
This post is a dive into Xcode as a system. To fully understand some of these

topics you should familiarize yourself with the following:

The Project File: Part 1

The Project File: Part 2

Managing Xcode

Xcconfig Guide

Using Xcode Targets

Sparse SDKs

Build Settings Reference

I would recommend using these posts as reference material while reading this,

as there is a lot to cover and I cannot do it all in this post :)

At one point, Xcode didn't install as a ".app" on your system. It installed as a

couple separate applications and the majority of the tooling was loaded from a

single directory called "Developer". The path to this directory was set as

DEVELOPER_DIR and from there all the components were loaded from the

internal structuring of this directory. In modern versions of Xcode this directory

still exists, however it is inside the Xcode app bundle instead of in a user-visible

place. From this directory Xcode will load a number of bundles.

Xcode uses plug-ins to dynamically load necessary components, much of the

core systems are loaded from these plug-ins. These plug-ins are loaded as

necessary depending on loading Xcode GUI or xcodebuild . Because this

dynamic loading is so flexible it makes it very easy to build and integrate new

components into Xcode without a lot of work. This is made even easier with the

help of specification files, which we will get to later in more detail, to the point

where adding: new file types, build rules, and tooling can be done without

touching any code.

The Xcode Build System

•

•

•

•

•

•

•

Build System Components

DEVELOPER_DIR

Plug-ins

http://michele.io/the-project-file-part-1
http://michele.io/the-project-file-part-2
https://pewpewthespells.com/blog/managing_xcode.html
https://pewpewthespells.com/blog/xcconfig_guide.html
https://pewpewthespells.com/blog/using_xcode_targets.html
https://pewpewthespells.com/blog/sparse_sdks.html
https://pewpewthespells.com/blog/buildsettings.html

There are some third party tools that are implemented as Xcode plugins.

Alcatraz is a good source for exploring what you can do with additional plugins.

The only caveat here is that Xcode doesn't officially support third party plug-ins.

You must add some compatibility support to each plug-in yourself by updating

value in the plug-in's Info.plist to let Xcode know that the plug-in supports

a specific version of Xcode.

Platform bundles are a core component of the Xcode build system. They define

the systems that can be built for and the types of products that can be built. For

example: up until iOS 8 Xcode didn't support building frameworks for iOS as a

platform, only static libraries. This didn't mean iOS was incapable of using them,

only that Xcode didn't have a product definition for them. In addition to defining

what can be built, they also provide the parameters of how it can be build. You

cannot build a mac app that is targeting the ARM architecture, as OS X doesn't

support running on that. While Xcode uses the default toolchain for most of the

tooling used in the build process, there are supplemental tools that are loaded

from the platform bundle. These are new or have some platform specific

behavior that is desired. You can only use platform specific tools based on the

currently selected platform you are targeting.

These are bundles contained within each platform bundle. These define the

frameworks and libraries that should be used during compilation, they are a

variant of the platform. They should only act as details to the platform

definition, and don't contain tooling. There are two types of SDK bundles, core

and sparse. Core SDK bundles are part of a platform bundle. They contain all the

necessary components to build against a particular platform. There are also

Sparse SDKs, these are not part of a platform bundle and are used to add

supplemental libraries that are not part of a Core SDK. Like platform bundles,

Xcode will load any SDK bundles that are in the normal search paths. This only

applies to Core SDKs (since Xcode will only search within the defined

DEVELOPER_DIR), so while it is possible to add new platform and SDK bundles

to Xcode this would break the code signature on the application. You can specify

paths to Sparse SDKs via the ADDITIONAL_SDKS build setting variable.

When performing a build, Xcode will create a composited SDK out of the

selected SDK and the Spare SDK bundle located at the ADDITIONAL_SDKS

path. This composited SDK is stored in a temporary directory that will be be

removed by the system after the build is completed.

Third-Party

Platforms

SDKs

http://alcatraz.io

This is where all the primary tools of the build system are stored. Prior to Xcode

7.2, there was only support for the single built-in Toolchain bundle that was

shipped with Xcode. With the release of Swift, Apple has provided a means to

install additional toolchains for building various versions of Swift. Alongside the

release of Swift, Apple published Xcode 7.2, which adds the ability to utilize

additional toolchains via xcrun --toolchain <name> . Not only does the

Toolchain include the binary tools used (compilers, linkers, resource processors,

etc), it also contains libraries that the tools may depend upon. This is to provide

support for libraries that won't exist on the target deployment platform. Such as

building any code with Swift (versions 1 and 2), or building apps with ARC that

are supposed to run on older, legacy systems. When Xcode performs a build, it

will use the selected Toolchain to resolve the tools needed as part of the build

process.

Each tool, file type, syntax rule, and even the expected behaviors of how the

built products are created are defined by specification files that get loaded from

disk. Some of these are always loaded (such as file types and compiler tools),

and other will only be loaded if they are needed (platform specific definitions).

This makes Xcode's build system extremely modular and flexible. These

specification files named "xcspec" files, due to their file extension.

Xcode has many builtin "default" specifications. These include languages, the

toolchain, syntax rules, and build rules. These are universal and don't change

regardless of what Platform or SDK is used. These will sometimes change when

you install a new version of Xcode, once such example is when the switch from

gcc to llvm happened.

Each target on a project file will define a SDK to use when a build should be

executed. This defines the type of the built product and is done via the

SDKROOT build setting variable. This is going to be one of the SDKs available in

the directory set to DEVELOPER_DIR (the path that is set for xcode-select).

Xcode will load some additional specs from this SDK and the Platform bundle it

is a part of. These will define some rules about the output and tooling that is

platform specific (such as iOS binaries must be signed).

Toolchains

Build System Specifications

Builtin Specifications

Platform Specifications

https://swift.org

Due to the nature of Xcode being plugin-based (Swift support is implemented

via an internal plugin), it will load any specification files it finds in the plugins it

loads. This allows for the implementation of third party tooling natively in the

GUI. Loading additional specifications allows you to define custom build rules,

ship your own versions of the tooling, and even add new build settings to

appear in the GUI. (If you want to see an example of this in action you can

check out the plugin I made here: https://github.com/gwynne/citrus/pull/1)

The project file is a means of communicating with the build system. The

structure is designed to communicate the "what" should be built and the "how"

it should be built. The process of going from source files to the built product is

serialized to disk in the project file. Each object that is serialized is used by

something and the object type (isa identifier on the object) defines the

behavior of the object.

Each pbxproj file has a single root object, this contains:

list of defined targets

list of targets produced by this project file

references to the project level build settings

organizational information used within the project

references to nested project files

list of files contained and used by the project file

There are a lot of target types, many are no longer used are still supported for

legacy project files. Each target type defines how it interacts with the build

system by using Build Phases and Build Rules.

Build Phases are how we communicate to the build system what needs to be

built. Each target contains a list of build phases, each of which dictates a

External Specifications

The Build Process

Project File

PBXProject

•

•

•

•

•

•

Target Types

Build Phases

behavior around a specific aspect of a build (compiling files, copying resources,

target dependencies, libraries to link, scripts to run, etc). Since the order of

these is significant, it is important to not modify these on disk. Additionally,

some phases you see in Xcode aren't classified as a build phase when

serialized. Target dependencies are not classified as a build phase even though

they get displayed as such. This is because they must be run before anything on

the target is processed by the build system to prevent one target invalidating

the build process of another. The ordering of the build phases is crutial to a

successful build. The list of build phases on each target is expected to be

operated in a serial manner, processing and executing each one before moving

onto the next. While this would seem to make simple builds take longer, this

behavior exists to support complex builds that require multiple compilation

steps and setup phases.

There are two ways Xcode will classify files. First being file references

(PBXFileReference), these are representations of a file that is expected to be

on disk. These are used to create the representation of your files in file

navigator in Xcode. These allow you to organize the display of files in Xcode that

doesn't mirror their organization on disk. There are also build files

(PBXBuildFile), these are linked to file references but are abstractions that

are used exclusively by the build system. Build phases use the build files to

indicate which files should be processed.

Each phase type contains a list of files that get processed for the action of that

particular type of phase. While each phase type has a generic definition of how

it works, many use Build Rules to define the processing behavior for each file it

contains. Build Rules give phases the ability to contain any types of files, by

performing a look up of how each individual file should be processed. The build

rules themselves dictate what types of files to look for and what tool to hand

that file off to as input. You can create custom build rules that can execute a

script to support tooling that isn't a part of Xcode.

The actions you see in Xcode's build log is each file being processed by its build

rule. The build rule passes the file has the input to the tool it is associated with.

The tool defines the execution behavior based on the build settings defined in

the environment.

File References vs Build Files

Build Rules

Now that the build system has connected a file to the tool that should be used

to process it, it is time to setup the build environment it needs. This is where the

build settings come in. When setting up to perform a build Xcode will read in the

build configuration that is defined on a target.

The build setting variables are organized into a couple different levels. These

are stored in different layers in the "environment" that is created for the build.

You can display a list of build settings used by running

xcodebuild MyApp.xcodeproj —showBuildSettings .

Note

Xcode will inherit values from the user's shell environment. To see this, if

you setup a "Run Script" phase in your build target to execute the env

command, it will display all the defined environment variables.

When Xcode loads the available platforms, it will load the platform's xcspec

files. These contain a set of default values that should be used for a particular

platform. For example, the iOS platform sets an environmnet variable to say

that code signing is a requirement for deployment. The values loaded on the

platform level form the base of the build environment that will be used. Settings

on this level are not user-configurable.

Project level build settings are the lowest level of user-configurable setting that

apply on a per-project basis. This introduces a new level of settings that are not

applicable on the platform level. In addition to being user-configurable, this level

of build setting also allows for custom variables and values to be set. The

project level build settings directly inherit the values set on the platform level to

give enough information to the build system to operate in. Any build settings

that are set in both the project level and the platform level will be over-ridden

by the value set on the project level.

The target level is the second level of user-configurable build setting, this is also

the level that most people are familiar with. This is probably the most heavily

Environment

Build Settings

Platform

Project

Target

used section of all the layers of build settings. When a target is created in an

Xcode project file, it gets an associated build setting environment. This is

created by taking a template of settings based on the type of target it is. These

include values that allow for the configuration of language, compiler, linker,

deployment, and packaging options for building a particular product. This level

of build setting inherits from values set on the project level, but will over-ride

any duplicated values in the same way that the project level does to the

platform level.

The last layer of build settings is defined with xcconfig files. Unlike the other

build setting levels, this exists outside of the Xcode project file. An xcconfig file

is a plain-text file that resides on disk that the build system will read values out

of. This level of build settings was added to Xcode 3 to support more complex

and conditional behavior in resolving values to use during a build. There is built-

in conditional support for variance based on SDK, architecture, and build

configuration. These are often used when using the same target to build against

multiple platforms. Xcconfig files are also used to consolidate build settings into

a single place that can be reused by many targets.

The build location is one of Xcode's configurable preferences that dictates the

resolution of the directory that will be used to perform a build in. The specifics

of this are described in more detail in the "Managing Xcode" post linked at the

top of this page. This directory is used to store the output of the build process.

When performing a build, it doesn't generate an application binary directly from

the source code files. There are many intermediary steps that it must go

through first. The build system will produce and store the artifacts and

intermediate files inside the build location directory. Xcode breaks this down

based on target and build configuration that the build action is performed. Many

of the compiler and linker flags that add additional verbosity will write files here

to log output of a build. This is useful for debugging a build that fails

inconsistantly, and for investigating linker errors.

xcconfig file

Output

Build Location

Build Artifacts and Intermediates

The final output binary of a build is called a "built product". This is the app or

library that the Xcode project target is setup to build. For Apple platforms this is

the .app for an application or .framework/dylib/a for a library. For command line

applications or raw executable binaries you will find this as the

$(PRODUCT_NAME) file in the directory that has a name corresponding to the

build configuration within the build directory.

If this blog post was helpful to you, please consider donating to keep this blog

alive, thank you!

donate to support this blog

[home | parent | top]

Built Products

https://cash.me/$samanthademi
https://cash.me/$samanthademi

	The Xcode Build System
	Build System Components
	DEVELOPER_DIR
	Plug-ins
	Third-Party

	Platforms
	SDKs

	Toolchains

	Build System Specifications
	Builtin Specifications
	Platform Specifications
	External Specifications

	The Build Process
	Project File
	PBXProject
	Target Types
	Build Phases
	File References vs Build Files
	Build Rules

	Environment
	Build Settings
	Platform
	Project
	Target
	xcconfig file

	Output
	Build Location
	Build Artifacts and Intermediates
	Built Products

