem methods.

FIGURE 3. Conceptual flow to personnel selection problem.

researches as mentioned in [3] use TOPSIS in solving
classical business problems as follows:
• Manufacturing: the supplier selection problems are
handled using fuzzy positive ideal solution (PIS)
and negative ideal solution (NIS) [52], [53]. The
neutrosophic environment proposed to overcome the
personnel selection problems of uncertainty and incon-
sistency [54], [55]. The hierarchical fuzzy TOPSIS is
used as a recent method for recommending the most
appropriate business process [56]. The AHP combined
with TOPSIS are used to select the ideal maintenance
strategy [57].

• Marketing: the evaluation of new products, service
quality of services, and tourismmanagement, to enhance
hotel services by the use of fuzzy methods with
AHP [58]–[60].

The traditional personnel selection process steps are
divided into two phases. First a group of expertise makes
the appraisal methods to evaluate the applicants. The reason
to take more than one decision makers are to overcome any
personnel biasness perspectives for the committee, and to
focus on the success of enterprise factors. Second a final deci-
sion is proposed based on the committee judgments. Unfortu-
nately, the conditions of uncertainty and inconsistency cannot

be detected by human, due to decision maker’s confusion or
less experience.

Mind map is modeled to show the possible methods either
traditional or non-traditional that can be used to handle
personnel selection problems as mentioned in Fig.2. For
the sake of uncertainty and inconsistency, we combine the
neutrosophicAHPwith TOPSIS techniques in order to handle
the personnel selection environment problems as mentioned
in Fig.3, to achieve ideal solutions for such a successful
organization. The proposed methods steps are mentioned
in Fig.4. The conceptual flow is presented in three stages.
The first stage is to determine the objectives, criterions
and alternatives are considered to insure that the candi-
date applicant will fulfill the enterprise needs. The second
stage depicts the neutrosophic scales methods to evaluate
the surrounding criteria of candidate’s applicants. The third
Stage is TOPSIS methods have been applied to choose the
ideal candidates by establishing positive and negative areas
of candidates. Finally, choose the ideal solution by using
the relative closeness centric methods. For more details
revise [61].

The explanation for the conceptual steps of combining the
neutrosophic AHP with TOPSIS techniques are mentioned in
the next steps:
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FIGURE 4. The conceptual view steps for the proposed method.

Step 1: Determine objectives and criteria by the model
of AHP.

TABLE 1. The triangular neutrosophic scale of AHP.

Step 2: Structure a committee from expertise decision
makers to assign their judgments about the proposed alterna-
tives and criteria. Aggregate the committee judgments using
neutrosophic scales mentioned in table 1. The criteria is
represented in comparison matrix, in the case of criteria 1 is
strongly significant than criteria 2, the neutrosophic scale
value is written as 〈4, 5, 6〉 .Conversely, the neutrosophic
scale of criteria 2 to criteria 1 is the inverse of 〈4, 5, 6〉 which

is denoted as
〈
1
4 ,

1
5 , 1

6

〉
.In addition, the neutrosophic scale

value will be attached with sureness degree for truth, inde-
terminacy, and false degree that represents decision maker’s
perspectives. The sureness degree will be used further in
the research computations. Giving an example, the preceding
decision maker’s perspective presents the structure of neutro-
sophic triangular as 〈〈4, 5, 6〉; 〈0.80, 0.15, 0.20〉. The neutro-
sophic triangular scale values are represented as〈4, 5, 6〉 ,
respectively to lower, median, and upper values. The sureness
degree of decision maker point of view is mentioned as
〈0.80, 0.15 , 0.20〉. In addition, the sureness degree of truth,
indeterminacy, and falsity are regarded to be independent.

Step 3: Convert the neutrosophic scales 1 to crisp values
by apply score functions of aij as mentioned:

s(aij) =

∣∣∣∣lrij × mrij × urij )Trij + Irij + Frij9

∣∣∣∣ (1)

where l, m, u denotes lower, median, upper of the scale
neutrosophic numbers, T, I, F are the truth-membership, inde-
terminacy, and falsity membership functions respectively of
triangular neutrosophic number.
After the conversion of neutrosophic scales into crisp values,
the perspectives of decision makers should be aggregated.
The aggregation should reflect the real preferences within
relations as mentioned:

xij =

z∑
z=1

(azij)

z
(2)

The aggregated pair-wise comparison matrix represents
the estimation between preferences has been formed as
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mentioned:

A =

 x11 x12 · · · xij
...

...
...

xi1 xi2 · · · xji

 (3)

Step 4: Check consistency using the following equation:

CR =
CI
RI

(4)

where CR is consistency rate, CI is consistency Index, and RI
is a random consistency index. The detailed steps to measure
consistency are mentioned in [61].

Step 5: Tabulate the weight for each criteria with respect
to decision maker’s judgments.

1) Calculate the total of row averages:

wi =

n∑
j=1

(xij)

n
; i = 1, 2, 3, . . . .m; j = 1, 2, 3, . . . , n

(5)

2) Normalize wi using the following equation:

wmi =
wi
m∑
i=1

wi

; i = 1, 2, 3, . . . ,m. (6)

Step 6: In order to achieve efficient personnel selection
apply TOPSIS methods:
• Step 6.1: Create judgments of decision matrix according
to perspectives and expertise of decision makers. Aggre-
gate the decision makers judgments matrices in the case
of the existence of more than one decision maker:

• Step 6.2:Convert the aggregated decision matrix to crisp
values using equation (1). In case of multiple decision
makers, the aggregation of pairwise comparison matrix
is calculated using equation (2) and formed in form (3).

• Step 6.3: Afterwards the de-neutrosophic process,
the crisp value of xij should be normalized which are in
the form of decision matrix by applying the mentioned
equation:

rij =
xij√
m∑
i−1

x2ij

; i = 1, 2, 3 . . .m; j = 1, 2, 3 . . . n (7)

• Step 6.4: Multiply the weights wjof criteria produced
from neutrosophic AHP by the normalized decision
matrix to produce the weighted matrix as mentioned:

zij = wj × rij (8)

• Step 6.5: Compute the positive and negative areas by the
use equation (9), and (10):

A+ =
{

< max(zij|i = 1, 2, . . . ,m)|j ∈ j+ >,

< min(zij|i = 1, 2, . . . ,m)|j ∈ j− >

}
(9)

A− =
{

< min(zij|i = 1, 2, . . . ,m)|j ∈ j+ >,

< max(zij|i = 1, 2, . . . ,m)|j ∈ j− >

}
(10)

Such that j+ refers to profitable impact while j−indicates non
profitable impact.
• Step 6.6: Compute the euclidean distance between
positive (d+i ) and negative ideal solution (d−i ) to the
proposed alternatives as mentioned:

d+i =

√√√√ n∑
i=1

(zij − z
+

j )
2, i = 1, 2, . . . ,m (11)

d−i =

√√√√ n∑
i=1

(zij − z
−

j )
2, i = 1, 2, . . . ,m (12)

• Step 6.7: Compute the relative closeness to choose the
most appropriate and efficient decision by ranking the
alternatives:

ci =
d−i

d+i + d
−

i

; 1 = 1, 2, . . . ,m (13)

Step 7: Based on alternative’s rank, choose the best decision.

IV. AN EMPIRICAL APPLICATION
We illustrate an empirical application to present the proposed
methodology in real world problems. The case study is
applied on smart village Cairo Egypt. The customer service
department need to hire new manager, because of the
current manager is transferred to another branch outside the
country. The judgments committee consists of four deci-
sion makers, they recommends five applicants to be the
ideal from all the available applicants. After the meeting
for decision makers, the general criteria’s for selections are
mentioned:
• C1: Professional Knowledge Edge and Expertise.
• C2: Previous Professional Career.
• C3: Personnelality and Potential

The proposedmodel neutrosophic AHPwith TOPSIS applied
on case study as follows in the next steps
Step1: In this phase, there are four experts decisionmakers:
1) Chief executive.
2) chief operating officer.
3) Non-executive director.
4) Social entrepreneur.

The vital criteria’s according to decision judgments and appli-
cants are represented in Fig.5.

FIGURE 5. The AHP structure for the proposed criteria and alternatives.

Step 2: The proposed case study includes four experts;
each decision maker is representing his/her judgment
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TABLE 2. The aggregated perspectives of decision makers for criteria.

TABLE 3. The crisp comparison matrix of criteria according to objective with respect to manager’s opinion.

TABLE 4. The wieghts of criteria.

TABLE 5. Decision matrix for judgments committee with respect to criteria and alternative.

using table1. In order to regard a final judgment, a session
has been performed with decision makers. The average
preferences have been illustrated in table 2, where c1, c2,

and c3 corresponds to, professional knowledge edge and
expertise, previous professional career, and personality and
potential
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TABLE 6. De-neutrosophic crisp values for decision maker’s judgments committee.

TABLE 7. The normalization of decision matrix.

Step 3: The perspectives of decision makers have been
converted to crisp values by applying score value of equa-
tion (1), the results is presented in table 3.
Step 4: The consistency rate is computed. The consistency

rate is accepted which is 1%.
Step 5: The weights of criteria are computed, and repre-

sented in table 4 and modeled in Fig.6.

FIGURE 6. The pie chart of personnel selection criteria.

Step 6: The judgments for decision committee for the
proposed alternatives and criteria presented in table 5 for

more details in steps. Then use equation 1 to change neutro-
sophic scales into crisp values as shown in table 6.
• The aggregated results for committee judgments are
calculated using equation (2). The equation (7), obtains
the normalization of alternatives and criteria, and the
normalization results are represented in table 7.

• Multiply the weights wj of criteria from table 4 by the
normalized decisionmatrix in table 7,in order to produce
theweightedmatrix by the use of equation (8) and results
mentioned in table 8.
– Compute the positive and negative areas by the use

of equation (9), and (10)

A+ = {0.073, 0.039, 0.032}.

A− = {0.039, 0.028, 0.021}.

• Compute the Euclidean distance between positive (d+i )
and negative ideal solution (d−i as mentioned in equa-
tion (11), and (12). After that, compute the relative
closeness to choose the most appropriate and efficient
decision by ranking the alternatives using equation (13).
The results of d+i ,d

−

i ,ci, and final ranking are presented
in table 9.

Step 7: The applicants are sorted by the rank of neutrosophic
AHP and TOPSIS methods. The applicant four is considered
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TABLE 8. The wieghted decision matrix.

TABLE 9. Ranking of applicants.

to be the best one to be hired to smart village. The A4 appli-
cant meets the judgments of decision makers committee and
criteria to achieve the success of the smart village in Cairo
Egypt. However A1 is considered to be the worst choice that
cannot meet the specified judgments and criteria to meet the
enterprise goals.

FIGURE 7. The relative closeness for applicants.

• The applicants ranking are modeled to show the results
of relative closeness between applicants as mentioned
in Fig.7. In addition, the sorting of alternatives with
respect to ranking results shown that applicant 4 should
be hired to the proper position. The proposed case study
shows that human resources can be improved by the use
of non-traditional methods of neutrosophic AHP with
TOPSIS to achieve the best alternatives in personnel
selection problem.

V. CONCLUSION AND FUTURE WORK
Personnel selection is a vital problem that impact on the
quality of management and enterprises. Many studies try to
aid decision makers to improve the decision making. But
the use of non-traditional methods to assist decision makers
to choose the right person in the right position becomes an

obligatory condition. So the weight of our study evolved to
overcome the inconsistency and uncertainty conditions that
found in MCDM environment. The proposed study integrates
neutrosophic AHP with TOPSIS methods to improve the
decision committee judgments by considering the constraint
of the environmental criterions. The case study is applied
on smart village Cairo, Egypt, shows the efficiency for the
proposed method and provides final decision to hire appli-
cant four to be in the right position for achieving success
organization.

Since, the personnel selection problem is an important
issue for gaining true achievements in enterprises, the future
work will focus on enhancing of personnel selection criteria.
The enhancements are applied by the use of evolutionary
algorithms to choose the most effective criteria. Another
important discipline is to improve the TOPSIS methods.
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Abstract: This research introduces a neutrosophic forecasting approach based on neutrosophic time 

series (NTS). Historical data can be transformed into neutrosophic time series data to determine 

their truth, indeterminacy and falsity functions. The basis for the neutrosophication process is the 

score and accuracy functions of historical data. In addition, neutrosophic logical relationship groups 

(NLRGs) are determined and a deneutrosophication method for NTS is presented. The objective of 

this research is to suggest an idea of first-and high-order NTS. By comparing our approach with 

other approaches, we conclude that the suggested approach of forecasting gets better results 

compared to the other existing approaches of fuzzy, intuitionistic fuzzy, and neutrosophic time 

series.

Keywords: neutrosophic time series; triangular neutrosophic number; neutrosophic logical 

relationship; neutrosophic logical relationship groups 

1. Introduction

There are different methods in the literature on fuzzy and intuitionistic fuzzy time series 

methods to forecast future values. The major difference between traditional and fuzzy time series is 

that the values of traditional time series are presented in numbers, whereas the values in fuzzy time 

series are fuzzy sets or linguistic values with real meanings. In intuitionistic fuzzy time series, the 

values are intuitionistic fuzzy sets or linguistic values. The first method in literature for forecasting 

future values based on fuzzy time series was introduced by Song and Chissom [1]. They also applied 

time-variant and time-invariant models for forecasting the enrollment data at the University of 

Alabama [1,2]. The identification of fuzzy relationship and the defuzzification process in both models 

were the main steps for calculating forecasted values. In time variant fuzzy time series it is proposed 

that autocorrelation is dependent due to the time, while in time invariant it is proposed that 

autocorrelation is independent due to the time.  

The term “fuzzy relationship” means a collection of fuzzy sets which are caused only by other 

sets. In addition, the “defuzzification” process means converting the fuzzy values into crisp ones. 

Furthermore, a straightforward approach for time series forecasting was presented by Chen [3] by 

using uncomplicated arithmetic computations. To enhance the accuracy of forecasted outputs, some 

papers suggested various methods on fuzzy time series (FTS) forecasting [4–7]. A high-order FTS 

method was also presented by Chen [8] and Singh [9], and a method of bivariate fuzzy time series 

analysis for the forecasting of a stock index was introduced by Hsu et al. [10]. Furthermore, a 
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framework developed for evaluation and forecasting based on the fuzzy NEAT F-PROMETHEE 

method was presented by Ziemba and Becker [11] for taking into account the uncertainty of input 

data, which is particularly burdened with the forecast values of the information and communication 

technologies development indicators. 

The concept of fuzzy set was introduced by Zadeh [12], and it was generalized by Atanassov 

[13] to intuitionistic fuzzy set (IFS) to make it more suitable to handle ambiguity. The IFS considers 

both the membership (truth) and non-membership (falsity) degrees. However, the fuzzy set considers 

only the membership degree. Recently, the IFS was used for handling the fuzzy time series 

forecasting by Gangwar and Kumar [14] and Wang et al. [15]. In addition, the notion of intuitionistic 

fuzzy time series (IFTS)was employed in forecasting, as in [16–18]. Several researchers 

[19,20]proposed forecasting models using a genetic algorithm, or suggested a method of forecasting 

based on aggregated FTS and particle swarm optimization [21]. A novel method of forecasting based 

on hesitant fuzzy set was proposed by Bisht and Kumar [22], and fuzzy descriptor models for 

earthquakes was introduced by Bahrami and Shafiee [23]. A heuristic adaptive-order IFTS forecasting 

model was presented by Wang et al. [24]. Subsequently, Abhishekh et al. [25,26] presented a weighted 

type 2 FTS and score function-based IFTS forecasting approach. Moreover, Abhishekh and Kumar 

[27] suggested an approach for forecasting rice production in the area of FTS. 

Since the accuracy rates of forecasting in the previous approaches are not good enough in the 

field of fuzzy and intuitionistic fuzzy time series, we introduce the notion of first- and high-order 

neutrosophic time series data for this research. Additionally, with the growing need to represent 

vague and random information, neutrosophic set (NS) theory [28] is an effective extension of fuzzy 

and intuitionistic fuzzy set theories. Smarandache [29] suggested NSs, which consist of truth 

membership function, indeterminacy membership function, and falsity membership function, as a 

better representation of reality. Neutrosophic sets received wide attention, as well as benefitting from 

various practical applications in diverse fields [30–39]. However, there are only two recent research 

papers published in the forecasting field (e.g., for stock market analysis). Guan et al. [40] proposed a 

new forecasting model based on multi-valued neutrosophic sets and two-factor third-order fuzzy 

logical relationships to forecast the stock market. Subsequently, Guan et al. [41] proposed a new 

forecasting method based on high-order fluctuation trends and information entropy. 

The aim of this research is to enhance accuracy rates of forecasting in the area of fuzzy, 

intuitionistic fuzzy, and neutrosophic time series (NTS). In this research, we present the notion of 

forecasting based on first-and high-order NTS data by determining the suitable length of 

neutrosophic numbers that influence on expected values. We also suggest a neutrosophication of 

historical time series data, based on the biggest score function (i.e., the maximum value of score 

function), and define neutrosophic logical relationship groups (NLRGs) for obtaining forecasted 

outputs. The suggested approach of neutrosophic time series forecasting has been validated and 

compared with different existing models for showing its superiority.  

The remaining parts of this research are organized as follows. The essential concepts of 

neutrosophic set and neutrosophic time series are briefly presented in Section 2. Section3presents the 

proposed neutrosophic time series method for the forecasting process. Section 4validates the 

proposed method by applying it to two numerical examples for showing its effectiveness; a 

comparison with other existing methods is presented. Finally, Section 5 concludes the research and 

determines future trends. 

2. Some Basic Definitions of Neutrosophic Set and Neutrosophic Time Series

Neutrosophic time series is a concept for solving forecasting problems using neutrosophic 

concepts. In this section, we present the basic concepts of the neutrosophic set and of the neutrosophic 

time series (NTS). 

Definition 1. Let X be a finite universal set. A neutrosophic set N in X is an object having the following form: 

N = �〈�,��(�), ��(�), ��(�)〉|� ∈ ��, where ��(�): � → [�, �] determines the degree of truth membership

function, ��(�): � → [�, �]  determines the degree of indeterminacy, and function ��(�): � → [�, �] 
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determines the degree of non-membership or falsity function. For every � ∈ �, �� ≤ ��(�) + ��(�) +

��(�) ≤ ��  [29]. 

Definition 2. A single valued triangular neutrosophic number �� = 〈(��, ��, ��); ��� , ��� , ��� 〉 is a special 

neutrosophic set on the real number set R whose truth (membership), indeterminacy, and falsity (non-

membership) degrees are as follows [29]: 

 ���(�) = 

⎩
⎪
⎨

⎪
⎧ ��� �

� − ��

�� − ��
�  (�� ≤ � ≤ ��  ) 

���       (� = ��  )         

��� �
�� − �

�� − ��
�   (�� < � ≤ ��) 

 �  ���������, 

(1) 

���(�)

=  

⎩
⎪⎪
⎨

⎪⎪
⎧

��� − � + ���(� − ��)�

(�� − ��)
 (�� ≤ � ≤ ��  ) 

���    ( � = ��  )

(� − �� + ���(�� − �))

(�� − ��)
  (�� < � ≤ ��) 

 1  otherwise, 

(2) 

 ���(x) = 

⎩
⎪⎪
⎨

⎪⎪
⎧

��� − � + � ��(� − ��)�

(�� − ��)
(�� ≤ � ≤ ��  ) 

���  (� = ��  )          
(� − �� + ��� (�� − �))

(�� − ��)
(�� < � ≤ ��) 

 1       otherwise, 

(3) 

where 0 ≤ T�� ≤  1, 0 ≤ ��� ≤  1, 0 ≤ ��� ≤  1, 0 ≤ ���+���+ ��� ≤  3, ��, ��, �� ∈ �, and being the lower,

median, and upper values of the triangular neutrosophic number. 

Definition 3. Let X and Y be two finite universal sets. A neutrosophic relation R from X to Y is a neutrosophic 

set in the direct product space X to Y: 

R = {〈(�, �),��(�, �), ��(�, �), ��(�)〉|(�, �) ∈ � × �} 

where 0� ≤ ��(�, �) + ��(�, �) + ��(�, �) ≤ 3� , ∀(�, �) ∈ � × �  for  ��(�, �) → [0,1] ,  ��(�, �) → [0,1], 

and  ��(�, �) → [0,1]: � × � → [0,1]. 

Definition 4. Let �(�)(� = �, �, … , ), a subset of �, be the universe of discourse on which neutrosophic sets 

��(�) = 〈��(�, �), ��(�, �), ��(�)〉(� = �, �, … ) are defined. �(�) = {��(�),��(�), … } is a collection of ��(�) 

and it defines a neutrosophic time series on �(�)(� = �, �, �, … ). 

Definition 5. If there exists a neutrosophic relationship �(� − �, �), such that �(�) = �(� − �) × �(� − �, �), 

where ‘×’ represents an operator, then  �(�) is said to be caused by  �(� − �). The relationship between �(�) 

and �(� − �) is symbolized by �(� − �) → �(�). 

Definition 6. Let �(�)  caused by �(� − �) only and symbolized by  �(� − �) → �(�) ; consequently, a 

neutrosophic relationship exists between  �(�) and �(� − �) that is denoted as �(�) = �(� − �) × �(� − �, �), 
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since  � is a first-order model of �(�). The �(�) is a time-invariant neutrosophic time series if �(� − �, �) is 

independent of time  � , �(�, � − �) = �(� − �, � − �) ∀  � . Otherwise, �(�)  is called a time-variant 

neutrosophic time series. 

Definition 7. Let  �(� − �) = �� � and (�) = �� �; a neutrosophic logical relationship (NLR) can be defined as 

�� � → �� � , where �� � , �� �  are the current and next state of NLR. Since �(�) is occurred by more than one 

neutrosophic set �(� − �) , �(� − � + �), … �(� − �),  then the neutrosophic relationship is represented by 

�� ��, �� ��, … , �� �� → �� �,  where �(� − �) = ���� ,  �(� − � + �) = �� ��.  The relationship is called high-order 

neutrosophic time series model. 

3. Neutrosophic Time Series Forecasting Algorithm

Because a neutrosophic set plays a significant role in decision-making and data analysis 

problems by handling vague, inconsistent, and incomplete information [30–39], we propose in this 

section an enhanced approach of forecasting using the concept of neutrosophic time series (NTS). 

The stepwise method of the suggested algorithm of neutrosophic time series forecasting is 

dependent on historical time series data. 

3.1. The Proposed Method of Forecasting Based on First-Order NTS Data 

Step 1: By depending on the range of the existing data set, determine the universe of discourse 

U as follows: 

- Select the largest ��  and the smallest �� from all available data ��, then 

U = [�� − ��,  �� + ��] (4) 

where �� and �� are two proper positive numbers assigned by experts in the problem domain. So, 

we can define  ��,  �� as the values by which the range of the universe of discourse is less than the 

specified value of ��  for the first (i. e. , �� ) or greater than the specified value of  ��  for the latter 

(i.e., ��). 

Step 2: Create a partition of the universe of discourse, to � triangular neutrosophic numbers as 

follows: 

- Decide the suitable length (��) of available time series data: 

o Among the value ����, �� , calculate all absolute differences and take the average of these

differences.

o Consider half the average as the initial length.

o According to the obtained result, use the base mapping table [42] to determine the base for

the length of intervals.

o Round the result to determine the appropriate length of neutrosophic numbers.

o For example: if we have these time series data 30,50,80,120,100,70 , then the absolute

differences will be 20,30,40,20,30, and the average of these values = 28. Then, half of the

average will be 14 and this is the initial value of length. By using the base mapping table

[42], the base for length =  10 because 14 locates in the range [11 − 100] and by rounding

the length 14 by the base ten, the result will equal 10. Here, the appropriate length of

neutrosophic numbers equals 10.

- Compute the number of triangular neutrosophic numbers (�) as follows: 

� =
�� + �� − �� + ��

��
 (5)

Step 3: According to the numbers of triangular neutrosophic numbers on the universe of 

discourse and determined length (��), begin to construct the triangular neutrosophic numbers. The 

triangular neutrosophic numbers are ���, ���, … , ���. 
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As we illustrated in Definition 2, each triangular neutrosophic number consists of two parts 

which are the value of the triangular neutrosophic number (lower, median, upper) and the degree of 

confirmation (truth/membership degree �, indeterminacy degree  �, falsity/non-membership degree 

 �). The initial value of  �, �, � must be determined by experts according to the existing problem. 

Step 4: Make a neutrosophication process of the existing data: 

For �, � = 1,2, … , �  (the end of data): 

Rule 1: Use this equation to calculate the score degree, and if the score degree of two 

neutrosophic numbers is not equal for any data, then choose the maximum value of the score degree: 

�����
(��) = 2 + ����

(��) − ����
(��) − �(��) (6) 

Then, select  �����
= ���  ( �����

,  �����
, … ,  �����

) for ��, � = 1,2 … . , � , 1≤ � ≤ �,  and assign the 

neutrosophic number ���  to ��. 

Rule 2: If two neutrosophic numbers have the same score degree, then use the following equation 

to calculate the score degree, and select the minimum accuracy degree: 

�����
(��) = 2 + ����

(��) − ����
(��) + �(��) (7) 

Furthermore,  �����
= ���  (  �����

,  �����
, … ,  �����

) for ��, � = 1,2 … . , � , 1 ≤ � ≤ � ; assign the 

neutrosophic number ���  to ��. 

Step 5: Construct the neutrosophic logical relationships (NLRs) as follows: 

If ��� ,���  are the neutrosophication values of year  �and year � + 1, respectively, then the NLR is 

symbolized as  ��� → ���. 

Step 6: Based on the NLR, begin to establish the neutrosophic logical relationship groups 

(NLRGs). 

Step 7: Calculate the forecasted values as follows: 

Rule 1: If the neutrosophication value of �����  is ���  and it is not caused by any other 

neutrosophication values and, by looking at the NLRG of this value, you cannot find the value which 

it depends on (i.e., ≠→ ���  ), then the forecasted value in this case will equal—(i.e., leave it empty). 

The ≠ symbol means no value. 

Rule 2: If the neutrosophication value of �����  is ��� and it is caused by ��� (��� → ���), then look 

at NLRG of ���, and 

- If NLRG of ��� is empty (i.e.,  ��� → ∅, or ��� → ���), then the forecasted value is the middle value of 

���. 

- If NLRG of ��� is one-to-one (i.e.,  ��� → ���), then the forecasted value is the middle value of ���. 

- If NLRG of ��� is one-to-many (i.e., ��� → ����, ����, … , ����), then the forecasted value is the average 

of the middle values of ����, ����, … , ����. 

Step 8: Use the following equations to calculate the forecasting error: 

Root mean square error (RMSE) = �
∑ (�����������������)��

���

�
, (8) 

Forecasting error = 
| ���������������|

������
× 100, (9) 

Average forecasting error (AFE) (%) = 
��� �� ����������� �����

������ �� ������
× 100. (10) 

3.2. The Proposed Method of Forecasting Based on High-Order NTS Data 

We can also apply the proposed method of forecasting based on high-order NTS data: 

- All steps from 1 to 4 are the same as previously, but in step 5 we begin to construct the 

neutrosophic logical relationships (NLRs) of the �th order NTS, where � ≥ 2. 

- Based on the NLR of the �th order, NTS begin to establish the neutrosophic logical relationship 

groups (NLRGs). 

- Calculate the forecasted values as follows: 
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o Rule 1: If the neutrosophication values of �����  is ���  and it is not caused by any other

neutrosophication values and, by looking at the NLRG of this value, you cannot find the

values which it depends on (i.e., ≠→ ���), then the forecasted value in this case will equal—

(i.e., leave it empty). The ≠ symbol means no value.

o Rule 2: If the neutrosophication value of �����  is ��� and it is caused by ����, ���(���), …, ����

(i.e., ����, ���(���), …, ���� → ���), then look at the NLRG of ����, ���(���), …, ����, and

 If ����, ���(���), …, ���� → ∅, then the forecasted value at this year is the average of the middle

value of ����, ���(���), …, ����. 

 If ����, ���(���), …, ���� → ���, then the forecasted value at this year is the middle value of ���.

 If ����, ���(���), …, ���� → ���, ����, ����, then the forecasted value at this year is the average of

the middle value of ���, ����, ����. 

4. Numerical Examples

In this section, we solve two numerical examples and compare outputs with other existing 

methods for verifying the applicability and superiority of the suggested method. 

4.1. Numerical Example 1 

In this example, the suggested approach is implemented on the benchmarking time series data 

of student enrollments at the University of Alabama from year 1971 to 1992 adopted from [26]. The 

steps are as follows: 

Step 1: Let the two proper positive numbers �� and �� be 5 and 13, determined by the expert. 

By selecting the largest and the smallest observation from all available data which are presented in 

Table 1, then ��  = 19,337 and �� = 13,055, respectively. Consequently, the universe of discourse U = 

[13,055 − 5, 19,337 + 13]  = [13,050, 19,350]. 

Step 2: Create a partition of the universe of discourse, to � triangular neutrosophic numbers, as 

follows: 

- Determine the suitable length (��) of available time series data: 

o From Table 1, the average of absolute differences = 510.3.

o The initial length =
���.�

�
= 255.15. 

o By using the base mapping table [42], the base for length of intervals = 100, since it is

located in the range [101,1000].

o By rounding 255.15 with regard to base 100, then the appropriate length of neutrosophic

numbers = 300.

- Compute the number of triangular neutrosophic numbers (�) as follows: 

� =
19350 − 13050

300
= 21. 

Then, we can partition � into 21 triangular neutrosophic numbers with length =  300. 

Step 3: According to the number of triangular neutrosophic numbers on the universe of 

discourse and determined length (��), begin to construct the triangular neutrosophic numbers as 

follows: 

��� = 〈13050,13350,13650; 0.90,0.10,0.10〉, 

��� = 〈13350,13650,13950; 0.80,0.20,0.10〉, 

��� = 〈13650,13950,14250; 0.90,0.20,0.10〉, 

��� = 〈13950,14250,14550; 0.85,0.15,0.10〉, 

��� = 〈14250,14550,14850; 0.75,0.10,0.30〉, 

��� = 〈14550,14850,15150; 0.90,0.10,0.10〉, 
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��� = 〈14850,15150,15450; 0.60,0.30,0.40〉, 

��� = 〈15150,15450,15750; 0.80,0.20,0.20〉, 

��� = 〈15450,15750,16050; 0.70,0.20,0.30〉,

���� =  〈15750,16050,16350; 0.90,0.10,0.30〉, 

���� = 〈16050,16350,16650; 0.85,0.10,0.15〉, 

���� = 〈16350,16650,16950; 0.80,0.20,0.20〉, 

���� = 〈16650,16950,17250; 0.90,0.10,0.30〉, 

���� = 〈16950,17250,17550; 0.90,0.10,0.30〉, 

���� = 〈17250,17550,17850; 0.75,0.10,0.30〉, 

���� = 〈17550,17850,18150; 0.65,0.20,0.35〉, 

���� = 〈17850,18150,18450; 0.90,0.10,0.10〉, 

���� = 〈18150,18450,18750; 0.90,0.10,0.10〉, 

���� = 〈18450,18750,19050; 0.60,0.20,0.30〉, 

���� = 〈18750,19050,19350; 0.90,0.10,0.10〉, 

���� = 〈19050,19350,19350; 0.90,0.10,0.10〉. 

Step 4: Make a neutrosophication of the available time series data: 

The first value of actual enrollments is 13,055 which is located only in the range of triangular 

neutrosophic number ���, then the neutrosophication value of 13,055 is ��� as in Table 1. 
Also, the second value of actual enrollments (i.e., 13,563) locates in the range of triangular 

neutrosophic numbers ��� = 〈13050,13350,13650; 0.90,0.10,0.10〉  and ��� =

〈13350,13650,13950; 0.80,0.20,0.10〉. 

Then, we must select the highest score degree of 13,563 as follows: 

The membership, indeterminacy, and non-membership degrees of this value are calculated by 

using Equations (1)–(3) as follows: 

����
(13563)  =  0.261, I���

(13563) = 0.739, F���
(13563) = 0.739. 

We must also calculate membership, indeterminacy, and non-membership degrees of 13,563 

according to ��� = 〈13350,13650,13950; 0.80,0.20,0.10〉 as follows: 

����
(13563)   =  0.568, I���

(13563) =0.432, F���
(13563) = 0.361. 

In this case, we must calculate the score degree of 13563 in both N��  and N��  and select the 

maximum value. 

�����
(13563) = 2 + 0.262 − 0.739 − 0.739 = 0.783, 

and �����
(13563) = 2 + 0.568 − 0.432 − 0.361 = 1.775. 

Since the score degree of 13563 in ��� is greater than ���, then the neutrosophication value of 

13563 is ���, as in Table 1. 

We will apply the previous steps on the remaining data as follows: 

The value 13867 locates in the range of ��� = 〈13350,13650,13950; 0.80,0.20,0.10〉 , and  ��� =

〈13650,13950,14250; 0.90,0.20,0.10〉. 

Then 

����
(13867) = 0.221, ����

(13867) = 0.156, ����
(13867) = 0.751. 

����
(13867) =  0.651, ����

(13867) =  0.421, ����
(13867) = 0.349, 

�����
(13867) = 2 + 0.221 − 0.156 − 0.751 = 1.314, 

and �����
(13867) = 2 + 0.651 − 0.421 − 0.349 = 1.881. 

So, the neutrosophication value of 13867 is ���. 

Also, the value of 14,696 locates in the range of ��� = 〈14250,14550,14850; 0.75,0.10,0.30〉,  ��� =

〈14550,14850,15150; 0.90,0.10,0.10〉, then 
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����
(14696) = 0.385, ����

(14696) = 0.538, ����
(14696) = 0.641. 

����
(14696) =  0.438, ����

(14696) = 0.562, ����
(14696) = 0.562. 

�����
(14696) = 2 + 0.385 − 0.538 − 0.641 = 1.206, 

and �����
(14696) = 2 + 0.438 − 0.562 − 0.562 = 1.314. 

So, the neutrosophication value of 14,696 is ���. 

The value 15,460 locates in the range of ��� = 〈15150,15450,15750; 0.80,0.20,0.20〉,  and ��� =

〈15450,15750,16050; 0.70,0.20,0.30〉, then 

����
(15460) = 0.773, ����

(15460) = 0.226, ����
(15460) = 0.226. 

����
(15460) = 0.023, ����

(15460) = 0.973, ����
(15460) = 0.973. 

�����
(15460) = 2 + 0.773 − 0.226 − 0.226 = 2.321, 

and �����
(15460) = 2 + 0.023 − 0.973 − 0.976 = 0.074. 

So, the neutrosophication value of 15,460 is ���. 

The value of 15,311 locates in the range of ��� = 〈14850,15150,15450; 0.60,0.30,0.40〉 and ��� =

〈15150,15450,15750; 0.80,0.20,0.20〉, then 

����
(15311) = 0.278, ����

(15311) = 0.675, ����
(15311) = 0.722. 

�����
(15311) = 2 + 0.278 − 0.675 − 0.722 =  0.881. 

����
(15311) = 0.429, ����

(15311) = 0.570, ����
(15311) = 0.570. 

�����
(15311) = 2 + 0.429 − 0.570 − 0.570 =  1.289. 

So, the neutrosophication value of 15,311 is ���. 

The value of 15,603 locates in the range of ��� = 〈15150,15450,15750; 0.80,0.20,0.20〉 and ��� =

〈15450,15750,16050; 0.70,0.20,0.30〉, then 

����
(15603) = 0.392, ����

(15603) = 0.608, ����
(15603) = 0.608. 

�����
(15603) = 2 + 0.392 − 0.608 − 0.608 =  1.176. 

����
(15603) = 0.357, ����

(15603) = 0.592, ����
(15603) = 0.643. 

�����
(15603) = 2 + 0.357 − 0.592 − 0.643 =  1.122. 

So, the neutrosophication value of 15,603 is ���. 

The value of 15,861 locates in the range of ��� = 〈15450,15750,16050; 0.70,0.20,0.30〉, and ���� =

〈15750,16050,16350; 0.90,0.10,0.30〉, then 

����
(15861) = 0.441, ����

(15861) = 0.496, ����
(15861) = 0.559. 

�����
(15861) = 2 + 0.441 − 0.496 − 0.559 =  1.386. 

�����
(15861) = 0.333, �����

(15861) = 0.667, �����
(15861) = 0.741. 

������
(15861) = 2 + 0.333 − 0.667 − 0.741 =  0.925. 

So, the neutrosophication value of 15861 is ���. 

The value of 16,807 locates in the range of ���� = 〈16350,16650,16950; 0.80,0.20,0.20〉,  ���� =

〈16650,16950,17250; 0.90,0.10,0.30〉 then, 

�����
(16807) = 0.381, �����

(16807) = 0.618, �����
(16807) = 0.618. 

������
(16807) = 2 + 0.381 − 0.618 − 0.618 =  1.145. 

�����
(16807) = 0.471, �����

(16807) = 0.529,  �����
(16807) = 0.634. 

������
(16807) = 2 + 0.471 − 0.529 − 0.634 =  1.308. 

Florentin Smarandache (ed.) Collected Papers, VI

745



So, the neutrosophication value of 16807 is ����. 

The value of 16919 locates in the range of ���� = 〈16350,16650,16950; 0.80,0.20,0.20〉,  ���� =

〈16650,16950,17250; 0.90,0.10,0.30〉, then  

�����
(16919) = 0.063, �����

(16919) = 0.917, �����
(16919) = 0.917.

������
(16919) = 2 + 0.063 − 0.917 − 0.917 =  0.229. 

�����
(16919) = 0.807, �����

(16919) = 0.193, �����
(16919) = 0.372. 

������
(16919) = 2 + 0.807 − 0.193 − 0.372 =  2.24. 

So, the neutrosophication value of 16919 is ����. 

The value of 16388 locates in the range of ���� = 〈16050,16350,16650; 0.85,0.10,0.15〉,  ���� =

〈16350,16650,16950; 0.80,0.20,0.20〉, then 

�����
(16388) = 0.742, �����

(16388) = 0.214, �����
(16388) = 0.257. 

������
(16388) = 2 + 0.742 − 0.214 − 0.257  =  2.271. 

�����
(16388) = 0.101, �����

(16388) = 0.898, �����
(16388) = 0.898. 

������
(16388) = 2 + 0.101 − 0.898 − 0.898 = 0.305. 

So, the neutrosophication value of 16388 is ����. 

The value of 15433 locates in the range of ��� = 〈14850,15150,15450; 0.60,0.30,0.40〉, and ��� =

〈15150,15450,15750; 0.80,0.20,0.20〉, then  

����
(15433) = 0.034, ����

(15433) = 0.960, ����
(15433) = 0.966.

�����
(15433) = 2 + 0.034 − 0.960 − 0.966 = 0.108. 

����
(15433) = 0.754, ����

(15433) = 0.245, ����
(15433) = 0.245. 

�����
(15433) = 2 + 0.754 − 0.245 − 0.245 = 2.264. 

So, the neutrosophication value of 15433 is ���. 

The value of 15497 locates in the range of ��� = 〈15150,15450,15750; 0.80,0.20,0.20〉 and ��� =

〈15450,15750,16050; 0.70,0.20,0.30〉 then, 

����
(15497) = 0.674, ����

(15497) = 0.325, ����
(15497) = 0.325. 

�����
(15497) = 2.024. 

Also, 

����
(15497) =0.109,����

(15497) = 0.874, ����
(15497) = 0.890. 

�����
(15497) = 0.345. 

So, the neutrosophication value of 15,433 is ���. 

The value of 15,145 locates in the range of ��� = 〈14550,14850,15150; 0.90,0.10,0.10〉, and ��� =

〈14850,15150,15450; 0.60,0.30,0.40〉, then 

����
(15145) = 0.015, ����

(15145) = 0.985, ����
(15145) = 0.985. 

�����
(15145) = 0.045. 

Also, 

����
(15145) = 0.59,����

(15145) = 0.311, ����
(15145) = 0.41. 

�����
(15145) = 1.869. 

So, the neutrosophication value of 15,145 is ���. 

The value of 15,163  locates in the range of ��� = 〈14850,15150,15450; 0.60,0.30,0.40〉 , ��� =

〈15150,15450,15750; 0.80,0.20,0.20〉, then 
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����
(15163) = 0.6,  ����

(15163) = 0.330,  ����
(15163) = 0.426. 

 �����
(15163) =  1.844. 

Also 

 ����
(15163) = 0.034, ����

(15163) = 0.965, ����
(15163) = 0.965. 

�����
(15163) =  0.104. 

So, the neutrosophication value of 15,163 is ���. 

The value of 15,984  locates in the range of ��� = 〈15450,15750,16050; 0.70,0.20,0.30〉, ���� =

 〈15750,16050,16350; 0.90,0.10,0.30〉, then 

����
(15984) = 0.154,      ����

(15984) = 0.824,       ����
(15984) = 0.846. 

�����
(15984) =  0.484. 

Also, 

�����
(15984) = 0.702,    �����

(15984) = 0.298, �����
(15984) = 0.454, 

 ������
(15984) =  1.95. 

So, the neutrosophication value of 15984 is ����. 

The value of 16859  locates in the range of ���� = 〈16350,16650,16950; 0.80,0.20,0.20〉,   ���� =

〈16650,16950,17250; 0.90,0.10,0.30〉, then 

�����
(16859) = 0.242,  �����

(16859) = 0.757,       �����
(16859) = 0.757, 

������
(16859) =  0.728. 

Also, 

�����
(16859) = 0.627, �����

(16859) = 0.373,       �����
(16859) = 0.512, 

������
(16859) =  1.442. 

So, the neutrosophication value of 16859 is ����. 

The value of 18150  locates in the range of ���� = 〈17550,17850,18150; 0.65,0.20,0.35〉, ���� =

〈17850,18150,18450; 0.90,0.10,0.10〉, then 

�����
(18150) = 0, �����

(18150) = 1,       �����
(18150) = 1, 

 ������
(18150) = 0. 

Also, 

�����
(18150) = 0.90, �����

(18150) = 0.1, �����
(18150) = 0.1, 

������
(18150) =  2.7. 

So, the neutrosophication value of 18150 is ����. 

The value of 18970 locates in the range of ���� = 〈18450,18750,19050; 0.60,0.20,0.30〉, 

���� = 〈18750,19050,19350; 0.90,0.10,0.10〉, then 

�����
(18970) = 0.16, �����

(18970) = 0.786,       �����
(18970) = 0.813. 

 ������
(18970) =  0.561. 

Also, 

�����
(18970) =   0.66, �����

(18970) = 0.34,       �����
(18970) = 0.34. 

������
(18970) =  1.98. 

So, the neutrosophication value of 18,970 is ����. 
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The value of 19,328 locates in the range of ���� = 〈18750,19050,19350; 0.90,0.10,0.10〉,   ���� =

〈19050,19350,19; 0.90,0.10,0.10〉, then 

�����
(19328) = 0.066,  �����

(19328) = 0.992,       �����
(19328) = 0.992. 

������
(19328) = 0.082. 

Also, 

�����
(19328) = 0.834, �����

(19328) = 0.166,       �����
(19328) = 0.166. 

������
(19328) =  2.502. 

So, the neutrosophication value of 19,328 is ����. 

The value of 19,337 locates in the range of ���� = 〈18750,19050,19350; 0.90,0.10,0.10〉, 

���� = 〈19050,19350,19; 0.90,0.10,0.10〉, then 

�����
(19337) =  0.039, �����

(19337) = 0.961,       �����
(19337) = 0.961.

������
(19337) = 0.117. 

Also, 

�����
(19337) =   0.861, �����

(19337) = 0.139,       �����
(19337) = 0.139. 

������
(19337) =  2.583. 

So, the neutrosophication value of 19,337 is ����. 

Finally, the value of 18,876 locates in the range of ���� = 〈18450,18750,19050; 0.60,0.20,0.30〉, 

���� = 〈18750,19050,19350; 0.90,0.10,0.10〉, then 

�����
(18876) =   0.348, �����

(18876) = 0.536,       �����
(18876) = 0.594.

������
(18876) =  1.218. 

Also, 

�����
(18876) =  0.378, �����

(18876) = 0.622,       �����
(18876) = 0.622. 

������
(18876) =  1.134. 

So, the neutrosophication value of 18,876 is ����. 

Table 1. Actual and neutrosophication values of student enrollments.

Years Actual Enrollments Neutrosophication Values of Enrollments ��

1971 13,055 ��� 

1972 13,563 ��� 

1973 13,867 ��� 

1974 14,696 ��� 

1975 15,460 ��� 

1976 15,311 ��� 

1977 15,603 ��� 

1978 15,861 ��� 

1979 16,807 ���� 

1980 16,919 ���� 

1981 16,388 ���� 

1982 15,433 ��� 

1983 15,497 ��� 

1984 15,145 ��� 

1985 15,163 ��� 

1986 15,984 ���� 
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1987 16,859 ���� 

1988 18,150 ���� 

1989 18,970 ���� 

1990 19,328 ���� 

1991 19,337 ���� 

1992 18,876 ���� 

Step 5: Construct the neutrosophic logical relationships (NLRs) as in Table 2: 

Table 2. Neutrosophic logical relationships. 

��� → ��� ��� → ��� ��� → ��� ��� → ��� ��� → ��� 
��� → ��� ��� → ���� ���� → ���� ���� → ���� ���� → ��� 
��� → ��� ��� → ��� ��� → ���� ���� → ���� ���� → ���� 

���� → ���� ���� → ���� ���� → ���� ���� → ���� 

Step 6: Based on NLR, begin to establish the neutrosophic logical relationship groups (NLRGs) 

as in Table 3. 

Table 3. Neutrosophic logical relationship groups (NLRGs) of enrollments. 

��� → ��� 
��� → ��� 
��� → ��� 
��� → ��� 
��� → ��� ��� → ���� 
��� → ��� ��� → ��� ��� → ��� 
��� → ���� 
���� → ���� 
���� → ��� 
���� → ���� ���� → ���� ���� → ���� 
���� → ���� 
���� → ���� 
���� → ���� ���� → ���� 

Step 7: Calculate the forecasted values as in Table 4: 

To calculate the forecasted value of 13,055 in year 1971, do the following: 

- Look at the neutrosophication value of 13055 in year 1971 which is 

��� as it appears in Table 1. 

- Go to NLRG which is presented in Table 3, and because ���is the first neutrosophication value of 

data, then it is not caused by any other value (i.e., ≠→ ���) as in Table 3. 

Therefore, the forecasted value of 13,055 is—Which means leaving it empty, as we illustrated in 

Step 7, Rule 1 of the proposed algorithm. 

Also, to calculate the forecasted value of 13,563 in year 1972, do the following: 

- Look at the neutrosophication value of 13,563 in year 1972 which is ��� as it appears in Table 1, 

and because ��� is caused by ��� (i.e., ��� → ���), then 

- Go to Table 3, and look at the NLRG which starts with ���, and we noted that it is ��� → ���. Then 

the forecasted value of 13,563 is the middle value of ���. 

Another illustrating example for calculating the forecasted value of 18,876 in year 1992: 

- Look at the neutrosophication value of 18,876 in year 1992 which is  ���� as it appears in Table 1. 

Since ���� is caused by  ����, then 

- Go to Table 3, and look at the NLRG which starts with ���� (i.e., ���� → ����, ���� → ����). Then the 

forecasted value of 18876 is the average of the middle values of ����,  ����, and it will equal 19,050. 
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The other forecasted values are calculated in the same manner. 

Table 4. Actual and forecasted values of enrollments. 

Years Actual Enrollments Forecasted Values of Enrollments 

1971 13,055 − 

1972 13,563 13,650 

1973 13,867 13,950 

1974 14,696 14,850 

1975 15,460 15,450 

1976 15,311 15,450 

1977 15,603 15,450 

1978 15,861 15,450 

1979 16,807 16,950 

1980 16,919 17,150 

1981 16,388 17,150 

1982 15,433 15,450 

1983 15,497 15,450 

1984 15,145 15,450 

1985 15,163 15,600 

1986 15,984 15,600 

1987 16,859 16,950 

1988 18,150 17,150 

1989 18,970 19,050 

1990 19,328 19,350 

1991 19,337 19,050 

1992 18,876 19,050 

The actual and forecasted values of enrollments appear in Figure 1. 

Figure 1. Forecasted and actual enrollments. 

The forecasted enrollment data obtained with the suggested method, along with the forecasted 

data obtained with the models in [14,17,43–46], are presented in Table 5. 
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Table 5. Forecasted values by suggested method and other methods.

Years  Actual Values  
Forecasted Values 

Proposed [43] [44] [45] [46] [14] [17] 

1971 13,055 − − − − − − − 

1972 13,563 13,650 14,242.0 14,025 13,250 14,031.35 14,586 13,693 

1973 13,867 13,950 14,242.0 14,568 13,750 14,795.36 14,586 13,693 

1974 14,696 14,850 14,242.0 14,568 13,750 14,795.36 15,363 14,867 

1975 15,460 15,450 15,774.3 15,654 14,500 14,795.36 15,363 15,287 

1976 15,311 15,450 15,774.3 15,654 15,375 16,406.57 15,442 15,376 

1977 15,603 15,450 15,774.3 15,654 15,375 16,406.57 15,442 15,376 

1978 15,861 15,450 15,774.3 15,654 15,625 16,406.57 15,442 15,376 

1979 16,807 16,950 16,146.5 16,197 15,875 16,406.57 15,442 16,523 

1980 16,919 17,150 16,988.3 17,283 16,833 17,315.29 17,064 16,606 

1981 16,388 17,150 16,988.3 17,283 16,833 17,315.29 17,064 17,519 

1982 15,433 15,450 16,146.5 16,197 16,500 17,315.29 15,438 16,606 

1983 15,497 15,450 15,474.3 15,654 15,500 16,406.57 15,442 15,376 

1984 15,145 15,450 15,474.3 15,654 15,500 16,406.57 15,442 15,376 

1985 15,163 15,600 15,474.3 15,654 15,125 16,406.57 15,363 15,287 

1986 15,984 15,600 15,474.3 15,654 15,125 16,406.57 15,363 15,287 

1987 16,859 16,950 16,146.5 15,654 16,833 16,406.57 15,438 16,523 

1988 18,150 17,150 16,988.3 16,197 16,667 17,315.29 17,064 17,519 

1989 18,970 19,050 19,144.0 17,283 18,125 19,132.79 19,356 19,500 

1990 19,328 19,350 19,144.0 18,369 18,750 19,132.79 19,356 19,000 

1991 19,337 19,050 19,144.0 19,454 19,500 19,132.79 19,356 19,500 

1992 18,876 19,050 19,144.0 19,454 19,500 19,132.79 19,356 19,500 

By comparing the proposed method with other existing methods in Table 5, the RMSE and AFE 

tools confirm that the suggested method is better than others, as shown in Table 6. 

Table 6. Error measures.

Tool Proposed [43] [44] [45] [46] [14] [17] 

RMSE 342.68 478.45 781.47 646.67 805.17 642.68 493.56 

AFE (%) 1.44 2.39 3.61 2.98 4.28 2.96 2.33 

We combined forecasted values with respect to all methods in Figure 2. 

Figure 2. Comparison figures between all forecasted values.
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If we plan to find the second-order neutrosophic logical relationships of the previous example 

by applying the proposed method of forecasting based on the second-order NTS, they are as shown 

in Table 7. 

Table 7. Second-order NLR. 

���, ��� → ��� 
���, ��� → ��� 
���, ��� → ��� 
���, ��� → ��� 
���, ��� → ��� 
���, ��� → ��� 
���, ��� → ���� 
���, ���� → ���� 

����, ���� → ���� ����, ���� → ��� 
����, ��� → ��� 
���, ��� → ��� 
���, ��� → ��� 
���, ��� → ���� 
���, ���� → ���� 
����, ���� → ���� 
����, ���� → ���� 
����, ���� → ���� 
����, ���� → ���� 
����, ���� → ���� 

The second-order neutrosophic logical relationship groups of the previous example are as 

shown in Table 8. 

Table 8. Second-order NLRGs. 

���, ��� → ��� 
���, ��� → ��� 
���, ��� → ��� 
���, ��� → ��� 
���, ��� → ��� ���, ��� → ��� ���, ��� → ��� 
���, ��� → ���� 
���, ���� → ���� 
����, ���� → ���� 
����, ���� → ��� 
����, ��� → ��� 
���, ��� → ��� 
���, ��� → ���� 
���, ���� → ���� 
����, ���� → ���� 
����, ���� → ���� 
����, ���� → ���� 
����, ���� → ���� 
����, ���� → ���� 

We compared forecasted values of enrollments based on the second order of neutrosophic 

logical relationship groups of the proposed method with the method of second order presented by 

Gautam and Singh [47]. The results are shown in Table 9. 
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Table 9. Actual and forecasted values of enrollments based on the second order of the proposed 

method vs. the Gautam and Singh [47] method. 

Years Actual Enrollments Second-Order Forecasted Values of the Proposed Method Forecasted Values in [47] 

1971 13,055 − − 

1972 13,563 − − 

1973 13,867 13,950 13,800 

1974 14,696 14,850 14,400 

1975 15,460 15,450 15,300 

1976 15,311 15,450 15,300 

1977 15,603 15,450 15,600 

1978 15,861 15,450 15,600 

1979 16,807 16,950 16,800 

1980 16,919 16,950 16,800 

1981 16,388 16,350 16,200 

1982 15,433 15,450 15,300 

1983 15,497 15,450 15,300 

1984 15,145 15,450 15,000 

1985 15,163 15,150 15,000 

1986 15,984 16,050 15,900 

1987 16,859 16,950 16,800 

1988 18,150 18,150 18,000 

1989 18,970 19,050 18,900 

1990 19,328 19,350 19,200 

1991 19,337 19,350 19,200 

1992 18,876 18,750 18,600 

The MSE and AFE of the two methods are presented in Table 10. 

Table 10. Error measures of the proposed method and the Gautam and Singh method [47]. 

Tool Proposed [47] 

MSE 19,823.4 24,443.4 

AFE (%) 0.60 0.81 

From Table 10, it appears that our proposed method of second order is also better than the 

proposed method of second order presented by Gautam and Singh [47]. 

In addition, the third-order neutrosophic logical relationship groups of the previous example 

are constructed and shown in Table 11. 

Table 11. Third-order NLRGs. 

���, ���, ��� → ��� 
���, ���, ��� → ��� 
���, ���, ��� → ��� 
���, ���, ��� → ��� 
���, ���, ��� → ��� 
���, ���, ��� → ���� 
���, ���, ���� → ���� 
���, ����, ���� → ���� 
����, ����, ���� → ��� 
����, ����, ��� → ��� 
����, ���, ��� → ��� 
���, ���, ��� → ��� 
���, ���, ��� → ���� 
���, ���, ���� → ���� 
���, ����, ���� → ���� 
����, ����, ���� → ���� 
����, ����, ���� → ���� 
����, ����, ���� → ���� 
����, ����, ���� → ���� 
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We also compared the forecasted values of enrollments based on the third order of neutrosophic 

logical relationship groups of the proposed method with the proposed methods of third order 

presented by [8,9,47], and the results are shown in Table 12. 

Table 12. Actual and forecasted values of enrollments based on the third order of the proposed 

method vs. the methods presented by [8,9,47]. 

Years 
Actual 

Enrollments 

Third-Order Forecasted Values 

of the Proposed Method 

Forecasted 

Values in [47] 

Forecasted 

Values in [8] 

Forecasted 

Values in [9] 

1971 13,055 − − − − 

1972 13,563 − − − − 

1973 13,867 − − − − 

1974 14,696 14,850 14,400 14,500 14,750 

1975 15,460 15,450 15,300 15,500 15,750 

1976 15,311 15,450 15,300 15,500 15,500 

1977 15,603 15,450 15,600 15,500 15,500 

1978 15,861 15,750 15,600 15,500 15,500 

1979 16,807 16,950 16,800 16,500 16,500 

1980 16,919 16,950 16,800 16,500 16,500 

1981 16,388 16,350 16,200 16,500 16,500 

1982 15,433 15,450 15,300 15,500 15,500 

1983 15,497 15,450 15,300 15,500 15,500 

1984 15,145 15,150 15,000 15,500 15,250 

1985 15,163 15,150 15,000 15,500 15,500 

1986 15,984 16,050 15,900 15,500 15,500 

1987 16,859 16,950 16,800 16,500 16,500 

1988 18,150 18,150 18,000 18,500 18,500 

1989 18,970 19,050 18,900 18,500 18,500 

1990 19,328 19,350 19,200 19,500 19,500 

1991 19,337 19,350 19,200 19,500 19,500 

1992 18,876 18,750 18,600 18,500 18,750 

The MSE and AFE of the methods are presented in Table 13. 

Table 13. Error measures of the proposed method and the [8,9,47] methods. 

Tool Proposed [47] [8] [9] 

MSE 7367.316 25,493.6 86,694 76,509 

AFE (%) 0.40 0.82 1.52 1.40 

4.2. Numerical example 2 

We verified the proposed method by solving the TAIEX2004 example [40], and by putting �� 

and �� equal 56 and 61, respectively, then U = [5600.17, 6200.69]. Also we calculated the suitable 

length as we illustrated previously and found that it is equal to 40. Therefore, the number of 

triangular neutrosophic numbers is equal to 12. For these neutrosophic numbers, the decision makers 

determined the truth, indeterminacy, and falsity degrees equal to 0.9,0.1,0.1, respectively. The actual 

and forecasted values of the TAIEX2004 example are presented in Table 14 and Figure 3. 

Table 14. Actual and forecasted values of TAIEX2004. 

Dates Actual Values Forecasted Values of the Proposed Method 

01/11/2004 5656.17 − 
02/11/2004 5759.61 5760.17 
03/11/2004 5862.85 5813.5 
04/11/2004 5860.73 5900.17 
05/11/2004 5931.31 5900.17 
08/11/2004 5937.46 5903.02 
09/11/2004 5945.2 5903.02 
10/11/2004 5948.49 5940.17 
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11/11/2004 5874.52 5940.17 
12/11/2004 5917.16 5903.02 
15/11/2004 5906.69 5903.02 
16/11/2004 5910.85 5903.02 
17/11/2004 6028.68 5940.17 
18/11/2004 6049.49 5940.17 
19/11/2004 6026.55 5940.17 
22/11/2004 5838.42 5830.17 
23/11/2004 5851.1 5830.17 
24/11/2004 5911.31 5903.02 
25/11/2004 5855.24 5830.17 
26/11/2004 5778.65 5813.5 
29/11/2004 5785.26 5813.5 
30/11/2004 5844.76 5860.17 
1/12/2004 5798.62 5830.17 

02/12/2004 5867.95 5860.17 
03/12/2004 5893.27 5900.17 
06/12/2004 5919.17 5900.17 
07/12/2004 5925.28 5903.02 
08/12/2004 5892.51 5903.02 
09/12/2004 5913.97 5900.17 
10/12/2004 5911.63 5903.02 
13/12/2004 5878.89 5903.02 
14/12/2004 5909.65 5900.17 
15/12/2004 6002.58 5903.02 
16/12/2004 6019.23 6040.17 
17/12/2004 6009.32 6040.17 
20/12/2004 5985.94 6040.17 
21/12/2004 5987.85 6040.17 
22/12/2004 6001.52 6040.17 
23/12/2004 5997.67 6040.17 
24/12/2004 6019.42 6040.17 
27/12/2004 5985.94 6040.17 
28/12/2004 6000.57 6040.17 
29/12/2004 6088.49 6040.17 
30/12/2004 6100.86 6080.17 
31/12/2004 6139.69 6080.17 
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Figure 3. Actual and forecasted values of TAIEX2004. 

The RMSE and AFE of the proposed method are presented in Table 15. 

Table 15. Error measures of the proposed method. 

Tool Proposed 

RMSE 42.05 
AFE (%) 0.005 

To confirm the performance of the suggested method, we compared it with other existing 

methods and the results are shown in Table 16 and Figure 4.  

Table 16. Error measures of the proposed method and other existing methods which solved the 

TAIEX2004 example. 

Methods RMSE 

Guan et al.’s method [40] 53.01 

Huarng et al.’s method [48] 73.57 

Chen and Kao’s method [49] 58.17 

Cheng et al.’s method [50] 54.24 

Chen et al.’s method [51] 56.16 

Chen and Chang’s method [52] 60.48 

Chen and Chen’s method [53] 61.94 

Yu and Huarng’s method [54] 55.91 

Proposed method 42.05 
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Figure 4. The RMSE of different methods that solved the TAIEX2004 example. 

TAIEX2004 is used as a baseline to compare our method with other competitive methods, to 

compare and identify how all the methods can manage error reduction. The RMSE is a common 

approach used in financial analysis [55]. Compared with the existing methods as shown in Table 16, 

our proposed method can offer the least presence of errors since it has the most minimized RMSE. In 

other words, our method appears to be performing the best in reducing errors and ensuring all our 

analyses are accurate with insights. This may provide a new insight for business intelligence with 

artificial intelligence, cloud computing, and neutrosophic research. 

5. Conclusion and future directions

The objective of this research was to enhance the accuracy rates of forecasting, since the 

forecasting accuracy rates in the existing approaches of fuzzy and intuitionistic fuzzy time series were 

not accurate enough. Thus, in this research we introduced the notion of first-and high-order 

neutrosophic time series data by defining the fitting length of intervals and proposing a novel method 

for calculating forecasted values. In order to obtain truth, indeterminacy, and falsity membership 

degrees of historical data, we defined triangular neutrosophic numbers. The neutrosophication 

process of historical time series data depends on the biggest score function of the triangular 

neutrosophic numbers. For the deneutrosophication process of first- and high-order NTS, we used 

simple arithmetic computations. The suggested approach of first- and high-order neutrosophic time 

series proved its superiority against other existing methods in the field of fuzzy, intuitionistic fuzzy, 

and neutrosophic time series. In the future, we plan to apply meta-heuristic optimization techniques 

for improving the accuracy of the suggested method. We will apply this model for predicting other 

time series, such as demand forecasting, electricity consumption, etc. Furthermore, we may consider 

using other approaches for comparing similarities of historical data, like information entropy. 
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Abstract: We extend for the second time the nonstandard analysis by adding the left monad closed to
the right, and right monad closed to the left, while besides the pierced binad (we introduced in 1998)
we add now the unpierced binad—all these in order to close the newly extended nonstandard space
under nonstandard addition, nonstandard subtraction, nonstandard multiplication, nonstandard
division, and nonstandard power operations. Then, we extend the Nonstandard Neutrosophic
Logic, Nonstandard Neutrosophic Set, and Nonstandard Probability on this Extended Nonstandard
Analysis space, and we prove that it is a nonstandard neutrosophic lattice of first type (endowed
with a nonstandard neutrosophic partial order) as well as a nonstandard neutrosophic lattice of
second type (as algebraic structure, endowed with two binary neutrosophic laws: infN and supN).
Many theorems, new terms introduced, better notations for monads and binads, and examples of
nonstandard neutrosophic operations are given.

Keywords: nonstandard analysis; extended nonstandard analysis; open and closed monads to the 
left/right; pierced and unpierced binads; MoBiNad set; infinitesimals; infinities; nonstandard reals; 
standard reals; nonstandard neutrosophic lattices of first type (as poset) and second type (as algebraic 
structure)

1. Short Introduction

In order to more accurately situate and fit the neutrosophic logic into the framework of extended
nonstandard analysis [1–3], we present the nonstandard neutrosophic inequalities, nonstandard
neutrosophic equality, nonstandard neutrosophic infimum and supremum, and nonstandard
neutrosophic intervals, including the cases when the neutrosophic logic standard and nonstandard
components T, I, F get values outside of the classical unit interval [0, 1], and a brief evolution of
neutrosophic operators [4].

2. Theoretical Reason for the Nonstandard Form of Neutrosophic Logic

The only reason we have added the nonstandard form to neutrosophic logic (and similarly to
neutrosophic set and probability) was in order to make a distinction between Relative Truth (which is
truth in some Worlds, according to Leibniz) and Absolute Truth (which is truth in all possible Words,
according to Leibniz as well) that occur in philosophy.

Another possible reason may be when the neutrosophic degrees of truth, indeterminacy, or
falsehood are infinitesimally determined, for example a value infinitesimally bigger than 0.8 (or 0.8+),
or infinitesimally smaller than 0.8 (or −0.8). But these can easily be overcome by roughly using interval
neutrosophic values, for example (0.80, 0.81) and (0.79, 0.80), respectively.

Extended Nonstandard Neutrosophic Logic, Set, 
and Probability Based on Extended Nonstandard 

Analysis 
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3. Why the Sum of Neutrosophic Components Is Up to 3

We was more prudent when we presented the sum of single valued standard neutrosophic
components [5–9], saying

Let T, I, F be single valued numbers, T, I, F ∈ [0, 1], such that 0 ≤ T + I + F ≤ 3. (1)

The sum of the single-valued neutrosophic components, T + I + F is up to 3 since they are
considered completely (100%) independent of each other. But if the two components T and F are
completely (100%) dependent, then T + F ≤ 1 (as in fuzzy and intuitionistic fuzzy logics), and let us
assume the neutrosophic middle component I is completely (100%) independent from T and F, then
I ≤ 1, whence T + F + I ≤ 1 + 1 = 2.

But the degree of dependence/independence [10] between T, I, F all together, or taken two by two,
may be, in general, any number between 0 and 1.

4. Neutrosophic Components outside the Unit Interval [0, 1]

Thinking out of box, inspired from the real world, was the first intent, i.e., allowing neutrosophic
components (truth/indeterminacy/falsehood) values be outside of the classical (standard) unit real
interval [0, 1] used in all previous (Boolean, multivalued, etc.) logics if needed in applications, so
neutrosophic component values < 0 and > 1 had to occurs due to the Relative/Absolute stuff, with

−0 <N 0 and 1+ >N 1 (2)

Later on, in 2007, I found plenty of cases and real applications in Standard Neutrosophic Logic
and Set (therefore, not using the Nonstandard Neutrosophic Logic, Set, and Probability), and it was
thus possible the extension of the neutrosophic set to Neutrosophic Overset (when some neutrosophic
component is > 1), and to Neutrosophic Underset (when some neutrosophic component is < 0), and
to Neutrosophic Offset (when some neutrosophic components are off the interval [0, 1], i.e., some
neutrosophic component > 1 and some neutrosophic component < 0). Then, similar extensions to
Neutrosophic Over/Under/Off Logic, Measure, Probability, Statistics, etc., [11–14], extending the unit
interval [0, 1] to

[Ψ, Ω], with Ψ ≤ 0 < 1 ≤ Ω, (3)

where Ψ, Ω are standard (or nonstandard) real numbers.

5. Refined Neutrosophic Logic, Set, and Probability

We wanted to get the neutrosophic logic as general as possible [15], extending all previous logics
(Boolean, fuzzy, intuitionistic fuzzy logic, intuitionistic logic, paraconsistent logic, and dialethism),
and to have it able to deal with all kind of logical propositions (including paradoxes, nonsensical
propositions, etc.).

That is why in 2013 we extended the Neutrosophic Logic to Refined Neutrosophic Logic / Set /

Probability (from generalizations of 2-valued Boolean logic to fuzzy logic, also from the Kleene’s and
Lukasiewicz’s and Bochvar’s 3-symbol valued logics or Belnap’s 4-symbol valued logic, to the most
general n-symbol or n-numerical valued refined neutrosophic logic, for any integer n ≥ 1), the largest
ever so far, when some or all neutrosophic components T, I, F were split/refined into neutrosophic
subcomponents T1, T2, . . . ; I1, I2, . . . ; F1, F2, . . . , which were deduced from our everyday life [16].

6. From Paradoxism Movement to Neutrosophy Branch of Philosophy and then to
Neutrosophic Logic

We started first from Paradoxism (that we founded in the 1980s in Romania as a movement
based on antitheses, antinomies, paradoxes, contradictions in literature, arts, and sciences), then we
introduced the Neutrosophy (as generalization of Dialectics of Hegel and Marx, which is actually the
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ancient YinYang Chinese philosophy), neutrosophy is a branch of philosophy studying the dynamics
of triads, inspired from our everyday life, triads that have the form

<A>, its opposite <antiA>, and their neutrals <neutA>, (4)

where <A> is any item or entity [17]. (Of course, we take into consideration only those triads that
make sense in our real and scientific world.)

The Relative Truth neutrosophic value was marked as 1, while the Absolute Truth neutrosophic
value was marked as 1+ (a tinny bigger than the Relative Truth’s value): 1+ >N 1, where >N is a
neutrosophic inequality, meaning 1+ is neutrosophically bigger than 1.

Similarly for Relative Falsehood/Indeterminacy (which is falsehood/indeterminacy in some Worlds)
and Absolute Falsehood/Indeterminacy (which is falsehood/indeterminacy in all possible worlds).

7. Introduction to Nonstandard Analysis

An infinitesimal (or infinitesimal number) (ε) is a number ε, such that |ε| < 1/n, for any non-null
positive integer n. An infinitesimal is close to zero, and so small that it cannot be measured.

The infinitesimal is a number smaller, in absolute value, than anything positive nonzero.
Infinitesimals are used in calculus.
An infinite (or infinite number) (ω) is a number greater than anything:

1 + 1 + 1 + . . . + 1 (for any finite number terms) (5)

The infinites are reciprocals of infinitesimals.
The set of hyperreals (or nonstandard reals), denoted as R*, is the extension of set of the real numbers,

denoted as R, and it comprises the infinitesimals and the infinites, that may be represented on the
hyperreal number line:

1/ε = ω/1. (6)

The set of hyperreals satisfies the transfer principle, which states that the statements of first order in
R are valid in R* as well.

A monad (halo) of an element a ∈ R*, denoted by µ(a), is a subset of numbers infinitesimally close
to a.

8. First Extension of Nonstandard Analysis

Let us denote by R+* the set of positive nonzero hyperreal numbers.
We consider the left monad and right monad, and the (pierced) binad that we have introduced as

extension in 1998 [5]:
Left Monad {that we denote, for simplicity, by (−a) or only −a} is defined as:

µ(−a) = (−a) = −a =
−
a = {a− x, x ∈ R+

∗
| x is in f initesimal}. (7)

Right Monad {that we denote, for simplicity, by (a+) or only by a+} is defined as:

µ(a+) = (a+) = a+ =
+
a = {a + x, x ∈ R+

∗
| x is in f initesimal}. (8)

Pierced Binad {that we denote, for simplicity, by (−a+) or only −a+} is defined as:

µ(−a+) = (−a+) = −a+ =
−+
a = {a− x, x ∈ R+

∗
| x is in f initesimal} ∪ {a + x, x ∈ R+

∗
| x is in f initesimal}

= {a± x, x ∈ R+
∗
| x is in f initesimal}.

(9)

The left monad, right monad, and the pierced binad are subsets of R*.

Florentin Smarandache (ed.) Collected Papers, VI

762



9. Second Extension of Nonstandard Analysis

For the necessity of doing calculations that will be used in nonstandard neutrosophic logic in
order to calculate the nonstandard neutrosophic logic operators (conjunction, disjunction, negation,
implication, and equivalence) and in order to have the Nonstandard Real MoBiNad Set closed under
arithmetic operations, we extend, for the time being, the left monad to the Left Monad Closed to the
Right, the right monad to the Right Monad Closed to the Left, and the Pierced Binad to the Unpierced
Binad, defined as follows [18–21].

Left Monad Closed to the Right

µ
(
−0
a
)
=

(
−0
a
)
=
−0
a ={a− x | x = 0, or x ∈ R+

∗ and x is in f initesimal} = µ(−a)∪ {a} = (−a) 0∪

{a} = −a∪ {a}.
(10)

Right Monad Closed to the Left

µ
(

0+
a
)
=

(
0+
a
)
=

0+
a ={a + x | x = 0, or x ∈ R+

∗ and x is in f initesimal} = µ(a+)∪ {a} = (a+) 0∪

{a} = a+ ∪ {a}.
(11)

Unpierced Binad

µ
(
−0+

a
)
=

(
−0+

a
)
=
−0+

a = {a− x
∣∣∣x ∈ R+

∗andxisin f initesimal} ∪ {a + x|x ∈ R+
∗and

xisin f initesimal}∪{a} = {a± x
∣∣∣x = 0, orx ∈ R+

∗andxisin f initesimal} = µ(−a+)∪
{a} = (−a+)∪{a} =− a+ ∪ {a}

(12)

The element {a} has been included into the left monad, right monad, and pierced binad respectively.

10. Nonstandard Neutrosophic Function

In order to be able to define equalities and inequalities in the sets of monads, and in the sets of
binads, we construct a nonstandard neutrosophic function that approximates the monads and binads
to tiny open (or half open and half closed respectively) standard real intervals as below. It is called
‘neutrosophic’ since it deals with indeterminacy: unclear, vague monads and binads, and the function
approximates them with some tiny real subsets.

Taking an arbitrary infinitesimal

ε1 > 0, and writing −a = a− ε1, a+ = a + ε1, and −a+ = a± ε1, (13)

or taking an arbitrary infinitesimal ε2 ≥ 0, and writing

−0
a = (a− ε2, a],

0+
a = [a, a + ε2),

−0+
a = (a− ε2, a + ε2) (14)

We meant to actually pick up a representative from each class of the monads and of the binads.
Representations of the monads and binads by intervals is not quite accurate from a classical point

of view, but it is an approximation that helps in finding a partial order and computing nonstandard
arithmetic operations on the elements of the nonstandard set NRMB.

Let ε be a generic positive infinitesimal, while a be a generic standard real number.
Let P(R) be the power set of the real number set R.

µN : NRMB → P(R) (15)
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For any a ∈ R, the set of real numbers, one has

µN((−a)) =N (a − ε, a), (16)

µN((a+)) =N (a, a + ε), (17)

µN((−a+)) =N (a − ε, a) ∪ (a, a + ε), (18)

µN

((
−0
a
))

=N (a− ε, a], (19)

µN

((
0+
a
))

=N [a, a + ε
)
, (20)

µN

((
−0+

a
))

=N (a− ε, a + ε), (21)

µN

((
0
a
))

=N µN(a) =N a = [a, a], (22)

in order to set it as real interval too.

11. General Notations for Monads and Binads

Let a ∈ R be a standard real number. We use the following general notation for monads and binads.

m
a ∈

{
a,
−
a,
−0
a ,

+
a ,

0+
a ,
−+
a ,
−0+

a
}

and by convention
0
a = a; (23)

or
m ∈ { , −, −0, +, +0, −+, −0+} = {0, −, −0, +, +0, −+, −0+}; (24)

therefore “m” above a standard real number “a” may mean anything: a standard real number (0, or
nothing above), a left monad (−), a left monad closed to the right (−0), a right monad (+), a right monad
closed to the left (0+), a pierced binad (−+), or a unpierced binad (−0+), respectively.

The notations of monad’s and binad’s diacritics above (not laterally) the number a as

−
a,
−0
a ,

+
a ,

0+
a ,
−+
a ,
−0+

a (25)

are the best, since they also are designed to avoid confusion for the case when the real number a is
negative.

For example, if a = −2, then the corresponding monads and binads are respectively represented as:

−
−2,

−0
−2,

+
−2,

0+
−2,
−+
−2,
−0+
−2 (26)

Classical and Neutrosophic Notations
Classical notations on the set of real numbers:

<, ≤, >, ≥, ∧, ∨,→,↔, ∩, ∪, ⊂, ⊃, ⊆, ⊇, =, ∈,
+, −, ×,÷, ˆ, *

(27)

Operations with real subsets:
~ (28)

Neutrosophic notations on nonstandard sets (that involve indeterminacies, approximations, and
vague boundaries):

<N, ≤N, >N, ≥N, ∧N, ∨N,→N,↔N, ∩N, ∪N, ⊂N, ⊃N, ⊆N, ⊇N, =N, ∈N + N, − N, ×N, ÷N, ˆN, *N (29)

Florentin Smarandache (ed.) Collected Papers, VI

764



12. Neutrosophic Strict Inequalities

We recall the neutrosophic strict inequality which is needed for the inequalities of nonstandard
numbers.

Let α and β be elements in a partially ordered set M.
We have defined the neutrosophic strict inequality

α >N β (30)

and read as
“α is neutrosophically greater than β”

if α in general is greater than β, or α is approximately greater than β, or subject to some indeterminacy
(unknown or unclear ordering relationship between α and β) or subject to some contradiction (situation
when α is smaller than or equal to β) α is greater than β.

It means that in most of the cases, on the set M, α is greater than β.
And similarly for the opposite neutrosophic strict inequality

α <N β (31)

13. Neutrosophic Equality

We have defined the neutrosophic inequality

α =N β (32)

and read as
“α is neutrosophically equal to β”

if α in general is equal to β, or α is approximately equal to β, or subject to some indeterminacy (unknown
or unclear ordering relationship between α and β) or subject to some contradiction (situation when α is
not equal to β) α is equal to β.

It means that in most of the cases, on the set M, α is equal to β.

14. Neutrosophic (Nonstrict) Inequalities

Combining the neutrosophic strict inequalities with neutrosophic equality, we get the ≥N and ≤N
neutrosophic inequalities.

Let α and β be elements in a partially ordered set M.
The neutrosophic (nonstrict) inequality

α ≥N β (33)

and read as
“α is neutrosophically greater than or equal to β”

if α in general is greater than or equal to β, or α is approximately greater than or equal to β, or subject
to some indeterminacy (unknown or unclear ordering relationship between α and β) or subject to some
contradiction (situation when α is smaller than β) α is greater than or equal to β.

It means that in most of the cases, on the set M, α is greater than or equal to β.
And similarly for the opposite neutrosophic (nonstrict) inequality

α ≤N β. (34)
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15. Neutrosophically Ordered Set

Let M be a set. (M, <N) is called a neutrosophically ordered set if

∀α, β ∈M, onehas : eitherα <N β, orα =N β, orα >N β. (35)

16. Neutrosophic Infimum and Neutrosophic Supremum

As an extension of the classical infimum and classical supremum, and using the neutrosophic
inequalities and neutrosophic equalities, we define the neutrosophic infimum (denoted as infN) and
the neutrosophic supremum (denoted as supN).

Neutrosophic Infimum.
Let (S, <N) be a set that is neutrosophically partially ordered, and M a subset of S.
The neutrosophic infimum of M, denoted as infN(M) is the neutrosophically greatest element in S

that is neutrosophically less than or equal to all elements of M:
Neutrosophic Supremum.
Let (S, <N) be a set that is neutrosophically partially ordered and M a subset of S.
The neutrosophic supremum of M, denoted as supN(M) is the neutrosophically smallest element

in S that is neutrosophically greater than or equal to all elements of M.

17. Definition of Nonstandard Real MoBiNad Set

Let R be the set of standard real numbers, and R∗ be the set of hyper-reals (or nonstandard reals)
that consists of infinitesimals and infinites.

The Nonstandard Real MoBiNad Set is now defined for the first time as follows

NRMB =N

 ε, ω, a, (−a) ,
(
−a0

)
, (a+),

(
0a+

)
, (−a+),

(
−a0+

)
|where ε are infinitesimals,

with ε ∈ R∗; ω = 1/ε are infinites, with ω ∈ R∗; and a are real numbers, with a ∈ R

 (36)

Therefore

NRMB =N R∗ ∪R∪ µ(−R)∪ µ
(
−R0

)
∪ µ

(
R+

)
∪ µ

(
0R+

)
∪ µ

(
−R+

)
∪ µ

(
−R0 +

)
, (37)

where

µ(−R) is the set of all real left monads,

µ
(
−R0

)
is the set of all real left monads closed to the right,

µ(R+) is the set of all real right monads,

µ
(
0R+

)
is the set of all real right monads closed to the left,

µ(−R+) is the set of all real pierced binads,

and µ
(
−R0 +

)
is the set of all real unpierced binads.

Also,

NRMB =N

{
ε, ω,

m
a
∣∣∣∣where ε, ω ∈ R∗, ε are infinitesimals, ω = 1

ε are infinities;

a ∈ R; and m ∈
{

,− ,− 0 ,+ ,+ 0 ,− + ,− 0 +
}} (38)

NRMB is closed under addition, subtraction, multiplication, division (except division by
m
a, with a

= 0 and m ∈
{

,− ,− 0 ,+ ,0+ ,− + ,− 0 +
}
), and power

{
(

m1a
)(m2

b )

with: either a > 0, or a = 0 and m∈
{

,+ ,0+
}

and b > 0, or a < 0 but b =
p
r (irreducible

fraction) and p, r are integers with r an odd positive integer r ∈ {1, 3, 5, . . . }}.
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These mobinad (nonstandard) above operations are reduced to set operations, using Set Analysis
and Neutrosophic Analysis (both introduced by the author [22] (page 11), which are generalizations of
Interval Analysis), and they deal with sets that have indeterminacies.

18. Etymology of MoBiNad

MoBiNad comes from monad + binad, introduced now for the first time.

19. Definition of Nonstandard Complex MoBiNad Set

The Nonstandard Complex MoBiNad Set, introduced here for the first time, is defined as

NCMB =N
{
α+ βi|where i =

√

−1; α, β ∈ NRMB
}

(39)

20. Definition of Nonstandard Neutrosophic Real MoBiNad Set

The Nonstandard Neutrosophic Real MoBiNad Set, introduced now for the first time, is defined as

NNRMB =N
{
α+ βI|where I = literal indeterminacy, I2 = I; α, β ∈ NRMB

}
. (40)

21. Definition of Nonstandard Neutrosophic Complex MoBiNad Set

The Nonstandard Neutrosophic Complex MoBiNad Set, introduced now for the first time, is
defined as

NNCMB =N
{
α+ βI|where I = literal indeterminacy, I2 = I; α, β ∈ NCMB

}
(41)

22. Properties of the Nonstandard Neutrosophic Real Mobinad Set

Since in nonstandard neutrosophic logic we use only the nonstandard neutrosophic real mobinad
set, we study some properties of it.

Theorem 1. The nonstandard real mobinad set (NRMB, ≤N), endowed with the nonstandard neutrosophic
inequality is a lattice of first type [as partially ordered set (poset)].

Proof. The set NRMB is partially ordered, because (except the two-element subsets of the form{
a,
−+
a
}
, and

{
a,
−0+

a
}
, with a ∈ R, beetwen which there is no order) all other elements are ordered:

If a < b, where a, b ∈ R, then:
m1a <N

m2
b , for any monads or binads

m1, m2 ∈N
{

,− ,− 0 ,+ ,0+ ,− + ,− 0 +
}
. (42)

If a = b, one has:
−a <N a, (43)

a− <N a+ (44)

a <N a+ (45)

−a ≤N
−a+, (46)

−a ≤N
−a+, (47)

and there is no neutrosophic ordering relationship between a and −a+,

nor between a and
−0+

a (that is why ≤N on NRMB is a partial ordering set). (48)
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If a > b, then :
m1a >N

m2
b , for any monads or binads m1, m2. (49)

�

Any two-element set
{
α, β

}
⊂N NRMB has a neutrosophic nonstandard infimum (meet, or greatest

lower bound) that we denote by infN, and a neutrosophic nonstandard supremum (joint, or least upper
bound) that we denote by supN, where both

infN
{
α, β

}
and supN

{
α, β

}
∈ NRMB. (50)

For the nonordered elements a and −a+:

infN
{
a,− a+

}
=N
−a ∈N NRMB, (51)

supN

{
a,− a+

}
=N a+ ∈N NRMB (52)

And similarly for nonordered elements a and −a0 +:

infN
{
a,− a0 +

}
=N

−a ∈N NRMB, (53)

supN

{
a,− a0 +

}
=N a+ ∈N NRMB. (54)

Dealing with monads and binads which neutrosophically are real subsets with indeterminate
borders, and similarly a = [a, a] can be treated as a subset, we may compute infN and supN of each
of them.

infN(
−a) =N

−a and supN(
−a) =N

−a (55)

infN
(
a+

)
=N a+ and supN

(
a+

)
=N a+; (56)

infN
(
−a+

)
=N

−a and supN

(
−a+

)
=N a+; (57)

infN
(
−a0 +

)
=N

−a and supN

(
−a0 +

)
=N a+. (58)

Also,
infN(a) =N a and supN(a) =N a. (59)

If a < b, then
m1a <N

m2
b , hence

infN

{
m1a ,

m2
b
}
=N infN

(
m1a

)
and supN

{
m1a ,

m2
b
}
=N supN

m2
b , (60)

which are computed as above.
Similarly, if

a > b, with
m1a <N

m2
b . (61)

If a = b, then: infN

{
m1a ,

m2a
}
=N the neutrosophically smallest (<N) element among

infN

{
m1a

}
and infN

{
m2a

}
. (62)

While supN

{
m1a ,

m2a
}
=N the neutrosophically greatest (>N) element among

supN

{
m1a

}
and supN

{
m2a

}
. (63)
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Examples:
infN

(
−a, a+

)
=N

−a and supN

(
−a, a+

)
=N a+; (64)

infN
(
−a,− a+

)
=N
−a and supN

(
−a,− a+

)
=N a+; (65)

infN
(
−a+, a+

)
=N
−a and supN

(
−a+, a+

)
=N a+. (66)

Therefore, (NRMB, ≤N) is a nonstandard real mobinad lattice of first type (as partially ordered set).
Consequence
If we remove all pierced and unpierced binads from NRMB and we denote the new set by

NRM =
{
ε, ω, a,− a,− a0, a+,0 a+, where ε are infinitesimals, ω are infinites, and a ∈ R

}
we obtain a

totally neutrosophically ordered set.

Theorem 2. Any finite non-empty subset L of (NRMB,≤N) is also a sublattice of first type.

Proof. It is a consequence of any classical lattice of first order (as partially ordered set). �

Theorem 3. (NRMB, ≤N) is bounded neither to the left nor to the right, since it does not have a minimum
(bottom, or least element), or a maximum (top, or greatest element).

Proof. Straightforward, since NRMB includes the set of real number R = (−∞, +∞) which is clearly
unbounded to the left and right-hand sides. �

Theorem 4. (NRMB, in fN, supN), where in fN and supN are two binary operations, dual to each other, defined
before as a lattice of second type (as an algebraic structure).

Proof. We have to show that the two laws in fN and supN are commutative, associative, and verify the
absorption laws.

Let α, β, γ ∈ NRMB be two arbitrary elements.
Commutativity Laws
(i)

infN
{
α, β

}
=N infN

{
β, α

}
(67)

(ii)
supN

{
α, β

}
=N supN

{
β, α

}
(68)

Their proofs are straightforward.
Associativity Laws
(i)

infN
{
α, infN

{
β,γ

}}
=N infN

{
infN

{
α, β

}
, γ

}
. (69)

�

Proof.
infN

{
α, infN

{
β,γ

}}
=N infN

{
α, β, γ

}
, (70)

and
infN

{
infN

{
α, β

}
, γ

}
=N infN

{
α, β, γ

}
, (71)

where we have extended the binary operation infN to a trinary operation infN.
(ii)

supN

{
α, supN

{
β,γ

}}
=N supN

{
supN

{
α, β

}
, γ

}
(72)

�
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Proof.
supN

{
α, supN

{
β,γ

}}
=N supN

{
α, β, γ

}
, (73)

and
supN

{
α, supN

{
β,γ

}}
=N supN

{
α, β, γ

}
, (74)

where similarly we have extended the binary operation supN to a trinary operation supN.
Absorption Laws (as peculiar axioms to the theory of lattice)
(i) We need to prove that

infN
{
α, supN

{
α, β

}}
=N α. (75)

Let α ≤N β, then
infN

{
α, supN

{
α, β

}}
=N infN{α,α} =N α. (76)

Let α >N β, then
infN

{
α, supN

{
α, β

}}
=N infN{α,α} =N α. (77)

(ii) Now, we need to prove that

supN
{
α, infN

{
α, β

}}
=N α. (78)

Let α ≤N β, then
supN

{
α, infN

{
α, β

}}
=N supN{α, α} =N α. (79)

Let α >N β, then
supN

{
α, infN

{
α, β

}}
=N supN

{
α, β

}
=N α. (80)

Consequence
The binary operations infN and supN also satisfy the idempotent laws:

infN{α, α} =N α, (81)

supN{α, α} =N α. (82)

�

Proof. The axioms of idempotency follow directly from the axioms of absorption proved above. �

Thus, we have proved that (NRMB, infN, supN) is a lattice of second type (as algebraic structure).

23. Definition of General Nonstandard Real MoBiNad Interval

Let a, b ∈ R, with
−∞ < a ≤ b < ∞, (83)

]−a, b+[MB=
{
x ∈ NRMB,− a ≤N x ≤N b+

}
. (84)

As particular edge cases:
]−a, a+[MB=N

{
−a, a,− a+, a+

}
, (85)

a discrete nonstandard real set of cardinality 4.

]−a, −a[MB=N
{
−a

}
; (86)

]a+, a+[MB =N
{
a+

}
(87)

]a, a+[MB =N
{
a, a+

}
(88)

]−a, a[MB=N
{
−a, a

}
(89)
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]−a, −a+[MB=N
{
−a,− a+, a+

}
, (90)

where a <]−a,− a+[MB since a �N
−a+ (there is no relation of order between a and −a+);

]−a+, a+[MB=N
{
−a+, a+

}
. (91)

Theorem 5. (
]−a, b+[, ≤N

)
is a nonstandard real mobinad sublattice o f f irst type (poset). (92)

Proof. Straightforward since ]−a, b+[ is a sublattice of the lattice of first type NRMB. �

Theorem 6. (
]−a, b+[, infN, supN,− a, b+

)
is a nonstandard bounded real mobinad sublattice

o f second type (as algebraic structure).
(93)

Proof. ]−a, b+[MB as a nonstandard subset of NRMB is also a poset, and for any two-element subset{
α, β

}
⊂N ]−0, 1+[MB (94)

one obviously has the triple neutrosophic nonstandard inequality:

−a ≤N infN
{
α, β

}
≤N supN

{
α, β

}
≤N b+ (95)

hence ( ]−a, b+[MB≤N) is a nonstandard real mobinad sublattice of first type (poset), or sublattice of
NRMB.

Further on, ]−a, b+[, endowed with two binary operations infN and supN, is also a sublattice of
the lattice NRMB, since the lattice axioms (Commutative Laws, Associative Laws, Absortion Laws, and
Idempotent Laws) are clearly verified on ]−a, b+[.

The nonstandard neutrosophic modinad Identity Join Element (Bottom) is −a, and the nonstandard
neutrosophic modinad Identity Meet Element (Top) is b+, or

infN]
−a, b+[=N

− and supN]
−a, b+[=N b+. (96)

The sublattice Identity Laws are verified below.

Let α ∈N]
−a, b+[, whence −a ≤N α ≤N b+. (97)

Then:
infN

{
α, b+

}
=N α, and supN

{
α,− a

}
=N α. (98)

�

24. Definition of Nonstandard Real MoBiNad Unit Interval

]−0, 1+[MB=N
{
x ∈ NRMB,− 0 ≤N x ≤N 1+

}
=N

 ε, a,
−
a,
−0
a ,

+
a ,

0+
a ,
−+
a ,
−0+

a
∣∣∣∣∣ where ε are in f initesimals,

ε ∈ R∗, with ε > 0, and a ∈ [0, 1]

 (99)
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This is an extension of the previous definition (1998) [5] of nonstandard unit interval

]−0, 1+[=N (−0 )∪ [0, 1] ∪
(
1+

)
(100)

Associated to the first published definitions of neutrosophic set, logic, and probability was used.
One has

]−0, 1+[⊂N ]−0, 1+[MB (101)

where the index MB means: all monads and binads included in ]−0, 1+[, for example,

(−0.2), (−0.30), (0.5+), (−0.7+), (−0.80+) etc. (102)

or, using the top diacritics notation, respectively,

−

0.2 ,
−0
0.3 ,

+
0.5 ,

−+
0.7 ,

−0+
0.8 etc. (103)

Theorem 7. The Nonstandard Real MoBiNad Unit Interval ]−0, 1+[MB is a partially ordered set (poset)
with respect to ≤N, and any of its two elements have an in fN and supN hence ]−0, 1+[MB is a nonstandard
neutrosophic lattice of first type (as poset).

Proof. Straightforward. �

Theorem 8. The Nonstandard Real MoBiNad Unit Interval ]−0, 1+[MB, endowed with two binary operations
in fN and supN, is also a nonstandard neutrosophic lattice of second type (as an algebraic structure).

Proof. Replace a = 0 and b = 1 into the general nonstandard real mobinad interval ]−a, b+[. �

25. Definition of Extended General Neutrosophic Logic

We extend and present in a clearer way our 1995 definition (published in 1998) of neutrosophic logic.
LetU be a universe of discourse of propositions and P ∈ U be a generic proposition.
A General Neutrosophic Logic is a multivalued logic in which each proposition P has a degree

of truth (T), a degree of indeterminacy (I), and a degree of falsehood (F), and where T, I, and F are
standard real subsets or nonstandard real mobinad subsets of the nonstandard real mobinat unit
interval ]−0, 1+[MB,

With
T, I, F ⊆N]

−0, 1+[MB (104)

where
−0 ≤N infNT + infNI + infNF ≤N supNT + supNI + supNF ≤ 3+. (105)

26. Definition of Standard Neutrosophic Logic

If in the above definition of general neutrosophic logic all neutrosophic components, T, I, and F
are standard real subsets, included in or equal to the standard real unit interval, T, I, F ⊆ [0, 1], where

0 ≤ infT + infI + infF ≤ supT + supI + supF ≤ 3 (106)

we have a standard neutrosophic logic.
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27. Definition of Extended Nonstandard Neutrosophic Logic

If in the above definition of general neutrosophic logic at least one of the neutrosophic components
T, I, or F is a nonstandard real mobinad subset, neutrosophically included in or equal to the nonstandard
real mobinad unit interval ]−0, 1+[MB, where

−0 ≤N infNT + infNI + infNF ≤N supNT + supNI + supNF ≤ 3+, (107)

we have an extended nonstandard neutrosophic logic.

Theorem 9. If M is a standard real set, M ⊂ R, then

in fN(M) = in f (M) and supN(M) = sup(M). (108)

Proof. The neutrosophic infimum and supremum coincide with the classical infimum and supremum
since there is no indeterminacy on the set M, meaning M contains no nonstandard numbers. �

28. Definition of Extended General Neutrosophic Set

We extend and present in a clearer way our 1995 definition of neutrosophic set.
LetU be a universe of discourse of elements and S ∈ U a subset.
A Neutrosophic Set is a set such that each element x from S has a degree of membership (T), a

degree of indeterminacy (I), and a degree of nonmembership (F), where T, I, and F are standard real
subsets or nonstandard real mobinad subsets, neutrosophically included in or equal to the nonstandard
real mobinat unit interval

]−0, 1+[MB, with T, I, F ⊆N]
−0, 1+[MB, (109)

where
−0 ≤N infNT + infNI + infNF ≤N supNT + supNI + supNF ≤ 3+. (110)

29. Definition of Standard Neutrosophic Set

If in the above general definition of neutrosophic set all neutrosophic components, T, I, and F, are
standard real subsets included in or equal to the classical real unit interval, T, I, F ⊆ [0, 1], where

0 ≤ infT + infI + infF ≤ supT + supI + supF ≤ 3, (111)

we have a standard neutrosophic set.

30. Definition of Extended Nonstandard Neutrosophic Set

If in the above general definition of neutrosophic set at least one of the neutrosophic components T,
I, or F is a nonstandard real mobinad subsets, neutrosophically included in or equal to ]−0, 1+[MB, where

−0 ≤N infNT + infNI + infNF ≤N supNT + supNI + supNF ≤ 3+, (112)

we have a nonstandard neutrosophic set.

31. Definition of Extended General Neutrosophic Probability

We extend and present in a clearer way our 1995 definition of neutrosophic probability.
LetU be a universe of discourse of events, and E ∈ U be an event.
A Neutrosophic Probability is a multivalued probability such that each event E has a chance of

occuring (T), an indeterminate (unclear) chance of occuring or not occuring (I), and a chance of not
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occuring (F), and where T, I, and F are standard or nonstandard real mobinad subsets, neutrosophically
included in or equal to the nonstandard real mobinat unit interval

]−0, 1+[MB, T, I, F ⊆N]
−0, 1+[MB, where −0 ≤N infNT + infNI + infNF ≤N supNT+

supNI + supNF ≤ 3+.
(113)

32. Definition of Standard Neutrosophic Probability

If in the above general definition of neutrosophic probability all neutrosophic components, T, I,
and F are standard real subsets, included in or equal to the standard unit interval T, I, F ⊆ [0, 1], where

0 ≤ infT + infI + infF ≤ supT + supI + supF ≤ 3, (114)

we have a standard neutrosophic probability.

33. Definition of Extended Nonstandard Neutrosophic Probability

If in the above general definition of neutrosophic probability at least one of the neutrosophic
components T, I, F is a nonstandard real mobinad subsets, neutrosophically included in or equal to
]−0, 1+[MB, where

−0 ≤N infNT + infNI + infNF ≤N supNT + supNI + supNF ≤ 3+, (115)

we have a nonstandard neutrosophic probability.

34. Classical Operations with Real Sets

Let A, B ⊆ R be two real subsets. Let ~ and * denote any of the real subset classical operations
and real number classical operations respectively: addition (+), subtraction (−), multiplication (×),
division (÷), and power (ˆ).

Then,
A~ B = {a ∗ b, where a ∈ A and b ∈ B} (116)

Thus
A⊕ B = {a + b|a ∈ A, b ∈ B} (117)

A	 B = {a− b|a ∈ A, b ∈ B} (118)

A⊗ B = {a× b|a ∈ A, b ∈ B} (119)

A� B = {a÷ b|a ∈ A; b ∈ B, b , 0} (120)

AB =
{
ab

∣∣∣a ∈ A, a > 0; b ∈ B
}

(121)

For the division (÷), of course, we consider b , 0. While for the power (ˆ), we consider a > 0.

35. Operations on the Nonstandard Real MoBiNad Set (NRMB)

For all nonstandard (addition, subtraction, multiplication, division, and power) operations

α, β ∈N NRMB, α *N β =N µN(α) ~ µN(β) (122)

where *N is any neutrosophic arithmetic operations with neutrosophic numbers (+N, −N, ×N, ÷N, ˆN),
while the corresponding ~ is an arithmetic operation with real subsets.

So, we approximate the nonstandard operations by standard operations of real subsets.
We sink the nonstandard neutrosophic real mobinad operations into the standard real subset

operations, then we resurface the last ones back to the nonstandard neutrosophic real mobinad set.
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Let ε1 and ε2 be two non-null positive infinitesimals. We present below some particular cases, all
others should be deduced analogously.

Nonstandard Addition
First Method

(−a) + (−b) =N (a− ε1, a) + (b− ε2, b) =N (a + b− ε1 − ε2, a + b) =N (a + b− ε, a + b) =N
−(a + b), (123)

where we denoted ε1 + ε2 = ε (the addition of two infinitesimals is also an infinitesimal).
Second Method

(−a) + (−b) =N (a− ε1) + (b− ε2) =N (a + b− ε1 − ε2) =N
−(a + b) (124)

Adding two left monads, one also gets a left monad.
Nonstandard Subtraction
First Method

(−a) − (−b) =N (a− ε1, a)
−(b− ε2, b) =N (a− ε1 − b, a− b + ε2) =N (a− b− ε1, a− b

+ε2) =N

(
− 0 +

a− b

) (125)

Second Method

(−a) − (−b) =N (a− ε1) − (b− ε2) =N a− b− ε1 + ε2, (126)

since ε1 and ε2 may be any positive infinitesimals,

=N


−(a− b), when ε1 > ε2;(

0
a− b

)
, when ε1 = ε2

(a− b)+, when ε1 < ε2.

=N

(
0

a− b

)
=N a − b; (127)

Subtracting two left monads, one obtains an unpierced binad (that is why the unpierced binad
had to be introduced).

Nonstandard Division
Let a, b > 0.

(−a) ÷ (−b) =N (a− ε1, a) ÷ (b− ε2, b) =N

(a− ε1

b
,

a
b− ε2

)
(128)

Since
ε1 > 0 and ε2 > 0,

a− ε1

b
<

a
b

and
a

b− ε2
>

a
b

, (129)

while between a−ε1
b and a

b−ε2
there is a continuum whence there are some infinitesimals ε0

1 and ε0
2 such

that
a−ε0

1
b−ε0

2
= a

b , or ab− bε0
1 = ab− aε0

2, and for a given ε0
1 there exists an

ε0
2 = ε0

1·
b
a

(130)

Hence
(−a)
(−b)

=N

(
− 0 +

a
b

)
(131)

For a or/and b negative numbers, it is similar but it is needed to compute the in fN and supN of the
products of intervals.
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Dividing two left monads, one obtains an unpierced binad.
Nonstandard Multiplication
Let a, b ≥ 0.(

−a0
)
×

(
−b0 +

)
=N (a− ε1, a]
×(b− ε2, b + ε2) =N ((a− ε1)·(b− ε2), a·(b + ε2)) =N

(
−ab0 +

) (132)

Since
(a− ε1)·(b− ε2) < a·b and a·(b + ε2) > a·b. (133)

For a or/and b negative numbers, it is similar but it is needed to compute the in fN and supN of the
products of intervals.

Multiplying a positive left monad closed to the right, with a positive unpierced binad, one obtains
an unpierced binad.

Nonstandard Power
Let a, b > 1.

(0a+)
(−b0)

=N [a, a + ε1)
(b−ε2, b] =N (ab−ε2 , (a + ε1)

b) =N

(
− 0 +

ab

)
(134)

since ab−ε1< ab and (a + ε1)
b >ab. (135)

Raising a right monad closed to the left to a power equal to a left monad closed to the right, for
both monads above 1, the result is an unpierced binad.

Consequence
In general, when doing arithmetic operations on nonstandard real monads and binads, the result

may be a different type of monad or binad.
That is why is was imperious to extend the monads to closed monads, and the pierced binad to

unpierced binad, in order to have the whole nonstandard neutrosophic real mobinad set closed under
arithmetic operations.

36. Conditions of Neutrosophic Nonstandard Inequalities

Let NRMB be the Nonstandard Real MoBiNad. Let’s endow (NRMB, <N) with a neutrosophic
inequality.

Let α, β ∈ NRMB, where α, β may be real numbers, monads, or binads.
And let (

−
a
)
,
(
−0
a
)
,
(
+
a
)
,
(

0+
a
)
,
(
−+
a
)
,
(
−0+

a
)
∈ NRMB, and(

−

b
)
,
(
−0
b
)
,
(
+
b
)
,
(

0+
b
)
,
(
−+
b
)
,
(
−0+

b
)
∈ NRMB,

(136)

be the left monads, left monads closed to the right, right monads, right monads closed to the left, and
binads, and binads nor pierced of the elements (standard real numbers) a and b, respectively. Since all
monads and binads are real subsets, we may treat the single real numbers

a = [a, a] and b = [b, b] as real subsets too (137)

as real subsets too.
NRMB is a set of subsets, and thus we deal with neutrosophic inequalities between subsets.

(i) If the subset α has many of its elements above all elements of the subset β,
(ii) then α >N β (partially).
(iii) If the subset α has many of its elements below all elements of the subset β,
(iv) then α <N β (partially).
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(v) If the subset α has many of its elements equal with elements of the subset β,
(vi) then α =N β (partially).

If the subset α verifies (i) and (iii) with respect to subset β, then α ≥N β.
If the subset α verifies (ii) and (iii) with respect to subset β, then α ≤N β.
If the subset α verifies (i) and (ii) with respect to subset β, then there is no neutrosophic order

(inequality) between α and β.

For example, between a and (−a+) there is no neutrosophic order, similarly between a and
−0+

a .
Similarly, if the subset α verifies (i), (ii) and (iii) with respect to subset β, then there is no

neutrosophic order (inequality) between α and β.

37. Open Neutrosophic Research

The quantity or measure of “many of its elements” of the above (i), (ii), or (iii) conditions depends
on each neutrosophic application and on its neutrosophic experts.

An approach would be to employ the Neutrosophic Measure [23,24], that handles indeterminacy,
which may be adjusted and used in these cases.

In general, we do not try in purpose to validate or invalidate an existing scientific result, but
to investigate how an existing scientific result behaves in a new environment (that may contain
indeterminacy), or in a new application, or in a new interpretation.

38. Nonstandard Neutrosophic Inequalities

For the neutrosophic nonstandard inequalities, we propose, based on the previous six neutrosophic
equalities, the following.

(−a) <N, a <N (a+) (138)

Since the standard real interval (a − ε, a) is below a, and a is below the standard real interval (a, a +

ε) by using the approximation provided by the nonstandard neutrosophic function µ, or because

∀x ∈ R∗+, a− x < a < a + x (139)

where x is of course a (nonzero) positive infinitesimal (the above double neutrosophic inequality
actually becomes a double classical standard real inequality for each fixed positive infinitesimal).

The converse double neutrosophic inequality is also neutrosophically true:

(a+) >N, a >N (−a) (140)

Another nonstandard neutrosophic double inequality:

(−a) ≤N (−a+) ≤N (a+) (141)

This double neutrosophic inequality may be justified since (−a+) = (−a)∪(a+) and, geometrically,
on the Real Number Line, the number a is in between the subsets −a = (a − ε, a) and a+ = (a, a + ε), so

(−a) ≤N (−a) ∪ (a+) ≤N (a+) (142)

Hence the left side of the inequality’s middle term coincides with the inequality first term, while
the right side of the inequality middle term coincides with the third inequality term.

Conversely, it is neutrosophically true as well:

(a+) ≥N (−a) ∪ (a+) ≥N (−a) (143)
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Also,
−
a ≤N

−0
a ≤N a ≤N

0+
a ≤N

+
a and

−
a ≤N

−+
a ≤N

−0+
a ≤N

+
a (144)

Conversely, they are also neutrosophically true:

+
a ≥N

0+
a ≥N a ≥N

−0
a ≥N

−
a and

+
a ≥N

−0+
a ≥N

−+
a ≥N

−
a respectively. (145)

If a > b, which is a (standard) classical real inequality, then we have the following neutrosophic
nonstandard inequalities.

a >N (−b), a >N
(
b+

)
, a >N

(
−b+

)
, a >N

−0
b , a >N

0+
b , a >N

−0+
b ; (146)

(−a) >N b, (−a) >N (−b), (−a) >N
(
b+

)
, (−a) >N

(
−b+

)
,
−
a >N

−0
b ,
−
a >N

0+
b ,
−
a >N

−0+
b ; (147)(

a+
)
>N b,

(
a+

)
>N (−b),

(
a+

)
>N

(
b+

)
,
(
a+

)
>N

(
−b+

)
,
+
a >N

−0
b ,

+
a >N

0+
b ,

+
a >N

−0+
b ; (148)

(−a+) >N b, (−a+) >N (−b), (−a+) >N (b+), (−a+) >N (−b+), etc. (149)

No Ordering Relationships
For any standard real number a, there is no relationship of order between the elements a and (−a+),

or between the elements a and (
−0+

a
)

(150)

Therefore, NRMB is a neutrosophically partially order set.

If one removes all binads from NRMB, then (NRMB, ≤N) is neutrosophically totally ordered. (151)

Theorem 10. Using the nonstandard general notation one has:
If a > b, which is a (standard) classical real inequality, then

m1a >N
m2
b for any m1, m2 ∈

{
, −, −0, +, +0, −0, −0+

}
. (152)

Conversely, if a < b, which is a (standard) classical real inequality, then

m1a <N
m2
b for any m1, m2 ∈

{
, −, −0, +, +0, −0, −0+

}
. (153)

39. Nonstandard Neutrosophic Equalities

Let a, b be standard real numbers; if a = b that is a (classical) standard equality, then

(−a) =N (−b), (a+) =N (b+), (−a+) =N (−b+), (154)(
−0
a
)
=N

(
−0
b
)
,
(

0+
a
)
=N

(
0+
b
)
,
(
−0+

a
)
=N

(
−0+

b
)

(155)

40. Nonstandard Neutrosophic Belongingness

On the nonstandard real set NRMB, we say that

m
c ∈N]

m1a ,
m2
b [ iff

m1a ≤N
m
c ≤N

m2
b , (156)
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where
m1, m2, m ∈ {, −, −0, +, +0, −+, −0+}. (157)

We use the previous nonstandard neutrosophic inequalities.

41. Nonstandard Hesitant Sets

Nonstandard Hesitant sets are sets of the form:

A = {a1, a2, . . . , an}, 2 ≤ n < ∞, A ⊂N NRMB, (158)

where at least one element ai0 , 1 ≤ i0 ≤ n, is an infinitesimal, a monad, or a binad (of any type); while
other elements may be standard real numbers, infinitesimals, or also monads or binads (of any type).

If the neutrosophic components T, I, and F are nonstandard hesitant sets, then one has a
Nonstandard Hesitant Neutrosophic Logic/Set/Probability.

42. Nonstandard Neutrosophic Strict Interval Inclusion

On the nonstandard real set NRMB,

]
m1a ,

m2
b [⊂N]

m3c ,
m4
d [ (159)

iff
m3c ≤N

m1a <N
m2
b <N

m4
d or

m3c <N
m1a <N

m2
b ≤N

m4
d or

m3c <N
m1a <N

m2
b <N

m4
d (160)

43. Nonstandard Neutrosophic (Nonstrict) Interval Inclusion

On the nonstandard real set NRMB,

]
m1a ,

m2
b [⊆N]

m3c ,
m4
d [ iff (161)

m3c ≤N
m1a <N

m2
b ≤N

m4
d . (162)

44. Nonstandard Neutrosophic Strict Set Inclusion

The nonstandard set A is neutrosophically strictly included in the nonstandard set B, A ⊂N B, if:

∀x ∈N A, x ∈N B, and ∃y ∈N B : y <N A. (163)

45. Nonstandard Neutrosophic (Nonstrict) Set Inclusion

The nonstandard set A is neutrosophically not strictly included in the nonstandard set B,

A ⊆N B, iff: (164)

∀x ∈N A, x ∈N B. (165)

46. Nonstandard Neutrosophic Set Equality

The nonstandard sets A and B are neutrosophically equal,

A =N B, iff: (166)

A ⊆N B and B ⊆N A. (167)
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47. The Fuzzy, Neutrosophic, and Plithogenic Logical Connectives ∧, ∨,→

All fuzzy, intuitionistic fuzzy, and neutrosophic logic operators are inferential approximations, not
written in stone. They are improved from application to application.

Let’s denote:

∧F, ∧N, ∧P representing respectively the fuzzy conjunction, neutrosophic
conjunction, and plithogenic conjunction;

(168)

similarly

∨F, ∨N, ∨P representing respectively the fuzzy disjunction, neutrosophic
disjunction, and plithogenic disjunction,

(169)

and
→F,→N,→P representing respectively the fuzzy implication, neutrosophic

implication, and plithogenic implication.
(170)

I agree that my beginning neutrosophic operators (when I applied the same fuzzy t-norm, or the
same fuzzy t-conorm, to all neutrosophic components T, I, F) were less accurate than others developed
later by the neutrosophic community researchers. This was pointed out in 2002 by Ashbacher [25] and
confirmed in 2008 by Rivieccio [26]. They observed that if on T1 and T2 one applies a fuzzy t-norm,
for their opposites F1 and F2, one needs to apply the fuzzy t-conorm (the opposite of fuzzy t-norm),
and reciprocally.

About inferring I1 and I2, some researchers combined them in the same directions as T1 and T2.
Then,

(T1, I1, F1) ∧N (T2, I2, F2) = (T1 ∧F T2, I1 ∧F I2, F1 ∨F F2), (171)

(T1, I1, F1) ∨N (T2, I2, F2) = (T1 ∨F T2, I1 ∨F I2, F1 ∧F F2), (172)

(T1, I1, F1)→N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) = (F1 ∨F T2, I1 ∨F I2, T1 ∧ F F2). (173)

others combined I1 and I2 in the same direction as F1 and F2 (since both I and F are negatively qualitative
neutrosophic components, while F is qualitatively positive neutrosophic component), the most used
one is as follows.

(T1, I1, F1) ∧N (T2, I2, F2) = (T1 ∧F T2, I1∨F I2, F1 ∨F F2), (174)

(T1, I1, F1) ∨N (T2, I2, F2) = (T1 ∨F T2, I1 ∧F I2, F1 ∧F F2), (175)

(T1, I1, F1)→N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) = (F1 ∨F T2, I1 ∧F I2, T1 ∧F F2). (176)

Even more, recently, in an extension of neutrosophic set to plithogenic set [27] (which is a set
whose each element is characterized by many attribute values), the degrees of contradiction c( , ) between
the neutrosophic components T, I, and F have been defined (in order to facilitate the design of the
aggregation operators), as follows:

c(T, F) = 1 (or 100%, because they are totally opposite), c(T, I) = c(F, I) = 0.5
(or 50%, because they are only half opposite).

(177)

Then,

(T1, I1, F1) ∧P (T2, I2, F2) = (T1 ∧F T2, 0.5(I1∧F I2) + 0.5(I1∨F I2), F1 ∨F F2), (178)

(T1, I1, F1) ∨P (T2, I2, F2) = (T1 ∨F T2, 0.5(I1∨F I2) + 0.5(I1∧F I2), F1 ∧F F2), (179)

(T1, I1, F1)→N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) = (F1 ∨F T2, 0.5(I1∨F I2) + 0.5(I1∧F I2),
T1 ∧ F F2).

(180)
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48. Fuzzy t-norms and Fuzzy t-conorms

The most used ∧F (Fuzzy t-norms), and ∨F (Fuzzy t-conorms) are as follows.
Let

a, b ∈ [0, 1]. (181)

Fuzzy t-norms (fuzzy conjunctions, or fuzzy intersections):

a ∧F b = min{a, b}; (182)

a ∧F b = ab; (183)

a ∧F b = max{a + b − 1, 0}. (184)

Fuzzy t-conorms (fuzzy disjunctions, or fuzzy unions):

a ∨F b = max{a, b}; (185)

a ∨F b = a + b - ab; (186)

a ∨F b = min{a + b, 1} (187)

49. Nonstandard Neutrosophic Operators

Nonstandard Neutrosophic Conjunctions

(T1, I1, F1) ∧N (T2, I2, F2) = (T1 ∧F T2, I1∨F I2, F1 ∨F F2) =

(inf N(T1, T2), supN(I1, I2), supN(F1, F2))
(188)

(T1, I1, F1) ∧N (T2, I2, F2) = (T1 ∧F T2, I1∨F I2, F1 ∨F F2) =

(T1 ×N T2, I1 +N I2 −N I1 ×N I2, F1 +N F2 −N F1 ×N F2)
(189)

Nonstandard Neutrosophic Disjunctions

(T1, I1, F1) ∨N (T2, I2, F2) = (T1 ∨F T2, I1 ∧F I2, F1 ∧F F2) =

(supN(T1, T2), inf N(I1, I2), inf N(F1, F2))
(190)

(T1, I1, F1) ∨N (T2, I2, F2) = (T1 ∨F T2, I1 ∧F I2, F1 ∧F F2) =

(T1 +N T2 −N T1 ×N T2, I1 ×N I2, F1 ×N F2)
(191)

Nonstandard Neutrosophic Negations

¬(T1, I1, F1) = (F1, I1, T1) (192)

¬(T1, I1, F1) = (F1, (1+) -N I1, T1) (193)

Nonstandard Neutrosophic Implications

(T1, I1, F1)→N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) = (F1 ∨F T2, I1 ∧F I2, T1 ∧ F F2)
= (F1 +N T2 −N F1 ×N T2, I1 ×N I2, T1 ×N F2)

(194)
(T1, I1, F1)→N (T2, I2, F2) = (F1, (1+) −N I1, T1) ∨N (T2, I2, F2)

= (F1 ∨F T2, ((1+) −N I1) ∧F I2, T1 ∧ F F2) = (F1 +N T2 −N F1 ×N T2, ((1+) −N I1) ×N I2, T1 ×N F2)
(195)

Let P1(T1, I1, F1) and P2(T2, I2, F2) be two nonstandard neutrosophic logical propositions, whose
nonstandard neutrosophic components are, respectively,

T1, I1, F1, T2, I2, F2 ∈N NRMB. (196)
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50. Numerical Examples of Nonstandard Neutrosophic Operators

Let us take a particular numeric example, where

P1 =N (
0+
0.3 ,

−+
0.2 , 0.4), P2 =N (

−0
0.6 ,

−0+
0.1 ,

+
0.5 ) (197)

are two nonstandard neutrosophic logical propositions.
We use the nonstandard arithmetic operations previously defined Numerical Example of Nonstandard

Neutrosophic Conjunction

0+
0.3 ×

−0
0.6 =N [0.3, 0.3 + ε1) × (0.6− ε2, 0.6) = (0.18− 0.3ε2, 0.18 + 0.6ε1) =N

−0+
0.18 (198)

−+
0.2 +N

−0+
0.1 −N

−+
0.2 ×N

−0+
0.1 =N [(0.2− ε1, 0.2)∪ (0.2, 0.2 + ε1)] + (0.1− ε2, 0.1 + ε2)

−[(0.2− ε1, 0.2)∪ (0.2, 0.2 + ε1)] × (0.1− ε2, 0.1 + ε2)

= [(0.3− ε1 − ε2, 0.3 + ε2)∪ (0.3− ε2, 0.3 + ε1 + ε2)]

−[(0.2− ε1) × (0.1− ε2), (0.02 + 0.2ε2)]∪ [(0.02− 0.2ε2), (0.2 + ε1) × (0.1 + ε2)]

= [
−0+
0.3 ∪

−0+
0.3 ] − [

−0+
0.02 ∪

−0+
0.02 ] = [

−0+
0.3 ] − [

−0+
0.02 ] = 0.3

−0+
− 0.02 =N

−0+
0.28

(199)

0.4 +N
+

0.5 =N [0.4, 0.4] + (0.5, 0.5 + ε1) − [0.4, 0.4] × (0.5, 0.5 + ε1)

= (0.4 + 0.5, 0.4 + 0.5 + ε1) − (0.4× 0.5, 0.4× 0.5 + 0.4ε1)

= (0.9, 0.9 + ε1) − (0.2, 0.2 + 0.4ε1)

= (0.9− 0.2− 0.4ε1, 0.9 + ε1 − 0.2) = (0.7− 0.4ε1, 0.7 + ε1) =N
−0+
0.70

(200)

Hence

P1 ∧ P2 =N (
−0+
0.18 ,

−0+
0.28 ,

−0+
0.70 ) (201)

Numerical Example of Nonstandard Neutrosophic Disjunction

0+
0.3 +N

−0
0.6 −

0+
0.3 ×N

−0
0.6 =N

{
[0.3, 0.3 + ε1) + (0.6− ε1, 0.6]

}
−

{
[0.3, 0.3 + ε1) × (0.6− ε1, 0.6]

}
= (0.9− ε1, 0.9 + ε1) − (0.18− 0.3ε1, 0.18 + 0.6ε1) = (0.72− 1.6ε1, 0.72 + 1.3ε1) =N

−0+
0.72

(202)

−+
0.2 ×N

−0+
0.1 =N

(
0.2
−0+
× 0.1

)
=N

−0+
0.02 (203)

0.4×N
+

0.5 =N

(
0.4

+
× 0.5

)
=N

+
0.20 (204)

Hence

P1 ∨N P2 =N (
−0+
0.72,

−0+
0.02,

+
0.20) (205)

Numerical Example of Nonstandard Neutrosophic Negation

¬NP1 =N ¬N(
0+
0.3 ,

−+
0.2 , 0.4) =N (0.4,

−+
0.2 ,

0+
0.3 ) (206)

Numerical Example of Nonstandard Neutrosophic Implication

(P1 → NP2) ⇔ N(¬NP1 ∨N P2) =N (0.4,
−+
0.2 ,

0+
0.3 )∨N (

−0
0.6 ,

−0+
0.1 ,

+
0.5 ) (207)
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Afterwards,

0.4 +N
−0
0.6 − 0.4×N

−0
0.6 =N

(
0.4
−0
+ 0.6

)
−N

(
0.4
−0
× 0.6

)
=N

−0
1.0 −N

−0
0.24 =N

−0+
0.76 (208)

−+
0.2 ×N

−0+
0.1 = N

−0+
0.02 (209)

0+
0.3 ×

+
0.5 =N

+
0.15 (210)

whence

¬NP1 =N (
−0+
0.76 ,

−0+
0.02 ,

+
0.15 ) (211)

Therefore, we have showed above how to do nonstandard neutrosophic arithmetic operations on
some concrete examples.

51. Conclusions

In the history of mathematics, critics on nonstandard analysis, in general, have been made by
Paul Halmos, Errett Bishop, Alain Connes, and others.

That’s why we have extended in 1998 for the first time the monads to pierced binad, and then in
2019 for the second time we extended the left monad to left monad closed to the right, the right monad
to right monad closed to the left, and the pierced binad to unpierced binad. These were necessary
in order to construct a general nonstandard neutrosophic real mobinad space, which is closed under
the nonstandard neutrosophic arithmetic operations (such as addition, subtraction, multiplication,
division, and power), which are needed in order to be able to define the nonstandard neutrosophic
operators (such as conjunction, disjunction, negation, implication, and equivalence) on this space, and
to transform the newly constructed nonstandard neutrosophic real mobinad space into a lattice of first
order (as partially ordered nonstandard set, under the neutrosophic inequality ≤N) and a lattice of
second type (as algebraic structure, endowed with two binary laws: neutrosophic infimum (infN) and
neutrosophic supremum (supN)).

As a consequence of extending the nonstandard analysis, we also extended the nonstandard
neutrosophic logic, set, measure, probability and statistics.

As future research it would be to introduce the nonstandard neutrosophic measure, and to find
applications of extended nonstandard neutrosophic logic, set, probability into calculus, since in calculus
one deals with infinitesimals and their aggregation operators, due to the tremendous number of
applications of the neutrosophic theories [28].
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Abstract: Shale gas energy is the most prominent and dominating source of power across the globe.
The processes for the extraction of shale gas from shale rocks are very complex. In this study,
a multiobjective optimization framework is presented for an overall water management system
that includes the allocation of freshwater for hydraulic fracturing and optimal management of the
resulting wastewater with different techniques. The generated wastewater from the shale fracking
process contains highly toxic chemicals. The optimal control of a massive amount of contaminated
water is quite a challenging task. Therefore, an on-site treatment plant, underground disposal
facility, and treatment plant with expansion capacity were designed to overcome environmental
issues. A multiobjective trade-off between socio-economic and environmental concerns was
established under a set of conflicting constraints. A solution method—the neutrosophic goal
programming approach—is suggested, inspired by independent, neutral/indeterminacy thoughts
of the decision-maker(s). A theoretical computational study is presented to show the validity and
applicability of the proposed multiobjective shale gas water management optimization model and
solution procedure. The obtained results and conclusions, along with the significant contributions,
are discussed in the context of shale gas supply chain planning policies over different time horizons.

Keywords: intuitionistic fuzzy parameters; uncertainty modeling; neutrosophic goal programming
approach; shale gas water management system

1. Introduction

Energy sources play a dynamic role in the development, nourishment, and enrichment reputation
of any country. Presently, many conventional sources of energy are being used for energy production,
but shale gas energy is booming among different energy sources [1–3]. Apart from conventional sources
of energy, shale gas—which is located within shale rocks—is the most promising source of natural gas.
Recently, shale gas has become an emerging source of natural gas across the world [4,5]. The United
States is the second-richest country after China in terms of the abundance of shale gas resources. Since
the start of this century, significant interest has been shown in the potential extraction of shale gas
across the world [6–8]. In 2000, only 1% of the US natural gas production was contributed by shale
gas energy; by 2010, it was more than 20%, and according to predictions of the US government’s
Energy Information Administration (EIA), by 2035 more than 46% of the US’ natural gas supply will
be from shale gas [9]. The first extraction of shale gas from shale rocks was done in Fredonia (New
York) in 1821 by using shallow and low-pressure fractures. However, horizontal drilling started in the
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1930s, and the first well was fractured in the US in 1947. Presently, shale gas potential extraction and
enriched abundance in many nations are being investigated. According to Sieminski et al. [10], in 2013,
only a few countries (e.g., the US, Canada, and China) have sufficient shale gas enrichment, and future
production is planned at commercial scale [10]. China has an apparent strategy to dramatically
grow its shale gas production and investment, which has been restricted by its insufficient approach
to water, land, and the latest technology. Shale hosts rocks trapping potential shale gas quantities
that have numerous common properties, namely, being composed of organic material, a mature
petroleum source, containing a high amount of natural gas in the thermogenic gas window spread
inside the Earth’s crust where there is high heat and pressure being applied to convert petroleum into
natural gas. Most commonly, hydraulic fracturing (also known as fracking) and horizontal drilling
are two dominant methods that are being used in the process of shale gas extraction across the world.
The high concentration of released toxic and contaminated wastewater from the extraction and use
of shale gas affects the environment. A challenge in the shale gas extraction process is preventing
environmental pollution. This depends on drilling wells and their capacity, which varies with shale
use. Water cannot be reused until a well is fractured and the water starts to withdraw from the well.
A study was published by Kerr [11] in May 2011 that strongly suggested shale gas wells contain a
rigorous abundance of toxic surface groundwater flows with flammable methane in North-Eastern
Pennsylvania. Although the presented study was confined to the contamination of water, the impact
in other areas that would be dug out for shale extraction purposes was not discussed.

Over the past few years, various research works have been published suggesting, in the context
of optimal production policies, a selection area, supply chain network, and socio-economic balancing
during shale gas extraction at the commercial level. Lutz et al. [12] presented a theoretical overview
of shale gas development in the context of a more prominent resource-producing country such as
the United States. The quantification of shale gas energy and wastewater generation throughout
Pennsylvania was revealed with consolidated data obtained from 2189 wells. The concluding remarks
were contrary to the current perception regarding the shale gas extraction-to-wastewater evulsion
ratio, transportation, disposal facilities, treatment strategies, and the associated factors in the shale
gas extraction processes. Yang et al. [13] presented the optimum usage of the water life cycle for
drilled well-peds through a discontinuous-time bi-stage stochastic mixed-integer linear programming
(SMILP) optimization framework under uncertainty. The model was optimized with a set of long-term
historical data. The discussed approach was applied to two Marcellus shale gas uses, which showed
the effectiveness of the addressed study. Yang et al. [14] discussed the optimal usage of water in the
fracking and drilling mechanism during shale gas extraction processes at commercial scale, and also
formulated a new mixed-integer linear programming (MILP) problem that inherently optimizes the
capital investment for an optimal shale gas yielding scheme. A case study was implemented in
the proposed optimization scenario. Li and Peng [15] investigated a new solution scheme based on
interval-valued hesitant fuzzy information for the selection of promising shale gas areas, and discussed
the applicability of the proposed approach by selecting the shale gas areas using multi-criteria decision
making (MCDM). Although shale gas extraction has been done for over 100 years in two different
prominent basins of the United States (i.e., the Appalachian Basin and the Illinois Basin), the wells
seldom result in profitable production. The current shale gas extraction process, consisting of horizontal
drilling and hydraulic fracturing, has made shale gas synthesis more advantageous.

In April 2012 [16], the cost of extraction incurred over shale gas in different coastal parts of the
UK was approximated to be much higher than $200 per barrel, which was compared to oil prices of
about $120 per barrel in the UK North Sea. North America has emerged as one of the potential leaders
in developing and producing shale energy. In the US and Canada, after the successful economic
accomplishment of the Barnett Shale use in Texas, the exploration of promising new sources of
shale gas is being made. Gao and You [17] designed an active water cycle configuration for the
shale gas extraction process and re-formulated it as a mixed-integer linear fractional programming
(MILFP) optimization model under different objectives and sets of constraints. The models were
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globally optimized using various approaches such as the parametric method, a reformulation
linearization approach, the branch and bound method, and the Charnes–Cooper transformation
technique. The addressed mathematical models were applied to two case studies based on Marcellus
shale play, in which on-site treatment techniques of wastewater gained importance in generating
freshwater storage. Sang et al. [18] discussed a numerical optimization model of desorption and
adsorption processes for hydraulic fracturing stimulations that was optimized by assuming polar
co-ordinate and balance space, respectively. To estimate the receptacle volume of drilled horizontal
shale well reservoirs, Gao and You [19] addressed a practical framework for the optimal flow of
shale energy networks. The designed configuration comprises various coherent components such
as freshwater, shale energy, wastewater management, transportation, and disposal facility with
treatment plant options. The formulated models were built in the form of a mixed-integer nonlinear
programming (MINLP) problem. The obtained results revealed the trade-off between economic and
environmental objectives. Furthermore, Guerra et al. [20] also discussed the mathematical formulation
and implementation of a comprehensive shale gas production framework with the integration of the
water supply chain management system. The proposed optimization framework was illustrated with
two case studies with different leading components of the shale gas production systems. Bartholomew
and Mauter [21] also developed a multiobjective mixed-integer linear programming framework to
highlight the trade-off between financial cost and human health & environment (HHE) costs in
the overall shale gas water management system. The system’s objectives were defined effectively,
inherently representing different financial aspects of the shale gas production planning problem.
Zhang et al. [22] presented a specific study on shale gas wastewater management systems under
uncertainty. The presented optimization framework for shale gas wastewater management system
corresponds to the disposal and treatment facilities under the expansion of treatment capacity. The
proposed model has been designed by considering fuzzy and stochastic parameters with feasibility
degree and probability distribution function at the different significance level. The concluding remarks
revealed the optimal wastewater management in cases where underground disposal capacity is
scarce. The uncertainty involved in the parameter reduced the reliability risk factor in shale gas
production. In the present competitive epoch, different shale-gas-producing countries have motivated
the wholesome and challenging study of shale gas production policies and the optimal supply chain
network configuration. Lira-Barragán et al. [23] investigated a mathematical programming formulation
for integrating water networks consumed for hydraulic fracturing processes in shale gas extraction.
The proposed uncertainty pertained to the use of water for a different purpose and highlighted
probabilistic aspects. Moreover, the developed models also cover the scheduling problem associated
with the whole modeling framework for shale gas extraction. The different expected objective functions
were incorporated, which led to the existence of uncertainty in the modeling approach. Interested
researchers can find recent publications on shale gas development and future research scope in Chen
et al. [24], Knee and Masker [25], Lan et al. [26], Ren et al. [27], Zhang et al. [28], Denham et al. [29],
Al-Aboosi and El-Halwagi [30], Jin et al. [31], Ren and Zhang [32], and Wang et al. [33].

Research Gaps and Contribution

Shale gas extraction planning models and optimal strategic implementation inherently depend on
various parametric factors that are actively indulged in the decision-making process. The requirement
of a tremendous amount of freshwater for hydraulic fracturing (i.e., between 7000 and 40,000 m3 per
well) becomes challenging. The assessment of different freshwater sources is somewhat uneconomic,
but other extractions can fulfill freshwater demand. The produced wastewater management system is
also an indispensable issue and is very important in shale gas production planning models.

Many recent publications, such as Guo et al. [34], Gao et al. [35], Chebeir et al. [36], Chen et al. [37],
Drouven and Grossmann [38], He et al. [39], and Wang et al. [40] have discussed different optimal
modeling approaches for shale gas water management systems with socio-economic and environmental
concerns. All of the above studies are confined to only uncertain modeling approaches, and have not
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discussed uncertainty among parameters’ values; however, Zhang et al. [22] incorporated vagueness
among parameters and represented it by fuzzy and stochastic quantification methodology. However,
the study proposed by Zhang et al. [22] is lagging in two more practical aspects. First, it may not
always be possible to have historical data for to the stochastic technique can be applied; additionally,
due to some hesitation regarding imprecise parameters, the fuzzy number may not be an appropriate
representative of uncertain parameters. Hence, better representation of the degree of hesitation under
vagueness or imprecision can be made by using the intuitionistic fuzzy number, which considers
the degree of belongingness as well as non-belongingness of the element in the possible set. Second,
Zhang et al. [22] only designed the optimization framework for the optimal management of wastewater
throughout the shale gas extraction processes, and did not consider the management of freshwater,
which is also an integrated part of the whole shale gas extraction over time horizons. Thus, in this
study we propose the unification of the two aspects discussed above. The proposed multiobjective
shale gas water management system optimization model was designed after considering the most critical
aspects of overall water management planning and optimization epoch. Furthermore, the concept of a
neutrosophic goal programming approach is new and has not yet been applied in the field of such an
emerging source of energy. The proposed model also ensures the trade-off between the socio-economic
and environmental effects of shale gas production policies more realistically. The proposed shale gas
optimization model also provides an opportunity to adopt the available on-site treatment technology
along with the option of expanding the treatment plant, which would be beneficial for Pennsylvania
because underground disposal facilities are scarce and most often wastewater is supplied to nearby cities
in Ohio. The rest of the paper is summarized as follows:

In Section 2, the methodologies and technical definitions regarding intuitionistic fuzzy parameters
and the neutrosophic goal programming approach (NGPA) are discussed, while Section 3 represents
the multiobjective shale gas water management optimization model and implementation of the NGPA
algorithm. A hypothetical case study is examined in Section 4 that shows the applicability and validity
of the proposed approach. Finally, concluding remarks and findings are highlighted based on the
present work in Section 5.

2. Methodology

The shale gas optimization and modeling framework discussed in this paper enviably involve
significant work-flow procedures. The involvement of various critical terminological aspects in the
proposed modeling and computational approach makes the shale gas optimization problem more
pervasive. In order to represent these aspects, we have used some technical terminology which is able
to define each and every aspect of the proposed model effectively and efficiently. The mathematical
technical terminologies used in this study are intuitionistic fuzzy parameters [41–43] and those
from multiobjective optimization problems [44–46] and the neutrosophic goal programming approach,
which is based on the neutrosophic decision set (see [47–49]). On the basis of these mathematical
technical terminologies, we developed an effective modeling and optimization framework for a shale
gas water management system that dynamically characterizes the freshwater requirement and the
dispensation of the generated wastewater from shale gas wells. The proposed model for shale gas
water management systems contemplates different kinds of cost parameters (e.g., acquisition cost,
transportation cost, treatment cost, disposal cost, and capital investment) involved in the accumulation
process of freshwater and the dispensation of the generated wastewater from the shale gas extraction
process. Apart from the cost, different parameters such as the freshwater storage capacity, underground
injection disposal capacity of wastewater, wastewater treatment capacity, and the capacity for the
expansion of wastewater treatment plants were considered in this study. Moreover, these parameters
are not always in deterministic/crisp form, despite containing some kind of ambiguity and vagueness.
This ambiguousness and vagueness can be represented by different uncertain parameters, such as fuzzy
Zhang et al. [22], intuitionistic fuzzy, stochastic Zhang et al. [22], and other uncertain forms. The fuzzy
parameters are only concerned with the maximization of membership degree (belongingness), whereas
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an intuitionistic fuzzy set is based on more intuition than a fuzzy set, as it deals with the maximization
of membership (belongingness) and the minimization of non-membership degree (non-belongingness)
of the element in the set. A stochastic parameter involves a probability distribution function with
known mean and variances based on the randomly occurring events.

Furthermore, the proposed modeling approach was designed and incorporated with
socio-economic and environmental facts. The potential production and distribution of shale gas energy
at the commercial level is not a boon unless and until the proper pertinent initiatives are undertaken in
order to overcome the by-products released by the shale gas extraction processes. Therefore,
the proposed modeling and optimization approach inherently involves more than one objective
(known as a multiobjective optimization problem), which is sufficient to justify the trade-off among
different critical socio-economic and environmental aspects of shale gas energy. The mathematical
formulation of multiple objectives ensures the economic and environmental aspects of shale gas
extraction procedures. To deal with the proposed multiobjective shale gas water management
optimization model, a neutrosophic goal programming approach was developed that reveals the actual
situation more appropriately. The proposed NGPA considers the independent indeterminacy/neutral
degree, which is the area of incognizance of a proposition’s value. The selection of the proposed NGPA
technique is quite effective, explanatory, and a good representative of real-life situations.

2.1. Intuitionistic Fuzzy Set

Definition 1 ([50]). (Intuitionistic fuzzy set (IFS)) Let there be a universal set Y; then, an IFS W̃ in Y is given
by the ordered triplets as follows:

W̃ = {y, µW̃(y), νW̃(y)| y ∈ Y},

where
µW̃(y) : Y → [0, 1]; νW̃(y) : Y → [0, 1],

with conditions
0 ≤ µW̃(y) + νW̃(y) ≤ 1,

where µW̃(y) and νW̃(y) denote the membership and non-membership functions of the element y ∈ Y into the
set W̃.

Definition 2 ([51] (Intuitionistic fuzzy number)). An intuitionistic fuzzy set W̃ =

{y, µW̃(y), νW̃(y)| y ∈ Y} of the real number R is said to be an intuitionistic fuzzy number if the
following condition holds:

(i) W̃ should be intuitionistic fuzzy normal and convex.
(ii) µW̃(y) and νW̃(y) should be upper and lower semi-continuous functions.

(iii) Supp W̃ = {y ∈ R; νW(y) < 1} should be bounded.

Definition 3 ([43]). (Triangular intuitionistic fuzzy number) An intuitionistic fuzzy number W̃ is said to be a
triangular intuitionistic fuzzy number if the membership function µW̃(y) and non-membership function νW̃(y)
are given by:

µW̃(y) =


y− a1

b− a1
, if a1 ≤ y ≤ b,

1, if y = b,
a2 − y
a2 − b

, if b ≤ y ≤ a2

and
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νW̃(y) =


b− y
b− a3

, if a3 ≤ y ≤ b,

0, if y = b,
y− b
a4 − b

, if b ≤ y ≤ a4,

where a3 ≤ a1 ≤ b ≤ a2 ≤ a4 and is denoted by W̃ = {(a1, b, a2; µW̃), (a3, b, a4; νW̃)}.

Definition 4 ([42]). (Expected interval for intuitionistic fuzzy number) Let us consider that there exists an
intuitionistic fuzzy number W̃ which belongs to the set of real numbers R with (a1, a2, a3, a4; b1, b2, b3, b4) ∈ IR
such that a1 ≤ a2 ≤ a3 ≤ a4 ≤ b1 ≤ b2 ≤ b3 ≤ b4. The four functions fW̃(y), gW̃(y), hW̃(y), kW̃(y) : IR →
[0, 1] such that fW̃(y) and gW̃(y) are non-decreasing and hW̃(y) and kÃ(y) are non-increasing functions, then
the intuitionistic fuzzy number W̃ = {y, µW̃(y), νW̃(y) : y ∈ Y} can be represented by membership and
non-membership functions stated as follows:

µW̃(y) =


0, if y ≤ a1 or y ≥ a4,
fW̃(y), if a1 ≤ y ≤ a2,
gW̃(y), if a3 ≤ y ≤ a4,
1, if a2 ≤ y ≤ a3

and

νW̃(y) =


1, if y ≤ b1 or y ≥ b4,
hW̃(y), if b1 ≤ y ≤ b2,
kW̃(y), if b3 ≤ y ≤ b4,
0, if b2 ≤ y ≤ b3.

Furthermore, Grzegrorzewski [52] discussed the expected interval for the intuitionistic fuzzy number
W̃ = {a1, a2, a3, a4; b1, b2, b3, b4} as a crisp interval and presented it as follows:

EI(W̃) = [E1(W̃), E2(W̃)]. (1)

The lower and upper values of the expected interval for the intuitionistic fuzzy number W̃ is defined as
given below:

E1(W̃) =
b1 + a2

2
+
∫ b2

b1

hW̃(y)−
∫ a2

a1

fW̃(y),

E2(W̃) =
a3 + b4

2
+
∫ a4

a3

gW̃(y)−
∫ b4

b3

kW̃(y),

where
hW̃(y) =

y− b1

b2 − b1
, fW̃(y) =

y− a1

a2 − a1
,

kW̃(y) =
y− b4

b3 − b4
, gW̃(y) =

y− a4

a3 − a4
.

Definition 5 ([42]). (Expected interval and value for triangular intuitionistic fuzzy number) Suppose that
W̃ = {(a1, b, a2; µW̃), (a3, b, a4; νW̃)} is a triangular intuitionistic fuzzy number with membership and
non-membership functions µW̃(y) and νW̃(y); then, the expected interval of the triangular intuitionistic
fuzzy number by using the above definition can be obtained as follows:

E1(W̃) =
b1 + a2

2
+
∫ b2

b1

hW̃(y)−
∫ a2

a1

fW̃(y) =
3a + b1 + (a− b1)νW̃ − (a− a1)µW̃

4
(2)

and
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E2(W̃) =
a3 + b4

2
+
∫ a4

a3

gW̃(y)−
∫ b4

b3

kW̃(y) =
3a + b2 + (a2 − a)µW̃ + (a− b2)νW̃

2
. (3)

Grzegrorzewski [52] also suggested the expected value for the intuitionistic fuzzy number with the help of
lower and upper values of the expected interval. Therefore, the expected value for the triangular intuitionistic
fuzzy number is obtained as follows:

EV(W̃) =

[
E1(W̃) + E2(W̃)

2

]
. (4)

Definition 6. The general mathematical programming formulation of a multiobjective optimization problem
with k objectives, j constraints, and q variables can be stated as follows:

Optimize (Z1, Z2, · · · , Zk) k = 1, 2, · · · , K

s.t. gj(x) ≤ dj, j = 1, 2, · · · , j1;

gj(x) ≥ dj, j = j1 + 1, j1 + 2, · · · , j2;

gj(x) = dj, j = j2 + 1, j2 + 2, · · · , J;

xq ≥ 0, q = 1, 2, 3, · · · , Q; xq ∈ X,

(5)

where Zk are a set of k different conflicting objectives, gj are real-valued functions, and dj are real numbers. xq is
a q-dimensional decision variable vector and X is a feasible solution set.

2.2. Neutrosophic Goal Programming Approach (NGPA)

In the past few decades, the extended version of the fuzzy set (FS) and intuitionistic fuzzy set
(IFS) have been introduced. In order to reflect the insightful concept of indeterminacy or neutral
thoughts in decision making, a new set called the neutrosophic set was introduced by Smarandache [47].
The technical erm neutrosophic holds two different words, which are neutre derived from French and
meaning “neutral”, and sophia, adopted from Greek and meaning “skill” or “wisdom”. Therefore,
the word “neutrosophic” concretely means “knowledge of neutral thoughts”. The FS is mainly
concerned with the maximization of the degree of belongingness (membership function) of an element
in the set, whereas the IFS deals with two aspects, namely, the degree of belongingness (membership
function) and the degree of non-belongingness (non-membership function) of the element in the
set. The incorporation of the independent neutral/indeterminacy concept in the neutrosophic set
differentiates itself from FS and IFS, providing more strength to decision-making processes.

Moreover, many real-life circumstances may not be easy to tackle with only the degree of
belongingness and non-belongingness of the element in the set. However, the degree up to some level
of belongingness and non-belongingness would be a significant touchstone in the decision-making
process. For example, if we take the opinion about the victory of team X in a cricket match,
and supposing they have the possible chance of winning equalling 0.8, the chance team X has
of losing would be 0.4 and the chance that match would be a tie would be 0.5 (see [53]). All the
possibilities are independent of each other and can take any value between 0 and 1. Therefore, this sort
of decision-making problem is outside of the domain of FS and IFS, and consequently beyond the
periphery of fuzzy programming and intuitionistic fuzzy programming approaches, respectively.
Hence, independent indeterminacy conditions under the uncertainty domain are a more technical
perspective in real-life optimization problems (see [48,49,53]).

An efficient approach called the neutrosophic goal programming approach (NGPA) based on
the neutrosophic decision set [47] was designed in order to reach the best compromise solution of
multiobjective optimization problems. The NGPA inherently comprises three membership functions,
namely, the maximization of truth and indeterminacy degrees and the minimization of the falsity
degree present in any optimization problem. It permits policymakers to manifest independent neutral
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inferences about decision-making processes and provides an opportunity to effectively reach goals
using the NGPA technique.

Definition 7 ([47] (Neutrosophic Set)). Let there be a universal discourse Y such that y ∈ Y, then a
neutrosophic set W in Y is defined by three membership functions, namely, truth TW(y), indeterminacy IW(y),
and falsity FW(y), denoted by the following form:

W = {< y, TW(y), IW(y), FW(y) > |y ∈ Y},

where TW(y), IW(y), and FW(y) are real standard or non-standard subsets belonging to ]0−, 1+[, also given as,
TW(y) : y → ]0−, 1+[, IW(y) : Y → ]0−, 1+[, and FW(y) : Y → ]0−, 1+[. There is no restriction on the sum
of TW(y), IW(y) and FW(y), so we have

0− ≤ sup TW(y) + IW(y) + sup FW(y) ≤ 3+.

Definition 8 ([47]). Let there be two single-valued neutrosophic sets A and B, then C = (A ∪ B) with truth
TC(y), indeterminacy IC(y), and falsity FC(y) membership functions are given by:

TC(y) = max (TA(y), TB(y)),
IC(y) = min (IA(y), IB(y)),
FC(y) = min (FA(y), FB(y)) for each y ∈ Y.

Definition 9 ([47]). Let there be two single-valued neutrosophic sets A and B, then C = (A ∩ B) with truth
TC(y), indeterminacy IC(y), and falsity FC(y) membership functions are given by

TC(y) = min (TA(y), TB(y)),
IC(y) = max (IA(y), IB(y)),
FC(y) = max (FA(y), FB(y)) for each y ∈ Y.

The concept of fuzzy decision (D), fuzzy goal (G), and fuzzy constraint (C) was first discussed
by Bellman and Zadeh [44] and extensively used in many real-life decision-making problems under
fuzziness. Therefore, a fuzzy decision set can be defined as follows:

D = G ∩ C.

Equivalently, the neutrosophic decision set DN , with the set of neutrosophic goals and constraints,
can be defined as:

DN = (∩K
k=1Gk)(∩J

j=1Cj) = (y, TD(y), ID(y), FD(y) ),

where

TD(y) = min

{
TG1(y), TG2(y), ..., TGK (y)
TC1(y), TC2(y), ..., TCJ (y)

}
∀ y ∈ Y,

ID(y) = max

{
IG1(y), IG2(y), ..., IGK (y)
IC1(y), IC2(y), ..., ICJ (y)

}
∀ y ∈ Y,

FD(y) = max

{
FG1(y), FG2(y), ..., FGK (y)
FC1(y), FC2(y), ..., FCJ (y)

}
∀ y ∈ Y,

where TD(y), ID(y), and FD(y) are the truth, indeterminacy, and falsity membership functions of
neutrosophic decision set DN , respectively.
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In order to formulate the different membership functions for multiobjective optimization problems
(MOOPs), we defined the bounds for each objective function. The lower and upper bounds for each
objective function are represented by Lk and Uk which can be obtained as follows:

First, we solved each objective function as a single objective under the given constraints of the
problem. After solving k objectives individually, we have the k solutions set, X1, X2, ..., Xk. After that,
the obtained solutions are substituted for each objective function to provide the lower and upper
bounds for each objective, as given below:

Uk = max [Zk(Xk)] and Lk = min [Zk(Xk)] ∀ k = 1, 2, 3, ..., K. (6)

The bounds for k objective functions under the neutrosophic environment can be obtained as
follows:

UT
k = Uk, LT

k = Lk for truth membership,

U I
k = LT

k + sk, LI
k = LT

k for indeterminacy membership,

UF
k = UT

k , LF
k = LT

k + tk for falsity membership,

where sk and tk ∈ (0, 1) are predetermined real numbers assigned by decision maker(s) (DM(s)).
By using the above lower and upper bounds, we defined the linear membership functions under a
neutrosophic environment:

Tk(Zk(x)) =


1 i f Zk(x) < LT

k
UT

k −Zk(x)
UT

k −LT
k

i f LT
k ≤ Zk(x) ≤ UT

k

0 i f Zk(x) > UT
k ,

(7)

Ik(Zk(x)) =


1 i f Zk(x) < LI

k
U I

k−Zk(x)
U I

k−LI
k

i f LI
k ≤ Zk(x) ≤ U I

k

0 i f Zk(x) > U I
k ,

(8)

Fk(Zk(x)) =


1 i f Zk(x) > UF

k
Zk(x)−LF

k
UF

k −LF
k

i f LF
k ≤ Zk(x) ≤ UF

k

0 i f Zk(x) < LF
k .

(9)

In the above case, L(.)
k 6= U(.)

k for all k objective functions. If for any membership L(.)
k = U(.)

k , then
the value of these memberships will be equal to 1. The diagrammatic representation of the objective
function with different components of membership functions under a neutrosophic environment is
shown in Figure 1.

Moreover all the above three discussed membership degrees can be transformed into membership
goals according to their respective degrees of attainment. The highest degree of truth membership
function that can be achieved is unity (1), the indeterminacy membership function is neutral and
independent with the highest attainment degree half (0.5), and the falsity membership function can be
achieved with the highest attainment degree zero (0). Now the transformed membership goals under
a neutrosophic environment can be expressed as follows:

Tk(Zk(x)) + d−kT − d+kT = 1, (10)

Ik(Zk(x)) + d−kI − d+kI = 0.5, (11)

Fk(Zk(x)) + d−kF − d+kF = 0, (12)
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where d−kT , d+kT , d−kI , d+kI , d−kF, and d+kF are the over and under deviations such that d−kT .d+kT = 0, d−kF.d+kF =

0, and d−kF.d+kF = 0 for truth membership, indeterminacy membership, and falsity membership goals
under a neutrosophic environment.

Figure 1. Diagrammatic representation of truth, indeterminacy, and falsity membership degree for the
objective function.

Intuitionally, the aims are to maximize the truth and indeterminacy membership degrees of
neutrosophic objectives and constraints, and minimize the falsity membership degree of neutrosophic
objectives and constraints. The general formulation of the neutrosophic goal programming (NGP)
model for multiobjective optimization problem (5) is represented as follows:

Minimize Z =
K

∑
k=1

wkT .d−kT +
K

∑
k=1

wkI .d−kI +
K

∑
k=1

wkF.d+kF,

subject to

Tk(Zk(x)) + d−kT − d+kT ≥ 1;

Ik(Zk(x)) + d−kI − d+kI ≥ 0.5;

Fk(Zk(x)) + d−kF − d+kF ≤ 0;

Tk(Zk(x)) ≥ Ik(Zk(x));

Tk(Zk(x)) ≥ Fk(Zk(x));

Fk(Zk(x)) ≥ 0, d−kT .d+kT = 0;

d−kI .d
+
kI = 0, d−kF.d+kF = 0;

gj(x) ≤ dj, j = 1, 2, · · · , m1;

gj(x) ≥ dj, j = m1 + 1, m1 + 2, · · · , m2;

gj(x) = dj, j = m2 + 1, m2 + 2, · · · , m;

xi ≥ 0, i = 1, 2, 3, · · · , q; xi ∈ X;

d−kT , d+kT , d−kI , d+kI d−kF, d+kF ≥ 0 ∀ k,

(13)

where wkT , wkI , and wkF are the weights assigned to deviations of the truth, indeterminacy, and falsity
membership goals of each objective function, respectively. Now the assignment of corresponding
weighting schemes of different weights can be obtained as follows:

wkT =
1

UT
k − LT

k
, wkI =

1
U I

k − LI
k

, and wkF =
1

UF
k − LF

k
.

Hence, the optimum evaluation of multiobjective optimization problems by using the NGP
approach is a very useful technique as it involves the degree of indeterminacy, which is independent
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and certainly ensures the achievement of marginal evaluation of each membership goal by reducing
the deviational values under a neutrosophic environment.

3. Shale Gas Water Management System: Modeling and Optimization under Uncertainty

Shale gas is a rapidly emerging and unconventional source of energy found trapped in shale
rocks. The extraction process at the wholesale level is very complicated. Since shales usually possess
low permeability to permit significant fluid inflow to a well-bore, most shale wells are not adequate
sources of natural gas for commercial production. Other sources of natural gases include coal bed
methane, methane hydrates, and tight sandstones. Most commonly, the area in which shale gases are
trapped are known as resource plays. Shale has comparatively low matrix permeability, which affects
gas production at the commercial level and requires the fracturing process to supply permeability.
In the past few decades, shale gas has been produced from shale rocks with natural fractures. Shale
gas production seems to be booming in recent years due to the latest potential technology in hydraulic
fracturing (fracking), which has led in the direction of pervasive artificial fractures around good bores.
Horizontal drilling is often used in the shale gas extraction process. Lateral lengths up to 10,000 feet
(3000 m) within shale wells are dug out to create maximum borehole surface area in contact with the
shale. While injecting water with high pressure into shale rocks, chemicals are added to facilitate the
underground fracturing process, which releases natural gas. The fracturing fluid is primarily water
and contains approximately 0.5% chemical additives that are fully dissolved into the water. Depending
on the size of the area, millions of liters of water are used for fracking, which signifies that thousands
of liters of chemicals are injected into the subsurface.

The massive amount of contaminated surface water and groundwater with fracking fluids has
emerged as a problematic issue. Generally, accrued shale gas is usually trapped several thousand
feet below ground. Different challenging environmental concerns are often observed. For example,
methane migration, improper treatment of produced wastewater, and lack of an underground injection
disposal site. About 50% to 70% of the injected volume of contaminated water is generated after
fracking, and sufficient storage capacity for wastewater management is required. The remaining
volume of water remains in the subsurface. The hydraulic fracturing process leads to the perception
that it can lead to the contamination of groundwater aquifers. However, foul odors and very toxic local
water supply above-ground are also unavoidable truths about shale gas. Acid mine wastewater can be
released into groundwater, but it might cause significant contamination of underground freshwater.
Usually, the harmful impact and water pollution associated with wastewater and coal production
can be reduced to a certain extent in shale gas production. Apart from using water and industrial
chemicals, it may also be feasible to frack shale gas with only liquefied propane gas. This extraction
option simultaneously reduces water and environmental degradation. It can be implemented in
regions like Pennsylvania that have experienced a marginal increment in the freshwater requirement
for energy production. More explicitly, shale gas development in the United States represents less than
half a percent of total domestic freshwater consumption, although this quantity can reach as high as
25% in particularly arid regions.

Therefore, the proposed shale gas water management strategy has been designed to optimize
the allocation of water requirement for different purposes. The designed water supply chain network
configuration contains various components, such as the acquisition of freshwater and its transportation,
on-site treatment with different technology, underground injection disposal sites, and treatment plants
for wastewater with an option for expansion with a to and fro transportation network. Different
potential objectives addressing the project planning strategy were also considered in this present study.
A well-defined set of dynamic constraints were imposed to represent the modeling approach more
realistically. The integrated water flow supply chain network within shale gas planning periods is
shown in Figure 2. In Figure 2, the different echelons are presented to highlight the proposed shale gas
water management design. The flow of freshwater initiates from different freshwater sources S and is
then shipped to various shale sites I. After fracking processes, a possible part of the generated toxic
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water would be treated by on-site treatment technology O, and the remaining wastewater would be
used to dispatch for further management to different treatment plants or disposal sites J, respectively.
To enhance the treatment capacity of sewage treatment plants, an opportunity to adopt the different
expansion options M was incorporated along with the associated capital investment. Hence, the treated
wastewater can be reused for household purposes and in turn can yield significant revenues from
the reuse of water. The whole integrated water cycle continues to flow over different time horizons
T. Therefore, to assure the optimal flow of water among different echelons, the proposed water flow
network captures the actual behavior of flow-back and produced water during shale gas extraction
processes. The shale gas project planning model explicitly includes different indices’ set, decision
variables, and values of parameters shown in Table 1, which presents the significant characteristic
features during the shale gas synthesis process.

The proposed shale gas water flow network configuration is based on the following assumptions:

1. There is no scope for the transportation of water using pipelines throughout the planning horizons.
2. The expansion options of underground injection disposal sites have not been considered due to

the financial crisis or uneconomic aspects throughout the planning horizons.
3. The expansion of the treatment plant has been considered in order to avoid excess wastewater at

the subsurface level of underground water during all the planning periods.
4. An absolute option of on-site treatment technology has been included that enables the reuse of

wastewater within the shale sites throughout the planning horizons.
5. The restrictive margin was designed for the minimum and maximum capacity of wastewater

treatment by using different on-site treatment technologies throughout the planning horizons.
6. The overall produced wastewater volume was successfully managed by the proposed system

during all the planning horizons.

Figure 2. Representation of shale gas integrated water flow optimization network over time.

Florentin Smarandache (ed.) Collected Papers, VI

796



Table 1. Notions and descriptions.

Indices Descriptions

i Denotes the number of shale sites
j Represents the number of disposal sites and treatment plants
m Denotes the available options for the expansion capacity of the treatment plant
o Denotes the on-site treatment technologies
t Represents the time period
s Denotes the source of freshwater

Decision variables

FWs,i,t Amount of freshwater acquired from source s at shale site i in time period t
WTOi,o,t Amount of wastewater treated by on-site treatment technology o at shale site i in time

period t
WWi,j,t Total amount of wastewater generated at shale site i and received by disposal site and

treatment plant j in time period t
WWDi,j,t Amount of wastewater generated at shale site i and received by disposal site j in time

period t
WWTi,j,t Amount of wastewater generated at shale site i and received by treatment plant j in

time period t
Yj,m,t Binary variable representing the expansion capacity of the disposal site and treatment

plant j by expansion option m in time period t
YOi,o Binary variable representing that on-site technology o is applied at shale site i

Parameters

loo Recovery factor for treating wastewater with on-site treatment technology o
f dwi,t Freshwater demand at shale site i in time period t
f cas,t Freshwater supply capacity at source s in time period t
r fo Ratio of freshwater to wastewater required for blending after treatment with on-site

treatment technology o
wwdsj,t Capacity for wastewater at disposal site j in time period t
wwtpj,t Capacity for wastewater at treatment plant j in time period t
wdwj,t Total wastewater capacity at disposal site and treatment plant j in time period t
eoj,m,t Represents increased treatment capacity of wastewater treatment plant j by using

available expansion option m in time period t
caqs,t Denotes the unit acquisition cost of freshwater at source s in time period t
ct fs,i,t Denotes the unit transportation cost of freshwater from source s to shale site i in time

period t
ctwi,j,t Denotes the unit transportation cost of wastewater from shale site i to disposal site and

treatment plant j in time period t
ctrj,t Denotes the unit treatment cost of wastewater at treatment plant j in time period t
cdj,t Denotes the unit disposal cost of wastewater at disposal site j in time period t
rej,t Denotes the revenues from wastewater reuse from treatment plant j in time period t
rrj,t Denotes the reuse rate from wastewater treatment plant j in time period t
cexj,m,t Represents the investment cost of expanding the disposal site and treatment plant j by

expansion option m in time period t
oclo Denotes the minimum capacity for the on-site treatment of wastewater
ocuo Denotes the maximum capacity for the on-site treatment of wastewater

3.1. Objective Function

The first objective function is concerned with a different kind of cost incurred over the freshwater.
It is quite a challenging task to collect the optimal amount of freshwater directly from natural freshwater
sources; however, the option exists to acquire the freshwater from nearby the shale gas plant, which
results in a lower acquisition cost. The transportation of freshwater is also required, which again
appears as a transportation cost from source s to shale site i over period t, and both are of minimization
type. Therefore, the cost function (14) related to freshwater can be furnished as follows:
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Minimize Z1 =
S

∑
s=1

I

∑
i=1

T

∑
t=1

(caqs,t + ct fs,i,t)FWs,i,t. (14)

The second objective mainly focuses on a different kinds of cost levied over the wastewater.
It is crucial to manage the huge amount of contaminated or toxic wastewater released during the
shale gas energy generation process. The produced amount of wastewater can be handled by
either sending it to the treatment plants or by dumping into underground wastewater disposal
sites. Both techniques are associated with some cost known as treatment and disposal facility costs,
respectively. The transportation of wastewater from shale sites to different treatment plants and
disposal sites results in additional transportation costs associated with the wastewater. The total
revenues from the reuse of wastewater with some reuse rate are also associated with wastewater from
shale site i to disposal and treatment plant j over period t. Therefore, the cost function (15) related to
wastewater can be presented as follows:

Minimize Z2 =
I

∑
i=1

J

∑
j=1

T

∑
t=1

(ctrj,t + cdj,t + ctwi,j,t − rrj,t.rej,t)WWi,j,t. (15)

The third objective function provides the facility of proliferation at treatment plants and
underground disposal sites with some predetermined expansion option. The different expansion
options require capital investment, which is to be minimized with binary variable taking value 1 if the
expansion option m is adopted at treatment plant j over time period t; otherwise 0. Therefore the total
capital investment (16) for the expansion of wastewater treatment plant capacity can be summarized
as follows:

Minimize Z3 =
J

∑
j=1

M

∑
m=1

T

∑
t=1

(cexj,m,t).Yj,m,t. (16)

3.2. Constraints

The constraint given by (17) is related to freshwater demand at shale sites:
At each shale site, a certain quantity of freshwater is required for the hydraulic fracturing process.

The total amount of freshwater obtained from different sources is not sufficient to meet the demand
at shale sites, but it is indispensable to build up the other sources or by developing other techniques
to obtain the freshwater. Therefore on-site treatment technology with a recovery factor for treating
wastewater is also an important option to fulfill the demand of such a tremendous amount of freshwater.
Hence, the sum of the total amount freshwater acquired from different freshwater sources s and
freshwater obtained from various on-site treatment technologies o with the recovery factor for treating
wastewater must be greater than or equal to its total requirement at each shale site i over period t:

S

∑
s=1

FWs,i,t +
O

∑
o=1

loo ∗WTOi,o,t ≥ f dwi,t ∀ i, t. (17)

The constraint has given in (18) is related to the freshwater capacity at each source:
The total amount of freshwater obtained from different sources has some limitations in terms of

storage capacity at different sources. The optimal stock of freshwater at different sources may differ
marginally. It is necessary to ensure that the total amount of freshwater can be obtained without
substantially affecting the storage capacity of each freshwater source. Therefore, the total amount of
freshwater acquired from different sources s with the consumption at each shale site i must be less
than or equal to its storage capacity at source s over period t:

I

∑
i=1

FWs,i,t ≤ f cas,t ∀ s, t. (18)
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The constraint given in (19) is related to wastewater capacity at underground disposal sites:
The amount of wastewater generated after the fracturing process contains various toxic chemicals

dissolved in it. A proper disposal system with its associated available capacity must be built to
overcome fatal environmental effects. Therefore, it must be assured that the amount of wastewater
received at different disposal sites can be fully tackled. Thus, the amount of wastewater released from
shale site i and received at each disposal site j must be less than or equal to the presumable capacity of
each disposal site j over period t:

I

∑
i=1

WWDi,j,t ≤ wwdsj,t ∀ j, t. (19)

The constraint given in (20) is related to the wastewater capacity at each treatment plant with its
prevalence:

The wastewater treatment facility leads to the option of reusing wastewater. The amount of
wastewater liberated from different shale sites restrains the tremendous amount of harmful chemicals
that must be treated at the water treatment plant to ensure its reuse for different household purposes.
Thus, the amount of wastewater released from different shale sites i and dispatched to different
treatment plants j must be less than or equal to the sum of the total capacity of each treatment plant
with its several expansion options m over period t:

I

∑
i=1

WWTi,j,t ≤ wwtpj,t +
M

∑
m=1

eoj,m,t.Yj,m,t ∀ j, t. (20)

The constraint given in (21) is related to the overall wastewater capacity at the treatment plant
and disposal site:

The total amount of wastewater generated during the shale gas extraction process must be
confronted with proper cautionary measures. The option of the treatment plant and disposal site for
dealing with wastewater must be sufficient to conquer its harmful effects. Therefore it must be ensured
that the total amount of wastewater generated from the hydraulic fracturing process at shale site i is
less than or equal to its total capacity at the treatment plant and disposal site j over period t:

I

∑
i=1

WWi,j,t ≤ wdwj,t ∀ j, t. (21)

The constraint given in (22) is related to different wastewater capacities at the treatment plant and
disposal site:

This constraint ensures that regardless of what the excess amount of wastewater released from
shale sites is, it must be fully managed by expanding the treatment plant capacity. Therefore,
the different treatment plants have a potential storage capacity increment option within the investment
costs. Thus, the sum of total wastewater capacity enhanced by expanding treatment plant j with
expansion option m, the total capacity of underground disposal and treatment plant j must be less
than or equal to the assorted capacity of disposal site and treatment plant j over time period t:

M

∑
m=1

eoj,m,t.Yj,m,t + wwdsj,t + wwtpj,t ≤ wdwj,t ∀ i, j, t. (22)

The constraint given in (23) is related to the different wastewater capacities at the treatment plant
and disposal site:

The necessity and utilization of a huge amount of freshwater in the whole process of shale gas
extraction requires thought regarding its acquisition. Various techniques are used to recycle freshwater.
Therefore, one of the most trending techniques is on-site treatment with different technologies. Thus,
the reuse specification for hydraulic fracturing with the blending ratio of freshwater to wastewater

Florentin Smarandache (ed.) Collected Papers, VI

799



after the treatment of on-site treatment technology o must be less than or equal to the total amount of
freshwater acquired at source s transported to shale site i over period t:

O

∑
o=1

r fo.loo.WTOi,o,t ≤ FWs,i,t ∀ s, i, t. (23)

The constraint given in (24) is related to the minimum capacity of the ton-site treatment of
wastewater:

This restriction was imposed with the fact that a minimal amount of freshwater must be obtained
by using on-site treatment technology. The capital investment towards the setup of on-site treatment
plant steers the utilization of on-site treatment technology. Thus, the minimum capacity of on-site
wastewater treatment with technology o along with the binary variable taking value one if the certain
technology is used (and otherwise 0) at shale site i must be less than or equal to the amount of
wastewater treated by on-site treatment technology o over period t:

O

∑
o=1

oclo.YOi,o ≤WTOi,o,t ∀ i, t. (24)

The constraint given in (25) is related to the maximum capacity of on-site wastewater treatment:
This restriction ensures that the maximal amount of freshwater is acquired by using on-site

treatment technology. The upper limit for the on-site treatment of wastewater restricts the excessive
holding of wastewater at the on-site treatment plant. Thus, this constraint provides the surety that
the minimum capacity of on-site treatment of wastewater with technology o along with the binary
variable taking value 1 if the certain technology is used (otherwise 0) at shale site i is greater than or
equal to the amount of wastewater treated by on-site treatment technology o over time period t:

O

∑
o=1

ocuo.YOi,o ≥WTOi,o,t ∀ i, t. (25)

The constraint given in (26) is related to the total wastewater produced during the shale gas
extraction process:

It must be ensured that the total amount of wastewater generated during the fracking procedures
is strictly equal to the sum of different amounts of wastewater distributed to the treatment plant and
disposal site. Therefore, the sum of the total amount of wastewater at the treatment plant and disposal
site j dispatched from shale site i must be equal to the assorted wastewater capacity at disposal site
and treatment plant j over time period t:

I

∑
i=1

J

∑
j=1

T

∑
t=1

WWDi,j,t +
I

∑
i=1

J

∑
j=1

T

∑
t=1

WWTi,j,t =
I

∑
i=1

J

∑
j=1

T

∑
t=1

WWi,j,t ∀ i, j, t. (26)

The proposed multiobjective shale gas optimization model under uncertainty is presented in
model M1 with the fact that parameter values inherently contain vagueness and ambiguousness
in the real-life decision-making process. The decision maker(s) or policy maker(s) is(are) not very
sure about the exact parameter values due to a lack of proper information, relatively little experience,
environmental issues, and other humanitarian logical perception. To overcome these issues, the settings
are taken as the triangular intuitionistic fuzzy number and are more elaborately discussed in Section 3.3.
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M1 : Minimize Z1 =
S

∑
s=1

I

∑
i=1

T

∑
t=1
{ ˜caqs,t +

˜ct f s,i,t}FWs,i,t

Minimize Z2 =
I

∑
i=1

J

∑
j=1

T

∑
t=1
{ ˜ctrj,t + c̃dj,t + ˜ctwi,j,t − rrj,t.rej,t}WWi,j,t

Minimize Z3 =
J

∑
j=1

M

∑
m=1

T

∑
t=1
{ ˜cexj,m,t}.Yj,m,t

subject to:

S

∑
s=1

FWs,i,t +
O

∑
o=1

loo.WTOi,o,t ≥ ˜f dwi,t ∀ i, t

I

∑
i=1

FWs,i,t ≤ ˜f cas,t ∀ s, t

I

∑
i=1

WWDi,j,t ≤ ˜wwdsj,t ∀ j, t

I

∑
i=1

WWTi,j,t ≤ ˜wwtpj,t +
M

∑
m=1

eoj,m,t.Yj,m,t ∀ j, t

I

∑
i=1

WWi,j,t ≤ ˜wdwj,t ∀ j, t

M

∑
m=1

eoj,m,t.Yj,m,t + ˜wwdsj,t + ˜wwtpj,t ≤ ˜wdwj,t ∀ i, j, t

O

∑
o=1

r fo.loo.WTOi,o,t ≤ FWs,i,t ∀ s, i, t

O

∑
o=1

oclo.YOi,o ≤WTOi,o,t ∀ i, t

O

∑
o=1

ocuo.YOi,o ≥WTOi,o,t ∀ i, t

I

∑
i=1

J

∑
j=1

T

∑
t=1

WWDi,j,t +
I

∑
i=1

J

∑
j=1

T

∑
t=1

WWTi,j,t =
I

∑
i=1

J

∑
j=1

T

∑
t=1

WWi,j,t ∀ i, j, t

FWs,i,t ≥ 0, WWi,j,t ≥ 0 ∀ s, i, j, t

WTOi,o,t ≥ 0, WWDi,j,t ≥ 0, WWTi,j,t ≥ 0 ∀ i, o, j and t

0 ≤ Yj,m,t , YOi,o ≤ 1, Yj,m,t and YOi,o = integer, ∀ i, o, j, m and t,

where the notation (.̃) over different parameters represents the triangular intuitionistic fuzzy number
for the indices’ whole set.
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3.3. Intuitionistic Fuzzy Parameters

The proposed multiobjective shale gas water management optimization model discussed in
Section 3 inherently involves uncertainty or impreciseness. The existence of ambiguity among
parameters makes it uncertain. It is not always feasible for decision maker(s) or project manager(s) to
assign crisp/exact parameter values. Actual perceptions behind the uncertainty involve a lack of proper
information, environmental conditions, the condition of roads, natural calamities, abrupt changes in
the prices of fuel, different routes of transportation, shortages of freshwater on sunny days, etc. In such
cases, only some vague and inconsistent pieces of information are available regarding the parameter
values. Therefore, uncertainty can take different forms, such as fuzzy numbers, stochastic random
variables, and other forms of change. Based on this confluent information, one may assume imprecise
parameters and easily overcome uncertainty by applying the different techniques to obtain the best
estimates of the parameters. In brief, we may distinguish between stochastic and fuzzy methods while
dealing with the uncertain dataset. The uncertainty involved in the data due to randomness can be
handled with a stochastic programming approach while it can be dealt with using fuzzy techniques
due to vagueness or ambiguousness. In the present study, all the parameters were assumed to be
triangular intuitionistic fuzzy numbers, which is more realistic as compared to fuzzy numbers as
it simultaneously reveals both the degree of belongingness and the degree of non-belongingness.
The defuzzification/ranking method of triangular intuitionistic fuzzy parameters is based on the
expected interval and expected values of a lower and upper member of the set. Imprecise parameters
involved in the different objective functions were converted to their crisp forms by using expected
values, whereas uncertain parameters present in constraints were transformed into their deterministic
forms using expected intervals. All the pieces of information regarding triangular intuitionistic fuzzy
settings used in THE shale gas optimization model are summarized in Table 2.
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Table 2. Information regarding the triangular intuitionistic fuzzy parameters of the shale gas model.

Intuitionistic Fuzzy Parameters Triangular Intuitionistic Fuzzy Number EI(.) = [E1(.), E2(.)] EV(.)

˜caqs,t {(caq(1)s,t , caqs,t, caq(2)s,t ); (caq(3)s,t , caqs,t, caq(4)s,t )} {
3.caq + caq(3) + (caq− caq(3))ν ˜caq − (caq− caq(1))µ ˜caq

4
,

E1( ˜caq) + E2( ˜caq)
2

3.caq + caq(4) + (caq(2) − caq)µ ˜caq + (caq− caq(4))ν ˜caq

2
}

˜ct f s,i,t {(ct f (1)s,i,t, ct fs,i,t, ct f (2)s,i,t); (ct f (3)s,i,t, ct fs,i,t, ct f (4)s,i,t)} {
3.ct f + ct f (3) + (ct f − ct f (3))ν ˜ct f − (ct f − ct f (1))µ ˜ct f

4
,

E1( ˜ct f ) + E2( ˜ct f )
2

3.ct f + ct f (4) + (ct f (2) − ct f )µ ˜ct f + (ct f − ct f (4))ν ˜ct f

2
}

˜ctrj,t {(ctr(1)j,t , ctrj,t, ctr(2)j,t ); (ctr(3)j,t , ctrj,t, ctr(4)j,t )} {3.ctr + ctr(3) + (ctr− ctr(3))ν ˜ctr − (ctr− ctr(1))µ ˜ctr
4

,
E1( ˜ctr) + E2( ˜ctr)

2
3.ctr + ctr(4) + (ctr(2) − ctr)µ ˜ctr + (ctr− ctr(4))ν ˜ctr

2
}

˜ctwi,j,t {(ctw(1)
i,j,t, ctwi,j,t, ctw(2)

i,j,t); (ctw(3)
i,j,t, ctwi,j,t, ctw(4)

i,j,t)} {3.ctw + ctw(3) + (ctw− ctw(3))ν ˜ctw − (ctw− ctw(1))µ ˜ctw
4

,
E1( ˜ctw) + E2( ˜ctw)

2
3.ctw + ctw(4) + (ctw(2) − ctw)µ ˜ctw + (ctw− ctw(4))ν ˜ctw

2
}

c̃dj,t {(cd(1)j,t , cdj,t, cd(2)j,t ); (cd(3)j,t , cdj,t, cd(4)j,t )} {
3.cd + cd(3) + (cd− cd(3))νc̃d − (cd− cd(1))µc̃d

4
,

E1(c̃d) + E2(c̃d)
2

3.cd + cd(4) + (cd(2) − cd)µc̃d + (cd− cd(4))νc̃d
2

}

˜cexj,m,t {(cex(1)j,m,t, cexj,m,t, cex(2)j,m,t); (cex(3)j,m,t, cexj,m,t, cex(4)j,m,t)} {3.cex + cex(3) + (cex− cex(3))ν ˜cex − (cex− cex(1))µ ˜cex
4

,
E1( ˜cex) + E2( ˜cex)

2
3.cex + cex(4) + (cex(2) − cex)µ ˜cex + (cex− cex(4))ν ˜cex

2
}

˜f dwi,t {( f dw(1)
i,t , f dwi,t, f dw(2)

i,t ); ( f dw(3)
i,t , f dwi,t, f dw(4)

i,t )} {
3. f dw + f dw(3) + ( f dw− f dw(3))ν ˜f dw − ( f dw− f dw(1))µ ˜f dw

4
,

E1( ˜f dw) + E2( ˜f dw)

2
3. f dw + f dw(4) + ( f dw(2) − f dw)µ ˜f dw + ( f dw− f dw(4))ν ˜f dw

2
}

˜f cas,t {( f ca(1)s,t , f cas,t, f ca(2)s,t ); ( f ca(3)s,t , f cas,t, f ca(4)s,t )} {
3. f ca + f ca(3) + ( f ca− f ca(3))ν ˜f ca − ( f ca− f ca(1))µ ˜f ca

4
,

E1( ˜f ca) + E2( ˜f ca)
2

3. f ca + f ca(4) + ( f ca(2) − f ca)µ ˜f ca + ( f ca− f ca(4))ν ˜f ca

2
}

˜wwdsj,t {(wwds(1)j,t , wwdsj,t, wwds(2)j,t ); (wwds(3)j,t , wwdsj,t, wwds(4)j,t )} {
3.wwds + wwds(3) + (wwds− wwds(3))ν ˜wwds − (wwds− wwds(1))µ ˜wwds

4
,

E1( ˜wwds) + E2( ˜wwds)
2

3.wwds + wwds(4) + (wwds(2) − wwds)µ ˜wwds + (wwds− wwds(4))ν ˜wwds
2

}

˜wwtpj,t {(wwtp(1)j,t , wwtpj,t, wwtp(2)j,t ); (wwtp(3)j,t , wwtpj,t, wwtp(4)j,t )} {
3.wwtp + wwtp(3) + (wwtp− wwtp(3))ν ˜wwtp − (wwtp− wwtp(1))µ ˜wwtp

4
,

E1( ˜wwtp) + E2( ˜wwtp)
2

3.wwtp + wwtp(4) + (wwtp(2) − wwtp)µ ˜wwtp + (wwtp− wwtp(4))ν ˜wwtp

2
}

˜wdwj,t {(wdw(1)
j,t , wdwj,t, wdw(2)

j,t ); (wdw(3)
j,t , wdwj,t, wdw(4)

j,t )} {
3.wdw + wdw(3) + (wdw− wdw(3))ν ˜wdw − (wdw− wdw(1))µ ˜wdw

4
,

E1( ˜wdw) + E2( ˜wdw)

2
3.wdw + wdw(4) + (wdw(2) − wdw)µ ˜wdw + (wdw− wdw(4))ν ˜wdw

2
}
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Therefore, the crisp/deterministic version of the proposed multiobjective shale gas water
management system optimization model M1 based on the different crisp values of the parameters can
be represented in the model M2 as follows:

M2 : Minimize Z1 =
S

∑
s=1

I

∑
i=1

T

∑
t=1
{EV( ˜caqs,t) + EV( ˜ct f s,i,t)}FWs,i,t,

Minimize Z2 =
I

∑
i=1

J

∑
j=1

T

∑
t=1
{EV( ˜ctrj,t) + EV(c̃dj,t) + EV( ˜ctwi,j,t)− rrj,t.rej,t}WWi,j,t,

Minimize Z3 =
J

∑
j=1

M

∑
m=1

T

∑
t=1
{EV( ˜cexj,m,t)}Yj,m,t,

subject to:

S

∑
s=1

FWs,i,t +
O

∑
o=1

loo.WTOi,o,t ≥ E f dwi,t
1 ∀ i, t

I

∑
i=1

FWs,i,t ≤ E f cas,t
2 ∀ s, t

I

∑
i=1

WWDi,j,t ≤ E
wwdsj,t
2 ∀ j, t

I

∑
i=1

WWTi,j,t ≤ E
wwtpj,t
2 +

M

∑
m=1

eoj,m,t.Yj,m,t ∀ j, t

I

∑
i=1

WWi,j,t ≤ E
wdwj,t
2 ∀ j, t

M

∑
m=1

eoj,m,t.Yj,m,t + E
wwdsj,t
1 + E

wwtpj,t
1 ≤ E

wdwj,t
2 ∀ j, t

O

∑
o=1

r fo.loo.WTOi,o,t ≤ FWs,i,t ∀ s, i, t

O

∑
o=1

oclo.YOi,o ≤WTOi,o,t ∀ i, t

O

∑
o=1

ocuo.YOi,o ≥WTOi,o,t ∀ i, t

I

∑
i=1

J

∑
j=1

T

∑
t=1

WWDi,j,t +
I

∑
i=1

J

∑
j=1

T

∑
t=1

WWTi,j,t =
I

∑
i=1

J

∑
j=1

T

∑
t=1

WWi,j,t ∀ i, j, t

FWs,i,t ≥ 0, WWi,j,t ≥ 0 ∀ s, i, j, t

WTOi,o,t ≥ 0, WWDi,j,t ≥ 0, WWTi,j,t ≥ 0 ∀ i, o, j and t

0 ≤ Yj,m,t , YOi,o ≤ 1, Yj,m,t and YOi,o = integer, ∀ i, o, j, m and t,

where EV(.), E(.)
1 , and E(.)

2 are the expected value and lower and upper intervals of triangular
intuitionistic fuzzy numbers for the entire indices’ set, respectively.

The discussed solution technique (i.e., the neutrosophic goal programming approach (NGPA)) is
based on the neutrosophic decision set, which ensures the efficient implementation of the independent
neutral thoughts of the decision maker(s). The obtained crisp model M2 can be transformed into M3

to achieve the globally optimal solution of the proposed multiobjective shale gas water management
system optimization model.
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M3 : Minimize Z = (w1T .d−1T + w2T .d−2T + w3T .d−3T) + (w1I .d−1I + w2I .d−2I + w3I .d−3I)

+ (w1F.d+1F + w2F.d+2F + w3F.d+3F)

subject to

UT
1 −∑S

s=1 ∑I
i=1 ∑T

t=1{EV( ˜caqs,t) + EV( ˜ct f s,i,t)}FWs,i,t

UT
1 − LT

1
+ d−1T − d+1T = 1

U I
1 −∑S

s=1 ∑I
i=1 ∑T

t=1{EV( ˜caqs,t) + EV( ˜ct f s,i,t)}FWs,i,t

U I
1 − LI

1
+ d−1I − d+1I = 0.5

∑S
s=1 ∑I

i=1 ∑T
t=1{EV( ˜caqs,t) + EV( ˜ct f s,i,t)}FWs,i,t − LF

1

UF
1 − LF

1
+ d−1F − d+1F = 0

UT
2 −∑I

i=1 ∑J
j=1 ∑T

t=1{EV( ˜ctrj,t) + EV(c̃dj,t) + EV( ˜ctwi,j,t)− rrj,t.rej,t}WWi,j,t

UT
2 − LT

2
+ d−2T − d+2T = 1

U I
2 −∑I

i=1 ∑J
j=1 ∑T

t=1{EV( ˜ctrj,t) + EV(c̃dj,t) + EV( ˜ctwi,j,t)− rrj,t.rej,t}WWi,j,t

U I
2 − LI

2
+ d−2I − d+2I = 0.5

∑I
i=1 ∑J

j=1 ∑T
t=1{EV( ˜ctrj,t) + EV(c̃dj,t) + EV( ˜ctwi,j,t)− rrj,t.rej,t}WWi,j,t − LF

2

UF
2 − LF

2
+ d−2F − d+2F = 0

UT
3 −∑J

j=1 ∑M
m=1 ∑T

t=1{EV( ˜cexj,m,t)}Yj,m,t

UT
3 − LT

3
+ d−3T − d+3T = 1

U I
3 −∑J

j=1 ∑M
m=1 ∑T

t=1{EV( ˜cexj,m,t)}Yj,m,t

U I
3 − LI

3
+ d−3I − d+3I = 0.5

∑J
j=1 ∑M

m=1 ∑T
t=1{EV( ˜cexj,m,t)}Yj,m,t − LF

3

UF
3 − LF

3
+ d−3F − d+3F = 0

S

∑
s=1

FWs,i,t +
O

∑
o=1

loo.WTOi,o,t ≥ E f dwi,t
1 ∀ i, t

I

∑
i=1

FWs,i,t ≤ E f cas,t
2 ∀ s, t

I

∑
i=1

WWDi,j,t ≤ E
wwdsj,t
2 ∀ j, t

I

∑
i=1

WWTi,j,t ≤ E
wwtpj,t
2 +

M

∑
m=1

eoj,m,t.Yj,m,t ∀ j, t

I

∑
i=1

WWi,j,t ≤ E
wdwj,t
2 ∀ j, t

M

∑
m=1

eoj,m,t.Yj,m,t + E
wwdsj,t
1 + E

wwtpj,t
1 ≤ E

wdwj,t
2 ∀ j, t

O

∑
o=1

r fo.loo.WTOi,o,t ≤ FWs,i,t ∀ s, i, t

O

∑
o=1

oclo.YOi,o ≤WTOi,o,t ∀ i, t

O

∑
o=1

ocuo.YOi,o ≥WTOi,o,t ∀ i, t

I

∑
i=1

J

∑
j=1

T

∑
t=1

WWDi,j,t +
I

∑
i=1

J

∑
j=1

T

∑
t=1

WWTi,j,t =
I

∑
i=1

J

∑
j=1

T

∑
t=1

WWi,j,t ∀ i, j, t
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FWs,i,t ≥ 0, WWi,j,t ≥ 0 ∀ s, i, j, t

WTOi,o,t ≥ 0, WWDi,j,t ≥ 0, WWTi,j,t ≥ 0 ∀ i, o, j and t

0 ≤ Yj,m,t , YOi,o ≤ 1, Yj,m,t and YOi,o = integer, ∀ i, o, j, m and t

d−kT .d+kT = 0, d−kI .d
+
kI = 0, d−kF.d+kF = 0,

where w1T , w1I , w1F, w2T , w2I , w2F, w3T , w3I , and w3F are the parameter weights assigned to different
deviational variables of the neutrosophic membership goals.

3.4. Solution Algorithm

To reformulate the shale gas water management optimization model into the neutrosophic goal
programming model, one needs to solve each objective function individually and has to determine
the maximum and minimum values of each objective. With the help of these values, the upper
and lower bounds for each membership function under a neutrosophic environment were obtained.
Then, the truth, indeterminacy, and falsity membership functions for each objective were constructed.
The transformation of membership functions into membership goals can be done by using the different
deviational variables. The weighting scheme of each aim was designed based on the difference
between the best and worst values of the respective objective function. The developed framework for
the optimal shale gas water management computational model was transmuted under a neutrosophic
environment. The stepwise solution procedures for the proposed neutrosophic goal programming
approach can be summarized as follows:

Step 1. Design the proposed multiobjective shale gas water management optimization model as given
in M1.

Step 2. Convert each intuitionistic fuzzy parameter involved in model M1 into its crisp form by using
the expected interval and values method as given in Equations (2)–(4) or presented in Table 2.

Step 3. Modify model M1 into M2 and solve model M2 for each objective function individually in
order to obtain the best and worst solutions.

Step 4. Determine the upper and lower bounds for each objective function by using Equation (6).
Using Uk and Lk, define the upper and lower bounds for truth, indeterminacy, and falsity
membership as given in Equations (7)–(9).

Step 5. Transform the truth, indeterminacy, and falsity membership degrees into their respective
membership goals and deviational variables as defined in Equations (10)–(12).

Step 6. Formulate the neutrosophic goal programming model defined in M3 and solve the
multiobjective shale gas water management optimization model in order to obtain the
compromise solution using suitable techniques or some optimization software packages.

4. A Computational Study

The integrated framework representative of the multiobjective shale gas water management
optimization model is presented based on a real-life scenario, hypothetical proposition, data,
information, and a quick review of the published research (Lutz et al. [12], Rahm and Riha [54],
Rahm et al. [55], Zhang et al. [22], Alawattegama [56]). The unified optimal shale gas water planning
model was structured to manifest the real-life scenario in the current and future characteristic features
of shale gas extraction processes. The proposed model includes the optimal acquisition of freshwater,
on-site treatment of wastewater, expansion of treatment plant facility, underground injection disposal
site, treatment plant facility, and primary socio-economic concerns and environmental issues with
the technical and potential aspects in major shale gas plays in the United States. The acquisition
of freshwater from different sources and the inventory holding of freshwater to a certain level for
the smooth operation of the shale gas extraction processes is quite a challenging task. Therefore,
the acquisition of freshwater is allowed some predetermined budget allocation at the different
freshwater sources. The flow-back-produced water from shale play is a matter of grave concern.
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The privilege of an on-site wastewater treatment facility for reuse purposes at a moderate scale is also
feasible and laid down as a base of future technologies. Various burning socio-environmental issues
are being raised against the contaminated wastewater generated from shale wells after fracturing
processes at the national and international political levels. To overcome these issues, the orientation
of wastewater underground disposal sites and treatment facilities with their expansion options have
been taken under consideration. There is no scope for pipelines to any extent throughout the shale gas
extraction process. All sorts of to and fro flow of freshwater and wastewater have been depicted with
roadways. The planning periods are designed in such a way that shale gas production turnover results
in an economically profitable scenario.

In this study, the shale gas water management system optimization model comprises one
freshwater source, five shale sites with one drilled well at each shale site, and three on-site wastewater
treatment facilities. The toxic wastewater management system includes one wastewater underground
injection disposal site, two wastewater treatment plants with three expansion options for each treatment
plant facility over three planning periods of 5 years each which are capable of representing the whole
shale gas production process more realisticallyy. All the summarized parameters were assumed to be
a triangular intuitionistic fuzzy number, and their defuzzified version can be obtained from Table 2.
The acquisition costs (in $/bbl) of freshwater at source and transportation cost (in $/bbl) of freshwater
by road over three planning periods are presented in Table 3. The various costs incurred on account
of wastewater, such as transportation cost (in $/bbl) from different shale sites to disposal site and
treatment plants, underground injection disposal cost (in $/bbl), and wastewater operational cost at
different treatment plants (in $/bbl) over three planning periods are summarized in Table 4. The capital
investment costs(in $/bbl) for alternative options for the expansion of treatment plant capacity with the
respective enhanced potential volume (in bbl/day) over three planning periods are presented in Table 4.
The crisp parameters which include revenues/profits from the reuse of wastewater (in $), reuse rate (in
bbl/day), recovery factor for treating wastewater with different treatment technology, and the required
ratio of freshwater to sewer for blending after on-site treatment technology, along with the minimum
and maximum capacities for on-site treatment with conflicting technology over three time periods are
summarized in Table 5. The different restrictive intuitionistic fuzzy parameters (for freshwater and
wastewater) were introduced for the optimal allocation of freshwater and wastewater according to their
speculated destination. The freshwater acquisition capacity at the source, the requirement of freshwater
at different shale sites, the underground wastewater disposal capacity, the wastewater treatment plant
capacity, and the overall generated wastewater permitted for managerial purposes are summarized in
Table 5. Throughout the project planning scheme, the decision maker(s) or project manager(s) intend to
adopt the certainly feasible strategy that ensures the optimal allocation of freshwater and wastewater
to their predetermined consumption points. However, during the whole planning periods, the decision
maker(s) are confronted with the different multiple conflicting objectives which are to be optimized in
order to achieve the global benefits from the production of shale gas energy as well as its commercial
distribution. Hence, the proposed multiobjective shale gas water management optimization model
experiments with these hypothetical datasets and was applied to tackle the project planning scheme.

Table 3. Acquisition and transportation costs of freshwater ($/bbl).

Freshwater Acquisition Cost at Source ( ˜caq) Time Period
t = 1 t = 2 t = 3

Source (1.9,2.1,2.3;1.8,2.1,2.4) (1.6,1.8,2;1.5,1.8,2.1) (0.9,1.2,1.5;0.8,1.2,1.6)

Transportation costs of freshwater from
source to shale site ( ˜ct f )

Source to shale site 1 (1.2,1.4,1.6;1.1,1.4,1.7) (4.2,4.4,4.6;4.1,4.4,4.7) (4.1,4.3,4.5;4.0,4.3,4.6)
Source to shale site 2 (2.1,2.3,2.5;1.9,2.3,2.7) (3.2,3.4,3.6;3.1,3.4,3.7) (3.2,3.4,3.6;3.0,3.4,3.8)
Source to shale site 3 (3.4,3.6,3.8;3.2,3.6,4.0) (2.2,2.4.2.6;2.1,2.4,2.7) (2.2,2.4,2.6;2.0,2.4,2.8)
Source to shale site 4 (2.2,2.4,2.6;2.1,2.4,2.7) (1.5,1.8,1.9;1.4,1.8,2.1) (1.5,1.7,1.9;1.4,1.7,2.0)
Source to shale site 5 (1.4,1.6,1.8;1.2,1.6,2) (1.8,2,2.2;1.8,2,2.2) (2.6,2.8,3.0;2.5,2.8,3.1)
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Table 4. Different costs related to wastewater and capital investment for treatment plant expansions ($/bbl).

Transportation Cost From Shale Site to Facility ( ˜ctw) Time Period

Source Treatment and Disposal Facility t = 1 t = 2 t = 3

Shale site 1 Disposal site (1.4,2.4,3.4) (2,3,4) (3.4,3.6,3.8)
Shale site 1 Treatment plant 1 (3.0,3.2,3.4) (3.4,3.6,3.8) (3.8,4.0,4.2)
Shale site 1 Treatment plant 2 (5.2,5.6,6.0) (6.0,6.3,6.6) (6.6,6.7,6.8)
Shale site 2 Disposal site (6.0,6.5,7.0) (6.6,6.9,7.2) (7.1,7.4,7.7)
Shale site 2 Treatment plant 1 (2.8,2.9,3.0) (3.5,3.7,3.9) (4.2,4.4,4.6)
Shale site 2 Treatment plant 2 (3.2,3.4,3.6) (3.5,3.9,4.3) (4.1,4.2,4.3)
Shale site 3 Disposal site (4.0,4.2,4.4) (4.5,4.8,5.1) (5.0,5.5,6.0)
Shale site 3 Treatment plant 1 (4.4,4.8,5.2) (5.0,5.3,5.6) (5.5,5.9,6.3)
Shale site 3 Treatment plant 2 (5.0,5.1,5.2) (5.0,5.5,6.0) (6.0,6.3,6.6)
Shale site 4 Disposal site (2.5,2.7,2.9) (3.0,3.2,3.4) (3.5,3.9,7.3)
Shale site 4 Treatment plant 1 (5.5,6.0,6.5) (6.5,6.7,6.9) (7.1,7.3,7.5)
Shale site 4 Treatment plant 2 (3.3,3.6,3.9) (4.0,4.3,4.6) (4.4,4.9,5.4)
Shale site 5 Disposal site (6.8,7.1,7.4) (7.3,7.5,7.7) (7.8,7.9,8.0)
Shale site 5 Treatment plant 1 (3.0,3.2,3.4) (3.4,3.6,3.8) (3.8,3.9,4.0)
Shale site 5 Treatment plant 2 (2.8,3.1,3.4) (3.6,3.8,4.0) (4.0,4.3,4.6)

Operational costs of treatment facility ( ˜ctr)
and disposal facility (c̃d) Disposal site (0.5,0.7,0.9;0.4,0.7,1.0) (0.4,0.6,0.8;0.3,0.6,0.9) (2.1,2.3,2.6;2.1,2.3,2.6)

Treatment plant 1 (3.6,3.8,4.0;3.5,3.8,4.1) (0.5,0.7,0.9;0.4,0.7,1.0) (1.4,1.6,1.8;1.2,1.6,2.0)
Treatment plant 2 (2.5,2.7,2.9;2.4,2.7,3.0) (1.5,1.7,1.9;1.4,1.7,2.0) (1.5,1.7,1.9;1.4,1.7,2.0)

Time period
Capital cost of expanding treatment plant ( ˜cex) Expansion option m t = 1 t = 2 t = 3

Treatment plant 1 1 (15.6,15.8,16.0;15.4,15.8,16.2) (17.2,17.4,17.6;17.1,17.4,17.7) (14.3,14.6,14.9;14.2,14.6,15.0)
Treatment plant 1 2 (09.6,09.8,10.0;09.5,09.8,10.1) (16.2,16.4,16.6;16.1,16.4,16.7) (12.2,12.4,12.6;12.1,12.4,12.7)
Treatment plant 1 3 (12.2,12.4,12.6;12.0,12.4,12.8) (13.3,13.5,13.7;13.2,13.5,13.8) (11.2,11.4,11.6;11.1,11.4,11.7)
Treatment plant 2 1 (14.2,14.4,14.6;14.0,14.4,14.8) (12.1,12.3,12.5;12.0,12.3,12.6) (13.1,13.3,13.5;13.0,13.3,13.6)
Treatment plant 2 2 (13.2,13.4,13.6;13.0,13.4,13.8) (11.2,11.4,11.6;11.1,11.4,11.7) (16.2,16.4,16.6;16.1,16.4,16.7)
Treatment plant 2 3 (12.2,12.5,12.8;12.1,12.5,12.9) (11.3,11.5,11.7;11.2,11.5,11.8) (17.2,17.4,17.6;17.1,17.4,17.7)

Increased treatment capacity (eo)
Treatment plant 1 1 600 600 600
Treatment plant 1 2 750 750 750
Treatment plant 1 3 850 850 850
Treatment plant 2 1 550 550 550
Treatment plant 2 2 650 650 650
Treatment plant 2 3 800 800 800
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Table 5. Capacity restrictions on freshwater and wastewater ( bbl/day).

Freshwater Acquisition Capacity at Source ( ˜f ca) Time Period

t = 1 t = 2 t = 3
(200, 300, 400; 100, 300, 500) (300, 500, 700; 200, 500, 800) (500, 600, 700; 400, 600, 800)

Freshwater demand at shale site ( ˜f dw)
Shale site 1 (300,000, 500,000, 700,000, 900,000) (500,000, 700,000, 900,000, 1,100,000) (1,300,000, 1,400,000, 1,500,000, 1,600,000)
Shale site 2 (500,000, 600,000, 700,000, 800,000) (600,000, 700,000, 800,000, 900,000) (1,000,000, 1,100,000, 1,200 000, 1,300,000)
Shale site 3 (700,000, 900,000, 1,100,000, 1,300,000) (300,000, 400,000, 500,000, 600,000) (600,000, 800,000, 1,000,000, 1,200,000)
Shale site 4 (800,000, 900,000, 1,000,000, 1,100,000) (1,000,000, 1,100,000, 1,200,000, 1,300,000) (1,000,000, 1,200,000, 1,400,000, 1,600,000)
Shale site 5 (600,000, 800,000, 1,000,000, 1,200,000) (1,000,000, 1,200,000, 1,400,000, 1,600,000) (1,000,000, 1,500,000, 2,000,000, 2,500,000)

Wastewater capacity at disposal site ( ˜wwds)
Disposal site (200, 300, 400; 100, 300, 500) (600, 800, 1000; 500, 800, 1100) (400, 600, 800; 300, 600, 900)

Wastewater capacity at treatment plant ( ˜wwtp)
Treatment plant 1 (100,000, 200,000, 300,000, 400,000) (200,000, 300,000, 400,000, 500,000) (1,000,000, 1,200,000, 1,400,000, 1,600,000)
Treatment plant 2 (200,000, 400,000, 600,000, 800,000) (1,300,000, 1,600,000, 1,800,000, 2,200,000) (3,000,000, 3,200,000, 3,400,000, 3,600,000)

Overall wastewater capacity ( ˜wdw)
Disposal site (620,000, 630,000, 640,000, 650,000) (2,473,000, 2,474,000, 2,475,000, 2,476,000) (4,460,000, 4,460,000, 4,470,000, 4,480,000)

Treatment plant 1 (600,000, 700,000, 800,000, 900,000) (2,000,000, 3,000,000, 4,000,000, 5,000,000) (4,070,000, 4,080,000, 4,090,000, 4,500,000)
Treatment plant 2 (3,002,000, 3,004,000, 3,006,000, 3,008,000) (4,010,000, 4,020,000, 4,030,000, 4,040,000) (5,100,000, 5,200 000, 5,300,000, 5,400,000)

Revenues from wastewater reuse (re)
Treatment plant 1 1.20 1.30 1.50
Treatment plant 2 1.00 1.20 1.40

Reuse rate (rr)
Treatment plant 1 0.75 0.85 0.95
Treatment plant 2 0.70 0.80 0.90

Onsite treatment technology o
1 2 3

Recovery factor (lo) 0.15 0.45 0.65
Ratio of freshwater to wastewater for blending (r f ) 0.43 0.40 0.38

Minimum capacity for on-site treatment (ocl) 150 200 300
Maximum capacity for on-site treatment (ocu) 5000 8000 9000
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Results Analyses

The multiobjective shale gas water management optimization model was written in the AMPL
language and solved using the BARON solver through NEOS server version 5.0 in the on-line
facility provided by Wisconsin Institutes for Discovery at the University of Wisconsin in Madison
for solving optimization problems, see Dolan [57], Drud [58], Server [59], and Gropp, W. Moré [60].
The technical description of the problem is presented as follows: The final multiobjective shale
gas water management optimization model along with a set of well-defined multiple objectives
comprised 219 variables including 42 binary variables, 27 non-linear variables, 150 linear variables,
and 336 constraints, including 15 non-linear constraints and 321 linear constraints, 66 equality, and 270
inequality constraints. The total computational time for obtaining the final solution was 0.095 s (CPU
time). The proposed multiobjective shale gas water management optimization model was solved
with three weight parameters assigned to deviational variables of each membership goal with respect
to their marginal membership degree. The first weight parameter wkT was assigned to the truth
deviational variable of each membership goal. The second weight parameter wkI was assigned to
the indeterminacy deviational variable of each membership goal, and the third weight parameter
wkF was assigned to the falsity deviational variable of each membership goal included in all three
objective functions. The obtained optimal results were categorized into five main parts: (i) the optimal
acquisition of freshwater from various sources to different shale sites in order to ensure smooth
operation of the shale gas energy generation system; (ii) prominent emerging technologies for the
on-site treatment of wastewater; (iii) the optimal wastewater management system strategy, which
is challenging from the environmental point of view; (iv) the optimal expansion plan to enhance
the treatment plant capacity; and (v) the optimal values of different conflicting objectives with their
corresponding assigned weights. The optimal amounts of freshwater from source to different shale sites
are summarized in Table 6. In planning period 1, the amount of freshwater requirements from source
to five shale sites were 700.000, 186.765, 700.000, 300.480, and 74.100 bbl/day, respectively. In planning
period 2, the requirements of freshwater at each shale site were obtained as 1125.000, 1125.000, 654.419,
131.542 and 212.553 bbl/day, respectively. In planning period 3, the consumption of freshwater at
each shale site was 1275.000, 187.613, 528.153, 131.542, and 212.553 bbl/day in order to ensure smooth
operation of the shale gas extraction processes. However, with the exception of shale sites 1 and 5,
the requirements for freshwater increased for each planning horizon. The maximum requirement of
freshwater was in shale site 5 with a volume 1275.000 bbl/day, whereas the minimum freshwater
requirement was observed at shale site 1 during planning period 3, with 74.100 bbl/day due to the low
and high cost of acquisition and transportation incurred over the amount of freshwater, respectively.

The most promising characteristic features of on-site wastewater treatment are the different
technologies which are being used to reutilize the wastewater within candidate shale sites. The optimal
allocation of wastewater for on-site treatment is summarized in Table 7. The on-site treatment of
wastewater by different technologies are emerging options for generating freshwater, which was
included in the proposed modeling and optimization framework. At shale site 1, the amount
of freshwater after treatment by technology 1 was 150 bbl/day in all three planning horizons;
the generation of freshwater after treatment by using technology 2 was 200 bbl/day in each planning
period; and by applying technology 3 the values were 1551.71, 2401.65, and 2701.62 bbl/day, which was
consistently increasing and ensuring the reuse of wastewater in these three planning horizons. At shale
site 2, the amount of freshwater generated by the on-site treatment facility using technology 1 was
127.352 bbl/day in each planning period; the generation of freshwater after treatment using technology
2 was 200, 6250, and 200 bbl/day each; and by applying on-site treatment technology 3 they were
525.313, 4554.66, and 527.01 bbl/day in each planning horizon, respectively. At shale site 3, the amount
of freshwater after treatment by technology 1 was 150 bbl/day in all three planning horizons; the
generation of freshwater after treatment by using technology 2 was 200 bbl/day in the first and second
planning periods, which were the same as shale site 1; whereas it was 2865.32 bbl/day in the third
planning slot, and unlike by applying technology 3 the obtained amounts were 1551.71, 2060.51,

Florentin Smarandache (ed.) Collected Papers, VI

810



and 2208.04 in all planning horizons, resulting in a significant increase in the freshwater generation
pattern by on-site treatment. At shale site 4, the generation of freshwater using on-site treatment
technology 1 was 147.779, 2023.26, and 147.779 bbl/day; by implementing on-site treatment technology
2 they were 200, 272.266, and 730.788 bbl/day, revealing the significant increment in the regenerated
wastewater volumes in three planning slots. The amount of freshwater by using on-site treatment
technology 3 was 751.275, 300.000, and 300.000 bbl/day in each planning horizon respectively. At shale
site 5, the generation of freshwater using on-site treatment technology 1 was 150 bbl/day in each
planning slot; by applying on-site treatment technology 2 it was 342.801, 861.73, and 861.73 bbl/day;
and after implementing on-site treatment technology 3 it was 300, 860.539, and 860.539 bbl/day in each
planning horizon, respectively. Therefore, the optimal regeneration of freshwater at each shale sites
was effectively designed by implementing the on-site treatment technology component in the proposed
shale gas water management study and could be potentially achieved using these technologies in an
efficient manner under many adverse circumstances, especially where wastewater managerial issues
are often encountered at the political level.

The presented wastewater managerial study includes one underground injection disposal site and
two treatment plants with its three expansion options which are capable of representing the wastewater
management system for the shale plays. Optimal distribution of total wastewater for underground
injection disposal and treatment facility is summarized in Table 7. The toxic wastewater produced at
shale site 1 was 6.75, 17.25, and 13.25 bbl/day, which is directly transported to the underground injection
disposal site; whereas the total volume shipped to the treatment plant was 645, 842.50, and 0 bbl/day
in all three time horizons. At shale site 2, the whole volume of wastewater was directly sent to the
underground injection disposal site and it was not feasible to facilitate the usage of a treatment plant
facility. At shale site 3, a certain volume of wastewater was delivered to an underground injection disposal
site and treatment plant 2 without allocating any volume to treatment plant 1. The amount of wastewater
shipped to the underground injection disposal site was 6.75, 17.25, and 13.25 bbl/day, and the optimal
allocations to treatment plant 1 were 137.71, 675, and 850 bbl/day in the three planning periods. At shale
sites 4 and 5, the overall volume of produced wastewater that would be delivered from both shale
sites were the same and found to be 6.75, 17.25, and 13.25 bbl/day for underground injection disposal
purposes: 645, 842.50, and 937.50 bbl/day towards treatment plant 1 whereas the optimal shipment
volumes of wastewater from both shale sites to treatment plant 2 were 137.71, 675, and 850 bbl/day in all
three planning horizons, respectively. The optimal allocation strategy for the total wastewater volumes
was described in such a fashion that the optimal contribution of each wastewater management system
components had equal significance. At all five shale sites, the generated amount of wastewater sent from
each shale site to the underground injection disposal site were 6.75, 17.25, and 13.25 bbl/day over the
three planning horizons, respectively, revealing the maximum permitted amount at the underground
injection disposal site and restraining the subsurface water for a certain period. More elaborately, it could
be concluded that during the various time horizons it was not found optimal and feasible to flow the
wastewater towards the underground injection disposal site due to the significant cost of transportation
and the underground injection disposal facility. At shale site 1, the amount of wastewater that would
be shipped to treatment plant 1 was 645 and 842.50 bbl/day for planning horizons 1 and 2, respectively.
The shipment of wastewater from shale site 1 to treatment plant 2 was not found to be feasible due to the
significant increase in the transportation cost incurred over wastewater. At shale site 2, the allocation of
any wastewater amount to treatment plants 1 and 2 was not found to be justified in all three planning
periods. At shale site 3, it was not feasible to deliver any amount of wastewater to treatment plant 1
during all three planning periods, although the amount of wastewater that would be shipped to treatment
plant 2 was 137.71, 675, and 850 bbl/day in the three planning horizons, respectively. At shale sites 4
and 5, the volume of wastewater that would be delivered from both shale sites were the same and found
to be 645, 842.50, and 937.5 bbl/day towards treatment plant 1, whereas the optimal shipment volume
of wastewater from both shale sites to treatment plant 2 were 137.71, 675, and 850 bbl/day in all three
planning horizons respectively.
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During all three planning horizons, treatment plant expansion options played a significant role in
dealing with the excess volume of wastewater produced at different shale sites. The vital dominant
characteristic of treatment plant expansion was mainly due to limited and rare existence of underground
injection disposal site facilities in some places. The limitations imposed on underground injection disposal
sites enabled the expanded scope of treatment plant expansions. The optimal strategy for the expansion
of treatment plants is presented in Table 7. The optimal expansion results of treatment plant 1 during
planning periods 1 and 3 by using expansion option 1 were 600 bbl/day each. By using expansion option
2 in planning periods 1 and 3, the optimal capacity was 750 bbl/day each; and by using expansion option
3 in planning periods 1 and 3, the optimal capacity was 850 bbl/day each. There was no need to expand
the treatment capacity of treatment plant 1 in planning period 2. Moreover, the optimal expansion strategy
for treatment plant 2 by using all three expansion options during planning horizon 1 were obtained as
550, 650, and 850 bbl/day, whereas in planning period 2, only expansion option 2 was suggested to
enhance the treatment capacity. There was no more optimal strategy indicated for the rest of the expansion
options. The compromise solution results obtained by solving the proposed multiobjective shale gas water
management model are summarized in Table 6. The minimum total cost of acquisition and transportation
of freshwater at the source and from different sources to shale sites was USD $525126.00, whereas the
net cost incurred over the entire amount of wastewater management during the three planning periods
was obtained as USD $4025940.00. The optimal strategy to expand the treatment plant capacity with the
predetermined expansion option was presented efficiently and the total capital investment levied on the
expansion of the wastewater treatment plant was USD $5548.97, which reveals that there is still adequate
opportunity to expand the capacity of the treatment plant. Shale gas water management systems play an
important role in the whole process of generating shale gas energy. The acquisition of a huge amount of
freshwater for the fracturing process is a challenging task. The wastewater released from shale sites is
toxic in nature and contains various harmful dissolved elements. Therefore, a well-organized wastewater
management system includes disposal sites (underground injections) and the establishment of different
treatment plants with expansion options.

The overall shale gas water modeling approach was presented, inevitably revealing more practical
aspects of decision-making scenarios. Uncertainty among parameters due to vagueness and hesitation
were addressed with the triangular intuitionistic fuzzy number, which complies over the degree of
acceptance and non-acceptance simultaneously. For example, if the decision maker intends to quantify
the value of freshwater requirement with some estimated value, such as each shale site requires
approximately 54,800 bbl/day for fracking and horizontal drilling purposes, then the most likely
estimated interval would be 54,750–54,850 bbl/day, along with some hesitation degree that may be
given as 54,700–54900 bbl/day, which ensures less violation of risks with degree of acceptance and
non-acceptance. The representation of different constraints imposed over various parameters also
reflects the real scenario of Pennsylvania. In Pennsylvania, underground disposal facilities are very rare
and most often wastewater is shipped to nearby cities in Ohio. The solution results have shown a similar
situation, and less sewage has been allocated to a different underground disposal facility. Furthermore,
the scope for on-site treatment technology and expansion capacity options of treatment plants have
been optimally utilized. The resulting optimal allocation of wastewater for on-site treatment at different
shale sites shows another advantage by reducing the transportation cost incurred over the treatment
and disposal facilities. The opportunity for the expansion capacity option of the treatment plant—if
needed—was propounded, and results show that some expansion option was adopted due to the lesser
capital investment. The determination of the wastewater reuse rate at the treatment plant also yielded a
significant amount of freshwater generation and ensured a lesser burden on the underground disposal
facility, which again exhibits substantial characteristic features of the shale gas modeling approach of
Pennsylvania. Thus, the proposed shale gas water management model can be easily applied to shale gas
energy project planning problems that inherently involve uncertain parameters. The decision maker(s)
or project manager(s) can conclusively determine the optimal allocation of each water component with
a set of multiple conflicting objectives along with a profitable and economic strategy.
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Table 6. Optimal amount of freshwater and value of objective functions.

Amount of Freshwater FWs,i,t

1 1 1 700.000
1 1 2 1125.000
1 1 3 1275.000
1 2 1 186.765
1 2 2 1125.000
1 2 3 187.613
1 3 1 700.000
1 3 2 654.419
1 3 3 528.153
1 4 1 300.480
1 4 2 131.542
1 4 3 131.542
1 5 1 74.100
1 5 2 212.553
1 5 3 212.553

Optimal objective values

Minimum Z1 525,126.00
Minimum Z2 4,025,940.00
Minimum Z3 5548.97

Table 7. Optimal amount of wastewater allocation and treatment plant expansion strategy.

Total Amount of Amount of Wastewater Amount of Wastewater Amount of Wastewater for
wastewater WWi,j,t at Disposal Site WW Di,j,t at Treatment Plant WWTi,j,t on-Site Treatment WTOi,o,t

1 1 1 6.75 6.75 0 150
1 1 2 17.25 17.25 0 150
1 1 3 13.25 13.25 0 150
1 2 1 645 0 645 200
1 2 2 842.5 0 842.5 200
1 2 3 0 0 0 200
1 3 1 0 0 0 1551.71
1 3 2 0 0 0 2401.65
1 3 3 0 0 0 2701.62
2 1 1 6.75 6.75 0 127.352
2 1 2 17.25 17.25 0 127.352
2 1 3 13.25 13.25 0 127.352
2 2 1 0 0 0 200
2 2 2 0 0 0 6250
2 2 3 0 0 0 200
2 3 1 0 0 0 525.313
2 3 2 0 0 0 4554.66
2 3 3 0 0 0 527.01
3 1 1 6.75 6.75 0 150
3 1 2 17.25 17.25 0 150
3 1 3 13.25 13.25 0 150
3 2 1 0 0 0 200
3 2 2 0 0 0 200
3 2 3 0 0 0 2865.32
3 3 1 137.71 0 137.71 1551.32
3 3 2 675 0 675 2060.51
3 3 3 850 0 850 2208.04
4 1 1 6.75 6.75 0 147.779
4 1 2 17.25 17.25 0 2023.26
4 1 3 13.25 13.25 0 147.779
4 2 1 645 0 645 200
4 2 2 842.5 0 842.5 272.266
4 2 3 937.5 0 937.5 730.788
4 3 1 137.71 0 137.71 751.275
4 3 2 675 0 675 300
4 3 3 850 0 850 300
5 1 1 6.75 6.75 0 150
5 1 2 17.25 17.25 0 150
5 1 3 13.25 13.25 0 150
5 2 1 645 0 645 342.801
5 2 2 842.5 0 842.5 861.73
5 2 3 937.5 0 937.5 861.73
5 3 1 137.71 0 137.71 300
5 3 2 675 0 675 360.539
5 3 3 850 0 850 360.539

Increased treatment Expansion option Time period
plant capacity (eo) (m) t = 1 t = 2 t = 3

Treatment plant 1 1 600 - 600
Treatment plant 1 2 750 - 750
Treatment plant 1 3 850 - 850
Treatment plant 2 1 550 550 -
Treatment plant 2 2 650 - -
Treatment plant 2 3 800 - -
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5. Conclusions

The multiobjective shale gas water management optimization model addressed within synthesizes
the optimum allocation of water resources for shale gas extraction processes. It assures the optimal
distribution of freshwater and wastewater, which are the complementary components of shale gas
energy production problems. The proposed shale gas modeling outlook is reliable and provides a
helpful tool to investigate and analyze the trade-off between socio-economic and environmental
concerns globally. The different costs incurred over freshwater, charges levied on wastewater,
and capital investment of expanding treatment plant capacity along with the set of shale gas
water management system constraints were optimized simultaneously. Uncertainty measures were
incorporated among different parameters to demonstrate the actual situations encountered in real-life
shale gas optimization frameworks. The accumulation of freshwater from various sources is a crucial
task to fulfill commercial needs. However, alternate options were suggested for the generation of
freshwater by using on-site treatment technology, which simultaneously reduced the transportation
costs for freshwater. Underground injection disposal sites and treatment plant facilities are two major
consumption points of generated wastewater from shale sites. A critical factor in the reuse of water
in shale gas is the detailed coordination of activities. For greater convenience, auxiliary options have
also been introduced to tackle the excess amount of wastewater in the form of on-site treatment
technology and different potential expansions of treatment plant capacity at each shale site during
each planning horizon. Unlike the various existing conventional solution techniques, the neutrosophic
goal programming approach was suggested, which also considers the independent neutral thoughts
of decision makers in the decision-making process. Since the proposed approach was applied to a
small-scale shale gas extraction process (see Figure 2), it resulted in the globally optimal solution for all
objectives simultaneously. However, it may not always be possible to have a globally optimal solution
when dealing with large-scale dataset problems. The discussed approach cannot capture the stochastic
nature of parameters, which consequently cannot be applied to stochastic optimization problems.

The significant contributions of the proposed multiobjective shale gas water management system
are summarized as follows:

• The proposed study considers the overall shale gas water management system which consists
of freshwater acquisition at sources, on-site wastewater treatment facilities at each shale site,
underground injection disposal sewage facilities, different treatment plant options for the reuse
of wastewater and the total wastewater capacity which are feasible to handle without affecting
the environmental issues. The decision maker(s) or project manager(s) may adopt the presented
shale gas modeling framework, which has a magnetic orientation concerning the overall water
management system. However, pipeline facilities have not been included throughout the shale
gas energy extraction due to their uneconomic aspect.

• Uncertainty among the parameter values is commonly known in the decision-making process.
In this shale gas optimization model, the different parameters (e.g., acquisition cost, transportation
cost, treatment cost, disposal cost, and capital investment) are taken as the triangular intuitionistic
fuzzy number, which is based on more intuition and leads to more realistic uncertainty modeling
texture. It also ensures that the system costs the reliability of each component (costs related to
freshwater and wastewater) more realistically. The crisp versions of uncertain parameters were
determined in terms of expected interval and expected values.

• A neutrosophic-based computational decision-making algorithm for such a complex and dynamic
multiobjective shale gas water management optimization model provides benefits while obtaining
globally optimal solutions. The indeterminacy/neutral thought is the region of the propositions’
value uncertainly and originates from the independent and impartial thoughts. Therefore,
the proposed NGPA is a dominating and suitable conventional optimization technique that
is preferred over others due to the existence of its independent indeterminacy degree.
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• The multiobjective shale gas project planning model was implemented with a possible dataset
and the obtained optimal results were analyzed for each component of the shale gas system in a
well-organized and efficient manner. Hence, it was concluded that the proposed optimal strategy
for shale gas production could be adopted for more sophisticated and quite typical Marcellus
shale plays in large-scale long-term scenarios.

Due to manuscript drafting constraints and space limitations, some important aspects remain
untouched and may be explored as a future research scope. The presented shale gas water management
modeling approach could be extended by considering different essential aspects such as the to and
fro movement of water through the pipeline which was not considered in this paper. The presented
computational study was demonstrated for small-scale shale-plays, which could be further explored
for large-scale and long-term time horizons by enhancing the number of shale sites and different
sources of freshwater and various destinations for wastewater.

Flow-back water does not exit instantaneously, but follows a decline curve. Most of the water
exits in the first 3–4 weeks, but there is small and a continuous flow of produced water during all
the shale-sites life. Therefore the presented modeling approach may be extended by capturing the
above-discussed behavior of flow-back produced water. On-site treatment technology exerts less
pressure on the underground disposal of wastewater and provides an opportunity to reuse the treated
wastewater for fracking purposes within the shale sites itself. If there are no NORMs (normally
occurring radioactive materials), the most costly part of water treatment is desalination. Therefore,
the sort of on-site treatment technologies may be specified along with their actual cost, and the
possibility of being used for on-site treatment purposes may be explored as a future study. Most of
the water management system (e.g., the water treated in municipal wastewater treatment facilities
that are usually not prepared to deal with hypersaline water) are presently forbidden and may be
implemented and executed by including them under a good practices scheme in future work. From
the decision-making point of view, hierarchical decision-making processes could be adopted, ensuring
a decentralized decision-making scenario and providing more flexibility compared to multiobjective
optimization techniques with a single decision maker. Apart from conventional solution techniques,
some metaheuristic algorithms could be applied to solve such shale gas water management planning
problems. Furthermore, the propounded neutrosophic modeling approach could be applied to real-life
dataset problems such as supplier selection problems, inventory control problems, supply chain
management, humanitarian logistic problems, etc. The proposed approach could be further extended
by incorporating the multi-choice and stochastic parameters along with bi-level and multi-level
decision-making scenarios.
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Abstract: In this article, we propose a novel concept of the single-valued neutrosophic fuzzy soft set
by combining the single-valued neutrosophic fuzzy set and the soft set. For possible applications,
five kinds of operations (e.g., subset, equal, union, intersection, and complement) on single-valued
neutrosophic fuzzy soft sets are presented. Then, several theoretical operations of single-valued
neutrosophic fuzzy soft sets are given. In addition, the first type for the fuzzy decision-making
based on single-valued neutrosophic fuzzy soft set matrix is constructed. Finally, we present the
second type by using the AND operation of the single-valued neutrosophic fuzzy soft set for fuzzy
decision-making and clarify its applicability with a numerical example.

1. Introduction

Many areas (e.g., physics, social sciences, computer sciences, and medicine) work with vague data
that require fuzzy sets [1], intuitionistic fuzzy sets [2], picture fuzzy sets [3], and other mathematical
tools. Molodtsov [4] presented a novel approach termed “soft set theory”, which plays a very significant
role in different fields. Therefore, several researchers have developed some methods and operations
of soft set theory. For instance, Maji et al. [5] introduced some notions of and operations on soft
sets. In addition, Maji et al. [6] gave an application of soft sets to solve fuzzy decision-making.
Maji et al. [7] proposed the notion of fuzzy soft sets, followed by studies on inverse fuzzy soft sets [8],
belief interval-valued soft sets [9], interval-valued intuitionistic fuzzy soft sets [10], interval-valued
picture fuzzy soft sets [11], interval-valued neutrosophic soft sets [12], and generalized picture fuzzy
soft sets [13]. Furthermore, several expansion models of soft sets have been developed very quickly,
such as possibility Pythagorean fuzzy soft sets [14], possibility m-polar fuzzy soft sets [15], possibility
neutrosophic soft sets [16], and possibility multi-fuzzy soft sets [17]. Karaaslan and Hunu [18] defined
the notion of type-2 single-valued neutrosophic sets and gave several distance measure methods:
Hausdorff, Hamming, and Euclidean distances for Type-2 single-valued neutrosophic sets. Al-Quran

Combination of the Single-Valued Neutrosophic Fuzzy Set 
and the Soft Set with Applications in Decision-Making 

Ahmed Mostafa Khalil, Dunqian Cao, A. A. Azzam, 
Florentin Smarandache, W. Alharbi  

Ahmed Mostafa Khalil, Dunqian Cao, A. A. Azzam, Florentin Smarandache, W. Alharbi (2020). Combination of 
the Single-Valued Neutrosophic Fuzzy Set and the Soft Set with Applications in Decision-Making. Symmetry, 12, 
1361; DOI: 10.3390/sym12081361 

Florentin Smarandache (ed.) Collected Papers, VI

819

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-8553-2054
https://orcid.org/0000-0003-0033-5452
https://orcid.org/0000-0002-5560-5926
http://dx.doi.org/10.3390/sym12081361
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/8/1361?type=check_update&version=2


et al. [19] presented the notion of fuzzy parameterized complex neutrosophic soft expert sets and
gave a novel approach by transforming from the complex case to the real case for decision-making.
Qamar and Hassan [20] proposed a novel approach to Q-neutrosophic soft sets and studied several
operations of Q-neutrosophic soft sets. Further, they generalized Q-neutrosophic soft expert sets
based on uncertainty for decision-making [21]. On the other hand, Uluçay et al. [22] presented the
concept of generalized neutrosophic soft expert sets and applied a novel algorithm for multiple-criteria
decision-making. Zhang et al. [23] gave novel algebraic operations of totally dependent neutrosophic
sets and totally dependent neutrosophic soft sets. In 2018, Smarandache [24] generalized the soft set to
the hypersoft set by transforming the function F into a multi-argument function.

Fuzzy sets are used to tackle uncertainty using the membership grade, whereas neutrosophic
sets are used to tackle uncertainty using the truth, indeterminacy, and falsity membership grades,
which are considered as independent. As the motivation of this article, we present a novel notion
of the single-valued neutrosophic fuzzy soft set, which can be seen as a novel single-valued
neutrosophic fuzzy soft set model, which gives rise to some new concepts. Since neutrosophic
fuzzy soft sets have some difficulties in dealing with some real-life problems due to the nonstandard
interval of neutrosophic components, we introduce the single-valued neutrosophic fuzzy soft set
(i.e., the single-valued neutrosophic set has a symmetric form, since the membership (T) and
nonmembership (F) are symmetric with each other, while indeterminacy (I) is in the middle), which is
considered as an instance of neutrosophic fuzzy soft sets. The structural operations (e.g., subset,
equal, union, intersection, and complement) on single-valued neutrosophic fuzzy soft sets, and several
fundamental properties of the five operations above are introduced. Lastly, two novel approaches (i.e.,
Algorithms 1 and 2) to fuzzy decision-making depending on single-valued neutrosophic fuzzy soft
sets are discussed, in addition to a numerical example to show the two approaches we have developed.

The rest of this article is arranged as follows. Section 2 briefly introduces several notions related to
fuzzy sets, neutrosophic sets, single-valued neutrosophic sets, neutrosophic fuzzy sets, single-valued
neutrosophic fuzzy sets, soft sets, fuzzy soft sets, and neutrosophic soft sets. Section 3 discusses
single-valued neutrosophic fuzzy soft sets (along with their basic operations and structural properties).
Section 4 gives two algorithms for single-valued neutrosophic fuzzy soft sets for decision-making.
Lastly, the conclusions are given in Section 5.

2. Preliminaries

In the following, we present a short survey of seven definitions which are necessary to this paper.

2.1. Fuzzy Set

Definition 1 (cf. [1]). Assume that X (i.e., X = {x1, x2, ..., xp}) is a set of elements and µ(xp) is a membership
function of element xp ∈ X. Then

(1) The following mapping (called fuzzy set), is given by

µ : X −→ [0, 1]

and [0, 1]X is a set of whole fuzzy subset over X.
(2) Let

µ =

{
µ(x1)

x1
,

µ(x2)

x2
, · · · ,

µ(xp)

xp

∣∣∣∣ xp ∈ X
}
∈ [0, 1]X

and

ν =

{
ν(x1)

x1
,

ν(x2)

x2
, · · · ,

ν(xp)

xp

∣∣∣∣ xp ∈ X
}
∈ [0, 1]X .

Then
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(1) The union µ ∪ ν, is defined as

µ ∪ ν =

{
µ(x1) ∨ ν(x1)

x1
,

µ(x2) ∨ ν(x2)

x2
, · · · ,

µ(xp) ∨ ν(xp)

xp

∣∣∣∣ xp ∈ X
}

.

(2) The intersection µ ∩ ν, is defined as

µ ∩ ν =

{
µ(x1) ∧ ν(x1)

x1
,

µ(x2) ∧ ν(x2)

x2
, · · · ,

µ(xp) ∧ ν(xp)

xp

∣∣∣∣ xp ∈ X
}

.

2.2. Neutrosophic Set and Single-Valued Neutrosophic Set

Definition 2 (cf. [25,26]). Assume that X (i.e., X = {x1, x2, ..., xp}) is a set of elements and

Φ =

{(
TΦ(xp), IΦ(xp), FΦ(xp)

)
xp

∣∣∣∣ xp ∈ X, 0 ≤ TΦ̂(xp) + IΦ̂(xp) + FΦ̂(xp) ≤ 3
}

.

(1) If TΦ(xp) ∈]0−, 1+[ (i.e., the degree of truth membership), IΦ(xp) ∈]0−, 1+[ (i.e., the degree of
indeterminacy membership), and FΦ(xp) (i.e., the degree of falsity membership), then Φ is called a
neutrosophic set on X, denoted by (NS)X .

(2) If TΦ(xp) ∈ [0, 1] (i.e., the degree of truth membership), IΦ(xp) ∈ [0, 1] (i.e., the degree of indeterminacy
membership), and FΦ(xp) ∈ [0, 1] (i.e., the degree of falsity membership), then Φ is called a single-valued
neutrosophic set on X, denoted by (SVNS)X .

2.3. Neutrosophic Fuzzy Set and Single-Valued Neutrosophic Fuzzy Set

Definition 3 (cf. [27]). Assume that X (i.e., X = {x1, x2, ..., xp}) is a set of elements and

Φ̂ =

{(
TΦ̂(xp), IΦ̂(xp), FΦ̂(xp), µ(xp)

)
xp

∣∣∣∣ xp ∈ X, 0 ≤ TΦ̂(xp) + IΦ̂(xp) + FΦ̂(xp) ≤ 3
}

.

(1) If TΦ̂(xp) ∈]0−, 1+[ (i.e., the degree of truth membership), IΦ̂(xp) ∈]0−, 1+[ (i.e., the degree of
indeterminacy membership), and FΦ̂(xp) (i.e., the degree of falsity membership), then Φ̂ is called
a neutrosophic fuzzy set on X, denoted by (NFS)X .

(2) If TΦ̂(xp) ∈ [0, 1] (i.e., the degree of truth membership), IΦ̂(xp) ∈ [0, 1] (i.e., the degree of indeterminacy
membership), and FΦ̂(xp) ∈ [0, 1] (i.e., the degree of falsity membership), then Φ̂ is called a single-valued
neutrosophic fuzzy set on X, denoted by (SVNFS)X .

Definition 4 (cf. [27]). Let Φ̂, Ψ̂ ∈ (SVNFS)X , where

Φ̂ =

{(
TΦ̂(xp), IΦ̂(xp), FΦ̂(xp), µ(xp)

)
xp

∣∣∣∣ xp ∈ X, 0 ≤ TΦ̂(xp) + IΦ̂(xp) + FΦ̂(xp) ≤ 3
}

and

Ψ̂ =

{(T′
Ψ̂
(xp), I′

Ψ̂
(xp), F′

Ψ̂
(xp), µ′(xp)

)
xp

∣∣∣∣ xp ∈ X, 0 ≤ TΨ̂(xp) + IΨ̂(xp) + FΨ̂(xp) ≤ 3
}

.

The following operations (i.e., complement, inclusion, equal, union, and intersection) are defined by

(1) Φ̂c =

{(
FΦ̂(xp), 1− IΦ̂(xp), TΦ̂(xp), 1− µ(xp)

)
xp

∣∣∣∣ xp ∈ X
}

.

Florentin Smarandache (ed.) Collected Papers, VI

821



(2) Φ̂ ⊆ Ψ̂ ⇐⇒ TΦ̂(xp) ≤ T′
Ψ̂
(xp), IΦ̂(xp) ≥ I′

Ψ̂
(xp), FΦ̂(xp) ≥ F′

Ψ̂
(xp) and µ(xp) ≤

µ′(xp) (∀xp ∈ X).
(3) Φ̂ = Ψ̂⇐⇒ Φ̂ ⊆ Ψ̂ and Ψ̂ ⊆ Φ̂.

(4) Φ̂ ∪ Ψ̂ =

{(FΦ̂(xp) ∨ F′
Ψ̂
(xp), IΦ̂(xp) ∧ I′

Ψ̂
(xp), TΦ̂(xp) ∧ T′

Ψ̂
(xp), µ(xp) ∨ µ′(xp)

)
xp

∣∣∣∣ xp ∈ X
}

.

(5) Φ̂ ∩ Ψ̂ =

{(FΦ̂(xp) ∧ F′
Ψ̂
(xp), IΦ̂(xp) ∨ I′

Ψ̂
(xp), TΦ̂(xp) ∨ T′

Ψ̂
(xp), µ(xp) ∧ µ′(xp)

)
xp

∣∣∣∣ xp ∈ X
}

.

2.4. Soft Set, Fuzzy Soft Set, and Neutrosophic Soft Set

Definition 5 (cf. [4,7,28]). Assume that X (i.e., X = {x1, x2, ..., xp}) is a set of elements and I (i.e., I =

{i1, i2, ..., iq}) is a set of parameters, where (p, q ∈ N, N are natural numbers). Then
(1) The following mapping (called a soft set), is given by

S : I → P(X),

where P(X) is a set of all subsets over X.
(2) The following mapping (called a fuzzy soft set), is given by

S̃ : I → [0, 1]X ,

where [0, 1]X is a set of whole fuzzy subset over X.
(3) The following mapping (called a neutrosophic soft set), is given by

˜̂S : I → (NS)X ,

where (NS)X is a set of whole neutrosophic subset over X.

Example 1. Assume that the two brothers Mr. Z and Mr. M plan to go the car dealership office to purchase a new
car. Suppose that the car dealership office contains types of new cars X = {x1, x2, x3, x4} and I = {i1, i2, i3}
characterize three parameters, where i1 is “cheap”, i2 is “expensive”, and i3 is “beautiful”. Then

(1) By Definition 5(1) we can describe the soft sets as S(i1) = {x1, x3}, S(i2) = {x3, x4}, and S(i3) = {x2}.
Therefore,

S =

{
{x1, x3}

i1
,
{x3, x4}

i2
,
{x2}

i3

}
.

(2) It is obvious to replace the crisp number 0 or 1 by a membership of fuzzy information. Therefore,

by Definition 5(2) we can describe the fuzzy soft sets by S̃(i1) =
{

0.3
x1

, 0.4
x2

, 0.6
x3

, 0.5
x4

}
, S̃(i2) ={

0.6
x1

, 0.9
x2

, 0.1
x3

, 0.2
x4

}
, S̃(i3) =

{
0.7
x1

, 0.5
x2

, 0.2
x3

, 0.9
x4

}
. Then,

S̃ =


{

0.3
x1

, 0.4
x2

, 0.6
x3

, 0.5
x4

}
i1

,

{
0.6
x1

, 0.9
x2

, 0.1
x3

, 0.2
x4

}
i2

,

{
0.7
x1

, 0.5
x2

, 0.2
x3

, 0.9
x4

}
i3

 .

(3) By Definition 5(3) we can describe the neutrosophic soft sets as

˜̂S(i1) =

{
(0.3, 0.7, 0.5)

x1
,
(0.1, 0.8, 0.5)

x2
,
(0.2, 0.6, 0.8)

x3
,
(0.4, 0.7, 0.6)

x4

}
,

˜̂S(i2) =

{
(0.3, 0.7, 0.5)

x1
,
(0.1, 0.8, 0.5)

x2
,
(0.2, 0.6, 0.8)

x3
,
(0.5, 0.8, 0.3)

x4

}
,
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and ˜̂S(i3) =

{
(0.3, 0.7, 0.5)

x1
,
(0.1, 0.8, 0.5)

x2
,
(0.2, 0.6, 0.8)

x3
,
(0.8, 0.9, 0.2)

x4

}
.

3. Single-Valued Neutrosophic Fuzzy Soft Set

In the following, we propose the concept of a single-valued neutrosophic fuzzy soft set and study
some definitions, propositions, and examples.

Definition 6. Assume that X (i.e., X = {x1, x2, ..., xp}) is a set of elements, I (i.e., I = {i1, i2, ..., iq}) is a
set of parameters, and SXI is called a soft universe. A single-valued neutrosophic fuzzy soft set Φ̂(iq) over X,
denoted by (SVNFS)XI , is defined by

Φ̂(iq) =

{(TΦ̂(iq)
(xp), IΦ̂(iq)

(xp), FΦ̂(iq)
(xp), µ(xp)

)
xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp) ≤ 3

}
,

where p, q ∈ N (N are natural numbers) and µ(xp) ∈ [0, 1]. For each parameter iq ∈ I and for each xp ∈ X,
TΦ̂(iq)

(xp) ∈ [0, 1] (i.e., the degree of truth membership), IΦ̂(iq)
(xp) ∈ [0, 1] (i.e., the degree of indeterminacy

membership), and FΦ̂(iq)
(xp) ∈ [0, 1] (i.e., the degree of falsity membership).

Example 2. Assume that X = {x1, x2, x3} are three kinds of novel cars and I = {i1, i2, i3} are three parameters,
where i1 is “cheap”, i2 is “expensive”, and i3 is “beautiful”. Let µ ∈ [0, 1]X and Φ̂(iq) ∈ (SVNFS)XI are
defined as follows (q = 1, 2, 3):

Φ̂(i1) =

{
(0.3, 0.7, 0.5, 0.2)

x1
,
(0.1, 0.8, 0.5, 0.5)

x2
,
(0.2, 0.6, 0.8, 0.7)

x3

}
,

Φ̂(i2) =

{
(0.9, 0.4, 0.5, 0.7)

x1
,
(0.3, 0.7, 0.5, 0.4)

x2
,
(0.8, 0.2, 0.6, 0.8)

x3

}
,

Φ̂(i3) =

{
(0.6, 0.3, 0.5, 0.6)

x1
,
(0.3, 0.5, 0.6, 0.4)

x2
,
(0.7, 0.1, 0.6, 0.3)

x3

}
.

Additionally, we can write by matrix form as

Φ̂ =


I x1 x2 x3

i1 (0.3, 0.7, 0.5, 0.2) (0.1, 0.8, 0.5, 0.5) (0.2, 0.6, 0.8, 0.7)
i2 (0.9, 0.4, 0.5, 0.7) (0.3, 0.7, 0.5, 0.4) (0.8, 0.2, 0.6, 0.8)
i3 (0.6, 0.3, 0.5, 0.6) (0.3, 0.5, 0.6, 0.4) (0.7, 0.1, 0.6, 0.3)

 .

Definition 7. Let Φ̂(iq), Ψ̂(iq) ∈ (SVNFS)XI over SXI and µ, µ′ ∈ [0, 1]X , where

Φ̂(iq) =

{(TΦ̂(iq)
(xp), IΦ̂(iq)

(xp), FΦ̂(iq)
(xp), µ(xp)

)
xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp) ≤ 3

}

and

Ψ̂(iq) =

{(T′
Ψ̂(iq)

(xp), I′
Ψ̂(iq)

(xp), F′
Ψ̂(iq)

(xp), µ′(xp)
)

xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ T′Ψ̂(iq)
(xp) + I′Ψ̂(iq)

(xp) + F′Ψ̂(iq)
(xp) ≤ 3

}
.

Then, Φ̂(iq) b Ψ̂(iq) (i.e., Φ̂(iq) is a single-valued neutrosophic fuzzy soft subset of Ψ̂(iq)) if

(1) µ(xp) ≤ µ′(xp) ∀xp ∈ X;
(2) For all iq ∈ I, xp ∈ X, TΦ̂(iq)

(xp) ≤ T′
Ψ̂(iq)

(xp), IΦ̂(iq)
(xp) ≥ I′

Ψ̂(iq)
(xp), FΦ̂(iq)

(xp) ≥ F′
Ψ̂(iq)

(xp).
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Example 3. (Continued from Example 2). Let Ψ̂(iq) ∈ (SVNFS)XI be defined as follows (q = 1, 2, 3):

Ψ̂ =


I x1 x2 x3

i1 (0.4, 0.6, 0.4, 0.4) (0.2, 0.7, 0.3, 0.5) (0.3, 0.4, 0.7, 1)
i2 (1, 0.3, 0.5, 0.8) (0.4, 0.6, 0.4, 0.6) (0.9, 0.2, 0.4, 0.9)
i3 (0.7, 0.2, 0.4, 0.7) (0.4, 0.5, 0.6, 0.6) (0.8, 0.1, 0.5, 0.5)

 .

Thus, Φ̂(iq) b Ψ̂(iq) (∀iq ∈ I).

Definition 8. Let Φ̂(iq), Ψ̂(iq) ∈ (SVNFS)XI over SXI and µ, µ′ ∈ [0, 1]X , where

Φ̂(iq) =

{(TΦ̂(iq)
(xp), IΦ̂(iq)

(xp), FΦ̂(iq)
(xp), µ(xp)

)
xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp) ≤ 3

}

and

Ψ̂(iq) =

{(T′
Ψ̂(iq)

(xp), I′
Ψ̂(iq)

(xp), F′
Ψ̂(iq)

(xp), µ′(xp)
)

xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ T′Ψ̂(iq)
(xp) + I′Ψ̂(iq)

(xp) + F′Ψ̂(iq)
(xp) ≤ 3

}
.

Then, Φ̂(iq) = Ψ̂(iq) (i.e., Φ̂(iq) is a single-valued neutrosophic fuzzy soft equal to Ψ̂(iq)) if Φ̂(iq) b Ψ̂(iq)

and Φ̂(iq) c Ψ̂(iq).

Definition 9. Let Φ̂(iq) ∈ (SVNFS)XI over SXI and µ ∈ [0, 1]X , where

Φ̂(iq) =

{(TΦ̂(iq)
(xp), IΦ̂(iq)

(xp), FΦ̂(iq)
(xp), µ(xp)

)
xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp) ≤ 3

}

over SXI . Then,

(1) Φ̂(iq) is called a single-valued neutrosophic fuzzy soft null set (denoted by ∅̂(iq)), defined as

∅̂(iq) =

{
(0, 1, 1, 0)

xp
|iq ∈ I, xp ∈ X

}
.

(2) Φ̂(iq) is called a single-valued neutrosophic fuzzy soft universal set (denoted by X̂(iq)), defined as

X̂(iq) =

{
(1, 0, 0, 1)

xp
|iq ∈ I, xp ∈ X

}
.

Example 4. (Continued from Example 2). Then, ∅̂(iq), X̂(iq) ∈ (SVNFS)XI are defined as follows:

∅̂ =


I x1 x2 x3

i1 (0, 1, 1, 0) (0, 1, 1, 0) (0, 1, 1, 0)
i2 (0, 1, 1, 0) (0, 1, 1, 0) (0, 1, 1, 0)
i3 (0, 1, 1, 0) (0, 1, 1, 0) (0, 1, 1, 0)


and

X̂ =


I x1 x2 x3

i1 (1, 0, 0, 1) (1, 0, 0, 1) (1, 0, 0, 1)
i2 (1, 0, 0, 1) (1, 0, 0, 1) (1, 0, 0, 1)
i3 (1, 0, 0, 1) (1, 0, 0, 1) (1, 0, 0, 1)

 .
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Definition 10. Let Φ̂(iq), Ψ̂(iq) ∈ (SVNFS)XI over SXI and µ, µ′ ∈ [0, 1]X , where

Φ̂(iq) =

{(TΦ̂(iq)
(xp), IΦ̂(iq)

(xp), FΦ̂(iq)
(xp), µ(xp)

)
xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp) ≤ 3

}

and

Ψ̂(iq) =

{(T′
Ψ̂(iq)

(xp), I′
Ψ̂(iq)

(xp), F′
Ψ̂(iq)

(xp), µ′(xp)
)

xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ T′Ψ̂(iq)
(xp) + I′Ψ̂(iq)

(xp) + F′Ψ̂(iq)
(xp) ≤ 3

}
.

Then,

(1) The union Φ̂(iq) d Ψ̂(iq) is defined as

Φ̂(iq) d Ψ̂(iq) =

{(TΦ̂(iq)
(xp) ◦ T′

Ψ̂(iq)
(xp), IΦ̂(iq)

(xp) ∗ I′
Ψ̂(iq)

(xp), FΦ̂(iq)
(xp) ∗ F′

Ψ̂(iq)
(xp), µ(xp) ◦ µ′(xp)

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}

.

(2) The intersection Φ̂(iq) e Ψ̂(iq) is defined as

Φ̂(iq) e Ψ̂(iq) =

{(TΦ̂(iq)
(xp) ∗ T′

Ψ̂(iq)
(xp), IΦ̂(iq)

(xp) ◦ I′
Ψ̂(iq)

(xp), FΦ̂(iq)
(xp) ◦ F′

Ψ̂(iq)
(xp), µ(xp) ∗ µ′(xp)

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}

.

Example 5. (Continued from Examples 2 and 3). For α, β ∈ [0, 1], let the t-norm (i.e., given as α ∗ β = α ∧ β)
and the t-conorm (i.e., given as α ◦ β = α ∨ β). Then,

Φ̂ d Ψ̂ =


I x1 x2 x3

i1 (0.4, 0.6, 0.4, 0.4) (0.2, 0.7, 0.3, 0.5) (0.3, 0.4, 0.7, 1)
i2 (1, 0.3, 0.5, 0.8) (0.4, 0.6, 0.4, 0.6) (0.9, 0.2, 0.4, 0.9)
i3 (0.7, 0.2, 0.4, 0.7) (0.4, 0.5, 0.6, 0.6) (0.8, 0.1, 0.5, 0.5)


and

Φ̂ e Ψ̂ =


I x1 x2 x3

i1 (0.3, 0.7, 0.5, 0.2) (0.1, 0.8, 0.5, 0.5) (0.2, 0.6, 0.8, 0.7)
i2 (0.9, 0.4, 0.5, 0.7) (0.3, 0.7, 0.5, 0.4) (0.8, 0.2, 0.6, 0.8)
i3 (0.6, 0.3, 0.5, 0.6) (0.3, 0.5, 0.6, 0.4) (0.7, 0.1, 0.6, 0.3)

 .

Proposition 1. Let ∅̂(iq), X̂(iq), Φ̂(iq) ∈ (SVNFS)XI over SXI and µ ∈ [0, 1]X . Then the following hold:

(1) Φ̂(iq) d Φ̂(iq) = Φ̂(iq);

(2) Φ̂(iq) e Φ̂(iq) = Φ̂(iq);

(3) Φ̂(iq) d ∅̂(iq) = Φ̂(iq);

(4) Φ̂(iq) e ∅̂(iq) = ∅̂(iq);

(5) Φ̂(iq) d X̂(iq) = X̂(iq);

(6) Φ̂(iq) e X̂(iq) = Φ̂(iq).

Proof. Follows from Definitions 9 and 10.

Proposition 2. Let Φ̂(iq), Ψ̂(iq), Γ̂(iq) ∈ (SVNFS)XI over SXI and µ, µ′, µ′′ ∈ [0, 1]X . Then the following hold:

(1) Φ̂(iq) d Ψ̂(iq) = Ψ̂(iq) d Φ̂(iq);

(2) Φ̂(iq) e Ψ̂(iq) = Ψ̂(iq) e Φ̂(iq);

(3) Φ̂(iq) d (Ψ̂(iq) d Γ̂(iq)) = (Φ̂(iq) d Ψ̂(iq))d Γ̂(iq);
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(4) Φ̂(iq) e (Ψ̂(iq) e Γ̂(iq)) = (Φ̂(iq) e Ψ̂(iq))e Γ̂(iq);

(5) Φ̂(iq) e (Ψ̂(iq) d Γ̂(iq)) = (Φ̂(iq) e Ψ̂(iq))d (Φ̂(iq) e Γ̂(iq));

(6) Φ̂(iq) d (Ψ̂(iq) e Γ̂(iq)) = (Φ̂(iq) d Ψ̂(iq))e (Φ̂(iq) d Γ̂(iq)).

Proof. Follows from Definition 10.

Proposition 3. Let Φ̂(iq), Ψ̂(iq) ∈ (SVNFS)XI over SXI , µ, µ′ ∈ [0, 1]X, and Ψ̂(iq) b Φ̂(iq). Then the
following hold:

(1) Φ̂(iq) d Ψ̂(iq) = Φ̂(iq);
(2) Φ̂(iq) e Ψ̂(iq) = Ψ̂(iq).

Proof. Follows from Definitions 7 and 10.

Next, we propose a definition, example, remark, and two propositions on the complement of
(SVNFS)XI over SXI .

Definition 11. Let Φ̂(iq) ∈ (SVNFS)XI over SXI and µ ∈ [0, 1]X , where

Φ̂(iq) =

{(TΦ̂(iq)
(xp), IΦ̂(iq)

(xp), FΦ̂(iq)
(xp), µ(xp)

)
xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp) ≤ 3

}
.

Then, the complement Φ̂c
(iq)

of Φ̂(iq) is defined as

Φ̂c
(iq) =

{(FΦ̂(iq)
(xp), 1− IΦ̂(iq)

(xp), TΦ̂(iq)
(xp), 1− µ(xp)

)
xp

∣∣∣∣ iq ∈ I, xp ∈ X
}

.

Example 6. (Continued from Example 2). The complement Φ̂c
(iq)

of Φ̂(iq) is calculated by

Φ̂c =


I x1 x2 x3

i1 (0.5, 0.3, 0.3, 0.8) (0.5, 0.2, 0.1, 0.5) (0.8, 0.4, 0.2, 0.3)

i2 (0.5, 0.6, 0.9, 0.3) (0.5, 0.3, 0.3, 0.6) (0.6, 0.8, 0.8, 0.2)

i3 (0.5, 0.7, 0.6, 0.4) (0.6, 0.5, 0.3, 0.6) (0.6, 0.9, 0.7, 0.7)

 .

Proposition 4. Let ∅̂(iq), X̂(iq), Φ̂(iq) ∈ (SVNFS)XI over SXI , and µ ∈ [0, 1]X . Then, the following hold:

(1) ∅̂c
(iq)

= X̂(iq);

(2) X̂c
(iq)

= ∅̂(iq);

(3) (Φ̂c
(iq)

)c = Φ̂c
(iq)

.

Proof. Follows from Definitions 9 and 11.

Remark 1. The equality of Φ̂(iq) d Φ̂c
(iq)

= X̂(iq) and Φ̂(iq) e Φ̂c
(iq)

= ∅̂(iq) does not hold by
the following example.

Example 7. (Continued from Examples 2 and 6). Then, Φ̂c
(iq)

of Φ̂(iq) is calculated by

Φ̂ d Φ̂c =


I x1 x2 x3

i1 (0.5, 0.3, 0.3, 0.8) (0.5, 0.2, 0.1, 0.5) (0.8, 0.4, 0.2, 0.3)

i1 (0.5, 0.6, 0.9, 0.3) (0.5, 0.3, 0.3, 0.6) (0.6, 0.8, 0.8, 0.2)

i1 (0.5, 0.7, 0.6, 0.4) (0.6, 0.5, 0.3, 0.6) (0.6, 0.9, 0.7, 0.7)



Florentin Smarandache (ed.) Collected Papers, VI

826



and

Φ̂ e Φ̂c =


I x1 x2 x3

i1 (0.3, 0.7, 0.5, 0.2) (0.1, 0.8, 0.5, 0.5) (0.2, 0.6, 0.8, 0.7)

i2 (0.9, 0.4, 0.5, 0.7) (0.3, 0.7, 0.5, 0.4) (0.8, 0.2, 0.6, 0.8)

i3 (0.6, 0.3, 0.5, 0.6) (0.3, 0.5, 0.6, 0.4) (0.7, 0.1, 0.6, 0.3)

 .

This shows that Φ̂(iq) d Φ̂c
(iq)
6= X̂(iq) and Φ̂(iq) e Φ̂c

(iq)
6= ∅̂(iq).

Proposition 5. Let Φ̂(iq), Ψ̂(iq) ∈ (SVNFS)XI over SXI and µ, µ′ ∈ [0, 1]X . Then, the following hold:

(1) (Φ̂(iq) d Ψ̂(iq))
c = Φ̂c

(iq)
e Ψ̂c

(iq)
;

(2) (Φ̂(iq) e Ψ̂(iq))
c = Φ̂c

(iq)
d Ψ̂c

(iq)
.

Proof. Consider a ∗ b = a ∧ b (t-norm) and α ◦ β = α ∨ β (t-conorm) (∀α, β ∈ [0, 1]). We have

(1) (Φ̂(iq) d Ψ̂(iq))
c(xp)

=

({(TΦ̂(iq)
(xp) ◦ T′

Ψ̂(iq)
(xp), IΦ̂(iq)

(xp) ∗ I′
Ψ̂(iq)

(xp), FΦ̂(iq)
(xp) ∗ F′

Ψ̂(iq)
(xp), µ(xp) ◦ µ′(xp)

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
})c

=

{(FΦ̂(iq)
(xp) ∗ F′

Ψ̂(iq)
(xp), 1− (IΦ̂(iq)

(xp) ∗ I′
Ψ̂(iq)

(xp)), TΦ̂(iq)
(xp) ◦ T′

Ψ̂(iq)
(xp), 1− (µ(xp) ◦ µ′(xp))

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}

=

{(FΦ̂(iq )
(xp) ∧ F′

Ψ̂(iq )
(xp), 1− (IΦ̂(iq )

(xp) ∧ I′
Ψ̂(iq )

(xp)), TΦ̂(iq )
(xp) ∨ T′

Ψ̂(iq )
(xp), 1− (µ(xp) ∨ µ′(xp))

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}

=

{(FΦ̂(iq )
(xp) ∧ F′

Ψ̂(iq )
(xp), 1− IΦ̂(iq )

(xp) ∨ 1− I′
Ψ̂(iq )

(xp), TΦ̂(iq )
(xp) ∨ T′

Ψ̂(iq )
(xp), 1− µ(xp) ∧ 1− µ′(xp)

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}

=

{(FΦ̂(iq )
(xp) ∗ F′

Ψ̂(iq )
(xp), 1− IΦ̂(iq )

(xp) ◦ 1− I′
Ψ̂(iq )

(xp), TΦ̂(iq )
(xp) ◦ T′

Ψ̂(iq )
(xp), 1− µ(xp) ∗ 1− µ′(xp)

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}

=

{(FΦ̂(iq)
(xp), 1− IΦ̂(iq)

(xp), TΦ̂(iq)
(xp), 1− µ(xp)

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}
e
{(F′

Ψ̂(iq)
(xp), 1− I′

Ψ̂(iq)
(xp), T′

Ψ̂(iq)
(xp), 1− µ′(xp)

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}

= Φ̂c
(iq)

(xp)e Ψ̂c
(iq)

(xp).

(2) (Φ̂(iq) e Ψ̂(iq))
c(xp)

=

({(TΦ̂(iq )
(xp) ∗ T′

Ψ̂(iq )
(xp), IΦ̂(iq )

(xp) ◦ I′
Ψ̂(iq )

(xp), FΦ̂(iq )
(xp) ◦ F′

Ψ̂(iq )
(xp), µ(xp) ∗ µ′(xp)

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
})c

=

{(FΦ̂(iq )
(xp) ◦ F′

Ψ̂(iq )
(xp), 1− (IΦ̂(iq )

(xp) ◦ I′
Ψ̂(iq )

(xp)), TΦ̂(iq )
(xp) ∗ T′

Ψ̂(iq )
(xp), 1− (µ(xp) ∗ µ′(xp))

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}

=

{(FΦ̂(iq )
(xp) ∨ F′

Ψ̂(iq )
(xp), 1− (IΦ̂(iq )

(xp) ∨ I′
Ψ̂(iq )

(xp)), TΦ̂(iq )
(xp) ∧ T′

Ψ̂(iq )
(xp), 1− (µ(xp) ∧ µ′(xp))

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}

=

{(FΦ̂(iq )
(xp) ∨ F′

Ψ̂(iq )
(xp), 1− IΦ̂(iq )

(xp) ∧ 1− I′
Ψ̂(iq )

(xp), TΦ̂(iq )
(xp) ∧ T′

Ψ̂(iq )
(xp), 1− µ(xp) ∨ 1− µ′(xp)

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}

=

{(FΦ̂(iq )
(xp) ◦ F′

Ψ̂(iq )
(xp), 1− IΦ̂(iq )

(xp) ∗ 1− I′
Ψ̂(iq )

(xp), TΦ̂(iq )
(xp) ∗ T′

Ψ̂(iq )
(xp), 1− µ(xp) ◦ 1− µ′(xp)

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}

=

{(FΦ̂(iq)
(xp), 1− IΦ̂(iq)

(xp), TΦ̂(iq)
(xp), 1− µ(xp)

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}
d
{(F′

Ψ̂(iq)
(xp), 1− I′

Ψ̂(iq)
(xp), T′

Ψ̂(iq)
(xp), 1− µ′(xp)

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}

= Φ̂c
(iq)

(xp)d Ψ̂c
(iq)

(xp).
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4. Two Algorithms of Single-Valued Neutrosophic Fuzzy Soft Sets for Decision-Making

Depending on single-valued neutrosophic fuzzy soft sets, in the following, we introduce two new
approaches for fuzzy decision-making problems.

Next, we construct Algorithm 1 as the first type for decision-making (i.e., the first application of
a single-valued neutrosophic fuzzy soft set).

Algorithm 1: Determine the optimal decision based on a single-valued neutrosophic fuzzy soft
set matrix.

First step: Input the single-valued neutrosophic fuzzy soft set Φ̂(iq) ∈ (SVNFS)XI as follows:

Φ̂(iq) =

{(TΦ̂(iq)
(xp), IΦ̂(iq)

(xp), FΦ̂(iq)
(xp), µ(xp)

)
xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp) ≤ 3

}
,

to be evaluated by a group of experts n to element x on parameter i, where TΦ̂(iq)
(xp) ∈ [0, 1]

(i.e., the degree of truth membership), IΦ̂(iq)
(xp) (i.e., the degree of indeterminacy

membership), FΦ̂(iq)
(xp) (i.e., the degree of falsity membership), and µ(xp) ∈ [0, 1].

Second step: Input the single-valued neutrosophic fuzzy soft set in matrix form (written as
Mq×p, p, q ∈ N):

Mq×p =



(
TΦ̂(i1)

(x1), IΦ̂(i1)
(x1), FΦ̂(i1)

(x1), µ(x1)
) (

TΦ̂(i1)
(x2), IΦ̂(i1)

(x2), FΦ̂(i1)
(x2), µ(x2)

)
· · ·

(
TΦ̂(i2)

(xp), IΦ̂(i2)
(xp), FΦ̂(i2)

(xp), µ(xp)
)(

TΦ̂(i2)
(x1), IΦ̂(i2)

(x1), FΦ̂(i2)
(x1), µ(x1)

) (
TΦ̂(i2)

(x2), IΦ̂(i2)
(x2), FΦ̂(i2)

(x2), µ(x2)
)
· · ·

(
TΦ̂(i2)

(xp), IΦ̂(i2)
(xp), FΦ̂(i2)

(xp), µ(xp)
)(

TΦ̂(i3)
(x1), IΦ̂(i3)

(x1), FΦ̂(i3)
(x1), µ(x1)

) (
TΦ̂(i3)

(x2), IΦ̂(i3)
(x2), FΦ̂(i3)

(x2), µ(x2)
)
· · ·

(
TΦ̂(i3)

(xp), IΦ̂(i3)
(xp), FΦ̂(i3)

(xp), µ(xp)
)

...
...

. . .
...(

TΦ̂(iq)
(x1), IΦ̂(iq)

(x1), FΦ̂(iq)
(x1), µ(x1)

) (
TΦ̂(iq)

(x2), IΦ̂(iq)
(x2), FΦ̂(iq)

(x2), µ(x2)
)
· · ·

(
TΦ̂(iq)

(xp), IΦ̂(iq)
(xp), FΦ̂(iq)

(xp), µ(xp)
)


.

Third step: Calculate the center matrix (i.e.,
δΦ̂(iq)

(xp) = (TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp))− µ(xp)):

Cq×p =


δΦ̂(i1)

(x1) δΦ̂(i1)
(x2) · · · , δΦ̂(i1)

(xp)

δΦ̂(i2)
(x1) δΦ̂(i2)

(x2) · · · , δΦ̂(i2)
(xp)

...
...

. . .
...

δΦ̂(iq)
(x1) δΦ̂(iq)

(x2) · · · , δΦ̂(iq)
(xp)

 .

Fourth step: Calculate the dmax(xj) (maximum decision), dmin(xj) (minimum decision), and
S(xj) (score) of elements xj (j = 1, 2, · · · , p):

dmax(xj) =
q

∑
i=1

(
1− δΦ̂(iq)

(xj)
)2, dmin(xj) =

q

∑
i=1

(δΦ̂(iq)
(xj))

2

S(xj) = dmax(xj) + dmin(xj).

(to understand the motivation behind this method, let ρ be the Euclidean metric on Rq,
000 = (0, · · · , 0)T ∈ Rq, 111 = (1, · · · , 1)T ∈ Rq, and θθθ j = (θ1,xj , θ2,xj , · · · , θq,xj)

T ∈ Rq. Thus
S(xj) = [ρ(θθθ j, 111)]2 + [ρ(θθθ j, 000)]2 (j = 1, 2, · · · , p)).

Fifth step: Obtain the decision p satisfying

xp = max
{

S(x1), S(x2), · · · , S(xj)
}

.

Now, we show the principle and steps of the above Algorithm 1 by using the following example.
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Example 8. An investment company wants to choose some investment projects to make full use of idle funds.
There are five alternatives X = {z1, z2, z3, z4, z5} that can be selected: two internet education projects (denoted
as z1 and z2) and three film studio investments (represented as z3, z4, z5). According to the project investment
books, the decision-makers evaluate the five alternatives from the following three parameters I = {i1, i2, i3},
where i1 is “human resources”, i2 is “social benefits”, and i3 is “expected benefits”. The data of the single-valued
neutrosophic fuzzy soft set Φ̂(iq) ∈ (SVNFS)XI is given by

Φ̂ =


I z1 z2 z3 z4 z5

i1 (0.3, 0.7, 0.5, 0.2) (0.1, 0.8, 0.5, 0.5) (0.2, 0.6, 0.8, 0.7) (0.5, 0.6, 0.5, 0.2) (0.4, 0.7, 0.9, 0.1)

i2 (0.9, 0.4, 0.5, 0.7) (0.3, 0.7, 0.5, 0.4) (0.8, 0.2, 0.6, 0.8) (0.3, 0.7, 0.2, 0.5) (0.7, 0.8, 0.8, 0.3)

i3 (0.6, 0.3, 0.5, 0.6) (0.3, 0.5, 0.6, 0.4) (0.7, 0.1, 0.6, 0.3) (0.8, 0.9, 0.6, 0.4) (0.7, 0.8, 0.9, 0.6)

 .

Now, we will explain the practical meaning of alternatives X by taking the alternative z1 as an example:
the single-valued neutrosophic fuzzy soft set Φ̂(i1)(z1) = (0.3, 0.7, 0.5, 0.2) is the evaluation by four expert
groups; the single-valued neutrosophic fuzzy soft value 0.3 (meaning that 30% say yes in the first expert group)
in Φ̂(i1)(z1), the single-valued neutrosophic fuzzy soft value 0.7 (meaning 70% say no in the second expert
group) in Φ̂(i1)(z1), the single-valued neutrosophic fuzzy soft value 0.5 (meaning 50% say yes in the third
expert group) in Φ̂(i1)(z1), and fuzzy value 0.2 (meaning 20% say no in the fourth expert group) in Φ̂(i1)(z1).
Then, the single-valued neutrosophic fuzzy soft set in matrix formM3×5 in the second step of Algorithm 1 is
given by

M3×5 =



(0.3, 0.7, 0.5, 0.2) (0.9, 0.4, 0.5, 0.7) (0.6, 0.3, 0.5, 0.6)

(0.1, 0.8, 0.5, 0.5) (0.3, 0.7, 0.5, 0.4) (0.3, 0.5, 0.6, 0.4)

(0.2, 0.6, 0.8, 0.7) (0.8, 0.2, 0.6, 0.8) (0.7, 0.1, 0.6, 0.3)

(0.5, 0.6, 0.5, 0.2) (0.3, 0.7, 0.2, 0.5) (0.8, 0.9, 0.6, 0.4)

(0.4, 0.7, 0.9, 0.1) (0.7, 0.8, 0.8, 0.3) (0.7, 0.8, 0.9, 0.6)


.

Thus, we obtain the following center matrix C3×5 ofM3×5 in the third step of Algorithm 1:

C3×5 =


1.3 1.1 0.8
0.9 1.1 1
0.9 0.8 1.1
1.4 0.7 1.9
1.9 2 1.8

 .

By calculating, we get dmax(zj), dmin(zj), and S(zj) of elements zj (j = 1, 2, 3, 4, 5):

dmax(z1) = 0.14, dmax(z2) = 0.02, dmax(z3) = 0.06, d1(z4) = 1.06, dmax(z5) = 2.45;

dmin(z1) = 3.54, dmin(z2) = 3.02, dmin(z3) = 2.66, dmin(z4) = 6.06, dmin(z5) = 10.85;

S(z1) = 3.68, S(z2) = 3.04, S(z3) = 2.72, S(z4) = 7.12, S(z5) = 13.3.

Finally, we can see from the fifth step that z5 is the best decision.

Now, we present Algorithm 2 as a second type for a decision-making problem (i.e., a second
application of the single-valued neutrosophic fuzzy soft set) as follows:
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Algorithm 2: Determine the optimal decision based on AND operation of two single-valued
neutrosophic fuzzy soft sets.

First step: Input the single-valued neutrosophic fuzzy soft sets Φ̂(iq) ∈ (SVNFS)XI and
Ψ̂(jq) ∈ (SVNFS)XJ , defined, respectively, as follows:

Φ̂(iq) =

{(TΦ̂(iq)
(xp), IΦ̂(iq)

(xp), FΦ̂(iq)
(xp), µ(xp)

)
xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp) ≤ 3

}
,

to be evaluated by a group of experts n to element x on parameter i, where TΦ̂(iq)
(xp) ∈ [0, 1]

(i.e., the degree of truth membership), IΦ̂(iq)
(xp) (i.e., the degree of indeterminacy

membership), FΦ̂(iq)
(xp) (i.e., the degree of falsity membership), and µ(xp) ∈ [0, 1],

Ψ̂(jq) =

{(T′
Ψ̂(jq)

(xp), I′
Ψ̂(jq)

(xp), F′
Ψ̂(jq)

(xp), µ′(xp)
)

xp

∣∣∣∣ jq ∈ J, xp ∈ X, 0 ≤ T′Ψ̂(jq)
(xp) + I′Ψ̂(jq)

(xp) + F′Ψ̂(jq)
(xp) ≤ 3

}
to be evaluated by a group of experts n to element x on parameter j, where TΨ̂′

(jq)
(xp) ∈ [0, 1]

(i.e., the degree of truth membership), IΨ̂′
(jq)

(xp) (i.e., the degree of indeterminacy membership),

FΨ̂′
(jq)

(xp) (i.e., the degree of falsity membership), and µ(xp) ∈ [0, 1].

Second step: Define and calculate the AND operation of two single-valued neutrosophic
fuzzy soft sets Φ̂(iq) ∈ (SVNFS)XI and Ψ̂(jq) ∈ (SVNFS)XJ , denoted by
(Φ̂∧Ψ̂)(iq ,jq) (∀i ∈ I, j ∈ J), defined as

(Φ̂∧Ψ̂)(iq ,jq) =

{(TΦ̂(iq)
(xp) ∧ T′

Ψ̂(jq)
(xp), IΦ̂(iq)

(xp) ∨ I′
Ψ̂(jq)

(xp), FΦ̂(iq)
(xp) ∨ F′

Ψ̂(jq)
(xp), µ(xp) ∧ µ′(xp)

)
xp

∣∣∣∣iq ∈ I, jq ∈ J, xp ∈ X
}

.

Third step: Define and write the truth membership (Φ̂∧Ψ̂)T
(iq ,jq)

, the indeterminacy

membership (Φ̂∧Ψ̂)I
(iq ,jq)

, and the falsity membership (Φ̂∧Ψ̂)F
(iq ,jq)

, respectively, as follows:

(Φ̂∧Ψ̂)T
(iq ,jq) =

{(TΦ̂(iq)
(xp) ∧ T′

Ψ̂(jq)
(xp), µ(xp) ∧ µ′(xp)

)
xp

∣∣∣∣iq ∈ I, jq ∈ J, xp ∈ X
}

,

(Φ̂∧Ψ̂)I
(iq ,jq) =

{(IΦ̂(iq)
(xp) ∨ I′

Ψ̂(jq)
(xp), µ(xp) ∧ µ′(xp)

)
xp

∣∣∣∣iq ∈ I, jq ∈ J, xp ∈ X
}

,

and

(Φ̂∧Ψ̂)F
(iq ,jq) =

{(FΦ̂(iq)
(xp) ∨ F′

Ψ̂(jq)
(xp), µ(xp) ∧ µ′(xp)

)
xp

∣∣∣∣iq ∈ I, jq ∈ J, xp ∈ X
}

.

Fourth step: Define and compute the max-matrices of (Φ̂∧Ψ̂)T
(iq ,jq)

, (Φ̂∧Ψ̂)I
(iq ,jq)

, and

(Φ̂∧Ψ̂)F
(iq ,jq)

, respectively, for every xp ∈ X as follows (p = 1, 2, · · · , N):

(Φ̂∧Ψ̂)T
(iq ,jq)(xp) =

1
2

(
(TΦ̂(iq)

(xp) ∧ T′Ψ̂(jq)
(xp)) + (µ(xp) ∧ µ′(xp))

)
,

(Φ̂∧Ψ̂)I
(iq ,jq)(xp) =

(
(IΦ̂(iq)

(xp) ∨ I′Ψ̂(jq)
(xp))× (µ(xp) ∧ µ′(xp))

)
,

and

(Φ̂∧Ψ̂)F
(iq ,jq)(xp) =

(
(FΦ̂(iq)

(xp) ∨ F′Ψ̂(jq)
(xp))− (µ(xp) ∧ µ′(xp)

)2

.
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Algorithm 2: Cont.
Fifth step: Calculate and write the max-decision τT (i.e., τT : X → R), τI (i.e., τI : X → R),
and τF (i.e., τF : X → R) of (Φ̂∧Ψ̂)T

(iq ,jq)
, (Φ̂∧Ψ̂)I

(iq ,jq)
, and (Φ̂∧Ψ̂)F

(iq ,jq)
, respectively, for

every xp ∈ X as follows (p = 1, 2, · · · , N):

τT(xp) = ∑
(i,j)∈I×J

δT(xp)(i, j), τI(xp) = ∑
(i,j)∈I×J

δF(xp)(i, j), and ∑
(i,j)∈I×J

δF(xp)(i, j),

where

δT(xp)(i, j) =


(Φ̂∧Ψ̂)T

(iq ,jq)
(xp), (Φ̂∧Ψ̂)T

(iq ,jq)
(xp) = max{(Φ̂∧Ψ̂)T

(uq ,vq)
(xp) : (u, v) ∈ I × J}

0, otherwise
,

δI(xp)(i.j) =


(Φ̂∧Ψ̂)I

(iq ,jq)
(xp), (Φ̂∧Ψ̂)I

(iq ,jq)
(xp) = max{(Φ̂∧Ψ̂)I

(uq ,vq)
(xp) : (u, v) ∈ I × J}

0, otherwise
,

δF(xp)(i.j) =


(Φ̂∧Ψ̂)F

(iq ,jq)
(xp), (Φ̂∧Ψ̂)F

(iq ,jq)
(xp) = max{(Φ̂∧Ψ̂)F

(uq ,vq)
(xp) : (u, v) ∈ I × J}

0, otherwise
.

Sixth step: Calculate the score S(xp) of element xp as follows (p = 1, 2, · · · , N):

S(xp) = τT(xp) + τI(xp) + τF(xp).

Seventh step: Obtain the decision p satisfying

xp = max
{

S(x1), S(x2), · · · , S(xj)
}

.

Now, we show the principle and steps of the above Algorithm 2 using the following example.

Example 9. (Continued from Example 11). Suppose that an investment company also adds three different
parameters J = {j1, j2, j3}, where j1 is “marketing management”, j2 is “productivity of capital”, and j3 is
“interest rates”. The data of the single-valued neutrosophic fuzzy soft set Ψ̂(jq) ∈ (SVNFS)XJ is given by

Ψ̂ =


J z1 z2 z3 z4 z5

j1 (0.5, 0.6, 0.7, 0.4) (0.3, 0.2, 0.7, 0.8) (0.6, 0.9, 0.4, 0.3) (0.8, 0.8, 0.2, 0.1) (0.9, 0.5, 0.4, 0.2)

j2 (0.8, 0.4, 0.5, 0.2) (0.7, 0.9, 0.2, 0.1) (0.3, 0.3, 0.9, 0.4) (0.9, 0.4, 0.5, 0.5) (0.7, 0.8, 0.7, 0.2)

j3 (0.9, 0.9, 0.5, 0.3) (0.5, 0.9, 0.2, 0.1) (0.6, 0.6, 0.1, 0.5) (0.5, 0.7, 0.8, 0.8) (0.6, 0.2, 0.4, 0.7)

 .

Now, we explain the practical meaning of alternatives X by taking the alternative z1 as an example:
the single-valued neutrosophic fuzzy soft set Ψ̂(j1)(z1) = (0.5, 0.6, 0.7, 0.4) is the evaluation by four expert
groups; the single-valued neutrosophic fuzzy soft value 0.5 (meaning 50% say yes in the first expert group)
in Ψ̂(j1)(z1), the single-valued neutrosophic fuzzy soft value 0.6 (meaning 60% say no in the second expert
group) in Ψ̂(j1)(z1), the single-valued neutrosophic fuzzy soft value 0.7 (meaning 70% say yes in the third
expert group) in Ψ̂(j1)(z1), and fuzzy value 0.4 (meaning 40% say no in the fourth expert group) in Ψ̂(j1)(z1).
Then, by computing (Φ̂∧Ψ̂)(iq ,jq) (q = 1, 2, 3) in the second step of Algorithm 2, we obtain the following:
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Φ̂∧Ψ̂ z1 z2 z3 z4 z5

(i1, j1) (0.3, 0.7, 0.7, 0.2) (0.1, 0.8, 0.7, 0.5) (0.2, 0.9, 0.8, 0.3) (0.5, 0.8, 0.5, 0.1) (0.4, 0.7, 0.9, 0.1)

(i1, j2) (0.3, 0.7, 0.5, 0.2) (0.1, 0.9, 0.5, 0.1) (0.2, 0.6, 0.9, 0.4) (0.5, 0.6, 0.5, 0.2) (0.4, 0.8, 0.9, 0.1)

(i1, j3) (0.3, 0.9, 0.5, 0.2) (0.1, 0.9, 0.5, 0.1) (0.2, 0.6, 0.8, 0.5) (0.5, 0.7, 0.8, 0.2) (0.4, 0.7, 0.9, 0.1)

(i2, j1) (0.5, 0.6, 0.7, 0.4) (0.3, 0.7, 0.7, 0.4) (0.6, 0.9, 0.6, 0.3) (0.3, 0.8, 0.2, 0.1) (0.7, 0.8, 0.8, 0.2)

(i2, j2) (0.8, 0.4, 0.5, 0.2) (0.3, 0.9, 0.5, 0.1) (0.3, 0.3, 0.9, 0.4) (0.3, 0.7, 0.5, 0.5) (0.7, 0.8, 0.8, 0.2)

(i2, j3) (0.9, 0.9, 0.5, 0.3) (0.3, 0.9, 0.5, 0.1) (0.6, 0.6, 0.6, 0.5) (0.3, 0.7, 0.8, 0.5) (0.6, 0.8, 0.8, 0.3)

(i3, j1) (0.5, 0.6, 0.7, 0.4) (0.3, 0.5, 0.6, 0.4) (0.7, 0.8, 0.6, 0.1) (0.8, 0.9, 0.6, 0.1) (0.7, 0.8, 0.9, 0.2)

(i3, j2) (0.6, 0.4, 0.5, 0.2) (0.3, 0.9, 0.6, 0.1) (0.3, 0.3, 0.9, 0.3) (0.8, 0.9, 0.6, 0.4) (0.7, 0.8, 0.9, 0.2)

(i3, j3) (0.6, 0.9, 0.5, 0.3) (0.3, 0.9, 0.6, 0.1) (0.6, 0.6, 0.6, 0.3) (0.5, 0.9, 0.8, 0.4) (0.6, 0.8, 0.9, 0.6)


.

By calculating in the third step of Algorithm 2, we get the truth membership (Φ̂∧Ψ̂)T
(iq ,jq)

,

the indeterminacy membership (Φ̂∧Ψ̂)I
(iq ,jq)

, and the falsity membership (Φ̂∧Ψ̂)F
(iq ,jq)

, respectively, as follows:
(q = 1, 2, 3): 

(Φ̂∧Ψ̂)T z1 z2 z3 z4 z5

(i1, j1) (0.3, 0.2) (0.1, 0.5) (0.2, 0.3) (0.5, 0.1) (0.4, 0.1)
(i1, j2) (0.3, 0.2) (0.1, 0.1) (0.2, 0.4) (0.5, 0.2) (0.4, 0.1)
(i1, j3) (0.3, 0.2) (0.1, 0.1) (0.2, 0.5) (0.5, 0.2) (0.4, 0.1)
(i2, j1) (0.5, 0.4) (0.3, 0.4) (0.6, 0.3) (0.3, 0.1) (0.7, 0.2)
(i2, j2) (0.8, 0.2) (0.3, 0.1) (0.3, 0.4) (0.3, 0.5) (0.7, 0.2)
(i2, j3) (0.9, 0.3) (0.3, 0.1) (0.6, 0.5) (0.3, 0.5) (0.6, 0.3)
(i3, j1) (0.5, 0.4) (0.3, 0.4) (0.7, 0.1) (0.8, 0.1) (0.7, 0.2)
(i3, j2) (0.6, 0.2) (0.3, 0.1) (0.3, 0.3) (0.8, 0.4) (0.7, 0.2)
(i3, j3) (0.6, 0.3) (0.3, 0.1) (0.6, 0.3) (0.5, 0.4) (0.6, 0.6)


,



(Φ̂∧Ψ̂)I z1 z2 z3 z4 z5

(i1, j1) (0.7, 0.2) (0.8, 0.5) (0.9, 0.3) (0.8, 0.1) (0.7, 0.1)
(i1, j2) (0.7, 0.2) (0.9, 0.1) (0.6, 0.4) (0.6, 0.2) (0.8, 0.1)
(i1, j3) (0.9, 0.2) (0.9, 0.1) (0.6, 0.5) (0.7, 0.2) (0.7, 0.1)
(i2, j1) (0.6, 0.4) (0.7, 0.4) (0.9, 0.3) (0.8, 0.1) (0.8, 0.2)
(i2, j2) (0.4, 0.2) (0.9, 0.1) (0.3, 0.4) (0.7, 0.5) (0.8, 0.2)
(i2, j3) (0.9, 0.3) (0.9, 0.1) (0.6, 0.5) (0.7, 0.5) (0.8, 0.3)
(i3, j1) (0.6, 0.4) (0.5, 0.4) (0.8, 0.1) (0.9, 0.1) (0.8, 0.2)
(i3, j2) (0.4, 0.2) (0.9, 0.1) (0.3, 0.3) (0.9, 0.4) (0.8, 0.2)
(i3, j3) (0.9, 0.3) (0.9, 0.1) (0.6, 0.3) (0.9, 0.4) (0.8, 0.6)


,



(Φ̂∧Ψ̂)F z1 z2 z3 z4 z5

(i1, j1) (0.7, 0.2) (0.7, 0.5) (0.8, 0.3) (0.5, 0.1) (0.9, 0.1)
(i1, j2) (0.5, 0.2) (0.5, 0.1) (0.9, 0.4) (0.5, 0.2) (0.9, 0.1)
(i1, j3) (0.5, 0.2) (0.5, 0.1) (0.8, 0.5) (0.8, 0.2) (0.9, 0.1)
(i2, j1) (0.7, 0.4) (0.7, 0.4) (0.6, 0.3) (0.2, 0.1) (0.8, 0.2)
(i2, j2) (0.5, 0.2) (0.5, 0.1) (0.9, 0.4) (0.5, 0.5) (0.8, 0.2)
(i2, j3) (0.5, 0.3) (0.5, 0.1) (0.6, 0.5) (0.8, 0.5) (0.8, 0.3)
(i3, j1) (0.7, 0.4) (0.6, 0.4) (0.6, 0.1) (0.6, 0.1) (0.9, 0.2)
(i3, j2) (0.5, 0.2) (0.6, 0.1) (0.9, 0.3) (0.6, 0.4) (0.9, 0.2)
(i3, j3) (0.5, 0.3) (0.6, 0.1) (0.6, 0.3) (0.8, 0.4) (0.9, 0.6)


.
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By calculating in the fourth step of Algorithm 2, we obtain the max-matrices of (Φ̂∧Ψ̂)T
(iq ,jq)

, (Φ̂∧Ψ̂)I
(iq ,jq)

,

and (Φ̂∧Ψ̂)F
(iq ,jq)

(p = 1, 2, 3, 4, 5; q = 1, 2, 3), respectively, for every zp ∈ X as follows:

(Φ̂∧Ψ̂)T z1 z2 z3 z4 z5

(i1, j1) 0.25 0.3 0.25 0.3 0.25
(i1, j2) 0.25 0.1 0.3 0.35 0.25
(i1, j3) 0.25 0.1 0.35 0.35 0.25
(i2, j1) 0.45 0.35 0.45 0.2 0.45
(i2, j2) 0.5 0.2 0.35 0.4 0.45
(i2, j3) 0.6 0.2 0.55 0.4 0.45
(i3, j1) 0.45 0.35 0.4 0.45 0.45
(i3, j2) 0.4 0.2 0.3 0.6 0.45
(i3, j3) 0.45 0.2 0.45 0.45 0.6


,



(Φ̂∧Ψ̂)I z1 z2 z3 z4 z5

(i1, j1) 0.14 0.4 0.27 0.08 0.07
(i1, j2) 0.14 0.09 0.24 0.12 0.08
(i1, j3) 0.18 0.09 0.3 0.14 0.07
(i2, j1) 0.24 0.28 0.27 0.08 0.16
(i2, j2) 0.08 0.08 0.12 0.35 0.16
(i2, j3) 0.27 0.09 0.3 0.35 0.24
(i3, j1) 0.24 0.2 0.08 0.09 0.16
(i3, j2) 0.08 0.09 0.09 0.36 0.16
(i3, j3) 0.27 0.09 0.18 0.36 0.48


,



(Φ̂∧Ψ̂)F x1 z2 z3 z4 z5

(i1, j1) 0.25 0.04 0.25 0.16 0.64
(i1, j2) 0.09 0.16 0.25 0.09 0.64
(i1, j3) 0.09 0.16 0.09 0.36 0.64
(i2, j1) 0.09 0.09 0.09 0.01 0.36
(i2, j2) 0.09 0.16 0.25 0 0.36
(i2, j3) 0.04 0.16 0.01 0.09 0.25
(i3, j1) 0.09 0.04 0.25 0.25 0.49
(i3, j2) 0.09 0.25 0.36 0.04 0.49
(i3, j3) 0.04 0.25 0.09 0.16 0.09


.

By calculating in the fifth step of Algorithm 2, we obtain the max-decision τT , τI , and τF of elements zp,
respectively, as follows (p = 1, 2, 3, 4, 5):

τT(z1) = 2, τT(z2) = 0.3, τT(z3) = 0.8, τT(z4) = 2.05, τT(z5) = 1.5;

τI(z1) = 0.24, τI(z2) = 0.68, τI(z3) = 0.54, τI(z4) = 1.06, τI(z5) = 0.48;

τF(z1) = 0, τF(z2) = 0.25, τF(z3) = 0, τF(z4) = 0, τF(z5) = 3.87.

By calculating in the sixth step of Algorithm 2, the scores S(zp) of elements zp(p = 1, 2, 3, 4, 5), respectively,
are as follows:

S(z1) = 2.24, S(z2) = 1.23, S(z3) = 1.34, S(z4) = 3.11, S(z5) = 5.85.
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Finally, we know from the seventh step that z5 has a high value. Therefore, the experts should select z5 as
the best choice.

Remark 2.
(1) By means of Algorithms 1 and 2, we can see that the final results are in agreement. Thus, x5 is the most

accurate and refinable.
(2) By comparing the steps in Algorithms 1 and 2, we can see that step 4 and step 5 in Algorithm 2

are complicated in their process compared to step 2 and step 3 in Algorithm 1, respectively. So, if we take
the complexity of these steps into consideration, Algorithm 2 gives its decision concisely.

(3) Algorithms 1 and 2 that we have elaborated here arrive at their decisions by combining the concept of
single-valued neutrosophic fuzzy set theory and soft set theory. As result, we can apply Algorithm 1 to picture
fuzzy soft sets [29], generalized picture fuzzy soft sets [13], and interval-valued neutrosophic soft sets [12].
Further, Algorithm 2 can be applied to possibility m-polar fuzzy soft sets [15] and possibility multi-fuzzy soft
sets [17].

5. Conclusions

We introduced the notion of the single-valued neutrosophic fuzzy soft set as a novel neutrosophic
soft set model. We discussed the five operations of the single-valued neutrosophic fuzzy soft set, such
as subset, equal, union, intersection, and complement. The structure properties of the single-valued
neutrosophic fuzzy soft set are explained. Then, a novel approach (i.e., Algorithm 1) is presented as
a single-valued neutrosophic fuzzy soft set decision method. Lastly, an application (i.e., Algorithm 2)
of a single-valued neutrosophic fuzzy soft set for fuzzy decision-making is constructed, and the
two approaches (i.e., Algorithms 1 and 2) introduce an important contribution to further research
and relevant applications. Therefore, in the future, we will provide a real application with a real
dataset or we will apply the two approaches (i.e., Algorithms 1 and 2) to lung cancer disease [30]
and coronary artery disease [31]. In addition, we will describe in more detail in order to clarify if the
methods (i.e., Algorithms 1 and 2) converge or diverge from standard approaches such as fuzzy sets
[1], intuitionistic fuzzy sets [2], picture fuzzy sets [3].
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Abstract: Multi-criteria decision making (MCDM) is the technique of selecting the best alternative 

from multiple alternatives and multiple conditions. The technique for order preference by similarity 

to an ideal solution (TOPSIS) is a crucial practical technique for ranking and selecting different 

options by using a distance measure. In this article, we protract the fuzzy TOPSIS technique to 

neutrosophic fuzzy TOPSIS, and prove the accuracy of the method by explaining the MCDM 

problem with single-value neutrosophic information, and use the method for supplier selection in 

the production industry. We hope that this article will promote future scientific research on 

numerous existence issues based on multi-criteria decision making. 

Keywords: Neutrosophic set, Single valued Neutrosophic set, TOPSIS, MCDM 

1. Introduction

We faced a lot of complications in different areas of life which contains vagueness such as 

engineering, economics, modeling, and medical diagnoses, etc. However, a general question is raised 

that in mathematical modeling how we can express and use the uncertainty. A lot of researchers in 

the world proposed and recommended different approaches to solve those problems that contain 

uncertainty. In decision-making problems, multiple attribute decision making (MADM) is the most 

essential part which provides us to find the most appropriate and extraordinary alternative. 

However, to choose the appropriate alternative is very difficult because of vague information in some 

cases. To overcome such situations, Zadeh developed the notion of fuzzy sets (FSs) [1] to solve those 

problems which contain uncertainty and vagueness. It is observed that in some cases circumstances 

cannot be handled by fuzzy sets, to overcome such types of situations Turksen [2] gave the idea of 

interval-valued fuzzy sets (IVFSs). In some cases, we must deliberate membership unbiassed as the 

non- membership values for the suitable representation of an object in uncertain and indeterminate 

conditions that could not be handled by FSs nor IVFSs. To overcome these difficulties Atanassov 

offered the concept of Intuitionistic fuzzy sets (IFSs) [3]. The theory which was presented by 

Atanassov only deals the insufficient data considering both the membership and non-membership 

values, but the intuitionistic fuzzy set theory cannot handle the incompatible and imprecise 

information. To deal with such incompatible and imprecise data Smarandache [4] extended the work 

of Atanassov IFSs and proposed a powerful tool comparative to FSs and IFSs to deal with 

indeterminate, incomplete, and inconsistent information’s which faced in real-life problems. Since 

the direct use of Neutrosophic sets (NSs) for TOPSIS is somewhat difficult. To apply the NSs, Wang 

et al. introduced a subclass of NSs known as single-valued Neutrosophic sets (SVNSs) in [5]. In [6] 

the author proposed a geometric interpretation by using NSs. Gulfam et al. [7] introduced a new 

distance formula for SVNSs and developed some new techniques under the Neutrosophic 
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environment. The concept of a single-valued Neutrosophic soft expert set proposed in [8] by 

combining the SVNSs and soft expert sets. 

To solve MCDM problems with single-valued Neutrosophic numbers (SVNNs) presented by 

Deli and Subas in [9], they constructed the concept of cut sets of SVNNs. On the base of the correlation 

of IFSs, the term correlation coefficient of SVNSs [10] introduced and proposed a decision-making 

method by using a weighted correlation coefficient or the weighted cosine similarity measure of 

SVNSs. In [11] the idea of simplified Neutrosophic sets introduced with some operational laws and 

aggregation operators such as real-life Neutrosophic weighted arithmetic average operator and 

weighted geometric average operator. They constructed an MCDM method on the base of proposed 

aggregation operators and cosine similarity measure for simplified neutrosophic sets. Sahin and 

Yiğider [12] extended the TOPSIS method to MCDM with a single-valued neutrosophic technique.  

The TOPSIS method is presented in [13] to solve multi-criteria decision problems with different 

choices. In [14], Chen & Hwang extended the idea of the TOPSIS method and proposed a new TOPSIS 

model. The author uses the newly proposed decision-making method to solve uncertain data [15]. In 

[16], the authors applied this method to the prediction of diabetic patients in medical diagnosis. In 

[17–19] the authors studied the soft set TOPSIS, fuzzy TOPSIS, and Intuitionistic Fuzzy TOPSIS 

respectively and used for decision making. In [20], for the solution of single-valued neutrosophic soft 

set expert based multi-attribute decision-making problems, the authors proposed the TOPSIS 

technique. Generalized fuzzy TOPSIS was given in [21,22] with accuracy function. Maji [23] proposed 

the concept of neutrosophic soft sets (NSSs) with some properties and operations. Authors studied 

NSSs and gave some new definitions on NSSs [24], they also gave the idea of neutrosophic soft 

matrices with some operations and proposed a decision-making method. Many researchers 

developed the decision-making models by using the NSSs reported in the literature [25–27]. 

Elhassouny and Smarandache [28] extended the work on a simplified TOPSIS method and by using 

single-valued Neutrosophic information they proposed Neutrosophic simplified TOPSIS method. 

Saqlain et.al [21] presented generalized neutrosophic TOPSIS using accuracy function for the 

neutrosophic hypersoft set environment. The concept of single-valued neutrosophic cross-entropy 

measure introduced by Jun [29], he also constructed an MCDM method and claimed that this 

proposed method is more appropriate than previous methods for decision making.  

Saha and Broumi [31], studied the interval-valued neutrosophic sets (IVNSs) and developed 

some new set-theoretic operations on IVNSs with their properties. The idea of an Interval-valued 

generalized single valued neutrosophic trapezoidal number (IVGSVTrN) was presented by Deli [32] 

with some operations and discussed their properties based on neutrosophic numbers. Hashim et al 

[33], studied the vague set and interval neutrosophic set and established a new theory known as 

interval neutrosophic vague set (INVS), they also presented some operations for INVS with their 

properties and derived the properties by using numerical examples. In [34], Abdel basset et al. 

applied TODIM and TOPSIS methods based on the best-worst method to increase the accuracy of 

evaluation under uncertainty according to the NSs. They also used the plithogenic set theory to 

resolve the indeterminate information and evaluate the economic performance of manufacturing 

industries, they used the AHP method to find the weight vector of the financial ratios to achieve this 

goal after that they used the VIKOR and TOPSIS methods to utilize the companies ranking [35, 36]. 

In the following paragraph, we explain some positive impacts of this research. The concentration 

of this study is to evaluate the best supplier for the production industry. This research is a very 

suitable illustration of Neutrosophic TOPSIS. A group of decision-makers chooses the best supplier 

for the production industry. The Neutrosophic TOPSIS method increases alternative performances 

based on the best and worst solutions.  

1.1 Motivation and Contribution 

Classical TOPSIS uses clear techniques for language assessment, but due to the imprecision and 

ambiguity of language assessment, we propose neutrosophic TOPSIS. In this paper, we discuss the 

Florentin Smarandache (ed.) Collected Papers, VI

837



NSs and SVNSs with some operations. We presented the generalization of TOPSIS for the SVNSs and 

use the proposed method for supplier selection. 

1.2 Structure of Article 

In Section 2, some basic definitions have been added, which will help the rest of this article. Section 

3 consists of the main work of the article, which defines the neutrosophic TOPSIS algorithm. The 

application of the proposed method and calculations are presented in section 4 and finally, the 

conclusion draws in Section 5. 

2. Preliminaries

In this section, we remind some basic definitions such as NSs and SVNSs with some operations that 

will be used in the following sequel. 

Neutrosophic Set (NS) [30]: Let X be a space of points and x be an arbitrary element of X. A 

neutrosophic set A in X is defined by a Truth-membership function TA(x) , an Indeterminacy-

membership function IA(x) and a falsity-membership function FA(x). TA(x), IA(x) and FA(x) are 

real standard or non-standard subsets of ]0−, 1+[ i.e.; TA(x), IA(x), FA(x): X → ]0−, 1+[, and 0− ≤

sup TA(x) + sup IA(x) + sup FA(x) ≤ 3+.

Single Valued Neutrosophic Sets [5]: Let E be a universe. An SVNS over E is an NS over E, but 

truthiness, indeterminacy, and falsity membership functions are defined  

TA(x): X → [0, 1], IA(x): X → [0, 1], FA(x): X → [0, 1], and 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3. 

Multiplication of SVNS [11]: Let A = {𝛼1, 𝛼2, 𝛼3} and B = {𝛽1, 𝛽2, 𝛽3} are two SVN numbers, then 

their multiplication is defined as follows  A ⊗ B = (𝛼1𝛽1, 𝛼2 + 𝛽2 − 𝛼2𝛽2, 𝛼3 + 𝛽3 − 𝛼3𝛽3). 

3. Neutrosophic TOPSIS [11]

3. 1. Algorithm for Neutrosophic TOPSIS using SVNNs 

To explain the procedure of Neutrosophic TOPSIS using SVNNs the following steps 

are followed. Let A = {A1, A2, A3, …., Am} be a set of alternatives and C = {C1, C2, C3, …., Cn} be a set of 

evaluation criteria and DM be a set of “l” decision-makers as follows DM = {DM1, DM2, DM3,…, DMl}. 

In the form of linguistic variables, the importance of the evaluation criteria, DMs, and alternative 

ratings are given in Table 1. 

Step 1: Computation of weights of the DMs 

Let the SVN number for rating the kth DM is denoted by  

𝐷𝑘 = (𝑇𝑘
𝑑𝑚, 𝐼𝑘

𝑑𝑚, 𝐹𝑘
𝑑𝑚)

Weight of the kth DM can be found by the following formula 

𝜆𝑘 = 
1−[

1

3
{(1−𝑇𝑘

𝑑𝑚(𝑥))
2
+ (𝐼𝑘

𝑑𝑚(𝑥))
2
+(𝐹𝑘

𝑑𝑚(𝑥))
2
}]

0.5

∑ (1−[
1

3
{(1−𝑇𝑘

𝑑𝑚(𝑥))
2
+ (𝐼𝑘

𝑑𝑚(𝑥))
2
+(𝐹𝑘

𝑑𝑚(𝑥))
2
}]
0.5

)𝑙
𝑘=1

 ; where 𝜆𝑘 ≥ 0 and ∑  𝜆𝑘
𝑙
𝑘=1  = 1 

Step 2: Computation of the Aggregated Neutrosophic Decision Matrix (ANDM) 

The ANDM is given as follows 
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𝐷 = 

𝐴1
𝐴2
⋮
𝐴𝑚

[

𝑟11 𝑟12 ⋯ 𝑟1𝑛
𝑟21 𝑟22 ⋯ 𝑟1𝑛
⋮ ⋮ ⋱ ⋮
𝑟𝑚1 𝑟𝑚2 ⋯ 𝑟𝑚𝑛

] = [𝑟𝑖𝑗]𝑚×𝑛 

where 𝑟𝑖𝑗  can be defined as 

𝑟𝑖𝑗  = (𝑇𝑖𝑗 , 𝐼𝑖𝑗 , 𝐹𝑖𝑗) = (𝑇𝐴𝑖 (𝑥𝑗), 𝐼𝐴𝑖 (𝑥𝑗), 𝐹𝐴𝑖 (𝑥𝑗)), where   𝑖 = 1, 2, 3, …., m; 𝑗 = 1, 2, 3, …., n

Therefore, ANDM written as follows 

D = 

[
 
 
 
(𝑇𝐴1 (𝑥1), 𝐼𝐴1 (𝑥1), 𝐹𝐴1 (𝑥1)) (𝑇𝐴1 (𝑥2), 𝐼𝐴1 (𝑥2), 𝐹𝐴1 (𝑥2)) ⋯ (𝑇𝐴1 (𝑥𝑛), 𝐼𝐴1 (𝑥𝑛), 𝐹𝐴1 (𝑥𝑛))

(𝑇𝐴2 (𝑥1), 𝐼𝐴2 (𝑥1), 𝐹𝐴2 (𝑥1)) (𝑇𝐴2 (𝑥2), 𝐼𝐴2 (𝑥2), 𝐹𝐴2 (𝑥2)) ⋯ (𝑇𝐴2 (𝑥𝑛), 𝐼𝐴2 (𝑥𝑛), 𝐹𝐴2 (𝑥𝑛))

⋮ ⋮ ⋱ ⋮
(𝑇𝐴𝑚 (𝑥1), 𝐼𝐴𝑚 (𝑥1), 𝐹𝐴𝑚 (𝑥1)) (𝑇𝐴𝑚 (𝑥2), 𝐼𝐴𝑚 (𝑥2), 𝐹𝐴𝑚 (𝑥2)) ⋯ (𝑇𝐴𝑚 (𝑥𝑛), 𝐼𝐴𝑚 (𝑥𝑛), 𝐹𝐴𝑚 (𝑥𝑛))]

 
 
 

rating for the ith alternative w.r.t. the jth criterion by the kth DM 

𝑟𝑖𝑗
(𝑘)

= (𝑇𝑖𝑗
(𝑘)

, 𝐼𝑖𝑗
(𝑘)

, 𝐹𝑖𝑗
(𝑘)

)

For DM weights and alternative ratings 𝑟𝑖𝑗  can be calculated by using a single-valued neutrosophic 

weighted averaging operator (SVNWAO) 

𝑟𝑖𝑗  = [1 −  ∏ (1 − 𝑇𝑖𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 , ∏ (𝐼𝑖𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 , ∏ (𝐹𝑖𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 ] 

Step 3: Computation of the weights for the criteria  

Let an SVNN allocated to the criterion by 𝑋𝑗 the kth DM is denoted as 

𝑤𝑗
(𝑘)

 = (𝑇𝑗
(𝑘)
, 𝐼𝑗
(𝑘)
, 𝐹𝑗

(𝑘)
)

SVNWAO to compute the weights of the criteria is given as follows 

𝑤𝑗  = [1 −  ∏ (1 − 𝑇𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 , ∏ (𝐼𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 , ∏ (𝐹𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 ] 

The aggregated weight for the criterion 𝑋𝑗 is represented as 

𝑤𝑗  = (𝑇𝑗, 𝐼𝑗, 𝐹𝑗) 𝑗 = 1, 2, 3, …., n 

W = [𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛]
𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒

Step 4: Computation of Aggregated Weighted Neutrosophic Decision Matrix (AWNDM) 

The AWNDM is calculated as follows 

𝑅′ = [

𝑟11
′ 𝑟12

′ ⋯ 𝑟1𝑛
′

𝑟21
′ 𝑟22

′ ⋯ 𝑟2𝑛
′

⋮ ⋮ ⋱ ⋮
𝑟𝑚1
′ 𝑟𝑚2

′ ⋯ 𝑟𝑚𝑛
′

] = [𝑟𝑖𝑗
′ ]
𝑚×𝑛

where 𝑟𝑖𝑗
′ = (𝑇𝐴𝑖.𝑊 (𝑥𝑗), 𝐼𝐴𝑖.𝑊 (𝑥𝑗), 𝐹𝐴𝑖.𝑊 (𝑥𝑗)) where 𝑖 = 1, 2, 3, …., m; 𝑗 = 1, 2, 3, …., n.

Therefore, 𝑅′ can be written as 

𝑅′ = 

[
 
 
 
(𝑇𝐴1.𝑊 (𝑥1), 𝐼𝐴1.𝑊 (𝑥1), 𝐹𝐴1.𝑊 (𝑥1)) (𝑇𝐴1.𝑊 (𝑥2), 𝐼𝐴1.𝑊 (𝑥2), 𝐹𝐴1.𝑊 (𝑥2)) ⋯ (𝑇𝐴1.𝑊 (𝑥𝑛), 𝐼𝐴1.𝑊 (𝑥𝑛), 𝐹𝐴1.𝑊 (𝑥𝑛))

(𝑇𝐴2.𝑊 (𝑥1), 𝐼𝐴2.𝑊 (𝑥1), 𝐹𝐴2.𝑊 (𝑥1)) (𝑇𝐴2.𝑊 (𝑥2), 𝐼𝐴2.𝑊 (𝑥2), 𝐹𝐴2.𝑊 (𝑥2)) ⋯ (𝑇𝐴2.𝑊 (𝑥𝑛), 𝐼𝐴2.𝑊 (𝑥𝑛), 𝐹𝐴2.𝑊 (𝑥𝑛))

⋮ ⋮ ⋱ ⋮
(𝑇𝐴𝑚.𝑊 (𝑥1), 𝐼𝐴𝑚.𝑊 (𝑥1), 𝐹𝐴𝑚.𝑊 (𝑥1)) (𝑇𝐴𝑚.𝑊 (𝑥2), 𝐼𝐴𝑚.𝑊 (𝑥2), 𝐹𝐴𝑚.𝑊 (𝑥2)) ⋯ (𝑇𝐴𝑚.𝑊 (𝑥𝑛), 𝐼𝐴𝑚.𝑊 (𝑥𝑛), 𝐹𝐴𝑚.𝑊 (𝑥𝑛))]

 
 
 

To find 𝑇𝐴𝑖.𝑊 (𝑥𝑗), 𝐼𝐴𝑖.𝑊 (𝑥𝑗) and 𝐹𝐴𝑖.𝑊 (𝑥𝑗) we used

R ⊗ W = {‹x, 𝑇𝐴𝑖.𝑊 (x)›, ‹x, 𝐼𝐴𝑖.𝑊 (x)›, ‹x, 𝐹𝐴𝑖.𝑊 (x)›│x ∈  X}

The components of the product given as 

𝑇𝐴𝑖.𝑊 (x) = 𝑇𝐴𝑖  (x). 𝑇𝑗

𝐼𝐴𝑖.𝑊 (𝑥) = 𝐼𝐴𝑖  (𝑥) + 𝐼𝑗  (𝑥) -  𝐼𝐴𝑖  (𝑥)× 𝐼𝑗  (𝑥)
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𝐹𝐴𝑖.𝑊 (𝑥) = 𝐹𝐴𝑖  (𝑥) + 𝐹𝑗  (𝑥) -  𝐹𝐴𝑖  (𝑥)× 𝐹𝑗  (𝑥)

Step 5: Computation of Single Valued Neutrosophic Positive Ideal Solution (SVN-PIS) and Single 

Valued Neutrosophic Positive Ideal Solution (SVN-NIS)  

Let 𝐽1 be the benefit criteria and 𝐽2 be the cost criteria. 𝐴∗ be an SVN-PIS and 𝐴′ be an SVN-NIS as

follows  

𝐴∗ = (𝑇𝐴∗𝑊 (𝑥𝑗), 𝐼𝐴∗𝑊 (𝑥𝑗), 𝐹𝐴∗𝑊 (𝑥𝑗)) and

𝐴′ = (𝑇𝐴′𝑊 (𝑥𝑗), 𝐼𝐴′𝑊 (𝑥𝑗), 𝐹𝐴′𝑊 (𝑥𝑗))

The components of SVN-PIS and SVN-NIS are following 

𝑇𝐴∗𝑊 (𝑥𝑗) = ((
𝑚𝑎𝑥
𝑖
𝑇𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗1) , (

𝑚𝑖𝑛
𝑖
𝑇𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗2))

𝐼𝐴∗𝑊 (𝑥𝑗) = ((
𝑚𝑖𝑛
𝑖
𝐼𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗1) , (

𝑚𝑎𝑥
𝑖
𝐼𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗2))

𝐹𝐴∗𝑊 (𝑥𝑗) = ((
𝑚𝑖𝑛
𝑖
𝐹𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗1) , (

𝑚𝑎𝑥
𝑖
𝐹𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗2))

𝑇𝐴′𝑊 (𝑥𝑗) = ((
𝑚𝑖𝑛
𝑖
𝑇𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗1) , (

𝑚𝑎𝑥
𝑖
𝑇𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗2))

𝐼𝐴′𝑊 (𝑥𝑗) = ((
𝑚𝑎𝑥
𝑖
𝐼𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗1) , (

𝑚𝑖𝑛
𝑖
𝐼𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗2))

𝐹𝐴′𝑊 (𝑥𝑗) = ((
𝑚𝑎𝑥
𝑖
𝐹𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗1) , (

𝑚𝑖𝑛
𝑖
𝐹𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗2))

Step 6: Computation of Separation Measures 

For the separation measures 𝑑∗and 𝑑′, Normalized Euclidean Distance is used as given as 

𝑑𝑖
∗= (

1

3𝑛
∑ [(𝑇𝐴𝑖.𝑊(𝑥𝑗) − 𝑇𝐴∗𝑊 (𝑥𝑗))

2

+ (𝐼𝐴𝑖.𝑊(𝑥𝑗) − 𝐼𝐴∗𝑊 (𝑥𝑗))
2

+ (𝐹𝐴𝑖.𝑊(𝑥𝑗) − 𝐹𝐴∗𝑊 (𝑥𝑗))
2

]𝑛
𝑗=1 )

0.5

𝑑𝑖
′= (

1

3𝑛
∑ [(𝑇𝐴𝑖.𝑊(𝑥𝑗) − 𝑇𝐴′𝑊 (𝑥𝑗))

2

+ (𝐼𝐴𝑖.𝑊(𝑥𝑗) − 𝐼𝐴′𝑊 (𝑥𝑗))
2

+ (𝐹𝐴𝑖.𝑊(𝑥𝑗) − 𝐹𝐴′𝑊 (𝑥𝑗))
2

]𝑛
𝑗=1 )

0.5

Step 7: Computation of Relative Closeness Coefficient (RCC) 

The RCC of an alternative Ai w.r.t. the SVN-PIS A* is computed as 

RCCi = 
𝑑𝑖
′

𝑑𝑖
′+𝑑𝑖

∗ where 0 ≤ RCCi ≤ 1 

Step 8: Ranking alternatives 

After computation of RCCi for each alternative 𝐴𝑖 , the rank of the alternatives presented in 

descending orders of RCCi.  
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4. Application of Neutrosophic TOPSIS in decision making

A production industry wants to hire a supplier, for the selection of supplier managing director of the 

industry decides the criteria for supplier selection. The industry hires a team of decision-makers for 

the selection of the best supplier. Consider A = {Ai: i = 1, 2, 3, 4, 5} be a set of supplier and DM = {DM1, 

DM2, DM3, DM4} be a team of decision-makers (l = 4). The evaluation criteria (n = 5) for the selection 

of supplier given as follows,    

C = {
𝐵𝑒𝑛𝑖𝑓𝑖𝑡 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎
𝐶𝑜𝑠𝑡 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎

𝑗1 = {

𝑋1:     𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦
𝑋2:       𝑄𝑢𝑎𝑙𝑖𝑡𝑦
𝑋3:  𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦
𝑋4:        𝑆𝑒𝑟𝑣𝑖𝑐𝑒

𝑗2 = {𝑋5 ∶ 𝑃𝑟𝑖𝑐𝑒 

Calculations of the problem using the proposed SVN-TOPSIS for the importance of criteria and 

DMs SVN rating scale is given in the following Table 

Table 1. Linguistic variables LV’s for rating the importance of criteria and decision-makers 

LVs SVNNs 

VI (.90, .10, .10) 

I (.75, .25, .20) 

M (.50, .50, .50) 

UI (.35, .75, .80) 

VUI (.10, .90, .90) 

Where VI, I, M, UI, VUI stand for very important, important, medium, unimportant, very 

unimportant respectively. The alternative ratings are given in the following table 

Table 2. Alternative Ratings for Linguistic Variables 

LVs SVNNs 

EG (1.0, 0.0,0.0) 
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VVG (.90, .10, .10) 

VG (.80, .15, .20) 

G (.70, .25, .30) 

MG (.60, .35, .40) 

M (.50, .50, .50) 

MB (.40, .65, .60) 

B (.30, .75, .70) 

VB (.20, .85, .80) 

VVB (.10, .90, .90) 

EB (0.0,1.0,1.0) 

Where EG, VVG, VG, G, MG, M, MB, B, VB, VVB, EB are representing extremely good, very very 

good, very good, good, medium good, medium, medium bad, bad, very bad, very very bad, 

extremely bad respectively. 

Step 1: Determine the weights of the DMs  

Weights for the DMs are calculated as follows 

𝜆𝑘 = 
1−[

1

3
{(1−𝑇𝑘

𝑑𝑚(𝑥))
2
+ (𝐼𝑘

𝑑𝑚(𝑥))
2
+(𝐹𝑘

𝑑𝑚(𝑥))
2
}]

0.5

∑ (1−[
1

3
{(1−𝑇𝑘

𝑑𝑚(𝑥))
2
+ (𝐼𝑘

𝑑𝑚(𝑥))
2
+(𝐹𝑘

𝑑𝑚(𝑥))
2
}]
0.5

)𝑙
𝑘=1

 ; 𝜆𝑘 ≥ 0 and ∑  𝜆𝑘
𝑙
𝑘=1  = 1 

𝜆1 = 
1−[

1

3
{(1−𝑇1

𝑑𝑚(𝑥))
2
+ (𝐼1

𝑑𝑚(𝑥))
2
+(𝐹1

𝑑𝑚(𝑥))
2
}]
0.5

∑ (1−[
1

3
{(1−𝑇𝑘

𝑑𝑚(𝑥))
2
+ (𝐼𝑘

𝑑𝑚(𝑥))
2
+(𝐹𝑘

𝑑𝑚(𝑥))
2
}]
0.5

)𝑙
𝑘=1

𝜆1 = 
1−[

1

3
{(1−𝑇1

𝑑𝑚(𝑥))
2
+ (𝐼1

𝑑𝑚(𝑥))
2
+(𝐹1

𝑑𝑚(𝑥))
2
}]
0.5

1−[
1

3
{(1−𝑇1

𝑑𝑚(𝑥))
2
+ (𝐼1

𝑑𝑚(𝑥))
2
+(𝐹1

𝑑𝑚(𝑥))
2
}]
0.5

+ 1−[
1

3
{(1−𝑇2

𝑑𝑚(𝑥))
2
+ (𝐼2

𝑑𝑚(𝑥))
2
+(𝐹2

𝑑𝑚(𝑥))
2
}]
0.5

+

1−[
1

3
{(1−𝑇3

𝑑𝑚(𝑥))
2
+ (𝐼3

𝑑𝑚(𝑥))
2
+(𝐹3

𝑑𝑚(𝑥))
2
}]
0.5

+1−[
1

3
{(1−𝑇4

𝑑𝑚(𝑥))
2
+ (𝐼4

𝑑𝑚(𝑥))
2
+(𝐹4

𝑑𝑚(𝑥))
2
}]
0.5

𝜆1 = 
1−[

1

3
{(1−0.9)2+ (0.10)2+(0.10)2}]

0.5

1−[
1

3
{(1−0.9)2+ (0.10)2+(0.10)2}]

0.5
+ 1−[

1

3
{(1−0.75)2+ (0.25)2+(0.20)2}]

0.5
+

1−[
1

3
{(1−0.50)2+ (0.50)2+(0.50)2}]

0.5
+1−[

1

3
{(1−0.35)2+ (0.75)2+(0.80)2}]

0.5

𝜆1 = 
0.9

0.9+0.76548+0.5+0.26402

𝜆1 = 
0.9

2.42950
 = 0.37045 

𝜆1 = 0.37045 

Similarly, we get the weights for the other decision-makers as follows 

𝜆2 = 
0.76548

2.42950
 = 0.31508

𝜆2 = 0.31508 

𝜆3 = 
0.5

2.42950
 = 0.20580 

𝜆3 = 0.20580 

𝜆4 = 
0.26402

2.42950
 = 0.10867 

𝜆4 = 0.10867 
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The weights for DMs are given in the following Table 

Table 3. Weights of Decision Makers 

Criteria Alternatives Decision Makers 

DM1 DM2 DM3 DM4 

X1 A1 VG (0.80,0.15,0.20) 

𝑟11
(1)

 = (𝑇11
(1)

, 𝐼11
(1)

, 𝐹11
(1)

) 

MG (0.60,0.35,0.40) 

𝑟11
(2)

 = (𝑇11
(2)

, 𝐼11
(2)

, 𝐹11
(2)

) 

VG (0.80,0.15,0.20) 

𝑟11
(3)

 = (𝑇11
(3)

, 𝐼11
(3)

, 𝐹11
(3)

) 

G (0.70,0.25,0.30) 

𝑟11
(4)

 = (𝑇11
(4)

, 𝐼11
(4)

, 𝐹11
(4)

A2 G (0.70,0.25,0.30) 

𝑟21
(1)

 = (𝑇21
(1)

, 𝐼21
(1)

, 𝐹21
(1)

) 

VG (0.80,0.15,0.20) 

𝑟21
(2)

 = (𝑇21
(2)

, 𝐼21
(2)

, 𝐹21
(2)

) 

MG (0.60,0.35,0.40) 

𝑟21
(3)

 = (𝑇21
(3)

, 𝐼21
(3)

, 𝐹21
(3)

) 

MG (0.60,0.35,0.40) 

𝑟21
(4)

 = (𝑇21
(4)

, 𝐼21
(4)

, 𝐹21
(4)

) 

A3 M (0.50,0.50,0.50) 

𝑟31
(1)

 = (𝑇31
(1)

, 𝐼31
(1)

, 𝐹31
(1)

) 

G (0.70,0.25,0.30) 

𝑟31
(2)

 = (𝑇31
(2)

, 𝐼31
(2)

, 𝐹31
(2)

) 

MG (0.60,0.35,0.40) 

𝑟31
(3)

 = (𝑇31
(3)

, 𝐼31
(3)

, 𝐹31
(3)

) 

M (0.50,0.50,0.50) 

𝑟31
(4)

 = (𝑇31
(4)

, 𝐼31
(4)

, 𝐹31
(4)

) 

A4 G (0.70,0.25,0.30) 

𝑟41
(1)

 = (𝑇41
(1)

, 𝐼41
(1)

, 𝐹41
(1)

) 

MG (0.60,0.35,0.40) 

𝑟41
(2)

 = (𝑇41
(2)

, 𝐼41
(2)

, 𝐹41
(2)

) 

G (0.70,0.25,0.30) 

𝑟41
(3)

 = (𝑇41
(3)

, 𝐼41
(3)

, 𝐹41
(3)

) 

MG (0.60,0.35,0.40) 

𝑟41
(4)

 = (𝑇41
(4)

, 𝐼41
(4)

, 𝐹41
(4)

) 

A5 MG (0.60,0.35,0.40) 

𝑟51
(1)

 = (𝑇51
(1)

, 𝐼51
(1)

, 𝐹51
(1)

) 

G (0.70,0.25,0.30) 

𝑟51
(2)

 = (𝑇51
(2)

, 𝐼51
(2)

, 𝐹51
(2)

) 

VG (0.80,0.15,0.20) 

𝑟51
(3)

 = (𝑇51
(3)

, 𝐼51
(3)

, 𝐹51
(3)

) 

VG (0.80,0.15,0.20) 

𝑟51
(4)

 = (𝑇51
(4)

, 𝐼51
(4)

, 𝐹51
(4)

) 

X2 A1 G (0.70,0.25,0.30) 

𝑟12
(1)

 = (𝑇12
(1)

, 𝐼12
(1)

, 𝐹12
(1)

) 

G (0.70,0.25,0.30) 

𝑟12
(2)

 = (𝑇12
(2)

, 𝐼12
(2)

, 𝐹12
(2)

) 

MG (0.60,0.35,0.40) 

𝑟12
(3)

 = (𝑇12
(3)

, 𝐼12
(3)

, 𝐹12
(3)

) 

G (0.70,0.25,0.30) 

𝑟12
(4)

 = (𝑇12
(4)

, 𝐼12
(4)

, 𝐹12
(4)

) 

A2 VG (0.80,0.15,0.20) 

𝑟22
(1)

 = (𝑇22
(1)

, 𝐼22
(1)

, 𝐹22
(1)

) 

MG (0.60,0.35,0.40) 

𝑟22
(2)

 = (𝑇22
(2)

, 𝐼22
(2)

, 𝐹22
(2)

) 

M (0.50,0.50,0.50) 

𝑟22
(3)

 = (𝑇22
(3)

, 𝐼22
(3)

, 𝐹22
(3)

) 

MG (0.60,0.35,0.40) 

𝑟22
(4)

 = (𝑇22
(4)

, 𝐼22
(4)

, 𝐹22
(4)

) 

A3 M (0.50,0.50,0.50) 

𝑟32
(1)

 = (𝑇32
(1)

, 𝐼32
(1)

, 𝐹32
(1)

) 

VG (0.80,0.15,0.20) 

𝑟32
(2)

 = (𝑇32
(2)

, 𝐼32
(2)

, 𝐹32
(2)

) 

G (0.70,0.25,0.30) 

𝑟32
(3)

 = (𝑇32
(3)

, 𝐼32
(3)

, 𝐹32
(3)

) 

G (0.70,0.25,0.30) 

𝑟32
(4)

 = (𝑇32
(4)

, 𝐼32
(4)

, 𝐹32
(4)

) 

A4 MG (0.60,0.35,0.40) 

𝑟42
(1)

 = (𝑇42
(1)

, 𝐼42
(1)

, 𝐹42
(1)

) 

M (0.50,0.50,0.50) 

𝑟42
(2)

 = (𝑇42
(2)

, 𝐼42
(2)

, 𝐹42
(2)

) 

VG (0.80,0.15,0.20) 

𝑟42
(3)

 = (𝑇42
(3)

, 𝐼42
(3)

, 𝐹42
(3)

) 

M (0.50,0.50,0.50) 

𝑟42
(4)

 = (𝑇42
(4)

, 𝐼42
(4)

, 𝐹42
(4)

) 

A5 G (0.70,0.25,0.30) 

𝑟52
(1)

 = (𝑇52
(1)

, 𝐼52
(1)

, 𝐹52
(1)

) 

G (0.70,0.25,0.30) 

𝑟52
(2)

 = (𝑇52
(2)

, 𝐼52
(2)

, 𝐹52
(2)

) 

MG (0.60,0.35,0.40) 

𝑟52
(3)

 = (𝑇52
(3)

, 𝐼52
(3)

, 𝐹52
(3)

) 

VG (0.80,0.15,0.20) 

𝑟52
(4)

 = (𝑇52
(4)

, 𝐼52
(4)

, 𝐹52
(4)

) 

X3 A1 MG (0.60,0.35,0.40) 

𝑟13
(1)

 = (𝑇13
(1)

, 𝐼13
(1)

, 𝐹13
(1)

) 

MG (0.60,0.35,0.40) 

𝑟13
(2)

 = (𝑇13
(2)

, 𝐼13
(2)

, 𝐹13
(2)

) 

M (0.50,0.50,0.50) 

𝑟13
(3)

 = (𝑇13
(3)

, 𝐼13
(3)

, 𝐹13
(3)

) 

M (0.50,0.50,0.50) 

𝑟13
(4)

 = (𝑇13
(4)

, 𝐼13
(4)

, 𝐹13
(4)

) 

A2 VG (0.80,0.15,0.20) 

𝑟23
(1)

 = (𝑇23
(1)

, 𝐼23
(1)

, 𝐹23
(1)

) 

G (0.70,0.25,0.30) 

𝑟23
(2)

 = (𝑇23
(2)

, 𝐼23
(2)

, 𝐹23
(2)

) 

VG (0.80,0.15,0.20) 

𝑟23
(3)

 = (𝑇23
(3)

, 𝐼23
(3)

, 𝐹23
(3)

) 

VG (0.80,0.15,0.20) 

𝑟23
(4)

 = (𝑇23
(4)

, 𝐼23
(4)

, 𝐹23
(4)

) 

A3 M (0.50,0.50,0.50) 

𝑟33
(1)

 = (𝑇33
(1)

, 𝐼33
(1)

, 𝐹33
(1)

) 

G (0.70,0.25,0.30) 

𝑟33
(2)

 = (𝑇33
(2)

, 𝐼33
(2)

, 𝐹33
(2)

) 

MG (0.60,0.35,0.40) 

𝑟33
(3)

 = (𝑇33
(3)

, 𝐼33
(3)

, 𝐹33
(3)

) 

MG (0.60,0.35,0.40) 

𝑟33
(4)

 = (𝑇33
(4)

, 𝐼33
(4)

, 𝐹33
(4)

) 

A4 G (0.70,0.25,0.30) 

𝑟43
(1)

 = (𝑇43
(1)

, 𝐼43
(1)

, 𝐹43
(1)

) 

MG (0.60,0.35,0.40) 

𝑟43
(2)

 = (𝑇43
(2)

, 𝐼43
(2)

, 𝐹43
(2)

) 

G (0.70,0.25,0.30) 

𝑟43
(3)

 = (𝑇43
(3)

, 𝐼43
(3)

, 𝐹43
(3)

) 

MG (0.60,0.35,0.40) 

𝑟43
(4)

 = (𝑇43
(4)

, 𝐼43
(4)

, 𝐹43
(4)

) 

A5 MG (0.60,0.35,0.40) 

𝑟53
(1)

 = (𝑇53
(1)

, 𝐼53
(1)

, 𝐹53
(1)

) 

G (0.70,0.25,0.30) 

𝑟53
(2)

 = (𝑇53
(2)

, 𝐼53
(2)

, 𝐹53
(2)

) 

VG (0.80,0.15,0.20) 

𝑟53
(3)

 = (𝑇53
(3)

, 𝐼53
(3)

, 𝐹53
(3)

) 

G (0.70,0.25,0.30) 

𝑟53
(4)

 = (𝑇53
(4)

, 𝐼53
(4)

, 𝐹53
(4)

) 

X4 A1 G (0.70,0.25,0.30) 

𝑟14
(1)

 = (𝑇14
(1)

, 𝐼14
(1)

, 𝐹14
(1)

) 

M (0.50,0.50,0.50) 

𝑟14
(2)

 = (𝑇14
(2)

, 𝐼14
(2)

, 𝐹14
(2)

) 

MG (0.60,0.35,0.40) 

𝑟14
(3)

 = (𝑇14
(3)

, 𝐼14
(3)

, 𝐹14
(3)

) 

M (0.50,0.50,0.50) 

𝑟14
(4)

 = (𝑇14
(4)

, 𝐼14
(4)

, 𝐹14
(4)

) 

A2 VG (0.80,0.15,0.20) 

𝑟24
(1)

 = (𝑇24
(1)

, 𝐼24
(1)

, 𝐹24
(1)

) 

VG (0.80,0.15,0.20) 

𝑟24
(2)

 = (𝑇24
(2)

, 𝐼24
(2)

, 𝐹24
(2)

) 

M (0.50,0.50,0.50) 

𝑟24
(3)

 = (𝑇24
(3)

, 𝐼24
(3)

, 𝐹24
(3)

) 

G (0.70,0.25,0.30) 

𝑟24
(4)

 = (𝑇24
(4)

, 𝐼24
(4)

, 𝐹24
(4)

) 
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Table 4. Importance and Weights of Decision-Makers 

DM1 DM2 DM3 DM4 

Linguistic 

Variables 

Weights 

VI(0.90,0.10,0.10) 

(𝑇1
𝑑𝑚, 𝐼1

𝑑𝑚 , 𝐹1
𝑑𝑚)

𝜆𝐷𝑀1= 0.37045 

I (0.75,0.25,0.20) 

(𝑇2
𝑑𝑚, 𝐼2

𝑑𝑚 , 𝐹2
𝑑𝑚)

𝜆𝐷𝑀2= 0.31508 

M (0.50,0.50,0.50) 

(𝑇3
𝑑𝑚, 𝐼3

𝑑𝑚 , 𝐹3
𝑑𝑚)

𝜆𝐷𝑀3= 0.20580 

UI (0.35,0.75,0.80) 

(𝑇4
𝑑𝑚, 𝐼4

𝑑𝑚 , 𝐹4
𝑑𝑚)

𝜆𝐷𝑀4= 0.10867 

Step 2: Computation of Aggregated Single Valued Neutrosophic Decision Matrix (ASVNDM) 

To find the ASVNDM not only the weights of the DMs, but the alternative ratings are also required. 

The alternative ratings, according to the DMs given in the following table. 

Now by using the alternative ratings 𝑟𝑖𝑗
(𝑘)

 and the DM weights 𝜆𝑘 we get 

𝑟𝑖𝑗= 𝜆1𝑟𝑖𝑗
(1)

 ⊕ 𝜆2𝑟𝑖𝑗
(2)
⊕ 𝜆3𝑟𝑖𝑗

(3)
⊕⋯ ⊕ 𝜆𝑙𝑟𝑖𝑗

(𝑙)
 

𝑟𝑖𝑗  = (1 − ∏ (1 − 𝑇𝑖𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 , ∏ (𝐼𝑖𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 , ∏ (𝐹𝑖𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 ) 

where i = 1, 2, 3, 4, 5; j = 1, 2, 3, 4, 5 and (l = 4). 

For i = j = 1 and l = 4 

𝑟11= 𝜆1𝑟11
(1)

 ⊕ 𝜆2𝑟11
(2)
⊕ 𝜆3𝑟11

(3)
⊕⋯ ⊕ 𝜆𝑙𝑟11

(𝑙)
 

𝑟11 = (1 − ∏ (1 − 𝑇11
(𝑘)
)𝜆𝑘4

𝑘=1 , ∏ (𝐼11
(𝑘)
)𝜆𝑘4

𝑘=1 , ∏ (𝐹11
(𝑘)
)𝜆𝑘4

𝑘=1 ) 

𝑟11 = (1- (1 − 𝑇11
(1)
)𝜆1(1 − 𝑇11

(2)
)𝜆2(1 − 𝑇11

(3)
)𝜆3(1 − 𝑇11

(4)
)𝜆4, (𝐼11

(1)
)𝜆1(𝐼11

(2)
)𝜆2(𝐼11

(3)
)𝜆3(𝐼11

(4)
)𝜆4,

(𝐹11
(1)
)𝜆1(𝐹11

(2)
)𝜆2(𝐹11

(3)
)𝜆3(𝐹11

(4)
)𝜆4)

𝑟11 = (1-((1 − 0.8)0.37045(1 − 0.6)0.31508(1 − 0.8)0.20580(1 − 0.7)0.10867),

((0.15)0.37045(0.35)0.31508(0.15)0.20580(0.25)0.10867) , 

((0.20)0.37045(0.40)0.31508(0.20)0.20580(0.30)0.10867)) 

𝑟11 = (0.740, 0.207, 0.260) 

Similarly, we can find other values 

𝑟21 = (0.711, 0.237, 0.289) 

A3 MG (0.60,0.35,0.40) 

𝑟34
(1)

= (𝑇34
(1)

, 𝐼34
(1)

, 𝐹34
(1)

) 

MG (0.60,0.35,0.40) 

𝑟34
(2)

= (𝑇34
(2)

, 𝐼34
(2)

, 𝐹34
(2)

) 

MG (0.60,0.35,0.40) 

𝑟34
(3)

= (𝑇34
(3)

, 𝐼34
(3)

, 𝐹34
(3)

) 

MG (0.60,0.35,0.40) 

𝑟34
(4)

= (𝑇34
(4)

, 𝐼34
(4)

, 𝐹34
(4)

) 

A4 M (0.50,0.50,0.50) 

𝑟44
(1)

= (𝑇44
(1)

, 𝐼44
(1)

, 𝐹44
(1)

) 

MB (0.40,0.65,0.60) 

𝑟44
(2)

= (𝑇44
(2)

, 𝐼44
(2)

, 𝐹44
(2)

) 

MG (0.60,0.35,0.40) 

𝑟44
(3)

= (𝑇44
(3)

, 𝐼44
(3)

, 𝐹44
(3)

) 

VG (0.80,0.15,0.20) 

𝑟44
(4)

= (𝑇44
(4)

, 𝐼44
(4)

, 𝐹44
(4)

) 

A5 MG (0.60,0.35,0.40) 

𝑟54
(1)

= (𝑇54
(1)

, 𝐼54
(1)

, 𝐹54
(1)

) 

G (0.70,0.25,0.30) 

𝑟54
(2)

= (𝑇54
(2)

, 𝐼54
(2)

, 𝐹54
(2)

) 

VG (0.80,0.15,0.20) 

𝑟54
(3)

= (𝑇54
(3)

, 𝐼54
(3)

, 𝐹54
(3)

) 

G (0.70,0.25,0.30) 

𝑟54
(4)

= (𝑇54
(4)

, 𝐼54
(4)

, 𝐹54
(4)

) 

X5 A1 M (0.50,0.50,0.50) 

𝑟15
(1)

= (𝑇15
(1)

, 𝐼15
(1)

, 𝐹15
(1)

) 

MG (0.60,0.35,0.40) 

𝑟15
(2)

= (𝑇15
(2)

, 𝐼15
(2)

, 𝐹15
(2)

) 

VG (0.80,0.15,0.20) 

𝑟15
(3)

= (𝑇15
(3)

, 𝐼15
(3)

, 𝐹15
(3)

) 

M (0.50,0.50,0.50) 

𝑟15
(4)

= (𝑇15
(4)

, 𝐼15
(4)

, 𝐹15
(4)

) 

A2 VG (0.80,0.15,0.20) 

𝑟25
(1)

= (𝑇25
(1)

, 𝐼25
(1)

, 𝐹25
(1)

) 

M (0.50,0.50,0.50) 

𝑟25
(2)

= (𝑇25
(2)

, 𝐼25
(2)

, 𝐹25
(2)

) 

G (0.70,0.25,0.30) 

𝑟25
(3)

= (𝑇25
(3)

, 𝐼25
(3)

, 𝐹25
(3)

) 

G (0.70,0.25,0.30) 

𝑟25
(4)

= (𝑇25
(4)

, 𝐼25
(4)

, 𝐹25
(4)

) 

A3 G (0.70,0.25,0.30) 

𝑟35
(1)

= (𝑇35
(1)

, 𝐼35
(1)

, 𝐹35
(1)

) 

G (0.70,0.25,0.30) 

𝑟35
(2)

= (𝑇35
(2)

, 𝐼35
(2)

, 𝐹35
(2)

) 

M (0.50,0.50,0.50) 

𝑟35
(3)

= (𝑇35
(3)

, 𝐼35
(3)

, 𝐹35
(3)

) 

MG (0.60,0.35,0.40) 

𝑟35
(4)

= (𝑇35
(4)

, 𝐼35
(4)

, 𝐹35
(4)

) 

A4 M (0.50,0.50,0.50) 

𝑟45
(1)

= (𝑇45
(1)

, 𝐼45
(1)

, 𝐹45
(1)

) 

M (0.50,0.50,0.50) 

𝑟45
(2)

= (𝑇45
(2)

, 𝐼45
(2)

, 𝐹45
(2)

) 

MG (0.60,0.35,0.40) 

𝑟45
(3)

= (𝑇45
(3)

, 𝐼45
(3)

, 𝐹45
(3)

) 

G (0.70,0.25,0.30) 

𝑟45
(4)

= (𝑇45
(4)

, 𝐼45
(4)

, 𝐹45
(4)

) 

A5 G (0.70,0.25,0.30) 

𝑟55
(1)

= (𝑇55
(1)

, 𝐼55
(1)

, 𝐹55
(1)

) 

VG (0.80,0.15,0.20) 

𝑟55
(2)

 = (𝑇55
(2)

, 𝐼55
(2)

, 𝐹55
(2)

) 

VG (0.80,0.15,0.20) 

𝑟55
(3)

= (𝑇55
(3)

, 𝐼55
(3)

, 𝐹55
(3)

) 

VG (0.80,0.15,0.20) 

𝑟55
(4)

= (𝑇55
(4)

, 𝐼55
(4)

, 𝐹55
(4)

) 
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𝑟31 = (0.593, 0.373, 0.407) 

𝑟41 = (0.661, 0.288, 0.339) 

𝑟51 = (0.706, 0.241, 0.294) 

𝑟12 = (0.682, 0.268, 0.318) 

𝑟22 = (0.676, 0.275, 0.324) 

𝑟32 = (0.681, 0.275, 0.324) 

𝑟42 = (0.619, 0.342, 0.381) 

𝑟52 = (0.695, 0.253, 0.305) 

𝑟13 = (0.505, 0.392, 0.429) 

𝑟23 = (0.773, 0.176, 0.227) 

𝑟33 = (0.603, 0.359, 0.397) 

𝑟43 = (0.661, 0.288, 0.339) 

𝑟53 = (0.693, 0.255, 0.307) 

𝑟14 = (0.605, 0.359, 0.395) 

𝑟24 = (0.748, 0.203, 0.252) 

𝑟34 = (0.600, 0.350, 0.400) 

𝑟44 = (0.542, 0.443, 0.458) 

𝑟54 = (0.693, 0.339, 0.307) 

𝑟15 = (0.614, 0.349, 0.386) 

𝑟25 = (0.697, 0.257, 0.303) 

𝑟35 = (0.656, 0.299, 0.344) 

𝑟45 = (0.548, 0.431, 0.452) 

𝑟55 = (0.768, 0.181, 0.232) 

Table 5. Aggregated Single Valued Neutrosophic Decision Matrix D = [𝑟𝑖𝑗]5×4 

X1 X2 X3 X4 X5 

A1 𝑟11 = (0.740, 0.207, 0.260) 𝑟12 = (0.682, 0.268, 0.318) 𝑟13 = (0.505, 0.392, 0.429) 𝑟14 = (0.605, 0.359, 0.395) r15 = (0.614, 0.349, 0.386) 

A2  𝑟21 = (0.711, 0.237, 0.289) 𝑟22 = (0.676, 0.275, 0.324) 𝑟23 = (0.773, 0.176, 0.227) 𝑟24 = (0.748, 0.203, 0.252) r25 = (0.697, 0.257, 0.303) 

A3  𝑟31 = (0.593, 0.373, 0.407) 𝑟32 = (0.681, 0.275, 0.324) 𝑟33 = (0.603, 0.359, 0.397) 𝑟34 = (0.600, 0.350, 0.400) r35 = (0.656, 0.299, 0.344) 

A4  𝑟41 = (0.661, 0.288, 0.339) 𝑟42 = (0.619, 0.342, 0.381) 𝑟43 = (0.661, 0.288, 0.339) r43 = (0.661, 0.288, 0.339) r45 = (0.548, 0.431, 0.452) 

A5  𝑟51 = (0.706, 0.241, 0.294) 𝑟52 = (0.695, 0.253, 0.305) 𝑟53 = (0.693, 0.255, 0.307) 𝑟54= (0.693, 0.339, 0.307) 𝑟55 = (0.768, 0.181, 0.232) 

Step 3: Computation of the weights of the criteria  

The individual weights given by each DM is given in Table 6. 

Table 6. Weights of alternatives determined by the DMs 𝑤𝑗
(𝑘)

= (𝑇𝑗
(𝑘)
, 𝐼𝑗
(𝑘)
, 𝐹𝑗

(𝑘)
)

Criteria DM1 DM2 DM3 DM4 

X1 

(DELIVERY) 

VI (0.90,0.10,0.10)  

𝑤1
(1)
=(𝑇1

(1)
, 𝐼1

(1)
, 𝐹1

(1)
) 

VI (0.90,0.10,0.10)  

𝑤1
(2)

 = (𝑇1
(2)

, 𝐼1
(2)

, 𝐹1
(2)

) 

VI (0.90,0.10,0.10)  

𝑤1
(3)

 = (𝑇1
(3)

, 𝐼1
(3)

, 𝐹1
(3)

) 

I (0.75,0.25,0.20)  

𝑤1
(4)

 = (𝑇1
(4)

, 𝐼1
(4)

, 𝐹1
(4)

) 
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X2 

(QUALITY) 

I (0.75,0.25,0.20) 

𝑤2
(1)

 = (𝑇2
(1)

, 𝐼2
(1)

, 𝐹2
(1)

) 

M (0.50,0.50,0.50) 

𝑤2
(2)

 = (𝑇2
(2)

, 𝐼2
(2)

, 𝐹2
(2)

) 

M (0.50,0.50,0.50) 

𝑤2
(3)

 = (𝑇2
(3)

, 𝐼2
(3)

, 𝐹2
(3)

) 

I (0.75,0.25,0.20) 

𝑤2
(4)

 = (𝑇2
(4)

, 𝐼2
(4)

, 𝐹2
(4)

) 

X3 

(FLEXIBILITY) 

VI (0.90,0.10,0.10)  

𝑤3
(1)

 = (𝑇3
(1)

, 𝐼3
(1)

, 𝐹3
(1)

) 

VI (0.90,0.10,0.10)  

𝑤3
(2)

 = (𝑇3
(2)

, 𝐼3
(2)

, 𝐹3
(2)

) 

I (0.75,0.25,0.20)  

𝑤3
(3)

 = (𝑇3
(3)

, 𝐼3
(3)

, 𝐹3
(3)

) 

VI (0.90,0.10,0.10) 

𝑤3
(4)

 = (𝑇3
(4)

, 𝐼3
(4)

, 𝐹3
(4)

) 

X4 

(SERVICE) 

I (0.75,0.25,0.20)  

𝑤4
(1)

 = (𝑇4
(1)

, 𝐼4
(1)

, 𝐹4
(1)

) 

I (0.75,0.25,0.20)  

𝑤4
(2)

 = (𝑇4
(2)

, 𝐼4
(2)

, 𝐹4
(2)

) 

M (0.50,0.50,0.50)  

𝑤4
(3)

 = (𝑇4
(3)

, 𝐼4
(3)

, 𝐹4
(3)

) 

UI (0.35,0.75,0.80)  

𝑤4
(4)

 = (𝑇4
(4)

, 𝐼4
(4)

, 𝐹4
(4)

) 

X5 

(PRICE) 

M (0.50,0.50,0.50)  

𝑤5
(1)

 = (𝑇5
(1)

, 𝐼5
(1)

, 𝐹5
(1)

) 

M (0.50,0.50,0.50)  

𝑤5
(2)

 = (𝑇5
(2)

, 𝐼5
(2)

, 𝐹5
(2)

) 

VI (0.90,0.10,0.10)  

𝑤5
(3)

 = (𝑇5
(3)

, 𝐼5
(3)

, 𝐹5
(3)

) 

VI (0.90,0.10,0.10)  

𝑤5
(4)

 = (𝑇5
(4)

, 𝐼5
(4)

, 𝐹5
(4)

) 

By using the values from Table 6, the aggregated criteria weights are calculated as follows 

𝑤𝑗  = (𝑇𝑗, 𝐼𝑗, 𝐹𝑗) =  𝜆1𝑤𝑗
(1)

 ⊕ 𝜆2𝑤𝑗
(2)
⊕ 𝜆3𝑤𝑗

(3)
⊕⋯ ⊕ 𝜆𝑙𝑤𝑗

(𝑙)

𝑤𝑗  = (1-∏ (1 − 𝑇𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 , ∏ (𝐼𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 , ∏ (𝐹𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 ) where j = 1, 2, 3, 4, 5 and (l = 4).

For j = 1 and l = 4  

𝑤1 = 𝜆1𝑤1
(1)
⊕ 𝜆2𝑤1

(2)
⊕𝜆3𝑤1

(3)
⊕ 𝜆4𝑤1

(4)

𝑤1 = (1-∏ (1 − 𝑇1
(𝑘)
)𝜆𝑘4

𝑘=1 , ∏ (𝐼1
(𝑘)
)𝜆𝑘4

𝑘=1 , ∏ (𝐹1
(𝑘)
)𝜆𝑘4

𝑘=1 )

𝑤1 = (1- (1 − 𝑇1
(1)
)𝜆1(1 − 𝑇1

(2)
)𝜆2(1 − 𝑇1

(3)
)𝜆3(1 − 𝑇1

(4)
)𝜆4, (𝐼1

(1)
)𝜆1(𝐼1

(2)
)𝜆2(𝐼1

(3)
)𝜆3(𝐼1

(4)
)𝜆4 ,

(𝐹1
(1)
)𝜆1(𝐹1

(2)
)𝜆2(𝐹1

(3)
)𝜆3(𝐹1

(4)
)𝜆4)

𝑤1 = (1 − ((1 − 0.9)0.37045(1 − 0.9)0.31508(1 − 0.9)0.20580(1 − 0.75)0.10867),

((0.10)0.37045(0.10)0.31508(0.10)0.20580(0.25)0.10867) , 

((0.10)0.37045(0.10)0.31508(0.10)0.20580(0.20)0.10867)) 

𝑟11 = (0.740, 0.207, 0.260) 

𝑤1 = (𝑇1, 𝐼1, 𝐹1) = (0.890, 0.110, 0.108) 

Similarly, we can get other values 

Therefore 

𝑊{𝑋1,𝑋2,𝑋3,𝑋4} = 

[
 
 
 
 
(0.890, 0.110, 0.108)

(0.641, 0.359, 0.322)

(0.879, 0.121, 0.115)

(0.680, 0.325, 0.281)

(0.699, 0.301, 0.301)]
 
 
 
 
𝑇

Step 4: Construction of Aggregated Weighted Single Valued Neutrosophic Decision Matrix 

(AWSVNDM) 

After finding the weights of the criteria and the alternative ratings, the aggregated weighted single-

valued neutrosophic ratings are calculated as follows 

𝑟𝑖𝑗
′  = (𝑇𝑖𝑗

′ , 𝐼𝑖𝑗
′ , 𝑟𝐹𝑖𝑗

′ ) = (𝑇𝐴𝑖(𝑥).𝑇𝑗, 𝐼𝐴𝑖(𝑥) + 𝐼𝑗  - 𝐼𝐴𝑖(𝑥).𝐼𝑗, 𝐹𝐴𝑖(𝑥) + 𝐹𝑗 - 𝐹𝐴𝑖(𝑥).𝐹𝑗)

By using the above equation, we can get an aggregated weighted single-valued neutrosophic decision 

matrix. 

Table 7. Aggregated Weighted Single Valued Neutrosophic Decision Matrix 𝑅′ = [𝑟𝑖𝑗
′ ]5×5

X1 X2 X3 X4 X5 

A1 𝑟11
′ =

 (0.659,0.294,0.340) 

𝑟12
′ =

(0.437,0.531,0.538) 

𝑟13
′ =

(0.444,0.466,0.495) 

𝑟14
′ =

(0.411,0.567,0.565) 

𝑟15
′ =

(0.429,0.545,0.571) 
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A2 𝑟21
′ =

(0.633,0.321,0.366) 

𝑟22
′ =

 (0.433,0.535,0.542) 

𝑟23
′ =

(0.679,0.276,0.316) 

𝑟24
′ =

(0.509,0.462,0.462) 

𝑟25
′ =

(0.487,0.481,0.513) 

A3 𝑟31
′ =

(0.528,0.442,0.471) 

𝑟32
′ =

(0.437,0.535,0.542) 

𝑟33
′ =

(0.530,0.437,0.466) 

𝑟34
′ =

(0.408,0.561,0.569) 

𝑟35
′ =

(0.459,0.510,0.541) 

A4 𝑟41
′ =

(0.588,0.366,0.410) 

𝑟42
′ =

(0.397,0.578,0.580) 

𝑟43
′ =

(0.581,0.374,0.415) 

𝑟44
′ =

(0.037,0.624,0.610) 

𝑟45
′ =

(0.383,0.602,0.617) 

A5 𝑟51
′ =

(0.628,0.324,0.3700 

𝑟52
′ =

(0.445,0.521,0.529) 

𝑟53
′ =

(0.609,0.345,0.387) 

𝑟54
′ =

(0.471,0.554,0.502) 

𝑟55
′ =

(0.537,0.428,0.463) 

Step 5: Computation of SVN-PIS and SVN-NIS 

Since Delivery, Quality, Flexibility, and Services are benefit criteria that is why they are in the set 

𝐽1= {𝑋1, 𝑋2, 𝑋3, 𝑋4} 

whereas Price being the cost criteria, so it is in the set 𝐽2= {𝑋2} SVN-PIS and SVN-NIS are calculated 

as, 

Table 8. SVN-PIS and SVN-NIS 

SVN-PIS SVN-NIS 

𝑻𝟏
+ = max {0.659,0.633,0.528,0.588,0.628} = 0.659 

𝑰𝟏
+ = min {0.294,0.321,0.442,0.366,0.324} = 0.294 

𝑭𝟏
+ = min {0.340,0.366,0.471,0.410,0.370} = 0.340 

𝑇1
− = min {0.659,0.633,0.528,0.588,0.628} = 0.528

𝐼1
− = max {0.294,0.321,0.442,0.366,0.324} = 0.442

𝐹1
− = max {0.340,0.366,0.471,0.410,0.370} = 0.471

𝑻𝟐
+ = max {0.437,0.433,0.437,0.397,0.445} = 0.445 

𝑰𝟐
+ = min {0.531,0.535,0.535,0.578,0.521} = 0.521 

𝑭𝟐
+ = min {0.538,0.542,0.542,0.580,0.529} = 0.529 

𝑇2
− = min {0.437,0.433,0.437,0.397,0.445} = 0.397

𝐼2
− = max {0.531,0.535,0.535,0.578,0.521} = 0.578

𝐹2
− = max {0.538,0.542,0.542,0.580,0.529} = 0.580

𝑻𝟑
+= max {0.444,0.679,0.530,0.581,0.609} = 0.679

𝑰𝟑
+ = min {0.466,0.276,0.437,0.374,0.345} = 0.276 

𝑭𝟑
+ = min {0.495,0.316,0.466,0.415,0.387} = 0.316 

𝑇3
− = min {0.444,0.679,0.530,0.581,0.609} = 0.444

𝐼3
− = max {0.466,0.276,0.437,0.374,0.345} = 0.466

𝐹3
− = max {0.495,0.316,0.466,0.415,0.387} = 0.495

𝑻𝟒
+  = max {0.411,0.509,0.408,0.037,0.471} = 0.509 

𝑰𝟒
+  = min {0.567,0.462,0.561,0.624,0.554} = 0.462 

𝑭𝟒
+  = min {0.565,0.462,0.569,0.610,0.502} = 0.462 

𝑇4
−  = min {0.411,0.509,0.408,0.037,0.471} = 0.037

𝐼4
−  = max {0.567,0.462,0.561,0.624,0.554} = 0.624

𝐹4
−  = max {0.565,0.462,0.569,0.610,0.502} = 0.610

𝑻𝟓
+  = min {0.429,0.487,0.459,0.383,0.537} = 0.383 

𝑰𝟓
+  = max {0.545,0.481,0.510,0.602,0.428} = 0.602 

𝑭𝟓
+  = max {0.571,0.513,0.541,0.617,0.463} = 0.617 

𝑇5
−  = max {0.429,0.487,0.459,0.383,0.537} = 0.537

𝐼5
−  = min {0.545,0.481,0.510,0.602,0.428} = 0.428

𝐹5
−  = min {0.571,0.513,0.541,0.617,0.463} = 0.463

𝐴+ = 

{
 
 

 
 
(0.659, 0.294, 0.340),
(0.445, 0.521, 0.529),
(0.679, 0.276, 0.316),
(0.509, 0.462, 0.462),
(0.383, 0.602, 0.617)}

 
 

 
 

𝐴−=

{
 
 

 
 
(0.528, 0.442, 0.471),
(0.397, 0.578, 0.580),
(0.444, 0.466, 0.495),
(0.037, 0.624, 0.610),
(0.537, 0.428, 0.463)}

 
 

 
 

Step 6: Computation of Separation Measures 
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Normalized Euclidean Distance Measure is used to find the negative and positive separation 

measures 𝒅+ and 𝒅−respectively. Now for the SVN-PIS, we use 

𝑑𝑖
+= (

1

3𝑛
∑ [(𝑇𝐴𝑖.𝑊(𝑥𝑗) − 𝑇𝐴∗𝑊 (𝑥𝑗))

2

+ (𝐼𝐴𝑖.𝑊(𝑥𝑗) − 𝐼𝐴∗𝑊 (𝑥𝑗))
2

+ (𝐹𝐴𝑖.𝑊(𝑥𝑗) − 𝐹𝐴∗𝑊 (𝑥𝑗))
2

]𝑛
𝑗=1 )

0.5

For i = 1and n = 5 

𝑑1
+= (

1

3(5)
∑ [(𝑇𝐴1.𝑊(𝑥𝑗) − 𝑇𝐴∗𝑊 (𝑥𝑗))

2

+ (𝐼𝐴1.𝑊(𝑥𝑗) − 𝐼𝐴∗𝑊 (𝑥𝑗))
2

+ (𝐹𝐴1.𝑊(𝑥𝑗) − 𝐹𝐴∗𝑊 (𝑥𝑗))
2

]5
𝑗=1 )

0.5

𝑑1
+=

(

 
 
 
 
 
 
 

1

15

[
 
 
 
 
 
 
 
 
 (𝑇𝐴1.𝑊(𝑋1) − 𝑇𝐴∗𝑊 (𝑋1))

2

+ (𝐼𝐴1.𝑊(𝑋1) − 𝐼𝐴∗𝑊 (𝑋1))
2

+ (𝐹𝐴1.𝑊(𝑋1) − 𝐹𝐴∗𝑊 (𝑋1))
2

+

(𝑇𝐴1.𝑊(𝑋2) − 𝑇𝐴∗𝑊 (𝑋2))
2

+ (𝐼𝐴1.𝑊(𝑋2) − 𝐼𝐴∗𝑊 (𝑋2))
2

+ (𝐹𝐴1.𝑊(𝑋2) − 𝐹𝐴∗𝑊 (𝑋2))
2

+

(𝑇𝐴1.𝑊(𝑋3) − 𝑇𝐴∗𝑊 (𝑋3))
2

+ (𝐼𝐴1.𝑊(𝑋3) − 𝐼𝐴∗𝑊 (𝑋3))
2

+ (𝐹𝐴1.𝑊(𝑋3) − 𝐹𝐴∗𝑊 (𝑋3))
2

+

(𝑇𝐴1.𝑊(𝑋4) − 𝑇𝐴∗𝑊 (𝑋4))
2

+ (𝐼𝐴1.𝑊(𝑋4) − 𝐼𝐴∗𝑊 (𝑋4))
2

+ (𝐹𝐴1.𝑊(𝑋4) − 𝐹𝐴∗𝑊 (𝑋4))
2

+

(𝑇𝐴1.𝑊(𝑋5) − 𝑇𝐴∗𝑊 (𝑋5))
2

+ (𝐼𝐴1.𝑊(𝑋5) − 𝐼𝐴∗𝑊 (𝑋5))
2

+ (𝐹𝐴1.𝑊(𝑋5) − 𝐹𝐴∗𝑊 (𝑋5))
2

]
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 

0.5

𝑑1
+=

(

  
 1

15

[
 
 
 
 
 
(0659 − 0.659)2 + (0.294 − 0.294)2 + (0.340 − 0.340)2 +

 (0.437 − 0.445)2 + (0.531 − 0.521)2 + (0.538 − 0.529)2 +

 (0.444 − 0.679)2 + (0.466 − 0.276)2 + (0.495 − 0.316)2 +

(0.411 − 0.509)2 + (0.567 − 0.462)2 + (0.565 − 0.462)2 +

(0.429 − 0.383)2 + (0.545 − 0.602)2 + (0.571 − 0.617)2 ]
 
 
 
 
 

)

  
 

0.5

𝑑1
+= [

1

15
 (0.000245 + 0.123366 + 0.031238 + 0.007481)]

0.5

𝑑1
+= 0.1040

Similarly, we can find other separation measures. 

Step 7: Computation of Relative Closeness Coefficient (RCC) 

The RCC is calculated by using  

RCCi = 
𝑑𝑖
′

𝑑𝑖
′+ 𝑑𝑖

∗ ; i = 1, 2, 3, 4, 5 

RCC1 = 
𝑑1
′

𝑑1
′+ 𝑑1

∗ = 
0.127532

0.127532+0.104029
 = 0.551 

RCC2 = 0.896 

RCC3 = 0.505 

RCC4 = 0.363 

RCC5 = 0.757 

The separation measure and the value of relative closeness coefficient (RCC) expressed in the 

following figure. 
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Figure 1. Separation measure and the RCC for each Alternative 

Step 8: Ranking alternatives 

From the above figure, we can see the RCC are ranked as follows 

RCC2 > RCC5 > RCC1 > RCC3 > RCC4 ⇒ A2 > A5 > A1 > A3 > A4 

By using the presented technique, we choose the best supplier for the production industry and 

observe that A2 is the best alternative. 

5. Conclusion

In this paper, we studied neutrosophic set and SVNSs with some basic operations and developed 

the generalized neutrosophic TOPSIS by using single-valued neutrosophic numbers. By using crisp 

data, it is more difficult to solve decision-making problems under uncertain environments, to 

overcome such uncertainties single-valued neutrosophic sets are more appropriate. We also 

developed the graphical model for generalized neutrosophic TOPSIS. Finally, to show the validity of 

the proposed technique an illustrated example of the best supplier in the production industry is 

presented and observed that A2 is the best supplier for the production industry. We consider this 

technique will be helpful in problem-solving and will expand the area of investigations for more 

accuracy in real-life issues. 
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Abstract: The shortest path problem has been one of the most fundamental practical problems in network analysis. One of
the good algorithms is Bellman-Ford, which has been applied in network, for the last some years. Due to complexity in the
decision-making process, the decision makers face complications to express their view and judgment with an exact
number for single valued membership degrees under neutrosophic environment. Though the interval number is a
special situation of the neutrosophic, it did not solve the shortest path problems in an absolute manner. Hence, in this
work, the authors have introduced the score function and accuracy function of trapezoidal interval valued neutrosophic
numbers with their illustrative properties. These properties provide important theoretical base of the trapezoidal
interval valued neutrosophic number. Also, they proposed an intelligent algorithm called trapezoidal interval valued
neutrosophic version of Bellman’s algorithm to solve neutrosophic shortest path problem in network analysis. Further,
comparative analysis has been made with the existing algorithm.

Said Broumi, Deivanayagampillai Nagarajan, Malayalan Lathamaheswari, 
Mohamed Talea, Assia Bakali, Florentin Smarandache 

Said Broumi, Deivanayagampillai Nagarajan, Malayalan Lathamaheswari, Mohamed Talea, Assia Bakali, 
Florentin Smarandache (2020). Intelligent Algorithm for Trapezoidal Interval Valued Neutrosophic Network 
Analysis. CAAI Transactions on Intelligence Technology, 6; DOI: 10.1049/trit.2019.0086 
1 Introduction

In wireless communication and digital electronics, the short distance
is communicated using multifunctional sensors. This type of sensors
consists of sensing and processing the data. Embedded systems,
wireless communication, distributed processing, micro-electro-
mechanical systems and applications using wireless sensors are the
developments in the technology of sensors and these developments
have contributed to large transformation in wireless sensor
networks. Sensors help and boost work performed in the field of
both industry and our daily life. Sensor network system is away
from the actual phenomenon and could collect and process a huge
number of data. These sensors are using sense perception.
The sensor network and algorithm must possess self-organising
capabilities.

Neighbourhood nodes are close to each other and the nodes
are used for constant sensing. Multichip sensor networks are used
to consume low power than other sensors. The topological
information would be provided by every each node of the sensor
network. Interconnection network can be used for parallel
computing. Shortest path algorithms are used to message from any
source to any destination. Bellman-Ford is mostly applied for a
large network with a stable node. A set whose elements have
degrees of membership called fuzzy set (FS) in 1965 [1] and
mainly deals with numerous real-world situations, where the data
possesses some sort of uncertainty.

The concept of FS deals with only the membership value
of the elements, not the non-membership value. This issue was
sorted out by intuitionistic FS (IFS) introduced by Atannasov
in 1975 [2] which allows both the membership function (MF) and
non-membership function. Since the real-world situations may
contain indeterminacy in the data, FS and IFS could not deal with
indeterminacy of the data. This problem was rectified by
neutrosophic set (NS), which is the generalisation of FS and IFS,
introduced by Smarandache [3].

NS is a set in which, all the elements have degree of membership,
indeterminacy and non-membership and the sum of these MFs
should be less than or equal to 3. All three MFs are independent
of each other. Since the NSs are difficult to apply in real-world
problems, Wang et al. introduced single valued NSs [4].
Uncertainty of the elements can be captured using fuzzy numbers
and intuitionistic fuzzy numbers. In the same way, neutrosophic
numbers are very useful in capturing uncertainty and
indeterminacy of the elements. Hence, it is a special case of the
NS which enhances the domain of real numbers to neutrosophic
numbers. Fuzzy shortest path problems (FSPP) can be solved by
considering the edge weights of the network as fuzzy or uncertain
using Bellman dynamic programming approach and multi-
objective linear programming technique [5].

Shortest path problem (SPP) has been solved by many researchers
under fuzzy and intuitionistic fuzzy environments [6–8]. The
concept of Bellman’s algorithm has been applied in a fuzzy
network [9] for solving SPP and it is not applied in neutrosophic
network so far. Distance measure can be obtained using single
and interval valued trapezoidal neutrosophic numbers in a multi-
attribute decision-making problem [10]. Dijkstra algorithm is a
very useful and optimised one to solve the SPP but incapable
to handle negative weights, whereas Bellman can deal with
negative weights. SPP also can be solved by using single valued
neutrosophic graph. The information that a sender does convey in
communication with a receiver is called the linguistic information
involved with the nature of language and communication. This
information is a correlation between the knowledge of the people
about the old and new information and deviation in grammatical
structure, reacting to this knowledge.

Finding a shortest path between two or more vertices is called SPP
in which the sum of edge weights should be minimum. The
practicability of a path is resolved its length under familiar
measures such as distance and its corresponding nature. In the
transportation system, with mode options, for a passenger to reach
the destination from a source point, the selection of the mode and
destination guide of the journey for an optimised route would be
specified by linguistic terms. Hence, the linguistic information and
SPPs are connected.
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To deal with inconsistency, uncertainty, ambiguity, impreciseness
and indeterminate, many methods have been recommended by the
researchers under different environments, namely FS, IFS, interval
valued IFS, triangular IFS, trapezoidal IFS and NS where the
information can be represented in the form of triangles and
trapezoid under all these environments. Also, the membership
values lie in the real unit interval [0, 1]. Hence, trapezoidal
interval valued neutrosophic number (TrIVNN) helps in real-world
problems where the information is uncertain and indeterminate
between some ranges of acceptable behaviour. Therefore, TrIVNN
is the key to extract the MFs of truth, indeterminacy and falsity
whose values depend on both trapezoidal neutrosophic numbers
and the intervals [11–15].

In [16, 17], Broumi et al. made an overview of the SPP under
various environments and solved SPP using single valued
and triangular and trapezoidal interval valued neutrosophic
environments. Aggregation operators for interval valued generalised
single valued neutrosophic trapezoidal number have been derived
and applied in decision-making problem [18]. An extension of FSs
called type-2 FSs and its special cases called interval type-2 FSs
have growing applications in control systems, edge detection in
image processing and other medical fields. SPPs can be solved
using triangular and trapezoidal interval neutrosophic environments
as an extension of NSs. From the overview of solving SPP under
various sets environments, one can understand the difference and
capacity of handling uncertainty with various levels [19–25].

In [26], the authors considered the concept of (extended) derivable
single-valued neutrosophic graph as the energy clustering of wireless
sensor networks and applied this concept as a tool in wireless sensor
(hyper) networks. In [27], Broumi et al. applied single-valued
neutrosophic techniques for analysis of WIFI connection. Jan et al.
[28] developed the concept of constant single valued neutrosophic
graphs and applied it to a real-world problem of Wi-Fi system. For
more information on the application of neutrosophic theory, we
refer the readers to [29–36]. NSs are usually applied to model
linguistic information. In our previous work, we solved SPP for a
network with triangular and trapezoidal interval valued
neutrosophic edge weights using an improved algorithm with the
operational laws and new score function of interval valued
neutrosophic numbers. Also, comparative analysis has been done
with the existing methods.

In this paper, we are motivated to present neutrosophic version of
Bellman’s algorithm for solving neutrosophic SPP (NSPP). Therefore
for the first time, we proposed trapezoidal interval valued
neutrosophic version of Bellman’s algorithm to solve NSPP in
network analysis, where the edge weight is characterised by TrIVNN.

The rest of this paper is organised as follows. In Section 2, literature
review is given with the existing work and application side. In Section
3, some concepts and theories are reviewed. Section 4 introduces the
score function and accuracy function of TrIVNNs with their
illustrative properties. In Section 5, an intelligent algorithm called
trapezoidal interval valued neutrosophic version of Bellman-Ford
algorithm is proposed with a numerical example as an application
of our proposed algorithm. Section 6 gives the significance of the
proposed algorithm. Section 7 gives the comparative analysis of the
proposed algorithm with the existing algorithm to solve NSPP in
network analysis. The last but not least, in Section 8 the conclusion
is drawn with the advantages and limitations of the proposed work
and some hints for further research is given.
2 Literature review

In this section, literature review on existing work and application
side is given for solving SPP under fuzzy, intuitionistic fuzzy and
neutrosophic environments.
2.1 Existing work

Zadeh [1] proposed FSs. Atanassov [2] introduced IFSs.
Smarandache [3] proposed neutrosophic logic, set and probability.
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Wang et al. [4] invented single valued NSs. Bellman [13]
proposed routing problem with functional equation approach.
Bellman-Ford algorithm is explained in [14]. Lathamaheswari
et al. [22] analysed the different applications of type-2 fuzzy in
the field of bio-medicine. Lathamaheswari et al. [24] re-examined
the usage of type-2 fuzzy controller in the area of control system.
2.2 Application side

De and Bhincher [5] described two different methods to solve SPP
namely Bellman dynamic programming and multi-objective linear
programming. Kumar et al. [6] introduced a new algorithm to
solve SPP under interval valued intuitionistic trapezoidal fuzzy
environment. Meenakshi and Kaliraja [7] determined shortest path
for interval valued fuzzy network. Elizabeth and Sujatha [8]
solved FSPP using interval valued fuzzy number matrices. Das
and De [9] figured out SPP under intuitionistic fuzzy setting.
Biswas et al. [10] introduced a new strategy for multi-attribute
decision-making problem under interval trapezoidal neutrosophic
environment. Broumi et al. [11] estimated a shortest path using
single valued trapezoidal neutrosophic number as the edge
weights. Broumi et al. [12] solved NSPP using Dijkstra algorithm.
Broumi et al. [15] dealt with SPP using single valued
neutrosophic graphs. Broumi et al. [16] made an analysis on SPP
under various environments. Broumi et al. [17] solved SPP under
interval valued trapezoidal and triangular neutrosophic setting.
Deli [18] introduced interval valued generalised single valued
neutrosophic trapezoidal number and its aggregation operators,
also applied the proposed concept in decision-making problem.
Giri et al. [19] solved a decision-making problem using TOPSIS
method under interval trapezoidal neutrosophic environment. Deli
et al. [20] determined a decision-making problem using single and
interval valued trapezoidal and triangular neutrosophic numbers.
Nagarajan et al. [21] introduced a new technique for edge
detection on DICOM image under type-2 fuzzy environment.
Nagarajan et al. [23] proposed a technique for image extraction on
DICOM image under type-2 fuzzy environment. Sellappan et al.
[25] evaluated risk priority number in design failure modes and
used factor analysis for effects analysis. Mohammad and Arsham
Borumand [26] introduced achievable single valued neutrosophic
graphs and applied in wireless sensor networks. Broumi et al. [27]
estimated information processing using mobile ad-hoc network
with an example under neutrosophic environment. Jan et al. [28]
introduced and studied the characteristics of constant single valued
neutrosophic graph and applied in Wi-Fi network system. Harish
[29] solved multi-attribute group decision-making problem using
novel neutrality aggregation operators under single valued
neutrosophic setting. Dimple and Harish [30] introduced some
modified results of the subtraction and division operations on
interval NSs. Harish and Nancy [31] solved multi-criteria
decision-making (MCDM) problem using Frank Choquet Heronian
mean operator under single valued neutrosophic setting. Nancy
and Harish [32] introduced a novel divergence measure and used
in TOPSIS method for MCDM problem under single-valued
neutrosophic environment. Harish and Nancy [33] proposed some
hybrid weighted aggregation operators and applied in MCDM
problem under NS environment. Harish and Nancy [34] introduced
new logarithmic operational laws for single-valued neutrosophic
numbers and applied in multi-attribute decision-making problem.
Harish and Nancy [35] proposed non-linear programming method
under interval NS setting and applied in MCDM problem. Nancy
and Harish [36] introduced an improved score function for the
ranking proposed of NSs and applied in decision-making process.
3 Overview of trapezoidal interval valued
neutrosophic number

In this section, we review some basic concepts regarding NSs, single
valued NSs, trapezoidal NSs and some existing ranking functions for
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trapezoidal neutrosophic numbers which are the background of this
study and will help us to further research.

3.1 Neutrosophic set [3]

Let j be points (objects) set and its generic elements denoted by x;
we define the neutrosophic set A (NS A) as the form
A ⃛ = kx:TA⃛ x( ), IA⃛ x( ), FA ⃛ x( )l, x [ j

{ }
, where the functions T, I, F: j

→]−0,1 + [ are called the truth-MF, an indeterminacy-membership
function, and a falsity-membership function, respectively, and they
satisfy the following condition:

− 0 ≤ TA⃛ x( ) + IA⃛ x( ) + FA⃛ x( ) ≤ 3+. (1)

The values of these three MFs TA⃛ x( ), IA⃛ x( ) and FA⃛ x( ) are real standard
or non-standard subsets of ]−0,1 + [. As we have difficulty in
applying NSs to practical problems. Wang et al. [4] proposed the
concept of a SVNS that represents the simplification of a NS and
can be applied to real scientific and technical applications.

3.2 Single valued NS [4]

A single valued NS A⃛ (SVNS A⃛) in the universe set j is defined by
the set

A⃛ = { , x:TA⃛(x), IA ⃛(x), FA⃛(x) . , x [ j} (2)

where TA ⃛ x( ), IA⃛ x( ), FA⃛ x( ) [ [0, 1] satisfying the condition

0 ≤ TA⃛ x( ) + IA⃛ x( ) + FA⃛ x( ) ≤ 3 (3)
3.3 Trapezoidal interval valued neutrosophic set [10]

Let x be TrIVNN. Then its truth, indeterminacy and falsity MFs are
given by

Tx(z) =

(z− a)tx
(b− a)

, a ≤ z , b,

tx, b ≤ z ≤ c

(d − z)tx
(d − c)

, c ≤ z ≤ d

0, otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Its indeterminacy MF is

Ix(z) =

(b− z)+ (z− a)ix
(b− a)

, a ≤ z , b

ix, b ≤ z ≤ c

z− c+ (d − z)ix
d − c

c , z ≤ d

0, otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Its falsity MF is

Fx(z) =

b− z+ (z− a)fx
b− a

, a ≤ z , b

fx, b ≤ z ≤ c

z− c+ (d − z)fx
d − c

, c , z ≤ d

0, otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)
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where 0 ≤ Tx(z) ≤ 1, 0 ≤ Ix(z) ≤ 1 and 0 ≤ Fx(z) ≤ 1, also tx, ix, fx
are subset of [0,1] and 0 ≤ a ≤ b ≤ c ≤ d ≤ 1, 0 ≤ sup (tx)+
sup (ix)+ sup (fx) ≤ 3; Then x is called an interval trapezoidal
neutrosophic number x = a, b, c, d[ ]; tx, ix, fx

( )
. We take

tx = [t, t̄] , ix = [i, ī] and fx = [ f , f̄ ].
3.4 Ranking technique [10]

Let ã and r̃ be two TrIVNNs, the ranking of ã and r̃ by score function
and accuracy function is described as follows:

(i) if s r̂N
( ) ≺ s ŝN

( )
then r̂N ≺ ŝN

(ii) if s r̂N
( ) ≃ s ŝN

( )
and if

(a) a r̂N
( ) ≺ a ŝN

( )
then r̂N ≺ ŝN

(b) a r̂N
( ) ≻ a ŝN

( )
then r̂N ≻ ŝN

(c) a r̂N
( ) ≃ a ŝN

( )
then r̂N ≃ ŝN

3.5 Bellman dynamic programming [13]

Given an acyclic directed connected graph G= (V, E) with ‘n’
vertices where node ‘1’ is the source node and ‘n’ is the
destination node. The nodes of the given network are organised
with the topological ordering (Eij: i < j). Now for the given
network the shortest path can be obtained based on the
formulation of Bellman dynamic programming by forward pass
computation method.

The formulation of Bellman dynamic programming is described
as follows:

f (1) = 0

f (i) = min
i,j

f i( ) + dij

{ }
(7)

where dij is the weight of the directed edge Eij , f(i) is the length of
the shortest path of ith node from the source node 1.
3.6 Advantages of trapezoidal interval valued
neutrosophic number [17]

There are some advantages of using TrIVNN as follows:

(i) Interval trapezoidal neutrosophic number is a generalised form of
single valued trapezoidal neutrosophic number.
(ii) In this number, the trapezoidal number is characterised by three
independent membership degrees, which are in interval form.
(iii) The number can flexibly express neutrosophic information than
the single valued neutrosophic trapezoidal number.

Therefore, the number can be employed to solve neutrosophic
multiple attribute decision-making problem, where the preference
values cannot be expressed in terms of single valued trapezoidal
neutrosophic number.
4 Proposed concepts

Score function and accuracy function are measurement functions
to rank fuzzy, intuitionistic and neutrosophic numbers. While
solving NSPP, score function finds the aggregate value of each
path and measures their accuracy and provides the relevant score
that measures how well the path satisfies the requirement.
Accuracy function gives the most intuitive performance measure.
Here, the score and accuracy functions are introduced with
their illustrative properties for trapezoidal interval neutrosophic
numbers.
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4.1 Score function of trapezoidal interval valued
neutrosophic number

Let x = ([a, b, c, d]; [t, t̄], [i, ī], [ f , f̄ ]) be a TrIVNN then its score
function is defined by

S(x) = 1

16
(a+ b+ c+ d)(2+ t + t̄ − i− ī− f − f̄ ) (8)

and S(x) [ [0, 1]. Here we take 0 ≤ a ≤ b ≤ c ≤ d ≤ 1, tx, ix, fx are

subset of [0, 1] where tx = [t, t̄] , ix = [i, ī] and fx = [ f , f̄ ].

4.1.1 Property: Score function is bounded on [0, 1].

Proof: Since, 0 ≤ a ≤ b ≤ c ≤ d ≤ 1, we have

0 ≤ a+ b+ c+ d ≤ 4 (9)

Now

− 4 ≤ t + t̄ − i− ī− f − f̄ ≤ 2

=. 2− 4 ≤ 2+ t + t̄ − i− ī− f − f̄ ≤ 4

=. −2 ≤ 2+ t + t̄ − i− ī− f − f̄ ≤ 4

(10)

Multiplying (9) and (10), we get

0 ≤ (a+ b+ c+ d)(2+ t + t̄ − i− ī− f − f̄ ) ≤ 16

=. 0 ≤ 1

16
(a+ b+ c+ d)(2+ t + t̄ − i− ī− f − f̄ ) ≤ 1

Therefore, score function is bounded.
Example: Let a= ([0.1,0.2,0.3,0.4]; [0.1,0.2], [0.2,0.3], [0.4,0.5]) be

a TrIVNN then its score value is Sc(a) = 1

16
(0.1+ 0.2+ 0.3+ 0.4)

(2+ .1+ .2− .2− .3− .4− .5) = 0.07875 [ [0, 1], hence the
result. □
4.2 Accuracy function of trapezoidal interval valued
neutrosophic number

Let x = ([a, b, c, d]; [t, t̄], [i, ī], [ f , f̄ ]) be a TrIVNN then its
accuracy function is defined by

Ac(x) = 1

8
(c+ d − a− b)(2+ t + t̄ − f − f̄ ) (11)

and Ac(x) [ [0, 1]. Here we take 0 ≤ a ≤ b ≤ c ≤ d ≤ 1 and
tx, ix, fx are the subset of [0, 1] where tx = [t, t̄] , ix = [i, ī] and

fx = [ f , f̄ ].

4.2.1 Property: Accuracy function is bounded on [0, 1].

Proof: Since 0 ≤ a ≤ b ≤ c ≤ d ≤ 1, we have

− 2 ≤ c+ d − a− b ≤ 2 (12)

⇒ −2 ≤ t + t̄ − f − f̄ ≤ 2

=. 0 ≤ 2+ t + t̄ − f − f̄ ≤ 4
(13)

Multiplying (12) and (13), we get

0 ≤ (c+ d − a− b)(2+ t + t̄ − f − f̄ ) ≤ 8

=. 0 ≤ 1

8
(a+ b+ c+ d)(2+ t + t̄ − f − f̄ ) ≤ 1
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Therefore, accuracy function is bounded and is proved by a
numerical illustration in Section 4.2.2. □
4.2.2 Numerical illustration: Let x = ([0.1,0.2,0.3,0.4];
[0.1,0.2],[0.2,0.3],[0.4,0.5]) be the TrIVNN then its accuracy
value is

Ac(x) = 1

8
(0.1+ 0.2+ 0.3+ 0.4)(2+ .1+ .2− .4− .5)

= 0.175 [ [0, 1]

Hence the result.
5 Computation of shortest path based on TrIVNN

This section introduces an algorithmic approach to solve NSPP.
Consider a network with ‘n’ nodes where the node ‘1’ is the
source node and the node ‘n’ is the destination node under
trapezoidal interval valued neutrosophic environment. The
neutrosophic distance between the nodes is denoted by dij (node
‘i’ to node ‘j’). Here MN i( ) denotes the set of all nodes having a
relation with the node ‘i’.

5.1 Revised version of trapezoidal interval valued
neutrosophic Bellman-Ford algorithm

Applying the concept of Bellman’s algorithm in neutrosophic
environment, we get trapezoidal interval valued neutrosophic
version of Bellman-Ford algorithm (Algorithm 1, see Fig. 1).

5.2 Illustrative example

The revised version of Bellman-Ford algorithm under trapezoidal
interval valued neutrosophic environment is demonstrated by an
illustrative example as follows for a better understanding.

For the illustrative purpose, a numerical problem from [11] is
considered, to prove the inherent application of the proposed
algorithm. It shows the clear procedure of the proposed algorithm.

Consider a network (Fig. 2) with six nodes and eight edges and the
edge weights are characterised by TpIVNNs, where the first node is
the source node and the sixth node is the destination node.
Trapezoidal interval valued neutrosophic distance is given in Table 1.

In this situation, we need to evaluate the shortest distance from
source node, i.e. node 1 to destination node, i.e. node 6. Table 1
represents the edges and their trapezoidal interval valued
neutrosophic distance.

For all the edges, trapezoidal interval valued neutrosophic distance
is reduced into crisp numbers using score function as a
deneutrosophication process and is represented by Table 2.

According to the proposed neutrosophic Bellman-Ford algorithm
in Section 5.1, the shortest path from node one to node six can be
computed by Algorithm 2 (see Fig. 3).

Therefore, the path P: 1→2→5→6 is identified as the trapezoidal
interval valued neutrosophic shortest path, and the crisp shortest path
is 0, 85.

The neutrosophic shortest path can be obtained for the network
with a large number of vertices and edges also.
6 Significance of the proposed work

The proposed trapezoidal interval valued neutrosophic version of
Bellman-Ford algorithm has a potential significance as it has the
following qualities:

(i) It deals with the network in which the edge weights are TrIVNNs
and so that it characterises membership, indeterminacy and falsity of
each edge.



Table 1 Details of edge information in terms of TrIVNNs

Edges Trapezoidal interval valued neutrosophic distance

1-2(e1) k 0.1, 0.2, 0.3, 0.4( ); 0.1, 0.2[ ], 0.2, 0.3[ ], 0.4, 0.5[ ]l
1-3(e2) k 0.2, 0.5, 0.7, 0.8( ); 0.2, 0.4[ ], 0.3, 0.5[ ], 0.1, 0.2[ ]l
2-3(e3) k 0.3, 0.7, 0.8, 0.9( ); 0.3, 0.4[ ], 0.1, 0.2[ ], 0.3, 0.5[ ]l
2-5(e4) k 0.1, 0.5, 0.7, 0.9( ); 0.1, 0.3[ ], 0.3, 0.4[ ], 0.2, 0.3[ ]l
3-4(e5) k 0.2, 0.4, 0.8, 0.9( ); 0.2, 0.3[ ], 0.2, 0.5[ ], 0.4, 0.5[ ]l
3-5(e6) k 0.3, 0.4, 0.5, 1( ); 0.3, 0.6[ ], 0.1, 0.2[ ], 0.1, 0.4[ ]l
4-6(e7) k 0.7, 0.8, 0.9, 1( ); 0.4, 0.6[ ], 0.2, 0.4[ ], 0.1, 0.3[ ]l
5-6(e8) k 0.2, 0.4, 0.5, 0.7( ); 0.2, 0.3[ ], 0.3, 0.4[ ], 0.1, 0.5[ ]l

Table 2 Details of deneutrosophication value of edge (i, j)

Edges Score function Edges Score function

e12 0,05625 e34 0,416875
e13 0,48125 e35 0,56375
e23 0,6075 e46 0,85
e25 0,44 e56 0,36

Fig. 3 Algorithm 2: Steps involved in finding trapezoidal interval valued
neutrosophic shortest path

Fig. 2 Network with six vertices and eight edges [Broumi et al. [11]]

Fig. 1 Algorithm 1: Trapezoidal interval valued neutrosophic
Bellman-Ford algorithm for shortest path analysis of the network
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(ii) It proceeds with the concept of relaxation, whither
approximations to the exact distance are replaced by better ones
until they finally reach the solution.
857
(iii) This revised version of Bellman-Ford algorithm simply relaxes
all the edges for V| | − 1 times. In all these repetitions, the number of
vertices with properly calculate distances become larger, from which
it follows that, finally all vertices will get their exact distances. Here
V| | is the number of vertices in the trapezoidal interval valued
neutrosophic network.
Hence, this proposed trapezoidal interval valued neutrosophic
revised version of Bellman-Ford algorithm can be applied to a
large number of inputs.



Table 3 Comparison of neutrosophic shortest path using the proposed
method and existing method

Method Neutrosophic shortest path length

in [18], Broumi et al. solved NSPP
with triangular interval valued
neutrosophic numbers and
TrIVNNs as the edge weights of
the network with six edges and
eight edges

0.485 (using improved algorithm)

in this present work, we solved
NSPP for the network with
TrIVNNs as the edge weights

0.85 (using an intelligent algorithm
called revised version of
Bellman-Ford algorithm)
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7 Comparative analysis

In [18], the authors solved NSPP under triangular and trapezoidal
neutrosophic environment using an improved algorithm. However,
NSPP is not solved using Bellman algorithm under trapezoidal
interval neutrosophic environment to date. Hence, the comparative
analysis is made in Table 3.
8 Conclusions

Hence in this work, the new definitions of score function and
accuracy functions of trapezoidal interval neutrosophic numbers
and their properties with numerical example are proposed. Also,
the neutrosophic version of Bellman’s algorithm based on the
TrIVNN called an intelligent algorithm, which expresses the
flexibility of the neutrosophic information absolutely under
trapezoidal interval valued neutrosophic environment with a
numerical example is proposed. In the future, the bipolar
neutrosophic version of Bellman algorithm can be introduced.

8.1 Advantages of the proposed work

The proposed algorithm under trapezoidal interval valued
neutrosophic environment has the following advantages:

(i) indeterminacy of the information can be dealt with efficiency.
(ii) cost of the neutrosophic shortest path can be minimised
(iii) the performance of the network can be maximised through the
data have indeterminacy
(iv) Indeterminacy can be captured and shortest path can be obtained
by splitting the various paths and hence performance of the system
can be increased.

8.2 Limitations of the proposed work

The proposed revised version of Bellman-Ford algorithm has the
following limitations:

(i) It runs only O V| |. E| |( ) times, where E| | is the number of edges in
the network.
(ii) It is unable to deal with the degree of contradiction of the edges.
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Abstract: In this age of information, the industrial sectors are embedding its functioning principles 

with the components of Industry 4.0. This article proposes a production inventory model discussing 

the paradigm shift towards smart production process involving many new cost parameters in 

addition to the conventional inventory costs. The proposed Industry 4.0 production inventory model 

is discoursed and compared in both deterministic and neutrosophic environments. The trapezoidal 

neutrosophic number representation of the parameters enhances the efficiency of the model in 

determining the optimal order time that minimizes the total costs. The model is highly 

comprehensive in nature and it is validated with a numerical example. 

Keywords: Neutrosophic sets, Industry 4.0, production inventory model, optimization, decision 

making. 

1. Introduction

Presently the industrial sectors are incorporating the techniques of digitalization to meet the 

requirements of the customer’s demands at all ends. The production sectors practice new production 

methods to ease the process of production that comprises of several sequential steps and new cost 

parameters. The optimizing principle of manufacturing companies is costs minimization and profit 

maximization and the inventory models are utilized to make optimal decisions on order time and 

quantity. The Economic Production Quantity (EPQ) model proposed by Taft [1], a basic production 

inventory model to manage the levels of inventory by the production sectors. This model is the 

underlying model and it was developed and extended based on decision-making situations. The 

fundamental EPQ model was further modified with the integration of the cost parameters of 

shortages, trade discount, imperfect items, supply chain, deteriorating items, remanufacturing, waste 

disposal and so on. The production inventory models are extended to cater the requirements of the 

production sectors. Presently, the fourth industrial revolution is gaining significance amidst the 

developed and developing nations. Industry 4.0 will certainly bring a paradigm transition at all the 

levels of organization and control over the different stages of the product’s life. The entire process of 

product production beginning from product conception, product design, product development, 
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initialization of product production, manufacturing of the product, product delivery and ending with 

product rework, recycle and disposal will get into the digitalized mode based on customer- centric 

approach. 

The elements of Industry 4.0 are stepping into the production sectors of large, medium and small- 

sized and at all phases of production processes. Christian Decker et al [2] introduced a cost-benefit 

model for smart items in the supply chain which is an initial initiative in calculating the advantages 

of introducing smart items into the network of the supply chain. Andrew Kusiak [3] presented the 

benefits of smart manufacturing; its core components and the production pattern in future. Fei et al 

[4] developed IT -driven assistance arranged shrewd assembling with its structure and attributes. 

Sameer et al [5] introduced a basic audit on keen assembling and Industry 4.0 development models 

and the suggestions for the entrance of medium and little enterprises. Xiulong et al [6] developed 

CPS-based smart production system for Industry 4.0 based on the review of the existing literature on 

smart production systems. Pietro et al [7] built up a digital flexibly chain through the powerful stock 

and smart agreements. Marc Wins[8] introduced a wide depiction of the highlights of a smart stock 

administration framework. Souvik et al [9] investigated the savvy stock administration framework 

dependent on the web of things (Iot). Poti et al [10] introduced the prerequisite examination for 

shrewd flexibly chain the board for SMEs. Ghadge et al [11] tended to the effect of Industry 4.0 

execution on flexibly chains; introduced the benefits and confinements of industry 4.0 in supply chain 

arrange alongside its cutting-edge headings; clarified the core Industry 4.0 innovations and their 

business applications and investigated the ramifications of Industry 4.0 with regards to operational 

and gainful proficiency. Iqra Asghar et al [12] presented a digitalized smart EPQ-based stock model 

for innovation subordinate items under stochastic failure and fix rate. The above examined stock 

models are deterministic in nature and the costs boundaries are traditional in nature and they don't 

mirror the real costs boundaries identified with industry 4.0 components. 

In this paper, manufacturing inventory model incorporating a new range of smart costs is formulated, 

also in this industry 4.0 model, the cost parameters are characterized as neutrosophic sets. This is the 

novelty of this research work and as for as the literature is concerned, industry 4.0 neutrosophic 

production inventory models have not been discussed so far and related literature does not exist. 

Smarandache [13] introduced neutrosophic sets that deal with truth, indeterminacy and falsity 

membership functions. Neutrosophic sets are widely applied to handle the situations of 

indeterminacy and it has extensive applications in diverse fields. Sahidul et al [14] developed 

neutrosophic goal programming for choosing the optimal green supplier, Abdel Nasser [15] used an 

integrated neutrosophic approach for supplier selection, Lyzbeth [16] constructed neutrosophic 

decision- making model to determine the operational risks in financial management, Ranjan Kumar 

et al [17,18]  developed neutrosophic multi-objective programming for finding the solution to 

shortest path problem, Vakkas et al [19] proposed MADM method with bipolar neutrosophic sets. 

Abdel-Basst, Mohamed et al [20] has developed neutrosophic decision-making models for effective 

identification of COVID-19; constructed bipolar neutrosophic MCDM for professional selection [21]; 

formulated a model to solve supply chain problem using best-worst method [22]and to measure the 
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financial performance of the manufacturing industries [23]. Also, Abdel-Basset proposed presented 

a new framework for evaluating the innovativeness of the smart product – service systems [24]. As 

neutrosophic sets are highly viable, neutrosophic inventory models are formulated by many 

researchers. Chaitali Kar et al[25] developed inventory model with neutrosophic geometric 

programming approach. Mullai and Broumi[26] discussed neutrosophic inventory model without 

shortages, Mullai [27] developed neutrosophic model with price breaks. Mullai et al [28] constructed 

neutrosophic inventory model dealing with single-valued neutrosophic representation.  

In all these neutrosophic inventory models, the cost parameters of the conventional inventory models 

are represented as neutrosophic sets or numbers, but these models did not discuss any new kind of 

cost parameters reflecting the transitions in the production processes. But the proposed model reflects 

the paradigm shift towards smart production process and incorporates new kinds of costs to cater 

the requirements of smart production inventory model. The industry 4.0 neutrosophic production 

inventory model with the inclusion of the respective costs to the core elements of smart production 

systems is highly essential as the existing production sectors are adapting to the environment of smart 

production set up, but to the best of our knowledge such models are still uncovered. This model 

primarily focuses on increase productivity and high quality of the product within low investment of 

finance. The composition of several components of industry 4.0 production inventory model result 

in diverse costs parameters such as smart ordering cost , internet connectivity initialization cost, 

holding costs ,smart product design cost, data management cost, customer data analysis cost, 

supplier data analysis cost, smart technology cost, production monitoring cost, reworking cost, smart 

training work personnel cost, smart tools purchase cost , smart disposal costs , smart  environmental 

costs, holding cost. The term smart refers to the costs incurred with the integration of digital gadgets 

to the respective production departments.  

The article is structured into the following sections: section 2 consists of the preliminary definitions 

of neutrosophic sets and its arithmetic operation; section 3 presents the industry 4.0 production 

inventory model; section 4 validates the proposed model with neutrosophic parameters; section 5 

discusses the results and the last section concludes the paper. 

2. Basics of Neutrosophic sets and operations

This section presents the fundamentals of neutrosophic sets, arithmetic operations and 

defuzzification 

2.1 Neutrosophic set [13] 

A neutrosophic set is characterized independently by a truth-membership function 𝛼(𝑥) , an 

indeterminacy-membership function 𝛽(𝑥), and a falsity-membership function𝛾(𝑥) and each of the 

function is defined from X → [0,1]  

2.2Single valued Trapezoidal Neutrosophic Number 

A  single valued trapezoidal neutrosophic number �̃�  = 〈(𝑎, 𝑏, 𝑐, 𝑑): 𝜌𝐴, 𝜎𝐴, 𝜏𝐴〉  is a special 

neutrosophic set on the real number set R, whose truth –membership, indeterminacy-membership,  

and a falsity –membership is given as follows. 
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2.3. Operations on Single valued Trapezoidal Neutrosophic Numbers 

2.4 Defuzzification of Neutrosophic set 

A single valued trapezoidal neutrosophic numbers of the form �̃�  = 〈(𝑎, 𝑏, 𝑐, 𝑑);  𝜌, 𝜎 , 𝜏〉 can be 

defuzzified by finding its respective score value K(�̃�) 

K (�̃�) = 
1

16
[ a + b + c + d]×( 2 + 𝜇𝐴  − 𝜋𝐴 − 𝜑𝐴 ). 

3. Model Development

3.1 Assumptions 
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Shortages are not allowed. 

Demand is not deterministic in nature. 

The products are not of deteriorating type. 

Planning horizon is infinite. 

3.2 Notations 

The below notations are used throughout this paper. 

P – Smart production rate per cycle 

D  Uniform demand rate per cycle 

General Costs 

Os – Smart Ordering cost 

Ic–Internet Connectivity Initialization Cost 

Costs for time period  0 ≤ t ≤ t1 

PDs – Smart Product design cost 

DM - Data management Cost 

CD – Customer Data Analysis cost 

SD – Supplier Data Analysis cost 

Ts- Smart Technology Cost 

M – Production Monitoring cost 

r - defective rate 

R – Reworking Cost 

TRs – Smart training work personnel cost 

TOs – Smart tools purchase cost 

Costs for time period  t1 ≤ t ≤ T 

s – disposal rate 

Ds– Smart disposal costs 

Es- Smart Environmental costs 

Costs common for both the time periods  

H - Holding costs 
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If q(t) represents the inventory level at time t∈ [0, T], so the differential equation for the instantaneous 

inventory q(t) at any time t over [0, T] is 

𝑑𝑞(𝑡)

𝑑𝑡
 = P – D 0 ≤ t ≤ t1 (1) 

= −[ D + rs (P–D)]     t1≤ t ≤ T (2)

With initial condition q(0) = 0 and 

Boundary condition q(T) = 0 

𝑑𝑞(𝑡)

𝑑𝑡
 = P – D 

dq(t) = (P – D) dt 

q(t) = (P – D) t + c 

with initial condition q(0) = 0 

q(0) =(P – D) 0 + c 

  0 = c 

q(t) =(P – D) t 0 ≤ t ≤ t1  (3) 

solving equation (3) 

𝑑𝑞(𝑡)

𝑑𝑡
 = − [D + rs (P–D)]   t1 ≤ t ≤ T 

dq(t) = − [D + rs (P–D)] dt 

q(t) = −[D + rs (P–D)] t + c 

With boundary condition q(T) = 0 

q(T) = − [D + rs(P–D)] T + c 

     0 = − [D + rs(P–D)] T + c 

     c =[D + rs(P–D)] T  

q(t) = −[D + rs (P–D)] t + [D +rs (P–D)] T     (4) 

using equation (3),(4), we get 

Imax  = (P–D) t1 

Imax  =[ D + rs (P–D)] (T– t1) 

     t1 =  
𝐼𝑚𝑎𝑥

𝑃−𝐷

     T– t1 = 
𝐼𝑚𝑎𝑥

𝐷+𝑟𝑠 (𝑃−𝐷)

We adding ,we get 

t1+ T – t1 = Imax[ 
1

 (𝑃−𝐷)
+ 

1

𝐷+ 𝑟𝑠(𝑃−𝐷)
  ] 

T   =  Imax[ 
1

 (𝑃−𝐷)
+ 

1

𝐷+ 𝑟𝑠(𝑃−𝐷)
  ] 

T = Imax [(
𝑃+(𝑃−𝐷)𝑟𝑠

𝑃−𝐷[𝐷+𝑟𝑠(𝑃−𝐷)]
) ] 
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Imax=[
𝑃−𝐷[𝐷+𝑟𝑠(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
] T 

Smart product design cost = PDs∫ 𝑞(𝑡) 𝑑𝑡
𝑡1

0
 

= PDs∫ (𝑃 − 𝐷)𝑡𝑑𝑡
𝑡1

0
 

= 
𝑃𝐷𝑠

2
[ P-D (

𝐷+𝑟𝑠(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
𝑇)2] 

Data management cost = DM ∫ 𝑞(𝑡) 𝑑𝑡
𝑡1

0
 

= DM ∫ (𝑃 − 𝐷)𝑡𝑑𝑡
𝑡1

0
 

= 
𝐷𝑀

2
[ P-D ( 

𝐷+𝑟𝑠(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
𝑇)2] 

Customer data analysis cost = CD ∫ 𝑞(𝑡)𝑑𝑡
𝑡1

0
 

      = CD ∫ (𝑃 − 𝐷)𝑡𝑑𝑡
𝑡1

0
 

= 
𝐶𝐷

2
[ P-D ( 

𝐷+𝑟𝑠(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
𝑇)2] 

Supplier data analysis cost = SD ∫ 𝑞(𝑡)𝑑𝑡
𝑡1

0
 

 = SD ∫ (𝑃 − 𝐷)𝑡𝑑𝑡
𝑡1

0
 

= 
𝑆𝐷

2
[ P-D ( 

𝐷+𝑟𝑠(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
𝑇)2] 

Smart Technology cost = Ts∫ 𝑞(𝑡)𝑑𝑡
𝑡1

0
 

  = Ts∫ (𝑃 − 𝐷)𝑡𝑑𝑡
𝑡1

0
 

= 
𝑇𝑠

2
[ P-D ( 

𝐷+𝑟𝑠(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
𝑇)2] 

Production Monitoring cost = M ∫ 𝑞(𝑡)𝑑𝑡
𝑡1

0
 

     = M ∫ (𝑃 − 𝐷)𝑡𝑑𝑡
𝑡1

0
 

= 
𝑀

2
[ P-D ( 

𝐷+𝑟𝑠(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
𝑇)2] 

Reworking cost = R ∫ 𝑞(𝑡)𝑑𝑡
𝑡1

0
 

     = R ∫ (𝑃 − 𝐷)𝑡𝑑𝑡
𝑡1

0
 

= 
𝑅

2
[ P-D ( 

𝐷+𝑟𝑠(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
𝑇)2] 

Smart training work personal cost = TRs∫ 𝑞(𝑡)𝑑𝑡
𝑡1

0
 

  = TRs∫ (𝑃 − 𝐷)𝑡𝑑𝑡
𝑡1

0
 

= 
𝑇𝑅𝑠

2
[ P-D ( 

𝐷+𝑟𝑠(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
𝑇)2] 

Smart tools purchase cost = TOs∫ 𝑞(𝑡)𝑑𝑡
𝑡1

0
 

  = TOs∫ (𝑃 − 𝐷)𝑡𝑑𝑡
𝑡1

0
 

= 
𝑇𝑂𝑠

2
[ P-D ( 

𝐷+𝑟𝑠(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
𝑇)2] 

Smart disposal cost = Ds∫ 𝑞(𝑡)𝑑𝑡
𝑇

𝑡1
 

     = Ds∫ 𝐷 + 𝑟𝑠(𝑃 − 𝐷)𝑡𝑑𝑡
𝑇

𝑡1
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= 
𝐷𝑠

2
  [𝐷 + 𝑟𝑠(𝑃 − 𝐷)  ( 

(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
𝑇)2] 

Smart Environmental cost = Es∫ 𝑞(𝑡)𝑑𝑡
𝑇

𝑡1
 

   = Es∫ 𝐷 + 𝑟𝑠(𝑃 − 𝐷)𝑡𝑑𝑡
𝑇

𝑡1
 

= 
𝐸𝑠

2
  [𝐷 + 𝑟𝑠(𝑃 − 𝐷)  ( 

(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
𝑇)2] 

∴Holding cost =C1  [∫ 𝑞(𝑡)𝑑𝑡 +
𝑡1

0
∫ 𝑞(𝑡)𝑑𝑡

𝑇

𝑡1
] 

= C1  [(P–D) 
𝑡1

2

2
+[ 𝐷 + 𝑟𝑠(𝑃 − 𝐷)]

(𝑇−𝑡1)2

2
 ] 

= 
𝐶1

2
[

𝑃−𝐷[𝐷+𝑟𝑠(𝑃−𝐷)]

𝑃+(𝑃−𝐷)𝑟𝑠
 ] T2

∴Total Cost = Smart Ordering cost + Internet Connectivity Initialization Cost+ Holding Costs +Smart 

Product design cost+ Data management Cost+ Customer Data Analysis cost+ Supplier Data Analysis 

cost+   Smart Technology Cost+ Production Monitoring cost+ Reworking Cost+ Smart training work 

personnel cost+ Smart tools purchase cost + Smart disposal costs + Smart Environmental costs 

= Os + Ic+
𝐶1

2
[

𝑃−𝐷[𝐷+𝑟𝑠(𝑃−𝐷)]

𝑃+(𝑃−𝐷)𝑟𝑠
] T2+

𝑃𝐷𝑠

2
[ P-D ( 

𝐷+𝑟𝑠(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
𝑇)2] + 

𝐷𝑀

2
[ P-D ( 

𝐷+𝑟𝑠(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
𝑇)2] + 

𝐶𝐷

2
[ P-D ( 

𝐷+𝑟𝑠(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
𝑇)2] + 

𝑆𝐷

2
[ P-D ( 

𝐷+𝑟𝑠(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
𝑇)2] + 

𝑇𝑠

2
[ P-D ( 

𝐷+𝑟𝑠(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
𝑇)2] + 

𝑀

2
[ P-D ( 

𝐷+𝐷𝐷(𝐷−𝐷)

𝐷+(𝐷−𝐷)𝐷𝐷
𝐷)2] + 

𝐷

2
[ P-D ( 

𝐷+𝐷𝐷(𝐷−𝐷)

𝐷+(𝐷−𝐷)𝐷𝐷
𝐷)2] + 

𝐷𝐷𝐷

2
[ P-D ( 

𝐷+𝐷𝐷(𝐷−𝐷)

𝐷+(𝐷−𝐷)𝐷𝐷
𝐷)2] + 

𝐷𝐷𝐷

2
[ P-D ( 

𝐷+𝐷𝐷(𝐷−𝐷)

𝐷+(𝐷−𝐷)𝐷𝐷
𝐷)2] + 

𝐷𝐷

2
  [𝐷 + 𝐷𝐷(𝐷 − 𝐷)  ( 

(𝐷−𝐷)

𝐷+(𝐷−𝐷)𝐷𝐷
𝐷)2] + 

𝐷𝐷

2
  [𝐷 + 𝐷𝐷(𝐷 − 𝐷)  ( 

(𝐷−𝐷)

𝐷+(𝐷−𝐷)𝐷𝐷
𝐷)2] 

=  Os + Ic+
𝐷1

2
[
𝐷−𝐷[𝐷+𝐷𝐷(𝐷−𝐷)]

𝐷+(𝐷−𝐷)𝑟𝐷
] T2  + [ P-D ( 

𝐷+𝐷𝐷(𝐷−𝐷)

𝐷+(𝐷−𝐷)𝐷𝐷
𝐷)2][

𝐷𝐷𝐷

2
+ 

𝐷𝐷

2
+ 

𝐷𝐷

2
+ 

𝐷𝐷

2
+ 

𝐷𝐷

2
+ 

𝐷

2
+
𝐷

2
+ 

𝐷𝐷𝐷

2
+ 

𝐷𝐷𝐷

2
]+ [𝐷 + 𝐷𝐷(𝐷 − 𝐷)  ( 

(𝐷−𝐷)

𝐷+(𝐷−𝐷)𝐷𝐷
𝐷)2] [

𝐷𝐷

2
+ 

𝐷𝐷

2
] 

= Os + Ic+
𝐷1

2
[
𝐷−𝐷[𝐷+𝐷𝐷(𝐷−𝐷)]

𝐷+(𝐷−𝐷)𝐷𝐷
] T2 + 

1

2
[P-D ( 

𝐷+𝐷𝐷(𝐷−𝐷)

𝐷+(𝐷−𝐷)𝐷𝐷
𝐷)2 (PDs+𝐷𝐷+ 𝐷𝐷+ 𝐷𝐷+ Ts+𝐷+𝐷+TRs+TOs)+ 

[𝐷 + 𝐷𝐷(𝐷 − 𝐷)( 
(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
 𝑇)2] (Ds+ Es)] 

Total  Average cost= 
1

𝑇
[Os + Ic+

𝐶1

2
[

𝑃−𝐷[𝐷+𝑟𝑠(𝑃−𝐷)]

𝑃+(𝑃−𝐷)𝑟𝑠
] T2 + 

1

2
[P-D ( 

𝐷+𝑟𝑠(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
 𝑇)2(PDs+  𝐷𝑀+ 𝐶𝐷+ 

𝑆𝐷+ Ts+ 𝑀+ 𝑅+TRs+TOs)+ [𝐷 + 𝑟𝑠(𝑃 − 𝐷)  ( 
(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
 𝑇)2] (Ds + Es) ] 
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=
𝑂𝑠

𝑇
+ 

𝐼𝑐

𝑇
+ 

𝐶1

2
[

𝑃−𝐷[𝐷+𝑟𝑠(𝑃−𝐷)]

𝑃+(𝑃−𝐷)𝑟𝑠
] T+ 

1

2
[P-D ( 

𝐷+𝑟𝑠(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
 )2T(PDs+ 𝐷𝑀+ 𝐶𝐷+ 𝑆𝐷+ Ts+ 𝑀+ 𝑅+TRs +TOs)+ 

[𝐷 + 𝑟𝑠(𝑃 − 𝐷)  ( 
(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
 )2𝑇](Ds+Es)] 

So the Classical EPQ model is 

   Min  TAC (T)  = 
𝑂𝑠

𝑇
 + 

𝐼𝑐

𝑇
+ 

𝐶1

2
[

𝑃−𝐷[𝐷+𝑟𝑠(𝑃−𝐷)]

𝑃+(𝑃−𝐷)𝑟𝑠
 ] T+ 

1

2
 [P-D ( 

𝐷+𝑟𝑠(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
 )2T (PDs+  𝐷𝑀+ 𝐶𝐷+ 𝑆𝐷+ 

Ts+ 𝑀+ 𝑅+TRs+TOs)+ [𝐷 + 𝑟𝑠(𝑃 − 𝐷)  ( 
(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
 )2𝑇](Ds + Es) ] 

Such that T > 0  

We can show that TAC(T) will be minimum for 

T* = √
2(𝑂𝑠+𝐼𝑐)

𝐶1  [
𝑃−𝐷[𝐷+𝑟𝑠(𝑃−𝐷)]

𝑃+(𝑃−𝐷)𝑟𝑠
]+[P−D ( 

𝐷+𝑟𝑠(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
)2(PDs+ 𝐷𝑀+ 𝐶𝐷+ 𝑆𝐷+ Ts+ 𝑀+ 𝑅+TRs+TOs)+ [𝐷+𝑟𝑠(𝑃−𝐷)( 

(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
)2](Ds + Es)]

TAC*(T*) = 

√
2(𝑂𝑠 + 𝐼𝑐) + 𝐶1  [

𝑃−𝐷[𝐷+𝑟𝑠(𝑃−𝐷)]

𝑃+(𝑃−𝐷)𝑟𝑠
] + [P − D ( 

𝐷+𝑟𝑠(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
 )2(PDs + 𝐷𝑀 + 𝐶𝐷 + 𝑆𝐷 +

Ts + 𝑀 + 𝑅 + TRs + TOs) + [𝐷 + 𝑟𝑠(𝑃 − 𝐷)( 
(𝑃−𝐷)

𝑃+(𝑃−𝐷)𝑟𝑠
 )2](Ds  +  Es)]

4.Illustration

To validate the developed model, an inventory system with the below characteristics is taken into 

consideration 

Smart production rate per cycle = Rs.500unit/per month , Uniform demand rate per cycle = 

Rs.250/month, Smart Ordering cost =Rs.310/run, Internet Connectivity Initialization Cost = 

Rs.370/year, Smart Product design cost = Rs.25/unit, Data management Cost = Rs.50/unit, Customer 

Data Analysis cost = Rs.45/unit, Supplier Data Analysis cost = Rs.25/unit, Smart Technology Cost = 

Rs.15/unit, Production Monitoring cost = Rs.45/unit, defective rate = Rs.1, Reworking Cost = 

Rs.22/run, Smart training work personnel cost = Rs.30/unit,  Smart tools purchase cost= Rs.10/unit, 

disposal rate = Rs. 3/unit, Smart disposal costs = Rs. 5/unit, Smart Environmental costs = Rs.7/unit, 

Holding costs = Rs.1/unit/year. Find the time interval and find the total average cost. 

The value of T* and TAC(T*) is 0.179 and Rs.208.39 respectively 

This model can be validated with the single valued neutrosophic trapezoidal fuzzy value 

representations as follows, 

D =  〈(250,350,450,550):0.7,0.2,0.1〉 

Os=  〈(350,450,550,650):0.9,0.3,0.1〉 

Ic=  〈(550,650,750,850):0.8,0.3,0.4〉 

PDs =  〈(25,35,45,55):0.7,0.3,0.2〉 

DM = 〈(65,75,85,95):0.9,0.3,0.4〉 

CD =  〈(55,65,75,85):0.8,0.1,0.2〉 

SD = 〈(20,30,40,50):0.8,0.3,0.2〉 

Ts = 〈(15,18,22,24):0.7,0.1,0.2〉 
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M =  〈(60,70,80,90):0.7,0.2,0.4〉 

r= 〈(1,1.5,2.5,3):0.9,0.1,0.2〉 

R = 〈(20,25,35,40):0.8,0.2,0.1〉 

TRs =〈(35,45,55,65):0.7,0.1,0.3〉 

TOs=  〈(8,12,16,20):0.7,0.1,0.4〉 

S =  〈(3,4,6,8):0.8,0.1,0.4〉 

Ds=  〈(5,7,9,11):0.7,0.2,0.3〉 

Es=  〈(6,9,12,15):0.8,0.2,0.3〉 

C1=  〈(1,1.5,2.5,3):0.9,0.3,0.2〉 

The value of T* = 0.178 and TAC*(T*) = 210.29 

5. Discussion

A neutrosophic production inventory model incorporating the costs parameters of industry 4.0 

is developed together with the presentation of its conceptual framework. Several key benefits of 

neutrosophic production inventory model have been emphasized in this paper, together with the 

additional cost parameters. Another point of discussion is the usage of the production inventory 

model to find the feasible time to place orders that confines the total expenses. The representation of 

these costs parameters as single valued trapezoidal neutrosophic number tackles the conditions of 

uncertainty. 

The constructed manufacturing inventory model is validated with deterministic parameters and 

neutrosophic parameters. The optimal time that yields minimum costs is nearly equal in both the 

cases of deterministic and neutrosophic validation. The neutrosophic representation makes this 

model more comprehensive. In this paper shortages are not allowed, the products are not of 

deteriorating type, planning horizon is infinite. The developed model can be extended to 

neutrosophic production inventory model with shortages and deteriorating items. This model 

primarily focuses on increases productivity of high-quality products within low investment of 

finance. The discussion is summarized as follows, a novel neutrosophic production inventory model 

is developed with the cost parameters pertaining to the fourth industrial revolution. This proposed 

model will certainly assist the production sectors to incorporate new types of costs. A deeper 

investigation on the effects of our decision making is clearly an obligation for upcoming work. 

6. Conclusion

The proposed industry 4.0 inventory model is a novel approach integrating the concept of smart 

production principles, and neutrosophic representations of cost parameters. This model is an 

underlying smart production model and this model can be further developed based on the needs of 

the production sectors. The proposed model is pragmatic in nature and it can be extended by 

including the concepts of customer acquisition and product propagation with additional cost 

parameters. These models will certainly unveil the new requirements of production scenario to meet 

the demands of the customers of this information age. The model constructed in this paper presents 

the present need of the production environment and it will certainly assist the decision makers to 
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optimize profit. The cost parameters of this model can be scaled to the requirements of small and 

medium sized enterprises which could be the future work. 
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Abstract Neutrosophic α supra-connected space is defined and its properties are stud-
ied in this paper. The purpose of this theory is to investigate the common relationship
between two objects after dropping an axiom in neutrosophic topological spaces. Also,
defined herein is a new compactness in neutrosophic supra topological spaces and some
of its properties are investigated.

Key words Neutrosophic supra topology, neutrosophic α supra open set, neutrosophic
α supra closed set, neutrosophic α supra connected space, neutrosophic α supra compact
sapce.

1 Introduction

F. Smarandache [16, 17] developed neutrosophic theory as a generalization of Zadeh’s [18] fuzzy set
(FS) theory and Atanassov’s [2] (IFS) theory. Neutrosophic sets gained attention in many fields such
as topology [8,10–12], image processing, algebra, graph theory, medicine, etc. Fuzzy topological space
introduced by D. Coker [3] then Salama and Alblowi [15] defined neutrosophic topology. Later on
researchers developed his theory and investigated the various types of open and closed sets, continuous
function, homeomorphism in neutrosophic topological spaces.
Kuratowski [4] first used the notion of connected space in general topology. Parimala et al. [7, 9, 13]
developed various open and closed sets in nano topological space. Parimala et al. [6,14] also introduced
neutrosophic αψ-closed sets, neutrosophic αψ-connected space. Karthika et al. [5] redefined the notion
of neutrosophic topology in the extended range, i.e., the range of neutrosophic components from the
unit interval to the complex plane and then studied the relationship between neutrosophic complex αψ

New type of neutrosophic supra connected space 

M. Parimala, M. Karthika, S. Jafari, Florentin Smarandache 

M. Parimala, M. Karthika, S. Jafari, Florentin Smarandache (2020). New type of neutrosophic supra connected 
space. Bulletin of Pure and Applied Sciences, 39E(2), 225-231; DOI: 10.5958/2320-3226.2020.00024.7 

connectedness and neutrosophic complex connected space and the properties of neutrosophic complex
αψ connected space.
1.1 Motivation and objective
The notion of neutrosophic sets and connected space motivates us to generate this novel neutrosophic α
supra connected space. Our objective in this paper is to define the neutrosophic α supra connected space
and the notion of the neutrosophic α supra compactness and to study their properties. The purpose
of these connected spaces in real life situations is to investigate the common relationship between two
objects, such as, two different branded cars, the common symptoms between two diseases, etc. The
paper is constructed as follows: in section 2, the basic definitions such as neutrosophic set, neutrosophic
supra topological space, neutrosophic α open set, arithmetic operations are discussed. The definition
of q-coincident, the interior and the closure of a neutrosophic alpha open set, the neutrosophic α supra
connected space and its properties are presented in section 3. The neutrosophic α supra compactness is
defined and its properties are investigated in section 4. The conclusions and future directions of work
of these novel concepts are presented in section 5.
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2 Preliminaries

The definitions which are relevant to our work are presented in this section.

Definition 2.1. [16,17] A neutrosophic set (NS) D on W ̸= ∅ is defined by

D = {⟨ξ, µD(ξ), σD(ξ), νD(ξ)⟩ : ξ ∈ W}

where MF µD, INDF σD, NMF νD maps from W to [0,1] for each ξ ∈ W to D and 0 ≤ µD(ξ)+σD(ξ)+
νD(ξ) ≤ 3 for each ξ ∈ W.

Definition 2.2. [15] LetD1 = {⟨ξ, µD1(ξ), σD1(ξ), νD1(ξ)⟩ : ξ ∈ W} andD2 = {⟨ξ, µD2(ξ), σD2(ξ), νD2(ξ)⟩ :
ξ ∈ W} be NSs. Then
(i) D1 ⊆ D2 if and only if µD1(ξ) ≤ µD2((ξ)), σD1(ξ) ≥ σD2(ξ) and νD1(ξ) ≥ νD2(ξ);
(ii) D1

C = {⟨ξ, νD1(ξ), 1− σD1(ξ), µD1(ξ)⟩ : ξ ∈ W};
(iii) D1 ∩D2 = {⟨ξ, µD1(ξ) ∧ µD2(ξ), σD1(ξ) ∨ σD2(ξ), νD1(ξ) ∨ νD2(ξ)⟩ : ξ ∈ W};
(iv) D1 ∪D2 = {⟨ξ, µD1(ξ) ∨ µD2(ξ), σD1(ξ) ∧ σD2(ξ), νD1(ξ) ∧ νD2(ξ)⟩ : ξ ∈ W}.
The symbols ∨,∧ denotes the maximum and minimum operator. The NS (D1)

C denotes the comple-
ment of NS D1.

Definition 2.3. [15] Let D be a family of NSs on W. The pair (W,D) is called a neutrosophic supra
topology, if the following conditions are satisfied:
(T1) 0D, 1D ∈ W,
(T2) An arbitrary union of NSs Di is in D.

Definition 2.4. [1] A subset D of a NTS (W,D) is called
1. a NPOS, if D ⊆ (D)o and a NPCS if (Do) ⊆ D,
2. a NSOS, if D ⊆ (Do) and a NSCS if (D)o ⊆ D,
3. a NαSOS, if D ⊆ ((Do))o and NαSCS if (D)o ⊆ D.

3 On the neutrosophic α supra connected space

Definition 3.1. The interior and closure of NS D in NTS W are denoted by Do, D and defined by
Do = ∪{C : C is an NαSOS in W and C ⊆ D}, D = ∩{C : C is an NαSCS in W and C ⊇ D}.

Definition 3.2. Two NαSOSs C and D of W are said to be q-coincident if and only if there exists an
element ζ ∈ ξ such that C(ζ) +D(ζ) > 1 or, µC(ξ) > νD(ξ), σC(ξ) < 1− σD(ξ), νC(ξ) < µD(ξ).

Lemma 3.3. For any two NSs D and F of W, ¬(DqF ) if and only if D ⊂ F c.
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Example 3.4. Let W = {x, y} and C = { x
(0.5,0.2,0.2)

, y
(0.4,0.4,0.6)

}, D = { x
(0.5,0.3,0.3)

, y
(0.2,0.5,0.6)

} be
two neutrosophic open sets. Let D = {0D, 1D, C,D}. We know that each neutrosophic open set is
a neutrosophic α open set. C and D are q-coincident since the intersection of these two sets is a
non-empty set and also C is not a subset of the complement of D.

Definition 3.5. An NTS is said to be neutrosophic α supra connected space, if the intersection of
two NαSOSs C and D is non-empty or, if there does not exist an NαSOS NαSCS F in W such that
C ⊂ F ⊂ Dc. An NTS is said to be separation of W, if it is not a neutrosophic α supra connected
space.

Theorem 3.6. If C,D are NαSOSs in W which forms a separation of W and U is a neutrosophic
α-connected subspace of W, then U is either in C or in D.

Proof. Let C,D be an NαSOSs in W. The intersection of an NαSOS C and a neutrosophic α-
connected subspace U is an NαSOS in U and the intersection of an NαSOS D and neutrosophic α-
connected subspace is an NαSOS in U . These two NαSOSs are disjoint and their union is a neutrosophic
α-connected subspace U . These two NαSOSs constitute a separation of U if these two NαSOSs are
nonempty. Thus one of the NαSOSs is empty. Hence the neutrosophic α-connected subspace U is
definitely either in C or in D.

Theorem 3.7. If an NTS (W,D) is a neutrosophic α supra connected space. Then it is a neutrosophic
connected space.

Proof. Let C and D be two neutrosophic open sets in W. If (W,D) is not a neutrosophic connected
space, then there exists a neutrosophic closed open set F in W such that D ⊂ F . Then we know
that every neutrosophic open(resp. closed) set is an NαSOS(resp. NαSCS), therefore, F is an NαSOS
NαSCS in W such that D ⊂ F and ¬(FqB). Hence (W,D) is not a neutrosophic α supra connected
space. This is in contradiction to our hypothesis. Therefore, NTS (W,D) is a neutrosophic connected
space.

Theorem 3.8. An NTS (W,D) is a neutrosophic α supra connected space if and only if there is no
NαSOS NαSCS E in W such that C is a subset of E and E is a subset of the complement of D.

Proof. Let NTS (W,D) be a neutrosophic α supra connected space. Suppose E is NαSOS NαSCS inW
such that C is a subset of E and E is a subset of complement ofD. This implies that ¬(EqD). Therefore,
C is NαSOS NαSCS in W such that C ⊂ Dc and ¬(EqD). Hence (W,D) is not a neutrosophic α supra
connected space, which is a contradiction. Hence there is no NαSOS NαSCS E in W such that C is a
subset of E and E is a subset of complement of D.
Suppose NTS (W,D) is not a neutrosophic α supra connected space. Then there is an NαSOS NαSCS
E in W such that C is a subset of E and E is a subset of complement of D. Now, ¬(EqD) which
implies that E is a subset of Dc.
∴ E is an NαSOS NαSCS in W such that C is a subset of E and E is a subset of the complement of
D, which contradicts our assumption.

Theorem 3.9. If an NTS (W,D) is a neutrosophic α supra connected space, then NαSOSs C ̸= ∅ and
D ̸= ∅.

Proof. If an NαSOS C is empty, then C is a neutrosophic α supra open neutrosophic α supra closed
set in W. Now to prove ¬(CqD). If NαSOSs C and D are q-coincident, then there is a ξ ∈ W such
that µC(ξ) > νD(ξ) or, νC(ξ) < µD(ξ). But µC(ξ) = 0D and νC(ξ) = 1D for all ξ ∈ W. Therefore,
there exists no point ξ ∈ W for which µC(ξ) > νD(ξ) or, σC(ξ) < 1 − σD(ξ) or, νC(ξ) < µD(ξ).
Hence ¬(CqD) and an NTS (W,D) is a neutrosophic α supra connected space. This contradicts the
hypothesis.
∴ both NαSOSs C ̸= ∅ and D ̸= ∅.

Theorem 3.10. If an NTS (W,D) is a neutrosophic α supra connected space and C ⊂ C1 and D ⊂ D1,
then NαSOSs C1 ̸= ∅ and D1 ̸= ∅ are not disjoint sets.
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Proof. Suppose an NTS (W,D) is not a neutrosophic α supra connected space. Then there is a NαSOS
NαSCS E in W such that C1 ⊂ E and ¬(EqD1). Clearly, C ⊂ E. Now we claim that ¬(EqB). If FqB,
then there exists a point ξ ∈ W such that µE(ξ) > νD(ξ) or, νE(ξ) < µD(ξ). Suppose ξ ∈ W such that
µE(ξ) > νB(ξ). Now D ⊂ D1, µD(ξ) ≤ µD1(ξ), σD(ξ) ≥ σD1(ξ) νD(ξ) ≥ νD1(ξ). So µE(ξ) > νD1(ξ),
νE(ξ) < µD1(ξ) and EqD1, a contradiction. Consequently, NTS (W,D) is not a neutrosophic α supra
connected space.

Example 3.11. Let W = {x, y} and C = { x
(0.5,0.2,0.2)

, y
(0.4,0.4,0.6)

}, D = { x
(0.5,0.3,0.3)

, y
(0.2,0.5,0.6)

},
D1 = { x

(0.6,0.1,0.2)
, y
(0.7,0.2,0.3)

}, C1 = { x
(0.5,0.2,0.2)

, y
(0.4,0.4,0.4)

} be neutrosophic α open sets on W. Let
D = {0D, 1D, C,D,C1, D1} be neutrosophic topology on W and C ⊆ C1,D ⊆ D1. Then (W,D) is
neutrosophic α connected between C1 and D1.

Theorem 3.12. An NTS (W,D) is a neutrosophic α supra connected space iff NαSOSs C ̸= ∅ and
D ̸= ∅ are not disjoint sets.

Proof. The proof of the necessary part follows from Theorem 3.5, since we know that C ⊂ C and
D ⊂ D. For the sufficient part we assume that NTS (W,D) is not a neutrosophic α supra connected
space. Then NαSOS NαSCS E of W is such that C ⊂ E and ¬(EqD). Since E is an NαSCS and
C ⊂ E, C ⊂ E. Now, ¬(EqD), which implies that E is a subset of the complement of D. Therefore,
the interior of E is a subset of the interior of the complement of D. Hence ¬(EqD) and (W,D) is not
a neutrosophic α supra connected space between C and D.

Theorem 3.13. Let C and D be two NαSOSs in (W,D). If C and D are q-coincident, then (W,D)
is a neutrosophic α supra connected space.

Theorem 3.14. An NTS (W,D) is a neutrosophic α supra connected space iff every pair of NαSOSs
forms a neutrosophic α supra connected space.

Proof. Necessity: Let C, D be any pair of neutrosophic α open subsets of W. Suppose (W,D) is
not a neutrosophic α supra connected space. Then there is an NαSOS NαSCS E of W such that A is
a subset of E and ¬(AqD). E is a nonempty NαSOS NαSCS in (W,D) since, NαSOS C and D are
non-empty. Hence (W,D) is not a neutrosophic α supra connected space.
Sufficiency: Suppose NTS (W,D) is not a neutrosophic α supra connected space. Then there is a
proper NαSOS NαSCS E ̸= ∅ of W. Consequently, (W,D) is not a neutrosophic α supra connected
space between E and Ec, which is a contradiction.

Theorem 3.15. Let (W1,D1) be a neutrosophic α subspace of an NTS (W,D) and C,D be neutrosophic
α open subsets of W1. If (W1,D1) be a neutrosophic α supra connected space then (W,D) is also a
neutrosophic α supra connected space.

Proof. Suppose (W,D) is not a neutrosophic α supra connected space. Then there is an NαSOS
NαSCS E of W such that C is a subset of E and ¬(EqD). But U = E ∩ D1. Then U is an NαSOS
NαSCS in D1 such that C is a subset of U and ¬(UqD). Hence (W1,D1) is not a neutrosophic α supra
connected space, a contradiction, thus, (W,D) is a neutrosophic α supra connected space.

Theorem 3.16. If (W,D) is a neutrosophic semi-connected space then (W,D) is a neutrosophic α
supra connected space.

Proof. Let C, D be two neutrosophic semi-open sets in D. Suppose (W,D) be not a neutrosophic
α supra connected space. Then there is an NαSOS NαSCS E in D such that C ⊂ E and ¬(EqD).
We know that every NαSOS is a neutrosophic semi-open set. Therefore E is a neutrosophic semi-open
neutrosophic semi-closed set such that C ⊂ E, which is a contradiction. Hence (W,D) is a neutrosophic
α supra connected space.
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4 Neutrosophic α supra compactness

The concepts of a neutrosophic α supra open cover and the neutrosophic α supra compactness in a
neutrosophic supra topological space are defined and their properties are studied in this section.

Definition 4.1. 1. Let N = {⟨a, µDi , σDi , νDi⟩ : i ∈ J} be a collection of neutrosophic α supra
open sets. The collection N of subsets of neutrosophic supra topological space (W,D) is said to
be a neutrosophic α supra cover of W if the union of {⟨a, µDi , σDiνDi⟩ : i ∈ J} is 1D. It is called
a neutrosophic α supra open covering of W if its NSs are neutrosophic α open subsets of W.

2. Let Ni be a subfamily of neutrosophic α supra open covers on W. A neutrosophic supra topologi-
cal space is said to be neutrosophic α supra compact if every neutrosophic α supra open covering
N of W contains a finite sub collection that also covers W.

Proposition 4.2. A neutrosophic supra topological space (W,D) is called neutrosophic α supra compact
if and only if every neutrosophic α supra open cover of W has a finite neutrosophic α supra subcover.

Lemma 4.3. The subspace V of W is neutrosophic α supra compact if and only if every covering of
V by sets which are neutrosophic α supra open in W contains a finite subcollection covering V.

Proof. Suppose V is compact, so the collection of neutrosophic α supra open sets N = {Ni : i ∈ J}
covers V. Then {Ni

∩
V : i ∈ J} covers V. These sets are neutrosophic α supra open sets in V. The

finite subcollection {Ni1

∩
V, . . . ,Nin

∩
V} also covers V. This implies that the finite subcollection

{Ni1 , . . . ,Nin} of N covers V.
Conversely, assume that every neutrosophic α supra open set covering of V contains a finite subcol-
lection which also covers V. Let B be the family of neutrosophic α supra open sets which covers V.
These neutrosophic α supra open sets are in V. For each i, choose a neutrosophic α supra open set
Ni in W such that B = Ni

∩
V. The collection of neutrosophic α supra open set N = {Ni} covers V,

by our assumption, some finite subcollection {Ni1 , . . . ,Nin} covers V. Then the finite subcollection
B1, . . . ,Bn covers V.

Theorem 4.4. Every neutrosophic α closed subspace of a neutrosophic α supra compact space is
neutrosophic α supra compact.

Theorem 4.5. If the map f : W → V is neutrosophic α supra continuous and W is a neutrosophic α
supra compact space, then V is a neutrosophic α supra compact space.

Proof. Given that the map f : W −→ V is a neutrosophic α supra continuous map and W is a
neutrosophic α supra compact space. Let the collection C be a covering of neutrosophic α supra open
sets f(W) in V. Since the map f is continuous, the collection {f−1(C) : C ∈ C} is a neutrosophic α
supra open set covering of X. Hence f−1(C1), . . . , f

−1(Cn) cover W. Then the neutrosophic α supra
open sets C1, . . . , Cn cover f(W).

Definition 4.6. A collection of neutrosophic α supra open sets N of subsets of W is said to have finite
intersection property if for every finite subcollection {N1, . . . ,Nn} of N , the intersection of N1, . . . ,Nn

is nonempty.

Theorem 4.7. Let W be a neutrosophic supra topological space. An NSTS W is neutrosophic α supra
compact if and only if for every collection N of neutrosophic α supra closed sets in W having finite
intersection property, ∩A∈NA of all elements of N is non-empty.

Proof. Let C be a collection of neutrosophic α supra open sets and D be a neutrosophic α supra closed
set, i.e., D = {W− C : C ∈ C}. We know that C covers W if and only if ∩D∈DD of all elements of D
is empty.
The finite subcollection {C1, . . . , Cn} of C covers W if and only if the intersection of the corresponding
subcollection {W− C1, . . . ,W− Cn} is empty.
Contrarily, if there is no finite subcollection of given neutrosophic α supra open sets C covering W, then
the given collection C does not cover W. This implies that ∩D∈D is non-empty. This is =⇒ ⇐= .

Theorem 4.8. A finite union of neutrosophic α supra compact subspaces of W is neutrosophic α supra
compact.
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5 Conclusions

The neutrosophic α supra connected space is defined in this paper and we studied the relationship
between two neutrosophic sets and the properties of neutrosophic α supra connected space. Further
the neutrosophic α supra compact space is introduced and its properties were also discussed. The local
α connectedness and local α compactness on neutrosophic supra topological space will be our future
work.
Abbreviations:
FS - Fuzzy set
IFS - Intuitionistic Fuzzy set
MF - membership function
INDF - indeterminacy
NMF - non-membership function
NTS - Neutrosophic Topological space
NS - Neutrosophic set
NαSOS - Neutrosophic alpha supra open set
NαSCS - Neutrosophic alpha supra closed set
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Abstract: In this paper, we develop the notion of the basis for a smooth neutrosophic topology in
a more natural way. As a sequel, we define the notion of symmetric neutrosophic quasi-coincident
neighborhood systems and prove some interesting results that fit with the classical ones, to establish
the consistency of theory developed. Finally, we define and discuss the concept of product topology,
in this context, using the definition of basis.

Keywords: neutrosophic sets; smooth neutrosophic topology; basis; subbasis; smooth neutrosophic
product topology

1. Introduction

The idea of neutrosophy was initiated and developed by Smarandache [1] in 1999. In recent
decades the theory was used at various junctions of mathematics. More precisely, the theory made
an outstanding advancement in the field of topological spaces. Salama et al. and Hur et al. [2–6]
are some who posted their works of neutrosophic topological spaces, following the approach of
Chang [7] in the context of fuzzy topological spaces. One can easily observe that the fuzzy topology
introduced by Chang is a crisp collection of fuzzy subsets.

Šostak [8] observed that Chang’s approach is crisp in nature and so he redefined the notion
of fuzzy topology, often referred as smooth fuzzy topology, as a function from the collection of all
fuzzy subsets of X to [0, 1]; Fang Jin-ming et al. and Vembu et al. [9,10] are some who discussed the
concept of basis as a function from a suitable collection of fuzzy subsets of X to [0, 1]. Yan, Wang,
Nanjing, Liang and Yan [11,12] developed a parallel theory in the context of intuitionistic I-fuzzy
topological spaces.

The notion of a single-valued neutrosophic set was proposed by Wang [13] in 2010. In 2016,
Gayyar [14] introduced the concept of smooth neutrosophic topological spaces. The notion of the basis for
an ordinary single-valued neutrosophic topology was defined and discussed by Kim [15]. Salama, Alblowi,
Shumrani, Muhammed Gulisten, Smarandache, Saber, Alsharari, Zhang and Sunderraman [4,16,17] are
some others who posted their work in the context of single-valued neutrosophic topological spaces.

In Section 2, we give all basic definitions and results, which are important prerequisites that are
needed to go through the theory developed in this paper. In Section 3, we define the notion of the basis
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and subbasis for a smooth neutrosophic topology; further, we develop the theory using the concept
of neutrosophic quasi-coincident neighborhood systems. In addition, we prove some results which
are similar to the classical ones, to establish the consistency of theory developed. Finally, in Section 4,
we define and discuss the product of smooth neutrosophic spaces using our definition of basis.

2. Preliminaries

In this section, we give all basic definitions and results which we need to go through our work.
As usual R and Q denote the sets of all real numbers and rationals respectively. First we give the
definition of a neutrosophic set [1,4].

Definition 1. Let X be a non-empty set. A neutrosophic set in X is an object having the form

N = {〈x, TN, IN, FN〉 : x ∈ X}

where
TN : X →

⌋−0, 1+
⌊

, IN : X →
⌋−0, 1+

⌊
, FN : X →

⌋−0, 1+
⌊

and
−0 ≤ TN(x) + IN(x) + FN(x) ≤ 3+,

represent the degree of membership (namely, TN(x)), the degree of indeterminacy (namely, IN(x)) and the degree
of non-membership (namely, FN(x)), for all x ∈ X to the set to the set N.

Here −0 = 1− ε and 1+ = 1+ ε where ε is infinitesimal number and ε > 0; further, 1 and ε denote
standard part and non-standard part of 1 + ε; 0 and ε denote the standard part and non-standard part
of 0− ε. While dealing with scientific and engineering problems in real life applications, it is difficult to
use a neutrosophic set with values from c−0, 1+b. In order to overcome this draw back, Wang et al. [13]
defined the single-valued neutrosophic set, which is a particular case of the neutrosophic set.

Definition 2. [13] Let X be a space of points (objects) with a generic element in X denoted by x. Then N is
called a single-valued neutrosophic set in X if N has of the form N = 〈TN, IN, FN〉, where TN, IN, FN : X → [0, 1].
In this case, TN, IN, FN are called the truth membership function, indeterminancy membership function and falsity
membership function, respectively.

For conventional reasons and as there is no ambiguity, we refer a single-valued neutrosophic set
simply as a neutrosophic set throughout this paper; we also restate the definition, in order to view it
explicitly as a function from a non-empty set X to ζ = [0, 1]3, in the following way:

Let X be a nonempty set and I = [0, 1]. A neutrosophic set N on X is a mapping defined as
N = 〈TN, IN, FN〉 : X → ζ, where ζ = I3 and TN, IN, FN : X → I such that 0 ≤ TN + IN + FN ≤ 3.

We denote the set of all neutrosophic sets of X by ζX and the neutrosophic sets 〈0, 1, 1〉 and 〈1, 0, 0〉
by 0X and 1X respectively. Let (r, s, t), (l, m, n) ∈ ζ; then

• (r, s, t) t (l, m, n) = (r ∨ l, s ∧m, t ∧ n);
• (r, s, t) u (l, m, n) = (r ∧ l, s ∨m, t ∨ n);
• (r, s, t) v (l, m, n) = (r ≤ l, s ≥ m, t ≥ n);
• (r, s, t) w (l, m, n) = (r ≥ l, s ≤ m, t ≤ n).

Definition 3. [1,4] Let X be a non-empty set and let N, M ∈ ζX be given by N = 〈TN, IN, FN〉 and
M = 〈TM, IM, FM〉. Then

• The complement of N denoted by Nc is given by

Nc = 〈1− TN, 1− IN, 1− FN〉 .
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• The union of N and M denoted by Nt M is an neutrosophic set in X given by

Nt M = 〈TN ∨ TM, IN ∧ IM, FN ∧ FM〉 .

• The intersection of N and M denoted by Nu M is an neutrosophic set in X given by

Nu M = 〈TN ∧ TM, IN ∨ IM, FN ∨ FM〉 .

• The product of N and M denoted by N× M is given by

(N× M)(x, y) = N(x) u M(y), ∀ (x, y) ∈ X×Y.

• We say that N v M if TN ≤ TM, IN ≥ IM, FN ≥ FM.

For an any arbitrary collection {Ni}i∈J ⊆ ζX of neutrosophic sets the union and intersection are
given by

• t
i∈J

Ni =

〈
∨

i∈J
TNi , ∧i∈J

INi , ∧i∈J
FNi

〉
• u

i∈J
Ni =

〈
∧

i∈J
TNi , ∨i∈J

INi , ∨i∈J
FNi

〉
.

Definition 4. Let X be a nonempty set and x ∈ X. If r ∈ (0, 1], s ∈ [0, 1) and t ∈ [0, 1), then a neutrosophic
point xr,s,t in X given by

xr,s,t(z) =

{
(r, s, t), if z = x,

(0, 1, 1), otherwise.

We say xr,s,t ∈ N if xr,s,t v N. To avoid the ambiguity, we denote the set of all neutrosophic points by pt(ζX).

Definition 5. A neutrosophic set N is said to be quasi-coincident with another neutrosophic set M, denoted by
N[q]M, if there exists an element x ∈ X such that

TN(x) + TM(x) > 1 or IN(x) + IM(x) < 1 or FN(x) + FM(x) < 1.

If M is not quasi-coincident with N, then we write M ¯[q]N.

Definition 6. [14] Let X be a nonempty set. Then a neutrosophic set T = 〈TT, IT, FT〉 : ζX → ζ is said to be
a smooth neutrosophic topology on X if it satisfies the following conditions:

C1 T(0X) = T(1X) = (1, 0, 0).
C2 T(Nu M) w T(N) u T(M), ∀ N, M ∈ ζX .
C3 T(ti∈JNi) w ui∈JT(Ni), ∀ Ni ∈ ζX , i ∈ J.

The pair (X,T) is called a smooth neutrosophic topological space.

3. The Basis for a Smooth Neutrosophic Topology

The main objective of this section is to define and discuss the concept of basis for a neutrosophic
topology. Many fundamental classical statements and theories describe ways to obtain a topology
from a basis; every topology is a basis for itself; characterizations of a set to form a basis; comparison
of two topologies is a way to get a basis from a subbasis; quasi-neighborhood systems are discussed.
Though the structural development of the theory is same as the ones followed in the context of classical
and fuzzy topological spaces, the strategies following the proofs of the statements are entirely different.
We start with the definition of a basis for a smooth neutrosophic topology.
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Definition 7. Let B : ζX → ζ be a function that satisfies:

B1 If x ∈ X and ε, δ > 0, then there exists M ∈ ζX such that

M(x) w 1X(x)− (δ, 0, 0) and B(M) w (1, 0, 0)− (ε, 0, 0).

B2 If x ∈ X, M, N ∈ ζX and ε, δ > 0, then there exists L ∈ ζX such that L v Mu N,

L(x) w (M(x) u N(x))− (δ, 0, 0) and B(L) w (B(M) uB(N))− (ε, 0, 0).

Then B is called a basis for a smooth neutrosophic topology on X.

Any function S : ζX → ζ satisfying B1 is called a subbasis of a smooth neutrosophic topology
on X. A collection {Mλ}λ∈Λ of neutrosophic sets is said to be an inner cover for a neutrosophic set M
if M = tMλ.

Definition 8. Let B be a basis for a smooth neutrosophic topology on X. Then the smooth neutrosophic topology
T : ζX → ζ generated by B is defined as follows:

T(M) =

(1, 0, 0) if M = 0X

t
Λ∈Γ
{ u
Mλ∈LΛ

{B(Mλ)}} if M 6= 0X

where {LΛ}Λ∈Γ is the collection of all inner covers LΛ = {Mλ}λ∈Λ of M.

It is clear to see that T(M) w B(M); the strict inequality may hold; in fact, it may happen that
B(M) = (0, 1, 1) and T(M) = (1, 0, 0); however, this is not unnatural as even in the crisp theory a subset
that is not an element of a basis may be an element of the topology generated by it. However, we have
a question: “If B(M) A (0, 1, 1), can T(M) A B(M)?” Of course this may happen, as seen in the
following example.

Example 1. Let X = [0, 1]. For any subset A ⊆ [0, 1], let ξA denote the neutrosophic set in X defined by

ξA(x) =

{
(1, 0, 0) if x ∈ A

(0, 1, 1) otherwise.

Define B : ζX → ζ by

B(M) =



(1, 0, 0) if M = 1X

(1, 0, 0) if M = ξ{(q,1)}, where q is rational

( 1
2 , 0, 0) if M = ξ{1}

( n
n+1 , 0, 0) if M = ξ{ n

n+1 }, where n ∈ N
(0, 1, 1) otherwise.

Then B is a basis for a smooth neutrosophic topology T on X. We note that B(ξ{(a,1)}) = (0, 1, 1), whereas

T(ξ{(a,1)}) = (1, 0, 0) ∀ a ∈ [0, 1] ∩Qc and B
(

ξ{1}

)
= ( 1

2 , 0, 0), whereas T(ξ{1}) = (1, 0, 0) A B
(

ξ{1}

)
.

Theorem 1. Let B be a basis and T be as defined in Definition 8; then T is a smooth neutrosophic topology
on X.
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Proof. From the definition of T it directly follows that T(0X ) = (1, 0, 0). Next we wish to show
that T(1X) = (1, 0, 0). Indeed, let x ∈ X and δ, ε > 0; then by the definition of a basis for
a smooth neutrosophic topology, there exists Mx,δ,ε ∈ ζX such that Mx,δ,ε(x) w 1X(x)− (δ, 0, 0) and
B(Mx,δ,ε) w (1, 0, 0) − (ε, 0, 0), which in turn implies that TMx,δ,ε(x) ≥ 1 − δ, IMx,δ,ε(x) ≤ 0 and
FMx,δ,ε(x) ≤ 0. Thus it follows that

t
x,δ

Mx,δ,ε =

〈
∨
x,δ

TMx,δ ,ε, ∧
x,δ

IMx,δ ,ε, ∧
x,δ

FMx,δ ,ε

〉
= (1, 0, 0)

= 1X .

If we let Lε = {Mx,δ,ε}x,δ, then it is easy to see that Lε is an inner cover for 1X. However,
since B(Mx,δ,ε) w (1, 0, 0)− (ε, 0, 0), we have

TB(Mx,δ,ε)
≥ 1− ε, IB(Mx,δ,ε)

≤ 0 and FB(Mx,δ,ε)
≤ 0.

Therefore

u
x∈X,δ>0

{B(Mx,δ,ε)} =

〈
∧
x,δ

TB(Mx,δ,ε)
, ∨

x,δ
IB(Mx,δ,ε)

, ∨
x,δ

FB(Mx,δ,ε)

〉
w (1− ε, 0, 0).

Thus for every ε > 0, there exists an inner cover Lε = {Mx,δ,ε}x,δ of 1X such that

u
x∈X,δ>0

{B(Mx,δ,ε)} w (1− ε, 0, 0).

Therefore
T(1X) w tLε

{ u
x∈X,δ>0

{B(Mx,δ,ε)}} w (1, 0, 0)

and hence T(1X) = (1, 0, 0).
Next we claim that T(M u N) w T(M) ∧ T(N) for any two neutrosophic sets M, N in ζX. Suppose

Mu N = 0X ; then there is nothing to prove. Let Mu N 6= 0X and let ε > 0. Then there exist inner covers
{Mλ}λ∈Λ1 and {Nγ}γ∈Λ2 , such that u

λ∈Λ1
{B(Mλ)} = T(M)− ( ε

2 , 0, 0) and

u
γ∈Λ2
{B(Nγ)} w T(N)− (

ε

2
, 0, 0).

Let Lλ,γ = Mλ u Nγ for λ ∈ Λ1 and γ ∈ Λ2 and let Λ denote the set of all pairs (λ, γ) for which
Lλ,γ 6= 0X . Now since Mu N 6= 0X there exists an x ∈ X such that M(x) u N(x) 6= (0, 1, 1), which implies
M(x) 6= (0, 1, 1) and N(x) 6= (0, 1, 1); then by the definition of an inner cover there exist Mλ0 and Nγ0 in
the corresponding inner covers, such that Mλ0(x) u Nγ0(x) 6= (0, 1, 1) and hence (λ0, γ0) ∈ Λ. Thus we
have Λ 6= ∅. Now for any (λ, γ) ∈ Λ, x ∈ X and δ > 0, let Dλ,γ,x,δ ∈ ζX be such that

Dλ,γ,x,δ(x) w Mλ(x) u Nγ(x)− (δ, 0, 0)

= Lλ,γ(x)− (δ, 0, 0),

Dλ,γ, x,δ v Lλ,γ and

B(Dλ,γ,x,δ) w (B(Mλ) uB(Nγ))− (
ε

2
, 0, 0).

Then the collection {Dλ,γ,x,δ}x,δ is an inner cover for Lλ,γ and hence the collection {Dλ,γ,x,δ}λ,γ, x,δ is an
inner cover for Mu N.

Florentin Smarandache (ed.) Collected Papers, VI

882



Additionally, we have,

u
x∈X,δ>0
(λ,γ)∈Λ

{
B(Dλ,γ, x,δ)

}
P w u

(λ,γ)∈Λ

{
B(Mλ) uB(Nγ)− (

ε

2
, 0, 0)

}
= u

(λ,γ)∈Λ
{B(Mλ) uB(Nγ)} − (

ε

2
, 0, 0)

w
{
u

(λ,γ)∈Λ
{B(Mλ)} u u

(λ,γ)∈Λ
{B(Nγ)}

}
− (

ε

2
, 0, 0)

w
{
u

λ∈Λ1
{B(Mλ)} u u

γ∈Λ2
{B(Nγ)}

}
− (

ε

2
, 0, 0)

w (T(M) u T(N))− (
ε

2
, 0, 0)− (

ε

2
, 0, 0)

= (T(M) u T(N))− (ε, 0, 0).

Since this is true for every ε > 0 and

T(Mu N) w u
x∈X,δ>0
(λ,γ)∈Λ

{
B(Dλ,γ,x,δ)

}

we have T(Mu N) w (T(M) u T(N)) for any M, N in ζX .
Finally we prove that T( t

λ∈Λ
Mλ) w u

λ∈Λ
T(Mλ) for any collection {Mλ}λ∈Λ ⊆ ζX. For each ε > 0

and for each Mλ, let
{
Mλ,γ

}
γ∈Γλ

be an inner cover for Mλ such that u
γ∈Γλ

{
B(Mλ,γ)

}
w T(Mλ)− (ε, 0, 0).

Since
{
Mλ,γ

}
γ∈Γλ

is an inner cover for Mλ, we have
{
Mλ,γ

}
λ∈Λ,γ∈Γλ

is an inner cover for t
λ∈Λ

Mλ. Thus it

follows that

T( t
λ∈Λ

Mλ) w u
λ∈Λ,γ∈Γλ

{
B(Mλ,γ)

}
= u

λ∈Λ

{
u

γ∈Γλ

{
B(Mλ,γ)

}}
w u

λ∈Λ
{T(Mλ)− (ε, 0, 0)}

= u
λ∈Λ
{T(Mλ)} − (ε, 0, 0),

which implies T( t
λ∈Λ

Mλ) w u
λ∈Λ

T(Mλ) for any collection {Mλ}λ∈Λ ⊆ ζX as desired.

Definition 9. Let (X,T) be smooth neutrosophic topological space. For all xr,s,t ∈ pt(ζX) and N ∈ ζX,
the mapping QT

xr,s,t
: ζX → ζ is defined as follows:

QT
xr,s,t

(N) =


t

xr,s,t [q]MvN
T(M); if xr,s,t [q]N

(0, 1, 1) otherwise.

The set QT = {QT
xr,s,t

: xr,s,t ∈ pt(ζX)} is called a neutrosophic quasi-coincident neighborhood system. Further,

a neutrosophic quasi-coincident neighborhood system QT is said to be symmetric if for any xr,s,t, yl,m,n ∈ pt(ζX),
QT

xr,s,t
(M) A (0, 1, 1), QT

yl,m,n
(N) A (0, 1, 1), xr,s,t [q]N implies yl,m,n [q]M.

Theorem 2. Let (X,T) be neutrosophic topological space. Then for all M, N ∈ ζX ,

(i) QT
xr,s,t

(0X) = (0, 1, 1);

(ii) QT
xr,s,t

(1X) = (1, 0, 0);
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(iii) QT
xr,s,t

(M) w (0, 1, 1) implies xr,s,t [q]M;

(iv) QT
xr,s,t

(Mu N) = QT
xr,s,t

(M) uQT
xr,s,t

(N);

(v) QT
xr,s,t

(M) = t
xr,s,t [q]NvM

u
yl,m,n [q]N

QT
yl,m,n

(N).

Proof. As (i), (ii) and (iii) follow directly from the definition of QT
xr,s,t

, we skip their proof. To prove
(iv), first we observe that

QT
xr,s,t

(Mu N) = t
xr,s,t [q]LvMuN

T(L)

v t
xr,s,t [q])LvM

T(L)

= QT
xr,s,t

(M).

Similarly, it follows that QT
xr,s,t

(Mu N) v QT
xr,s,t

(N), which implies

QT
xr,s,t

(Mu N) v QT
xr,s,t

(M) uQT
xr,s,t

(N).

To prove the reverse inequality, consider

QT
xr,s,t

(M) uQT
xr,s,t

(N) = t
xr,s,t [q]AvM

T(A) u t
xr,s,t [q]BvN

T(B)

= t
xr,s,t [q](AuB)v(MuN)

(T(A) u T(B))

v t
xr,s,t [q](AuB)v(MuN)

(T(Au B))

v t
xr,s,t [q]Lv(MuN)

(T(L))

= QT
xr,s,t

(Mu N).

To prove (v), for any N ∈ ζX with xr,s,t [q]N v M, we have QT
xr,s,t

(N) w T(N), and therefore,

T(N) v uyl,m,n [q]N
QT

yl,m,n
(N) v QT

xr,s,t
(N) v QT

xr,s,t
(M).

Hence, we have

QT
xr,s,t

(M) = t
xr,s,t [q]NvM

T(N)

v t
xr,s,t [q]NvM

u
yl,m,n [q]N

QT
yl,m,n

(N)

v QT
xr,s,t

(M)

as desired.

Theorem 3. Let B : ζX → ζ be a mapping. Then B is a basis of a smooth neutrosophic topology T if and only
if B v T and for all M ∈ ζX , xr,s,t ∈ pt(ζX), QT

xr,s,t
(M) v t

xr,s,t [q]NvM
B(N).
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Proof. Let B be a basis for given smooth neutrosophic topology; then clearly B v T. Let M ∈ ζX

and xr,s,t ∈ pt(ζX); then QT
xr,s,t

(M) = t
xr,s,t [q]NvM

T(N). Let N = {N : xr,s,t [q]N v M}; then for every N ∈ N ,

we have
T(N) = t

t
λ∈Λ

Nλ=N
u

λ∈Λ
B(Nλ).

Let ε > 0; then there exists {Nλ : λ ∈ Λ} with t
λ∈Λ

Nλ = N such that

u
λ∈Λ

B(Nλ) w T(N)− (ε, 0, 0).

Thus there exists an Nλ0 such that xr,s,t [q]Nλ0 and B(Nλ0) w T(N)− (ε, 0, 0). Hence for every N ∈ N ,
there exists an Nλ0 such that B(Nλ0) w T(N)− (ε, 0, 0), which in turn implies that

t
N∈N

B(Nλ0) w t
N∈N

T(N)− (ε, 0, 0).

Thus it follows that,

t
xr,s,t [q]NvM

B(N) w t
N∈N

B(Nλ0)

w t
N∈N

T(N)− (ε, 0, 0)

= t
xr,s,t [q]NvM

T(N)− (ε, 0, 0).

This implies that
t

xr,s,t [q]NvM
B(N) w t

xr,s,t [q]NvM
T(N) = QT

xr,s,t
(N)

as desired.
Conversely, let x ∈ X and ε, δ > 0; then clearly xδ,0,0 ∈ pt(ζX). However, since

QT
xδ,0,0

(1X) v t
xδ,0,0[q]Nv1X

B(N)

and (1, 0, 0) = QT
xδ,0,0

(1X), it is possible to find an N ∈ ζX such that N(x) w 1X(x)− (δ, 0, 0), such that
B(N) w (1, 0, 0)− (ε, 0, 0). Thus, B1 of Definition 8 follows.

Let x ∈ X, M, N ∈ ζX and ε, δ > 0. First we claim that, QT
xδ,0,0

(Mu N) w [B(M) uB(N)]; consider

QT
xδ,0,0

(Mu N) = [QT
xδ,0,0

(M) uQT
xδ,0,0

(N)]

= [ t
xδ,0,0[q]LvM

T(L) u t
xδ,0,0[q]LvN

T(L)]

w [T(M) u T(N)]

w [B(M) uB(N)].

If xδ,0,0[q]Mu N, then for every L ∈ ζX with L v Mu N and x
δ,0,0 [q]L, we have

L(x) A 1X(x)− (δ, 0, 0) w (Mu N)(x)− (δ, 0, 0).

Let ε > 0; then there exists L such that

B(L) w t
xδ,0,0[q]Lv(MuN)

B(L)− (ε, 0, 0)

w QT
xδ,0,0

(Mu N)− (ε, 0, 0)

w [B(M) uB(N)]− (ε, 0, 0).
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Suppose xδ,0,0
¯[q]Mu N. Let

Lx = {L ∈ ζX : L(x) w (Mu N)(x)− (δ, 0, 0)}.

Then there exists L ∈ Lx such that

B(L) w t
L∈Lx

B(L)− (ε, 0, 0)

w QT
xδ,0,0

(Mu N)− (ε, 0, 0)

w [B(M) uB(N)]− (ε, 0, 0)

Thus, B2 of Definition 8 follows in both cases.

Here we note that, “If (X,T) is a smooth neutrosophic topological space, then T is a basis for
a smooth fuzzy topology on X and the smooth fuzzy topology generated by T is itself.” In the
following, we give certain theorems which can be proved in a similar fashion to Theorems 3.8, 3.9 and
3.10 in [10].

Theorem 4. Let T be a smooth neutrosophic topology on X. Let B : ζX → ζ be a function satisfying

i. T(M) w B(M) for all M ∈ ζX ;
ii. If M ∈ ζX, x ∈ X, δ > 0 and ε > 0, then there exists N ∈ ζX such that N(x) w M(x)− (δ, 0, 0), N v M

and B(N) w T(M)− (ε, 0, 0).

Then B is a basis for the smooth neutrosophic topology T on X.

Theorem 5. If B is a basis for the smooth fuzzy topological space (X,T), then

i. T(M) w B(M) for all M ∈ ζX .
ii. If x ∈ X, M ∈ ζX, δ > 0 and ε > 0, then there exists N ∈ ζX such that N(x) w M(x)− (δ, 0, 0), N v M

and B(N) w T(M)− (ε, 0, 0).

Theorem 6. Let B and B′ be bases for the smooth neutrosophic topologies T and T′, respectively, on X.
Then the following conditions are equivalent.

i. T′ is finer than T.
ii. If M ∈ ζX, x ∈ X, δ > 0 and ε > 0, there exists N ∈ ζX such that N(x) w M(x)− (δ, 0, 0), N v M and

B′(N) w B(M)− (ε, 0, 0).

To end this section, we present a theorem which gives a way to get a basis from a subbasis,
from which a smooth neutrosophic topology can be generated.

Theorem 7. Let S : ζX → ζ be a subbasis for a smooth neutrosophic topology on X. Define B : ζX → ζ as

B(M) = t
D∈D
{ u

i∈ID
{S(Mi)}},

where D is the family of all finite collections D = {Mi}i∈ID of members of ζX such that M = u
i∈ID

Mi. Then the B

is a basis for a smooth neutrosophic topology on X.

Proof. Since D 6= ∅, every M ∈ ζX , and by the definition of S, B is well defined. As B clearly satisfies
B1 of Definition 7, it is enough to prove B2. Let x ∈ X, M, N in ζX and δ, ε > 0. Then by the definition
of B there exist collections {Mi}i=1,2,...,n and {Nj}j=1,2,...,m such that

M =
n
u

i=1
Mi, ui{B(Mi)} w B(M)− (ε, 0, 0)
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and
N =

m
u

j=1
Nj, uj{B(Nj)} w B(N)− (ε, 0, 0).

Now let us define a collection of neutrosophic sets Lk v 1X , for k = 1, 2, . . . , n + m, as

Lk =

{
Mk if k ≤ n

Nk−n if k > n.

If we let L =
n+m
u

k=1
Lk, then L = Mu N and therefore

L(x) w (Mu N)(x)− (δ, 0, 0).

Now by definition of B, we have

B(L) = t
D∈D
{ u

i∈ID
{S(Li)}},

where D is the family of all finite collections D = {Li}i∈ID of members of ζX such that L = u
i∈ID

Li.

Thus it follows that

B(L) = t
D∈D
{ u

i∈ID
{S(Li)}}

w uk{S(Lk)}
= u

i
{S(Mi)} u u

j
{S(Nj)}

w (B(M)− (ε, 0, 0)) u (B(B)− (ε, 0, 0))

= (B(M) uB(N))− (ε, 0, 0)

as desired.

4. Product of Neutrosophic Topologies

In this section, we first define the concept of a finite product of smooth neutrosophic topologies,
using the notion of basis defined in the previous section. We present a way to obtain the product
topology from the given bases; in the following we present a subbasis for a product topology.
Later, we generalize the discussed contents in the context of an arbitrary product of smooth
neutrosophic topologies.

Definition 10. Let (X,T1) and (Y,T2) be smooth neutrosophic topological spaces. Let B : ζX×Y → ζ be
defined as follows:

Let A ∈ ζX×Y. If A 6= M × N for any M ∈ ζX and N ∈ ζY, then define B(A) = (0, 1, 1).
Otherwise, define

B(A) = t
λ∈Λ
{T1(Mλ) u T2(Nλ)},

where {Mλ × Nλ}λ∈Λ is the collection of all possible ways of writing A as A = Mλ × Nλ, where Mλ ∈
ζX , Nλ ∈ ζY.

Then B is a basis for the smooth neutrosophic topology called the smooth neutrosophic product topology on X×Y.

Example 2. Let X1 = X2 = R and let M1 and N1 be defined by

M1(x) =
(

1
2

,
1
2

,
1
2

)
for all x ∈ X1
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and

N1(x) =
(

1
2

,
1
2

,
1
2

)
for all x ∈ X2.

Let T1 : ζX1 → ζ and T2 : ζX2 → ζ be the functions defined by

T1(M) =


(1, 0, 0) if M = 1X1

or M = 0X1

( 1
4 , 1

2 , 1
2 ) if M = M1

(0, 1, 1) otherwise

and

T2(N) =


(1, 0, 0) if N = 1X2

or N = 0X2

( 1
2 , 1

2 , 1
2 ) if N = N1

(0, 1, 1) otherwise.

Then clearly T1 and T2 are smooth neutrosophic topologies on X1 and X2. From the above definition, we get
B : ζX1×X2 → ζ given by

B(E) =



(1, 0, 0) if E = 1X1×X2
or E = 0X1×X2

( 1
4 , 1

2 , 1
2 ) if E = M1 × 1X2

( 1
2 , 1

2 , 1
2 ) if E = 1X1

× N1

( 1
4 , 1

2 , 1
2 ) if E = M1 × N1

(0, 1, 1) otherwise

which is a basis for a smooth neutrosophic topology T on X1×X2 and the smooth neutrosophic topology (product
topology) generated by B is given by

T(E) =



(1, 0, 0) if E = 1X1×X2
or E = 0X1×X2

( 1
4 , 1

2 , 1
2 ) if E = M1 × 1X2

( 1
2 , 1

2 , 1
2 ) if E = 1X1

× N1

( 1
4 , 1

2 , 1
2 ) if E = M1 × N1

(0, 1, 1) otherwise.

Theorem 8. Let B : ζX×Y → ζ be the function defined in Definition 10. Then B is a basis for a smooth
neutrosophic topology on X×Y.

Proof. If we let M = 1X×Y, then clearly B1 of Definition 7 follows.
Let (x, y) ∈ X × Y, M, N in ζX×Y and δ, ε > 0. We wish to show that there exists L ∈ ζX×Y such

that L v Mu N,
L(x, y) w (M(x, y) u N(x, y))− (δ, 0, 0)

and
B(L) w (B(M) uB(N))− (ε, 0, 0).

Suppose any one of M and N, say M cannot be written as M1 × M2 for any M1 ∈ ζX and M2 ∈ ζY; then by
letting L = M u N, we have L(x, y) w (M(x, y) u N(x, y))− (δ, 0, 0). However, by the definition of B,
it follows that B(M) = (0, 1, 1) and therefore B(L) w (B(M) uB(N))− (ε, 0, 0) as desired. If both M

and N can be written as A× A′ and B× B′ for some A, B ∈ ζX and A′, B′ ∈ ζY, then by the definition of B,
there exist M1, N1 ∈ ζX and M2, N2 ∈ ζY such that M = M1 × M2, N = N1 × N2,

T1(M1) u T2(M2) w B(M)− (ε, 0, 0)
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and
T1(N1) u T2(N2) w B(N)− (ε, 0, 0).

Now if we let L = Mu N, then L(x, y) = (M(x, y) u N(x, y))− (δ, 0, 0) and

(Mu N)(x, y) = ((M1 × M2) u (N1 × N2))(x, y)

= (M1(x) u M2(y)) u (N1(x) u N2(y))

= (M1(x) u N1(x)) u (M2(y) u N2(y))

= (M1(x) u N1(x))× (M2(y) u N2(y))

= ((M1 u N1)× (M2 u N2))(x, y).

Now consider,

B(L) = B(Mu N)
= B((M1 u N1)× (M2 u N2))

w T1(M1 u N1) u T2(M2 u N2)

w (T1(M1) u T1(N1)) u (T2(M2) u T2(N2))

= {T1(M1) u T2(M2)} u {T1(N1) u T2(N2)}
w (B(M)− (ε, 0, 0)) u (B(N)− (ε, 0, 0))

= (B(M) uB(N))− (ε, 0, 0)

and hence B2 of Definition 7 follows in this case also.

Theorem 9. LetB1, B2 be bases for the smooth neutrosophic topologiesT1,T2 respectively. Define B : ζX×Y → ζ

as follows:

If A ∈ ζX×Y cannot be written as M× N for any M ∈ ζX and N ∈ ζY, then define B(A) = (0, 1, 1).
Otherwise define

B(A) = t
λ∈Λ
{B1(Mλ) uB1(Nλ)}

where {Mλ × Nλ}λ∈Λ is the collection of all possible ways of writing A as A = Mλ × Nλ, where Mλ ∈
ζX , Nλ ∈ ζY.

Then B is a basis for the product topology on X×Y.

Proof. First we claim that B is a basis for a smooth neutrosophic topology on X×Y. Let (x, y) ∈ X×Y,
δ > 0 and ε > 0. Now since B1 and B2 are bases for the smooth neutrosophic topologies T1 and T2,
there exist M ∈ ζX and N ∈ ζY such that

M(x) w 1X(x)− (δ, 0, 0), B1(M) w (1, 0, 0)− (ε, 0, 0)

and
N(y) w 1Y(y)− (δ, 0, 0), B2(N) w (1, 0, 0)− (ε, 0, 0).

Let A = M× N; then we have

A(x, y) = (M× N)(x, y)

= M(x) u N(y)
w (1X(x)− (δ, 0, 0)) u (1Y(y)− (δ, 0, 0))

= (1X(x) u 1Y(y))− (δ, 0, 0)

w 1X×Y(x, y)− (δ, 0, 0)
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and
B(A) w B1(M) uB1(N) w (1, 0, 0)− (ε, 0, 0).

Thus B1 of Definition 7 follows.
To prove B2, let (x, y) ∈ X × Y, M, N ∈ ζX×Y and δ, ε > 0. If any one of M and N, say M, cannot be

written as M1 × M2 for any M1 ∈ ζX and M2 ∈ ζY, then by letting L = M u N, as in the above theorem,
B2 of Definition 7 follows. On the other hand, suppose both M and N can be written as A× A′ and B× B′

for some A, B ∈ ζX and A′, B′ ∈ ζY; then by definition of B, there exist M1, N1 ∈ ζX , and M2, N2 ∈ ζY such
that M = M1 × M2, N = N1 × N2,

B1(M1) uB2(M2) w B(M)− (
ε

2
, 0, 0)

and
B1(N1) uB2(N2) w B(N)− (

ε

2
, 0, 0).

Here it is easy to see that there exists L1 ∈ ζX such that L1 v M1 u N1, L1(x) w (M1 u N1)(x)− (δ, 0, 0)
and B1(L1) w (B1(M1) uB1(N1))− ( ε

2 , 0, 0), as x ∈ X and M1, N1 are in ζX .
Analogously, since y ∈ Y and M2, N2 are in ζY, there exists L2 in ζY such that L2 v M2 u N2,

L2(y) w (M2 u N2)(y)− (δ, 0, 0) and B2(L2) w (B2(M2) uB2(N2))− ( ε
2 , 0, 0).

Let L = L1 × L2; then we have

L(x, y) = (L1 × L2)(x, y)

= L1(x) u L2(y)

w {(M1(x) u N1(x)) u (M2(y) u N2(y))} − (δ, 0, 0)

= {(M1(x)× M2(y)) u (N1(x)× N2(y))} − (δ, 0, 0)

= (M(x, y) u N(x, y))− (δ, 0, 0)

and

B(L) = B(L1 × L2)

w B1(L1) uB2(L2)

w
{
(B1(M1) uB1(N1))− (

ε

2
, 0, 0)

}
m u

{
(B2(M2) uB2(N2))− (

ε

2
, 0, 0)

}
= {(B1(M1) uB1(N1)) u (B2(M2) uB2(N2))} − (

ε

2
, 0, 0)

= {(B1(M1) uB2(M2)) u (B1(N1) uB2(N2))} − (
ε

2
, 0, 0)

w
(
B(M)− (

ε

2
, 0, 0)

)
u
(
B(N)− (

ε

2
, 0, 0)

)
− (

ε

2
, 0, 0)

= (B(M) uB(N))− (
ε

2
, 0, 0)− (

ε

2
, 0, 0)

= (B(M) uB(N))− (ε, 0, 0).

Thus B2 of Definition 7 follows in this case also. Hence B is a basis for a smooth neutrosophic topology
on X×Y. Thus, proving that the smooth neutrosophic topology generated by this basis coincides with
the smooth neutrosophic product topology remains.

Let T be the smooth fuzzy topology generated by B. Let Tp be the product topology on X×Y and
Bp be the basis for Tp as described in Definition 10. Now we prove that Tp = T. Let A ∈ ζX×Y; then

Tp(A) = t
Λ∈Γ

{
u

Aλ∈LΛ

{
Bp(Aλ)

}}
,
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where {LΛ}Λ∈Γ is the collection of all inner covers LΛ = {Aλ}λ∈Λ of A. Now we divide the collection
{LΛ}Λ∈Γ, say L, into two subcollections L′ and L′′ where L′ is the collection all possible inner covers
{Aλ}λ∈Λ of A so that for all λ ∈ Λ, Aλ is of the form Mλ × Nλ for at least one Mλ ∈ ζX and one Nλ ∈ ζY,
and L′′ is the complement of L′ in L.

If an inner cover LΛ = {Aλ}λ∈Λ of A is in L′′, then for at least one λ0 ∈ Λ, Aλ0 is not of the form
M× N for any M ∈ ζX and N ∈ ζY; hence Bp(Aλ0) = (0, 1, 1) and therefore

u
Aλ∈LΛ

{
Bp(Aλ)

}
= (0, 1, 1)

and
u

Aλ∈LΛ
{B(Aλ)} = (0, 1, 1).

If L′ = ∅, then Tp(A) = T(A) = (0, 1, 1) and hence it is enough to consider the case L′ 6= ∅.
Now consider

Tp(A) = t
L
{ u
Aλ∈LΛ

{Bp(Aλ)}}

= t
L′
{ u
Aλ∈LΛ

{Bp(Aλ)}}

= t
L′
{ u
Aλ∈LΛ

{ t
Aλ=Mλ×Nλ

{T1(Mλ) u T2(Nλ)}}}

w t
L′
{ u
Aλ∈LΛ

{ t
Aλ=Mλ×Nλ

{B1(Mλ) uB2(Nλ)}}}

= t
L′
{ u
Aλ∈LΛ

{B(Aλ)}}

= t
L
{ u
Aλ∈LΛ

{B(Aλ)}}

= T(A).

This implies that, Tp w T.
To prove the reverse inequality, let A ∈ ζX×Y, ε > 0 and L,L′,L′′ be as above. Let LΛ = {Aλ}λ∈Λ

be an inner cover for A. As above it is enough to consider the case L′ 6= ∅. Now let LΛ ∈ L′. Then for
all λ ∈ Λ, we have Aλ = M× N for at least one M ∈ ζX and one N ∈ ζY. Fix a λ ∈ Λ. Let Bλ denote
the set of all pairs (M, N) such that Aλ = M× N. Let (M, N) ∈ Bλ. Since B1, B2 are bases for T1, T2,
by Theorem 5, for any x ∈ X, y ∈ Y and δ > 0 there exist Mx,δ ∈ ζX and Ny,δ ∈ ζY such that

Mx,δ(x) w M(x)− (δ, 0, 0), Mx,δ v M

and
Ny,δ(y) w N(y)− (δ, 0, 0), Ny,δ v N

with
B1(Mx,δ) + (ε, 0, 0) w T1(M)

and
B2(Ny,δ) + (ε, 0, 0) w T2(N).

Clearly the collection {Mx,δ}x∈X,δ>0 is an inner cover for M and the collection {Ny,δ}y ∈ ζY, δ > 0 is
an inner cover for N. Therefore, the collection {Mx,δ × Ny,δ}x∈X,y∈Y,δ>0 is an inner cover for M× N

which is equal to Aλ. Thus for any pair (M, N) ∈ Bλ with M × N = Aλ, we have an inner cover
{Mx,δ × Ny,δ}x∈X, y ∈Y, δ>0 of Aλ such that

B1(Mx,δ) + (ε, 0, 0) w T1(M) (1)

Florentin Smarandache (ed.) Collected Papers, VI

891



and
B2(Ny,δ) + (ε, 0, 0) w T2(N) (2)

for all x ∈ X, y ∈ X and δ > 0.
Now since

Tp(A) = t
L
{ u
Aλ∈LΛ

{Bp(Aλ)}}

= t
L′
{ u
Aλ∈LΛ

{ t
(M,N)∈Bλ

{T1(M) u T2(N)}}},

using (1) and (2), we have

Tp(A) v t
L′
{ u
Aλ∈LΛ

{T(Aλ)}}+ (ε, 0, 0)

= t
L
{ u
Aλ∈LΛ

{T(Aλ)}}+ (ε, 0, 0)

= T(A) + (ε, 0, 0).

Since this is true for every ε > 0, it follows that Tp(A) v T(A) and hence we get Tp v T as desired.

Theorem 10. Let (X,T1) and (Y,T2) be smooth neutrosophic topological spaces. Let

A1 = {M/ A = M× 1Y, M ∈ ζX}

and
A2 = {N/ A = 1X × N, N ∈ ζY}.

Let A = A1 ∪A2. Define S : ζX×Y → ζ as

S(A) =

tA{T1(M),T2(N)} if A 6= ∅

(0, 1, 1) otherwise.

Then S is a subbasis for the smooth neutrosophic product topology on X×Y.

Proof. Since S(1X×Y) = (1, 0, 0), by letting M = 1X×Y, it clearly follows that S is a subbasis for
a smooth neutrosophic topology on X×Y. Thus all that remains is to show the smooth neutrosophic
topology induced by this subbasis is the same as the product topology on X×Y. We do this by proving
that the basis induced by this subbasis is the same as the basis defined in Definition 10.

Let B′ be the basis generated by S. Then for any A in ζX×Y, we have

B′(A) = t
D∈D

{
u

i∈ID
{S(Ai)}

}
,

where D is the family of all finite collections D = {Ai}i∈ID of neutrosophic sets in ζX×Y for some
finite indexing set ID such that A = u

i∈ID
Ai, where each Ai ∈ ζX×Y. Let B be the basis for the smooth

neutrosophic product topology on X × Y as in Definition 10. Let A ∈ ζX×Y; then we claim that
B(A) = B′(A). Suppose A is not of form M× N for any M v 1X and N v 1Y. Then by Definition 10 we
have, B(A) = (0, 1, 1). Now let us compute B′(A). Let A = A1 u A2 u · · · u An be any representation
of A as a finite intersection of neutrosophic sets of X×Y. First we claim that Ai is neither of the form
(Mi × 1Y) nor of the form (1X × Ni) for at least one i. If Ai = (Mi × 1Y) or Ai = (1X × Ni) for all i.
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Without loss of generality, let us assume that Ai = (Mi × 1Y) for i = 1, 2, . . . , m and Ai = (1X × Ni) for
i = m + 1, m + 2, . . . , n, then we have

A = A1 u A2 u · · · u An

= {(M1 × 1Y) u · · · u (Mm × 1Y)}
u{(1X × Nm+1) u · · · u (1X × Nn)}

= {(M1 u M2 u · · · u Mm)× 1Y}
u{1X × (Nm+1 u Nm+2 u · · · u Nn)}.

Now if we let M = M1 u M2 u · · · u Mm and N = Nm+1 u Nm+2 u · · · u Nn, then it follows that
A = (M× 1Y) u (1X × N) = M× N, which is a contradiction to our assumption that A is not of the form
M× N. This proves the claim and hence u{S(Ai)} = (0, 1, 1). Since this is true for any representation of
A as a finite intersection, by the definition of B′ we have B′(A) = (0, 1, 1). Thus B = B′ in this case.

If A is of the form M× N for some M v 1X, N v 1Y. First we claim that B(A) w B′(A). For, let A =

A1 u A2 u · · · u An be a representation of A as a finite intersection of neutrosophic sets in ζX×Y. If Ai
is neither of the form (Mi × 1Y) nor of the form (1X × Ni), for at least one j, then it follows that
u{S(Ai)} = (0, 1, 1) and hence B(A) w u{S(Ai)}. Suppose all Ai’s are either of the form (Mi × 1Y) or
of the form (1X × Ni) for some Mi ∈ ζX and Ni ∈ ζY; then we have S(Ai) w (0, 1, 1) for all i. Let ε > 0;
then there exist Mi ∈ ζX and Ni ∈ ζY such that

Ai = (Mi × 1Y), T1(Mi) w S(Ai)− (ε, 0, 0)

for i = 1, 2, . . . , m and
Ai = (1X × Ni), T1(Ni) w S(Ai)− (ε, 0, 0).

for i = m + 1, m + 2, . . . , n. Then,

A = A1 u A2 u · · · u An

= {(M1 u M2 u · · · u Mm)× 1Y}
u{1X × (Nm+1 u Nm+2 u · · · u Nn)}.

Let M′ = M1 u · · · u Mm and N′ = Nm+1 u · · · u Nn. Then we have A = (M′ × 1Y) u (1X × N′) = M′ × N′.
Now consider

B(A) w u{T1(M
′),T2(N

′)}

w u{
m
u

j=1
T1(Mj),

n
u

j=m+1
T2(Nj)}

= u{T1(M1), . . . ,T1(Mm),T2(Nm+1), . . . ,T2(Nn)}
w u{S(A1)− (ε, 0, 0), . . . ,S(An)− (ε, 0, 0)}
= u{S(Ai)} − (ε, 0, 0).

Since this is true for any representation of A as a finite intersection of neutrosophic sets in ζX×Y,
we have

B(A) w B′(A).

To prove the reverse inequality, let ε > 0; then by Definition 10, there exist M ∈ ζX and N ∈ ζY

such that A = M× N and
T1(M) u T2(N) w B(A)− (ε, 0, 0).
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However, M× N = (M× 1Y) u (1X × N); thus, we have,

B′(A) = B′(M× N)

w u{S(M× 1Y),S(1X × N)}
w u{T1(M),T2(N)}
w B(A)− (ε, 0, 0)

which implies B′(A) w B(A) as desired.

Definition 11. Let {(Xi,Ti)}i∈J be a collection of smooth neutrosophic topological spaces, for some indexing

set J. Now define a function B : ζ
Π
i∈J

Xi
→ ζ as follows:

Let A ∈ ζ
Π
i∈J

Xi
. If A 6= Π

i∈J
Ai where Ai ∈ ζXi and Ai = 1Xi except for finitely many i ∈ J, then define

B(A) = (0, 1, 1). Otherwise define

B(A) = t
AA

{ u
i∈J
{Ti(Ai)}},

where AA is the collection of all {Π
i∈J

Ai} such that A = Π
i∈J

Ai, Ai ∈ ζXi and Ai = 1Xi except for

finitely many i ∈ J.

Then B is a basis for a smooth neutrosophic topology called the smooth product topology on Π
i∈J

Xi.

Theorem 11. Let {(Xi,Ti)}i∈J be a collection of smooth neutrosophic topological spaces, for some indexing set
J. Let B be as defined in Definition 11; then B is a basis for a smooth neutrosophic topology on Π

i∈J
Xi.

Proof. Since B(1 Π
i∈J

Xi ) = (1, 0, 0), B1 of Definition 7 follows trivially.

To prove B2, let M, N ∈ ζ
Π
i∈J

Xi
, x ∈ Π

i∈J
Xi and ε, δ > 0. Let AM be the collection of all {Π

i∈J
Mi} such

that M = Π
i∈J

Mi, Mi ∈ ζXi and Mi = 1Xi except for finitely many i ∈ J and let AN be the collection of all

{Π
i∈J

Ni} such that N = Π
i∈J

Ni, Ni ∈ ζXi and Ni = 1Xi except for finitely many i ∈ J.

Suppose any one of the collections AM and AN, say AM, is empty. Then by the definition of B,
we get that B(M) = (0, 1, 1). Thus B2 of Definition 7 follows in this case. If both collections AM and AN

are nonempty, then there exist AM = ΠMi in AM and AN = ΠNi in AN such that

u{Ti(Mi)} w B(M)− (ε, 0, 0)

and
u{Ti(Ni)} w B(N)− (ε, 0, 0).

Let L = Mu N; then clearly

L(x) w (M(x) u N(x))− (δ, 0, 0), ∀ x ∈ ΠXi
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and

B(L) = B(Mu N)
= B(ΠMi uΠNi)

= B(Π(Mi u Ni))

w u{Ti(Mi u Ni)}
w u{Ti(Mi) u Ti(Ni)}
w u{Ti(Mi)} u u{Ti(Ni)}
w (B(M)− (ε, 0, 0)) u (B(N)− (ε, 0, 0))

w (B(M) uB(N))− (ε, 0, 0).

Thus, B2 of Definition 7 follows in this case also, and hence B is a basis for a smooth neutrosophic
topology on ΠXi.

Theorem 12. Let {(Xi,Ti)}i∈J be a collection of smooth neutrosophic topological spaces. For any A ∈ ζ
Π
i∈J

Xi
,

let AA be the collection of all {Π Ai} such that A = Π Ai, Ai ∈ ζXi and Ai = 1Xi except for finitely many i ∈ J.

Let S : ζ
Π
i∈J

Xi
→ ζ be defined as follows:

S(A) =


(1, 0, 0) if A = 1ΠXi

t
AA

{ t
Ai 6=1Xi

{Ti(Ai)}} if A 6= 1ΠXi ,AA 6= ∅

(0, 1, 1) if AA = ∅.

Then S is a subbasis for a smooth neutrosophic product topology on ΠXi.

Proof. Since S(1ΠXi ) = (1, 0, 0), B1 of Definition 7 follows. Thus S is a subbasis for a smooth
neutrosophic topology on Π Xi. Thus, proving that the smooth neutrosophic topology generated from
S is the smooth neutrosophic product topology on Π Xi needs proving.

Now let B′ be the basis generated by S and let B be the basis for the smooth neutrosophic
product topology defined in Definition 11. To prove the topologies generated by B and B′ are same,
we prove the stronger result that B = B′.

As B(1ΠXi ) = B′(1ΠXi ) = (1, 0, 0) follows trivially, we prove the other cases. Let A ∈ ζΠXi and
let AA be the collection of all {ΠAi} such that A = ΠAi, Ai ∈ ζXi and Ai = 1Xi except for finitely many
i ∈ J. If AA = ∅, then by the definition of B, we have B(A) = (0, 1, 1). Now to compute B′(A),
let A = A1 u A2 u · · · u An; we claim that there must exist at least one Ak which is not of the form Π Aki
where Aki ∈ ζXi and Aki = 1Xi except for finitely many i ∈ J. Suppose not; instead, let Aj = ΠAji
where Aji ∈ ζXi and Aji = 1Xi except for finitely many i ∈ J, for all j = 1, 2, . . . , n. Then using these
finitely many Aji’s, A can be written in the form ΠAi where Ai ∈ ζXi and Ai = 1Xi except for finitely
many i ∈ J, which is a contradiction to our assumption that AA = ∅. Thus there exists at least one Ak
which is not of the form Π Aki where Aki ∈ ζXi and Aki = 1Xi except for finitely many i ∈ J and hence
S(Ak) = (0, 1, 1). Thus we have

u{S(Aj)/j = 1, 2, . . . , n} = (0, 1, 1).

Since this is true for any possible finite representation A1 u A2 u · · · u An of A, we have B′(A) = (0, 1, 1)
and hence B′(A) = B(A) in this case.

If AA 6= ∅, then there must exist a representation A1 u A2 u · · · u An of A such that AAj 6= ∅ for
all j = 1, 2, . . . , n, where AAj is the collection of all {ΠAji} such that Aj = ΠAji, Aji ∈ ζXi and Aji = 1Xi
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except for finitely many i ∈ J. Let ε > 0. Then for each Aj we can find a collection {Aji}i∈J such that
Aj = ΠAji where Aji = 1Xi except for finitely many i ∈ J and Ti(Aji) w S(Aj)− (ε, 0, 0). Now since

A = A1 u A2 u · · · u An

= ΠA1i uΠA2i u · · · uΠAni

= Π(A1i u A2i u · · · u Ani)

we have

B(A) = B(A1 u A2 u · · · u An)

= B(ΠA1i uΠA2i u · · · uΠAni)

= B(Π(A1i u A2i u · · · u Ani))

w u{Ti(A1i u A2i u · · · u Ani)}
w u{Ti(A1i) u Ti(A2i) u · · · u Ti(Ani)}
w u{S(A1)− (ε, 0, 0) uS(A2)− (ε, 0, 0)

u · · · uS(An)− (ε, 0, 0)}
= u{S(A1) uS(A2) u · · · uS(An)} − (ε, 0, 0)

= u{S(Aj)} − (ε, 0, 0).

Since this is true for any representation of A as a finite intersection of neutrosophic sets in ζΠXi , we have

B(A) w B′(A).

To prove the reverse inequality, let ε > 0. Since AA 6= ∅, we can find a collection {Ai}i∈J such that
ΠAi ∈ AA and

u{Ti(Ai)} w B(A)− (ε, 0, 0).

Thus it follows that
B′(A) = B′(ΠAi) w u{Ti(Ai)} w B(A)− (ε, 0, 0)

and hence B′(A) w B(A). Thus B′(A) = B(A) in this case also and hence in all the cases.

5. Conclusions

In this paper, we have defined the notion of a basis and subbasis for a neutrosophic topology
as a neutrosophic set from a suitable collection of neutrosophic sets of X to [0, 1]3. Using this idea of
considering a basis as a neutrosophic set, we developed a theory of smooth neutrosophic topological
spaces that fits exactly with the theory of classical and fuzzy topological spaces. Next, we introduced
and investigated the concept of quasi-coincident neighborhood systems in this context. Finally,
we defined and discussed the notion of both finite and infinite products of smooth neutrosophic
topologies.

6. A Discussion for Future Works

The theory can extended in the following natural ways. One may

• Study the properties of neutrosophic metric topological spaces using the concept of basis defined
in this paper;

• Investigate the products of Hausdorff, regular, compact and connected spaces in the context of
neutrosophic topological spaces.
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Abstract: Neutrosophy is a recent section of philosophy. It was initiated in 1980 by Smarandache.
It was presented as the study of origin, nature, and scope of neutralities, as well as their interactions
with different ideational spectra. In this paper, we introduce the notion of single-valued neutrosophic
ideals sets in Šostak’s sense, which is considered as a generalization of fuzzy ideals in Šostak’s
sense and intuitionistic fuzzy ideals. The concept of single-valued neutrosophic ideal open local
function is also introduced for a single-valued neutrosophic topological space. The basic structure,
especially a basis for such generated single-valued neutrosophic topologies and several relations
between different single-valued neutrosophic ideals and single-valued neutrosophic topologies, are
also studied here. Finally, for the purpose of symmetry, we also define the so-called single-valued
neutrosophic relations.

Keywords: single-valued neutrosophic closure; single-valued neutrosophic ideal; single-valued
neutrosophic ideal open local function; single-valued neutrosophic ideal closure; single-valued
neutrosophic ideal interior; single-valued neutrosophic ideal open compatible

1. Introduction

The notion of fuzzy sets, employed as an ordinary set generalization, was introduced in 1965 by
Zadeh [1]. Later on, using fuzzy sets through the fuzzy topology concept was initially introduced in
1968 by Chang [2]. Afterwards, many properties in fuzzy topological spaces have been explored by
various researchers [3–13]

Paradoxically, it is to be emphasized that being fuzzy or what is termed as fuzzy topology in fuzzy
openness concept is not highlighted and well-studied. Meanwhile, Samanta et al. [14,15] introduced
what is called the graduation of openness of fuzzy sets. Later on, Ramadan [16] introduced smooth
continuity, a number of their properties, and smooth topology. Demirci [17] investigated properties
and systems of smooth Q-neighborhood and smooth neighborhood alike. It is worth mentioning
that Chattopadhyay and Samanta [18] have initiated smooth connectedness and smooth compactness.
On the other hand, Peters [19] tackled the notion of primary fuzzy smooth characteristics and structures
together with smooth topology in Lowen sense. He [20] further evidenced that smooth topologies
collection constitutes a complete lattice. Furthermore, Onassanya and Hošková-Mayerová [21]
inspected certain features of subsets of α-level as an integral part of a fuzzy subset topology. Likewise,
more specialists in the field like Çoker and Demirci [22], in addition to Samanta and Mondal [23,24],
have provided definitions to the concept of graduation intuitionistic openness of fuzzy sets based on
Šostak’s sense [25] according to Atanassov’s [26] intuitionistic fuzzy sets. Essentially, they focused on
intuitionistic gradation of openness in light of Chang. On the other hand, Lim et al. [27] examined
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Lowen’s framework smooth intuitionistic topological spaces. In recent times, Kim et al. [28] considered
systems of neighborhood and continuities within smooth intuitionistic topological spaces. Moreover,
Choi et al. [29] scrutinized smooth interval-valued topology through graduation of the concept of
interval-valued openness of fuzzy sets, as suggested by Gorzalczany [30] and Zadeh [31], respectively.
Ying [32] put forward a topology notion termed as fuzzifying topology, taking into consideration the
extent of ordinary subset of a set openness. General properties in ordinary smooth topological spaces
were elaborated in 2012 by Lim et al. [33]. In addition, they [34–36] inspected compactness, interiors,
and closures within normal smooth topological spaces. In 2014, Saber et al. [37] shaped the notion of
fuzzy ideal and r-fuzzy open local function in fuzzy topological spaces in view of the definition of
Šostak. In addition, they [38,39] inspected intuitionistic fuzzy ideals, fuzzy ideals and fuzzy open local
function in fuzzy topological spaces in view of the definition of Chang.

Smarandache [40] determined the notion of a neutrosophic set as intuitionistic fuzzy set
generalization. Meanwhile, Salama et al. [41,42] familiarized the concepts of neutrosophic crisp set
and neutrosophic crisp relation neutrosophic set theory. Correspondingly, Hur et al. [43,44] initiated
classifications NSet(H) and NCSet including neutrosophic crisp and neutrosophic sets, where they
examined them in a universe topological position. Furthermore, Salama and Alblowi [45] presented
neutrosophic topology as they claimed a number of its characteristics. Salama et al. [46] defined a
neutrosophic crisp topology and studied some of its properties. Others, such as Wang et al. [47],
defined the single-valued neutrosophic set concept. Currently, Kim et al. [48] has come to grips with a
neutrosophic partition single-value, neutrosophic equivalence relation single-value, and neutrosophic
relation single-value.

Preliminaries of single-value neutrosophic sets and single-valued neutrosophic topology are
reviewed in Section 2. Section 3 is devoted to the concepts of single-valued neutrosophic closure space
and single-valued neutrosophic ideal. Some of their characteristic properties are considered. Finally,
the concepts of single-valued neutrosophic ideal open local function has been introduced and studied.
Several preservation properties and some characterizations concerning single-valued neutrosophic
ideal open compatible have been obtained.

2. Preliminaries

In this section, we attempt to cover enough of the fundamental concepts and definitions.

Definition 1 ([49]). A neutrosophic setH (NS, for short) on a nonempty set S is defined as

H = 〈κ, TH, IH, FH : κ ∈ S〉,

where

TH : S →c−0, 1+b, IH : S →c−0, 1+b, FH : S →c−0, 1+b

and

−0 ≤ TH(κ) + IH(κ) + FH(κ) ≤ 3+,

representing the degree of membership (namely, TH(κ)), the degree of indeterminacy (namely, IH(κ)), and the
degree of nonmembership (namely, FH(κ)); for all κ ∈ S to the setH.

Definition 2 ([49]). LetH andR be fuzzy neutrosophic sets in S . Then,H is a subset ofR if, for each κ ∈ S ,

inf TH(x) ≤ inf TR(κ), inf IH(x) ≥ inf IR(κ), inf FH(x) ≥ inf FR(κ)
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and

sup TH(κ) ≤ sup TR(κ), sup IH(κ) ≥ sup IR(κ), sup FH(κ) ≥ sup FR(κ).

Definition 3 ([47]). Let H be a space of points (objects) with a generic element in S denoted by κ. Then,
H is called a single-valued neutrosophic set (in short, SVNS) in S if H has the form H = 〈TH, IH, FH〉,
where TH, IH, FH : S → [0, 1].

In this case, TH, IH, FH are called truth-membership function, indeterminacy-membership function,
and falsity-membership function, respectively, and we will denote the set of all SVNS′s in S as SVNS(S).

Moreover, we will refer to the Null (empty) SVNS (or the absolute (universe) SVNS) in S as 0N (or 1N)
and define by 0N = (0, 1, 1) (or 1N = (1, 0, 0)) for each κ ∈ S .

Definition 4 ([47]). LetH = 〈TH, IH, FH〉 be an SVNS on S . The complement of the setH (Hc, f or short)
and is defined as follows: for every κ ∈ S ,

THc(κ) = FH(κ), IHc(κ) = 1− IH(κ), FHc(κ) = TH(κ).

Definition 5 ([50]). Suppose thatH ∈ SVNS(S). Then,

(i) H is said to be contained inR, denoted byH ⊆ R, if, for every κ ∈ S ,

TH(κ) ≤ TR(κ), IH(κ) ≥ IR(κ), FH(κ) ≥ FR(κ);

(ii) H is said to be equal toR, denoted byH = H, ifR ⊆ R andH ⊇ R.

Definition 6 ([51]). Suppose thatH,R ∈ SVNS(S). Then,

(i) the union ofH andR (H∪R, f or short) is an SVNS in S defined as

H∪R = (TH ∪ TR, IH ∩ IR, FH ∩ FR),

where (TH ∪ TR)(κ) = TH(κ) ∪ TR(κ) and (FH ∩ FR)(κ) = FH(κ) ∩ FR(κ), for each κ ∈ S ;
(ii) the intersection ofH andR, (H∩R, f or short), is an SVNS in S defined as

H∩R = (TH ∩ TR, IH ∪ IR, FH ∪ FR).

Definition 7 ([45]). LetH ∈ SVNS(S). Then,

(i) the union of {Hi}i∈J (
⋃

i∈J Hi, f or short) is an SVNS in S defined as follows: for every κ ∈ S ,

(
⋃
i∈J
Hi)(κ) = (

⋃
i∈J

THi (κ),
⋂
i∈J

IHi (κ),
⋂
i∈J

FHi (κ);

(ii) the intersection of {Hi}i∈J (
⋂

i∈J Hi, f or short) is an SVNS in S defined as follows: for every κ ∈ S ,

(
⋂
i∈J
Hi)(κ) = (

⋂
i∈J

THi (κ),
⋃
i∈J

IHi (κ),
⋃
i∈J

FHi (κ).

Definition 8 ([52]). A single-valued neutrosophic topology on S is a map (τT , τ I , τF) : IS → I satisfying the
following three conditions:

(SVNT1) τT(0) = τT(1) = 1 and τ I(0) = τ I(1) = τF(0) = τF(1) = 0,
(SVNT2) τT(H∩R) ≥ τT(H) ∩ τT(R), τ I(H∩R) ≤ τ I(H) ∪ τ I(R),

τF(H∩R) ≤ τF(H) ∪ τF(R), for anyH,R ∈ IS ,
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(SVNT3) τT(∪i∈jHi) ≥ ∩i∈jτ
T(Hi), τ I(∪i∈jHi) ≤ ∪i∈jτ

I(Hi) ,
τF(∪i∈jHi) ≤ ∪i∈jτ

F(Hi), for any {Hi}i∈J ∈ IS .

The pair (X, τT, τI , τF) is called single-valued neutrosophic topological spaces (SVNTS, f or short).
We will occasionally write τTIF for (τT , τ I , τF) and it will cause no ambiguity.

3. Single-Valued Neutrosophic Closure Space and Single-Valued Neutrosophic Ideal in
Šostak Sense

This section deals with the definition of single-valued neutrosophic closure space. The researchers
examine the connection between single-valued neutrosophic closure space and SVNTS based in
Šostak sense. Moreover, the researchers focused on the single-valued neutrosophic ideal notion where
they obtained fundamental properties. Based on Šostak’s sense, where a single-valued neutrosophic
ideal takes the form (S ,LT ,LI ,LF) and the mappings LT ,LI ,LF : IS → I, where (LT ,LI ,LF) are the
degree of openness, the degree of indeterminacy, and the degree of non-openness, respectively.

In this paper, S is used to refer to nonempty sets, whereas I is used to refer to closed interval [0, 1]
and Io is used to refer to the interval (0, 1]. Concepts and notations that are not described in this paper
are standard, instead, S is usually used.

Definition 9. A mapping C : IS × I0 → IS is called a single-valued neutrosophic closure operator on S if,
for everyH,R ∈ IS and r, s ∈ I0, the following axioms are satisfied:

(C1) C((0.1.1), s) = (0.1.1),
(C2)H ≤ C(H, s),
(C3) C(H, s) ∨C(R, s) = C(H∨R, s),
(C4) C(H, s) ≤ C(H, r) if s ≤ r,
(C5) C(C(H, s), s) = C(H, s).

The pair (X,C) is a single-valued neutrosophic closure space (SVNCS , f or short).
Suppose that C1 and C2 are single-valued neutrosophic closure operators on S . Then, C1 is finer

than C2, denoted by C2 ≤ C1 iff C1(H, s) ≤ C2(H, s), for everyH ∈ IS and s ∈ I0.

Theorem 1. Let (S , τTIF) be an SVNTS. Then, for any H ∈ IS and s ∈ I0, we define an operator
CτTIF : IS × I0 → IS as follows:

CτTIF (H, s) =
∧
{R ∈ IX : H ≤ R, τT(1−R) ≥ s, τ I(1−R) ≤ 1− s, τF(1−R) ≤ 1− s}.

Then, (S ,CτTIF ) is an SVNCS .

Proof. Suppose that (S , τTIF) is an SVNTS. Then, C1, (C2) and (C4) follows directly from the
definition of CτTIF .

(C3) SinceR,H ≤ H∪R,CτTIF(R, s) ≤ CτTIF(H∪R, s) andCτTIF(H, s) ≤ CτTIF(H∪R, s), therefore,

CτTIF (H, s) ∪CτTIF (R, s) ≤ CτTIF (H∪R, s).

Let (X, τTIF) be an SVNTS. From (C2), we have

H ≤ CτTIF (H, s), τT(1−CτTIF (H, s)) ≥ s, τ I(1−CτTIF (H, s)) ≤ 1− s

and τF(1−CτTIF (H, s)) ≤ 1− s,
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R ≤ CτTIF (R, s), τT(1−CτTIF (R, s)) ≥ s, τ I(1−CτTIF (R, s)) ≤ 1− s

and τF(1−CτTIF (R, s)) ≤ 1− s.

It implies thatH∪R ≤ CτTIF (H, s) ∪CτTIF (R, s),

τT(1− (CτTIF (H, s) ∪CτTIF (R, s))) = τT((1−CτTIF (H, s)) ∩ (1−CτTIF (R, s)))

≥ τT(1−CτTIF (H, s)) ∩ τT(1−CτTIF (R, s)) ≥ s,

τ I(1− (CτTIF (H, s) ∪CτTIF (R, s))) = τ I((1−CτTIF (H, s)) ∩ (1−CτTIF (R, s)))

≤ τ I((1−CτTIF (H, s)) ∪ τ I(1−CτTIF (R, s)) ≤ 1− s,

τF(1− (CτTIF (H, s) ∪CτTIF (R, s))) = τF((1−CτTIF (H, s)) ∩ (1−CτTIF (R, s)))

≤ τF(1−CτTIF (H, s)) ∪ τF(1−CτTIF (R, s)) ≤ 1− s.

Hence, CτTIF (H, s) ∪CτTIF (H∪R, s) ≥ CτTIF (H∪R, s). Therefore,

CτTIF (H, s) ∪CτTIF (H∪R, s) = CτTIF (H∪R, s).

(C5) Suppose that there exists s ∈ I0,H ∈ IS , and κ ∈ S such that

CτTIF (CτTIF (H, s), s)(κ) > CτTIF (H, s)(κ).

By the definition of CτTIF , there exists D ∈ IS with D ≥ H, and τT(1−D) ≥ s, τ I(1−D) ≤ 1− s and
τF(1−D) ≤ 1− s such that

CτTIF (CτTIF (H, s), s)(κ) > D(κ) ≥ CτTIF (H, s)(κ).

Since CτTIF (H, s) ≤ D and τT(1−D) ≥ s, τ I(1−D) ≤ 1− s, and τF(1−D) ≤ 1− s, by the definition
of CτTIF (CτTIF ), we have

CτTIF (CτTIF (H, s), s) ≤ D.

It is a contradiction. Thus, CτTIF (CτTIF (H, s), s) = CτTIF (H, s). Hence, CτTIF is a single-valued
neutrosophic closure operator on S .

Theorem 2. Let (S ,C) be an SVNCS andH ∈ S . Define the mapping τTIF
C : IS → I on S by

τT
C(H) =

⋃
{s ∈ I0 | C(1−H, s) = 1−H},

τ I
C(H) =

⋂
{1− s ∈ I0 | C(1−H, s) = 1−H},

τF
C(H) =

⋂
{1− s ∈ I0 | C(1−H, s) = 1−H},

Then,

(1) τTIF
C is an SVNTS on S ;

(2) CτTIF
C

is finer than C.
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Proof. (SVNT1) Let (S ,C) be an SVNCS . Since C((0.1.1), r) = (0.1.1) and C(1, 0, 0), r) = (1, 0, 0) for
every s ∈ I0, (SVNT1).

(SVNT2) Let (S ,C) be an SVNCS . Suppose that there existsH1,H2 ∈ IS such that

τT
C(H1 ∩H2) < τT

C(H1) ∩ τT
C(H2), τ I

C(H1 ∩H2) > τ I
C(H1) ∪ τ I

C(H2),

τF
C(H1 ∩H2) > τF

C(H1) ∪ τF
C(H2).

There exists s ∈ I0 such that

τT
C(H1 ∩H2) < s < τT

C(H1) ∩ τT
C(H2), τ I

C(H1 ∩H2) > 1− s > τ I
C(H1) ∪ τ I

C(H2),

τF
C(H1 ∩H2) > 1− s > τF

C(H1) ∪ τF
C(H2).

For each i ∈ {1, 2}, there exists s ∈ I0 with C(Hi, si) = 1−Hi such that

s < si ≤ τT
C(Hi), τ I

C(Hi) ≤ 1− si < 1− s, τF
C(Hi) ≤ 1− si < 1− s.

In addition, since (1−Hi, r) = 1−Hi by C2 and C4 of Definition 9, for any i ∈ {1, 2},

C((1−H1) ∪ (1−H2), s) = (1−H1) ∪ (1−H2).

It follows that τT
C(H1 ∩H2) ≥ s, τ I

C(H1 ∩H2) ≤ 1− s, and τF
C(H1 ∩H2) ≤ 1− s. It is a contradiction.

Thus, for every H,R ∈ IS , τT
C(H ∩ R) ≥ τT

C(H) ∩ τT
C(B), τ I

C(H ∩ R) ≤ τ I
C(H) ∪ τ I

C(R),
and τF

C(H∩R) ≤ τF
C(H) ∪ τF

C(R).
(SVNT3) Suppose that there existsH =

⋃
i∈I Hi ∈ IS such that

τT
C(H) <

⋃
i∈I

τT
C(Hi), τ I

C(H) >
⋃
i∈I

τ I
C(Hi), τF

C(H) >
⋃
i∈I

τF
C(Hi).

There exists s0 ∈ I0 such that

τT
C (H) < s0 <

⋃
i∈I

τT
C(Hi), τ I

C(H) > 1− s0 >
⋃
i∈I

τ I
C(Hi), τF

C(H) > 1− s0 >
⋃
i∈I

τF
C(Hi).

For every i ∈ I, there exists C(Hi, si) = 1−Hi and si ∈ I0 such that

s0 < si ≤ τT
C(Hi), 1− s0 > 1− si ≥ τ I

C(Hi), 1− si > 1− s0 ≥ τF
C(Hi).

In addition, since C(1−Hi, r0) ≤ C(1−Hi, si) = 1−Hi, by C2 of Definition 9,

C(1−Hi, s0) = 1−Hi.

It implies, for all i ∈ I,

C(1−H, s0) ≤ C(1−Hi, s0) = 1−Hi.

It follows that

C(1−H, r0) ≤
⋂
i∈J

(1−Hi) = 1−H.
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Thus, CI(1 − H, s0) = 1 − H, that is, τT
C(H) ≥ s0, τ I

C(H) ≤ 1 − s0, and τF
C(H) ≤ 1 − s0. It is a

contradiction. Hence, τTIF
C is an SVNTS on S .

(2) SinceH ≤ C(H, r),

τT
C(1−C(H, s)) ≥ s, τ I

C(1−C(H, s)) ≤ 1− s, τF
C(1−C(H, s)) ≤ 1− s.

From C5 of Definition 9, we have CτTIF
C

(H, s) ≤ C(H, s). Thus, CτTIF
C

is finer than C.

Example 1. Let S = {a, b}. Define B,H,A ∈ IS as follows:

B = 〈(0.2, 0.2), (0.3, 0.3), (0.3, 0.3)〉;H = 〈(0.5, 0.5), (0.1, 0.1), (0.1, 0.1)〉.

We define the mapping C : IS × I0 → IS as follows:

C(A, s) =



(0.1.1), if A = (0.1.1), s ∈ I0,
B ∩H, if 0 6= A ≤ B ∩H, 0 < r < 1

2 ,
B, if A ≤ B,A 6≤ H, 0 < r < 1

2 ,
or 0 6= A ≤ B 1

2 < r < 2
3 ,

H, if A ≤ H,A 6≤ B, 0 < r < 1
2 ,

B ∪H, if 0 6= A ≤ B ∪H, 0 < r < 1
2 ,

1, otherwise.

Then, C is a single-valued neutrosophic closure operator.
From Theorem 2, we have a single-valued neutrosophic topology (τT

C , τ I
C, τF

C) on S as follows:

τT
C(A) =



1, if A = (1, 0, 0) or (0, 1, 1),
2
3 , if A = Bc,
1
2 , if A = Hc,
1
2 , if A = Bc ∪Hc,
1
2 , if A = Bc ∩Hc,
0, otherwise.

τ I
C(A) =



0, if A = (1, 0, 0) or (0, 1, 1),
1
3 , if A = Bc,
1
2 , if A = Hc,
1
2 , if A = Bc ∪Hc,
1
2 , if A = Bc ∩Hc,
1, otherwise.

τF
C(A) =



0, if A = (1, 0, 0) or (0, 1, 1),
1
3 , if A = Bc,
1
2 , if A = Hc,
1
2 , if A = Bc ∪Hc,
1
2 , if A = Bc ∩Hc,
1, otherwise.

Thus, the τTIF
C is a single-valued neutrosophic topology on S .

Definition 10. A single-valued neutrosophic ideal (SVNI) on S in Šostak’s sense on a nonempty set S is a
family LT ,LI ,LF of single-valued neutrosophic sets in S satisfying the following axioms:
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(L1) LT(0) = 1 and LI(0) = LF(0) = 0.
(L2) IfH ≤ B, then LT(R) ≤ LT(H), LI(R) ≥ LI(H), and LF(R) ≥ LF(H), for each single-valued

neutrosophic setR,H in IS .
(L3) LT(R∪H) ≥ LT(R) ∩ LT(H), LI(R∪H) ≤ LI(R) ∪ LI(H), and LF(R∪H) ≤ LF(R) ∪

LF(H), for each single-valued neutrosophic setR,H in IS .
If L1 and L2 are SVNI on S , we say that L1 is finer than L2, denoted by L1 ≤ L2, iff LT

1 (H) ≤ LT
2 (H),

LI
1(H) ≥ LI

2(A), and LF
1 (H) ≥ LF

2 (H), forH ∈ IS .
The triable (X, (τT , τ I , τF), (LT ,LI ,LF) is called a single-valued neutrosophic ideal topological space in

Šostak sense (SVNITS, f or short).
We will occasionally write LTIF, LTIF

i , and LTIF : IX → I for (LT ,LI ,LF), (LT
i ,LI

i ,LF
i ), and

LT ,LI ,LF : IS → I, respectively.

Remark 1. The conditions (L2) and (L3), which are given in Definition 10, are equivalent to the following
axioms: LT(H ∪R) = LT(H) ∩ LT(R), LI(H ∪R) 6= LI(H) ∪ LI(R), and LF(H ∪R) 6= LF(H) ∪
LF(R), for everyR,H ∈ IS .

Example 2. Let S = {a, b}. Define the single-valued neutrosophic setsR, C,H,A and (LT ,LT ,LT) : IS →
I as follows:

R = 〈(0.3, 0.5), (0.4, 0.5), (0.5, 0.5)〉; C = 〈(0.3, 0.4), (0.5, 0.5), (0.3, 0.4)〉,

H = 〈(0.1, 0.2), (0.5, 0.5), (0.5, 0.5)〉.

LT(A) =


1, if B = (0.1.1),
1
2 , if A = R,
2
3 , if (0.1.1) < A < R,
0, otherwise.

LI(A) =


0, if A = (0.1.1),
1
2 , if A = C,
1
4 , if (0.1.1) < A < C,
1, otherwise.

LT(B) =


0, if A = (0, 1, 1),
1
2 , if A = H,
1
4 , if (0.1.1) < A < H,
1, otherwise.

Then, LTIF is an SVNI on S .

Remark 2.

(i) If LT(1) = 1, LI(1) = 0, and LF(1) = 0, then LTIF is called a single-valued neutrosophic proper ideal.
(ii) If LT(1) = 0, LI(1) = 1, and LF(1) = 1, then LTIF is called a single-valued neutrosophic improper

ideal.

Proposition 1. Let {LTIF
i }i∈J be a family o f SVNI on S . Then, their intersection

⋂
i∈J LTIF

i is also SVNI.

Proof. Directly from Definition 7.
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Proposition 2. Let {LTIF
i }i∈J be a family o f SVNI on S . Then, their union

⋃
i∈J LTIF

i is also an SVNI.

Proof. Directly from Definition 7.

4. Single-Valued Neutrosophic Ideal Open Local Function in Šostak Sense

In this section, we study the single-valued neutrosophic ideal open local function in Šostak’s sense
and present some of their properties. Additionally, properties preserved by single-valued neutrosophic
ideal open compatible are examined.

Definition 11. Let s, t, p ∈ I0 and s + t + p ≤ 3. A single-valued neutrosophic point xs,t,r of S is the
single-valued neutrosophic set in IS for each κ ∈ H, defined by

xs,t,p(κ) =

{
(s, t, p), if x = κ,
(0, 1, 1), if x 6= κ.

A single-valued neutrosophic point xs,t,p is said to belong to a single-valued neutrosophic set
H = 〈TH, IH, FH〉 ∈ IS , denoted by xs,t,p ∈ H iff s < TH, t ≥ IH and p ≥ FH. 1. We indicate the set
of all single-valued neutrosophic points in S as SVNP(S).

For every xs,t,p ∈ SVNP(S) andH ∈ IS we shall write xs,t,p quasi-coincident withH, denoted by
xs,t,pqH, if

s + TH(κ) > 1, t + IH(κ) ≤ 1, p + FH(κ) ≤ 1.

For everyR,H ∈ S we shall writeHqR to mean thatH is quasi-coincident withR if there exists
κ ∈ S such that

TH(κ) + TR(κ) > 1, IH(κ) + IR(κ) ≤ 1, FH(κ) + FR(κ) ≤ 1.

Definition 12. Let (S , τTIF) be an SVNTS. For each r ∈ I0, H ∈ IS , xs,t,p ∈ SVNP(S), a single-valued
neutrosophic open QτTIF -neighborhood of xs,t,p is defined as follows:

QτTIF (xs,t,p, r) = {H|(xs,t,p)qH, τT(H) ≥ r, τ I(H) ≤ 1− r, τF(H) ≤ 1− r}.

Lemma 1. A single-valued neutrosophic point xs,t,p ∈ CτTIF (R, r) iff every single-valued neutrosophic open
QτTIF -neighborhood of xs,t,p is quasi-coincident withH.

Definition 13. Let (S , τTIF) be an SVNTS for each H ∈ IS . Then, the single-valued neutrosophic ideal
open local functionH?

r (τ
TIF,LTIF) ofH is the union of all single-valued neutrosophic points xs,t,p such that if

R ∈ QτTIF (xs,t,p, r) and LT(C) ≥ r, LI(C) ≤ 1− r, LF(C) ≤ 1− r, then there is at least one κ ∈ S for
which TR(κ) + TH(κ)− 1 > TC(κ), IR(κ) + IH(κ)− 1 ≤ IC(κ), and FR(κ) + FH(κ)− 1 ≤ FC(κ).

Occasionally, we will writeH?
r forH?

r (τ
TIF,LTIF) and it will have no ambiguity.

Example 3. Let (S , τTIF,LTIF) be an SVNITS. The simplest single-valued neutrosophic ideal on S is
LTIF

0 : IS → I, where

LTIF
0 (R) =

{
1, if R = (1, 0, 0),
0, otherwise.

If we take LTIF = LTIF
0 , for eachH ∈ IS we haveH?

r = CτTIF (H, r).
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Theorem 3. Let (S , τTIF) be an SVNTS and LTIF
1 ,LTIF

2 ∈ SVNI(S). Then, for anyH,R ∈ IS and r ∈ I0,
we have

(1) IfH ≤ R, thenH?
r ≤ R?

r ;
(2) If LT

1 ≤ LT
2 , LI

1 ≥ LI
2 and LF

1 ≥ LF
2 , thenH?

r (LTIF
1 , τTIF) ≥ H?

r ((LTIF
2 , τTIF);

(3) H?
r = CτTIF (A?

r , r) ≤ CτTIF (H, r);
(4) (H?

r )
?
r ≤ H?

r ;
(5) (H?

r ∨R?
r ) = (H∨R)?r ;

(6) If LT(H) ≥ r, LI(R) ≤ 1− r, and LF(R) ≤ 1− r then (H∨R)?r = A?
r ∨R?

r = H?
r ;

(7) If τT(R) ≥ r, τ I(R) ≤ 1− r, and τF(R) ≤ 1− r, then (R∧H?
r ) ≤ (R∧H)?r ;

(8) (H?
r ∧R?

r ) ≥ (H∧R)?r .

Proof. (1) Suppose thatH ∈ IS andH?
r 6≤ R?

r . Then, there exists κ ∈ S and s, t, p ∈ I0 such that

TH?
r (κ) ≥ s > TR?

r (κ), IH?
r (κ) < t ≤ IR?

r (κ), FH?
r (κ) < p ≤ FR?

r (κ). (1)

Since TR?
r (κ) < s, IR?

r (κ) ≥ t, and FR?
r (κ) ≥ p. Then, there exists D ∈ Q(τTIF)(xs,t,p, r), LT(C) ≥ r,

LI(C) ≤ 1− r, and LF(C) ≤ 1− r such that for any κ1 ∈ S ,

TD(κ1) + TR(κ1)− 1 ≤ TC(κ1), ID(κ1) + IR(κ1)− 1 > IC(κ1), FD(κ1) + FR(κ1)− 1 > FC(κ1).

SinceH ≤ R,

TD(κ1) + TH(κ1)− 1 ≤ TC(κ1), ID(κ1) + IH(κ1)− 1 > IC(κ1), FD(κ1) + FH(κ1)− 1 > FC(κ1).

So, TH?
r (κ) < s, IH?

r (κ) ≥ t, and FH?
r (κ) ≥ p and we arrive at a contradiction for Equation (1). Hence,

H?
r ≤ R?

r .
(2) SupposeH?

r (LTIF
1 , τTIF) 6≥ H?

r (LTIF
2 , τTIF). Then, there exists s, t, p ∈ I0 and κ ∈ S such that

TH?
r (LTIF

1 ,τTIF)(κ) < s ≤ TH?
r (LTIF

2 ,τTIF)(κ),

IH?
r (LTIF

1 ,τTIF)(κ) ≥ t > IH?
r (LTIF

2 ,τTIF)(κ), (2)

FH?
r (LTIF

1 ,τTIF)(κ) ≥ p > FH?
r (LTIF

2 ,τTIF)(κ).

Since TH?
r (LTIF

1 ,τTIF)(κ) < s, IH?
r (LTIF

1 ,τTIF)(κ) ≥ t, and FH?
r (LTIF

1 ,τTIF)(κ) ≥ p, D ∈ QτTIF (xs,t,p, r) with

LT
1 (C) ≥ r, LI

1(C) ≤ 1− r and LF
1 (C) ≤ 1− r. Thus, for every κ1 ∈ S ,

TD(κ1) + TH(κ1)− 1 ≤ TC(κ1), ID(κ1) + IH(κ1)− 1 > IC(κ1), FD(κ1) + FH(κ1)− 1 > FC(κ1).

Since LT
2 (C) ≥ LT

1 (C)) ≥ r, LI
2(C) ≤ LI

1(C)) ≤ 1− r, and LF
2 (C) ≤ LF

1 (C)) ≤ 1− r,

TD(κ1) + TH(κ1)− 1 ≤ TC(κ1), ID(κ1) + IH(κ1)− 1 > IC(κ1), FD(κ1) + FH(κ1)− 1 > FC(κ1).

Thus, TH?
r (LTIF

2 ,τTIF)(κ) < s, IH?
r (LTIF

2 ,τTIF)(κ) ≥ t, and FH?
r (LTIF

2 ,τTIF)(κ) ≥ p. This is a contradiction for

Equation (2). Hence,H?
r ((LTIF

1 , τTIF)) ≥ H?
r ((LTIF

2 , τTIF)).
(3)(⇒) SupposeH?

r 6≤ CτTIF (H, r). Then, there exists s, t, p ∈ I0 and κ ∈ S such that

TH?
r (κ) ≥ s > TC

τTIF (H,r)(κ), IH?
r (κ) < t ≤ IC

τTIF (H,r)(κ), FH?
r (κ) < p ≤ FC

τTIF (H,r)(κ). (3)
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Since TH?
r (κ) ≥ s, IH?

r (κ) < t and FH?
r (κ) < p, xs,t,p ∈ H?

r . So there is at least one κ1 ∈ S for every
D ∈ QτTIF (xs,t,p, r) with LT

1 (C) ≥ r, LI
1(C) ≤ 1− r, LF

1 (C) ≤ 1− r such that

TD(κ1) + TH(κ1) > TC(κ1) + 1, ID(κ1) + IH(κ1) ≤ IC(κ1) + 1, FD(κ1) + FH(κ1) ≤ FC(κ1) + 1.

Therefore, by Lemma 1, xs,t,p ∈ CτTIF (H, r) which is a contradiction for Equation (3). Hence,
H?

r ≤ CτTIF (H, r).
(⇐) SupposeH?

r 6≥ CτTIF (H?
r , r). Then, there exists s, t, p ∈ I0 and κ ∈ S such that

TH?
r (κ) < s ≤ TC

τTIF (H?
r ,r)(κ), IH?

r (κ) ≥ t > IC
τTIF (H?

r ,r)(κ), FH?
r (κ) ≥ p > FC

τTIF (H?
r ,r)(κ). (4)

Since TC
τTIF (H?

r ,r)(κ) ≥ t, IC
τTIF (H?

r ,r)(κ) < s, CτTIF (H?
r , r)(κ) < p we have xs,t,p ∈ CτTIF (H?

r , r). So,
there is at least one κ1 ∈ S withR ∈ QτTIF (xs,t,p, r) such that

TR(κ1) + TH?
r (κ1) > 1, IR(κ1) + IH?

r (κ1) ≤ 1, FR(κ1) + FH?
r (κ1) ≤ 1.

Therefore, H?
r (κ1) 6= 0. Let s1 = TH?

r (κ1), t1 = IH?
r (κ1), and p1 = FH?

r (κ1). Then, (κ1)s1,t1,p1 ∈ H∗r
and s1 + TR(κ1) > 1, t1 + IR(κ1) ≤ 1, and p1 + FR(κ1) ≤ 1 so that R ∈ QτTIF ((κ1)s1,t1,p1 , r). Now,
(κ1)s1,t1,p1 ∈ H?

r implies there is at least one κ
′ ∈ S such that TD(κ

′
) + TH(κ

′
)− 1 > TC(κ

′
), ID(κ

′
) +

IH(κ
′
)− 1 ≤ IC(κ

′
), and FD(κ

′
)+ FH(κ

′
)− 1 ≤ FC(κ

′
), for allLT(C) ≥ r, LI(C) ≤ 1− r, LF(C) ≤ 1− r,

and D ∈ QτTIF ((κ1)s1,t1,p1 , r). That is also true for R. So there is at least one κ
′′ ∈ S such that

TR(κ
′′
) + TH(κ

′′
)− 1 > TC(κ

′′
), IR(κ

′′
) + IH(κ

′′
)− 1 ≤ IC(κ

′′
), and FR(x

′′
) + FH(κ

′′
)− 1 ≤ FC(κ

′′
).

Since R ∈ QτTIF (κs,t,p, r) and R is arbitrary; then TH?
r (κ) > s, IH?

r (κ) ≤ t and TH?
r (κ) ≤ p. It is a

contradiction for (4). Thus,H?
r ≥ CτTIF (H?

r , r).
(4) (⇒) Can be easily established using standard technique.
(5) (⇒) Since H,R ≤ H ∪R. By (1), H?

r ≤ (H ∪R)?r and R?
r ≤ (H ∪R)?r . Hence, H?

r ∪ B?r ≤
(H∪R)?r .

(⇐) Suppose (H?
r ∪R?

r ) 6≥ (H∪R)?r . Then, there exists s, t, p ∈ I0 and κ ∈ S such that

T(H?
r ∪R?

r )
(κ) < s ≤ T(H∪R)?r (κ), I(H?

r ∪R?
r )
(κ) ≥ t > I(H∪R)?r (κ), F(H?

r ∪R?
r )
(κ) ≥ p > F(H∪R)?r (κ). (5)

Since T(H?
r ∪R?

r )
(κ) < s, I(H?

r ∪R?
r )
(κ) ≥ t, and F(H?

r ∪R?
r )
(κ) ≥ p, we have TH?

r (κ) < s, IH?
r (κ) ≥ t,

FH?
r (κ) ≥ p or TR?

r (κ) < t, IR?
r (κ) ≥ t, FR?

r (κ) ≥ t. So, there exists D1 ∈ QτTIF (xs,t,p, r) such that for
every κ1 ∈ S and for some LT(C1) ≥ r, LI(C1) ≤ 1− r, LF(C1) ≤ 1− r, we have

TD1(κ1) + TH(κ1)− 1 ≤ TC1(κ1), ID1(κ1) + IH(κ1)− 1 > IC1(κ1), FD1(κ1) + FH(κ1)− 1 > FC1(κ1).

Similarly, there exists D2 ∈ QτTIF (xs,t,p, r) such that for every κ1 ∈ S and for some LT(C2) ≥ r,
LI(C2) ≤ 1− r, LF(C2) ≤ 1− r, we have

TD2(κ1) + TH(κ1)− 1 ≤ TC2(κ1), ID2(κ1) + IH(κ1)− 1 > IC2(κ1), FD2(κ1) + FH(κ1)− 1 > FC2(κ1).

Since D = D1 ∧D2 ∈ QτTIF (xs,t,p, r) and by (L3), LT(C1 ∪ C2) ≥ LT(C1) ∩ LT(C2) ≥ r, LI(C1 ∪ C2) ≤
LI(C1) ∪ LI(C2) ≤ 1− r, and LF(C1 ∪ C2) ≤ LT(C1) ∪ LT(C2) ≤ 1− r. Thus, for every κ1 ∈ S ,

TD(κ1) + TR∪H(κ1)− 1 ≤ TC1∪C2(κ1),

ID(κ1) + IR∪H(κ1)− 1 ≥ IC1∪C2(κ1),

FD(κ1) + FR∪H(κ1) ≥ FC1∪C2(κ1).

Therefore, T(H∪R)?r (κ) < s, I(H∪R)?r (κ) ≥ t, and F(H∪R)?r (κ) ≥ p. So, we arrive at a contradiction for
(5). Hence, (H?

r ∪R?
r ) ≥ (H∪R)?r .

(6), (7), and (8) can be easily established using the standard technique.
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Example 4. Let S = {a, b}. DefineR, C,H ∈ S as follows:

R1 = 〈(0.5, 0.5, 0.5), (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)〉; R2 = 〈(0.4, 0.4, 0.4), (0.1, 0.1, 0.1), (0.1, 0.1, 0.1)〉;

R3 = 〈(0.3, 0.3, 0.3), (0.1, 0.1, 0.1), (0.1, 0.1, 0.1); C1 = 〈(0.3, 0.3, 0.3), (0.3, 0.3, 0.3), (0.1, 0.1, 0.1)〉;

C2 = 〈(0.2, 0.2, 0.2), (0.2, 0.2, 0.2), (0.1, 0.1, 0.1); C3 = 〈(0.1, 0.1, 0.1), (0.1, 0.1, 0.1), (0.1, 0.1, 0.1)〉.

Define τTIF,LTIF : IX → I as follows:

τT(H) =


1, if H = (0, 1, 1),
1, if H = (1, 0, 0),
1
2 , if H = R1;

LT(H) =


1, if H = (0, 1, 1),
1
2 , if H = C1,
2
3 , if 0 < H < C1;

τ I(H) =


0, if H = (0, 1, 1),
0, if H = (1, 0, 0),
1
2 , if H = R2;

LI(R) =


0, if H = (0, 1, 1),
1
2 , if H = C2,
1
4 , if 0 < H < C2;

τF(H) =


0, if H = (0, 1, 1),
0, if H = (1, 0, 0),
1
2 , if H = R3;

LF(H) =


0, if H = (0, 1, 1),
1
2 , if H = C3,
1
4 , if 0 < H < C3.

Let G = 〈(0.4, 0.4, 0.4), (0.4, 0.4, 0.4), (0.4, 0.4, 0.4)〉. Then, G?1
2
= R1.

Theorem 4. Let {Hi}i∈J ⊂ IS be a family of single-valued neutrosophic sets on S and (S , τTIF,LTIF) be an
SVNITS. Then,

(1) (
⋃
(Hi)

?
r : i ∈ J) ≤ (

⋃Hi : i ∈ J)?r ;
(2) (

⋂
(Hi)

?
r : i ∈ J) ≥ (

⋂Hi : i ∈ J)?r .

Proof. (1) Since Hi ≤ ⋃Hi for all i ∈ J, and by Theorem 3 (1), we obtain
(
⋃
(Hi)

?
r , i ∈ J) ≤ (

⋃Hi, i ∈ J)?r . Then, (1) holds.
(2) Easy, so omitted.

Remark 3. Let (S , τTIF,LTIF) be an SVNITS andH ∈ IS , we can define

C?
τTIF (H, r) = H∪H?

r , int?τTIF (H, r) = H∧ [1− (1−H)?r ].

It is clear, C?
τTIF is a single-valued neutrosophic closure operator and (τT?(LT), τ I?(LI), τF?(LF) is the

single-valued neutrosophic topology generated by C?
τTIF , i.e.,

τ?(I)(H) =
⋃
{r| C?

τTIF (1−H, r) = 1−H}.

Now, if LTIF = LTIF
0 , then, C?

τTIF (H, r) = H∗r ∪ H = C?
τTIF (H, r) ∪ H = CτTIF (H, r), for H ∈ IS . So,

τTIF?(LTIF
0 ) = τTIF.

Proposition 3. Let (S , τTIF,LTIF) be an SVNITS, r ∈ I0, andH ∈ IS . Then,

(1) C?
τTIF (1, r) = 1;

Florentin Smarandache (ed.) Collected Papers, VI

909



(2) C?
τTIF (0, r) = 0;

(3) int?
τTIF (H∪R, r) ≤ int?

τTIF (H, r) ∪ int?
τTIF (R, r);

(4) int?
τTIF (H, r) ≤ H ≤ C?

τTIF (H, r) ≤ CτTIF (H, r);
(5) C?

τTIF (1−H, r) = 1− int?
τTIF (H, r) and 1−C?

τTIF?(H, r) = int?
τTIF (1−H, r);

(6) int?
τTIF (H∩R, r) = int?

τTIF (H, r) ∩ int?
τTIF (R, r).

Proof. Follows directly from definitions of C?
τTIF , int?

τTIF , CτTIF , and Theorem 3 (5).

Theorem 5. Let (S , τTIF
1 ,LTIF) and (S , τTIF

2 ,LTIF) be SVNTS′s and τTIF
1 ≤ τTIF

2 . Then,
H?

r (τ
TIF
2 ,LTIF) ≤ H?

r (τ
TIF
1 ,LTIF).

Proof. SupposeH?
r (τ

TIF
2 ,LTIF) 6≤ H?

r (τ
TIF
1 ,LTIF). Then, there exists s, t, p ∈ I0, κ ∈ S such that

TH?
r (τ

TIF
2 ,LTIF)(κ) ≥ s > TH?

r (τ
TIF
1 ,LTIF)(κ),

IH?
r (τ

TIF
2 ,LTIF)(κ) < t ≤ IH?

r (τ
TIF
1 ,LTIF)(κ), (6)

FH?
r (τ

TIF
2 ,LTIF)(κ) < t ≤ FH?

r (τ
TIF
1 ,LTIF)(κ).

Since TH?
r (τ

TIF
1 ,LTIF)(κ) < s, IH?

r (τ
TIF
1 ,LTIF)(κ) ≥ t, FH?

r (τ
TIF
1 ,LTIF)(κ) ≥ p, there exists D ∈ QτTIF

1
(xs,t,p, r)

with LT(C1) ≥ r, LI(C1) ≤ 1− r and LF(C1) ≤ 1− r, such that for any κ1 ∈ S ,

TD(κ1) + TH(κ1)− 1 ≤ TCκ1), ID(κ1) + IH(κ1)− 1 > IC(κ1), FD(κ1) + FH(κ1)− 1 > FC(κ1).

Since τTIF
1 ≤ τTIF

2 , D ∈ QτTIF
2

(xs,t,p, r). Thus, TH?
r (τ

TIF
2 ,LTIF)(κ) < s, IH?

r (τ
TIF
2 ,LTIF))(κ) ≥ t,

FH?
r (τ

TIF
2 ,LTIF)(κ) ≥ p. It is a contradiction for Equation (6).

Theorem 6. Let (S , τTIF,LTIF
1 ) and (S , τTIF,LTIF

2 ) be SVNTS′s and LTIF
1 ≤ LTIF

2 . Then,
H?

r (LTIF
1 , τTIF) ≥ H?

r (LTIF
2 , τTIF).

Proof. Clear.

Definition 14. Let Θ be a subset of IS , and 0 6∈ Θ. A mapping βT , βI , βF : Θ → I is called a single-valued
neutrosophic base on S if it satisfies the following conditions:

(1) βT(1) = 1 and βI(1) = βF(1) = 0;
(2) For allH,R ∈ Θ,

βT(H∩R) ≥ βT(H) ∩ βT(R), βI(H∩R) ≤ βI(H) ∪ βI(R), βF(H∩R) ≤ βF(H) ∪ βF(R).

Theorem 7. Define a mapping β : Θ→ I on S by

βI(H) =
⋃
{τT(R) ∩ IT(C)| H = R∩ (1− C)},

βI(H) =
⋂
{τ I(R) ∪ I I(C)| H = R∩ (1− C)},

βF(H) =
⋂
{τF(R) ∪ IF(C)| H = R∩ (1− C)}.
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Then, βTIF is a base for the single-valued neutrosophic topology τTIF?.

Proof.

(1) Since LT(0) = 1 and LI(0) = LF(0) = 0, we have βT(1) = 1 and βI(1) = βF(1) = 0;
(2) Suppose that there existsH1,H2 ∈ Θ such that

βT(H1 ∩H2) 6≥ βT(H1) ∩ βT(H2),

βI(H1 ∩H2) 6≤ βI(H1) ∪ βI(H2),

βF(H1 ∩H2) 6≤ βF(H1) ∪ βF(H2).

There exists s, t, p ∈ I0 and κ ∈ S such that

βT(H1 ∩H2)(κ) < s ≤ βT(H1)(x) ∩ βT(H2)(κ),

βI(H1 ∩H2)(κ) ≥ t > βI(H1)(κ) ∩ βI(H2)(κ), (7)

βF(H1 ∩H2)(κ) ≥ p > βF(H1)(κ) ∪ βF(H2)(κ).

Since βT(H1)(κ) ≥ s, βI(H1)(κ) < t, βF(H1)(κ) < p, and βT(H2)(κ) ≥ s, βI(H2)(κ) < t,
βF(H2)(κ) < p, then there existsR1,R1, C1, C2 ∈ Θ withH1 = R1 ∩ (1−C1) andH2 = R2 ∩ (1−C2),
such that βT(H1) ≥ τT(R1) ∩ LT(C1) ≥ s, βI(H1) ≤ τ I(R1) ∪ LI(C1) < t, βF(H1) ≤
τF(R1) ∪ LF(C1) < p, and βT(H2) ≥ τT(R2) ∩ LT(C2) ≥ s, βI(H2) ≤ τ I(R2) ∪ LI(C2) < t,
βF(H2) ≤ τF(R2) ∪ LF(C2) < p. Therefore,

H1 ∩H2 = (R1 ∩ (1− C1)) ∩ (R2 ∩ (1− C2))

= (R1 ∩R2) ∩ ((1− C1) ∩ (1− C2))

= (R1 ∩R2) ∩ (1− (C1 ∪ C2)).

Hence, from Definition 14, we have

βT(H1 ∩H2) ≥ τT(R1 ∩R2) ∩ LT(C1 ∪ C2)

≥ τT(R1) ∩ τT(R2) ∩ LT(C1) ∩ LT(C2)

= (τT(R1) ∩ LT(C1)) ∩ (τT(R2) ∩ LT(C2)) ≥ s,

βI(H1 ∩H2) ≤ τ I(R1 ∩R2) ∪ LI(C1 ∪ C2)

≤ τ I(R1) ∪ τ I(R2) ∪ LI(C1) ∪ LI(C2)

= (τ I(R1) ∪ LF(C1)) ∪ (τ I(R2) ∪ LI(C2)) < t,

βF(H1 ∩H2) ≤ τF(R1 ∩R2) ∪ LF(C1 ∪ C2)

≤ τF(R1) ∪ τF(R2) ∪ LF(C1) ∪ LF(C2)

= (τF(R1) ∪ LF(C1)) ∪ (τF(R2) ∪ LF(C2)) < p.

It is a contradiction for Equation (7). Thus,

βT(H1 ∩H2) ≥ βT(H1) ∩ βT(H2), βI(H1 ∩H2) ≤ βI(H1) ∪ βI(H2), βF(H1 ∩H2) ≤ βF(H1) ∪ βF(H2).
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Theorem 8. Let (S , τTIF) be an SVNTS, and LTIF
1 and LTIF

1 be two single-valued neutrosophic ideals on S .
Then, for every r ∈ I0 andH ∈ IS ,

(1) H?
r (LTIF

1 ∩ LTIF
2 , τTIF) = H?

r (LTIF
1 , τTIF) ∪H?

r (LTIF
2 , τTIF),

(2) H?
r (LTIF

1 ∪ LTIF
2 , τ) = H?

r (LTIF
1 , τT?(LTIF

2 )) ∩H?(LTIF
2 , τT?(LTIF

1 )).

Proof. (1) Suppose thatH?
r (LTIF

1 ∩LTIF
2 , τTIF) 6≤ H?

r (LTIF
1 , τTIF)∪H?

r (LTIF
2 , τTIF), there exists κ ∈ S

and s, t, p ∈ I0 such that

TH?
r (LT

1 ∩L
T
2 ,τT)(κ) ≥ s > TH?

r (LT
1 ,τT)(κ) ∪ TH?

r (LT
2 ,τT)(κ), (8)

IH?
r (LI

1∩L
I
2,τ I)(κ) < t ≤ IH?

r (LI
1,τ I)(κ) ∪ IH?

r (LI
2,τ I)(κ),

FH?
r (LF

1∩L
F
2 ,τF)(κ) < p ≤ FH?

r (LF
1 ,τF)(κ) ∩ FH?

r (LF
2 ,τF)(κ).

Since TH?
r (LT

1 ,τT)(κ) ∪ TH?
r (LT

2 ,τT)(κ) < s, IH?
r (LI

1,τ I)(κ) ∩ IH?
r (LI

2,τ I)(κ) ≥ t, FH?
r (LF

1 ,τF)(κ) ∩
FH?

r (LF
2 ,τF)(κ) ≥ p, we have, TH?

r (LT
1 ,τT)(κ) < s, IH?

r (LI
1,τ I)(κ) ≥ t, FH?

r (LF
1 ,τF)(κ) ≥ p, and

IH?
r (LI

2,τ I)(κ) < s, IH?
r (LI

2,τ I)(κ) ≥ t , FH?
r (LF

2 ,τF)(κ) ≥ p.

Now, TH?
r (LT

1 ,τT)(κ) < s, IH?
r (LI

1,τ I)(κ) ≥ t, FH?
r (LF

1 ,τF)(κ) ≥ p implies that there exists D1 ∈
QτTIF (xs,t,p, r) and for some LT

1 (C1) ≥ r, LI
1(C1) ≤ 1− r and LF

1 (C1) ≤ 1− r such that for every
κ1 ∈ S ,

TD1(κ1) + TH(κ1)− 1 ≤ TC1(κ1), ID1(κ1) + IH(κ1)− 1 ≥ IC1(κ1), FD1(κ1) + FH(κ1)− 1 ≥ FC1(κ1).

Once again, TH?
r (LT

2 ,τT)(κ) < s, IH?
r (LI

2,τ I)(κ) ≥ t, FH?
r (LF

2 ,τF)(κ) ≥ p, implies there exists D2 ∈
QτTIF (xs,t,p, r) and for some LT

2 (C2) ≥ r, LI
2(C2) ≤ 1− r and LF

2 (C2) ≤ 1− r, such that for κ1 ∈ S ,

TD2(κ1) + TH(κ1)− 1 ≤ TC2(κ1), ID2(κ1) + IH(κ1)− 1 ≥ IC2(κ), FD2(κ1) + FH(κ1)− 1 ≥ FC2(κ1),

Therefore, for every κ1 ∈ S , we have

TD1∩D2(κ1) + TH(κ1)− 1 ≤ TC1∩C2(κ1), ID1∪D2(κ1) + IH(κ1)− 1 ≥ IC1∪C2(κ1),

FD1∪D2(κ1) + FH(κ1)− 1 ≥ FC1∪C2(κ1).

Since (D1 ∧D2) ∈ QτTIF (xs,t,p, r) and (LT
1 ∩ LT

2 )(C1 ∩ C2) ≥ r, (LI
1 ∩ LI

2)(C1 ∪ C2) ≤ 1− r, and (LF
1 ∩

LF
2 )(C1 ∪ C2) ≥ 1− r we have TH?

r (LT
1 ∩L

T
2 ,τT)(κ) ≤ s, IH?

r (LI
1∩L

I
2,τ I)(κ) > t, and FH?

r (LF
1∩L

F
2 ,τF)(κ) > t

and this is a contradiction for Equation (8). So that

H?
r (LTIF

1 ∩ LTIF
2 , τTIF) ≤ H?

r (LTIF
1 , τTIF) ∪H?

r (LTIF
2 , τTIF).

On the opposite direction, LTIF
1 ≥ LTIF

1 ∩ LTIF
2 and LTIF

2 ≥ LTIF
1 ∩ LTIF

2 , so by Theorem 3 (2),

H?
r (LTIF

1 ∩ LTIF
2 , τT) ≥ H?

r (LTIF
1 , τTIF) ∪H?

r (LTIF
2 , τTIF).

Then,

H?
r (LTIF

1 ∩ LTIF
2 , τTIF) = H?

r (LTIF
1 , τTIF) ∪H?

r (LTIF
2 , τTIF).
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(2) Straightforward.

The above theorem results in an important consequence. τTIF?(LTIF) and [τTIF?(LTIF)]?(LTIF)

(in short τ??) are equal for any single-valued neutrosophic ideal on S .

Corollary 1. Let (S , τTIF,LTIF) be an SVNITS. For every r ∈ I0 and H ∈ IX, H?
r (LTIF) =

H?
r (LTIF, τTIF?) and τTIF?(LTIF) = τTIF??.

Proof. Putting LTIF
1 = LTIF

2 in Theorem 8 (2), we have the required result.

Corollary 2. Let (S , τTIF) be an SVNTS, and LTIF
1 and LTIF

1 be two single-valued neutrosophic ideals on S .
Then, for anyH ∈ IS and r ∈ I0,

(1) τT?(LTIF
1 ∪ ITIF

2 ) = (τTIF?(LTIF
2 ))?(LT

1 ) = (τTIF?(LTIF
1 ))?(LT

2 ),
(2) τT?(LTIF

1 ∩ LTIF
2 ) = τTIF?(LTIF

1 ) ∩ τT?(LTIF
2 ).

Proof. Straightforward.

Definition 15. For an SVNTS (S , τTIF) with a single-valued neutrosophic ideal ITIF, τTIF is said to be
single-valued neutrosophic ideal open compatible with ITIF, denoted by τTIF ∼ LTIF, if for each H, C ∈ IS

and xs,t,p ∈ H with LT(C) ≥ r, LI(C) ≤ 1− r, and LF(C) ≤ 1− r, there exists D ∈ QτTIF (xt, r) such that
TD(κ) + TH(κ)− 1 ≤ TC(κ), ID(κ) + IH(κ)− 1 > IC(κ), and FD(κ) + FH(κ)− 1 > FC(κ) holds for any
κ ∈ S , then LT(H) ≥ r, LI(H) ≤ 1− r and LF(H) ≤ 1− r.

Definition 16. Let {Rj}j∈J be an indexed family of a single-valued neutrosophic set of S such that RjqH
for each j ∈ J, where H ∈ IS . Then, {Rj}j∈J is said to be a single-valued neutrosophic quasi-cover of H iff
TH(κ) + T∨

j∈J(Rj)
(κ) ≥ 1, IH(κ) + I∨

j∈J(Rj)
(κ) < 1, and FH(κ) + F∨

j∈J(Rj)
(κ) < 1, for every κ ∈ S .

Further, let (S , τTIF) be an SVNTS, for each τT(Rj) ≥ r, τ I(Rj) ≤ 1− r, and τF(Rj) ≤ 1− r.
Then, any single-valued neutrosophic quasi-cover will be called single-valued neutrosophic quasi
open-cover ofH.

Theorem 9. Let (S , τTIF) be an SVNTS with single-valued neutrosophic ideal LTIF on S . Then, the following
conditions are equivalent:

(1) τ ∼ L.
(2) If for every H ∈ IS has a single-valued neutrosophic quasi open-cover of {Rj}j∈J such that for each

j, TH(κ) + TRj(κ) − 1 ≤ TC(κ), IH(κ) + IRj(κ) − 1 > IC(κ), and FH(κ) + FRj(κ) − 1 > FC(κ)
for every κ ∈ S and for some LT(C) ≥ r, LI(C) ≤ 1− r, and LF(C) ≤ 1− r, then LT(H) ≥ r,
LI(H) ≤ 1− r, and LF(H) ≤ 1− r,

(3) For everyH ∈ IS ,H∧H?
r = (0, 1, 1) implies LT(H) ≥ r, LI(H) ≤ 1− r, and LF(H) ≤ 1− r,

(4) For every H ∈ IS , LT(H̃) ≥ r, LI(H̃) ≤ 1− r, and LF(H̃) ≤ 1− r, where H̃ =
∨

xs,t,p such that
xs,t,p ∈ H but xs,t,p 6∈ H∗r ,

(5) For every τT?(1−H) ≥ r, τ I?(1−H) ≤ 1− r, and τF?(1−H) ≤ 1− r we have LT(H̃) ≥ r,
LI(H̃) ≤ 1− r, and LF(H̃) ≤ 1− r,

(6) For every H ∈ IS , if A contains no R 6= (0, 1, 1) with R ≤ R?
r , then LT(H) ≥ r, LI(H) ≤ 1− r,

and LF(H) ≤ 1− r.

Proof. It is proved that most of the equivalent conditions ultimately prove the all the equivalence.
(1)⇒(2): Let {Rj}j∈J be a single-valued neutrosophic quasi open-cover ofH ∈ IS such that for

j ∈ J, TH(κ) + TRj(κ)− 1 ≤ TC(κ), IH(κ) + IRj(κ)− 1 > IC(κ), and FH(κ) + FRj(κ)− 1 > FC(κ) for
every κ ∈ R and for some LT(C) ≥ r, LI(C) ≤ 1− r, and LF(C) ≤ 1− r. Therefore, as {Rj}j∈J is a
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single-valued neutrosophic quasi open-cover of R, for each xs,t,p ∈ H, there exists at least one Rj◦
such that xs,t,pqRj◦ and for every κ ∈ S , TH(κ) + TRj◦(κ)− 1 ≤ TC(κ), IH(κ) + IRj◦(κ)− 1 > IC(κ),
and FH(κ) + FRj◦(κ) − 1 > FC(κ) for every κ ∈ S and for some LT(C) ≥ r, LI(C) ≤ 1 − r and
LF(C) ≤ 1− r. Obviously, Rj◦ ∈ QτTIF (xs,t,p, r). By (1), we have LT(H) ≥ r, LI(H) ≤ 1− r, and
LF(H) ≤ 1− r.

(2)⇒(1): Clear from the fact that a collection of {Rj}j∈J , which contains at least one Rj◦ ∈
QτT IF(xs,t,p, r) of each single-valued neutrosophic point ofH, constitutes a single-valued neutrosophic
quasi-open cover ofH.

(1)⇒(3): Let H ∩ H?
r = (0, 1, 1), for every κ ∈ S , xt ∈ H implies xs,t,p 6∈ H?

r . Then, there
exists D ∈ QτTIF (xs,t,p, r) and LT(C) ≥ r, LI(C) ≤ 1− r, LF(C) ≤ 1− r such that for every κ ∈ S ,
TD(κ) + TH(κ)− 1 ≤ TC(κ), ID(κ) + IH(κ)− 1 > IC(κ), and FD(κ) + FH(κ)− 1 > FC(κ). Since D ∈
QτTIF (xs,t,p, r), By (1), we have LT(H) ≥ r, LI(H) ≤ 1− r, and LF(H) ≤ 1− r.

(3)⇒(1): For every xs,t,p ∈ H, there exists D ∈ QτTIF (xs,t,p, r) such that for every κ ∈ S , TD(κ) +
TH(κ)− 1 ≤ TC(κ), ID(κ) + IH(κ)− 1 > IC(κ), and FD(κ) + FH(κ)− 1 > FC(κ), for some LT(C) ≥ r,
LI(C) ≤ 1− r, LF(C) ≤ 1− r. This implies xs,t,p 6∈ H?

r . Now, there are two cases: eitherH?
r = (0, 1, 1)

or H?
r 6= (0, 1, 1) but s > TH?

r (κ) 6= 0, t ≤ IH?
r (κ) 6= 1, and p ≤ FH?

r (κ) 6= 1. Let, if possible,
xs,t,p ∈ H such that t > TH?

r (κ) 6= 0, t ≤ IH?
r (κ) 6= 1, and t ≤ FH?

r (κ) 6= 1. Let s′ = TH?
r (κ) 6= 0,

t′ = IH?
r (κ) 6= 1, and p′ = FH?

r (κ) 6= 1. Then, xs′ ,t′ ,p′ ∈ H∗r (κ). In addition, xs′ ,t′ ,p′ ∈ H. Thus, for every
V ∈ QτTIF (xs,t,p, r), for every LT(C) ≥ r, LI(C) ≤ 1− r, and LF(C) ≤ 1− r, there is at least one κ ∈ S
such that TV (κ) + TH(κ)− 1 > TC(κ), IV (κ) + IH(κ)− 1 ≤ IC(κ), and FV (κ) + FH(κ)− 1 ≤ FC(κ).
Since xs,t,p ∈ H, this contradicts the assumption for every single-valued neutrosophic point ofH. So,
H?

r = (0, 1, 1). That means xs,t,p ∈ H implies xs,t,p 6∈ H∗r . Now this is true for every H ∈ IS . So, for
any H ∈ IS , H∩H?

r = (0, 1, 1). Hence, by (3), we have LT(H) ≥ r, LI(H) ≤ 1− r, LF(H) ≤ 1− r,
which implies τTIF ∼ LTIF.

(3)⇒(4): Let xs,t,pinH̃. Then, xs,t,p ∈ H but xs,t,p 6∈ H?
r . So, there exists a D ∈ QτTIF (xs,t,p, r) such

that for every κ ∈ S , TD(κ) + TH(κ)− 1 ≤ TC(κ), ID(κ) + IH(κ)− 1 > IC(κ), and FD(κ) + FH(κ)−
1 > FC(κ), for some LT(C) ≥ r, LI(C) ≤ 1− r, LF(C) ≤ 1− r. Since H̃ ≤ H, for every κ ∈ S ,
TD(κ) + TH̃(κ)− 1 ≤ TC(κ), ID(κ) + IH̃(κ)− 1 > IC(κ), and FD(κ) + FH̃(κ)− 1 > FC(κ), for some
LT(C) ≥ r, LI(C) ≤ 1− r and LF(C) ≤ 1− r. Therefore, xs,t,p 6∈ H̃?

r implies that H̃?
r = (0, 1, 1) or

H̃?
r 6= (0, 1, 1) but s > TH̃?

r
, t ≤ IH̃?

r
, and p ≤ FH̃?

r
. Let xs′ ,t′ ,p′ in SVNP(S) such that s′ ≤ TH̃?

r
(κ) < s,

t ≤ IÃ?
r
(κ) < t′, and p ≤ FH̃?

r
(κ) < p′, i.e., xs′ ,t′ ,p′ ∈ H̃?

r . Then, for each V ∈ QτTIF (xs′ ,t′ ,p′ , r)
and for each LT(C) ≥ r, LI(C) ≤ 1 − r, LF(C) ≤ 1 − r, there is at least one κ ∈ S such that
TV (κ) + TH̃(κ)− 1 > TC(κ), IV (κ) + IH̃(κ)− 1 ≤ IC(κ), and FV (κ) + FH̃(κ)− 1 ≤ FC(κ). Since H̃ ≤
H, then for each V ∈ QτTIF (xs′ ,t′ ,p′ , r) and for each LT(C) ≥ r, LI(C) ≤ 1 − r, LF(C) ≤ 1 − r,
there is at least one κ ∈ S such that TV (κ) + TH(κ) − 1 > TC(κ), IV (κ) + IH(κ) − 1 ≤ IC(κ), and
FV (κ) + FH(κ)− 1 ≤ FC(κ). This implies xs′ ,t′ ,p′ ∈ H?

r . But as s′ < s, t′ < t, and p′ < p, xs,t,p ∈ H̃
implies xs′ ,t′ ,p′ ∈ H̃, and therefore, xs′ ,t′ ,p′ 6∈ H?

r . This is a contradiction. Hence,H?
r = (0, 1, 1), so that

xs,t,p ∈ H̃ implies xs,t,p 6∈ H̃?
r with H̃?

r = (0, 1, 1). Thus, H̃ ∩ H̃∗r = 0, for everyH ∈ IX . Hence, by (3),
LT(H̃) ≥ r, LI(H̃) ≤ 1− r, and LF(H̃) ≤ 1− r.

(4)⇒(5): Straightforward.
(4)⇒(6): Let H ∈ IS and H ≤ R 6= (0, 1, 1) with R ≤ R?

r . Then, for any H ∈ IS , H =

H̃ ∪ (H∩H?
r ). Therefore,H?

r = (Ã ∪ (H∩H?
r ))

?
r = H̃?

r ∪ (H∩H?
r )

?
r . by Theorem 3 (5).

Now, by (4), we have LT(H̃) ≥ r, LI(H̃) ≤ 1− r, and LF(H̃) ≤ 1− r, then H̃?
r = (0, 1, 1). Hence,

(H ∩ H?
r )

?
r = H?

r but H ∩ H?
r ≤ H?

r , then H ∩ A?
r ≤ (H ∩ H?

r )
?
r . This contradicts the hypothesis

about every single-valued neutrosophic set H ∈ IS , if (0, 1, 1) 6= R ≤ H with R ≤ R?
r . Therefore,

H∩H?
r = (0, 1, 1), so thatH = H̃ by (4), we have LT(H) ≥ r, LI(H) ≤ 1− r, and LF(H) ≤ 1− r.

(6)⇒(4): Since, for every H ∈ IS , H ∩ H?
r = (0, 1, 1). Therefore, by (6), as H contains no

non-empty single-valued neutrosophic subset R with R ≤ R?
r , LT(H) ≥ r, LI(H) ≤ 1− r, and

LF(H) ≤ 1− r.
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(5)⇒(1): For every H ∈ IS , xs,t,p ∈ H, there exists an D ∈ QτTIF (xs,t,p, r) such that TD(κ) +
TH(κ)− 1 ≤ TC(κ), ID(κ) + IH(κ)− 1 > IC(κ), and FD(κ) + FH(κ)− 1 > FC(κ) holds for every κ ∈ S
and for some LT(H) ≥ r, LI(H) ≤ 1− r, and LF(H) ≤ 1− r. This implies xs,t,p 6∈ H?

r . Let R =

H∪H∗r . Then,R∗r = (H∪H∗r )?r = H?
r ∪ (H?

r )
?
r = H?

r by Theorem 3(4). So, C?
τTIF (R, r) = R∪R?

r = R.
That means τT?(1−R) ≥ r, τ I?(1−R) ≤ 1− r, and τF?(1−R) ≤ 1− r. Therefore, by (5), we have
LT(R) ≥ r, LI(R) ≤ 1− r, and LF(R) ≤ 1− r.

Once again, for any xs,t,p in SVNP(X), xs,t,p 6∈ R̃?
r implies xs,t,p ∈ R but xs,t,p 6∈ R?

r = H?
r So,

as B = H∨H?
r , xs,t,p ∈ H. Now, by hypothesis aboutH. Then, for any xs,t,p ∈ H?

r . So, R̃ = H. Hence,
LT(H) ≥ r, LI(H) ≤ 1− r, and LF(H) ≤ 1− r, i.e., τTIF ∼ LTIF.

Theorem 10. Let (S , τTIF) be an SVNTS with single-valued neutrosophic ideal LTIF on S . Then, the
following are equivalent and implied by τ ∼ L.

(1) For everyH ∈ IS ,H∧H?
r = (0, 1, 1) impliesH∗r = (0, 1, 1);

(2) For anyH ∈ IS , H̃?
r = (0, 1, 1);

(3) For everyH ∈ IS ,H∧H?
r = H?

r .

Proof. Clear from Theorem 9.

The following corollary is an important consequence of Theorem 10.

Corollary 3. Let τTIF ∼ LTIF. Then, β(τTIF,LTIF) is a base for τTIF? and also β(τTIF,LTIF) = τTIF?.

Definition 17. LetH,R ∈ SVNS on S . IfH is a single-valued neutrosophic relation on a set S , thenH is
called a single-valued neutrosophic relation on B if, for every κ, κ1 ∈ S ,

TR(κ, κ1) ≤ min(TH(κ), TH(κ1)),
IR(κ, κ1) ≥ max(IH(κ), IH(κ1)), and
FR(κ, κ1) ≥ max(FH(κ), FH(κ1)).

A single-valued neutrosophic relationH on S is called symmetric if, for every κ, κ1 ∈ S ,

TH(κ, κ1) = TH(κ1, κ), IH(κ, κ1) = IH(κ1, κ), FH(κ, κ1) = FH(κ1, κ); and

TR(κ, κ1) = TR(κ1, κ) IR(κ, κ1) = IR(κ1, κ), FR(κ, κ1) = FR(κ1, κ).

In the purpose of symmetry, we can replace Definition 3 with Definition 17.

5. Conclusions

In this paper, we defined a single-valued neutrosophic closure space and single-valued neutrosophic
ideal to study some characteristics of neutrosophic sets and obtained some of their basic properties.
Next, the single-valued neutrosophic ideal open local function, single-valued neutrosophic ideal
closure, single-valued neutrosophic ideal interior, single-valued neutrosophic ideal open compatible,
and ordinary single-valued neutrosophic base were introduced and studied.

Discussion for further works:
We can apply the following ideas to the notion of single-valued ideal topological spaces.

(a) The collection of bounded single-valued sets [53];
(b) The concept of fuzzy bornology [54];
(c) The notion of boundedness in topological spaces. [54].
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In the last decade, opinion mining and sentiment analysis have been the subject of fascinating interdis-
ciplinary research. Alongside the evolution of social media networks, the sheer volume of social media
text available for sentiment analysis has increased multi-fold, leading to a formidable corpus. Sentiment
analysis of tweets have been carried out to gauge public opinion on breaking news, various policies,
legislations, personalities and social movements. Fuzzy logic has been used in the sentiment analysis of
twitter data, whereas neutrosophy which factors in the concept of indeterminacy has not been used to
analyse tweets. In this paper, the concept of multi refined neutrosophic set (MRNS) with two positive,
three indeterminate and two negative memberships is proposed. Single valued neutrosophic set (SVNS),
triple refined indeterminate neutrosophic set (TRINS) and MRNS have been used in the sentiment anal-
ysis of tweets on ten different topics. Eight of these topics chosen for sentiment analysis are related to
Indian scenario and two topics to international scenario. A comparative analysis of the methods show
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that the approach with MRNS provides better refinement to the indeterminacy present in the data.
. Introduction

The evolution of public opinion as an influential force in the
olitical sphere can be dated back to French revolution in 17th cen-
ury [1]. The analysis of public opinion began in the 20th century.
pinion mining is a research domain that has seen speedy evolution

n the preceding decade. In a contemporary trend mostly sentiment
nalysis is carried out on social media texts from Twitter and Face-
ook. A recent review paper on sentiment analysis states that more
han 7000 research papers have been published on this topic and
hat modern sentiment analysis has established a 50-fold growth in
ver ten years (2005 to 2016) [2]. Conventional sentiment analysis
oes not deal with a neutral or an indeterminate opinion, it merely

ives an overall opinion as positive or negative.

Fuzzy theory has been helpful in improving sentiment analysis
echniques on twitter data [3]. Fuzzy set theory [4] that permits

918
soft partition of sets, is stretched to Intuitionistic Fuzzy Set (A-IFS),
in which a membership and a non-membership degree is allotted
to every single constituent element [5], whereas in neutrosophic
set, an indeterminacy membership is represented independently,
together with truth membership and falsity membership to sepa-
rately represent indeterminate, unpredictable, vague and uncertain
information from the real world [6]. It simplifies from a philosoph-
ical point of view the idea of several sets, and its functions; TA(x),
IA(x), and FA(x) and the functions are real standard or non-standard
subsets for any object x in the universal space of points or objects.

Wang et al. [7] presented a single valued neutrosophic set
(SVNS), to achieve an improved solution to the problem of apply-
ing neutrosophy in real world scientific and engineering problems.
Neutrosophy and neutrosophic logic have found manifold applica-
tions in real world practical problems like image processing [8–10],
decision-making [11–18], social network analysis [19] and social
issues [20,21] etc.

In double valued neutrosophic set (DVNS) [22,23], an indetermi-

nacy membership of the neutrosophic set has been characterised
into two memberships to enable more accuracy in the indeter-
minacy present. Distance measure, cross entropy measure, dice
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easure, and clustering algorithm of DVNS was introduced and
tudied in [22,24]. The indeterminacy notion was separated into
hree, as indeterminacy inclined towards truth, indeterminacy and
ndeterminacy inclined towards false memberships in triple refined
ndeterminate neutrosophic set (TRINS), to improve the accuracy
nd precision of the uncertain data and to adapt it to the Likert’s
cale which is a habitually used psychometric scale. It was utilized
or personality testing and classification [25]. TRINS was refined
ecently with positive, positive indeterminate, indeterminate, neg-
tive indeterminate and negative memberships, to give the finest
onceivable mapping of the Likert scaling. This was defined as inde-
erminate likert scaling [26,27].

To capture the indeterminacy present in sentiment analysis of
weets, neutrosophy is used. Multi refined neutrosophic set (MRNS)
ith 2 positive, 3 indeterminate and 2 negative memberships is

ntroduced and utilized for sentiment analysis. These seven mem-
erships aid in capturing the polarity with better accuracy.

Section one is preliminary in nature. The rest of the paper is
lanned as follows: Section two presents some elementary con-
epts about sentiment analysis and different neutrosophic sets
ike SVNS, DVNS, TRINS and refined neutrosophic sets. In section
hree MRNS with 3 indeterminate memberships is defined and
ts properties are discussed. Section four discusses the limitation
nd problems with normal sentiment analysis and provides justi-
cation for using indeterminacy in sentiment analysis. In section
ve, sentiment analysis using neutrosophy is proposed. In the next
ection sentiment analysis of tweets of eight domestic and two
nternational issues using three neutrosophic sets namely SVNS,
RINS and MRNS is carried out. Evaluations and discussions of these
ifferent models are analyzed in section seven. A sample topic from
emEval 2017 is taken for comparative analysis of our models.
esults and further probable studies in this direction are provided

n the last section.

. Basic concepts

.1. Sentiment Analysis

News articles, blogs, film reviews and social media information
ave been investigated extensively to comprehend public opinion.
ypically, tweets are scrutinized and classified as positive, neutral
r negative; this methodology is carried out to discover how society

s feeling about a specific trending topic. Usually keyword-based
ools are used to classify data (mostly social media posts, news,
eviews, etc.) as positive or neutral or negative.

With the increase in data available online from early 2000, mod-
rn sentiment analysis started to take shape in mid-2000s. It has
esulted in various concepts like web product reviews [28], predic-
ion of financial markets [29], reactions to terrorist attacks [30] and

ulti-lingual support [31].
Sentiment analysis overlaps or relies heavily on information and

nowledge management, data mining, text mining, web mining,
atural language processing (NLP) and computational linguistics.
ecently work is being carried out in evolving from humble polar-

ty detection to complex gradations of emotions and distinguishing
egative emotions such as anger from grief [32] and figurative lan-
uage [33].

Irony detection [34–36] has a huge impact on sentiment anal-
sis, since they write the opposite of what they feel. Recent deep
earning based approaches like transfer learning have been applied
n irony detection [37], aspect-based sentiment analysis using

Florentin Smarandache (ed.)
ttentive long short-term memory (LSTM) [38], word vectors rep-
esentations for sentiment analysis [39] and capsule networks for
entiment classification [40]. Other deep learning techniques used
n sentiment analysis are reviewed in [41,42].
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Fuzzy theory has been used for sentiment analysis in [3,43].
Fuzzy theory captures the positive and negative of the topic but
fails to address the indeterminacy present. To address the indeter-
minacy present, the concept of neutrosophy in the form of SVNS,
TRINS and MRNS are used to analyse the twitter data. Recently in
[44] sentiment analysis of tweets about #MeToo movement, each
tweet was analysed and represented as SVNS.

The discussion about the tools and methodology used for sen-
timent analysis in this paper are carried out in later sections. We
briefly describe the notion of neutrosophy, SVNS and TRINS in the
following subsection.

2.2. Neutrosophy, SVNS and TRINS

Neutrosophy, studies an opinion or sentiment, “A” and its rela-
tion to its opposite sentiment, “anti-A” and not A, “non-A”, and as
neither “A” nor “anti-A”.

Definition 1. Let X be a space of points (objects) with generic
elements x in X. The set A in X is characterized by three func-
tions TA(x) truth membership, IA(x) indeterminacy membership,
and FA(x) falsity membership. For each x ∈ X, TA(x), IA(x), FA(x) ∈ [0,
1] and 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3. Single valued neutrosophic set
(SVNS) A is represented by A = {〈x, TA(x), IA(x), FA(x)〉 | x ∈ X} .

The refined neutrosophic set [45] is defined as follows:

Definition 2. The truth T is divided into several types of truths:
T1, T2, . . ., Tp, and I into various indeterminacies: I1, I2, . . ., Ir, and F
into various falsities: F1, F2, . . ., Fs, where all p, r, s ≥ 1 are integers,
and p + r + s = n.

Definition 3. A triple refined indeterminate neutrosophic set
(TRINS) A in X, as given above is characterized by positive PA(x),
positive indeterminate IPA(x), indeterminate IA(x), negative inde-
terminate INA(x) and negative NA(x) membership functions. Each
has a weight wm ∈ [0,5] associated with it. For each x ∈ X, there
are

PA(x), IPA(x), IA(x), INA(x), NA(x) ∈ [0, 1], with weightswmP (PA(x)),
wmIP

(IPA(x)), wmI (IA(x)), wmIN (INA(x)), wmN (NA(x)) ∈ [0, 5],
and 0 ≤ PA(x) + IPA(x) + IA(x) + INA(x) + NA(x) ≤ 5.
Therefore, TRINS A can be represented by
A = {〈x, PA(x), IPA(x), IA(x), INA(x), NA(x)〉 | x ∈ X}.

The different properties and set theoretic operators like commu-
tativity, idempotency, distributivity, associativity, absorption and
the DeMorgan’s Laws have been defined over TRINS [25]. As future
research it is proposed to map the middle 3 terms of TRINS to neu-
trosophic triplets [46] and then they can be automatically mapped
to neutrosophic duplets [47,48] in case of the indeterminacy lean-
ing towards false is zero.

Neutrosophy has been applied to several different fields rang-
ing from medical diagnosis [49,50] image processing [51], decision
making [52,53], personnel selection [54], supply chain manage-
ment [55,56], internet of things [57], psychology [25,58] and social
science [21,59], but has not been used in sentiment analysis, until
recently in [44].

3. Multi refined neutrosophic set (MRNS)

In the newly proposed Multi refined neutrosophic set (MRNS),
the concept of positive (truth) is divided into two memberships,
as strong positive and positive, similarly the concept of negative
(false) is divided into two memberships as strong negative and

Collected Papers, VI
negative. Also the indeterminate membership is divided into three
memberships as positive indeterminate, indeterminate and nega-
tive indeterminate. This division helps in increasing the accuracy
and precision in data analysis and fits the multipoint likert scale



k
T

D
i
i
N
t
x

T

c
r
b
s

E
w
w
a
d

+ 〉/w

〈 /w3

D

1
2
3
4
5
6
7

D

1
2
3
4
5
6
7

t

p

D
i

D
w
b

1
2
3
4
5

ind of structure where there are different degrees of acceptance.
his refined neutrosophic set is defined as MRNS.

efinition 4. A multi refined neutrosophic set (MRNS) A in X
s characterized by strong positive SPA(x), positive PA(x), positive
ndeterminate PIA(x), indeterminate IA(x), negative indeterminate
IA(x), negative NA(x) and strong negative SNA(x) membership func-

ions. Each has a weight wm ∈ [0,7] associated with it. For each
∈ X, there are

SPA(x), PA(x), PIA(x), IA(x), NIA(x), NA(x), SNA(x) ∈ [0, 1],
and 0 ≤ SPA(x) + PA(x)+ PIA(x)+ IA(x)+ NIA(x)+ NA(x)+ SNA(x) ≤ 7.

herefore, a MRNS A can be represented by
A = {〈x, SPA(x), PA(x), PIA(x), IA(x), NIA(x), NA(x), SNA(x)〉 | x ∈ X}.

To illustrate the applications of MRNS in a real world problem,
onsider parameters like work satisfaction, occupational stress and
ole of technology that are commonly used to measure work-life
alance. The evaluation of work-life balance is used to illustrate
et-theoretic operations on MRNSs.

xample 1. LetWL = [w1,w2,w3] wherew1 is work satisfaction,
2 is occupational stress andw3 is role of technology. The values of
1,w2 andw3 are in [0, 1]. They are obtained using a questionnaire

nswered by an anonymous working women. A is a MRNS of WL
efined by

A = 〈0.3,0.2,0.1,0.2,0.1,0.2,0.5〉/w1
〈0.4,0.1,0.1,0.1,0.2,0.2,0.3〉/w2 + 〈0.5,0.2,0.2,0.1,0,0.1,0.1

B is a MRNS of WL defined by
B = 〈0.4,0.2,0.1,0.2,0.2,0.1,0.2〉/w1 +

0.2,0.2,0,0.1,0.1,0.2,0.4〉/w2 + 〈0.4,0.2,0.1,0.1,0.1,0.2,0.3〉
efinition 5. The complement c(A) of A is defined as

SPc(A)(x) = SNA(x)
Pc(A)(x) = NA(x)
PIc(A)(x) = 1 − PIA(x)
Ic(A)(x) = 1 − IA(x)
NIc(A)(x) = 1 − NIA(x)
Nc(A)(x) = PA(x)
SNc(A)(x) = SPA(x) for all x in X.

efinition 6. A is contained in B, that is A ⊆ B, if and only if

SPA(x) ≤ SPB(x)
PA(x) ≤ PB(x)
PIA(x) ≤ PIB(x)
IA(x) ≤ IB(x)
NIA(x) ≤ NIB(x)
NA(x) ≥ NB(x)
SNA(x) ≥ SNB(x) for all x in X.

Note that by the definition of containment relation, X is a par-
ially ordered set and not a totally ordered set.

For example, consider the MRNS A and B as mentioned in Exam-
le 1, then A is not contained in B and vice versa.

efinition 7. Two MRNS A and B are equal, that is A = B, if and only
f A ⊆ B and B ⊆ A.

efinition 8. The union of A and B is a MRNS G, denoted as G = A ∪ B,
hose seven membership functions are related to those of A and B

y the following

SPG(x) = max(SPA(x), SPB(x))

Florentin Smarandache (ed.)
PG(x) = max(PA(x), PB(x))
PIG(x) = max(PIA(x), PIB(x))
IG(x) = max(IA(x), IB(x))
NIG(x) = max(NIA(x), NIB(x))

920
3.

.

6 NG(x) = min(NA(x), NB(x))
7 SNG(x) = min(SNA(x), SNB(x)) for all x in X.

Definition 9. The intersection of A and B is a MRNS F, denoted as
F = A ∩ B, whose seven membership functions are related to those of
A and B by the following

1 SPF(x) = min(SPA(x), SPB(x))
2 PF(x) = min(PA(x), PB(x))
3 PIF(x) = min(PIA(x), PIB(x))
4 IF(x) = min(IA(x), IB(x))
5 NIF(x) = min(NIA(x), NIB(x))
6 NF(x) = max(NA(x), NB(x))
7 SNF(x) = max(SNA(x), SNB(x)) for all x ∈ X.

Theorem 1. A ∩ B is the largest MRNS contained in both A and B.

Proof. It is straightforward from the definition of intersection
operator. �

Definition 10. The difference D, written as D = A B, whose seven
membership functions are related to those of A and B by

1 SPD(x) = min(SPA(x), SNB(x))
2 PD(x) = min(PA(x), NB(x))
3 PID(x) = min(PIA(x), 1 − PIB(x))
4 ID(x) = min(IA(x), 1 − IB(x))
5 NID(x) = min(NIA(x), 1 − NIB(x))
6 ND(x) = max(NA(x), PB(x))
7 SND(x) = max(SNA(x), SPB(x)) for all x in X.

Two operators positive favourite (�) and negative favourite (�)
are defined to remove the indeterminacy in the MRNSs and trans-
form it into intuitionistic fuzzy sets or paraconsistent sets. Similarly
a MRNS can be transformed into a SVNS by applying the indetermi-
nacy neutral (∇) operator that combines the indeterminacy values
of the MRNS.

Definition 11. The positive favourite of A represented as B = � A,
whose membership functions are related to those of A by

1 TB(x) = min(SPA(x) + PA(x) + PIA(x), 1)
2 FB(x) = NA(x)

Definition 12. The negative favourite of A, represented as B = � A,
whose membership functions are related to those of A by

1 TB(x) = PA(x)
2 FB(x) = min(SNA(x) + NA(x) + NIA(x), 1)

Definition 13. The indeterminacy neutral of a MRNS A, written as
B = ∇ A, whose membership functions are related to those of A by

1 TB(x) = min(SPA(x) + PA(x), 1)
2 ITB(x) = min(PIA(x) + IA(x) + NIA(x), 1)
3 FB(x) = min(SNA(x) + NA(x), 1)

The set theoretic operators like commutativity, associativity,
distributivity, idempotency, absorption, involution and De Mor-
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gan’s Laws are similar to the ones defined on SVNS. MRNS satisfies
most of the properties of classical set, fuzzy set, intuitionistic fuzzy
set and SVNS. Similar to fuzzy set, IFS set, SVNS, DVNS and TRINS,
MRNS does not satisfy the principle of middle exclude.
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Table 1
Case study and data collection time line

Case study Date of data collection

Farm loan wavier (FL) 28-12-2018
Onion price (OP) 29-12-2018
Foreign trips of PM (FT) 29-12-2018
Women reservation bill (WB) 29-12-2018
Triple talaq bill (TT) 29-12-2018
POCSO act (PA) 29-12-2018
UP mob violence (UP) 30-12-2018
Trump wall (TW) 30-12-2018
Yellow vests protest (YV) 30-12-2018
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. Justification for applying indeterminacy

In opinion mining and sentiment analysis, the major division
f opinion is done in terms of positive, neutral and negative opin-

on. Mostly Likert scaling based questionnaires are used for opinion
ining. Even if Likert scaling is used in gauging the opinion of the

ser, the user is forced to select the most dominant choice. Gen-
rally, a person has feelings which actually vary from “strongly
gree” to “strongly disagree”, and which are indefinite in nature,
ostly a mixture of feelings. A little disagreement might force

he opinion from “strongly agree” to “agree”; whereas a different
erson might still choose to go ahead with the dominant opin-

on of “strongly agree” ignoring the little disagreement. A different
espondent might mark the option “neither agree nor disagree” due
o a little disagreement.

Evidently people respond differently to experiences and issues
political, economic or social in nature) while answering the ques-
ions. The questionnaire based on Likert scale will fail to capture the
eelings accurately. The respondent generally goes with the domi-
ant choice or the choice which he feels at that time or the choice
hich may be only a shade dominant than the other choice, thereby

he degree of the memberships with other choices is completely
ost. Only a measure of coarse ordinal scale with closed format is
sed by Likert method [60].

Similarly, when opinion mining is carried out on a specific topic
o gauge the public reaction; only positive, neutral or negative cat-
gorization is done. Every person will have opinion that has various
egrees of different memberships and the analysis needs to go with
he dominant choice. The innumerable degrees and choices has to
e captured accurately with greater precision; in fact, in a sensitive,
ccurate and realistic way and not in an approximate way. This will
ventually aid in better understanding of people opinion or public
r customers.

There is actually a lot of difference between someone who
s undecided and someone who is taking a neutral stance, in a

RNS, there can be a separate option for undecided, since equal
mount of agreement and disagreement can be represented in
egree of weak agreement and degree of weak disagreement, indi-
idually.

Consider the seven point Likert scale, the various options given
ill be strongly disagree, disagree, weakly disagree, neither agree

r disagree, weakly agree, agree and strongly agree. They will
et mapped in MRNS; independently and appropriately under the
even heads.

Take a typical situation were the researchers must ascertain the
ublic opinion about a political party. Usually they will project
s positive or neutral or negative opinion. If the same is ascer-
ained by making use of MRNS, the results obtained will be very
ccurate and clearly show the different degrees of strong negative,
egative, indeterminate negative, indeterminate, indeterminate
ositive, positive and strong positive memberships.

. Sentiment analysis using neutrosophy

Commonly sentiment analysis is done on tweets to classify the
weet as positive or neutral or negative. The typical scenario in
hich sentiment analysis of tweets is carried out is to discover

ow people are feeling about a specific trending topic. It is well
nown that there are many shades of agreement, disagreement
nd neutrality and there is indeterminacy involved in that neutral-
ty. Two tweets which are classified as positive need not exactly

Florentin Smarandache (ed.)
ave the same amount of positivity in them. One of them might be
ery strongly positive, whereas the other might be a little positive
nd have a lot of uncertainty or indeterminacy in it. This newly pro-
osed method of analyzing using neutrosophic sets will give greater
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complexity but the accuracy in prediction of the tweet’s polarity is
better.

5.1. Tools and methodology

A Twitter application programming interface (API) was created
and consumer key, consumer secret, access token and access token
secret were generated for obtaining tweets. Python language was
used for data analysis of the collected tweets. Tweets were fetched
from Twitter using tweepy python client. TextBlob is a Python
library that helps in processing textual data. It provides a simple
API for NLP. In our study, TextBlob was utilized for sentiment anal-
ysis. The sentiment property of TextBlob returns a tuple named
Sentiment. It is of the form Sentiment(polarity, subjectivity), it
returns two properties, polarity, and subjectivity. The polarity score
is a float value in the range [− 1.0, 1.0], where 1 means positive
statement and −1 means a negative statement. Let p(x) denote the
polarity score of the tweet. A part of the tweets extracted and used
for analysis is available at [61].

5.2. Pre-processing of the Twitter data

The presence of mention, numbers, special characters, stop-
words, hashtags, links and other jargon decreases the efficiency
of the model and hence the tweets were cleaned. Several python
libraries like pandas, numpy, matplotlib, BeautifulSoup and Word-
PunctTokenizer were used for cleaning. The cleaned tweet was
saved as.CSV file and later used for analysis, using TextBlob.

The methodology of using different neutrosophic sets are dis-
cussed below:

5.3. Using SVNS

The normal classification of tweets as positive or negative or
neutral is generally carried out. This classification is represented
as SVNS. If the polarity calculated is greater than 0, i.e., p(x) ∈ (0,
1], it is mapped to positive membership, if polarity is less than 0;
p(x) ∈ [−1, 0), it is mapped as negative membership, and if polarity
is 0 it is mapped to indeterminate membership.

In the considered scenario of farm loan (denoted by FL), from the
analysis it was obtained that, 41.90% was positive, 43.8% was inde-
terminate and 14.30% was negative as given in Table 2. Tweets are
classified as neutral, when the classifier is not able to decide on the
polarity of the tweet, that is when it is indeterminate. The aggre-
gated result is normalized before it is converted to a neutrosophic
set representation. The result of the analysis carried out is repre-

sented as SVNS is FLSVNS = 〈0.419, 0.438, 0.143〉. It is clearly seen that
positive membership and indeterminate membership have a very
small difference.



Table 2
Case 1: Farm loan waiver (FL) and Case 2: Onion prices (OP)

SVNS TRINS MRNS SVNS TRINS MRNS

SP 0.048 0.026 SP 0.025 0.012
P 0.419 0.311 0.164 P 0.253 0.228 0.036
PI 0.229 PI 0.205
I 0.438 0.438 0.438 I 0.664 0.664 0.664
NI 0.111 NI 0.059
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N 0.143 0.136 0.025 N 0.082 0.076 0.017
SN 0.007 0.007 SN 0.006 0.006

.4. Using TRINS

The classification can be made more precise by dividing the
ositive polarity tweets into two different classifications and the
egative polarity into two different classifications. The classifica-
ion is strong positive, positive, indeterminate, negative and strong
egative. If polarity of the tweet is from 1 to 0.5, i.e., p(x) ∈ (0.5,
], it is classified as strong positive, if p(x) ∈ (0, 0.5] is from 0.5 to
reater than 0, it is classified as positive, if p(x) ∈ (0) is mapped to
ndeterminate, less than 0 to −0.5 i.e., p(x) ∈ [−0.5, 0), it is classi-
ed as negative, greater than −0.5 to −1 i.e., p(x) ∈ [−1, − 0.5) is
lassified as strong negative. The data given is normalised and it is
epresented as TRINS is FLTRINS = 〈0.048, 0.371, 0.438, 0.136, 0.007〉,
n the case study of farm loan.

.5. Using MRNS

The classification is made even more precise by dividing the
ositive polarity tweets and the negative polarity tweets into three
ifferent classification. The classification scheme that is introduced

s strong positive, positive, positive indeterminate, indeterminate,
egative indeterminate, negative, strong negative. If polarity of the
weet is from +1 to greater than 0.6; p(x) ∈ (0.6, 1], it is classified
s strong positive, from 0.6 to greater than 0.3; p(x) ∈ (0.3, 0.6] it
s classified as positive, from 0.3 to greater than 0; p(x) ∈ (0, 0.3]
t is mapped as positive indeterminate, if p(x) ∈ (0); it is mapped
o indeterminate, less than 0 to −0.3, p(x) ∈ [−0.3, 0) it is classified
s negative indeterminate, lesser than −0.3 to −0.6; p(x) ∈ [−0.6,
0.3) it is mapped as negative, less than −0.6 to −1; p(x) ∈ [−1,
0.6) it is classified as strong negative. According to this classifica-

ion the results obtained is normalized and represented as MRNS
s FLMRNS = 〈0.026, 0.164, 0.229, 0.438, 0.111, 0.025, 0.007〉.

The analysis of each individual case scenario is carried out in
ext section.

. Sample case scenarios

Utilizing the twitter API created for this purpose, 1000 tweets
ere obtained for each case under consideration. Preprocessing

f the tweets were carried out to remove links and emojis, after
hich sentiment analysis was done. For each case study a back-

round is provided and then analysis of tweets is discussed. The
opic with abbreviation and the period of data collection is tabu-
ated in Table 1. All tweets collected were in English language and
rom across the world, despite some topics being related only to
ome geographic location. The 10 topics selected were trending
opics at the time of data collection, since we needed at least 1000
weets about the topic.

The analysis result of each case study is given in the form of
ables were the following abbreviations are used. In the first col-
mn, SP refers to strong positive membership value, P is positive

embership value, PI is positive indeterminate membership value,
is indeterminate membership value, NI is negative indetermi-
ate membership value, N is negative membership value and SN

s strong negative membership value. Along the header row, SVNS
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stands for single valued neutrosophic set, TRINS is triple refined
indeterminate neutrosophic set and MRNS is used for multi refined
neutrosophic set.

6.1. Case 1: Farm loan wavier by government

Introduction: Agriculture remains to be the primary source of
livelihood for nearly more than half of India’s population. The coun-
try is dependent on farmers, the systematic failures of the state
and center government to address their issues, pushes farmers to
protest regularly and in recent years many farmers have committed
suicide. Farmers have marched in Delhi and Mumbai cities to high-
light the reality of their deprivation and anger. This is due to lack
of compensation from drought and natural disasters like cyclone
etc., crop insurance scheme failures, and the deficit created due to
prices decreasing below the minimum support prices and so on.
These losses are estimated to be around thousands of crores every
year.

Most leaders of major Indian political parties have pledged their
support to the farmers issue. In late 2018, the first step taken
by three newly formed state governments (Rajasthan, Madhya
Pradesh and Chhattisgarh) was a farm loan waiver. This has under-
standably started a debate about the usefulness of loan waiver since
it is only an element of immediate relief. Farm loans and wavier
have been a topic that has invoked mixed responses from people.
Here tweets were collected about farm loan for analysis using the
search term “farm loan wavier”.

Analysis: While applying SVNS for analysis, the result obtained
is FLSVNS = 〈0.419, 0.438,0.143〉. The indeterminate and positive
membership values have little difference; hence the opinion
is indeterminate and positive opinion. Next TRINS was used
for analysing the same set of tweets, the result obtained is
FLTRINS = 〈0.048, 0.311, 0.438, 0.136, 0.007〉, which also implies an
indeterminate and positive opinion. When MRNS was applied
a change in the scenario is seen. The resultant obtained is
FLMRNS = 〈0.026, 0.164, 0.229, 0.438, 0.111, 0.025, 0.007〉; most of
the positive is indeterminate positive, even the negative opinion is
mostly indeterminate negative. It is seen that the public are unde-
cided about farm loan wavier. The resultant of each neutrosophic
representation is given in Table 2.

6.2. Case 2: Decrease in onion price

Introduction: The last weeks of December 2018 saw steep drops
in the prices of onions and potatoes in India, it crashed as much
as 86 percent. Both are staple food for the India’s huge popula-
tion, such a steep decrease has badly hit the rural economy in large
states. Onion price hit a low of Re.1 per kilogram, while it cost nearly
Rs.8 to produce one kilogram. These kind of unsteady market prices
cause more distress to farmers. This also does not benefit the urban
population because there are too many middlemen between the
farmer and customer. The search term “onion price” was used to
collect 1000 tweets for analysis.

Analysis: In SVNS representation the result obtained is
OPSVNS = 〈0.253, 0.664, 0.082〉. It is indeterminate, even though the
steep decrease in onion price, has affected the farmers adversely.
While using TRINS it is observed that OPTRINS = 〈0.025, 0.228, 0.664,
0.076, 0.006〉; it indicates that people neither have a strong neg-
ative or strong positive opinion about the price decrease, but it is
in general more positive than negative. MRNS was used to analyse
the same dataset of tweets. The resultant is OPMRNS = 〈0.012, 0.036,
0.205, 0.664, 0.059, 0.017, 0.006〉 as given in Table 2. It shows that
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even most of the positive opinion was tending towards indeter-
minacy. Hence, the indeterminate positive has the second highest
value. People who are twitter users are unaffected by the steep drop
in price which affects farmers unfavorably. More so the affected



Table 3
Case 3: Women reservation bill and Case 4: Triple talaq bill

SVNS TRINS MRNS SVNS TRINS MRNS

SP 0.005 0.004 SP 0.152 0.149
P 0.084 0.079 0.038 P 0.315 0.163 0.109
PI 0.042 PI 0.057
I 0.165 0.165 0.165 I 0.538 0.538 0.538
NI 0.019 NI 0.110
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Table 4
Case 5: POCSO act death penalty and Case 6: MeToo movement

SVNS TRINS MRNS SVNS TRINS MRNS

SP 0.001 0.001 SP 0.04 0.014
P 0.909 0.899 0.863 P 0.562 0.522 0.375
PI 0.036 PI 0.173
I 0.038 0.038 0.038 I 0.291 0.291 0.291
NI 0.052 NI 0.086

Florentin Smarandache (ed.) Collected Papers, VI
N 0.751 0.750 0.731 N 0.146 0.145 0.035
SN 0.001 0.001 SN 0.001 0.001

armers are not the tweeters; so only this opinion of tweeter clearly
eflects the situation is indeterminable.

.3. Case 3: Women reservation bill

Introduction: The women reservation bill (108th amendment to
he constitution of India) is a lapsed bill in the parliament of India
hat was proposed in 2008. It proposed to amend the constitution
f India to reserve for women 33% of all seats in the lok sabha (lower
ouse of parliament of India), and in all state legislative assemblies,

n rotational basis. With the 2019 general elections in a few months’
ime, the demand for the bill in the parliament has been gathering
upport. The bill has been around for nearly ten years and the people
ave mixed opinion. The term “women reservation bill” was used
o query and collect 1000 tweets for analysis.

Analysis: Sentiment analysis was carried out on women reser-
ation bill using SVNS. The resultant is WBSVNS = 〈0.084, 0.165,
.751〉; it clearly shows that the general public (that are on twit-
er) are against the bill. Even when TRINS is applied, the resultant

BTRINS = 〈0.005, 0.079, 0.165, 0.750, 0.001〉, shows the same sen-
iment with the value of 0.750 for negative and 0.001 for strong
egative. When MRNS is applied for analysis, the resultant obtained

s WBMRNS = 〈0.004, 0.038, 0.042, 0.165, 0.019, 0.731, 0.001〉, it shows
meagre amount of negative indeterminate (0.019), decreasing the
alue of negative membership. It is clearly seen that most people
re openly against the bill. The results are tabulated in Table 3.

.4. Case 4: Triple talaq bill

Introduction: From 2011 census, it is known that 2.37 million
omen across India have identified themselves as “separated”,

hough it is not known if these women voluntarily separated from
heir husbands or were abandoned or worse sent away. The vast

ajority (1.9 million) are hindu women, and nearly 0.28 million
ere “separated” muslim women. It is known that India‘s family

aws permit for divorce, but they also allow husbands to leave a
arriage without the divorce formalities. The salient features of

he triple talaq bill states that any declaration of talaq by a muslim
an upon his wife shall be void and illegal, shall be punished with

n imprisonment term and are liable to fine. The custom of triple
alaq is both harsh and unjust, muslim women have crusaded long
o get free of it. Despite the law, men can choose to walk out of
he marriage without saying talaq and they go free without pun-
shment. The bill does not address the issue of non-muslim women

ho are abandoned by their husbands and provide punishment for
hose people who are equally guilty of abandonment. The keyword
triple talaq bill” was used for collecting 1000 tweets for analysis.

Analysis: Using SVNS, the resultant obtained is TTSVNS = 〈0.315,
.538, 0.146〉, it clearly shows that the general public have not
ade up their mind, they are undecided, and the second leading

pinion was positive. Even when TRINS is applied, the resultant

TTRINS = 〈0.152, 0.163, 0.538, 0.145,0.001〉, shows the absence of a
trong negative, whereas the positive sentiment is divided with the
alue of 0.152 for positive and 0.163 for strong positive. When the
ewly constructed MRNS is applied, the resultant is TTMRNS = 〈0.149,
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0.109, 0.057, 0.538, 0.110, 0.035,0.001〉, a meagre amount of pos-
itive indeterminate (0.019) and negative indeterminate (0.110)
comes into picture, increasing the indeterminacy of the opinion.
It is clearly seen that mostly people are undecided about the bill.
The resultants are given in Table 3.

6.5. Case 5: Protection of children from sexual offences (POCSO)
act death penalty amendment

Introduction: The Indian cabinet has approved amendments to
the protection of children from sexual offences (POCSO) act in
December 2018, to give more stringent punishment for commit-
ting sexual crimes against children. To discourage the current trend
of child sexual abuse to act as a warning, it has been amended
to provide death penalty in case of aggravated penetrative sexual
assault on a child as option of stringent punishment. The search
term “POCSO Act” was used for collecting the tweets for analysis.

Analysis: When sentimental analysis was carried out using SVNS,
we obtained PASVNS = 〈0.909, 0.038, 0.053〉, where a 90% majority felt
it be a good move as given in Table 4. When the analysis was carried
out with TRINS, we obtained PATRINS = 〈0.001, 0.899, 0.038, 0.053, 0〉,
it was clearly seen that no one felt strongly negative about it. Peo-
ple have a positive opinion about the law. Only a meagre amount of
people had a negative opinion. Lastly, MRNS was used for analysing
the same set of tweets. The result obtained was PAMRNS = 〈0.001,
0.863, 0.036, 0.038, 0.052, 0.001, 0〉. We are clearly able to capture
that even the meagre negative is negative indeterminate; implying
that people who are not sure about the amendments in the act, but
they have some indeterminate negative opinion. Hence, we con-
clude that the negative opinion is also an indeterminate negative
making up the overall opinion to be a positive opinion.

6.6. Case 6: #Metoo movement

Introduction: In past year the “#MeToo” movement was started
against sexual harassment and assault and has gather a lot of atten-
tion and created several controversies. The term “MeToo” was used
to extract related tweets for analysis, the term is ambiguous and can
also lead to tweets unconnected to the movement.

Analysis: The result of the analysis is given in Table 4. Using SVNS,
we obtained MMSVNS = 〈0.559, 0.291, 0.144〉, where a majority have a
positive opinion. While using TRINS, we obtained MMTRINS = 〈0.04,
0.519, 0.291, 0.13, 0.014〉, it was clearly seen that the opinion is
positive. Only a meagre amount of people had a negative opin-
ion. Lastly, MRNS was used for analysis. The result obtained was
MMMRNS = 〈0.013, 0.374, 0.172, 0.291, 0.085, 0.045, 0.014〉. We could
clearly capture that even the negative is mostly negative indetermi-
nate opinion. The overall opinion happens to be a positive opinion.

6.7. Case 7: Foreign trips of prime minister
Introduction: Over Rs. 2,021 crores (from June 2014) was spent
on chartered flights, aircraft maintenance and hot-line facilities for
the Indian Prime Minister Narendra Modi’s visits to foreign coun-



Table 5
Case 7: Foreign trip and Case 8: UP mob violence

SVNS TRINS MRNS SVNS TRINS MRNS

SP 0.001 0.001 SP 0 0
P 0.474 0.473 0.003 P 0.104 0.104 0.013
PI 0.470 PI 0.091
I 0.123 0.123 0.123 I 0.223 0.223 0.223
NI 0.180 NI 0.434
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Table 6
Case 9: Trump wall shutdown and Case 10: Yellow vests protest

SVNS TRINS MRNS SVNS TRINS MRNS

SP 0.030 0.020 SP 0 0
P 0.188 0.158 0.046 P 0.018 0.018 0
PI 0.122 PI 0.018
I 0.581 0.581 0.581 I 0.319 0319 0.319
NI 0.199 NI 0.654

Florentin Smarandache (ed.) Collected Papers, VI
N 0.403 0.399 0.219 N 0.673 0.670 0.236
SN 0.004 0.004 SN 0.003 0.003

ries. The numerous visits of the PM have been a topic of debate.
he search term used for extracting tweets is “Foreign trip”.

Analysis: Here 1000 tweets were analysed using SVNS, the resul-
ant obtained is FTSVNS = 〈0.474, 0.123, 0.403〉. It shows an overall
ositive opinion about the amount spent on foreign visits by the
M, the negative opinion is also prevalent among the public as the
ositive membership and negative membership values have very

ittle difference. When TRINS is used for analysis, FTTRINS = 〈0.001,
.473, 0.123, 0.399, 0.004〉 is the resultant. Despite an overall posi-
ive opinion; it is seen that very few had a strong positive opinion,
ut more people had a strong negative opinion about the trips.
hile using MRNS we arrive at a clearer picture where the resul-

ant is FTMRNS = 〈0.001, 0.003, 0.470, 0.180, 0.219, 0.004〉. Most of the
ositive opinion is indeterminate positive and not actually positive;
hereas most of the negative is negative. People are undecided

bout PM’s foreign visits, and more people have a decisive negative
pinion than a positive opinion about the visit. It can be clearly seen
hat MRNS provides a better realistic picture of the actual sentiment
f public opinion.

.8. Case 8: Uttar Pradesh mob violence

Introduction: In Uttar Pradesh (India), a police constable was
toned to death in Ghazipur district, the head constable’s death is
he second such incident in a month. A police inspector was killed
n Bulandshahr when he tried to stop a mob from keeping cattle
arcasses to block traffic. While reacting to such horrific incidents,
JP MP Udit Raj called it an isolated incident and refused to admit

aw and order lapse saying that such incidents can happen in a huge
tate like UP. Nearly 1000 tweets were collected using the term “UP
ob violence”, they were used for analysis.

Analysis: While using SVNS, we obtained UPSVNS = 〈0.104, 0.223,
.673〉; it shows that the public opinion was a negative one, whereas
hile using TRINS; UPTRINS = 〈0, 0.104, 0.223, 0.67,0.003〉; it was

ound that no one had a strong positive opinion and very lit-
le population had a positive opinion, the majority was negative.

hen analysis was further carried out using MRNS, the result was
PMRNS = 〈0, 0.013, 0.091,0.223, 0.434, 0.236,0.003〉; most of the
ositive also turns out to be indeterminate positive. It is clearly
een that much of the negative opinion is negative indeterminate.
he overall major opinion was indeterminate in nature. MRNS high-

ights the indeterminacy involved in this case accurately, whereas
VNS failed to capture the data with this amount of accuracy as
hown in Table 5.

.9. Case 9: Trump wall shutdown

Introduction: A critical feature of the standoff that has led US
resident Trump in 2018 to partially shut down the government

s for funding of billions of dollars to build wall on the US-Mexico
order.
Analysis: The result of the analysis is given in Table 6. While
sing SVNS for analysis it is seen that majority have an inde-
erminate opinion about the wall and related forced shut down
f government. The resultant obtained is TWSVNS = 〈0.186, 0.581,
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0.229〉; it is also noted that the difference between positive and
negative is minimal. While TRINS was used for analysis, the resul-
tant is TWTRINS = 〈0.03, 0.156, 0.581, 0.223, 0.006〉; it is seen from
the membership values that not many people felt strongly nega-
tive about it, but people felt strongly positive about it. When MRNS
was used to analyze the same set of tweets, the resultant obtained is
TWMRNS = 〈0.02, 0.045, 0.121, 0.581, 0.199, 0.024, 0.006〉; it is clearly
seen that majority fell into indeterminate, positive indeterminate
and negative indeterminate membership intervals. Meagre value
is associated with positive or negative membership. This clearly
proves that people neither hold a positive nor negative opinion
that is they are not able to make up their mind.

6.10. Case 10: Yellow vests protest

Introduction: The yellow vests movement is a populist political
movement from grass roots for economic justice which started in
France in 2018. Regular mass demonstrations against the French
government began on 17 November 2018. The movement is moti-
vated by high fuel prices and high cost of living and together with
the burden on the working and middle classes due to government’s
tax reforms. The protests had turned violent and tear gas was used
on the protesters. The tweets taken for analysis are right after this
news broke out.

Analysis: The majority opinion about yellow vests protest and
the police action was negative in nature when analysis with SVNS
was carried out, the resultant SVNS was YVSVNS = 〈0.018, 0.319,
0.663〉. When TRINS is used, the resultant TRINS is YVTRINS = 〈0,
0.018, 0.319, 0.662, 0.001〉; it is seen that there is a meagre strong
negative and no strong positive. When MRNS is used the resultant
obtained is YVMRNS = 〈0, 0, 0.018, 0.319, 0.654, 0.008, 0.001〉; it is
clearly seen that most people had a negative indeterminate opin-
ion. MRNS provides a clear result about the indeterminacy involved
and is tabulated in Table 6.

7. Comparison and discussions

Till date neutrosophy has not been used for sentiment analysis
of twitter data. A brief comparison of conventional, fuzzy and neu-
trosophic sentiment analysis is illustrated by Table 7 to highlight
the results of our study.

If fuzzy set theory based sentiment analysis given in [3] is carried
on the same set of tweets, only positive and negative member-
ships will get mapped, indeterminacy concept will not be dealt
with, hence there will be information loss, and results will not
be accurate. Henceforth it is clear that when splitting of these
three memberships is done, better accuracy is achieved. There is an
increased complexity in handling seven memberships when MRNS
is taken, but better accuracy is achieved.

A comprehensive tabulation of all the ten topics is given in

Table 8 with respect to fuzzy sentiment analysis, analysis using
SVNS, TRINS, and MRNS. It is evident from Table 8 each of the case
studies given above, that MRNS gives more accurate results than
TRINS or SVNS or fuzzy.



Table 7
Comparison of different sentiment analysis approaches

Normal sentiment analysis Fuzzy sentiment analysis Neutrosophic sentiment analysis

Percentage of positive sentiment Proportion of positive sentiment
Major overall sentiment Proportion of indeterminate sentiment

Percentage of negative sentiment Proportion of negative sentiment

Table 8
Neutrosophic representation of each case study

Type of NS Positive Neutral Negative

Case 1: Farm loan Wavier
Fuzzy 0.857 0.143
SVNS 0.419 0.438 0.143
TRINS 0.048 0.371 0.438 0.136 0.007
MRNS 0.026 0.164 0.229 0.438 0.111 0.255 0.007

Case 2: Onion Price
Fuzzy 0.917 0.083
SVNS 0.253 0.664 0.083
TRINS 0.026 0.228 0.664 0.076 0.006
MRNS 0.012 0.037 0.205 0.664 0.059 0.017 0.006

Case 3: Women Reservation Bill
Fuzzy 0.249 0.751
SVNS 0.084 0.165 0.751
TRINS 0.005 0.079 0.165 0.750 0.001
MRNS 0.004 0.038 0.042 0.165 0.019 0.731 0.001

Case 4: Triple Talaq Bill
Fuzzy 0.854 0.146
SVNS 0.316 0.538 0.146
TRINS 0.153 0.163 0.538 0.145 0.001
MRNS 0.149 0.11 0.057 0.538 0.11 0.035 0.001

Case 5: POCSO Act Death Penalty
Fuzzy 0.947 0.053
SVNS 0.909 0.038 0.053
TRINS 0.01 0.899 0.038 0.053 0
MRNS 0.01 0.863 0.036 0.038 0.052 0.001 0

Case 6: #Me too Movement
Fuzzy 0.853 0.147
SVNS 0.562 0.291 0.147
TRINS 0.04 0.522 0.291 0.132 0.015
MRNS 0.014 0.375 0.173 0.291 0.086 0.046 0.015

Case 7: Foreign Trip PM
Fuzzy 0.597 0.403
SVNS 0.474 0.123 0.403
TRINS 0.001 0.473 0.123 0.399 0.004
MRNS 0.001 0.003 0.470 0.123 0.180 0.219 0.004

Case 8: UP Mob Violence
Fuzzy 0.327 0.673
SVNS 0.104 0.223 0.673
TRINS 0 0.104 0.223 0.670 0.003
MRNS 0 0.013 0.091 0.223 0.434 0.236 0.003

Case 9: Trump Wall Shutdown
Fuzzy 0.769 0.231
SVNS 0.188 0.581 0.231
TRINS 0.03 0.158 0.581 0.224 0.007
MRNS 0.02 0.046 0.122 0.581 0.199 0.025 0.007

Case 10: Yellow Vest Protest
Fuzzy 0.337 0.663
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SVNS 0.018
TRINS 0 0.018
MRNS 0 0 0.018

To further enhance the results and enable comparison, inde-
erminacy neutral operator (Definition 13) was used on MRNS to
onvert it to SVNS kind of representation. The comparison of fuzzy,
VNS and indeterminate neutral of MRNS is given in Table 9, it is
een in several cases that a positive opinion or a negative opinion
s actually indeterminate in nature. Also in some cases a positive
pinion turns out to indeterminate positive and a negative opinion
as an edge over positive opinion.
It is clearly seen in case of “foreign trips of PM” and “Me
oo”, the overall positive opinion turns out to be indetermi-
ate in nature when analysed with MRNS. Similarly the overall

925
0.319 0.663
0.319 0.662 0.001
0.319 0.654 0.008 0.001

negative opinion of “yellow vest protest” and “UP mob vio-
lence” turns out to be indeterminate opinion with analysed with
MRNS. In case of “farm loan wavier” the opinion changes from
positive to negative, and in case of ”Trump wall”, the opinion
changes from more negative to more positive when analysed
with MRNS. In the other cases, like “Women reservation bill”,
”triple talaq bill”, “POSCO act” and “onion price”, the opinion
obtained with SVNS and TRINS is confirmed using MRNS for analy-

sis. The trendy that is predicted by fuzzy is sometimes not exactly
accurate, mostly when indeterminacy happens to be the actual
trend.



Table 9
Comparison between Fuzzy, SVNS and Indeterminate neutral of MRNS

Case no Fuzzy SVNS Indeterminate neutral MRNS

1 Positive Indeterminate; 〈0.19, 0.778, 0.263〉
More positive Indeterminate
than negative more negative than positive

2 Positive Indeterminate 〈0.048, 0.928, 0.023〉
more positive Indeterminate;
than negative meagre negative and positive

3 Negative Negative 〈0.042, 0.226, 0.732〉
Negative;

negligible positive
4 Positive Indeterminate 〈0.258, 0.705, 0.03〉

more positive Indeterminate;
than negative more positive than negative

5 Positive Positive 〈0.873, 0.126, 0.001〉
Positive; no negative

6 Positive Positive 〈0.387, 0.548, 0.059〉
Indeterminate

more positive than negative
7 Positive Positive 〈0.004, 0.773, 0.223〉

Indeterminate
more negative than positive

8 Negative Negative 〈0.014, 0.743, 0.239〉
Indeterminate

more negative than positive
9 Positive Indeterminate 〈0.065, 0.802, 0.03〉

more negative Indeterminate;
than positive more positive than negative

10 Negative Negative 〈0, 0.991, 0.009〉
Indeterminate; negligible

7

T
t
m
a
u
a
T

t
s
a
b
s
fi

i
o
p
S
t
m
o
f
b
fi
a
j
t
i
g
1
t
T

Table 10
Case study of Amazon with SemEval 2017

Values Positive Neutral Negative

Original
Values

0.05 0.52 0.27 0.15 0.01

Science Review 27, 16–32, doi:https://doi.org/10.1016/j.cosrev.2017.10.002.
URL http://www.sciencedirect.com/science/article/pii/
S1574013717300606.
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negative and no positive

.1. Working on SemEval2017 Task 4 dataset

Recently, SemEval-2017 Task 4 [62], the sentiment analysis in
witter task was conducted for the fifth year. Several tasks are given
o the participating teams. It includes identifying the overall senti-

ent of the tweet, sentiment towards a topic with classification on
two point and on a five-point ordinal scale. The five-point scale
sed was strongly positive, weakly positive, neutral, weakly neg-
tive, and strongly negative. This five-point scale is similar to the
RINS concept in neutrosophy.

SemEval-2017 Task 4: Sentiment analysis in twitter is an impor-
ant benchmark in sentiment analysis of twitter data. The various
ubtasks associated with it are subtasks A, B, C, D and E. Subtask A is
bout message polarity classification, subtasks B-C are about topic
ased message polarity classification into two-point and five-point
cale and subtasks D-E are tweet quantification into two-point and
ve-point scale.

Our model using neutrosophy is closely related with polar-
ty classification and tweet quantification (Subtask E), it works
n three-point scale (SVNS), five-point scale (TRINS) and seven
oint scale (MRNS). An in-depth analysis of using neutrosophy on
emEval 2017 dataset will be done later for all the 5 subtasks of
ask 4, since almost all participating teams had made use of several

achine learning algorithms. Our existing model is not making use
f any machine learning algorithm and hence is at disadvantage
or complete comparison with the baselines and benchmarks set
y them. The possible comparative analysis can be carried out on
ve-point scale (TRINS) as subtask E of tweet quantification is on
five-point scale. For illustrative purpose we have worked with

ust one topic from SemEval-2017 dataset. We have dealt with 100
weets related to the topic “Amazon” from the SemEval-2017 train-
ng dataset. The original values are taken from the polarity value
iven in the dataset, it is mapped to the percentage of −2, − 1, 0,

, 2 present in the polarity column. The values obtained for sub-
ask E in case of topic “Amazon” using TRINS is tabulated below in
able 10.
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TRINS 0.06 0.47 0.28 0.16 0.03
MRNS 0.06 0.03 0.44 0.28 0.13 0.06 0

The TRINS values are obtained by polarity classification and
tweet quantification of the tweets in the dataset. The values
obtained are 〈0.06, 0.47, 0.28, 0.16, 0.03〉. There is a slight varia-
tion when compared to the expected values given by the experts.
The same data set was used for analysis using MRNS and the follow-
ing was obtained 〈0.06, 0.03, 0.44, 0.28, 0.13, 0.06, 0〉 on a 7-point
scale. This cannot be compared with the expected values of the
SemEval dataset, since they are in different point scale, but it is
pertinent to mention that the 7-point scale gives more detailed
accuracy to the analysis. For example, it can be seen that none had
a strongly negative opinion about Amazon, this is not captured with
TRINS.

Since SemEval-2017 dataset is an interesting, important and
bench-marked dataset to work on, a detailed analysis of the
SemEval 2017 dataset using neutrosophy will be carried out soon.
It shall be a separate analysis on its own along with creation
of appropriate machine learning and natural language processing
algorithms which make use of neutrosophy. This exciting and inno-
vative study will be taken up in future. For further study, we are
planning to work on datasets from [33–35], combined together
with appropriate NLP and machine learning algorithms that are
based on neutrosophy.

8. Results and future study

Both conventional and fuzzy sentiment analysis fail to capture
the indeterminacy and neutrality that is present in the content.
To handle the indeterminacy, neutrosophy is used for analysis of
tweets. In this paper, a new concept called MRNS with two positive
memberships, three indeterminate memberships and two negative
memberships is defined. Its properties and various operators are
discussed. For the purposes of this research work, ten subjects (data
sets) which are political or social in nature were taken for sentiment
analysis and for each case study, 1000 tweets were collected and
used for analysis. The collection was carried out through a specif-
ically created twitter API, through which tweets were extracted,
programming was carried out using Python and necessary libraries
for NLP. It is the first time that refined neutrosophic sets have
been used for sentiment analysis of tweets. Three neutrosophic sets
namely SVNS, TRINS and MRNS were used to analyse the tweets. In
each case, it was clearly seen that MRNS gives a better and accurate
result when compared to SVNS or TRINS. An illustrative compari-
son with one topic from SemEval-2017 was also done with TRINS
and MRNS. From the discussions and comparisons carried out, it is
seen that when MRNS is used the best accuracy was obtained in
sentiment analysis.

References

Speier, H., 1950. Historical development of public opinion. American Journal of Soci-
ology 55 (4), 376–388.

Mäntylä, M.V., Graziotin, D., Kuutila, M., 2018. The evolution of sentiment
analysis-a review of research topics, venues, and top cited papers. Computer
Haque, A., et al., 2014. Sentiment analysis by using fuzzy logic. International Journal
of Computer Science, Engineering and Information Technology 4 (1), 33–48.



Z
A

S

W

C

S

Z

L

L

L

L

Y

Y

Y

Y

A

V

W

K

K

Q

K

K

I

D

N

B

H

adeh, L.A., 1965. Fuzzy sets. Information and control 8 (3), 338–353.
tanassov, K.T., 1986. Intuitionistic fuzzy sets. Fuzzy sets and Systems 20 (1), 87–96,

doi:https://doi.org/10.1016/S0165-0114(86)80034-3.
marandache, F., 2000. A Unifying Field in Logics: Neutrosophic Logic. Neutros-

ophy, Neutrosophic Set, Probability, and Statistics. American Research Press,
Rehoboth, URL https://arxiv.org/pdf/math/0101228.

ang, H., Smarandache, F., Zhang, Y., Sunderraman, R., 2010. Sin-
gle valued neutrosophic sets. Review, 10, URL http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.309.9470&rep=rep1&type=pdf.

heng, H.-D., Guo, Y., 2008. A new neutrosophic approach to image thresh-
olding. New Mathematics and Natural Computation 4 (03), 291–308,
doi:10.1142/S1793005708001082.

engur, A., Guo, Y., 2011. Color texture image segmentation based on neutrosophic
set and wavelet transformation. Computer Vision and Image Understanding 115
(8), 1134–1144, doi:10.1016/j.cviu.2011.04.001.

hang, M., Zhang, L., Cheng, H., 2010. A neutrosophic approach to image seg-
mentation based on watershed method. Signal Processing 90 (5), 1510–1517,
doi:10.1016/j.sigpro.2009.10.021.

iu, P., Wang, Y., 2014. Multiple attribute decision-making method based on
single-valued neutrosophic normalized weighted bonferroni mean. Neural
Computing and Applications 25 (7-8), 2001–2010, doi:10.1007/s00521-014-
1688-8.

iu, P., Shi, L., 2015. The generalized hybrid weighted average operator based on
interval neutrosophic hesitant set and its application to multiple attribute
decision making. Neural Computing and Applications 26 (2), 457–471,
doi:10.1007/s00521-014-1736-4.

iu, P., Teng, F., 2017. Multiple attribute group decision making methods based on
some normal neutrosophic number heronian mean operators. Journal of Intel-
ligent & Fuzzy Systems 32 (3), 2375–2391, doi:10.3233/JIFS-16345.

iu, P., Li, H., 2017. Multiple attribute decision-making method based on some
normal neutrosophic bonferroni mean operators. Neural Computing and Appli-
cations, 179–194, doi:10.1007/s00521-015-2048-z.

e, J., 2013. Multicriteria decision-making method using the correlation
coefficient under single-valued neutrosophic environment. International
Journal of General Systems 42 (4), 386–394, doi:10.1080/03081079.2012.
761609.

e, J., 2014. A multicriteria decision-making method using aggregation operators
for simplified neutrosophic sets. Journal of Intelligent & Fuzzy Systems 26 (5),
2459–2466, doi:10.3233/IFS-130916.

e, J., 2014. Single valued neutrosophic cross-entropy for multicriteria deci-
sion making problems. Applied Mathematical Modelling 38 (3), 1170–1175,
doi:10.1016/j.apm.2013.07.020.

e, J., 2014. Similarity measures between interval neutrosophic sets and their appli-
cations in multicriteria decision-making. Journal of Intelligent & Fuzzy Systems
26 (1), 165–172, doi:10.3233/IFS-120724.

. Salama, A. Haitham, A. Manie, M. Lotfy, Utilizing neutrosophic set in social network
analysis e-learning systems, International Journal of Information Science and
Intelligent System 3 (2), 2014, 1-12. URL http://fs.gallup.unm.edu/SN/Neutro-
UtilizingNeutrosophicSet.pdf.

asantha, W., Smarandache, F., 2003. Fuzzy cognitive maps and neutrosophic cog-
nitive maps. Xiquan, URL https://arxiv.org/pdf/math/0311063.

. Vasantha, F. Smarandache, Analysis of social aspects of migrant labourers living
with hiv/aids using fuzzy theory and neutrosophic cognitive maps: With special
reference to rural tamil nadu in india, arXiv preprint math/0406304.

andasamy, I., 2018. Double-valued neutrosophic sets, their minimum spanning
trees, and clustering algorithm. Journal of Intelligent Systems 27 (2), 163–182,
doi:10.1515/jisys-2016-0088.

andasamy, I., Smarandache, 2016. Multicriteria decision making using dou-
ble refined indeterminacy neutrosophic cross entropy and indeterminacy
based cross entropy. Applied Mechanics and Materials 859, 129–143,
doi:10.4028/www.scientific.net/AMM.859.129.

. Khan, P. Liu, T. Mahmood, Some generalized dice measures for double-
valued neutrosophic sets and their applications, Mathematics 6 (7).
doi:10.3390/math6070121. URL http://www.mdpi.com/2227-7390/6/7/121.

andasamy, I., Smarandache, F., 2016. Triple refined indeterminate neutrosophic
sets for personality classification. In: Computational Intelligence (SSCI), 2016
IEEE Symposium Series on, IEEE. doi:10.1109/SSCI.2016.7850153, pp. 1–8.

andasamy, I., Vasantha, W.B., Obbineni, J., Smarandache, F., 2019. Indeterminate
likert scaling. Soft Computing, http://dx.doi.org/10.1007/s00500-019-04372-x.

. Kandasamy, “Indeterminate likert scale - sample dataset - customer
feedback of restaurant”, Mendeley Data, v1 doi:https://doi.org/10.17632/
ywjxpyw95w.1.

ave, K., Lawrence, S., Pennock, D.M., 2003. Mining the peanut gallery: Opinion
extraction and semantic classification of product reviews. Proceedings of the
12th international conference on World Wide Web, ACM, 519–528.

assirtoussi, A.K., Aghabozorgi, S., Wah, T.Y., Ngo, D.C.L., 2014. Text mining for mar-
ket prediction: A systematic review. Expert Systems with Applications 41 (16),
7653–7670.

urnap, P., Williams, M.L., Sloan, L., Rana, O., Housley, W., Edwards, A., Knight, V.,
Procter, R., Voss, A., 2014. Tweeting the terror: modelling the social media reac-

Florentin Smarandache (ed.)
tion to the woolwich terrorist attack. Social Network Analysis and Mining 4 (1),
206.

ogenboom, A., Heerschop, B., Frasincar, F., Kaymak, U., de Jong, F., 2014. Multi-
lingual support for lexicon-based sentiment analysis guided by semantics.
Decision support systems 62, 43–53.

927
Munezero, M.D., Montero, C.S., Sutinen, E., Pajunen, J., 2014. Are they different?
affect, feeling, emotion, sentiment, and opinion detection in text. IEEE transac-
tions on affective computing 5 (2), 101–111.

Ghosh, A., Li, G., Veale, T., Rosso, P., Shutova, E., Barnden, J., Reyes, A., 2015. Semeval-
2015 task 11: Sentiment analysis of figurative language in twitter. Proceedings
of the 9th International Workshop on Semantic Evaluation (SemEval 2015),
470–478.

Reyes, A., Rosso, P., 2014. On the difficulty of automatically detecting irony: beyond
a simple case of negation. Knowledge and Information Systems 40 (3), 595–614.

Reyes, A., Rosso, P., 2011. Mining subjective knowledge from customer reviews: A
specific case of irony detection. In: Proceedings of the 2nd workshop on com-
putational approaches to subjectivity and sentiment analysis, Association for
Computational Linguistics, pp. 118–124.

Farias, D.H., Rosso, P., 2017. Chapter 7 - irony, sarcasm, and sentiment
analysis. In: Pozzi, F.A., Fersini, E., Messina, E., Liu, B. (Eds.), Senti-
ment Analysis in Social Networks. Morgan Kaufmann, Boston, pp.
113–128, doi:https://doi.org/10.1016/B978-0-12-804412-4. 00007-3. URL
http://www.sciencedirect.com/science/article/pii/B9780128044124000073.

Zhang, S., Zhang, X., Chan, J., Rosso, P., 2019. Irony detection via sentiment-based
transfer learning. Information Processing & Management 56 (5), 1633–1644.

Ma, Y., Peng, H., Cambria, E., 2018. Targeted aspect-based sentiment analysis via
embedding commonsense knowledge into an attentive lstm. Thirty-Second
AAAI Conference on Artificial Intelligence.

Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C., 2011. Learning word
vectors for sentiment analysis. In: Proceedings of the 49th annual meeting of
the association for computational linguistics: Human language technologies-
volume 1, Association for Computational Linguistics, pp. 142–150.

Yin, H., Liu, P., Zhu, Z., Li, W., Wang, Q., 2019. Capsule network with identifying
transferable knowledge for cross-domain sentiment classification. IEEE Access
7, 153171–153182.

Zhang, L., Wang, S., Liu, B., 2018. Deep learning for sentiment analysis: A survey.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 8 (4),
e1253.

Young, T., Hazarika, D., Poria, S., Cambria, E., 2018. Recent trends in deep learning
based natural language processing. Ieee Computational Intelligence Magazine
13 (3), 55–75.

Jefferson, C., Liu, H., Cocea, M., 2017. Fuzzy approach for sentiment analysis,
doi:10.1109/FUZZ-IEEE.2017.8015577.

I. Kandasamy, W.B. Vasantha, N. Mathur, M. Bisht, F. Smarandache, Chapter
6 sentiment analysis of the metoo movement using neutrosophy: Appli-
cation of single-valued neutrosophic sets, In: F. A. Pozzi, E. Fersini, E.
Messina, B. Liu (Eds.), Optimization Theory Based on Neutrosophic and
Plithogenic Sets, Elsevier, 2020. doi:s. https://doi.org/10.1016/B978-0-12-
819670-0. 00006-8.

Smarandache, F., 2013. n-valued refined neutrosophic logic and its applications
in physics. Progress in Physics 4, 143–146, URL https://arxiv.org/pdf/1407.
1041.

W. B. Vasantha, I. Kandasamy, F. Smarandache, A classical group of neutrosophic
triplet groups using Z2p, ×, Symmetry 10 (6). doi:10.3390/sym10060194. URL
http://www.mdpi.com/2073-8994/10/6/194.

W. B. Vasantha, I. Kandasamy, F. Smarandache, Neutrosophic duplets of Zpn, × and
Zpq, × and their properties, Symmetry 10 (8). doi:10.3390/sym10080345. URL
http://www.mdpi.com/2073-8994/10/8/345.

Vasantha, W., Kandasamy, I., Smarandache, F., 2018. Algebraic structure of neutro-
sophic duplets in neutrosophic rings. Neutrsophic Sets and Systems 23, 85–95.

Ali, M., Thanh, N.D., Van Minh, N., et al., 2018. A neutrosophic recommender system
for medical diagnosis based on algebraic neutrosophic measures. Applied Soft
Computing 71, 1054–1071.

Nguyen, G.N., Ashour, A.S., Dey, N., et al., 2019. A survey of the state-of-the-arts
on neutrosophic sets in biomedical diagnoses. International Journal of Machine
Learning and Cybernetics 10 (1), 1–13.

Ali, M., Khan, M., Tung, N.T., et al., 2018. Segmentation of dental x-ray images in
medical imaging using neutrosophic orthogonal matrices. Expert Systems with
Applications 91, 434–441.

Abdel-Basset, M., Manogaran, G., Gamal, A., Smarandache, F., 2019. A group
decision making framework based on neutrosophic topsis approach for
smart medical device selection. Journal of medical systems 43 (2),
38.

Broumi, S., Bakali, A., Talea, M., Smarandache, F., Singh, P.K., Uluçay, V., Khan, M.,
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Singular Neutrosophic Extended Triplet Groups 
and Generalized Groups 
Xiaohong Zhang, Xuejiao Wang, Florentin Smarandache, 
 Jaiyeola, Tieyan Lian 
Temitope Gbolahan
Xiaohong Zhang, Xuejiao Wang, Florentin Smarandache, Temitope Gbolahan Jaiyeola, Tieyan Lian: Singular 
neutrosophic extended triplet groups and generalized groups. Cognitive Systems Research, 57 (2019) 32–40 
Abstract
Neutrosophic extended triplet group (NETG) is an interesting extension of the concept of classical group, which can be used to
express general symmetry. This paper further studies the structural characterizations of NETG. First, some examples are given to show
that some results in literature are false. Second, the differences between generalized groups and neutrosophic extended triplet groups are
investigated in detail. Third, the notion of singular neutrosophic extended triplet group (SNETG) is introduced, and some homomor-
phism properties are discussed and a Lagrange-like theorem for finite SNETG is proved. Finally, the following important result is
proved: a semigroup is a singular neutrosophic extended triplet group (SNETG) if and only if it is a generalized group.

Keywords: Neutrosophic extended triplet group; Generalized group; Semigroup; Singular neutrosophic extended triplet group; Kernel of homomorphism
1. Introduction and basic concepts

The theory of neutrosophic set was introduced by
Smarandache, and it is applied to many fields (see
Smarandache, 2005; Ye, 2014; Liu, Khan, Ye, &
Mahmood, 2018; Zhang, Bo, Smarandache, & Dai, 2018;
Zhang, Bo, Smarandache, & Park, 2018). In recent years,
the ideology of neutrosophic set has been applicable in
related algebraic structures. In particular, Smarandache
and Ali (2018) introduced the notion of neutrosophic
92
triplet group, which is a new extension of the concept of
classical group. Now, this new algebraic structure has
aroused scholars’ interest, and some new research papers
have been published one after another (see Smarandache,
2017; Zhang, Smarandache, & Liang, 2017; Jaiyeola and
Smarandache, 2018; Smarandache, S�ahin, & Kargin,
2018; Ali, Smarandache, & Khan, 2018; Zhang, Hu,
Smarandache, & An, 2018). In fact, neutrosophic triplet
structures are closely connected with related non-classical
logic algebras (see Zhang, Wu, Smarandache, & Hu,
2018; Zhang, 2017; Zhang, Park, & Wu, 2018). In
(Smarandache, 2017), the notion of neutrosophic extended
triplet group (NETG) was introduced as a generalization of
neutrosophic triplet group.

On the other hand, Molaei (Molaei, 1999) introduced
the notion of generalized group, as a class of algebras of
9
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interest in physics. After that, some scholars studied the
properties of generalized groups (see (Araujo and
Konieczny, 2002; Akinmoyewa, 2009; Adeniran,
Akinmoyewa, Solarin, & Jaiyeola, 2011). According to
Araujo & Konieczny, 2002), generalized group is equiva-
lent to the notion of completely simple semigroup.

Intuitively, as two generalizations of classical group, the
notion of neutrosophic extended triplet group is very close
to generalized group. However, the comparative analysis of
the two kinds of algebraic structures is far from perfect.
This paper will further analyze their connections and differ-
ences. First, we recall some basic concepts.

Definition 1 Smarandache, 2017. Let N be a set together
with a binary operation �. Then, N is called a neutrosophic
extended triplet set if for any a 2 N , there exist a neutral of
‘‘a” denoted by neut að Þ, and an opposite of ‘‘a” denoted by
antiðaÞ, with neut að Þ and antiðaÞ belonging to N , such that:

a � neutðaÞ ¼ neutðaÞ � a ¼ a;

a � antiðaÞ ¼ antiðaÞ � a ¼ neutðaÞ:
The triple a; neut að Þ and antiðaÞ is referred to as a neu-

trosophic triplet, and denoted by ða; neutðaÞ; antiðaÞÞ:

Remark 1. The above definition is a generalization of orig-
inal definition of a neutrosophic triplet set. For a neutro-
sophic extended triplet, the neutral of x is allowed to also
be equal to the classical identity element as a special case.

Note that, for a neutrosophic triplet set ðN ; �Þ,
a 2 N ,antiðaÞ may not be unique. In order not to cause
ambiguity, we use the following notations to distinguish:

antiðaÞ: denote any certain one of opposite of a;
fantiðaÞg: denote the set of all opposite of a.
Table 1
Neutrosophic extended triplet group ðX ; �Þ:
* a b c d

a a a a a
b b b b b
c d d c d
d d d d d
Definition 2 (Smarandache and Ali, 2018; Smarandache,

2017). Let ðN ; �Þ be a neutrosophic extended triplet set.
Then, N is called a neutrosophic extended triplet group, if
the following conditions are satisfied:

(1) If ðN ; �Þ is well-defined, i.e., for any a; b 2 N , one has
a � b 2 N .

(2) If ðN ; �Þ is associative, i.e., ða � bÞ � c ¼ a � ðb � cÞ for
all a; b; c 2 N .

N is called a commutative neutrosophic extended triplet
group if for all a; b 2 N , a � b ¼ b � a.

Remark 2. The most prominent character of neutrosophic
extended triplet group (NETG), which is different from
other algebraic structure features, is ‘‘triplet”. According
to the definition above, just as a � b ¼ b � a ¼ a, the b can-
not be called a neutral element of a. It is only when there
exists c, at the same time, such that a � c ¼ c � a ¼ b, the
b can be called neutral element of a. Therefore, ‘‘neutral
element” and ‘‘identity element” are two different concepts.
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Here are some other related notions: let G be a non-
empty set, define a binary operation � on G. If x � y 2 G,
8x; y 2 G,ðG; �Þ is called a groupoid. If the equations
a � x ¼ b and y � a ¼ b have unique solutions relative to x
and y respectively, then ðG; �Þ is called a quasigroup.

Definition 3 (Molaei, 1999; Akinmoyewa, 2009). A gener-
alized group ðG; �Þ is a non-empty set admitting a binary
operation � called multiplication subject to the set of rules
given below:

(i) ðx � yÞ � z ¼ x � ðy � zÞ for all x; y; z 2 G.
(ii) For each x 2 G, there exists a unique e xð Þ 2 G such

that x � e xð Þ ¼ e xð Þ � x ¼ x.
(iii) For each x 2 G, there exists x�1 2 G such that

x � x�1 ¼ x�1 � x ¼ e xð Þ.

Definition 4 (Akinmoyewa, 2009; Adeniran et al., 2011).
Let ðG; �Þ be a generalized group. If eðx � yÞ ¼ e xð Þ � e yð Þ
for all x; y 2 G, then G is called normal generalized group.

Theorem 1 (Araujo and Konieczny, 2002; Akinmoyewa,

2009; Adeniran et al., 2011). For each element x in a gener-

alized group ðG; �Þ, there exists a unique x�1 2 G.

Theorem 2 (Araujo and Konieczny, 2002; Akinmoyewa,

2009; Adeniran et al., 2011). Let ðG; �Þ be a generalized
group. If x � y ¼ y � x for all x; y 2 G, then G is a group.
2. Some counterexamples on neutrosophic extended triplet
groups

For a neutrosophic extended triplet group, the Ref.
Jaiyeola and Smarandache (2018) gives some important
research directions, but there were some errors. In this sec-
tion, some counterexamples will be constructed.

Example 1. Let X ¼ fa; b; c; dg. The operation � on X is
defined as Table 1. Then, ðX ; �Þ is a non-commutative
neutrosophic extended triplet group, and

neut að Þ ¼ a; anti að Þ ¼ a; neut bð Þ ¼ b; anti bð Þ ¼ b;

neutðcÞ ¼ c; antiðcÞ ¼ c; neutðdÞ ¼ d; fantiðdÞg ¼ fc; dg:

(1) Obviously, each element x in X has a unique neutðxÞ,
but ðX ; �Þ is not a generalized group, since
d � d ¼ d; c � d ¼ d � c ¼ d. Thus, the condition in
Definition 3 (ii) is not satisfied for ðX ; �Þ. It follows
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that Lemma 1 (2) in (Jaiyeola & Smarandache, 2018)
is not true.

(2) Since fantiðantiðdÞÞg ¼ fc; dg, so putting anti
ðantiðdÞÞ ¼ c 2 fantiðantiðdÞÞg, then antiðantiðdÞÞ–d.
This means that Theorem 1 in (Jaiyeola &
Smarandache, 2018) is not true.

(3) Let H ¼ fa; b; dg, then ðH ; �Þ is a neutrosophic
extended triplet group, that is,ðH ; �Þ is a neutrosophic
extended triplet subgroup of ðX ; �Þ: Consider
d 2 H ; c 2 fantiðdÞg but c R H : It follows that
Lemma 2 (iii) in (Jaiyeola & Smarandache, 2018) is
not true.

(4) Let Y ¼ f1; 2; 3g. The operation � on Y is defined as
Table 2. Then, ðY ; �Þ is a non-commutative neutro-
sophic extended triplet group, and

neutð1Þ ¼ 1; antið1Þ ¼ 1; neutð2Þ ¼ 2; antið2Þ ¼ 2;

neutð3Þ ¼ 3; fantið3Þg ¼ 2; 3f g:
Denote f : X ! Y; a#1; b#1; c#2; d#3: Then f is a

homomorphism.

Putting

antiðdÞ ¼ c 2 fantiðdÞg; anti 3ð Þ ¼ 3 2 fanti 3ð Þg;
Then

f ðantiðdÞÞ ¼ f ðcÞ ¼ 2–3 ¼ anti 3ð Þ ¼ antiðf ðdÞÞ
This means that Theorem 5 (2) in (Jaiyeola &

Smarandache, 2018) is not true. Moreover, according to
Definition 6 in (Jaiyeola & Smarandache, 2018) (about
Xa; ker f a; ker f ), we have

Xa ¼ fag; ker f a ¼ fa; bg; Xb ¼ fbg; ker f b ¼ fa; bg;
X c ¼ cf g; ker f c ¼ cf g; Xd ¼ df g; ker f d ¼ df g;
ker f ¼ fa; b; c; dg:

Thus,

jXaj ¼ 1–2 ¼ ½Xa : ker f a� � j ker f aj;
jXbj ¼ 1–2 ¼ ½Xb : ker f b� � j ker f bj;
X

a2X
Xa : ker f a½ � � j ker f aj

¼ 1� 2þ 1� 2þ 1� 1þ 1� 1 ¼ 6:

Therefore,

jX j <
X

a2X
½Xa : ker f a� � jker f aj

It follows that Thereom 6 (6) and (8) in (Jaiyeola &
Smarandache, 2018) are not true.
Table 2
Neutrosophic extended triplet group ðY ; �Þ:
* 1 2 3

1 1 1 1
2 3 2 3
3 3 3 3
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Moreover, in the proof of Thereom 6 (6) in (Jaiyeola &
Smarandache, 2018), an assertion is used: if X is finite,
ker f a ¼j jc � ker f aj j for all c in Xa. In fact, it is not true,
since in this example, j ker f aj ¼ 2–1 ¼ ja � ker f aj:

Example 2. Let X ¼ fa; b; c; d; e; f g: The operation � on X
is defined as Table 3. Then, ðX ; �Þ is a non-commutative
neutrosophic extended triplet group, and

neutðaÞ ¼ a; fantiðaÞg ¼ fa; c; d; e; f g; neutðbÞ ¼ b;
antiðbÞ ¼ b; neutðcÞ ¼ c; antiðcÞ ¼ c; neutðdÞ ¼ c;
antiðdÞ ¼ d; neutðeÞ ¼ e; antiðeÞ ¼ e; neutðf Þ ¼ e;
antiðf Þ ¼ f :
(1) Obviously, each element x in X has a unique neutðxÞ,
but ðX ; �Þ is not a generalized group, since a � a ¼
a; c � a ¼ a � c ¼ a; d � a ¼ a � d ¼ a; e � a ¼ a � e ¼
a; f � a ¼ a � f ¼ a: So, the condition in Definition 3
(ii) is not satisfied for ðX ; �Þ: It follows that Lemma 1
(2) in (Jaiyeola & Smarandache, 2018) is not true.

(2) Since fantiðantiðaÞÞg ¼ fa; c; d; e; f g, then putting
antiðantiðaÞÞ ¼ c 2 fantiðantiðaÞÞg, we get
antiðantiðaÞÞ–a. This means that Theorem 1 in
(Jaiyeola & Smarandache, 2018) is not true.

(3) Let H ¼ fa; b; c; dg, then ðH ; �Þ is a neutrosophic
extended triplet group, that is, ðH ; �Þ is a neutro-
sophic extended triplet subgroup of ðX ; �Þ. Consider
a 2 H ; e 2 fantiðaÞg but e R H . It follows that Lemma
2 (iii) in (Jaiyeola & Smarandache, 2018) is not true.

(4) According to Definition 6 in (Jaiyeola &
Smarandache, 2018) (about Xa), we have Xa ¼ fag.
Consider d 2 fantiðaÞg, we have antiða � aÞ ¼
antiðaÞ ¼ d–c ¼ d � d ¼ antiðaÞ � antiðaÞ. It follows
that Theorem 6 (4) in (Jaiyeola & Smarandache,
2018) is not true.

(5) Let Y ¼ f1; 2; 3; 4g. The operation � on Y is defined
as Table 4. Then, ðY ; �Þ is a non-commutative neutro-
sophic extended triplet group, and

neutð1Þ ¼ 1; fantið1Þg ¼ 1; 3; 4f g; neutð2Þ ¼ 2; antið2Þ ¼ 2;

neutð3Þ ¼ 3; antið3Þ ¼ 3; neutð4Þ ¼ 4; antið4Þ ¼ 4:
Denote f : X ! Y; a#1; b#2; c#3; d#3; e#4; f#4:
Then f is a homomorphism. Putting antiðaÞ ¼ a 2
fantiðaÞg, and anti 1ð Þ ¼ 3 2 fanti 1ð Þg, then f ðantiðaÞÞ ¼
f ðaÞ ¼ 1–3 ¼ anti 1ð Þ ¼ antiðf ðaÞÞ. This means that Theo-
rem 5 (2) in (Jaiyeola & Smarandache, 2018) is not true.
Moreover, according to Definition 6 in (Jaiyeola &
Smarandache, 2018) (about Xa; ker f a; ker f ), we have
Table 3
Neutrosophic extended triplet group ðX ; �Þ:
* a b c d e f

a a b a a a a
b a b a a a a
c a b c d a a
d a a d c a a
e a b a a e f
f a b a a f e

1



Table 4
Neutrosophic extended triplet group ðY ; �Þ.
* 1 2 3 4

1 1 2 1 1
2 1 2 1 1
3 1 2 3 1
4 1 2 1 4

Table 5
Neutrosophic extended triplet group ðX ; �Þ.
* 1 2 3 4

1 1 1 4 4
2 2 2 4 4
3 3 3 3 3
4 4 4 4 4
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Xa ¼ fag; ker f a ¼ fag; Xb ¼ fbg; ker f b ¼ fbg;
X c ¼ fc; dg; ker f c ¼ fc; dg;
Xd ¼ fd; cg; ker f d ¼ fd; cg; Xe ¼ fe; f g; ker f e ¼ fe; f g;

X f ¼ ff ; eg; ker f f ¼ ff ; eg; ker f ¼ fa; b; c; d; e; f g:

Thus,
X

a2X
½Xa : ker f a� � jker f aj ¼

¼ 1� 1þ 1� 1þ 1� 2þ 1� 2þ 1� 2þ 1� 2

¼ 10:

Therefore,jX j <
P

a2X ½Xa : ker f a� � jker f aj. It follows
that Theorem 6 (6) and (8) in (Jaiyeola & Smarandache,
2018) are not true.

3. The differences between neutrosophic extended triplet

groups and generalized groups

In this section, the differences between neutrosophic
extended triplet group (NETG) and generalized group
(GG) are summarized.

Note 1. For a neutrosophic extended triplet group
ðX ; �Þ, the opposite element of an element x in X may
not be unique (see Example 1 and Example 2). But,
for each element x in a generalized group ðG; �Þ, there
exists a unique x�1 2 G (see Theorem 1).
Note 2. For a generalized group ðG; �Þ, if x; a in G such
that a � x ¼ x � a ¼ x, then a ¼ x�1. But, for a neutro-
sophic extended triplet group ðX ; �Þ, if x; a in X such
that a � x ¼ x � a ¼ x, we cannot get that a ¼ neutðxÞ in
general (see Remark 2, and in Example 2,
c � a ¼ a � c ¼ a, but c–neutðaÞ ¼ a).
Note 3. For a generalized group ðG; �Þ, if a in G, then
eða�1Þ ¼ eðaÞ, see (Araujo and Konieczny, 2002;
Akinmoyewa, 2009; Adeniran et al., 2011). But, for a
neutrosophic extended triplet group ðX ; �Þ, if a in X ,
we cannot get that neutðantiðaÞÞ ¼ neutðaÞ in general
(in Example 1, putting antiðdÞ ¼ c, we have
neutðantiðdÞÞ ¼ neutðcÞ ¼ c–neutðdÞ ¼ d).
Note 4. There exists some commutative neutrosophic
extended triplet groups which are not classical groups.
But, every commutative generalized group is a classical
group (see Theorem 2).
Note 5. For a generalized group ðG; �Þ, if a in G, then

a�1ð Þ�1 ¼ a, see Theorem 3.1 in (Adeniran,
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Akinmoyewa, Solarin, & Jaiyeola, 2011). But, for a neu-
trosophic extended triplet group ðX ; �Þ, if a in X , we
cannot get that anti anti að Þð Þ ¼ a in general (see Example
1 (2) and Example 2 (2)).
Note 6. Let f : G ! H be a homomorphism where G and
H are two distinct generalized groups, then f ða�1Þ ¼
f ðaÞð Þ�1 for all a in G. But, for neutrosophic extended
triplet groups, f ðantiðaÞÞ–antiðf ðaÞÞ in general (see
Example 1 (4) and Example 2 (5)).

Definition 5 Araujo & Konieczny, 2002. A semigroup
ðS; �Þ is said to be completely simple if it satisfies the
following conditions:

(C1) S � a � S ¼ S for every a 2 S.
(C2) if e; f 2 G are idempotents such that e � f ¼
f � e ¼ e, then e ¼ f .

Theorem 3 Araujo & Konieczny, 2002. Let ðS; �Þ be a

semigroup. Then the following are equivalent:

(1) ðS; �Þ is completely simple;
(2) ðS; �Þ is a generalized group.

The following example shows that there exists neutro-
sophic extended triplet group in which the conditions
(C1) and (C2) are not satisfied.

Example 3. Let X ¼ f1; 2; 3; 4g. The operation � on X is
defined as Table 5. Then, ðX ; �Þ is a non-commutative
neutrosophic extended triplet group, and

neutð1Þ ¼ 1; antið1Þ ¼ 1; neutð2Þ ¼ 2; antið2Þ ¼ 2;

neutð3Þ ¼ 3; antið3Þ ¼ 3; neutð4Þ ¼ 4; fantið4Þg ¼ f1; 2; 4g:
X � 4 � X ¼ f3; 4g–X;

4 � 4 ¼ 4; 2 � 2 ¼ 2; 4 � 2 ¼ 2 � 4 ¼ 4; but 4–2:
Note 7. Every generalized group is a completely simple
semigroup, but there exists some neutrosophic extended
triplet groups which are not completely simple semi-
groups. In fact, a generalized group is a special type of
neutrosophic extended triplet group. Thus, neutrosophic
extended triplet group is a generalization of generalized
group.
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4. Singular neutrosophic extended tripet groups

Theorem 4 Zhang, Hu, Smarandache, & An, 2018.
Let ðN ; �Þ be a neutrosophic extended triplet group. Then

(1) neutðaÞ is unique for any a in N .
(2) neutðaÞ � neutðaÞ ¼ neutðaÞ for any a in N .
Theorem 5 Zhang, Hu et al., 2018. Let ðN ; �Þ be a neutro-

sophic extended triplet group. Then 8a 2 N ; 8antiðaÞ 2
fantiðaÞg,

(1) neutðaÞ � p ¼ q � neutðaÞ, for any p; q 2 fantiðaÞg;
(2) neutðneutðaÞÞ ¼ neutðaÞ;
(3) antiðneutðaÞÞ � antiðaÞ 2 fantiðaÞg;
(4) neutða � aÞ � a ¼ a � neutða � aÞ ¼ a;
neutða � aÞ � neutðaÞ ¼ neutðaÞ � neutða � aÞ ¼ neutðaÞ;
(5) neutðantiðaÞÞ � a ¼ a � neutðantiðaÞÞ ¼ a;
neutðantiðaÞÞ �neutðaÞ¼ neutðaÞ �neutðantiðaÞÞ¼ neutðaÞ;
(6) antiðneutðaÞÞ � a ¼ a � antiðneutðaÞÞ ¼ a, for any

antiðneutðaÞÞ 2 fantiðneutðaÞÞg:
(7) a 2 fantiðneutðaÞ � antiðaÞÞg;
(8) neutðaÞ � antiðaÞ 2 fantiðaÞg;

antiðaÞ � neutðaÞ 2 fantiðaÞg;
(9) a 2 fantiðantiðaÞÞg, that is, there exists p 2 fantiðaÞg

such that a 2 fantiðpÞg;
(10) neutðaÞ � antiðantiðaÞÞ ¼ a.
Definition 6. A neutrosophic extended triplet group ðX ; �Þ
is said to be singular, if antiðaÞ is unique for any a 2 X .

Applying Theorem 5 we can get the following results.

Theorem 6. Let ðX ; �Þ be a singular neutrosophic extended

triplet group. Then 8a 2 X ,

(1) neutðaÞ � antiðaÞ ¼ antiðaÞ � neutðaÞ ¼ antiðaÞ;
(2) antiðneutðaÞÞ ¼ neutðaÞ;
(3) a ¼ antiðantiðaÞÞ;
(4) neutðantiðaÞÞ ¼ neutðaÞ.

Proof.

(1) Since ðX ; �Þ is a singular neutrosophic extended tri-
plet group, using Definition 6 and Theorem 5 (1) and
(8), we have neutðaÞ � antiðaÞ ¼ antiðaÞ � neutðaÞ ¼
antiðaÞ for all a in X .

(2) Applying (1),

neutðneutðaÞÞ � antiðneutðaÞÞ ¼ antiðneutðaÞÞ; 8a 2 X :
By Theorem 5 (2), neutðneutðaÞÞ ¼ neutðaÞ. It follows
that

neutðaÞ � antiðneutðaÞÞ ¼ antiðneutðaÞÞ; 8a 2 X :

On the other hand, using Definition 1, neutðaÞ�
antiðneutðaÞÞ ¼ neutðneutðaÞÞ. Applying Theorem 5 (2)
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again,neutðaÞ � antiðneutðaÞÞ ¼ neutðneutðaÞÞ ¼ neutðaÞ.
Therefore,

antiðneutðaÞÞ ¼ neutðaÞ � antiðneutðaÞÞ ¼ neutðaÞ; 8a 2 X :
(3) Since ðX ; �Þ is a singular neutrosophic extended tri-
plet group, using Definition 6 and Theorem 5 (9),
we get a ¼ antiðantiðaÞÞ for all a in X .

(4) Since ðX ; �Þ is a singular neutrosophic extended tri-
plet group, applying Definition 1,
3

antiðaÞ � antiðantiðaÞÞ ¼ neutðantiðaÞÞ; 8a 2 X :
Using (3), antiðantiðaÞÞ ¼ a, thus
antiðaÞ�a¼ antiðaÞ �antiðantiðaÞÞ¼ neutðantiðaÞÞ;8a2X :
On the other hand, antiðaÞ � a ¼ neutðaÞ (from Defini-
tion 1). Therefore,

neutðaÞ ¼ antiðaÞ � a ¼ antiðaÞ � antiðantiðaÞÞ
¼ neutðantiðaÞÞ; 8a 2 X :

Definition 7 Zhang, Hu et al., 2018. Let ðX ; �Þ be a neu-
trosophic extended triplet group and H be a non-empty
subset of X . Then H is called a NT-subgroup of X if

(1) a � b 2 H for all a; b 2 H ;

(2) there exists anti að Þ 2 anti að Þf g such that anti að Þ 2 H
for all a 2 H , where anti að Þf g is the set of opposite
element of a in ðX ; �Þ.
Proposition 1. If H is a NT- subgroup of a neutrosophic

extended triplet group ðX ; �Þ, then neut að Þ 2 H for all

a 2 H , where neut að Þ is the neutral element of a in ðX ; �Þ.

By Definition 6, Definition 7 and Proposition 1 we have

Proposition 2.. If H is a non-empty subset of a singular

neutrosophic extended triplet group ðX ; �Þ, then H is a NT-

subgroup of ðX ; �Þ if and only if it satisfies

(1) a � b 2 H for all a; b 2 H ;

(2) anti að Þ 2 H for all a 2 H .
Definition 8 Jaiyeola & Smarandache, 2018. Let ðX ; �Þ be
a neutrosophic extended triplet group. Whenever
neutða � bÞ ¼ neut að Þ � neut bð Þ for all a; b 2 X , then X is
referred to as a normal neutrosophic extended triplet
group. Let H #X , if H is a NT-subgroup of X , then the
relation of H and X can be denoted by H / X. Whence,
for any fixed a 2 X , H is called a-normal NT-subgroup
of X , written by H /a X, if a � y � anti að Þ 2 H for all y 2 H .

Definition 9 Jaiyeola & Smarandache, 2018. Let f : X ! Y
be a mapping such that X and Y are two neutrosophic
extended triplet groups. Then f is referred to as a neutro-
sophic extended triplet group homomorphism if
f c � dð Þ ¼ f cð Þ � f dð Þ for all c; d 2 X . The kernel of f at
a 2 X is defined by
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ker f a ¼ x 2 X : f xð Þ ¼ neut f að Þð Þf g
The kernel of f is defined by

ker f ¼ [
a2X

ker f a

where Xa ¼ x 2 X : neut xð Þ ¼ neutðaÞf g.

Theorem 7. Let f : X ! Y be a homomorphism, where X and

Y are two singular neutrosophic extended triplet groups.

(1) For all a 2 X , f neut að Þð Þ ¼ neut f að Þð Þ and
f anti að Þð Þ ¼ anti f að Þð Þ.

(2) If H is a NT-subgroup of X , then f Hð Þ is a NT-
subgroup of Y .

(3) If K is a NT-subgroup of Y and f �1 Kð Þ–£, then

f �1 Kð Þ is a NT-subgroup of X .
(4) If X is a normal neutrosophic extended triplet

group and the set X f ¼ neut að Þ; f að Þð Þ : a 2 Xf g
with the product neut að Þ; f að Þð Þ � neut bð Þ; f bð Þð Þ :¼
neut a � bð Þ; f a � bð Þð Þ, then X f is a neutrosophic
extended triplet group.
Proof.

(1) For all a in X ,
f ðneutðaÞÞ � f ðaÞ ¼ f ðneutðaÞ � aÞ ¼ f ðaÞ,
f ðaÞ � f ðneutðaÞÞ ¼ f ða � neutðaÞÞ ¼ f ðaÞ.

On the other hand,

f ðantiðaÞÞ � f ðaÞ ¼ f ðantiðaÞ � aÞ ¼ f ðneutðaÞÞ;
f ðaÞ � f ðantiðaÞÞ ¼ f ða � antiðaÞÞ ¼ f ðneutðaÞÞ:

Combining above facts, we get that f ðneutðaÞÞ ¼
neutðf ðaÞÞ. Thus,
f ðantiðaÞÞ � f ðaÞ ¼ f ðantiðaÞ � aÞ ¼ f ðneutðaÞÞ ¼ neutðf ðaÞÞ;

f ðaÞ � f ðantiðaÞÞ ¼ f ða � antiðaÞÞ ¼ f ðneutðaÞÞ ¼ neutðf ðaÞÞ:

Since X is singular, so antiðf ðaÞÞ is unique. It follows
that f ðantiðaÞÞ ¼ antiðf ðaÞÞ.

(2) For any f ðh1Þ; f ðh2Þ 2 f ðHÞ ¼ ff ðhÞ : h 2 Hg, where
h1; h2 2 H . Since H is a NT-subgroup of X , then
h1 � h2 2 H . Thus, f ðh1Þ � f ðh2Þ ¼ f ðh1 � h2Þ 2 f ðHÞ.

Moreover, for all f ðhÞ 2 f ðHÞ, where h 2 H . Since H is
a NT-subgroup of X , then antiðhÞ 2 H , by Proposition 2.
Thus, applying (1) we have

antiðf ðhÞÞ ¼ f ðantiðhÞÞ 2 f ðHÞ:
Therefore, using Proposition 2, we know that f ðHÞ is a

NT-subgroup of Y .

(3) Suppose that K is a NT-subgroup of Y and

f �1ðKÞ–£. For any a; b 2 f �1ðKÞ, there exists
k1; k2 2 K such that f ðaÞ ¼ k1,f ðbÞ ¼ k2. Since K is
a NT-subgroup of Y , then (by Proposition 2)
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k1; k2 2 K, antiðk1Þ 2 K, and (applying Definition 9
and (1))
f a � bð Þ ¼ f að Þ � f bð Þ ¼ k � k 2 K;
1 2
f anti að Þð Þ ¼ anti f að Þð Þ ¼ anti k1ð Þ 2 K:
Thus, a; b 2 f �1ðKÞ, antiðaÞ 2 f �1ðKÞ. Therefore, by

Proposition 2, we get that f �1ðKÞ is a NT-subgroup of X .

(4) Applying Theorem 6 and (1), we can verify that (4)
holds. h
Theorem 8. Let f : X ! Y be a neutrosophic extended tri-

plet group homomorphism, where X and Y are two singular

neutrosophic extended triplet groups. Then

(1) a 2 Xa for all a in X and X ¼ [
a2X

X a:

(2) for all a and b belong to X , Xa \ Xb ¼ £ or Xa ¼ X b.
(3) for all a in X , neutðaÞ 2 Xa and antiðaÞ 2 Xa.
(4) if x 2 Xa, then neutðxÞ 2 Xa and antiðxÞ 2 Xa.
(5) if x; y 2 Xa, then x � y 2 Xa and

anti x � yð Þ ¼ anti yð Þ � anti xð Þ.
(6) for all a in X ,ðXa; �Þ is a NT-subgroup of X and it is a

classical group.
(7) Xa /a X.
(8) Xa is a normal neutrosophic extended triplet group.
(9) ker fa /a X.

(10) the binary relation � is an equivalence relation on Xa,
where � is defined as follows: for x; y 2 Xa, x � y if
and only if antiðxÞ � y 2 ker f a.

(11) Xa ¼ [
c2Xa

c � ker f að Þ; 8a 2 X :

(12) If X is finite, jXaj ¼
P

c�ker f a; c2Xa
jc � ker f aj ¼

½Xa : ker f a� � jc � ker f aj, for all a 2 X , where
½Xa : ker f a� is the number of distinct c � ker f a in
Xa, and the summation is done for all the different
c � ker f a.

(13) If X is finite, Xj j ¼
P

Xa; a2X ; c2Xa
½Xa : ker f a��

jc � ker f aj, the summation is done for all the different
Xa and corresponding ker f a. That is, only one calcu-
lation coincides with Xa and Xb.

Proof.

(1) For any a in X , by the definition of Xa, we know that
a 2 Xa. Then, X # [

a2X
X a: Moreover, obviously,

[
a2X

X a #X : Thus, X ¼ [
a2X

X a:

(2) For any a; b in X , if neutðaÞ ¼ neutðbÞ, then Xa ¼ Xb.

If neutðaÞ – neutðbÞ, then Xa \ Xb ¼ £. In fact, assum-
ing that there exists x 2 Xa \ Xb, then we have
neutðxÞ ¼ neutðaÞ and neutðxÞ ¼ neutðbÞ. From this and
using Theorem 4 (1), neutðaÞ ¼ neutðbÞ ¼ neutðxÞ, this is a
contradiction with neutðaÞ– neutðbÞ.
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(3) By Theorem 5 (2), neutðneutðaÞÞ ¼ neutðaÞ, then
neutðaÞ 2 Xa. Applying Theorem 6 (4), neut
ðantiðaÞÞ ¼ neutðaÞ, it follows that antiðaÞ 2 Xa.

(4) Assume x 2 Xa, then neutðxÞ ¼ neutðaÞ. Using Theo-
rem 5 (2) and Theorem 6 (4) we have
neutðneutðxÞÞ ¼ neutðxÞ ¼ neutðaÞ;

neutðantiðxÞÞ ¼ neutðxÞ ¼ neutðaÞ:
Therefore, neutðxÞ 2 Xa; antiðxÞ 2 Xa:

(5) Suppose x; y 2 Xa, then neutðxÞ ¼ neutðyÞ ¼ neutðaÞ.
Thus,
neutðaÞ � ðx � yÞ ¼ neutðxÞ � ðx � yÞ ¼ ðneutðxÞ � xÞ � y ¼ x � y;

ðx � yÞ � neutðaÞ ¼ ðx � yÞ � neutðyÞ ¼ x � ðy � neutðyÞÞ ¼ x � y:

On the other hand,

x � yð Þ � anti yð Þ � anti xð Þð Þ ¼ x � y � anti yð Þð Þ � anti xð Þ
¼ x � neut yð Þ � anti xð Þ

¼ x � neutðxÞ � antiðxÞ ¼ x � antiðxÞ ¼ neutðxÞ ¼ neutðaÞ:
anti yð Þ � anti xð Þð Þ � x � yð Þ ¼ anti yð Þ � anti xð Þ � xð Þ � y
¼ antiðyÞ � neutðxÞ � y ¼ antiðyÞ � neutðyÞ � y ¼ antiðyÞ � y

¼ neutðyÞ ¼ neutðaÞ:

Therefore, neutðx � yÞ ¼ neutðaÞ; and antiðx � yÞ ¼
antiðyÞ � antiðxÞ: It follows that x � y 2 Xa:

(6) By (4) and (5), applying Proposition 2 we know that
ðXa; �Þ is a NT-subgroup of X . Since X is singular,
and for all x 2 Xa; neutðxÞ ¼ neutðaÞ; so ðXa; �Þ is a
classical group.

(7) From (6), ðXa; �Þ is a NT-subgroup of X . If x 2 Xa;
then neutðxÞ ¼ neutðaÞ; and a � x � antiðaÞ 2 Xa; by
(1), (3) and (5). Thus, by Theorem 6(1),
ða � x � antiðaÞÞ � neutðaÞ ¼ ða � xÞ � ðantiðaÞ � neutðaÞÞ
¼ a � x � antiðaÞ;

neutðaÞ � ða � x � antiðaÞÞ ¼ ðneutðaÞ � aÞ � ðx � antiðaÞÞ
¼ a � x � antiðaÞ:
It follows that neutðaÞ ¼ neutða � x � antiðaÞÞ; since

ðXa; �Þ is a classical group. Therefore, a � x � antiðaÞ 2 Xa,
by Definition 8, we get that Xa◃aX :

(8) For all a in X , by (6), ðXa; �Þ is a neutrosophic
extended triplet group. If x; y 2 Xa; then
neutðxÞ ¼ neutðyÞ ¼ neutðaÞ: From the proof of (5),
we have neutðx � yÞ ¼ neutðaÞ: Applying Theorem 4
(2), neutðaÞ � neutðaÞ ¼ neutðaÞ: Thus,

neutðx�yÞ¼neutðaÞ¼ neutðaÞ�neutðaÞ¼neutðxÞ�neutðyÞ:
According to Definition 8, we get that Xa is a normal
neutrosophic extended triplet group.
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(9) Suppose x; y 2 ker f a; then f ðxÞ ¼ f ðyÞ ¼ neutðf ðaÞÞ:
Thus, by Theorem 4 (2), Theorem 7 (1), and Theo-
rem 6 (2),
f ðx � yÞ ¼ f ðxÞ � f ðyÞ ¼ neutðf ðaÞÞ � neutðf ðaÞÞ ¼ neutðf ðaÞÞ:
f ðantiðxÞÞ ¼ antiðf ðxÞÞ ¼ antiðneutðf ðaÞÞÞ ¼ neutðf ðaÞÞ:

It follows that x � y 2 ker f a; antiðxÞ 2 ker f a: Applying
Proposition 2 we get that Xa is a NT-subgroup.

If x 2 ker f a; then f ðxÞ ¼ neutðf ðaÞÞ: Considering
a � x � antiðaÞ; we have

f ða � x � antiðaÞÞ ¼ f ðaÞ � f ðxÞ � f ðantiðaÞÞ
¼ f ðaÞ � neutðf ðaÞÞ � f ðantiðaÞÞ
¼ f ðaÞ � f ðantiðaÞÞ
¼ f ða � antiðaÞÞ
¼ f ðneutðaÞÞ
¼ neutðf ðaÞÞ:

Thus, a � x � antiðaÞ 2 ker f a; according to Definition 8,
we get that ker f a/aX :

(10) Define the binary relation � on Xa as follows:

for x; y 2 Xa; x � y if and only if antiðxÞ � y 2 ker f a:
Then,

(i) for any x in Xa, x � x: In fact, f ðantiðxÞ � xÞ ¼
f ðneutðxÞÞ ¼ f ðneutðaÞÞ ¼ neutðf ðaÞÞ; that is,
antiðxÞ � x 2 ker f a:

(ii) if x � y then y � x: In fact, if x � y; then
antiðxÞ � y 2 ker f a: Using (9), we have
antiðantiðxÞ � yÞ 2 ker f a: On the other hand,
ðantiðyÞ � xÞ � ðantiðxÞ � yÞ ¼ antiðyÞ � ðx � antiðxÞÞ � y
¼ antiðyÞ � neutðxÞ � y ¼ antiðyÞ � neutðyÞ � y ¼ neutðyÞ ¼ neutðaÞ:
ðantiðxÞ � yÞ � ðantiðyÞ � xÞ ¼ antiðxÞ � ðy � antiðyÞÞ � x
¼ antiðxÞ � neutðyÞ � x ¼ antiðxÞ � neutðxÞ � x ¼ neutðxÞ ¼ neutðaÞ:

From this, applying (6),

antiðyÞ � x ¼ antiðantiðxÞ � yÞ:
Thus, antiðyÞ � x ¼ antiðantiðxÞ � yÞ 2 ker f a: That is,

y � x:

(iii) If x � y and y � z; then x � z: In fact, from x � y and
y � z; we have antiðxÞ � y 2kerf a; antiðyÞ � z2 kerf a:
Using (6) and (9), we have

anti xð Þ � z ¼ anti xð Þ � neut zð Þ � z ¼ anti xð Þ � neut yð Þ � z
¼ antiðxÞ � ðy � antiðyÞÞ � z ¼ ðantiðxÞ � yÞ � ðantiðyÞ � zÞ

2 ker f a:

That is, x � z:
5
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(11) Now, we prove that the equivalence class c½ �� of c is
equal to c � kerf a; for all c in Xa:

(i) for c in Xa; c 2 c � ker f a: In fact, by the definition of
ker f a, neutðaÞ 2 ker f a: From this, applying (6), we
have
c ¼ c � neutðcÞ ¼ c � neutðaÞ 2 c � ker f a:
(ii) for any x in ker f a, c � x � c; that is, c � ker f a # c½ ��:
Since,
antiðcÞ � ðc � xÞ ¼ ðantiðcÞ � cÞ � x ¼ neutðcÞ � x
¼ neutðaÞ � x 2 ker f a:
That is, c � x � c:

(iii) for any a in c½ ��, there exists x 2 ker f a such that
a ¼ c � x; that is, c½ �� # c � ker f a: Since a � c; then
antiðcÞ � a 2 ker f a: Denote x ¼ antiðcÞ � a, then
x 2 ker f a and
a ¼ neutðaÞ � a ¼ neutðcÞ � a ¼ c � antiðcÞ � a ¼ c � x 2 c � ker f a:

Therefore, c½ �� ¼ c � ker f a, and Xa ¼ [
c2Xa

c � ker f að Þ:

(12) It follows from (10) and (11).
(13) It follows from (1), (2) and (12).

Theorem 9. Let X and Y be two singular neutrosophic

extended triplet groups, a 2 X and f : X ! Y be a neutro-

sophic extended triplet group homomorphism. Then f is a

monomorphism if and only if ker f a ¼ neut að Þf g for all

a 2 X :

Proof.

(1) Assuming that f is a monomorphism, then for any x
in ker f a we have f ðxÞ ¼ neutðf ðaÞÞ ¼ f ðneutðaÞÞ;
thus x ¼ neutðaÞ: That is, ker f a ¼ fneutðaÞg:

Conversely, assuming ker f a ¼ fneutðaÞg for all a in X ;
if f ðxÞ ¼ f ðyÞ; x; y 2 X ; then

f ðantiðxÞ � yÞ ¼ f ðantiðxÞÞ � f ðyÞ ¼ f ðantiðxÞÞ � f ðxÞ
¼ f ðantiðxÞ � xÞ ¼ f ðneutðxÞÞ ¼ neutðf ðxÞÞ:

f ðy � antiðxÞÞ ¼ f ðyÞ � f ðantiðxÞÞ ¼ f ðxÞ � f ðantiðxÞÞ
¼ f ðx � antiðxÞÞ ¼ f ðneutðxÞÞ ¼ neutðf ðxÞÞ:

Thus, antiðxÞ � y 2 ker f x and y � antiðxÞ 2 ker f x. Since
ker f x ¼ fneutðxÞg, so antiðxÞ � y ¼ neutðxÞ; y � antiðxÞ ¼
neutðxÞ: Applying Theorem 6 (4), we get

antiðxÞ � y ¼ neutðxÞ ¼ neutðantiðxÞÞ; y � antiðxÞ ¼ neutðxÞ
¼ neutðantiðxÞÞ:
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This means that is the opposite element of antiðxÞ: Since
X is singular, the opposite element is unique, thus

y ¼ antiðantiðxÞÞ:
Using Theorem 6 (3), we have y ¼ antiðantiðxÞÞ ¼ x:

That is, f is a monomorphism. h

Theorem 10. ðX ; �Þ is a singular neutrosophic extended tri-

plet group if and only if ðX ; �Þ is a generalized group.

Proof. By Definition 6, we know that every generalized
group is a singular neutrosophic extended triplet
group.

Conversely, assuming that ðX ; �Þ is a singular neutro-
sophic extended triplet group, then, we only need to prove
that

for any x; a 2 X ; a � x ¼ x � a ¼ x implies a ¼ neutðxÞ:
In fact, from a � x ¼ x; and applying Theorem 5 (2), we

have

a � neutðxÞ ¼ a � ðx � antiðxÞÞ ¼ ða � xÞ � antiðxÞ
¼ x � antiðxÞ ¼ neutðxÞ ¼ neutðneutðxÞÞ:

Similarly, we can get neutðxÞ � a ¼ neutðneutðxÞÞ: That is,
a � neutðxÞ ¼ neutðxÞ � a ¼ neutðneutðxÞÞ:

This means that a is a opposite element of neutðxÞ: Since
ðX ; �Þ is a singular, it follows that a ¼ antiðneutðxÞÞ: Using
Theorem 6(2), we obtain antiðneutðxÞÞ ¼ neutðxÞ:

Therefore, a ¼ antiðneutðxÞÞ ¼ neutðxÞ: From this, we
know that ðX ; �Þ is a generalized group. h
5. Conclusions

In this paper, neutrosophic extended triplet group
(NETG) is discussed in depth, thereby some erroneous
conclusions in the literature are corrected, and the differ-
ences between NETG and generalized group highlighted.
From the results of this paper, the following algebraic
structures: generalized group (GG), singular neutrosophic
extended triplet group (SNETG) and completely simple
semigroup are equivalent to each other. Therefore, it is
discovered that a generalized group is a special type of
neutrosophic extended triplet group, and NETG is a
more extensive algebraic system than group and general-
ized group. On one hand, NETG preserves some proper-
ties of group (such as the Lagrange-like theorem
obtained in this article). On the other hand, NETG has
many characteristics different from group and generalized
group. In the future, it is needful to do a more detailed
and in-depth study to reveal its structural characteristics,
and we will expand our research on some new develop-
ments in algebras and neutrosophic sets (see Zhang,
Borzooei, & Jun, 2018; Liu, Zhang, Liu & Wang,
2016; Liu and Tang, 2016; Liu and Shi, 2017; Liu and
Zhang, 2018; Ye, 2018).
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Abstract 

The present economic crises induced by covid pandemic have called our attention to 

reconsider where we are heading as a global community; because as we know with 

the emergence of ubiquitous Internet, then the world has become a global village in 

real  sense.. Shall we lend ourselves to directive and -at times- insistence to move to 

new economy called the industrial revolution 4.0? Or is there another way, even if it 

seems like a less traveled path for now? In this article, we also re-introduce Pancasila  

from Indonesian weltanschauung (fundamental tenets) to become one of these less 

travelled path available at our table. The essence of the Indonesian Five Principles 

(Pancasila) is to return to spirit of communal values, but in a peaceful way, not via 

revolution. That is a path that in Indonesia, is called as “gotong royong” (or to put it 

in a more scientific term: cooperative collective dynamics). 

Keywords: Pancasila, Indonesia studies, state capitalism, welfare state, free market, 

cooperative collective dynamics. 

Introduction 

The present economic crises induced by covid pandemic have called for our 

attention to reconsider where we are heading at a global community. Shall we lend 

ourselves to directive and at time rather insistence to move to new economy called the 

Industrial Revolution version 4.0? Or is there another way, even if it seems like a less 
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traveled path for now? We tend to think that the insistence to move in a global level 

towards Industrial Revolution 4.0 as advocated by Klaus Schwab and other Davos 

Club proponents will only benefit those 1% globalist elites (see also Vandana Shiva’s 

book “The Oneness versus 1%”[8-9]). No wonder that many people begin to protest 

several Davos meetings in the past, because they realize that those elites often decide 

to maximize their own interests, while they act in the name of global society as a 

whole. 

In this article, we also try to re-introduce Pancasila or Five Principles from 

Indonesian weltanschauung to become one of these less travelled path available at our 

table. 

Problem statement 

This article is a continuation to two papers by us, one paper is a contribution 

chapter to Nova Science book [10], and one is a recent paper for an upcoming paper. 

The problem discussed here can be summarized as follows: 

“What is the root cause of problems in modern societies, be it in psychological term, 

theological term, or spiritual term?”  

Scope and Limitations of this article 

The scope of this article is around psychological and theological meaning 

among the present tensions among worldviews (or weltanschauung).  

Limitations of this article are that we do not offer in depth economics or political 

analysis in each country. Instead, we focus on deep societal problems as a wholeness. 

Methodology 

The methodology used in this article is literature survey along with analysis of 

recent issues, especially in psychological and theological analysis. 

What is really going on in USA? 

While we admit that none of these authors are political analysts by profession, 

let us put our discussion in present days context. The following is a short conversation 

Florentin Smarandache (ed.) Collected Papers, VI

939



by one of us (VC) and a professor of mathematics and logics in Canada. He asked on 

what is VC’s opinion on what presently happens in USA. The following is a quote of 

VC’s response to address that question: 

"First of all, there are satanists who are working out to turn USA into 

communist socialism society. There are lots of effort to implement 

cultural marxism and also cloward-piven strategy1 into USA (that is also 

obama plan and then it is continued by the present administration). 

Actually, I do not really like to comment on who is right, socialist countries or 

USA? To me both are only playing extreme sides: capitalism versus socialism.2 On 

the root cause:  it is dialectical philosophy of Hegel all along. Thesis meets antithesis 

and then conflicts and more conflicts, and the modern version is a book by Samuel 

Huntington. And the essence is people especially scientists rely too much on 

rationalism.  

Thanks God, there are Coptic church leaders like Milad Hanna (already 

deceased) who did not agree with Huntington's clashism.  He offers a much more 

humane term: Acceptance of the Others. 

On a deeper level, too much reliance on rationalism will wipe off the entire 

humanity. But there is an old mathematician, he is also a Christian, the name is Dr 

Dennis P. Allen, Jr.. He wrote a memoir on possibility to work out a "realism" part of 

mathematics. That is a hope to us, as I see it.  

And plus, from history we learn that relying too much on rationalism can be 

traced back to Pythagoreans. They worshipped rationalism until they forced a pupil 

who invented irrational number to drowning in the sea.” 

Tracking the problems in psychological term 

One of these problems can be stated as follows: that human being has been 

reduced into homo economicus; in other words philosophers and economists alike 

1 If some readers don’t know what is cultural marxism or what is cloward-piven strategy, you are advised to 
googling, for instance check on writings by Prof. Jordan Peterson etc. See also for instance Ref. [12-14]. 
2 Or to be more precise in Beginda Pakpahan’s term: between progressive capitalism and state (driven) capitalism. 
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have put economics terms as our sole goal. Such a deep flaw can be traced back to 

materialist view predominating in sciences, see Mario Beauregard [7]. Therefore, 

most non-materialist view is ignored.  

As VC wrote in a chapter in Nova Science book [10]: 

“And also we can recall from Genesis 3 that the first fall of our ancestors 

 came from greediness. How far we have fallen in this modern society, 

 where greed has been hailed as highest virtue. To emphasize this root 

 problem in our modern society, allow me to quote Grekko’s remark: Greed 

 is good. Quote from Wall Street movie: 

“The point is, ladies and gentleman, that greed, for lack of a better word, is 

good. Greed is right, greed works. Greed clarifies, cuts through, and captures the 

essence of the evolutionary spirit. Greed, in all of its forms; greed for life, for money, 

for love, knowledge has marked the upward  surge of mankind.”1 

We consider this is one basis of modern reality: Most of us have been 

consumed by greed and are drowning in an ocean of greed. The real irony  is that 

greed has eaten us alive, from our childhood until we die.” 

So, what are socio-economic implications? Again, as one of us (VC) wrote in 

Nova science book [10]: 

Yes, normally you read numerous political-economics jargons, e.g. leftist, 

right wing, centrist left or centrist right and so on. But it is not our  intention to 

submit yet another ideological parlance. In fact, these authors are scientists 

and mathematicians, so we are not inclined to any such  parlance.3 

In our opinion, our tendency to cooperate or compete is partly influenced  by 

the culture that we inherit from our ancestors. One of us (VC) once lived for a while 

in Russia, and he found that many people there are rather  cold and distant (of course 

not all of them, some are friendly). He learned that such a trait is quite common in 

many countries in Europe. They tend to be individual and keep a distant to each other. 

In physics term, they are like fermions.7 

3 See also for instance Ref. [12-14]. 

Florentin Smarandache (ed.) Collected Papers, VI

941



There is a developmental psychology hypothesis that suggests that  perhaps 

such a trait correlates to the fact that many children in Europe lack nurturing and 

human touch from their parents, which makes them  rather cold and individualistic. Of 

course, whether this is true correlation or not, it should be verified. 

On the other hand, most people in Asia are gregariously “groupie” in 

behaviors (except perhaps in big metropolitan areas). They tend to spend  much time 

with family and friends, just like many Italians. They attend  religious rituals 

regularly, and so on. In physics term, they are bosons. Of  course, this sweeping 

generalisation may be oversimplifying.8 

That is why we choose to work out Mancur Olson’s theorem in more 

detail,because he is able to condense complicated game theory reasoning  (whether 

one should cooperate or not) into a matter of collective actions. So, which is better: to 

be like fermions or bosons? Our opinion is: both  fermions and bosons are required. 

In the same way, fermion behaviour  and boson behaviour are both needed to advance 

the quality of life. Fermion people tend to strive toward human progress, while boson 

people  are those who make us alive.” 

That is why we tend to argue in favor of theo-antropological view, called: 

indivi-group, i.e. human being is both individuals and also part of their 

societies/communities. Or in particle term, we may call that human beings  are like 

fersons (composed of mixed fermion and bosons). This is our hypothesis in this article. 

Tracking the problems in spiritual term: How can we connect those 

fundamental problems in society to the divided brain? One of most interesting insight 

came from Iain McGilchrist. In his book, The master and his emissary [6], he 

suggests us to look at our divided brain: the deep polarization caused by two 

hemispheres of human brain have led mankind astray. In essence, his arguments can 

be summarized as follows: learning from church fathers until St Augustine, we can 

read an integrative perspective and harmony between left and right brain. But since 

the work of scholastic theologians, including Thomas Aquinas, our theological 

thoughts have gone down the road where the left brain predominated the entire brain 

function. 
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If we borrow Iain McGilchrist’s term, then the emissary has become the 

master; or in other words; left brain function seems to take over the entire human 

societies.[6] Therefore, people should better learn how to think more intuitively, more 

holistic and  more with heart not just logic and reason [3]. 

In the same way, we can capture the essence of many problems in scientific 

development is caused by our too much reliance on the left-side of human brain. Or in 

terms of Yin-Yang (Asian philosophy) we need more Yin touch, who are more adept 

to intuition, holistic thinking and respect to life and care. 

In essence we can say that what McGilchrist wishes to say is that too much logic and 

left-brain functions will make the emissary rule out the entire humanity and the result 

is doom, that is the meaning of the sixth extinction which is already in our door (see 

again the book by Dr. Vandana Shiva, she is a physicist turns ecologist and activist 

[8-9]). 

And if we put McGilchrist's term of divided brain into a more spiritual realm, 

then it is a call to all of us, as the entire humanity, that if we don't want to succumb to 

darkness. That we shall not eat too much fruit of knowledge, and we ought to learn to 

eat fruit of life (Referring to Genesis chapter 3). 

More on fruit of life: Re-introducing Pancasila, the Five Principles of Indonesia 

Enough is enough for fruit of knowledge. Now what shall we do in order to eat 

more on fruit of life? Let us consider again Iain McGilchrist. As a psychiatrist, his 

argument on left and right function of human brain can be captured in essence as 

follows: the left hemisphere which usually processes in detailed manner any problem 

(logically) should not predominate the right brain, which capture holistic and spiritual 

process. In the words of Blaise Pascal: ”The heart has its own logic, which reason 

cannot understand.”4 

In that sense, both heart as spiritual brain function should not be governed by 

the left brain function. In other words, in spirituality realm especially in worshiping 

God, we should not let the emissary (Logical process) to lead the master. It should be 

the other way around.  

4 https://headhearthand.org/blog/2015/05/07/21256/ 
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This problem of choosing between Logic or going beyond Logic, or from 

rationality to go beyond rational thinking can be traced back even to classical history 

of mathematics. It is known that Pythagoreans worshiped rationality and Logic in 

mathematics so much, up to the point when they were shocked when one of their 

disciples found an irrational number, those Pythagoreans left that disciple to drowning 

in the sea. 

So, we know that what McGilchrist described is a real issue, and not just a 

joke. Therefore, we need to shift our emphasis intentionally from knowledge-seeker 

toward more wisdom-insight-intuition seeker.5 We need to learn to care for each other, 

to be more compassionate for those in needs around us. We guess that we can connect 

those compassionate and caring to Asian traditional values, which seem to us 

returning us to the main point of this article: it is now the time to not being captured in 

dialectical logic between [A] free market capitalism of the West which then has 

evolved into progressive capitalism, and [B] state driven capitalism or socialism.  

That there is no middle ground between [A] and [B} entities is the one of 

basic premise of Aristotelian logic. We ought to move forward to non-Aristotelian 

Logic. For instance in Neutrosophic Logic, we can consider that there is dynamics of 

neutrality between [A] and [B} entities, in other words, we shall consider included 

middle theorem. 

In that way, perhaps we can consider what Beginda Pakpahan wrote: 

“I would argue that the concept of a Pancasila-based economy is positioned 

between progressive capitalism and new socialism and can be seen as a 

middle way for Indonesia to respond to the global economic crisis and to 

secure its national interests. It is a mixed model, demonstrating the role of 

the state in institutional reform, policy design and socio-economic 

development, while simultaneously promoting the  spirit of social justice 

through effective partnerships between the public  and private sectors and 

other relevant stakeholders.”[1] 

5 In the Old Testament thoughts, it is supposed that knowledge and intelligence are often connected to wisdom 
from heart, not just brain/intellectual capacity, that is why it was thought that wisdom comes from God Almighty. 
See for instance the Book of Proverbs. 
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That is the essence of our message in this article, we don’t have to catch up endlessly 

with Industrial Revolution 4.0 which tends to disrupt the entire global economy 

without many benefit of majority, but instead only will make the top 1% even more 

greedy to capture the entire global resources. (In the next section, we will discuss two 

ways we can do that to go beyond disruptive changes, which also tend to be 

destructive to the entire economy.) 

Instead, we shall begin to learn to develop national and regional economies 

based on caring and empowering, or in scientific term: cooperative collective 

dynamics.6 For instance, the dynamics of Subak as community based irrigation system 

in Bali can be taught in engineering or sociology schools. That is a good way to return 

to nature, live in slow living (in Danish term: hygge, or Swedish term: lagom), to love 

our neighbors and develop based on communities [5].7  

Two examples on how we can implement the relational economics concept into 

more practical way 

In the preceding sections, we discussed the root cause of deep problems in 

modern societies including our economics approach and technological approach, and 

in essence our dichotomic approach toward separating human and nature. In this 

section we discuss how to put the aforementioned ideas into actions. 

A. Koinomics : doing economics in Trintarian perichoresis way [15] 

Deeply embedded in Christian theology, God, the Father, is understood as the 

Creator, the Giver of Life, and the universe. Further, by God's grace, human beings 

receive the potential to become the stewards of God's creation, grow, multiply, and 

glorify the Almighty. However, it is the basic tenet of Christian faith that God has the 

intention that human beings enjoy a relationship with their Creator and with 

themselves but not being forced to do so. Therefore, God endows human beings a 

capability to make a choice. 

6 H. Guo et al. New Journal of Physics. Url: https://iopscience.iop.org/article/10.1088/1367-2630/ab9e89 
7 See also our recent draft article [5], and also next section, where we outlined how we can implement 
the relational economics concept into more practical way in micro and ultramicro economics setting. 
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As human beings make a wrong choice by focusing on their wish and 

centeredness, they live with total depravity, broken relationship with God and their 

own, thus bearing the dire consequences. Self-centeredness, competition, domination, 

self-protection, and the likes become the game rules in social, political, and economic 

life. As the creation gradually evolves toward extinction, once again, God gives a 

special grace through the life of Jesus Christ. God dwells among humans and redeems 

them. God also offered reconciliation between the creature and the Creator freely. 

Further, Christian theologians then, point out that Christian ethics should root on 

gratefulness for such a reconciliation act of God and to foster a communal relation 

based on such thankfulness. 

The process is incomplete. Churches have long neglected in their theology that 

God has invited the forgiven human beings to enter a gradual transformation process. 

In theology, people understand that God has entered their lives as the Holy Spirit. 

They who have been living in God's grace should develop their capacity to make 

choices to live primarily for themselves or live in relation with others and with God. If 

they choose the latter, they should live by following God's internal relationality. It is 

God's transformative grace. Thus, grace and relationship are two central tenets in 

Christian theology. 

As in the relational dimension of God, known as a communion, fellowship, or 

in Greek, koinonia, each person or community learns to view themselves as an 

inseparable part of humanity. Participating or being in connection does not mean only 

taking part in a program or embracing doctrines. It means to enter other peoples' lives 

and allow others to join our own life. It also means to have a life rotates or centres in 

grace.  

Another word in Greek might also express the concept sharply. The term is 

koinoikos. Its meaning is social, friendly, apt to form and maintain communion or 

fellowship.  It also means the inclination to make others share in one's possessions 

and impart or be free in giving. 

This dimension of koinonia or koinonikos will be incomplete without being 

tied up with the term perichoresis. Slobodan Stamatović  state that "… perichoresis as 

a theological terminus technicus originally appeared in the late Patristics (7th and 
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8th century) and that it irretrievably entered the theological endeavour through the 

influential work of John Damascene (†750 AD).8  

In this context, the introduction of a new term, koinomics is in order. The 

name derives from two terms "koinonia" and "economics." The word "koinonia" or 

"koinon" – comes from the New Testament.  Koinonia itself in the New Testament 

does not have a single meaning as koinonia appears nineteen times.  

The words related to and the root-word koinon occur 46 times, mostly in Paul's letters 

and some in John's letters, Peter's letters, letters Hebrews, and Acts.  In the gospels, 

the word koinonia does not appear. However, some terms have roots in Koino. 

From various sources, it is evident that the word koinonia's meaning comes 

from the word koinos, which means joint or communal.  Koinon or koinonia has a 

broad definition of fellowship, friendship, and close relationships (Fuchs, 2008). A 

nun and activist of the ecumenical movement, Lorelei Fuchs, also explained that 

koinonia has many meanings. The meanings are communion, acting together, 

friendship, reciprocity, participating, helping, sharing, solidarity, togetherness, 

cohesion, unity, and wholeness.9  

In the context of the Trinity, the word koinonia interconnects with 

perichoresis. Perichoresis means The Triune God moves to one another in a cosmic 

dance, complementary to each other.10  

Case study: 

Twelve pastors and an agricultural engineer from Indonesia studied the 

national food production system, supply, and demand in Indonesia. At that time, many 

farmers burned their harvests as no middlemen appear as usual to buy anything from 

them. COVID-19 disrupted the food source and the supply line. The study of those 

pastors triggered A Food Terminal program with an objective: to bridge the farmers 

who live in remote areas as producers with the customers who live in big cities. The 

8 Stamatović, Slobodan. (2016). The Meaning of Perichoresis. Open Theology. 2. 10.1515/opt-2016-
0026. p. 303.    
9 Lorelei Fuchs. Koinonia and the quest for ecumenical ecclesiology. Wm. B. Eerdmans. 
10 See also Tihomir Lazic. Koinonia. MA Thesis submitted to Newbold College, April 2008. http://n10308uk.eos-
intl.eu/eosuksql01_N10308UK_Documents/Dissertations/Lazic.pdf 
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farmers will receive higher income for what they produce while the customers will 

mostly have fresh and organic products.  

The idea was then, supported by the Kayu Putih Church, a church in the 

capital city that allows the Terminal Pangan to use the church's space as storage for 

the products. A couple of donors from other churches supported them with the initial 

capital, about USD 1500.00 to buy the food products, refrigerators, and operational 

expenditure. 

Given that COVID-19 was rampant, the Food Terminal management asks 

purchase orders from their customers through digital channels and afterwards sends 

requests to several farming communities. Three days later, the food products will 

arrive at the church complex.  

Later, besides the fruits and vegetables, fresh seafood from a nearby fishing 

community started to enter the Food Terminal. The Food Terminal opens once a week. 

The customers will receive their orders as the terminal hires church members who lost 

their job or need additional income as the delivery team members.  Thus, if this is a 

drama, the actors are the Food Terminal workers who are mostly voluntary, the 

fishermen and farmers, the customers, and the delivery team.  

In a month, four responses emerged from the congregation members. The first 

was a rejection that a church got involved in the business world. The second, a harsh 

critique came concerning the quality of products that were not at the level that the 

customers wanted. The third response was that the Food Terminal management is not 

professional enough as frequently they made mistakes as they sent few products that 

the customers did not order. In many cases, even, they forgot to send bills for the food. 
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Illustration 1. Staffs prepared the vegetables before delivering to customer (Food 

Terminal Jakarta) 

B. Smooth changes: how to develop non-disruptive creations instead of disruptive 

technologies [16] 

In recent years, there is an alternative scheme in corporate strategy discourse, 

called Blue Ocean (shift) Strategy by W. Chan Kim and R. Mauborgne. In this paper 

we offer a new insight based on Neutrosophic Logic perspective, which combines red 

ocean and blue ocean, while a company moves forward and shift to blue ocean space. 

In their Blue Ocean Shift, W. Chan Kim and R. Mauborgne offer some clear and good 

examples of organizations who have made such a transition to blue ocean [17]. There 

is the case of an inn network that applied the demonstrated advances plot in the book 

to break out of the exceptionally serious inn industry – which is 'redder than red'– to 
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make the new market of moderate lavish inns offering five-star comfort at three-star 

costs. Today it has 90% inhabitance rates, visitor appraisals called it 'magnificent' and 

'spectacular' on booking destinations, and portrayed it as the least expenses in the 

most stylish areas. It is turning out to significant urban communities over the world. 

The book likewise clarifies how a worldwide, little machine organization with over 

100 years of history turned an industry, whose worth was declining by 10% every 

year, into a high-development one. The organization did that by reclassifying its 

contribution so much that it permits we all today to make scrumptious French fries 

with no browning and practically no oil. The aftereffect of its work day: Not just 

requested develop by 40%, its stock cost lifted by 5 percent. 

Problems of transition 

While the Blue Ocean Shift book has offered some practical tools to help 

organizations mapping their position and going toward blue ocean, such a transition 

or shift to become blue ocean organization is not so easy. In physics term, this process 

can be called as transition phase. 

In this context, Tantau and Mateesescu offer a bit more realistic pathway, that 

they call: green ocean, where a mixture of red ocean space and blue ocean space is 

allowed while an organizations move gradually toward blue ocean.[18] 

Such a transition can be seen from Neutrosophic Logic Perspective, albeit with a bit 

rather different lingo, i.e. in Neutrosophic Logic it is known (T,I,F) means: degree of 

truth, indeterminacy, and falsehood.  Meanwhile, in green ocean scheme, there are 

R,I,B: x percent of (R) red ocean, indeterminacy, and y percent of (B) blue ocean. 

In the meantime, instead of neutrosophic logic we can use Neutrosophy, since 

in neutrosophy we have in general <A> and <antiA>, the opposites, and the neutral 

<neutA>. In this case we take Red =  <A> and Blue = <antiA>, while green (or other 

color in between) as part of <neutA>. 

To summarize such an approach, we offer the following table: 

Description Red Ocean Indeterminacy Blue Ocean 

Analogy with 

Neutrosophic Logic 

Truth Indeterminacy falsehood 
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Green Ocean X percentage of 

red 

Y percentage of 

blue 

In neutrosophy 

framework 

Red <A> Green <neutA> Blue <antiA> 

Main strategy Competitive A mixture Non-competitive 

Porter scheme Value or low 

budget trade off 

A mixture Value leap while 

keeping low 

budget 

Disruptive/non-

disruptive pattern 

Disruptive 

innovations 

Non-disruptive 

creations (value 

leap) 

Table 1. Neutrosophic Logic perspective to red-blue ocean mixture 

To simplify the above notions, perhaps we should not call it “green ocean 

strategy” which only makes it more complicated, but perhaps “brue” from a mixture 

of blue ocean-red ocean strategy. (perhaps we can call it : Brue strategy: from “red in 

mixture with blue.”) 

We hope a simple scheme as outlined above can be developed further in the 

near future. Allow us to remark here that despite some innovation books by those 

management luminaries emphasize disruptive changes (perhaps they follow 

Schumpeter train of thought: changes must be creative destruction), we submit more 

in tune with Kim & Mauborgne, that there is always possibility to introduce non-

disruptive creations instead of disruptive changes. See for instance our new draft 

paper [21]. 

Concluding remarks 

The present economic crises induced by covid pandemic have called for our 

attention to reconsider where we are heading at a global community. Shall we lend 

ourselves to directive and at time rather insistence to move to new economy called the 

Industrial Revolution version 4.0? Or is there another way, even if it seems like a less 

traveled path for now? We argue here that the insistence to move in a global level 
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towards Industrial Revolution 4.0 as advocated by Klaus Schwab and other Davos 

Club proponents will only benefit those 1% globalist elites (see also Vandana Shiva’s 

book “The Oneness versus 1%”[8-9]). No wonder that many people begin to protest 

several Davos meetings in the past, because they realize that those elites often decide 

to maximize their own interests, while they act in the name of global society as a 

whole. 

In this article, we also try to re-introduce Pancasila on the basis of traditional 

Asian values (which may be linked to the fruit of life in Genesis chapter 3) to become 

one of these less travelled path available at our table. 
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This article aims to propose an approach for determining reliabil-
ity of information collected using questionnaires and bipolar neutro-
sophic sets. Bipolar neutrosophic sets use six membership functions that
express the truth membership, the falsity membership, as well as the
indeterminacy membership to the set and complementary set. There-
fore, bipolar neutrosophic numbers may be suitable for applying in
multi-criteria evaluation when a smaller number of complex evalua-
tion criteria are used. Unfortunately, a significant number of member-
ship functions make them somewhat complex for collecting data by
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surveying respondents. Using reliability of data decision-makers can
identify respondents who did not want to participate in the survey, or
did not understand the application of BNNs, and take appropriate action.
The usability of the proposed approach is presented through two illus-
trative examples and conclusions were drawn based on obtained results.

Keywords: Bipolar fuzzy set, neutrosophistic, single-valued bipolar fuzzy num-
ber, data reliability, MCDM, decision making
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1 INTRODUCTION

Decision-making is a process that is continuously taking place everywhere
and by everyone. Therefore, the challenge that arises is to make the optimal
decision for a given problem or situation. Decision-making is an essential
part of operational research. Due to its popularity and rapid growth, so far
it has been used for solving numerous complex decision-making problems
[1-5].

MCDM enables the choice of the suitable alternative from the finite set
of alternatives, respecting the values of the criterion attributes, i.e. enables
the decision-making process in the presence of multiple, generally conflict-
ing criteria [6-7]. Multi-criteria decision-making (MCDM) allows tolerating
ambiguities that arise when solving many problems in the decision-making
system [8]. Depending on the domain of alternatives, MCDM is divided
into Multi-Objective Decision Making (MODM) and Multi-Attribute Deci-
sion Making (MADM). The fundamental problem of multi-criteria decision-
making is how to reconcile criteria, different preferences, and conflicting
interests. Therefore, the primary task of multi-criteria decision-making is to
find the best solution in terms of evaluated criteria [9-10].

In due course of time, due to extremely rapid development, many promi-
nent and widely-used MCDM methods are developed, such as: Simple addi-
tive weighting – SAW [11]; Analytic hierarchy process – AHP [12]; Elim-
ination et choix traduisant la realit – ELECTRE [13]; Preference ranking
organization method for enrichment evaluation – PROMETHEE [14]; Tech-
nique for order performance by similarity to ideal solution – TOPSIS [15];
Višekriterijumska optimizacija i kompromisno rešenje – VIKOR [16]; and
so forth. Besides, it is worth mentioning a new generation of the MCDM
methods and MCDM approaches, such as: A new additive ratio assessment
method – ARAS [17]; Multiobjective optimization by ratio analysis plus full
multiplicative form – MULTIMOORA [18]; Pivot pair-wise relative criteria
importance assessment method – PIPRECIA [19]; Full consistency method –
FUCOM [20]; Measurement of alternatives and ranking according to COm-
promise solution – MARCOS [21]; Multi-attributive ideal-real comparative
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analysis method – MAIRCA [22]; A new combinative distance-based assess-
ment – CODAS [23]; and so forth.

To provide a reliable methodology for solving complex decision-making
problems, Zadeh [24] introduced a fuzzy set theory. Fuzzy set theory has
been used successfully for solving a number of decision-making problems,
which is why Bellman and Zadeh proposed fuzzy MCDM [25]. A concise
overview of the application of fuzzy logic can be found in [26-29]. However,
the membership function to the set, presented in this theory, has not been suf-
ficient for solving some classes of complex decision-making problems, or its
determination was difficult. Therefore, some extensions of the fuzzy set the-
ory have been proposed. For example, Attanasov [30] proposed intuitionistic
fuzzy sets by introducing non-membership function to the set, while Zhang
[31] introduced the concept of bipolar fuzzy sets and suggested the usage of
the two membership functions that represent membership to a set and mem-
bership to a complementary set.

Smarandache [32] introduced the neutrosophic sets (NS) theory, as
the generalization of fuzzy sets and intuitionistic fuzzy sets, introducing
truth-membership function, indeterminacy membership function and falsity-
membership function, while Wang, Smarandache, Zhang, and Sunderraman
[33] further introduced the single-valued neutrosophic sets (SVNS) that are
more suitable for solving many real-world decision-making problems. Deli,
Ali and Smarandache [34] introduced Bipolar Neutrosophic Sets (BNS) by
generalizing the concept of bipolar fuzzy sets.

Neutrosophic set theory has enabled forming extensions of a number of
MCDM methods, such as the AHP [35] and EDAS [36] methods, and has
also been used for solving a number of decision-making problems, such as
the diagnosis of bipolar disorder diseases [37]. A comprehensive overview of
the application of neutrosophic sets to solve decision-making problems can
be found in [40-41].

One of the areas where NS and BNS can be effectively applied is mul-
tiple decision-making criteria based on the use of complex evaluation crite-
ria. However, the use of several membership functions can make evaluation
somewhat complex, especially when the evaluation is based on data collected
by the survey. Therefore, Smarandache, Stanujkic and Karabasevic [42] pro-
posed an approach to determine the reliability of information collected using
questionnaires and single-valued neutrosophic numbers. This research was
continued in [43].

In this article, the mentioned approach is extended to the use of bipo-
lar neutrosophic numbers. Therefore, the rest of the manuscript is organized
as follows: in Section 2, the basic concepts of the bipolar neutrosophic sets
are presented and in Section 3, a procedure for determining the reliability of
the information contained in bipolar neutrosophic numbers is proposed. In
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Section 4, the usability of the proposed approach is shown in two numerical
illustrations. Finally, the conclusions are given.

2 THE BASIC CONCEPTS OF A BIPOLAR NEUTROSOPHIC SET

As is previously mentioned, Zadeh [24] proposed a fuzzy set theory and intro-
duced the membership function.

Definition 1. A fuzzy set. Let X be a nonempty set. Then, a fuzzy set A in X
is a set of ordered pairs [24]:

A = { 〈x, μA(x)〉| x ∈ X} (1)

where the membership function μA(x) denotes the degree of the membership
of an element x to the set A, and μA(x) ∈ [0, 1].

Definition 2. A bipolar fuzzy set. Let X be a nonempty set. Then, a bipolar
fuzzy set is defined as follows [44]:

A = { 〈

x, μ+
A (x) , v+

A (x)
〉∣

∣ x ∈ X
}

(2)

where: the positive membership function μ+
A (x)denotes the satisfaction

degree of the element x to the property corresponding to a bipolar-valued
fuzzy set, and the negative membership function v+

A (x), denotes the degree of
the satisfaction degree of the element x to a corresponding complementary
bipolar-valued fuzzy set, respectively; μ+

A : X → [0, 1] and v+
A : X → [0, 1].

Definition 3. A neutrosophic set. Let X be a nonempty set. Then, NS A in X
is defined as [32]:

A = { 〈x, TA (x) , IA (x) , FA (x)〉| x ∈ X} (3)

where: TA (x), IA (x) and FA (x), denote the truth-membership TA (x),
the indeterminacy-membership IA (x) and the falsity-membership functions
FA (x), and TA, IA, FA : X → ]

0−, 1+[.
In contrast to intuitionistic sets, the restriction regarding the sum of the

membership functions is eliminated, so that 0− ≤ TA (x)+ IA (x)+UA (x) ≤
3+.

Definition 4. A single-valued neutrosophic set. Let X be a nonempty set.
Then, an SVNS A over X is an object having the form [32, 33]:

A = { 〈x, TA (x) , IA (x) , FA (x)〉| x ∈ X} (4)
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where TA (x), IA (x) and FA (x) are the truth-membership function, the
indeterminacy-membership function and the falsity-membership function,
respectively, TA, IA, FA : X → [0, 1]and 0 ≤ TA (x)+ IA (x)+UA (x) ≤ 3.

Smarandache [32] also introduced the Single Valued Neutrosophic Num-
ber (SVNN), which can be designated as follows x = 〈tx , ix , fx 〉 for conve-
nience.

Definition 5. Bipolar neutrosophic sets. Let X be a nonempty set. Then, a
BNS A in X is as follows [34]:

A = { 〈

x, T +
A (x) , I +

A (x) , F+
A (x) , T −

A (x) , I −
A (x) , F−

A (x)
〉∣

∣ x ∈ X
}

(5)

where: T +
A , I +

A , F+
A denote the truth-membership, the indeterminacy-

membership and the falsity-membership of x to the BNS A, and T −
A , I −

A , F−
A

denote the truth membership, the indeterminacy-membership, and the falsity-
membership of x to a complementary BNS; T +

A , I +
A , F+

A : X → [0, 1] and
T −

A , I −
A , F−

A : X → [−1, 0].
Deli, Ali and Smarandache [34] also introduced the Bipolar Neutro-

sophic Number (BNN), which can be denoted as follows x = 〈

t+
x , i+

x , f +
x ,

t−
x , i−

x , f −
x

〉

for convenience.

Definition 6. Score function of BNN. Let be a x = 〈

t+
x , i+

x , f +
x , t−

x , i−
x , f −

x

〉

BNN. The score function s(x) of a BNN is as follows [34]:

s(x) = (

t+
x + 1 − i+

x + 1 − f +
x + 1 + t−

x − i−
x − f −

x

)

/6 (6)

Definition 7. A bipolar neutrosophic weighted average operator of BNNs.

Let a j =
〈

t+
j , i+

j , f +
j , t−

j , i−
j , f −

j

〉

be a collection of BNNs. The bipolar neu-

trosophic weighted average operator (Aw) of the n dimensions is mapping
Aw : Qn → Q as follows [34]:

Aw (a1, a2, . . . , an)

=
n
∑

j=1

w j a j =
⎛

⎝1 −
n
∏

j=1

(

1 − t+
j

)w j
,

n
∏

j=1

(

i+
j

)w j
,

n
∏

j=1

(

f +
j

)w j
,

−
n
∏

j=1

(−t−
j

)w j
, −

⎛

⎝1 −
n
∏

j=1

(

1 − (−i−
j

))w j

⎞

⎠ , −
⎛

⎝1 −
n
∏

j=1

(

1 − (− f −
j

))w j

⎞

⎠

⎞

⎠ (7)

where: w j is the element j of the weighting vector, w j ∈ [0, 1] and
∑n

j=1 w j =1.
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3 RELIABILITY OF THE INFORMATION CONTAINED IN BNNS

NS theory has numerous applications. One of them is in decision mak-
ing where different types of neutrosophic numbers are used for gathering
attitudes from DMs, experts, and/or respondents. Therefore, Smarandache,
Stanujkic and Karabasevic [42] proposed an approach to assess the reliabil-
ity of the information r(x) contained in an SVNN, as follows:

r(x) = t − f

1 + i1/n
(8)

where: t , i, f denote the truth, the indeterminacy and the falsity of information
contained in SVNN x = 〈t, i, f 〉, n denotes a parameter and n ∈ [0, 1].

For simplicity, the value of the variable n can be set to 0, in which case
the previous Eq. (9) has the following form:

r(x) = t − f

1 + i
(9)

Due to their complexity, the reliability of the information contained in the
BNN should also include the reliability of the information contained in the
complementary NS, as follows:

r(x) = r+
(x) + r−

(x) = 0.5

(
∣

∣t+ − f +∣
∣

1 + i− +
∣

∣t− − f −∣
∣

1 − i−

)

(10)

where: r(x) denote reliability of the information contained in a BNN, r(x) ∈
[0, 1] and higher value of r(x) indicates the higher reliability, r+

(x) and r−
(x)

denote reliability contained in the complementary NS and complementary
NS.

And finally, each decision matrix in the MCDM contains more rows
and more columns, which is why the following equations can be used to
determine the average reliability of the information contained in their rows,
columns or them, respectively:

rr = 1

m

m
∑

i=1

r(xij) (11)

rc = 1

n

n
∑

j=1

r(xij) (12)

rm = 1

m × n

m
∑

i=1

n
∑

j=1

r(xij) (13)
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where: m denotes the number of alternatives, n denotes the number of criteria,
and xij denotes rating of alternative i in relation to the criterion j in the form
of BNN.

4 NUMERICAL ILLUSTRATIONS

In order to demonstrate the usability of the proposed approach, two numeri-
cal illustrations are presented and discussed in this section. The first example
is borrowed from Ulucay, Deli and Sahin [45] and slightly modified to accu-
rately demonstrate the usability of the proposed approach. The second exam-
ple shows the application of the proposed approach in the case of a cloud
service provider selection.

4.1 The First Numerical Illustration
Ulucay, Deli and Sahin [45] evaluated four green suppliers based on three
criteria, namely: product quality, technology capability, and pollution control.

The decision matrix, whose elements are BNN, is shown in Table 1. The
reliability of the information contained in the elements of the decision matrix,
determined using Eq. (10), and the average reliability of data contained in
their columns and rows, determined by Eqs. (11) and (12) are shown in Table
2. Table 2 also shows the overall reliability, which is 0.39.

It has already been stated that the higher value of the reliability of the
information contained in the BNN is more preferable. The average reliability
of all information contained in the decision matrix is 0.39. Such a decision

C1 C2 C3

A1 < 0.8, 0.0, 0.2,
−0.6,−0.1, −0.1 >

< 0.6, 0.1, 0.2,
−0.4, 0.0,−0.2 >

< 0.8, 0.1, 0.5,
−0.3, 0.0,−0.1 >

A2 < 0.7, 0.0, 0.2,
−0.4, 0.0,−0.2 >

< 0.6, 0.2, 0.3,
−0.6,−0.1, −0.3 >

< 0.7, 0.2, 0.5,
−0.1, 0.0,−0.8 >

A3 < 0.7, 0.1, 0.2,
−0.2,−0.1, −0.7 >

< 0.9, 0.1, 0.6,
0.1, 0.0,−0.5 >

< 0.6, 0.1, 0.5,
−0.2, −0.1,−0.6 >

A4 < 0.8, 0.0, 0.1,
−0.2, 0.0,−0.8 >

< 0.6, 0.0, 0.3,
−0.1,−1.0, −0.4 >

< 0.9, 0.1, 0.4,
0.0, 0.0,−0.8 >

TABLE 1
The initial decision matrix.

Source: Ulucay et al. (2018)
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C1 C2 C3 Average

A1 0.53 0.28 0.24 0.35
A2 0.35 0.26 0.43 0.35
A3 0.45 0.44 0.23 0.37
A4 0.65 0.23 0.63 0.50
Average 0.50 0.30 0.38 0.39

TABLE 2
The reliability of the information.

Source: Authors’ calculation

matrix can be accepted for further evaluation, but it is noticeable that there is
a possibility to increase the reliability of the information.

Using values calculated by Eqs. (10), (11) and (12) decision-makers could
analyze the reliability of collected information, make some modifications,
and accept the decision matrix for further evaluation or rejected it.

4.2 The Second Numerical Illustration
The second illustration shows the partial results of an evaluation of four cloud
service providers based on four criteria. For the sake of simplicity and more
precise presentation, only the characteristic results obtained from three DMs
and four evaluation criteria are presented below. The criteria used for evalu-
ation are: Security – (C1), Service levels - (C2), Support - (C3), and Costs -
(C4).

During the completion of the questionnaire, the respondents expressed
their attitudes using values from the interval [0, 1], for positive member-
ship functions, and values from the interval [0, 1], for negative membership
functions. The use of linguistic variables in this research would significantly
facilitate the collection of respondents’ attitudes. However, the use of lin-
guistic variables, i.e. predefined values of membership functions, also can
limit expressing real respondents’ attitudes. Therefore, linguistic variables
are omitted in this case in order to perform the most realistic collection of
respondents’ attitudes and realistically consider the use of bipolar neutro-
sophic numbers for that purpose. The results of the evaluation obtained from
the first decision-maker are shown in Table 3.

As can be seen from Table 4, the reliability of all responses obtained from
the first respondent is 0.76, where the highest value of reliability is achieved
based on criterion C1 and the lowest value of reliability is achieved based on
criterion C2. In relation to the considered alternatives, the highest reliability
of the collected responses is achieved in relation to alternative A2, i.e. 0.84,
and the lowest in relation to alternative A4, and it is 0.62. The difference in
the reliability of these alternatives is 0.22, which indicates that the evaluation
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C1 C2 C3 C4

A1 < 1.0, 0.0, 0.0,
0.0, 0.0,−1.0 >

< 0.9, 1.0, 0.1,
0.0,−0.1, −0.7 >

< 0.9, 0.0, 0.1,
−0.1, 0.0,−0.9 >

< 0.9, 0.0, 0.0,
0.0, 0.0,−0.8 >

A2 < 1.0, 0.0, 0.0,
0.0, 0.0,−1.0 >

< 0.8, 0.0, 0.0,
−0.2, 0.0,−0.8 >

< 0.9, 0.0, 0.0,
0.0,−0.1, −0.9 >

< 0.8, 0.0, 0.0,
0.0, 0.0,−0.8 >

A3 < 1.0, 0.1, 0.1,
0.0, 0.0,−1.0 >

< 1.0, 0.1, 0.1,
−0.4, 0.0, 0.0 >

< 0.9, 0.0, 0.0,
0.0, 0.0,−0.8 >

< 0.7, 0.0, 0.0,
0.0, 0.0,−0.9 >

A4 < 0.9, 0.1, 0.1,
−0.1,−0.1, −0.9 >

< 0.9, 0.1, 0.2,
0.0, 0.0,−0.8 >

< 0.7, 2.0, 0.2,
−0.1,−0.1, −0.5 >

< 0.8, 0.0, 0.0,
0.0, 0.0,−0.7 >

TABLE 3
The responses obtained from the first respondent.

Source: Authors’ calculation

C1 C2 C3 C4 Average

A1 1.00 0.52 0.80 0.85 0.79
A2 1.00 0.70 0.86 0.80 0.84
A3 0.91 0.61 0.85 0.80 0.79
A4 0.73 0.72 0.27 0.75 0.62
Average 0.91 0.64 0.69 0.80 0.76

TABLE 4
The reliability of the information obtained from the first DM.

Source: Authors’ calculation

C1 C2 C3 C4

A1 < 1.0, 0.0, 0.0,
0.0, 0.0,−1.0 >

< 0.4, 0.1, 0.5,
−0.5, −0.1,−0.4 >

< 0.7, 0.0, 0.5,
−0.8, 0.0,−0.6 >

< 0.1, 0.0, 0.7,
−0.1, 0.0,−0.8 >

A2 < 0.9, 0.0, 0.0,
0.0, 0.0,−1.0 >

< 0.7, 0.0, 0.8,
−0.2, 0.0,−0.4 >

< 0.9, 0.0, 0.6,
−0.1, 0.0,−0.5 >

< 0.5, 0.1, 0.7,
−0.3, 0.0,−0.9 >

A3 < 0.9, 0.2, 0.1,
0.0, 0.0,−1.0 >

< 0.3, 0.0, 0.2,
−0.4, −1.0,−0.8 >

< 0.9, 0.0, 0.5,
−0.6, 0.0,−0.2 >

< 0.7, 0.0, 0.3,
−0.2, 0.0,−0.2 >

A4 < 0.9, 0.1, 0.1,
−0.1, −0.1,−0.9 >

< 0.6, 0.0, 0.2,
−0.5, 0.0, 0.1 >

< 0.7, 0.0, 0.1,
−0.1, 0.0,−0.9 >

< 0.4, 0.0, 0.2,
−0.6, 0.0,−0.3 >

TABLE 5
The responses obtained from the second respondent.

Source: Authors’ calculation

was performed correctly, carefully, and with an understanding of the use of
BNNs.

The responses obtained from the second and the third respondents are
shown in Tables 5 and 6, while the calculated reliability values are shown
in Tables 7 and 8.
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C1 C2 C3 C4

A1 < 0.8, 0.0, 0.5,
0.0, 0.0,−0.3 >

< 0.4, 0.0, 0.5,
−0.4,−0.8, −0.4 >

< 0.7, 0.0, 0.5,
−0.8, 0.0,−0.6 >

< 0.8, 0.0, 0.0,
0.0, 0.0, 0.0 >

A2 < 0.8, 0.2, 0.3,
0.0,−0.3,−0.2 >

< 0.7, 0.1, 0.8,
−0.3,−0.5, −0.1 >

< 0.9, 0.0, 0.6,
−0.1, 0.0,−0.5 >

< 0.9, 0.0, 0.0,
0.0, 0.0, 0.0 >

A3 < 0.7, 0.0, 0.3,
0.0,−0.2,−0.2 >

< 0.2, 0.1, 0.2,
−0.4,−0.7, −0.4 >

< 0.9, 0.0, 0.5,
−0.6, 0.0,−0.2 >

< 0.9, 0.0, 0.0,
0.0, 0.0, 0.0 >

A4 < 0.8, 0.0, 0.2,
−0.1, −0.1,−0.1 >

< 0.3, 0.1, 0.2,
−0.5,−0.5, −0.1 >

< 0.5, 0.0, 0.5,
−0.1, 0.0,−0.2 >

< 0.7, 0.1, 0.1,
−0.1, 0.0, 0.0 >

TABLE 6
The responses obtained from the third respondent.

Source: Authors’ calculation

C1 C2 C3 C4 Average

A1 1.00 0.09 0.20 0.65 0.49
A2 0.95 0.15 0.35 0.39 0.46
A3 0.83 0.15 0.40 0.20 0.40
A4 0.73 0.50 0.70 0.25 0.54
Average 0.88 0.22 0.41 0.37 0.47

TABLE 7
The reliability of the information obtained from the second respondent.

Source: Authors’ calculation

C1 C2 C3 C4 Average

A1 0.30 0.05 0.20 0.40 0.24
A2 0.29 0.11 0.35 0.45 0.30
A3 0.28 0.00 0.40 0.45 0.28
A4 0.30 0.18 0.05 0.32 0.21
Average 0.29 0.09 0.25 0.41 0.26

TABLE 8
The reliability of the information obtained from the third respondent.

Source: Authors’ calculation

As can be seen from Tables 7 and 8, the mentioned decision-makers
achieved significantly lower values of reliability, where the reliability of
responses obtained from the third decision-maker is evidently low, which is
why these responses have to be rechecked or omitted from further evaluation.

In this case, responses obtained from the third decision-maker are omitted
from further evaluation, and a group decision matrix was constructed using
Eq. (7), as shown in Table 9.
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C1 C2 C3 C4

A1 < 1.0, 0.0, 0.0,
0.0, 1.0, 0.0 >

< 0.8, 0.3, 0.2,
0.0, 0.9, 0.4 >

< 0.8, 0.0, 0.2,
−0.3, 1.0, 0.2 >

< 0.7, 0.0, 0.0,
0.0, 1.0, 0.2 >

A2 < 1.0, 0.0, 0.0,
0.0, 1.0, 0.0 >

< 0.8, 0.0, 0.0,
−0.2, 1.0, 0.3 >

< 0.9, 0.0, 0.0,
0.0, 0.9, 0.2 >

< 0.7, 0.0, 0.0,
0.0, 1.0, 0.1 >

A3 < 1.0, 0.1, 0.1,
0.0, 1.0, 0.0 >

< 1.0, 0.0, 0.1,
−0.4, 0.0, 0.4 >

< 0.9, 0.0, 0.0,
0.0, 1.0, 0.4 >

< 0.7, 0.0, 0.0,
0.0, 1.0, 0.3 >

A4 < 0.9, 0.1, 0.1,
−0.1, 0.9, 0.1 >

< 0.8, 0.0, 0.2,
0.0, 1.0, 0.5 >

< 0.7, 0.0, 0.1,
−0.1, 0.9, 0.2 >

< 0.7, 0.0, 0.0,
0.0, 1.0, 0.5 >

TABLE 9
A group decision matrix.

Source: Authors’ calculation

C1 Score Rank

A1 < 1.00, 0.00, 0.00, 0.00, 0.98, 0.18 > 0.47 3
A2 < 1.00, 0.00, 0.00, 0.00, 0.99, 0.16 > 0.48 2
A3 < 1.00, 0.00, 0.00, 0.00, 0.70, 0.25 > 0.51 1
A4 < 0.79, 0.00, 0.00, 0.00, 0.96, 0.30 > 0.42 4

TABLE 10
Overall utilities, values of score function and ranking orders of alternatives.

Source: Authors’ calculation

C1 Score Rank

A1 < 1.00, 0.00, 0.00, 0.00, 0.88, 0.16 > 0.493 2
A2 < 1.00, 0.00, 0.00, 0.00, 0.91, 0.15 > 0.491 3
A3 < 1.00, 0.00, 0.00, 0.00, 0.68, 0.23 > 0.515 1
A4 < 0.75, 0.00, 0.00, 0.00, 0.91, 0.29 > 0.425 4

TABLE 11
Overall utilities, values of score function and ranking orders of alternatives based on responses
of three DMs

Source: Authors’ calculation

The overall utility of each alternative, calculated by using Eq. (6),
are shown in Table 10, where the following vector weight w j =
(0.29, 0.24, 0.21, 0.26) was used. The values of the score function and rank-
ing orders for the considered alternatives are also shown in Table 10.

As can be seen from Table 11, the alternative A3 is the most acceptable. In
order to verify the proposed approach, an additional calculation is performed
with ratings of all three DMs, as it is shown in Table 11.

As can be seen from Table 11, the scores obtained from the third respon-
dent did not affect the best-ranked alternative but reflected on the rank of
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the second and third-ranked alternatives. However, in some other cases, the
ratings of respondents with low data reliability may affect the ranking order
of alternatives. Using reliability of data decision-makers can identify respon-
dents who did not want to participate in the survey, or did not understand the
application of BNNs, and take appropriate action.

5 AN ANALYSIS OF THE PROPOSED APPROACH

In order to verify the proposed approach, some characteristic cases, i.e. char-
acteristic BNNs, and their reliability of information are analyzed below. Table
12 shows two “ideal” cases of BNNs, as well as their reliability.

As can be seen from Table 12, both BNNs have the reliability of the infor-
mation equal to one. Table 13 shows three characteristic, but less desirable,
cases in which the respondent fails to consistently express his preferences.

It can also be seen from Table 13 that inconsistency in assessment is
reflected in reliability.

The influence of the value of the indeterminacy-membership function on
the reliability of the information contained in the BNNs is shown in Table 14.

From Table 14 it can be concluded that the increase in the value of the
indeterminacy-membership function affects the decrease in the reliability of
the information contained in the BNN.

Based on the cases discussed above, it can be concluded that the proposed
approach can be used with high reliability for accessing the reliability of the
information contained in BNNs.

BNN r+
(x) r−

(x) r(x)

< 1.0, 0.0, 0.0, 0.0, 0.0,−1.0 > 1.00 1.00 1.00
< 0.0, 0.0, 1.0,−1.0, 0.0, 0.0 > 1.00 1.00 1.00

TABLE 12
“Ideal” BNNs and their reliability.

Source: Authors’ calculation

BNN r+
(x) r−

(x) r(x)

I < 1.0, 0.0, 1.0, 0.0, 0.0,−1.0 > 0.00 1.00 0.50
II < 0.0, 0.0, 1.0,−1.0, 0.0,−1.0 > 1.00 0.00 0.50
II < 1.0, 0.0, 1.0,−1.0, 0.0,−1.0 > 0.00 0.00 0.00

TABLE 13
Some characteristic BNNs and their reliability.

Source: Authors’ calculation
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BNN r+
(x) r−

(x) r(x)

< 1.0, 0.5, 1.0, 0.0,−0.5, −1.0 > 0.00 0.67 0.33
< 0.0, 0.5, 1.0,−1.0, −0.5,−1.0 > 0.67 0.00 0.33
< 1.0, 0.5, 1.0,−1.0, −0.5,−1.0 > 0.00 0.00 0.00
< 1.0, 1.0, 1.0, 0.0,−1.0, −1.0 > 0.00 0.50 0.25
< 0.0, 1.0, 1.0,−1.0, −1.0,−1.0 > 0.50 0.00 0.25
< 1.0, 1.0, 1.0,−1.0, −1.0,−1.0 > 0.00 0.00 0.00

TABLE 14
Influence of indeterminacy-membership function on the reliability of the information contained
in BNNs.

Source: Authors’ calculation

BNN r+
(x) r−

(x) r(x)

< 1.0, 0.0, 0.0,−1.0, 0.0, 0.0 > 1.00 1.00 1.00
< 0.0, 0.0, 1.0, 0.0, 0.0,−1.0 > 1.00 1.00 1.00

TABLE 15
Some characteristic BNNs and their reliability.

Source: Authors’ calculation

Finally, Table 15 also shows two possible cases of BNNs, as well as their
reliability.

From Table 15 it can be seen that the proposed approach, i.e. Eq. (10),
does not include the interrelationship between positive and negative truth-
membership, the indeterminacy-membership, and the falsity-membership
functions. The proposed approach is an extension of the approach proposed
in [42] and [43] to BNNs, proposed with the aim of simply assessing the reli-
ability of the information contained in BNNs and identifying inconsistently
in completed questionnaires. However, the proposed approach can be further
extended to include the aforementioned relationships between membership
functions.

6 CONCLUSIONS

Bipolar neutrosophic sets use six membership functions that express the truth
membership, the falsity membership, as well as the indeterminacy mem-
bership to the set and complementary set. Therefore, bipolar neutrosophic
numbers may be suitable for applying in multiple criteria evaluation when
a smaller number of complex evaluation criteria are used. Unfortunately, a
significant number of membership functions make them more complex for
collecting data by surveying respondents.
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Numerous studies are dedicated to the investigation of the use of fuzzy
and neutrosophic numbers for solving complex decision-making problems.
However, an evident lack of researches deals with the reliability of data col-
lected by using surveys based on the use of fuzzy or neutrosophic numbers,
as well as bipolar neutrosophic numbers. Using reliability of data decision-
makers can identify respondents who did not want to participate in the sur-
vey, or did not understand the application of bipolar neutrosophic numbers,
and take appropriate action. With the main aim of increasing the reliability
of the decision-making process based on the bipolar neutrosophic sets, the
novel approach for assessing the consistency of the respondents’ responses is
proposed in this article.

The research conducted in this study indicates that the proposed approach
can be used to assess the reliability of the data collected using bipolar fuzzy
numbers. As a shortcoming of the proposed approach can be mentioned
the fact that the use of bipolar neutrosophic numbers can be complicated
and even confusing for some respondents. However, the proposed approach
actually allows the identification of such respondents, i.e. respondents who
failed to complete the questionnaire correctly. As a weakness of the proposed
approach, it can be stated that some characteristic values of reliability of the
information contained in a bipolar neutrosophic number on which basis sur-
veys could be classified into certain groups are not been defined in this article.
This can be mentioned as a possible direction of further research if the pro-
posed approach is accepted by other researchers.

The proposed approach does not include the interrelationship between
positive and negative truth-membership, the indeterminacy-membership, and
the falsity-membership functions. However, the proposed approach can be
further extended to include the aforementioned relationships, and this can
also be mentioned as one of the potential directions of future research.

Finally, the extension of the proposed approach to other types of fuzzy and
neutrosophic sets, such as spherical neutrosophic sets, can be mentioned as
directions for the future development of the proposed approach.
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Abst ract  

We argue that there are essentially two chief leadership models: the hard-style and soft-style leadership. From 
Neutrosophic point of view, there can be a third way, between hard-style leadership and soft-style leadership model, 
which may be more relevant to many of people in developing countries as well as in developed countries, who feel 
“powerless” and “hopeless” especially in this pandemic situation. We prefer to call this new approach: leading from 
powerlessness. The third-way Neutrosophic leadership model may also mean partially hard-style and partially soft-
style leadership. 

Keywords : Leadership development, leading from powerlessness, leading at zero, community leaders, developing 

countries, neutrosophic logic, Leipzig Leadership Model. 

1.Int roduct ion

Leadership has always been challenging. This holds particularly true in times of fundamental change, which, driven 

by globalization and digitalization, we are experiencing nowadays.[3] 

Timo Meynhardt wrote in his article on public value creation [2]: 

“…leaders are highly instrumental not only in making markets, but in doing so also building societies. In 
modern times, such value creation for society has had an indispensable impact, improving the quality of life 
on our planet in many respects. … For many leaders, thinking in public value terms comes naturally; for 
others, seeing themselves as creating or destroying public value requires considerably more effort.” 

Most of us may think that to lead well, one needs power. Not infrequently, prospective leaders who tend to be 

charismatic think that “I have to be successful and rich first, then people will listen to what I have to say. Because if I 

can't prove the success of God's words, how can people believe? ” At first glance, maybe many think that this argument 

makes sense, but if we think about it, this mindset is actually a worldly mindset, that a leader must be someone who 

Leading From Powerlessness: A Third-way Neutrosophic 
Leadership Model For Developing Countries  
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is strong, powerful, authoritative, and if possible super-rich and so on. We might call this pattern a hard -style 

leadership.  

However, there are other patterns, such as Jesus, Gautama Buddha, Mahatma Gandhi or Martin Luther King, Jr. more 

aptly called, leading with softness (soft-style leadership).  

From Neutrosophic point of view, there can be a third way, between hard-style leadership and soft-style leadership 

model, which may be more relevant to many of people in developing countries as well as in developed countries, who 

feel “powerless” and “hopeless” especially in this pandemic situation. So what can we do? 

This article addresses the topic of leadership from the slightly different perspective we are familiar with, with an 

emphasis on "leading from powerlessness."  

2. Accept our weaknesses

One of the basic premises of various (Western) leadership theories is that a leader must take all the initiatives, and 

also must be a demigod figure. Yet this is clearly impossible to sustain in the long term. There are many failures of 

modern leaders today due to the impossibility of demands to be superhuman, to work long hours a day, and still have 

to lead this and that events, counsel people and so on. And when he failed, their people became disappointed and then 

frustrated. 

Even though every human being has their own strengths and weaknesses, there is also a leader who has a talent in 

teaching, wisdom, execution skills and so on. 

The author is inspired by the example of the book by Furtick, (un)-qualified, and Joe Vitale's book on the ancient 

Hawaiian method (Zero Limit). 

The point is that being a leader today, you need to be an authentic, learn to accept your weaknesses and go from there. 

Like a SWOT analysis, a prospective leader must identify the strengths, weaknesses and talents that the Universe has 

given, and learn to develop these strengths, while surrounding himself with reliable people who can complement his 

weaknesses.  

So it's not by creating a superman image, but instead developing other people with a dialogical leadership pattern. 

That's a good way to develop authentic leadership patterns in today's digital era: be yourself, focus on your strengths, 

keep your weaknesses at check, and stay humble. 

3. Impli cations of leaders hip at  zero

Maybe someone here asks: why shall we propose a new leadership concept? Isn't there a natural leadership pattern 

that is widely applied in industry, seminaries and other organizations? 

In this article, we submit to a new term: “leading from powerlessness,” where people without real power at hands, still 

can do many initiatives for public good [2]. For instance, local farmers in Bali Island, Indonesia, used to coordinate 

by themselves on how to share water resources for their farms, without much influence from authority (it is called 

Subak system). There is need for local leaders who sometimes are referred to as informal leaders. And Alvin Toffler 

has predicted that informal economy become increasingly important nowadays. For clarity, we don’t think that our 

model of leading from powerlessness is similar to servant leadership, because servant leadership still assumes that a 
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leader to be almost perfect superhuman. The third-way Neutrosophic leadership model may also mean partially hard-

style and partially soft-style leadership. However, it should be clear that we don’t say that formal leaders are not 

required, but there should be coherent and constant communications in order to achieve public good [2]. 

Indeed, servant leadership has been known for a long time, especially by Greenleaf. The concept of Servant Leadership 

from Robert Greenleaf, a leader at the American Telephone and Telegraph company in the 1970s was initially 

considered an expression of an anti-establishment attitude popular at that time. It turns out that the concept was 

welcomed to India. From 2015 to 2019 alone, there were more than 100 articles and two meta-analyzes published on 

Servant Leadership. 

The essence of the concept of Servant Leadership is leadership that involves followers in various dimensions both 

relational, ethically, emotionally, and spiritually so that they grow into complete personalities according to their 

potential. Greenleaf, the originator of this concept, states that the leader is able to do this because, he lives his main 

role as a servant, then as a leader. Also he displays Servant leadership by empowering and developing others through 

humility, authenticity, acceptance, and stewardship and giving direction to himself as a leader. So, the Servant leader 

is someone who strives to recognize the uniqueness of each of his followers, gives them space to independently learn 

with his guidance, and is given warm support. Thus, followers are treated not only as objects of the program, planning, 

or development process of the institution in which they work but as subjects. 

So, servant leadership is a leadership model that rests on service in the sense of providing service to others by 

synergizing with those being led, and building togetherness so that together can share when making an organizational 

decision (Spears, 2010). Northouse (2013) states that Servant Leadership focuses on making leaders more sensitive 

and attentive to the problems that the people they lead have, a sense of empathy and can develop them towards a better 

direction. 

However, there are some criticisms of the servant leadership model in practical application in the real world, for 

example that servant leadership may not be suitable in the military or in prisons. 

That is why, in the opinion of these authors, “leading from powerlessness” model may be more suitable for the real 

situation in developing countries, when many informal leaders do not hold positions of authority in government. 

4. Compa ri son with Leipzig Leaders hip Model

There is not much similar concept available at now that we can learn toward developing this idea of leading from 

powerlessness, except a short article by Vaclav Havel, from which he wrote it in a book: The power of powerless. 

Of one particular development in leadership theory that we can mention here is : the Leipzig Leadership model. 

Leadership is about more than simply wielding power. The Leipzig Leadership Model places the importance of 

consistently contributing to a greater good at the centre of the concept of leadership. The critical factor is what leaders 

use their power for and what they use as orientation in the process. 

As Tessen von Heydebreck wrote, a leader is required to find a balance between corporate/organization values/goals 

and public values/goals: 
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“All individuals, from simple laborers to the executive board, are constantly confronted with a 
number of leadership tasks in their field of activity but remain dependent on somebody else’s 
leadership in many other areas within their position in society as a whole. Good leadership is, in this 
respect, a substantial link amongst humans living together successfully. … Entrepreneurial 
optimism and responsible action are central theoretical as well as practical guiding principles which 
determine the successful realization of forward-looking prospects of our present time both on an 
individual level as well as for society as a whole. The Leipzig Leadership Model presented in this 
publication is a trendsetting step in that direction.”[3] 

HHL’s Leipzig Leadership model is developed from such a premise. 

See the following illustration. 

 Illustration 1. Leipzig Leaderhip Model 

From the above illustration, it shall be clear that a good leader should bring a balance between internal values such as 

effectiveness, entrepreneurial spirit and responsibility of their actions, in tune with external factors such as 

globalization, digitization and ecology. 

5. Comm ent to Leipzig Leadership Model

While LLM/HHL  is a welcome development of leadership model for business and modern organizations, nonetheless 

it is quite lacking in giving some role to informal leaders, who are typically considered outside the decision making 

structure of the corporations. Yes, that is one problem in this highly industrial society that decisions are often made 

from the top-to-bottom, while people on the streets are typically considered as outside of the equations. 

Such a problem of technocratic policy making method has been predicted in the last chapter of Alvin Toffler’s book: 

Future Shock. Writing during the late 1960s Toffler summarized this thesis thus [5]: “[I]n three short decades between 
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now and the turn of the next millennium, millions of psychologically normal people will experience an abrupt collision 

with the future. Affluent, educated citizens of the world’s richest and most technically advanced nations, they will fall 

victim to tomorrow’s most menacing malady: the disease of change. Unable to keep up with the supercharged pace of 

change, brought to the edge of breakdown by incessant demands to adapt to novelty, many will plunge into future 

shock. For them the future will have arrived too soon” (Cross 1974). 

In the last chapter of his best-selling futuristic book, Toffler suggested that it would be highly imperative to get out 

from the failure of technocratic decision making processes. 

In other words, we need to go to post-technocratic decision making toward inclusion of informal leaders and also 

other participants in the society instead pursuing elite-only camps, be it WHO or WEF. 

In that sense, we think that our proposed model of leading from powerlessness can be considered as necessity to be 

included for community leaders. This approach can be combined with coach-leadership style [8]. 

6. A story  on how leading from powerlessness was put into pra ctice: Art  as cultural resistance in Roma nia

As one of us (FS) experienced around 70s in his native country back then, art can be used as cultural resistance; and 

it can be seen as a way of leading from powerlessness. During the Ceausescu's era he got in conflict with authorities. 

In 1986 he did the hunger strike for being refused to attend the International Congress of Mathematicians at the 

University of Berkeley, then published a letter in the Notices of the American Mathematical Society for the freedom 

of circulating of scientists, and became a dissident. As a consequence, he remained unemployed for almost two years, 

living from private tutoring done to students. The Swedish Royal Academy Foreign Secretary Dr. Olof G. Tandberg 

contacted him by telephone from Bucharest. Not being allowed to publish, he tried to get his manuscripts out of the 

country through the French School of Bucharest and tourists, but for many of them he lost track. Escaped from 

Romania in September 1988 and waited almost two years in the political refugee camps of Turkey, where he did 

unskilled works in construction in order to survive: cleaner, house painter, whetstoner. Here he kept in touch with the 

French Cultural Institutes that facilitated him the access to books and rencontres with personalities. Before leaving the 

country he buried some of his manuscripts in a metal box in his parents vineyard, near a peach tree, that he retrieved 

four years later, after the 1989 Revolution, when he returned for the first time to his native country. Other manuscripts, 

that he tried to mail to a translator in France, Chantal Signoret from the Université de Provence, were confiscated by 

the secret police and never returned. He wrote hundreds of pages of diary about his life in the Romanian dictatorship 

(unpublished), as a cooperative teacher in Morocco ("Professor in Africa", 1999), in the Turkish refugee camp 

("Escaped... / Diary From the Refugee Camp", Vol. I, II, 1994, 1998), and in the American exile - diary which is still 

going on. But he's internationally known as the literary school leader for the "paradoxism" movement which has many 

advocates in the world, that he set up in 1980, based on an excessive use of antitheses, antinomies, paradoxes in 

creation paradoxes - both at the small level and the entire level of the work - making an interesting connection between 

mathematics, philosophy, and literature [http://fs.unm.edu/a/paradoxism.htm]. He introduced the 'paradoxist distich', 

'tautologic distich', and 'dualistic distich', inspired from the mathematical logic [http://fs.unm.edu/a/literature.htm ]. 
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Literary experiments he realized in his dramas: Country of the Animals, where there is no dialogue!, and An Upside-

Down World, where the scenes are permuted to give birth to one billion of billions of distinct dramas!  

 http://fs.unm.edu/a/theatre.htm ]. 

He stated: "Par adoxism star ted as an anti-totalitarian protest against a closed society, where the whole culture was 

manipulated by a small group. Only their ideas and publications counted. They couldn't publish almost anything. 

Then, I said: Let's do literature... without doing literature! Let's write... without actually writing anything. How? 

Simply: literature-object! 'The flight of a bird', for example, represents a "natural poem", that is not necessary to write 

down, being more palpable and perceptible in any language that some signs laid on the paper, which, in fact, represent 

an "artificial poem": deformed, resulted from a translation by the observant of the observed, and by translation one 

falsifies. Therefore, a mute protest we did! 

And so on, until he migrated to USA and gradually became appointed as a full professor of mathematics at The 

University of New Mexico. 

7. Concluding rem ark s

From Neutrosophic point of view, there can be a third way, between hard-style leadership and soft-style leadership 

model, which may be more relevant to many of people in developing countries as well as in developed countries, who 

feel “powerless” and “hopeless” especially in this pandemic situation.  

This article addresses the topic of leadership from a slightly different perspective than what we are familiar with, 

emphasizing on "leading from powerlessness."  

We also discuss two stories of our own, on how this new concept can be put into practice. 
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Abst ract  

Neutrosophic Genetics is the study of genetics using neutrosophic logic, set, probability, statistics, measure and other 
neutrosophic tools and procedures. 

In this paper, based on the Neutrosophic Theory of Evolution (that includes degrees of Evolution, Neutrality (or 
Indeterminacy), and Involution) – as extension of Darwin’s Theory of Evolution, we show the applicability of 
neutrosophy in genetics, and we present within the frame of neutrosophic genetics the following concepts: 
neutrosophic mutation, neutrosophic speciation, and neutrosophic coevolution. 

Keywords : Genetics, Mutation, Speciation, Coevolution, Neutrosophic Genetics, Neutrosophic Theory of Evolution, 
Degrees of Evolution / Neutrality or Indeterminacy / Involution, neutrosophic mutation, neutrosophic speciation, 
neutrosophic coevolution 

1. Intro duction to Mutation

The common definition is that a Mutation is a change (a permanent alteration) in the genetic (DNA) sequence. During 
the cell division, if a mistake is made in DNA copying, we have a mutation. 

The mutation can result from random mistake of DNA copying, or due to environmental factors (such as exposure to 
chemicals that are called mutagens, to ionizing radiation, or infection by viruses) [1]. 

If the mutation occurs in the body cells, it is called Somatic Mutation, and it is not passed on to the offspring. But if 
the mutation occurs in the female eggs and male sperm, it is called Germ-Line Mutation, and it is passed on [1]. 

The mutation is part of Darwin’s Evolution and thanks to mutation we have much biodiversity of species on Earth. 

2. Neutro sophic Theo ry  of Evolution

As an extension of Darwin’s Evolution, Neutrosophic Theory of Evolution [9] comprises three types of degrees: 

a) Degree of Evolution (as Darwin’s).

b) Degree of Neutrality (neither evolution, nor involution) or Indeterminacy (not sure if the change is towards
evolution or involution). 

Introduction to Neutrosophic Genetics 

Florentin Smarandache 

Florentin Smarandache: Introduction to Neutrosophic Genetics. International Journal of Neutrosophic Science, 
13(1), 23-27; DOI: 10.5281/zenodo.4314284 
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c) Degree of Involution.

Mutations alterate genes, or create new genes. 

3. Neutro sophic Mutation

As in neutrosophy, we meet three types of mutations: 

a) Positive Mutations, or mutation that produces benefic (positive) effect in the sense of evolution (adaptation) of the
individual to the environment. 

b) Neutral Mutations, or mutation that have no effect on evolution or on involution (adaptation or inadaptation) of the
individual to the environment. 

The overwhelming number of mutations are neutral. 

This is also due to the mechanisms that many organisms have for repairing the DNA initial changes and for removing 
somatic cells that were mutated. 

c) Negative Mutations, or mutation that produces malefic (acrimonious, negative) effect in the sense of involution
(inadaptation) of the individual to the environment. 

Since mutation may weaken the immune system and produces genetic disorder, negative mosaicism, birth defects, 
infections, cancer, abnormal biological processes, etc. 

4. Species

In the frame of a species, with respect to its individuals all together, there occur: 

degrees of positive mutation, neutral mutation, and negative mutation – denoted by T (truth), I (neutral or 
indeterminate), and F (falsehood) respectively, where �, �, � ∈ [0, 1]. 

Let  ��, ��, ��, ��, ��, �� 	 ∈ [0, 1], with: 

�� > ��, �� > ��, �� > ��, 

where �� is the upper treshold of T, 

and �� is the lower treshold of T, 

and similarly for ��, ��, and respectively ��, ��. 

Of course, the thresholds depend on each species and on its environment. 

5. Neutro sophic Speciation

Each Species has a degree of speciation (T), a degree of continuation (I), and degree of extinction (F), where �, �, � ∈
[0, 1]. We use the neutrosophic notation: Species(T, I, F). 

Each Species(T, I, F) neutrosophically tends towards: 

a) Speciation, or formation of a new species, if � ≥ ��, and � ≤ ��, � ≤ ��;

b) Continuation, as the same species, if � ≥ ��, and � ≤ ��, � ≤ ��;
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c) Extinction, if  � ≥ ��, and � ≤ ��, � ≤ ��.

6. Neutro sophic Coevolutio n

Two species in the same environment may be in some: 

a) Degree of cooperation (T);

b) Degree of neutrality (I);

c) Degree of conflict (F).

Of course these degrees �, �, � ∈ [0, 1] are dynamic, and continuously change according to the environment and the 
species that live and interact with each other. 

Conclusion 

The Neutrosophy [1998], as a new branch of philosophy [9], is based on triads of the form (< A> , <neutA>, 
< antiA>), where <A> and <antiA>  are opposites of each other, while < neutA>  is the neutral (or indeterminate) 
between them. In general < A>  may be an item (concept, idea, notion, theory, etc.).  

We have introduced for the first time the Neutrosophic Genetics, which is the study of genetics using neutrosophic 
logic, set, probability, statistics, measure and other neutrosophic tools and procedures. 

Within the frame of neutrosophic genetics, we have extended the classical concepts of mutation, speciation, 
and coevolution, to respectively neutrosophic mutation, neutrosophic speciation, and neutrosophic coevolution in 
order to better describe our real world. 
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Adden dum (Definitions) 

Since this paper is intended for the general public, in order for the paper to be self-contained, we provide 
below dictionary definitions of principal genetic terms. 

Allele: any of the alternative forms of a gene that may occur at a given locus; “allele,” Merriam-Webster.com 
Dictionary, https://www.merriam-webster.com/dictionary/allele. Accessed 12/7/2020. 

Chromosome:  any of the rod-shaped or threadlike DNA-containing structures of cellular organisms that are 
located in the nucleus of eukaryotes, are usually ring-shaped in prokaryotes (such as bacteria), and contain all or most 
of the genes of the organism; “chromosome,” Merriam-Webster.com Dictionary,  https://www.merriam-
webster.com/dictionary/chromosome. Accessed 12/7/2020. 

DNA: any of various nucleic acids that are usually the molecular basis of heredity, are constructed of a double 
helix held together by hydrogen bonds between purine and pyrimidine bases which project inward from two chains 
containing alternate links of deoxyribose and phosphate, and that in eukaryotes are localized chiefly in cell nuclei; 
“DNA,” Merriam-Webster.com Dictionary,  https://www.merriam-webster.com/dictionary/DNA. Accessed 
12/7/2020. 

Gene:  a specific sequence of nucleotides in DNA or RNA that is located usually on a chromosome and that 
is the functional unit of inheritance controlling the transmission and expression of one or more traits by specifying the 
structure of a particular polypeptide and especially a protein or controlling the function of other genetic material; 
“gene,” Merriam-Webster.com Dictionary,  https://www.merriam-webster.com/dictionary/gene. Accessed 12/7/2020. 

Genome:  one haploid set of chromosomes with the genes they contain; “genome,” Merriam-Webster.com 
Dictionary,  https://www.merriam-webster.com/dictionary/genome. Accessed 12/7/2020. 
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Germ : a small mass of living substance capable of developing into an organism or one of its parts; “germ,” 
Merriam-Webster.com Dictionary, https://www.merriam-webster.com/dictionary/germ. Accessed 12/7/2020. 

Phenotype:  the observable characteristics or traits of an organism that are produced by the interaction of the 
genotype and the environment; “phenotype,” Merriam-Webster.com Dictionary,  https://www.merriam-
webster.com/dictionary/phenotype. Accessed 12/7/2020. 

Somati c: of, relating to, or affecting the body especially as distinguished from the germplasm (germ cells 
and their precursors serving as the bearers of heredity); “somatic,” Merriam-Webster.com Dictionary, 
https://www.merriam-webster.com/dictionary/somatic. Accessed 12/7/2020. 
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ABSTRACT

In this study, the Five Facet Mindfulness Questionnaire which was adapted from the short form of the Five Facet
MindfulnessQuestionnairewas evaluated and this scale into neutrosophic formwas converted and the results of the
scale were compared for proposing new type confirmatory analysis procedure as well as developing neutrosophic
scales. The exploratory factor analysis was used in the analysis of the data. Besides, test results were analyzed
for Kaiser–Meyer–Olkin and Bartlett values, common factor variance values, scree plot graphs, and the principal
component analysis results. The sample of the study consists of 194 students in mathematics departments at Bitlis
ErenUniversity and Iğdır University in Turkey by convenience sampling method. A convenience sampling is a kind
of non-probability sampling procedure in which the sample is obtained from a group of individuals easily accessible
or reachable. The convenience sampling method was chosen in this study because the study aims to examine
the structure of the measurement tool rather than the psychological characteristics of a particular population.
First of all, it is observed that if any classical scale can be converted into a neutrosophic one. It is observed that
the sub-dimensions of a neutrosophic scale as agree, disagree, and undecided might not have a similar factor
structure to the classical one. Interestingly, in the factor analysis of the neutrosophic scale, both classical and the
agreement part of the neutrosophic scales have the same factors, implying that the one-dimensional classical scale
measures the agreement degree of the participants. When the factor analysis was conducted to disagreement and
vagueness dimensions, it seemed that some factors were eliminated and even some new factors emerged, indicating
that in human cognition those three dimensions can be taken as independent of each other, just as assumed by
neutrosophic logic. The another important implication of the factor analysis is that the neutrosophic forms of any
questionnaire can be used for the validity of the classical ones. Loads of items or their accumulation into factors are
compared to the classical scale and the three-dimensional neutrosophic scale in the factor, so that the corresponding
ones in the same factors and the items or factors that do not correspond to each other are eliminated. It is very
similar to the Sieve of Eratosthenes, which is an ancient algorithm for finding prime numbers up to any given
limit where each prime is taken as an independent base or dimension and multiples of the selected primes in a
given interval are eliminated until there are only prime numbers left. Finally, the reliability of three independent
dimensions of the neutrosophic forms of any questionnaire can also be used to check whether the measurement

Using Sieve of Eratosthenes for the Factor Analysis 
of Neutrosophic Form of the Five Facet Mindfulness 

Questionnaire as an Alternative Confirmatory Factor 
Analysis 

Volkan Duran, Selçuk Topal, Florentin Smarandache, Said Broumi 

Volkan Duran, Selçuk Topal, Florentin Smarandache, Said Broumi (2021). Using Sieve of Eratosthenes for 
the Factor Analysis of Neutrosophic Form of the Five Facet Mindfulness Questionnaire as an Alternative 
Confirmatory Factor Analysis. Computer Modeling in Engineering & Sciences, 19; 
DOI: 10.32604/cmes.2021.016696 

tool is reliable. Low-reliability results in any dimensions may imply that the scale has some problems in terms of
meaning, language, or other factors.
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Neutrosophic scales; factor analysis; scale development; explanatory analysis; reliability analysis
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1 Introduction

Neutrosopy is all about looking at the world with fresh eyes, and then tailoring the perspective
to account for uncertainty. Neutrosophy offers a third logic alternative to the binary model
of true or false, which goes by the name of neutrals. In summary, Neutrosophy replaces the
binary method in logics by offering indeterminancy, which may also be interpreted as ambiguous,
uncertain, or inconsistent. Neutrosophy was conceptualized by Smarandache et al. [1] in 1988,
and development since then has rapidly grown with the use of logical extensions, such as measure,
sets, graphs, and even practical applications in various areas. The field of neutrosophy has shown
its power and effectiveness in a variety of contexts. This created a big backlog of contributions
which were theoretical in nature and confirmed only using mathematical examples or restricted
data sets. Neutrosophic logic could be used in both natural science and social science, and
recently publications have been emphasized the use of the neutrosophic logic in social sciences.
Neutrosophic sets are better than fuzzy sets for surveys because they provide a wider range of
answers. Through its membership indeterminacy function, the former allows respondents to more
clearly articulate their actual thoughts and feelings. Neutrosophy is beneficial to those who want
to express themselves since it better captures their thoughts and emotions due to its embrace of
indeterminacy and independent membership function of falsehood. Therefore the study’s primary
goal is to use the principles of neutrosophy in social sciences, particularly in education and
assessment and evaluation techniques of scale development [2–4].

The main purpose of the survey or scale development is to gather accurate and relevant data.
In social sciences, the reliability and validity of scale and questionnaire formats are, therefore,
used to enable to gather accurate and relevant data [5]. The data space and data range in this
respect are essential parameters for developing scales since they often alter the data type, logical
analytical space, methods, validity and reliability of the findings (Fig. 1).

Validity and Reliability

Analysis

Methodology 

Logic Space

Data Type

Data range

Data space

Figure 1: Data space and data range determines the validity and reliability of any scale
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For measurement instruments such as scales, data space refers to an independent collection
of choices for a particular measurement item. For example, there is only one choice in every
Likert-type scale that the individual may express his/her ideas or feelings and its data space is 1d,
but there are three different dimensions about each aspect in the neutrosophic scale as undecided,
agreeable, and disagreeable. The data space is 1d for any form of Likert type scale a whereas 3d
for neutrosophic space. Such a extension can be done for more dimensions. For instance, the more
qualitative-oriented measurement tools like providing items that require more free opinions in a
paragraph like preferences are supposed to have more dimensions as well. Though n-dimensional
space is more suitable for clearer and more accurate outcomes, the representation of the data
in less dimensional spaces can easily be statistically analyzed. Besides, the measurement tool’s
objectivity in terms of estimation of common features decreases as the dimension of space rises.
The benefit of the 3-dimensional neutrosophic scale is that the participants are both involved
in the degree of agreement, disagreement, and uncertainty. The difference among classical logic,
fuzzy logic and neurosophic logic can be describes as in Fig. 2. In the classical logic the space
is in 0 dimension where there is only discrete points as 0 and 1. In the fuzzy logic the spaces
can be represented as 1 dimensional continuum or segment where there is a continuous possible
admixture of the states of 0 and 1. Finally, in the Fuzzy logic there are three independent states
constituting 3 dimensional logic space.

Figure 2: The difference difference among classical logic, fuzzy logic and neurosophic logic

It should be noted that there is no study focusing on 2d data space in the literature because
the possible combinations of the agreement, disagreement and intederminacy in the forms of two
independent states such as (a, d), (a, i), (d, i). Such a 2d data space is very limited because
it disregards indeterminany, agreement, disagreement dimesions. For instance if 2d scale having
agreement, disagreement dimesions firstly ignore the indeterminancy dimension. Secondly, some-
times agreement, disagreement dimesions are complement to each other as in the case od classical
logic or fuzzy logic but the indeterminancy is important for the analysis. Such an example can
be extended into the all possible combinations of (a, d), (a, i), (d, i). The degree of freedom of
2d space may dismiss the other two parameters that cannot be ignored in the actual case. These
hidden variables can lead to huge differences especially in the case of the analysis of the options
of a huge number of participants and even this cannot be realized (Fig. 3).
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Figure 3: The degree of freedom of 2d space may dismiss the other two parameters that cannot
be ignored in the actual case

However, in neutrosophic logic, it is impossible to dismiss three parameters since the
researchers must give their opinions on them (Fig. 4).

Figure 4: In neutrosophic logic, it is impossible to dismiss three parameters since the researchers
must give their opinions on them

In everyday life, humans are not confined within one dimension space in terms of the expres-
sions of the agreement, disagreement and interdeterminancy dimensions. Neutrosophic logic is
more compatible with this fact since the participants express in the three-dimensional neutrosophic
space both their agreement and their contradictions and the ambiguity of the items or scale
parameters. We often believe that a sentence is understood, but one term in the statement leaves
us unsure if it is the ‘right message’ the source intends. We often approve of such proposals,
but we sometimes disagree with the item only because of the source of the message itself. The
neutrosophic scale is therefore distinct in terms of data space from the classical Likert scale
(Fig. 5).
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Figure 5: Data space of classical Likert type scale, neutrosophic scale

The second main point that differentiates between measuring tools is the range of the data
that every scale is dependent on. The range of the data set is the difference from the highest value
to the lowest value in any setting. Data may well be organized from 3 points in Likert form to
10 points on the Likert-type scale. The neutrosophic scale is, however, broader than the scales of
such a Likert kind measurement tool. It contains all numbers ranging from 0 to 100. There are
therefore continuous variable forms of neutrosophic scales, while Likert scales have discrete values
in terms of rational numbers such that the data processing can differ. In this sense, this will help
increase the sensitivity of the measuring instrument. This is actually what is called as neutrosophic
Data in some recent researches is the piece of information that contains some indeterminacy.
Similar to the classical statistics, it can be classified as [4]:

– Discrete neutrosophic data, if the values are isolated points.
– Continuous neutrosophic data, if the values form one or more intervals.
– Quantitative (numerical) neutrosophic data; for example: a number in the interval [6,7] (we
do not know exactly), 47, 52, 67 or 69 (we do not know exactly);

– Qualitative (categorical) neutrosophic data; for example: blue or red (we do not know
exactly), white, black or green or yellow (not knowing exactly).

– The univariate neutrosophic data is a neutrosophic data that consists of observations on a
neutrosophic single attribute.

The logic space of a measuring instrument is the third essential point. Logic space is impor-
tant because “in any field of knowledge, each structure is composed from two parts: a space, and
a set of axioms (or laws) acting (governing) on it. If the space, or at least one of its axioms (laws),
has some indeterminacy of the form (t, i, f) �= (1, 0, 0), that structure is a (t, i, f)-Neutrosophic
Structure” [6]. The logic we are focused on, Neutrosophic Logic [7], is an emergent field where the
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percentage (percentage) of truth in a T subset, the percentage of indeterminacy in an I subset,
and the proportion of falsity in an F subset are listed. We here consider a subset of truth (or
falsity or indeterminacy), rather than just a number, since in many situations we can not precisely
determine the proportions of truth and falsity but we can only approach them. For example,
suppose that a statement (or proposition) is between 22% and 43% true and 51% to 82% false;
indeterminancy (undecided): 32% to 39% or 40% to 52% true (according to various observers) and
57% or 62% to 71% false. The subsets are not simple intervals but are arranged in line with the
proposition (open or closed or semi-open/semi-closed intervals, isolated, constant, or intersected
or united by previous sets, etc.). On the other hand, there are many ways to evaluate and interpret
data. Some recent studies reveal important developments based on the interpretation and effective
use of data [8,9].

Although in Likert-type scales, there are mostly three options as agreement, disagreement, and
vagueness, classical logic is located one valued option located on the opposite sides of true and
false values. The neutrosophic set has three independent components, giving more freedom for
analysis so that it brings different logical operations as well. Therefore, the methodology of the
analysis of the data should be changed based on the logical structure of the scale. For instance,
while factor analysis is used for classical Likert-type scales, as shown in this paper, we can not
directly assume that all the sub-dimensions of any neutrosophic scale directly correspond to the
factor structure of the classical one. Nevertheless, it should be noted that classical analysis and
methods can indeed be used for neutrosophic scales based on different analysis procedures. Hence,
we can conclude that the validity and reliability of the measurement tools can change based on the
logical structure of the scale. Therefore, in this study, the Five Facet Mindfulness Questionnaire
which was adapted by [10] from the short form of the Five Facet Mindfulness Questionnaire
(FFMQ) was evaluated and this scale into neutrosophic form was converted and the results of the
scale were compared for proposing new type confirmatory analysis procedure as well as developing
neutrosophic scales.

2 Methodology

2.1 Procedure for the Analysis of the Neutrosophic Form of the Five Facet Mindfulness Questionnaire
Firstly, it is thought that a valid and reliable scale should be chosen that has appropriate

psychometric properties such as its adequacy, relevance, and usefulness since we see the charac-
teristics of the neutrosophic scale in the reliable and valid foundations. Otherwise, we must do
the reliability and validity analysis for the neutrosophic scale, but we want to check our method
based on a more solid context since there is not so much research on this subject. The exploratory
factor analysis includes the determination and clustering of objects by researchers to measure the
same characteristic and offers insights into the reliability of objects and the test [11].

2.1.1 Kaiser–Meyer–Olkin (KMO) and Bartlett Tests
This method determines the proportion of the total variation in given variables that is most

likely to be caused by latent factors. If values are very close to 1.0, then one may benefit
from doing a factor analysis on the data. The findings of the factor analysis are unlikely to be
particularly relevant if the value is less than 0.50. To test the hypothesis that the correlation matrix
is an identity matrix, Bartlett’s test can be used. Component component analysis is usually quite
effective when one has small values at the significance level (less than 0.05) [12]. Therefore the test
results were analyzed for KMO and Bartlett values, common factor variance values, scree plot
graphs, and the principal component analysis results. KMO and Bartlett tests also examined the
adequacy of the scale for factor analysis. The KMO measure of sample adequacy is a test of
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how much variation can be explained by factors inside the data. A KMO value of 0.5 is poor as
a measure of its factorability; 0.6 is acceptable; a value nearer to 1 is better [13]. The fact that
the value of the ratio exceeds 0.80 suggests that the results are positive for factor analysis [13,14].
Bartlett’s test reveals that the data is likely to be factorable if p< 0.05, but it is called a sensitive
test, but it is best to use it the other way round: if p > 0.05, do not continue; however, if
p> 0.05, review other factorability metrics before proceeding [13]. The higher correlation between
the factors suggests that the model was developed correctly and that the model’s hypotheses may
also be evaluated. This illustrates the explained variance rate observed by the factor scale study.
The variance explanation rate should be at least 50% [15].

2.1.2 Scree-Plot
In the Factor Analysis [13]: extraction dialog box, the graph generated by the Scree-Plot

option may be used to determine which components should be removed as an alternative to
eigenvalues >1.0. In factor analysis, the number of factors was decided by Eigenvalues statistics
and Scree test (Line chart). Expressions greater than 1 in the eigenvalue statistics are accepted. The
scree diagram shows the point at which the curve slope declines and flattens and the corresponding
amount of the factor is determined [16]. The direct oblique rotation technique was used in the
factor study. The Cronbach alpha reliability coefficient has been examined for the reliability of
any scale. Cronbach alpha is a metric used to predict the stability of the inner consistency of the
scale. When the internal coefficient of Cronbach alpha consistency is 0.70 and beyond, it can be
said that the scale has adequate internal consistency [11,17,18].

2.2 Population
The sample of the study consists of 194 students in various departments at Bitlis Eren Uni-

versity and Iğdır University in Turkey by convenience sampling method. A convenience sampling
is a kind of non-probability sampling procedure in which the sample is obtained from a group
of individuals easily accessible or reachable. The convenience sampling method was chosen in this
study because the study aims to examine the structure of the measurement tool rather than the
psychological characteristics of a particular population (Tab. 1).

Table 1: The characteristics of the sample in terms of age and gender

Age Total

17,00 18,00 19,00 20,00 21,00 22,00 23,00 24,00 25,00 26,00 27,00 41,00

Gender
Female 1 24 42 45 15 7 6 0 3 1 1 0 145
Male 0 3 10 21 7 2 1 3 0 1 0 1 49

Total 1 27 52 66 22 9 7 3 3 2 1 1 194

3 Findings

3.1 Factor Analysis for Agreement Dimension
Before doing to assess the suitability of the data for the factor analysis, two methodological

measures are used. KMO and Bartlett’s test are used for this [11]. Both are spherical tests. The
KMO coefficient determines if the sample size for factor analysis is appropriate. The KMO value
should be at least 0.60 and above if the sample size is sufficient; the Barlett test should also be
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important (p< 0.05) [18]. KMO and Bartlett’s test for agree dimension shows that data is suitable
for the data to the factor analysis (KMO = 0.816, p< 0.05) (Tab. 2).

Table 2: KMO and Bartlett’s test for agree dimension

KMO and Bartlett’s test

Kaiser–Meyer–Olkin measure of sampling adequacy 0.816

Bartlett’s test of sphericity Approx. Chi-square 1223.922
Df 190
Sig. 0.000

After assessing if the data was appropriate for factor analysis, the data are evaluated for an
exploratory factor to evaluate the factor structure in the scale. The first analysis showed that five
factors had an eigenvalue of 1 and higher, which explains the total variance of 46,283 points as
given in Tab. 3.

Table 3: Total variance for agreement dimension

Total variance explained

Factor Initial eigenvalues Extraction sums of squared
loadings

Rotation sums of
squared loadingsa

Total % of
variance

Cumulative
%

Total % of
variance

Cumulative
%

Total

1 5.011 25.054 25.054 4.476 22.379 22.379 3.167
2 2.592 12.961 38.016 1.851 9.257 31.636 2.319
3 1.573 7.866 45.881 1.181 5.903 37.538 2.879
4 1.431 7.157 53.038 .899 4.497 42.035 2.949
5 1.217 6.087 59.126 .849 4.247 46.283 1.375
6 .966 4.829 63.954
7 .877 4.384 68.339
8 .813 4.066 72.405
9 .664 3.321 75.726
10 .652 3.259 78.985
11 .618 3.089 82.074
12 .552 2.762 84.836
13 .496 2.481 87.318
14 .453 2.263 89.581
15 .394 1.971 91.552
16 .390 1.952 93.504
17 .365 1.826 95.329
18 .346 1.729 97.059
19 .313 1.563 98.622
20 .276 1.378 100.000

Notes: Extraction method: maximum likelihood. aWhen factors are correlated, sums of squared loadings cannot be added to obtain a total
variance.
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The Scree plot was also examined to determine how many factors the scale consists of. The
Scree plot is given in Fig. 6. The scree plot in Fig. 6 indicates that after the fifth point, the breaks
are diminished and the chart is continued horizontally.

Figure 6: Scree plot for agreement dimension

The research was then carried out using the direct oblique rotation method. The data then
proceeded. Researchers use the oblique rotation technique since the relations between factors
exist [11,19]. In this analysis, the direct oblique rotation approach was chosen because the variables
may be related. After rotation, no items were deleted from the scale with a factor load value of
under 0.30 and overlaps of more than one factor. Then items used in the measuring scale with
the same feature with a high factor load were held inside the scale. It is observed that no item
with a load with a low factor was excluded. As a consequence of the analysis, five factors were
taken into account for the remaining 20 items on the scale (Tab. 4).

Table 4: Pattern matrix for agreement dimension

Pattern matrixa

Factor

1 2 3 4 5

v15aIagree 0.778
v14aIagree 0.759
v13aIagree 0.756
v16aIagree 0.496
v19aIagree 0.722
v18aIagree 0.706
v17aIagree 0.629
v20aIagree 0.399
v5aIagree −0.902
v7aIagree −0.606
v6aIagree −0.406
v8aIagree −0.402

(Continued)
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Table 4 (continued)

Pattern matrixa

Factor

1 2 3 4 5

v9aIAgree 0.773
v12aIagree 0.665
v10aagree 0.530
v11aIagree 0.493
v1aIagree 0.594
v2aIagree 0.480
v3aIagree 0.450
v4aIagree 0.448

Notes: Extraction method: maximum likelihood. Rotation method: Oblimin with Kaiser normalization.
aRotation converged in 9 iterations.

When the factor structure for agreement dimension is compared to the original classic Five
Facet Mindfulness Questionnaire (FFMQ), it is observed that all items are directly correlated with
the same dimensions of the original classic FFMQ (Tab. 5).

Table 5: Comparison of the items in agreement dimension in the neutrosophic Five Facet Mind-
fulness Questionnaire with the items in the dimensions original classic FFMQ

Act with awareness Nonjudge items Nonreact items Observe Describe
(Factor 4) (Factor 1) (Factor 2) (Factor 5) (Factor 3)

9∗ 13∗ 17 1 5∗
10∗ 14∗ 18 2 6
11∗ 15∗ 19 3 7∗
12∗ 16∗ 20 4 8

Reliability statistics show that the structure and assessment are highly reliable since reliability
refers not only to the instrument itself but also to assessments obtained with a measurement
tool [20–22] (Tab. 6).

Table 6: Reliability statistics for agreement dimension

Reliability statistics

Cronbach’s alpha N of items
0.829 18

3.2 Factor Analysis for Disagreement Dimension
KMO and Bartlett’s test for disagreement dimension shows that data is suitable for data factor

analysis (KMO = 740, p< 0.05). After assessing if the data was appropriate for factor analysis,
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the data are evaluated for an exploratory factor to evaluate the factor structure in the scale. The
first analysis showed that five factors had an eigenvalue of 1 and higher, which explains the total
variance of 45,221. The research was then carried out using the direct oblique rotation method.
After rotation, one item (Item 1) was deleted from the scale since it overlaps with more than
one factor because it overlaps with Factor 1 and factor four having similar factor loads as given
0.327 and 0.356. Then items used in the measuring scale with the same feature with a high factor
load were held inside the scale and those with a load with a low factor were excluded. KMO
and Bartlett’s test for disagreement dimension shows that data is suitable for data factor analysis
(KMO = 0.731, p< 0.05) (Tab. 7).

Table 7: KMO and Bartlett’s test results for disagreement dimension

KMO and Bartlett’s test

Kaiser–Meyer–Olkin measure of sampling adequacy 0.731

Bartlett’s test of sphericity Approx. Chi-square 947.066
Df 153
Sig. 0.000

After assessing if the data was appropriate for factor analysis, the data are evaluated for an
exploratory factor to evaluate the factor structure in the scale. The first analysis showed that four
factors had an eigenvalue of 1 and higher, which explains the total variance of 41.035 points as
given in Tab. 8.

Table 8: Total variance for disagreement dimension

Total variance explained

Factor Initial eigenvalues Extraction sums of squared
loadings

Rotation sums of
squared loadingsa

Total % of
variance

Cumulative
%

Total % of
variance

Cumulative
%

Total

1 3.699 20.548 20.548 3.115 17.305 17.305 2.461
2 2.928 16.265 36.814 2.424 13.468 30.773 2.138
3 1.543 8.571 45.384 1.033 5.740 36.514 2.025
4 1.381 7.670 53.054 0.814 4.522 41.035 2.413
5 0.999 5.552 58.606
6 0.979 5.440 64.046
7 0.872 4.846 68.893
8 0.737 4.094 72.987
9 0.716 3.978 76.965
10 0.684 3.801 80.767
11 0.646 3.587 84.353
12 0.563 3.130 87.484
13 0.512 2.842 90.326
14 0.417 2.318 92.644
15 0.405 2.250 94.893
16 0.368 2.046 96.940
17 0.305 1.693 98.633
18 0.246 1.367 100.000

Notes: Extraction method: maximum likelihood. aWhen factors are correlated, sums of squared loadings cannot be added to obtain a total
variance.
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Scree plot was also examined in order to determine how many factors the scale consists of.
Scree plot is given in Fig. 7. The scree pilot in Fig. 7 indicates that after the fourth point, the
breaks are diminished and the chart is continued horizontally.

Figure 7: Scree plot for disagreement dimension

While one out of 20 items was removed on the draft scale and the analysis for the other 19
items was repeated. As a consequence of the study, four factors were taken into account for the
remaining 19 items on the scale (Tab. 9).

Table 9: Pattern matrix for disagree dimension

Pattern matrixa

Factor

1 2 3 4

v7cIDİİSagree 0.702
v5cIDİİSagree 0.682
v8cIdisagree 0.498
v9cIDİİSagree 0.490
v12cIDİİSaagree 0.323
v11cIDİİSaagree 0.309
v18cIdisagree 0.833
v19cIdisagree 0.638
v17cIdisagree 0.581
v20cdisagree 0.442
v3bIdisagree 0.808
v2cIdisagree 0.674
v6cIdisagree 0.457
v4cIdisagree 0.436
v15cIDİİSaagree 0.788
v14cIDİİSaagree 0.759
v13cIDİİSaagree 0.667
v16cIDİİSaagree 0.439

Notes: Extraction method: maximum likelihood. Rotation method: Oblimin with Kaiser normalization.
aRotation converged in 10 iterations.
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When the factor structure for disagreement dimension is compared to the original classic
FFMQ, it is observed that all Item 6 is removed from the Describe dimension and it moved
to the Observe dimension. It is observed that Items 9, 11, 12 were removed from the Act with
Awareness they moved into the Describe. Additionally, the factor is eliminated because no items
are accumulated there. It seems that as the dimension of the classical scale has changed, the
general structure of the scale has also changed (Tab. 10).

Table 10: Comparison of the items in disagreement dimension in the neutrosophic FFMQ with
the items in the dimensions original classic FFMQ

Act with awareness Nonjudge items Nonreact items Observe Describe
(Factor 4) eliminated factor (Factor 4) (Factor 2) (Factor 3) (Factor 1)

9∗ 13∗ 17 6 (moved there) 5∗
10∗ 14∗ 18 2 6
11∗ 15∗ 19 3 7∗
12∗ 16∗ 20 4 8

9 (moved there)
11 (moved there)
12 (moved there)

Reliability statistics show that the structure and assessment are regarded as reliable (Tab. 11).

Table 11: Reliability statistics for disagreement dimension

Reliability statistics

Cronbach’s alpha N of items
0.722 18

3.3 Factor Analysis for the Uncertainty Dimension
KMO and Bartlett’s test for uncertainty dimension shows that data is suitable for data factor

analysis (KMO = 0.891, p< 0.05). After assessing if the data was appropriate for factor analysis,
the data are evaluated for an exploratory factor to evaluate the factor structure in the scale. The
first analysis showed that five factors had an eigenvalue of 1 and higher, which explains the total
variance of 52.890 points. After rotation, three elements were deleted from the scale because they
overlapped more than one-factor having similar loads (Item 17 having factor loads as 0.306 and
−0.303 in Factor 1 and Factor 3, Item 20 having factor loads as 0.388 and −0.333 in Factor 2
and Factor 3, Item 6 having factor loads as −0.618 and 0.348 in Factor 3 and Factor 5). While
3 out of 20 items were removed on the draft scale and the analysis for the other 17 items was
repeated. KMO and Bartlett’s test for uncertainty dimension shows that data is suitable for data
factor analysis (KMO = 0.892, p< 0.05). After assessing if the data was appropriate for factor
analysis, the data are evaluated for an exploratory factor to evaluate the factor structure in the
scale. The first analysis showed that four factors had an eigenvalue of 1 and higher, which explains
the total variance of 48.643 points. After rotation, three elements were deleted from the scale
because they overlapped more than one-factor having similar loads (Item 16 having factor loads
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as, 418 and −0.314 in Factor 1 and Factor 2, Item 14 having factor loads as −0.738 and −0.316
in Factor 2 and Factor 3, Item 19 having factor loads as 0.386, −0.397 in Factor 1 and Factor 2).
(Tab. 12).

As for the last analysis, KMO and Bartlett’s test for uncertainty dimension shows that data
is suitable for the data for the factor analysis (KMO = 0.879, p< 0.05).

Table 12: KMO and Bartlett’s test for the uncertainty dimension

KMO and Bartlett’s test

Kaiser–Meyer–Olkin measure of sampling adequacy 0.879

Bartlett’s test of sphericity Approx. Chi-square 926,646
Df 91
Sig. 0.000

After assessing if the data was appropriate for factor analysis, the data are evaluated for an
exploratory factor to evaluate the factor structure in the scale. The first analysis showed that three
factors had an eigenvalue of 1 and higher, which explains the total variance of 44,498 points
(Tab. 13).

Table 13: Total variance for uncertainty dimension

Total variance explained

Factor Initial eigenvalues Extraction sums of squared
loadings

Rotation sums of
squared loadingsa

Total % of
variance

Cumulative
%

Total % of
variance

Cumulative
%

Total

1 5.446 38.901 38.901 4.881 34.864 34.864 3.811
2 1.198 8.557 47.458 0.727 5.190 40.054 3.747
3 1.102 7.873 55.331 0.622 4.444 44.498 3.322
4 0.924 6.602 61.933
5 0.888 6.343 68.276
6 0.725 5.181 73.457
7 0.639 4.562 78.019
8 0.619 4.425 82.443
9 0.532 3.799 86.243
10 0.499 3.563 89.805
11 0.400 2.860 92.666
12 0.372 2.654 95.320
13 0.351 2.506 97.826
14 0.304 2.174 100.000

Notes: Extraction method: maximum likelihood. aWhen factors are correlated, sums of squared loadings cannot be added to obtain a total
variance.
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The scree plot was also examined to determine how many factors the scale consists of. The
Scree plot is given in Fig. 8. The scree plot in Fig. 8 indicates that after the third point, the breaks
are diminished and the chart is continued horizontally.

Figure 8: Scree plot for uncertainty dimension

After rotation, no items were deleted from the scale with a factor load value of under 0.30
and overlaps of more than one factor. As a consequence of the study, three factors were taken
into account for the remaining 13 items on the scale (Tab. 14).

Table 14: Pattern matrix for the uncertainty dimension

Pattern matrixa

Factor

1 2 3

v1bluncertain 0.741
v4bIuncertain 0.598
v15bIuncertain 0.530
v13buncertain 0.447
v3bIuncertain 0.423
v2bIuncertain 0.420
v18bIuncertain
v12bIuncertain −0.805
v11bIuncertain −0.746
v9bIuncertain −0.555
v10bIuncertain −0.494
v5bIuncertain −0.782
v8bIuncertain −0.641
v7bIuncertain −0.510

Notes: Extraction method: maximum likelihood. Rotation method: Oblimin with Kaiser Normalization.
aRotation converged in 9 iterations.
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When the factor structure for uncertainty dimension is compared to the original classic Five
Facet Mindfulness Questionnaire, it is observed that it seems that Observe is partially merged
with Nonjudge items. Therefore, Nonjudge items are eliminated. Act with Awareness is originally
correlated with Factor 2 so that it does not change its position. Nonreact factor items are also
eliminated because they have no items corresponding to the original classical scale. Factor 3
corresponds to Describe except Item 6 because it was removed from there (Tab. 15).

Table 15: Comparison of the items in uncertainty dimension in the neutrosophic five facet mind-
fulness questionnaire with the items in the dimensions original classic five facet mindfulness
questionnaire

Act with awareness Nonjudge items Nonreact items Observe Describe
(Factor 2) eliminated factor eliminated factor (Factor 1) (Factor 3)

9∗ 13∗ 17 1 5∗
10∗ 14∗ 18 2 6
11∗ 15∗ 19 3 7∗
12∗ 16∗ 20 4 8

13∗ (moved there)
15∗ (moved there)

Reliability statistics show that the structure and assessment are regarded as reliable (Tab. 16).

Table 16: Reliability statistics for uncertainty dimension

Reliability statistics

Cronbach’s alpha N of Items
0.875 13

Figure 9: Factor structure of neutrosophic Questionnaire may not be same as the factor structure
of the classical Questionnaire
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Table 17: Comparison of the items in the agreement, disagreement, and uncertainty dimensions
in the neutrosophic Questionnaire with the items in the dimensions original classic Questionnaire

Agreement
dimension

Act with
awareness

Nonjudge items Nonreact items Observe Describe

(Factor 4) (Factor 1) (Factor 2) (Factor 5) (Factor 3)

9∗ 13∗ 17 1 5∗
10∗ 14∗ 18 2 6
11∗ 15∗ 19 3 7∗
12∗ 16∗ 20 4 8

Disaggrement
Dimension

Act with
awareness
(Factor 4)
eliminated factor

Nonjudge items
(Factor 4)

Nonreact items
(Factor 2)

Observe
(Factor 3)

Describe
(Factor 1)

9∗ 13∗ 17 6 (moved there) 5∗
10∗ 14∗ 18 2 6
11∗ 15∗ 19 3 7∗
12∗ 16∗ 20 4 8

9 (moved there)
11 (moved there)
12 (moved there)

Uncertainty Act with
Awareness
(Factor 2)

Nonjudge items
eliminated factor
(Factor 1)

Nonreact items
eliminated factor

Observe Describe
(Factor 3)

9∗ 13∗ 17 1 5∗
10∗ 14∗ 18 2 6
11∗ 15∗ 19 3 7∗
12∗ 16∗ 20 4 8

13∗ (moved
there)
15∗ (moved
there)

4 Discussion and Conclusion

The comparison of the items in the agreement, disagreement, and vagueness dimensions in
the neutrosophic and classic Five Facet Mindfulness Questionnaire gives us many clues about
how the structure of any questionnaire, survey, or scale can change as the dimensions or more
generally, their space change. Therefore, if we convert any classical scale into a neutrosophic one,
we shouldn’t directly assume that all of the sub-dimensions of a neutrosophic scale as agree,
disagree, and undecided have a similar factor structure to the classical one. This is an important
point, because, for further analysis of the data, such a wrong assumption may lead to wrong
conclusions since neutrosophic logic requires three independent truth values while classical one
takes two dependent truth values (Fig. 9).

Interestingly, in the factor analysis of the neutrosophic scale, both classical and neutrosophic
scales have the same factors, implying that the one-dimensional classical scale measures the
agreement degree of the participants. When the factor analysis was conducted to disagreement
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and vagueness dimensions, it seemed that some factors were eliminated and even some new factors
emerged, indicating that in human cognition those three dimensions can be taken as independent
of each other, just as assumed by neutrosophic logic (Tab. 17).

The second important implication of the factor analysis is that the neutrosophic forms of any
questionnaire can be used for the validity of the classical ones. Although it is not required that
the dimensions of the neutrosophic forms of any questionnaire have the same or similar factors,
since these different structures should be evaluated within their realms in terms of their structure,
the classical forms of questionnaires can be checked based on neutrosophic forms. When Tab. 17
is examined, it is observed that some factors are eliminated on the neutrosophic scale while some
of them stay in the same state. Since we used a valid and reliable scale having smaller items
to check whether it is neutrosophic form can be used to evaluate it rather than a draft of a
questionnaire having more items like 100 or 120 items, it seems that this scale is invalid, but for
draft scales the similar procedure can be applied and more coherent scales having same factor
structure in three dimensions with same items can be achieved so that items and dimensions can
more sensitively measure the intended meaning of the items and factors. It is very similar to the
Sieve of Eratosthenes, which is an ancient algorithm for finding the prime numbers up to any
given limit where each prime is taken as an independent base or dimension and multiples of the
selected prime in a given interval are eliminated until there are only prime numbers left.

Additionally, although it was said that this structure is deemed to be invalid for the general
procedure, actually it is still used as a valid one because both factors, at least in two dimen-
sions, were not eliminated. For instance, Act with Awareness (Factor 4) was eliminated in the
disagreement dimension but it is still the same in two other dimensions as well, indicating that
it has an approximately valid structure. Similar arguments can be made for items individually.
For example, although Item 6 corresponds to the same structure in the classical one, indicating
that it belongs to this factor, it changes its position in the other dimensions, possibly because of
its dependence on other items in the realms of these two dimensions in the context of classical
interdependent logic. Finally, the reliability of three independent dimensions of the neutrosophic
forms of any questionnaire can also be used to check whether the measurement tool is reliable.
Low-reliability results in any dimensions may imply that the scale has some problems in terms of
meaning, language, or other factors.
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