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Abstract

This paper develops a trivalent semantics for the truth conditions
and the probability of the natural language indicative conditional.
Our framework rests on trivalent truth conditions first proposed
by Cooper (1968) and Belnap (1973) and it yields two logics of
conditional reasoning: (i) a logic C of certainty-preserving in-
ference; and (ii) a logic U for uncertain reasoning that preserves
the probability of the premises. We show systematic correspon-
dences between trivalent and probabilistic representations of in-
ferences in either framework, and we use the distinction between
the two systems to cast light on the validity of inferences such
as Modus Ponens, Or-To-If, and Conditional Excluded Middle.
Specifically, the conditional behaves monotonically in C, but non-
monotonically in U; Modus Ponens is valid in C, but valid in U
only for non-nested conditionals. The result is a unified account
of the semantics and epistemology of indicative conditionals that
can be fruitfully applied to analyzing the validity of conditional
inferences.
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1 Introduction and Overview

Research on indicative conditionals (henceforth simply “conditionals”)
pursues, by and large, two major projects: the semantic project of de-
termining their truth conditions, and the epistemological and pragmatic
project of explaining how we should reason with them, and when we
can assert them. The two projects are related: Jackson (1979, p. 589)
states that “we should hope for a theory which explains the asser-
tion conditions in terms of the truth conditions”, while according to
David Lewis (1976, p. 297), “assertability goes by subjective probabil-
ity”, whose definition depends in part on the truth and falsity of the
sentence in question (see also Adams 1965, pp. 173-174; Jackson 1979,
p. 565; Leitgeb 2017, p. 278).

Ideally, we would have a unified treatment of truth conditions and
probability of conditionals and, on that basis, a theory of reasoning
with conditionals. Here is the standard approach. Suppose A and C
are formulas of a propositional language L without conditionals, and
let → denote the “if. . . then. . . ” connective. Then, the probability of
the sentence A → C should go by the conditional probability p(C|A)

(e.g., Adams 1965, 1975; Stalnaker 1970):

p(A→ C) = p(C | A) (Adams’s Thesis)

The idea is that the conditional “if the sun is shining, Mary will go for
a walk” is likely if and only if it is likely that, given sunshine, Mary
goes for a walk.1 Normative theories of conditionals often recognize
Adams’s Thesis as a desideratum (e.g., Stalnaker 1970; Adams 1975).
The empirical data are complex, but Adams’s Thesis is well-supported
when the antecedent is relevant to the consequent (e.g., part of the
same discourse: Over, Hadjichristidis, et al. 2007; Skovgaard-Olsen,
Singmann, and Klauer 2016).

Unfortunately, David Lewis’s well-known triviality result compli-
cates the picture. Suppose that (i) the probability of a sentence depends
in the standard way on its truth conditions (i.e., the probability of A
sums up the weight of the possible worlds where A is true), and (ii) the
probability function is closed under conditionalization. Given (i) and
(ii), Adams’s Thesis implies p(A→ C) = p(C), whenever A is compat-

1The extension of Adams’s Thesis to arbitrary formulas A and C, possibly involv-
ing conditionals, is known as “Stalnaker’s Thesis” (viz. Douven (2016)).
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ible with both C and its negation. This is obviously a disaster since the
two expressions need not be equally credible. Similar triviality results
have been produced by Hájek (1989), Bradley (2000), and Milne (2003).
This reductio ad absurdum seems to preclude a unified semantic and
epistemological treatment of conditionals, at least as far as probability
and probabilistic reasoning are concerned.

But this conclusion is premature: as argued by several before us
(McDermott 1996; Cantwell 2006; Rothschild 2014; Lassiter 2020), we
can introduce a third truth value (“neither true nor false”) and state
trivalent truth conditions for natural language indicative conditionals
whose probability validates Adams’s Thesis without triviality. In this
paper, we make a further step toward this unification, by showing that
probabilistic semantics allows us to define a logic for certain reasoning
(i.e., where we wish to preserve certainty) as well as a structurally
similar logic for uncertain reasoning.

In other words, we argue that different logics of conditionals suit differ-
ent epistemic endeavors. When no conditionals are involved, certain and
uncertain inference coincide: deductive logic validates all and only
those inferences that preserve maximal certainty, i.e., probability 1 —
and also all and only those inferences that do not increase uncertainty
(e.g., Adams 1998). But conditionals complicate the picture. When
premises are assumed to be certain (and we wish to preserve certainty),
the inference from “if Alice goes to the party, Bob will” to “if Alice and
Carol go to the party, Bob will” appears valid. Alice’s presence ensures
Bob’s presence no matter his feelings for Carol. This picture changes
when the premises are taken to be just likely instead of certain: Carol’s
presence at the party can make Bob’s presence very unlikely if Alice’s
presence does not guarantee that he will come (Lewis 1973b). Condi-
tional reasoning from uncertain premises has non-monotonic aspects
and so an adequate logic of conditionals arguably requires more than
one notion of valid inference (compare Adams 1965, 1996; Santorio
2022b). The account we propose in this paper explains the difference
between certain and uncertain reference by strengthening the defi-
nition of logical consequence when going from certain to uncertain
reasoning.

We briefly expound the structure of our paper. The first part lays the
semantic foundations. Section 2 motivates the trivalent treatment of
conditionals. Section 3 argues for specific trivalent truth tables for the
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indicative conditional and the Boolean connectives, based on proposals
first put forward by Cooper 1968 and Belnap 1973. Section 4 defines
the (non-classical) probability of trivalent sentences in analogy with
defining probability in a conditional-free language.

The second part of the paper focuses on conditional reasoning.
From the definition of probability in trivalent semantics, Section 5 and 6
derive two logical consequence relations for certainty-preserving infer-
ence (=the logic C) and for inferences that do not increase probabilistic
uncertainty (=the logic U). We show that C and U can be characterized
as preserving semantic values within trivalent logic, and in Section
7 we examine which principles of conditional logic they validate. In
particular, we show that some principles such as Or-to-If or Modus
Ponens with nested conditionals are controversial because they hold
when we wish to preserve certainty, but not in uncertain inference.

The third part contains applications, comparisons and evalua-
tions: Section 8 discusses nested conditionals and McGee’s objection
to Modus Ponens from the vantage point of our semantics and the two
separate logics for certain and uncertain inference. Section 9 draws
comparisons with other theories. Section 10 highlights the strengths
and limits of our account. Appendix A provides proof details.

2 Truth Conditions: The Basic Idea

It is controversial whether indicative conditionals have factual truth
conditions and can be treated as expressing propositions (e.g., see ex-
change between Jeffrey and Edgington 1991). According to the non-
truth-conditional, probabilistic analysis of conditionals (Adams 1965,
1975; Edgington 1986, 1995, 2009; Over and Baratgin 2017), indicative
conditionals do not express propositions; at best they have partial truth
conditions. According to Adams:

[...] the term ‘true’ has no clear ordinary sense as applied to
conditionals, particularly to those whose antecedents prove to be
false [...]. In view of the foregoing remarks, it seems to us to be a
mistake to analyze the logical properties of conditional statements
in terms of their truth conditions. (Adams 1965, pp. 169-170)

As a result, non-truth-conditional accounts need to stipulate that
p(A → C) = p(C|A) and develop a probabilistic theory of reason-
ing with conditionals on the basis of high probability preservation
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(called “logic of reasonable inference” by Adams). This move yields a
powerful logic for capturing core phenomena of reasoning with simple
conditionals, such as their non-monotonic behavior in certain contexts,
whose success is recognized by truth-conditional accounts (e.g., McGee
1989, p. 485; and more recently Ciardelli 2020, p. 544). However, by
abandoning truth conditions, the probabilistic approach severs the link
between semantics and epistemology. In particular, it does not cover
nested conditionals and compounds of conditionals. Moreover, due
to the lack of truth conditions, it does not clarify how one can argue
and disagree about conditional sentences in a similar way as we do for
normal, conditional-free sentences (Bradley 2012, p. 547).

Yet, even a defender of a non-truth-conditional view such as Adams
(1965, p. 187) admits that we feel compelled to say that a conditional
“if A, then C” has been verified if we observe both A and C, and falsified
if we observe A and ¬C. For example, take the sentence “if it rains, the
match will be cancelled”; it seems to be true if it rains and the match
is in fact cancelled, and false if the match takes place in spite of rain.
Indeed, what else could be required for determining the truth or falsity
of the sentence?

This “hindsight problem” (the terminology is from Khoo 2015) is a
prima facie reason for treating conditionals as expressing propositions,
and for assigning them factual truth conditions. Defenders of non-
propositional accounts need to explain why facts in the actual world
are sufficient to settle the truth and falsity of “if A, then C” when A is
true, but also why the latter is evaluated differently when A is false.

Truth-conditional accounts of indicative conditionals address this
point. They come in various guises: variably strict conditionals (e.g.,
Stalnaker 1968), restrictor semantics (e.g., Kratzer 2012), dynamic se-
mantics (e.g., Gillies 2009), information state semantics (e.g., Ciardelli
2020; Santorio 2022a), and many more.2 Many of these accounts emu-
late Adams’s probabilistic logic of reasonable inference, or central parts
thereof. For example, truth preservation in Stalnaker’s modal frame-
work famously validates the same inference schemes as Adams’s logic

2The material conditional analysis, endorsed by Jackson and Lewis, claims that
the truth conditions of the indicative and the material conditional agree, and that
perceived differences are due to pragmatic, not to semantic factors (Jackson 1979;
Grice 1989). This approach, however, gives up on a unified picture of truth conditions
and probability in the first place. On that account, if sun were unlikely, the probability
of “if the sun is shining, Mary is going for a walk” would be close to 1 regardless of
Mary’s intentions, which looks unacceptable.
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in their common domain. All of them, however, face the non-trivial
task of modelling the probability of conditionals. While these logics
offer a qualitative account of plausibility, their analysis of the quanti-
tative probability of conditionals must, in the light of Lewis’s triviality
result, deviate systematically from Adams’s thesis. Thus, both the
truth-conditional and the non-truth-conditional approaches seem to
miss out on some important aspects of conditionals.

In this paper, we propose to solve this problem by treating “if A,
then C” as a conditional assertion—i.e., as an assertion about C upon
the supposition that A is true. Whereas, when the antecedent is false,
the speaker is committed to neither truth nor falsity of the consequent.
This view takes into account Adams’s observation that “true” has no
clear ordinary sense when applied to indicative conditionals; it has
been voiced perhaps most prominently by Quine (1950, p. 12, our
emphasis):

An affirmation of the form “if p then q” is commonly felt less as
an affirmation of a conditional than as a conditional affirmation
of the consequent. If, after we have made such an affirmation, the
antecedent turns out true, then we consider ourselves committed
to the consequent, and are ready to acknowledge error if it proves
false. If on the other hand the antecedent turns out to have been false,
our conditional affirmation is as if it had never been made.

In other words, asserting a conditional makes an epistemic commit-
ment only in case the antecedent turns out to be true. If it turns out to
be false, the assertion is retracted: there is no factual basis for evaluat-
ing it (see also Belnap 1970, 1973). Therefore it is classified as neither
true nor false. The “gappy” or “defective” truth table of Table 1 inter-
prets this view as a partial assignment of truth values to conditionals
(e.g., Reichenbach 1935; de Finetti 1936a; Adams 1975; Baratgin, Over,
and Politzer 2013; Over and Baratgin 2017).3

However, without a full truth-conditional treatment, such an ac-
count is limited: it neither evaluates nested conditionals, nor Boolean
compounds of conditionals. If we could complete Table 1 and provide
full truth conditions in a satisfactory way, this would greatly increase

3Some accounts also use the conditional probability p(C | A) as a semantic value
for the conditional A → C (e.g., McGee 1989; Stalnaker and Jeffrey 1994; Sanfilippo
et al. 2020). But this analysis reverses the traditional direction of the dependency
between the probability and the truth conditions of a sentence: probability should
depend on how often we find a sentence to be true, not vice versa.
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Truth value of A→ C v(C) = 1 v(C) = 0
v(A) = 1 1 0
v(A) = 0 (neither) (neither)

Table 1: ‘Gappy” or “defective” truth table for a conditional A → C for a
(partial) valuation function in a language with conditional.

the scope and descriptive power of conditional reasoning, and facilitate
the identification of theorems and valid inferences.

The obvious candidate for such truth conditions is a trivalent truth
table, where the absence of commitment to the consequent C is rep-
resented by a third truth value. Instead of using partial valuations,
we assign a third semantic value, 1/2 or “indeterminate”, when the an-
tecedent is false (see Table 2). This is a recurring idea in the literature,
defended, among others, by de Finetti (1936a), Reichenbach (1944), Jef-
frey (1963), Cooper (1968), Belnap (1970, 1973), Manor (1975), Farrell
(1986), McDermott (1996), Olkhovikov (2002/2016), Cantwell (2008),
Rothschild (2014), and Égré, Rossi, and Sprenger (2021a,b).

Truth value of A→ C v(C) = 1 v(C) = 1
v(A) = 1 1 0
v(A) = 0 1/2 1/2

Table 2: Partial trivalent truth table for a conditional A → C for a partial
valuation function in a language with conditional.

This basic idea needs to be developed in various directions. Firstly,
we need to decide how to extend the truth table of Table 1 to a fully
trivalent truth table for A→ C where A and C can also take the value 1/2

(=neither true nor false, indeterminate). Secondly, we need to decide
how to interpret the standard Boolean connectives∧,∨,¬ in the context
of sentences which can take three different truth values. Doing so will
allow us to deal with nested conditionals, and more generally, with
arbitrary compounds of atomic sentences connected by the standard
connectives and→. Thirdly, we have to define a probability measure
for trivalent sentences and a consequence relation for reasoning with
certain and uncertain premises. We handle these tasks in turn in the
next sections.
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3 Trivalent Truth Tables

We start by extending the basic idea of Table 2 to a full trivalent truth
table for A → C. The two main options are displayed in Table 3 and
have been proposed by Bruno de Finetti (1936a) and William Cooper
(1968), respectively.4 In both of them the value 1/2 can be interpreted as
“neither true nor false”, “void”, or “indeterminate”. There is moreover
a systematic duality between those tables: whereas de Finetti treats
indeterminate antecedents like false antecedents, Cooper treats them
like true ones. Thus, in de Finetti’s table the second row copies the
third, whereas in Cooper’s table it copies the first.

f→ 1 1/2 0
1 1 1/2 0
1/2 1/2 1/2 1/2

0 1/2 1/2 1/2

f→ 1 1/2 0
1 1 1/2 0
1/2 1 1/2 0
0 1/2 1/2 1/2

Table 3: Truth tables for the de Finetti conditional (left) and the Cooper
conditional (right).

Both options can be pursued fruitfully, and the choice between
them primarily depends on the results which they yield. We prefer
the Cooper table since it interacts more naturally with our probabilistic
treatment of conditionals and the various notions of logical conse-
quence we develop (a detailed analysis is given in Égré, Rossi, and
Sprenger 2021a). However, for the arguments made in this section,
which concern only simple, non-nested conditionals, there is no differ-
ence between the two.5

The second choice concerns the definition of the standard logical
connectives of negation, conjunction, and disjunction. A natural option
is given by the familiar Strong Kleene truth tables (first proposed by
Łukasiewicz 1920), displayed in Table 4. Conjunction corresponds
to the “minimum” of the two values, disjunction to the “maximum”,
and negation to inversion of the semantic value. In particular, the
trivalent analysis admits, next to the indicative conditional A → C, a

4Belnap (1973), Olkhovikov (2002/2016), and Cantwell (2008) rediscovered
Cooper’s truth table independently.

5Intermediate options vary the middle row, e.g., with the triple 〈1/2, 1/2, 0〉 (Farrell
1986), or the triple 〈1, 1/2, 1/2〉 (suggested by a referee). Both options give up the
equivalence of ¬(A → C) and A → ¬C, see Égré, Rossi, and Sprenger 2021a for
details regarding the former.
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Strong Kleene “material” conditional A ⊃ C, definable as ¬(A ∧ ¬C),
or equivalently, ¬A∨C.

f¬
1 0

1/2 1/2

0 1

f∧ 1 1/2 0
1 1 1/2 0

1/2 1/2 1/2 0
0 0 0 0

f∨ 1 1/2 0
1 1 1 1

1/2 1 1/2 1/2

0 1 1/2 0

Table 4: Strong Kleene truth tables for negation, conjunction, and disjunction.

The Strong Kleene truth table for negation is standard and also
yields the consequence that the conditional commutes with negation
(for either the DF- or the CC-conditional): ¬(A→ C) has the same truth
table as A → ¬C. This property squares nicely with the conditional
assertion view of conditionals: when A is false, both assertions (A→ C
and A → ¬C) are retracted, and when A is true, one of them is true
when the other is false, and conversely.6

Unfortunately, the Strong Kleene truth tables for conjunction and
disjunction have a very annoying consequence: “partitioning sen-
tences” such as (A → B) ∧ (¬A → C) will always be indeterminate
or false (Belnap 1973; Bradley 2002, pp. 368-370). However, a sentence
such as:

If the sun shines tomorrow, John goes to the beach; and if it
rains, he goes to the museum.

seems to be true (with hindsight) if the sun shines tomorrow and
John goes to the beach. This intuition is completely lost in Strong
Kleene semantics, regardless of whether we use the de Finetti or the
Cooper table for the conditional. Even worse, “obvious truths” such
as (A→ A)∧ (¬A→ ¬A) are always classified as indeterminate.

For this reason, we endorse alternative truth tables for conjunction
and disjunction, advocated by Cooper (1968) and Belnap (1973), and
shown in Table 5. In these truth tables, indeterminate sentences are
“truth-value neutral” in Boolean operations: true and false sentences
do not change truth value when conjoined or disjoined with an in-
determinate sentence. This can be motivated by observing that such

6Some varieties of modal semantics too imply that conditionals commute with
negation: see the recent (and unrelated) semantics of Santorio (2022a) and Willer
(2022). See Égré and Politzer (2013), Skovgaard-Olsen, Collins, et al. (2019), and
Olivier (2019) for psycholinguistic investigations of the empirical status of negation
commutation.
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sentences do not add determinate content the way empirical state-
ments do. Following Adams (1966) and Dubois and Prade (1994), we
call these connectives quasi-conjunction and quasi-disjunction.

f¬
1 0

1/2 1/2

0 1

f ′
∧

1 1/2 0
1 1 1 0

1/2 1 1/2 0
0 0 0 0

f ′
∨

1 1/2 0
1 1 1 1

1/2 1 1/2 0
0 1 0 0

Table 5: Truth tables for Strong Kleene negation, paired with quasi-
conjunction and quasi-disjunction as defined by Cooper (1968) and Belnap
(1973).

They retain the usual properties of Boolean connectives (associa-
tivity, commutativity, the de Morgan laws, etc.), solve the problem of
partitioning sentences, and have no substantial disadvantages with
respect to Strong Kleene truth tables in conditional logic. Moreover,
they have two non-trivial benefits. First, quasi-disjunction avoids the
Linearity principle that (A → B) ∨ (B → A) cannot be false. This
valid schema of two-valued logic was famously criticized by MacColl
(1908), who pointed out that neither “if John is red-haired, then John
is a doctor”, nor “if John is a doctor, then he is red-haired”, nor their
disjunction seems acceptable in ordinary reasoning. A semantics that
qualifies such expressions as systematically either true or indetermi-
nate might thus be considered inadequate. Using quasi-conjunction
and quasi-disjunction instead, (A → B) ∨ (B → A) comes out false
when A is true and B is false (or vice versa).

The second benefit of quasi-conjunction and quasi-disjunction con-
cerns the connection between conditional bets and conditional asser-
tions. How should we evaluate the conjunction of conditional asser-
tions like (A → B) ∧ (C → D)? The interesting case occurs when
A is false, but C and D are true. Using a Dutch Book argument,
McGee (1989, 496-501, Theorem 1) shows that in this case, a bet on
(A → B) ∧ (C → D) should yield a strictly positive partial return.
Likewise, Sanfilippo et al. (2020, p. 156) argue that we should clas-
sify the compound bet as winning. On their account, the sentence
(A→ B) ∧ (C→ D) remains verified when A is false, provided C and
D are true. This invites us to treat the assertion (A→ B)∧ (C→ D) as
true rather than indeterminate, which quasi-conjunction enables.
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For all these reasons, we adopt the Cooper truth tables for the
conditional and the other connectives in the remainder of this paper.
Our object-language is the language of propositional logic L, supple-
mented with a primitive conditional connective →, and is notated as
L
→. A Cooper valuation is a function v : L→ 7−→ {0, 1/2, 1} that assigns

a semantic value to all sentences of L→ in agreement with the Cooper
truth-tables, i.e., it interprets ¬ as the strong Kleene negation, ∧ and ∨
as Cooper’s quasi-conjunction and quasi-disjunction respectively, and
→ as Cooper’s conditional. If we assume (as Cooper did) that atomic
sentences only receive classical values (i.e., 0 and 1) in every Cooper
valuation, conditional-free sentences will only receive classical values
in all Cooper valuations: negations, conjunctions, and disjunctions
take classical values if their sub-formulas have classical values. This
assumption is not mandated by our analysis, but it is natural so long as
conditional structures are the exclusive source of the third truth value
in natural language.7 Note finally that all combinations of condition-
als and conjunctions surveyed in this section validate Import-Export:
(A∧ B) → C and A→ (B→ C) are extensionally equivalent formulas
(Cooper 1968; Égré, Rossi, and Sprenger 2021a).

4 Probability for Trivalent Valuations

Epistemologists capture the standing of a sentence A by the probability
of A, reflecting the agent’s evidence for and against A. When we
identify sentences with sets of possible worlds, the probability of a
sentence A is the cumulative credence assigned to all possible worlds
where A is true.

Trivalent semantics for conditionals implements the same approach
using a slight twist. As with bivalent probability, we start with a set
of possible worlds W with an associated algebra A, and a weight or
credence function c : A → [0, 1] defined on the measurable space (W,
A). This function represents the subjective plausibility of a particular
element of the algebra, i.e., a set of possible worlds. Our use of possible
worlds is devoid of metaphysical baggage and instrumental to define
credence functions, as is customary in probabilistic semantics: for us,

7Another source of undefinedness concerns presupposition failure, but we set
aside interactions between conditionals and presupposition in this paper.
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possible worlds are just Cooper valuations.8 Moreover, we assume
that any algebra A includes the singletons of worlds, i.e., for every
w ∈ W, {w} ∈ A. Finally, we assume that the credence function c is
finitely additive with c(∅) = 0, and c(W) = 1.

We now define a (non-classical) probability function p : L→ 7−→
[0, 1], taking into account that sentences ofL→ can receive three values:
true, false, or indeterminate.9 For convenience, define

AT = {w ∈W | vw(A) = 1} AI = {w ∈W | vw(A) = 1/2}

AF = {w ∈W | vw(A) = 0}

as the sets of possible worlds where A is valued as true, false or indeter-
minate, relative to (Cooper) valuation functions vw : L→ 7−→ {0, 1/2, 1},
indexed by the possible worlds they represent.

In analogy to bivalent probability, we derive the probability of a
(conditional) sentence A from the (conditional) betting odds on A:
how much more likely is a bet on A to be won than to be lost? For this
comparison, two quantities are relevant: (1) the cumulative weight of
the worlds where A is true (i.e., c(AT)), and (2) the cumulative weight
of the worlds where A is false, i.e., c(AF)). The decimal odds on A are
O(A) = (c(AT) + c(AF))/c(AT), indicating the factor by which the
bettor’s stake is multiplied in case A occurs and she wins the bet. Then
we calculate the probability of A from the decimal odds on A by the
familiar formula p(A) = 1/O(A), yielding

p(A) :=
c(AT)

c(AT) + c(AF)
if max(c(AT), c(AF)) > 0. (Probability)

Hence, the probability of a sentence corresponds to its expected se-
mantic value, restricted to the worlds where the sentence takes classical

8Notably, this does not make the interpretation of the conditional modal or non-
truth-functional: at each world w, the truth-value of A → C is given by a Cooper
valuation.

9If you do not like to use the term “probability” in a non-classical framework,
because you prefer to reserve it for standard bivalent probability, just replace it by
“degree of assertability” or a similar term. This is the choice of McDermott (1996),
whose definition is identical to ours. For other occurrences of that definition, see
de Finetti (1936a), who pioneered it, Cantwell (2006), Rothschild (2014), and Lassiter
(2020).
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truth value. Additionally, we stipulate that:

p(A) = 1 whenever c(AT) + c(AF) = 0, (All Indeterminate)

i.e., if it is certain that A takes the value 1/2 (e.g., when A is ⊥ → >).
In other words, the trivalent probability of A is the ratio between

the credence assigned to the worlds where A is true, and the credence
assigned to the worlds where A has a classical truth value. Worlds
where A takes indeterminate truth value are neglected for calculating
the probability of A, except when they take up the whole space. For
conditional-free sentences A and their Boolean compounds, this cor-
responds to the classical picture since W = AT ∪AF, or equivalently,
AI = ∅.

The idea behind (Probability) is the same that motivates classical
operational definitions of probability: a sentence is assertable, or prob-
able, to the degree that we can rationally bet on it, i.e., to the degree that
betting on this sentence will, in the long run, provide us with gains
rather than losses (e.g., Sprenger and Hartmann 2019). This is a good
reason for calling the object defined by equation (Probability) a “prob-
ability”, or a measure of the plausibility of a sentence.

The structural properties of p : L→ 7−→ [0, 1] resemble the standard
axioms of probability:

(1) p(>) = 1 and p(⊥) = 0.

(2) p(A) = 1− p(¬A), provided AI ,W (otherwise, p(A) = p(¬A) =

1, by (All Indeterminate)).

(3) p(A ∨ B) ≤ p(A) + p(B). The equality p(A ∨ B) = p(A) + p(B)
holds if and only if AT ∩ BT = ∅ and AI = BI.10

Just like standard probability, our trivalent probability is not additive,
but subadditive. Equality holds here exactly when A and B are incom-
patible and they take classical truth values in the same set of worlds.

The main difference to the standard picture is that the probability of
a conjunction can exceed the probability of a conjunct. In other words,
the inference of conjunction-elimination from A∧B to B will not always
preserve probability. Of course, p(A ∧ B) ≤ p(A) will hold as long as
A and B are conditional-free sentences, but not so for conditionals. On

10The “only if” direction presupposes that p(A) > 0 and p(B) > 0.
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the betting interpretation of probability, this makes sense: when A and
B are false and C is true, the bet on (A→ B)∧C yields a positive return,
while the bet on A → B is called off. So we should not expect that in
all circumstances p((A→ B) ∧C) ≤ p(A→ B), in notable difference to
bivalent probability, and some non-classical probability functions (for a
survey, see Williams 2016). Exactly the same phenomenon—the failure
of “and-drop” in the context of conditional reasoning—was observed
in recent experiments by Santorio and Wellwood (2023). To use one
of their motivating examples, while “the die will land 2 if it is even”
(whose probability is 1/3) does not entail “the die will land 1 if it is
odd” (whose probability is 1/3), their conjunction too has a probability
of 1/3 (the probability of “the die will land 1 or 2”), which is exactly
what we predict in the present framework.11

On this definition of probability, we obtain for conditional-free sen-
tences A, C ∈ L that

p(A→ C) =
c(AT ∩CT)

c(AT)
=

p(A∧C)
p(A)

= p(C|A)

(Adams’s Thesis)

as for conditional-free sentences, p(A) = c(AT), and because for biva-
lent A and C,

c(A→ C)T

c(A→ C)T + c(A→ C)F
=

c(AT ∩CT)

c(AT)
.

That is, instead of postulating Adams’s Thesis as a desideratum on
the probability of a conditional, as in Stalnaker (1970) and Adams
(1975, p. 3), we obtain it immediately from the semantics of trivalent
conditionals, and the definition of probability as the inverse of rational
betting odds.12 The well-known triviality results by Lewis (1976) and

11Santorio and Wellwood call “and-drop” the principle whereby p(A∧ B) < p(A)
when A 6|= B, which holds for the classical definitions of probability and entailment.
Convergent with our approach, Santorio and Wellwood sketch a trivalent account
of their data using truth-conditions exactly equivalent to De Finetti’s for the con-
ditional, paired with Cooper’s for the other connectives. Similarly, Ciardelli and
Ommundsen (forthcoming) argue that sensible predictions for the probabilities of
nested conditionals require that probability behave in a non-classical way.

12For more discussion of Adams’s Thesis, including experimental evidence for
and against, see Stalnaker 1968; Adams 1975; Dubois and Prade 1994; Douven and
Verbrugge 2010, 2013; Evans et al. 2007; Over, Hadjichristidis, et al. 2007; Égré and
Cozic 2011; Over 2016; Skovgaard-Olsen, Singmann, and Klauer 2016.
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others are blocked since they depend on an application of the (bivalent)
Law of Total Probability, which does not hold for trivalent, non-classical
probability functions (Lassiter 2020).13 Equipped with a definition
of probability, we now proceed to characterizing logical consequence
relations for certain and uncertain inference.

5 Certain Inference

For a conditional-free propositional language L with only two truth
values, valid inferences are supposed to preserve the truth of the
premises. This is equivalent to requiring that valid inferences preserve
certainties, i.e., probability 1 (Leblanc 1979).

In a trivalent setting, however, there is no unique notion of “truth
preservation”: it can amount to preserving strict truth (i.e., seman-
tic value 1), or to preserving tolerant truth, namely non-falsities (i.e.,
semantic value greater than 0), or to a combination of both (the ter-
minology follows Cobreros et al. 2012). “Truth preservation” is thus
ambiguous. On the other hand, trivalent semantics allows for a canon-
ical extension of certainty-preserving inference to L→: whenever all
premises have probability 1, as defined in the previous section, the
conclusion must have probability 1, too (Adams 1996). We call this
logic C for “certainty-preserving inference”. Formally:

Definition 1 (Certainty Preservation or C-validity). For a set of formulas
Γ ⊆ L→ and a formula B ∈ L→, the inference from Γ to B is C-valid, in
symbols Γ |=C B, if and only if for all probability functions p : L→ 7−→ [0, 1]:
if p(A) = 1 for all A ∈ Γ, then also p(B) = 1.

C is a logic that tracks reasoning with (fully) accepted sentences:
given an epistemic state represented by a probability distribution, it is
impossible for anyone to accept premises without committing them-
selves to the conclusion (compare the analogous definition of reason-
able inference in Stalnaker 1975, p. 271).

13Bradley (2000) proposes a different triviality result: arguably, we want indica-
tive conditionals to satisfy the Preservation Condition, such that if p(A) > 0 and
p(C) = 0, then p(A → C) = 0. But for this to hold in full generality, we need to
posit strong logical dependencies between a conditional and its components, thus
trivializing the conditional. This is indeed so for bivalent accounts, but our trivalent
account implies the Preservation Condition as a theorem without having a vicious
dependency between the truth values of A, C and A→ C.
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We can show that C has an equivalent characterization in trivalent
logic: an inference is C-valid if and only if tolerant truth is preserved
in passing from Γ to B. Equivalently, we cannot assign a designated
value (1 or 1/2) to the premises without assigning it to the conclusion,
too. This is the main result of this section.

Proposition 1 (Trivalent Characterization of C). For a set of formulas
Γ ⊆ L→ and a formula B ∈ L→, the following are equivalent:

(1) Γ |=C B.

(2) For all Cooper valuations v : L→ 7−→ {0, 1/2, 1}: if v(A) ≥ 1/2 for all
A ∈ Γ, then also v(B) ≥ 1/2.

In other words, C preserves truth in the (tolerant) sense that we can-
not infer a false conclusion from a set of non-false premises. Equiv-
alently, if the conclusion is false, one of the premises must be false.
We have thereby got an analogous result to the equivalence between
truth-preserving and certainty-preserving inference in standard propo-
sitional logic.

C satisfies the classic principle B |=C A → B, i.e., if we are certain
that Bob comes to the party, then we are also certain that Bob comes to
the party if Alice does. While this inference is fallacious when premises
are uncertain (and known as one of the paradoxes of material implica-
tion), it is valid in any context where we have verified the premise—
whether empirically or by mathematical proof.14 We also retain Con-
ditional Proof (A |=C B implies |=C A → B), and some characteristic
principles of deductive reasoning in C, such as Modus Ponens and the
Law of Identity (|=C A→ A). The logic itself is non-classical, however,
it is paraconsistent (A,¬A 6|=C B), and it satisfies various connexive
principles, such as Negation Commutation, making it even negation-
inconsistent (|=C (A ∧ ¬A → (A ∨ ¬A) ∧ ¬(A ∧ ¬A → (A ∨ ¬A)).15

Some inferences such as Modus Tollens, and more generally classical

14This behavior is similar to that of the conditional developed in state space
semantics by Leitgeb (2017). Note that the inference from ¬A to A→ B is blocked in
C, but valid when A is an atomic formula whose interpretation is two-valued.

15C is nearly Cooper’s propositional logic of Ordinary Discourse—except that
we do not restrict C to atom-classical valuations. The system is called QCC/TT in
Égré, Rossi, and Sprenger (2021a), to locate it within a broader map of consequence
relations and schemes for the connectives. Remarkably, Cooper himself characterized
his logic proof-theoretically, making only instrumental use of trivalent semantics to
establish completeness.
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laws in L, are only valid when restricted to conditional-free sentences
with atom-classical valuations—we will get back to this in Section 7.
Notably, these properties depend on interpreting the conditional via
the Cooper truth table: if we had paired preservation of non-falsity
with the de Finetti truth table instead, we would have lost Modus
Ponens—arguably a substantial drawback for a logic that generalizes
deductive logic to certain inference with conditionals.

C retains Disjunctive Syllogism (A∨ B,¬A |= B), but gives up Dis-
junction Introduction (A |= A ∨ B). Again, p(A) = 1 will ensure that
p(A ∨ B) = 1 when A and B are themselves factual, conditional-free
sentences. But for conditionals, we again seem to find exceptions that
make intuitive sense. To use a variation on the previous example by
Santorio and Wellwood, consider a die whose faces are 2-2-2-3-3-5.
Then the conditional “if it lands even, it will land 2” has probability 1.
But the disjunction “either it will land 2 if even, or it will land 5 if odd”
only gets a probability of 2/3 (the probability of “it will land 2 or 5”),
since cases in which it lands on 3 make the first conditional void, and
the second conditional false.16

Characterizing C in terms of truth-preservation rather than proba-
bilistically is not only of theoretical interest, but greatly simplifies the
study of this logic: to decide theorems and valid inferences, it suf-
fices to look at the truth tables. Section 7 studies the theorems and
valid inferences in more detail and compares certain inference with
C to uncertain inference where instead of certainty, high probability
is preserved. Notably, these properties depend on interpreting the
conditional via the Cooper truth table: if we had paired preservation
of non-falsity with the de Finetti truth table instead, we would have
lost Modus Ponens—arguably a substantial drawback for a logic that
generalizes deductive logic to certain inference with conditionals.

6 Uncertain Inference

Certain inference with conditionals is arguably monotonic: when we
know B for certain, or when we suppose it as holding no matter what,
we also know that B is the case under the condition that A. However,
when we move to uncertain inference, where only high probability or

16This is a failure of “or-drop” in the sense of Santorio and Wellwood (2023),
namely the rule whereby A 6|= B entails p(A) < p(A∨ B).
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degree of assertability is preserved, things change. We may accept,
assert, or find plausible B, but reject B under the condition that A. For
example, the conditional “if Real Madrid faces Juventus in their next
match, then Real Madrid will win” sounds highly plausible, whereas
“if Real Madrid faces Juventus in their next match but most of their
players are sick, then Real Madrid will win” seems much less plausible.
A logic of inference with uncertain premises U should therefore, unlike
the logic C, have a non-monotonic conditional, i.e., we cannot infer
from A→ C that A∧ B→ C for any A, B and C ∈ L→.

The canonical definition of validity in a logic of uncertain inference
preserves probability, as a proxy for degree of assertability (compare
Adams 1975). In other words, the probability of the premise A must
never exceed the probability of the conclusion B. Almost all logics
of uncertain reasoning agree on this criterion for single-premise in-
ference, which is the natural analogue of truth preservation in certain
reasoning, and so we adopt it as our definition of single-premise logical
consequence in uncertain reasoning:

Definition 2 (Valid Single-Premise Inference in U). For formulas A, B ∈
L
→: A |=U B if and only if p(A) ≤ p(B) for all probability functions

p : L→ 7−→ [0, 1] based on credence functions c : A 7−→ [0, 1].

Two corollaries are now immediate from Definition 2:

Corollary 1. |=U B if and only p(B) = 1 for all probability functions p :
L
→
7−→ [0, 1] based on credence functions c : A→ [0, 1].

Corollary 2. C and U have the same theorems.

We can now show that the consequence relation of U has, for contingent
sentences A and B, equivalent characterizations in our system of certain
inference C, and by means of trivalent valuations:

Proposition 2 (Equivalent Characterizations of Valid Single-Premise
Inference in U). For A, B ∈ L→, with 6|=C ¬A and 6|=C B, the following are
equivalent:

(1) A |=U B.

(2) For all Cooper valuations v : L→ 7−→ {0, 1/2, 1}, v(A) ≤ v(B). In other
words, if v(A) = 1 then v(B) = 1, and if v(A) ≥ 1/2, then v(B) ≥ 1/2.

(3) A |=C B and ¬B |=C ¬A.
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Condition (2) expresses that the semantic value of the conclusion
must not fall below the semantic value of the premise in all possible
valuations. Condition (3) expresses that A |=C B and ¬B |= ¬A, i.e.,
from A we can infer B, and from ¬B we can infer ¬A in a logic of
certain reasoning.17 Thus, U validates fewer inferences than C. The
proposition states that all these conditions are equivalent to demanding
that for all probability functions, the conclusion be at least as probable
as the premise.

Extending this criterion to multi-premise inference is non-trivial.
There are several choice points here. The first concerns the definition
of probabilistic validity. Should the probability of the conclusion be at
least as high as that of the least probable premise? Should the conclusion
be at least as plausible as the conjunction of the premises? (Remember
those definitions can differ, given the properties of conjunction in our
system). Should it follow Adams’s uncertainty preservation criterion,
namely for the uncertainty of the conclusion to not exceed the sum
of the uncertainties of the premises (Adams 1975, 1996)? A second
choice point concerns whether validity should be structurally mono-
tonic, namely insensitive to the addition of new premises, or whether
the consequence relation should mirror the nonmonotonic property of
the conditional.

We propose that Γ |=U B if and only if for a subset ∆ ⊆ Γ of the
premises, the probability of the conjunction of the elements of ∆ never exceeds
the probability of the conclusion, regardless of the choice of the probability
function. Formally:

Definition 3 (Valid Multi-Premise Inference in U). For a set of formulas
Γ ⊆ L→ and a formula B ∈ L→: Γ |=U B if and only if there is a finite subset
of the premises ∆ ⊆ Γ such that for all probability functions p : L→ 7−→ [0, 1],
p(

∧
A∈∆ A) ≤ p(B).

Let us make two comments on this definition. Firstly, taking the
probability of the conjunction of the premises will explain why Modus
Ponens can be lost in uncertain inference. Secondly, defining validity
by means of existential quantification over (possibly improper) subsets
of Γ allows us to preserve the fact that a set of premises entails each

17Égré, Rossi, and Sprenger (2021a) call this logic QCC/SS∩TT since it preserves
both strict and tolerant truth value (=both strict truths and non-falsities). This is one
of the logics entertained in Belnap (1973).
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of its members, namely Γ |=U A for any A ∈ Γ (compare Dubois and
Prade 1994, p. 1729; Adams 1996, p. 5).

But we could also define Γ |=U B by just requiring that the conjunc-
tion of all members of Γ have lower probability than B, for all probability
functions. This would make the consequence relation structurally non-
monotonic, as it would be possible to have A, B 6|=U A, despite the fact
that A |=U A for every A. This failure of structural monotonicity aligns
well, at first sight, with the non-monotonic behavior of the conditional
in U (i.e., A→ C 6|=U (A∧B)→ C). On the other hand, conditional logic
is often considered a generalization of (monotonic) classical logic and
not as a substantial departure from it (compare Adams 1965, pp. 186-
87). We present the most conservative option here, but bearing in mind
that for the properties of U that we discuss in the sections that follow,
the other choice could be made as well.

We can now extend the equivalence between probabilistic inference
and a trivalent consequence relation from the single-premise to the
multi-premise case. First, we need to define a consistent set of formulas
in the trivalent setting:

Definition 4 (Consistent and Inconsistent Sets). A set of formulas Γ ⊆ L→

is consistent if it has no subset ∆ ⊆ Γ such that p (
∧

A∈∆ A) = 0 in all
probability functions p : L→ 7−→ [0, 1]. Equivalently, no subset ∆ ⊆ Γ
satisfies |=C ¬ (

∧
A∈∆ A). Γ is inconsistent if such a subset exists.

Second, we show that multi-premise inference from consistent
premise sets has an equivalent trivalent representation:

Proposition 3 (Equivalent Characterizations of Valid Multi-Premise
Inference in U). For a consistent set of formulas Γ ⊆ L→ and B ∈ L→ with
6|=C B, the following are equivalent:

(1) Γ |=U B.

(2) There is a finite subset of premises ∆ ⊆ Γ such that the semantic value
of B is, for all Cooper valuations v, at least as high as the semantic value
of the conjunction of the premises: v(

∧
Ai∈∆ Ai) ≤ v(B).

(3) There is a finite subset of premises ∆ ⊆ Γ such that
∧

Ai∈∆ Ai |=C B and
¬B |=C ¬

(∧
Ai∈∆ Ai

)
.
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As with C, the equivalence of (1) with (2) and (3) is not only attrac-
tive from a computational point of view, but it also connects probabilis-
tic reasoning with conditionals to the trivalent semantics that defines
their truth conditions in the first place.18

Proposition 3 also provides sound and complete calculi for the logic
U for free. For instance, since Cooper (1968) has a sound and complete
Hilbert-style calculus for C, this automatically translates, thanks to
Proposition 3, into a sound and complete calculus for U. Validity in U
is nothing else but the combination of two valid consequence relations
in C. Alternatively, still using Proposition 3, tableau- and sequent-style
sound and complete axiomatizations of U can be extracted from Égré,
Rossi, and Sprenger (2021b).

7 Properties of U and C

We now evaluate the logic U and the logic C in terms of the inference
schemes they validate, using the principles in Table 6, taken from the
survey article by Egré and Rott (2021). In the table, a plus sign “+”
indicates that a (meta-)inference is valid for all trivalent valuations
over the atoms, and Γ |=CL B means that the inference from Γ to B
is classically valid. The plus sign in brackets indicates that a (meta-
)inference is not valid under all trivalent valuations, but that it is valid
provided schematic letters do not contain conditionals and atoms can
only take value 1 or 0 (i.e., in atom-classical valuations, following the
terminology of Humberstone 2011, p. 1045). A minus sign “-” indicates
that a (meta-)inference is not even valid under that restriction. Finally,
the connective ≡ is used in two occurrences to express identity of truth
value (so v(A ≡ B) = 1 if v(A) = v(B) and v(A ≡ B) = 0 otherwise).

The consideration of atom-classical valuations is to flag that C and
U can in some cases recapture classical principles that are lost with
nested conditionals in particular. As stressed by Cooper (1968, p. 314),
however, C, and similarly U, would not be closed under Uniform
Substitution if we defined validity in terms of atom-classical valuations.
Consider Modus Tollens: while p → q,¬q entails ¬p in both C and U

18Without the restriction to consistent premise sets, Proposition 3 would not hold
since U satisfies, like Adams’s logic of conditionals, the probabilistic ex falso principle:
a proposition which always obtains zero probability implies everything. If p(A) = 0
for all probability functions, A |=U B holds, but without constraining the valuations
of B according to (2).
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Constitutive and Generally Desirable Principles in Uncertain Inference C U
Logical Truth |= A→ > + +
Law of Identity |= A→ A + +
Stronger-Than-Material A→ B |= A ⊃ B (+) (+)
Conjunctive Sufficiency A, B |= A→ B + (+)
AND A→ B, A→ C |= A→ (B∧C) + +
OR A→ C, B→ C |= (A∨ B)→ C + (+)
Cautious Transitivity A→ B, (A∧ B)→ C |= A→ C + (+)
Cautious Monotonicity A→ B, A→ C |= (A∧C)→ B + +
Rational Monotonicity A→ B,¬(A→ ¬C) |= (A∧C)→ B + +
Reciprocity A→ B, B→ A |= (A→ C) ≡ (B→ C) + (+)
Conjunction Elimination A∧ B |= A + (+)
Disjunction Introduction A |= A∨ B (+) (+)
Optional and Disputed Principles
Supraclassicality (Inferences) if Γ |=CL B then Γ |= B - -
Modus Ponens A→ B, A |= B + (+)
Modus Tollens A→ B,¬B |= ¬A (+) (+)
Simplifying Disjunctive An-
tecedents

(A∨ B)→ C |= (A→ C)∧ (B→ C) (+) (+)

Import-Export A→ (B→ C) if and only if (A∧ B)→ C + +
Or-to-If ¬A∨ B |= A→ B + -
Conditional Excluded Middle |= (A→ B)∨ (A→ ¬B) + +
Connexive Principles (optional)
Aristotle’s Thesis |= ¬(¬A→ A) + +
Boethius’s Thesis |= (A→ C)→ ¬(A→ ¬C) + +
Undesirable Principles
Contraposition A→ C |= ¬C→ ¬A (+) -
Monotonicity A→ C |= (A∧ B)→ C + -
Transitivity A→ B, B→ C |= A→ C + -
Generally Desirable Meta-Inferences in Uncertain Reasoning
Supraclassicality (Laws) if |=CL A, then |= A (+) (+)
Left Logical Equivalence if A |=CL B, B |=CL A, then + +

A→ C |= B→ C
Right Weakening if B |=CL C, then A→ B |= A→ C + (+)
Rule of Conditional K if A1, . . . , An |=CL C, then + (+)

(B→ A1), . . . , (B→ An) |= (B→ C)

Table 6: Overview of characteristic inferences and meta-inferences in uncer-
tain reasoning with conditionals. +: the (meta-)inference is generally valid in
C or U; (+): the (meta-)inference is valid only for conditional-free sentences
with classical valuations of propositional atoms; -: the (meta-)inference is
invalid.

when the interpretation of p and q is bivalent, the substitution instance
(p→ (q→ r)),¬(q→ r) fails to entail ¬p in both logics under the same
restriction (assign q the value 0 and p the value 1, and r either 1 or 0).
When validity is defined by taking account all trivalent valuations over
the atoms, however, Uniform Substitution holds, and the arguments
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above can be expressed as schemata using formula letters instead of
atomic symbols.

The principles above the first horizontal line are generally consid-
ered to be desirable, or at least harmless, in uncertain reasoning with
conditionals. The principles between the lines—e.g., Modus Ponens,
Or-To-If, Import-Export, and Conditional Excluded Middle—are typ-
ically a bone of contention between theorists. We also include some
tautologies that are distinctive for connexive logics. The principles at
the bottom—Contraposition, Monotonicity and Transitivity—are char-
acteristic of most monotonic logics, and logics of deductive inference
in particular, but should not be satisfied by a logic of uncertain rea-
soning with non-monotonic conditionals (for compelling counterex-
amples, see Adams 1965). So we should expect that these principles
are satisfied by C, but not by U.

Table 6 evaluates, in the rightmost columns, C and U with respect
to all these principles. We cannot discuss each of them in detail, but we
make some general observations. Many desirable or harmless princi-
ples are satisfied by U without restriction, whereas some of them only
hold for conditional-free expressions over atom-classical valuations.

When we compare U to classical conditional logics (i.e., logics where
all valuations are bivalent, such as Stalnaker-Lewis logics), we can
consider the principles valid since making a comparison presupposes
atom-classical valuations. Specifically, U recovers all valid inferences of
System P, which is a classical benchmark for conditional logics (Adams
1975; Kraus, Lehmann, and Magidor 1990).19 Moreover, both C and U
validate connexive principles such as Aristotle’s Thesis (¬(¬A → A))
and Boethius’s Thesis ((A→ B)→ ¬(A→ ¬B)).

Principles that are typically considered problematic for non-
monotonic conditionals—Monotonicity, Contraposition, Transitivity,
(Egré and Rott 2021)—are not valid in U. These principles do not even
hold when we restrict U to atom-classical valuations. However, they
do (mainly) hold in our logic of certain inference C, where the condi-
tional behaves monotonically. This feature is in line with our view of
C as a generalization of classical deductive logic to a language with a
conditional. In particular, Contraposition holds in C for atom-classical
valuations of simple conditionals p → q, although it does not in gen-

19Adams (1975) characterized his logic of uncertain inference by seven syntactic
principles whose combination is known as System P: the Law of Identity, AND, OR,
Cautious Monotonicity, Left Logical Equivalence, and Right Weakening.
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eral for nested conditionals such as p → (q → r).20 In U, things are
more straightforward: contraposition fails to preserve probability even
for simple conditionals, since p(B|A) can be greater than p(¬A|¬B) for
A, B ∈ L.

Most interesting are optional and disputed (meta-)inference princi-
ples. Supraclassicality for inferences fails because C does not support
Explosion, e.g., while A ∧ ¬A |=CL B holds for any two sentences A
and B, it is not the case that A ∧ ¬A |=C B. However, all classical
laws are theorems of both C and U when restricted to atom-classical
valuations. Modus Ponens and Modus Tollens hold for conditional-
free sentences, but break down for nested conditionals—in line with
McGee’s famous objections (see the next section for a detailed anal-
ysis). Also Simplification of Disjunctive Antecedent is preserved for
atom-classical valuations only.

Import-Export holds unrestrictedly, since A → (B → C) and
(A ∧ B) → C have exactly the same truth conditions. The princi-
ple is intuitively plausible: “it appears to be a fact of English usage,
confirmed by numerous examples, that we assert, deny, or profess ig-
norance of a compound conditional A→ (B→ C) under precisely the
circumstances under which we assert, deny, or profess ignorance of
(A ∧ B) → C” (McGee 1989, p. 489). Experimental evidence seems to
confirm this assessment (van Wijnbergen-Huitink, Elqayam, and Over
2015). Indeed, one motivation for giving up Import-Export—e.g., in
the probabilistic semantics of Sanfilippo et al. (2020)—is the pressure
from Gibbard’s and Lewis’s triviality results, where Import-Export is
a crucial premise (Fitelson 2015). Some accounts therefore restrict the
validity of Import-Export to simple conditionals and set up an error
theory of why we infer from there to the general validity of the prin-
ciple. For example, Mandelkern (2020) suggests to restrict the scope
of Import-Export to cases where the B in A → (B → C) does not con-
tain a conditional. Whether this strategy is successful is controversial
(Ciardelli and Ommundsen forthcoming). By contrast, in C and U the
universal validity of Import-Export does not create problems since the

20Consider the Cooper valuation v(p) = 1 and v(q) = 0. This implies v(p →
(q → r)) = 1/2 but v(¬(q → r) → ¬p) = 0. By Proposition 1, this means that
Contraposition fails in C. In the probabilistic case: consider a fair die where the sides
1 and 2 are marked in red, and the other sides in blue. Then the conditional “if it lands
even, then if the outcome is greater than 2, it is blue” is certain. But the contraposed
conditional “if it is not the case that if the outcome is greater than 2 the die lands
blue, then it does not land even” only gets probability 1/2 on our account.
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triviality results do not apply to these logics (compare Égré, Rossi, and
Sprenger 2023).

Conditional Excluded Middle (CEM) is a validity of C, and is there-
fore valid in U as well. Various analyses of indicatives endorse CEM
(e.g., Stalnaker 1980; Williams 2010; Ciardelli 2020; Santorio 2022a),
but there are also notable opponents (e.g., Lewis 1973b; Gillies 2009;
Kratzer 2012). In C, CEM is a consequence of commutation with nega-
tion, i.e., the semantic equivalence between ¬(A → B) and A → ¬B,
which holds in our system and is independently motivated (see foot-
note 3). To see this, note that (A→ B)∨¬(A→ B)—an instance of the
Law of Excluded Middle—immediately entails (A → B) ∨ (A → ¬B),
that is CEM.

Finally, a crucial difference between C and U concerns the relation of
the indicative to the material conditional A ⊃ B := ¬A∨ B. On the one
hand, A ⊃ B |=C A → B. Equivalently, we get the Or-to-If entailment
in C, namely A∨ B |=C ¬A→ B—an instance of what Stalnaker (1975,
p. 279) calls a reasonable inference, and which we can handle in terms
of certainty preservation. To use an example from Edgington (1986,
p. 191), if I am certain that it is either 8 o’clock or 11 o’clock, then I am
also certain that if it is not 8 o’clock, it is 11 o’clock.

However, this inference is invalid when we infer the conditional
from an uncertain disjunction. Edgington’s point is that if I am 90%
confident that it is 8 o’clock, then I am at least as confident that it is 8
or 11 o’clock, but that does not give me the same confidence that if it
is not 8 then it is 11 o’clock. Thus, Or-to-If fails in U, and neither does
the material conditional imply the indicative conditional in U, nor vice
versa.

However, the simple, non-nested indicative conditional often ap-
pears to be more demanding to assert than the material conditional
(e.g., Gibbard 1981; Gillies 2009). Can our account then explain this
“Stronger-Than-Material” intuition? Yes—because for conditional-
free sentences A and B over atom-classical valuations, A → B entails
A ⊃ B in both C and in U. In the context of uncertain reasoning with
conditional-free statements, p(A → B) = p(B|A) ≤ p(A ⊃ B) is a theo-
rem. In summary, we have Or-to-If as a valid principle for reasoning
from certain premises, but not from uncertain premises; nonetheless,
we can explain why A → B is less acceptable than A ⊃ B whenever
antecedent and consequent are conditional-free sentences.
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8 The variable status of Modus Ponens

Modus Ponens is one of our most endorsed forms of inference. How-
ever, McGee (1985) challenged its validity as a rule for rational belief
in a famous counterexample that concerns the 1980 U.S. presidential
elections:

If a Republican wins the election, then, if Reagan does not win,
Anderson will win.

A Republican will win the election.

Therefore, if Reagan does not win the election, Anderson will.

At some point before the elections, the two premises were reasonable
to believe: Ronald Reagan was predicted to win the election, and An-
derson was the runner-up behind Reagan in the Republicans’ primary
race. By Modus Ponens we infer that if Reagan does not win, Ander-
son will. The logical form of that inference is: from A→ (B→ C) and
A, infer, by Modus Ponens, B → C. However, in the polls Anderson
was actually trailing both Reagan and Carter, the democrat incumbent.
The sentence “if Reagan does not win the election, Anderson will” is
hardly believable and the inference seems therefore unreasonable.

McGee’s counterexample has generated a large literature concern-
ing the validity of Modus Ponens. First, it is important to note that its
pull depends on whether we tie logical validity to truth preservation
or to probability preservation. Bledin (2015, pp. 67-68) and Punčochár
and Gauker (2020, pp. 657-658), who defend Modus Ponens as a valid
form of inference, argue that any context or information state that
makes the premises true must also make true the conclusion. This
diagnosis is shared by our logic of certain inference C: if we fully ac-
cept the premises (i.e., as a certainty), we are also forced to accept the
conclusion. By contrast, McGee shows that Modus Ponens is an unreli-
able rule of inference whenever valid inference is not taken to preserve
truth or certainty, but only to regulate our credences and partial beliefs
(a position defended by Field 2015).

As stressed by McGee, the intuitive appeal of the counterexample
depends crucially on the use of nested conditionals. In particular, Stern
and Hartmann (2018) show that when the major premise of Modus
Ponens is a nested conditional, the probability loss in inferring to the
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conclusion can be much higher than when we apply Modus Ponens to
non-nested premises. For conditional-free sentences A and B, the term

p(B) = p(B|A)p(A) + p(B|¬A)(1− p(A)) (1)

is, by the Law of Total Probability, well controlled by the values of
p(A) and p(B|A)—the values that represent the probability of the two
premises of Modus Ponens. For example, if both values exceed .9, then
p(B) ≥ .81, so the product of the two probabilities is still a reasonably
high value.

However, in the case of right-nested conditionals, the probability
of the conclusion of Modus Ponens is poorly controlled:

p(C|B) = p(C|A∧ B)p(A|B) + p(C|¬A∧ B)(1− p(A|B)) (2)

Suppose that premises are highly plausible, e.g. p(A) ≥ .9 and p(C|A∧
B) ≥ .9, where the latter probability has been calculated by applying
Import-Export and Adams’s Thesis to A → (B → C). Then you can
still assign extremely low values to three of the four probabilities on
the right hand side of equation (2), and derive a very low value of
p(C|B). Therefore the probability loss is more pronounced in McGee’s
example than when we apply Modus Ponens to simple conditionals.

Our logics mirror this diagnosis: Modus Ponens is valid in U for
simple conditionals with atom-classical valuations. However, U does
not validate the unrestricted form of Modus Ponens. In fact, the only
countermodel to the schema A→ B, A |= B is v(A) = 1 and v(B) = 1/2

(i.e., B is a conditional with false antecedent).21 The same kind of
analysis can be applied to Modus Tollens: the schema A → B,¬B |=
¬A, is valid for atom-classical valuations, but invalid if we allow for
v(B) = 1/2.

The fact that McGee’s Modus Ponens examples are analyzed as
valid in C and as invalid in U is in accordance with an ambivalence
regarding the validity of Modus Ponens that many modal seman-

21Suppose that “A Republican will win” is true if and only if Reagan or Anderson
wins. The main conditional then has probability 1 (since Or-to-If is valid in C), the
disjunction has high probability, and the consequent has a low probability. Thus,
nested Modus Ponens in McGee-type examples fails if and only if the associated
Or-to-If inference fails. A trivalent countermodel to the inference in U is obtained by
assigning “Reagan wins” the value 1, and “Anderson wins” the value 0.
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tics exhibit. Specifically, Kratzer (1986, 2012) restricts the validity of
Modus Ponens to non-modal and non-conditional sentences. Khoo
and Mandelkern (2019) distinguish, in a dynamic semantics frame-
work, between two forms of Modus Ponens: one remains valid while
the other falls prey to McGee’s counterexamples. Finally, like us, San-
torio (2022b) considers Modus Ponens valid in certain, but invalid in
uncertain inference (see also Neth 2019).

Since Import-Export features crucially in McGee’s counterexam-
ple and his impossibility theorem from the same paper (McGee 1985,
pp. 465-466), philosophers and logicians have often faced a choice be-
tween both principles. Unlike the theorists who give up or restrict
Import-Export, but retain (some form of) Modus Ponens (e.g., Stal-
naker 1968; Lewis 1973b; Mandelkern 2020), we accept Import-Export
as universally valid and restrict the validity of Modus Ponens. This
account does not only give a convincing analysis of in uncertain reason-
ing, but also takes into account the independent reasons for retaining
Import-Export that we have outlined in Section 7.

9 Comparisons

The trivalent treatment of indicative conditionals is first sketched in
Reichenbach (1935) and de Finetti (1936a,b). A more detailed motiva-
tion of this approach, including an overview of the main consequence
relations of interest, is given by Belnap (1970, 1973), but none of these
authors provides a fully worked out account of the logic and episte-
mology of conditionals. The first complete trivalent account of a logic
of conditionals is due to Cooper (1968), who originally created system
C. However, Cooper does not connect it to the probability of condition-
als. Cantwell (2008) investigates the logical consequence relation of C
(=preservation of non-falsity), but uses Strong Kleene connectives for
conjunction and disjunction. Moreover, his treatment of “non-bivalent
probability” ends up with an altogether different probabilistic logic
(Cantwell 2006).

Most similar to our approach, both in spirit and content, are the
trivalent accounts developed by Dubois and Prade (1994) and McDer-
mott (1996). However, these authors stick to de Finetti’s original truth
table and (in the case of McDermott) use Strong Kleene truth tables for
conjunction and disjunction. The semantic properties are thus quite
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different. On the level of inferences, many features are similar, but
McDermott’s logic validates Transitivity (A → B, B → C, therefore
A→ C). While this is acceptable and even desirable in the framework
of certain inference, it is arguably problematic when reasoning from un-
certain premises since the probability of p(C|A) is in no way controlled
by p(C|B) and p(B|A); in fact, it can be arbitrarily low. Suppose that you
live in a very sunny, dry place. Consider the sentences A = “it will rain
tomorrow”, B = “I will work from home”, C = “I will work on the bal-
cony”. Clearly, both A→ B and B→ C are highly plausible, but A→ C
isn’t. This structural feature offers, in our view, a decisive reason to
prefer our model to McDermott’s. Dubois and Prade avoid that fea-
ture, but like Adams and Cooper, they restrict their account to the flat
fragment of L→, i.e., allowing only simple, non-nested conditionals.

Trivalent Logics Bivalent Logics
Inference Principle U MD P VC C2
Stronger-Than-Material (+) + + + +
Conjunctive Sufficiency (+) + + + +
OR (+) + + + +
Cautious Transitivity (+) + + + +
Transitivity - + - - -
Modus Ponens (+) (+) + + +
Modus Tollens (+) (+) + + +
Import-Export + + N/A - -
SDA (+) + N/A - -
Rational Monotonicity + (+) N/A + +
Conditional Excluded Middle + + N/A - +

Table 7: Comparison of the logic U with alternative conditional logics, re-
stricted to inference principles where not all of the logics agree. The surveyed
alternatives are System P, Lewis’ VC, Stalnaker’s C2, and McDermott’s MD.

On the side of reasoning, our logic U generalizes the benchmark ac-
count of uncertain reasoning developed in Adams’s (1975) monograph
The Logic of Conditionals. In this book, Adams equates the probability
of a conditional A → C with the conditional probability p(C|A), and
develops a probabilistic logic of uncertain reasoning with conditionals
on that basis. The descriptive accuracy of the predictions of Adams’s
logic is acknowledged both by philosophers and by psychologists of
reasoning (e.g., McGee 1989, pp. 487-488; Ciardelli 2020, p. 544; Over,
Hadjichristidis, et al. 2007; Over and Baratgin 2017), but due the lack
of general truth conditions for compounds and Boolean combinations
of conditionals, it has limited scope. Our account recovers all the infer-
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ences in Adams’s logic of reasonable inference without suffering from
these restrictions. Specifically, some principles that Adams needs to
postulate as axioms, such as the equation p(A → B) = p(B|A) (for
A, B ∈ L) or the Import-Export Principle, emerge as corollaries of our
semantics. This makes our account more unified and coherent than
Adams’s.

We conclude our comparisons with a note on other truth-
conditional approaches. The classical modal semantics for a condi-
tional A → C defines it as true if C is true at the closest possible
A-world (e.g., as defined by Stalnaker’s selection function or Lewisian
spheres: Stalnaker 1968, 1975; Lewis 1973b,a; McGee 1989). If A is true
in the actual world, the truth value of the conditional corresponds to
the truth value of the consequent, as in our analysis. The fundamental
difference emerges when A is false: while we assign a third truth value
to the conditional, modal theorists assign a classical truth value, based
on evaluating whether the consequent is true or false at the closest
worlds where the antecedent is true. In other words, Stalnaker-Lewis
semantics creates a disparity between the case where A is true, where
truth conditions are factual, and the case where A is false, where truth
conditions depend on considerations of plausibility and normality. On
our approach, epistemological considerations are relevant to assertion
and reasoning, but truth conditions are entirely factual.

Modern developments of modal semantics go beyond possible-
world selection functions. Their common denominator is to evaluate
a conditional A→ C as true if C is true in all relevant contexts selected
by the antecedent A (e.g., Kratzer 1986; Mandelkern 2019). Specifi-
cally, dynamic and information state semantics implement this idea
by updating on A (e.g., Gillies 2009; Santorio 2022a). These accounts
integrate the semantics of “if. . . then. . . ” with the semantics of other
modal operators, but integrating this framework with the probability
of conditionals and uncertain reasoning is a non-trivial task (compare
Goldstein and Santorio 2021; Ciardelli and Ommundsen forthcoming).
The connection between truth conditions and probabilistic reasoning,
and the distinction between certain and uncertain inference, is much
more straightforward in our analysis.
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10 Conclusions

The trivalent analysis in this paper closes the gap between the truth
conditions of conditionals and their probabilistic semantics, giving us
an account of reasoning in which validity depends on the epistemic sta-
tus of premises. Specifically, we propose two logics that generalize the
concept of valid inference to reasoning with conditionals: C explicates
conditional reasoning with certain premises, U explicates conditional
reasoning with uncertain premises. Although C is a nonclassical logic,
all theorems of classical logic are also theorems of C when restricted
to atom-classical valuations. The combination of C and U avoids Gib-
bard’s and Lewis’s triviality results, and provides a unified framework
for conditional reasoning, in line with the observation that some in-
ference schemes (e.g., Or-To-If, nested Modus Ponens) appear valid in
certain reasoning and invalid in uncertain reasoning.

Summarizing the main features and results of our approach accord-
ing to topics:

Truth Conditions The indicative conditional expresses a conditional
commitment to the consequent, cancelled if the antecedent turns
out false. This interpretation motivates a fully truth-functional
trivalent analysis of the conditional. Following Cooper, we group
indeterminate antecedents with true ones, and interpret con-
junction and disjunction according to his truth tables for quasi-
conjunction and -disjunction.

Probability The probability of a sentence A ∈ L→ is the ratio between
the weight of possible worlds where A is true, and the weight of
possible worlds where A is either true or false. Adams’s Thesis
p(A → C) = p(C|A) for conditional-free sentences follows as a
corollary and need not be postulated as an axiom.

Certain Inference Certainty-preserving inference with conditionals is
captured by the logic C, which preserves maximal probabil-
ity. Equivalently, C preserves non-falsity in trivalent semantics
(Proposition 1).

Uncertain Inference Reasoning with conditionals that preserves their
probability or degree of uncertainty is captured by the logic
U, which preserves probability between the conjunction of the
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premises and the conclusion. Equivalently, U preserves truth and
non-falsity for all trivalent valuations of the premises and the
conclusion (Proposition 2 and 3).

Combining these semantic and epistemological elements delivers a
coherent and fruitful framework. Specifically, we can use it to analyze
and to explain the controversy about the validity of Modus Ponens,
Or-to-If, Import-Export and other important inference principles.

More work needs to be done. The most urgent projects are to
integrate this analysis with an account of Bayesian learning, to extend
our analysis to a language with modal operators, such as such as
“must” and “might”, and to explore the implications for a the semantics
and epistemology of counterfactuals. We leave these issues for further
research.
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A Proofs of the Propositions

Given a model, consisting of a nonempty set of worlds W and a val-
uation function v, recall that AT, AI, AF ⊆ W denote the set of possible
worlds where A is true, indeterminate, and false, respectively. Here
and in the remainder, we identify possible worlds with complete val-
uation functions to all sentences in the language L→.

Proposition 1 (Trivalent Characterization of C). For a set of formulas
Γ ⊆ L→ and a formula B ∈ L→, the following are equivalent:

(1) Γ |=C B.

(2) For all Cooper valuations v : L→ 7−→ {0, 1/2, 1}: if v(A) ≥ 1/2 for all
A ∈ Γ, then also v(B) ≥ 1/2.

Proof. First we show the equivalence for the single-premise case.
(2)⇒(1). (2) implies BF ⊆ AF. Suppose now that p(A) = 1 for

some probability function p: by (Probability), this requires c(AF) = 0.
Because of BF ⊆ AF, and the measure properties of c, we can infer
c(BF) ≤ c(AF), hence c(BF) = 0 and p(B) = 1. This means that A |=C B.
¬(2)⇒¬(1). Suppose that (2) is false and that there is a model

with w ∈ BF and w < AF. Choose c such that c(w) = 1, i.e., w has
maximal credence, and in particular, c(w′) = 0, for all w′ , w. Then
c(AF) = c(BT) = 0, and

p(A) =
c(AT)

c(AT) + c(AF)
=

c(AT)

c(AT) + 0
= 1, but

p(B) =
c(BT)

c(BT) + c(BF)
=

0
0 + 1

= 0,

contradicting (1). Hence it must be the case that BF ⊆ AF, showing (2).
Now we consider the case of more than one premise, Γ =

{A1, . . . , An}. First we note that p(
∧

A∈Γ Ai) = 1 if and only if p(Ai) = 1
∀1 ≤ i ≤ n (like in the classical case). Hence A1, . . . , An |=C B if
and only if

∧
Ai∈Γ Ai |=C B. Second, we note that for any Cooper

valuation v : L 7−→ {0, 1/2, 1}, v(Ai) ≥ 1/2 ∀Ai ∈ Γ if and only if
v(

∧
Ai∈Γ Ai) ≥ 1/2. Third, we can apply the proposition for the single-

premise case:
∧

Ai∈Γ Ai |=C B if and only if for all Cooper valuations,
v(

∧
Ai∈Γ Ai) ≥ 1/2 implies v(B) ≥ 1/2. Taking these three observations

together shows the proposition for the case of multiple premises. �
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Proposition 2 (Equivalent Characterizations of Valid Single-Premise
Inference in U). For A, B ∈ L→, with 6|=C ¬A and 6|=C B, the following are
equivalent:

(1) A |=U B.

(2) For all Cooper valuations v : L→ 7−→ {0, 1/2, 1}, v(A) ≤ v(B). In other
words, if v(A) = 1 then v(B) = 1, and if v(A) ≥ 1/2, then v(B) ≥ 1/2.

(3) A |=C B and ¬B |=C ¬A.

Proof. (2)⇔(3): The implication from v(A) ≥ 1/2 to v(B) ≥ 1/2 is equiv-
alent to A |=C B, by Proposition 1. The implication from v(A) = 1 to
v(B) = 1 can be rephrased by contraposition as an implication from
v(B) ≤ 1/2 to v(A) ≤ 1/2. Equivalently, if v(¬B) ≥ 1/2, then v(¬A) ≥ 1/2,
and so, again by Proposition 1, ¬B |=C ¬A.

(2)⇒(1). By assumption, AT ⊆ BT and BF ⊆ AF. Hence, c(AT) ≤

c(BT) and c(AF) ≥ c(BF). Thus, for all probability functions p : L 7−→
[0, 1],

p(A) =
c(AT)

c(AT) + c(AF)
≤

c(BT)

c(BT) + c(BF)
= p(B).

¬(2)⇒ ¬(1), Case 1: BF * AF. Take w ∈ BF (which exists since 6|=C B)
with w < AF. If w ∈ BF ∩AT, we are done: simply assign c(w) = 1 and
we obtain that p(A) = 1 > p(B) = 0, contradicting (1). If w ∈ BF ∩AI,
then we assign c(w) = 1/2, and moreover, we choose an arbitrary
w′ ∈ AT with c(w′) = 1/2. Such a w′ must exists since 6|=C ¬A. This
yields a counterexample to (1):

p(A) =
c(AT)

c(AT) + c(AF)
=

1/2

1/2 + 0
= 1

p(B) =
c(BT)

c(BT) + c(BF)
≤

1/2

1/2 + 1/2
≤ 1/2.

¬(2)⇒¬(1), Case 2: AT * BT. Take w ∈ AT (which exists, since 6|=C ¬A)
with w < BT. If w ∈ BF, then set c(w) = 1, yielding p(A) = 1 and
p(B) = 0. So ¬(1) holds. If AT ∩ BF = ∅, then choose a w ∈ AT ∩ BN.
Moreover, since 6|=C B, we know that there is a w′ ∈ BF. Assign
the credences c(w) = c(w′) = 1/2. Then we obtain the following
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counterexample to (1):

p(A) =
c(AT)

c(AT) + c(AF)
≥

1/2

1/2 + 1/2
≥ 1/2

p(B) =
c(BT)

c(BT) + c(BF)
=

0
0 + 1/2

= 0.

�

Proposition 3 (Equivalent Characterizations of Valid Multi-Premise
Inference in U). For a consistent set of formulas Γ ⊆ L→ and B ∈ L→ with
6|=C B, the following are equivalent:

(1) Γ |=U B.

(2) There is a finite subset of premises ∆ ⊆ Γ such that the semantic value
of B is, for all Cooper valuations v, at least as high as the semantic value
of the conjunction of the premises: v(

∧
Ai∈∆ Ai) ≤ v(B).

(3) There is a finite subset of premises ∆ ⊆ Γ such that
∧

Ai∈∆ Ai |=C B and
¬B |=C ¬

(∧
Ai∈∆ Ai

)
.

Proof. Suppose there is a subset ∆ ⊆ Γ such that
∧

A∈∆ A |=U B. The
consistency of the premise set Γ ensures that for no such ∆, the expres-
sion ¬ (

∧
A∈∆ A) is a theorem of C. Hence we can apply Proposition

2: for this ∆, we obtain v(
∧

A∈∆ A) ≤ v(B) for all Cooper valuations v;
equivalently,

∧
A∈∆ A |=C B and ¬B |=C ¬ (

∧
A∈∆ A).

The converse direction works in the same way, applying Proposition
2 to the conjunction of the elements of ∆ in (2) or (3). �
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