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Abstract. We introduce and investigate sleeper attacks and explore
them in the context of anonymous communication, especially mix net-
works. Sleeper attacks can make use of the interference inherent to mix
protocols. Simply by leaving his own messages in a mix network an ad-
versary can learn about the communication of network users. Sleeper
attacks can be combined with epistemic attacks, statistical disclosure, or
other attacks to be made even more effective. We use sleeper attacks to
disprove the common belief that mix networks are necessarily more se-
cure than onion routing networks. Finally we use our results to disprove
another commonly held belief about computer security in general, that
it is always conservative to prove security against the strongest possible
adversary.

1 Introduction

Suppose Alice1 and Alice2 are known to be the two possible correspondents to
Bob, and suppose each sends a message into two basic threshold mixes, mix1

and mix2 respectively. For purposes of this example it does not matter what the
firing threshold of the mixes are.1 Assume the adversary Dorm can see Alices
send messages and can see Bob receive messages, but he cannot generally see any
mixes send or receive messages or see the mixes internal workings. Under these
circumstances, if Dorm later sees Bob receive a message from mix3 he cannot
tell which Alice sent it.

Suppose, however, that Dorm has previously left his own messages, S1 and
S2 (each to and from himself) in mix1 and mix2, respectively. If he receives
S1 but not S2, then, absent other considerations, he knows that mix1 has fired
while mix2 has not. He thus knows that Alice1 sent the message to Bob. The
information leak in this toy example is not strictly speaking a passive channel

1 For the unfamiliar reader, a threshold mix receives messages until it reaches a given
threshold at which point it fires, forwarding all of the received messages to their next
destination, which might be the ultimate receiver, a bulletin board, or another mix.
Messages are transformed by the mix and the batch of messages permuted by the
mix so that it is not feasible to match which honest messages going into the mix
match which honest messages coming out, as long as there are at least two honest
(not adversary controlled) messages. This paper assumes general familiarity with
anonymous communications research. See [13, 6] for a background survey.



since Dorm had to place his own messages in the mixes in order for it to work.
It is not, however, a typical active attack. As long as his messages are left in the
mix, it does not matter when he put them there. His active component can be
any time before, possibly long before, Alice sends her message. For this reason
we call this a sleeper attack.

In this paper we will explore sleeper attacks on anonymous communication.
We begin by describing sleeper attacks in the contexts of various types of mixes.
We also note that a weaker adversary can be more effective using sleeper attacks
in combination with other attacks than simply using those attacks by themselves.

Next we consider sleeper attacks on onion routing networks. A commonly
held belief amongst anonymous communication researchers and practitioners is
that mix networks are more secure than onion routing networks. On the other
hand onion routing networks are far more practical and usable for most users and
applications. Thus, these design alternatives are generally presented as making a
trade-off between security and practicality. For example, the original Tor design
paper [11] says that, “relay-based anonymity designs have diverged in two main
directions. Systems like Babel [15], Mixmaster [23], and Mixminion [7] have
tried to maximize anonymity at the cost of introducing comparatively large and
variable latencies. Because of this decision, these high-latency networks resist
strong global adversaries, but introduce too much lag for interactive tasks like
web browsing, Internet chat, or SSH connections.” We show that characterizing
mixes versus onion routers as only a security versus practicality trade-off is
misconstruing security: mix networks are in important ways less secure than
onion routing networks, even if they are more secure in other ways.

In previous work [28], we examined the dependence of this characterization on
unfounded trust-uniformity assumptions, on ignoring usability implications, and
on unrealistic adversary models. Herein, we go a step further. There are certainly
realistic configurations, environments, and adversaries for which mix networks
are more secure than onion routing networks. We present examples where the
opposite is true. Our examples have moderate and realistic adversaries. The
networks consist of the same number of nodes in the same configuration, just
one composed of mixes and the other composed of onion routers. Both networks
have the same number of users. By their natures usage of the networks cannot
be identical, but we will make them as comparable as possible. The capabilities
of the adversaries and their deployment is the same in both networks. We will
show that there exist such circumstances in which the onion routing network is
more secure than the comparable mix network.

Another even more broadly held belief is that it is always conservative to
assume the strongest possible adversary. This is a notion from many areas of
computer security and cryptography not just anonymous communication. We
show (with the same realistic systems and realistic adversaries) an example of
two systems in which one system is more secure against the stronger adversary
but the other is more secure against the weaker adversary.

2



2 Mixing sleepers awake

“It is nought good a sleping hound to wake.”

Geoffrey Chaucer — Troilus and Criseyde

Mixes derive their security from altering the order of messages they receive
to obscure the relation of inbound to outbound messages. This is true for mix
designs from simple threshold mixes to timed dynamic pool (Cottrell) mixes
to binomial mixes. Put differently, mixes create interference between messages.
This interference puts bounds on the information leaked or rate of information
leaked to an observer of the mix [24, 25, 29, 2] But it also puts a lower bound
on information leaked to an observer. In a threshold mix with batch size n,
an adversary observing a single input to and single output from the mix has
uncertainty about whether they match that is bounded by n. A sleeper attack
can take advantage of this.

Consider a layered network of threshold mixes with a sleeper in each mix,
where there is one layer of mixes receiving inputs from senders forwarding to a
second layer of mixes that forward messages to their ultimate recipients. Suppose
the adversary observes just one message being sent into some mixes and sees just
one message being received. Suppose he learns from his sleepers which layer1
mixes fires and which do not, and then learns which of the layer2 mixes fires and
that the others do not. From this he knows the received message could not come
from the sender into any layer1 mix that did not fire. Assuming the threshold and
the distributions of messages are known, then for the observed input messages
that could match the observed received message at all he also can attach a
significantly higher probability to their matching the received message than he
could without the sleepers. This could also be combined with knowledge about
sending rates and thus the likely number of messages in a layer2 mix based on
time since last firing to infer still more.

There are three basic categories of interference that mixes can have, based
on the type of the mix. Mixes that require a number of messages to be received
to fire have mandatory interference between a message sent by the mix and
previous messages received by the mix. (This includes messages sent but not
received by the mix, for example, dummy messages.) This also applies whether
they are simple threshold mixes or use some sort of pool or other function that
relates the probability of sending a message to previously received messages.

Mixes may also be purely timed: they randomly order the messages that
they have received during a given interval and forward (some of) them (along
with any messages from the mix itself) at the end of the interval regardless
of what messages if any have been received in that interval. These mixes have
contingent interference. Messages that are available for mixing will interfere, but
if no messages are available, there is no interference with received messages. If
the mix itself generates messages, then there is interference with those.
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If a mix requires both a minimum interval of time and a minimum of received
messages in order to fire, then it still has mandatory interference between the
messages sent and previously received messages.

Stop-and-go (sg) mixes [19] forward a message that was sent at a time desig-
nated in the message regardless of other messages in the mix. Messages sent from
stop-and-go (sg) mixes have no interference at all. (We restrict interference to
that inherent in the protocol and treat as out of scope any interference from pro-
cessing time for necessary computation or transmission of messages. This scope
will also apply to onion routing networks, to which we will return below.) What
this shows us is that stop-and-go mixes are mixes in name only. Any mixing they
provide is virtual rather than inherent to their operation. For the remainder of
the paper, we will restrict usage of ‘mix’ to systems that base the ordering of
output messages at least partially on other messages the mix outputs, whether
they were received or generated by the mix.

Sleeper attacks cannot reveal anything in an sg mix network or a purely
timed mix network. For sg mixes, other messages can simply not interfere with a
sleeper. For purely time mixes, there can be interference, but anything a sleeper
attack could reveal is already known to the adversary from the mix protocol.

If a mix has any kind of pool or other function that makes the forwarding
of a message held by a mix probabilistic when the mix fires, then a sleeper
cannot determine with certainty when a message of interest was sent by the
mix. Nonetheless, as long as the adversary can keep an adequate representative
sample of sleepers in the mix, the he can learn from when sleepers are sent by the
mix the same probabilistic information about received messages in sent batches
as he could if he could observe the batches themselves emerging from the mix.

2.1 Combining the sleeper with epistemic and other attacks

“He sees you when you’re sleeping. He knows when you’re awake.”

John Frederick Coots and Haven Gillespie — “Santa Claus is
coming to town”

Epistemic attacks on anonymity were first introduced by Danezis and Clay-
ton [5]. They described a route fingerprinting attack in which an adversary knows
which nodes in an anonymity network are known to which possible senders. Us-
ing this information, an adversary observing a message on even part of a route
can use which senders would know how to construct that route to narrow down
the set of possible senders. Danezis and Syverson [9] later described route bridg-
ing, which makes use of what senders do not know about the network nodes
to determine which routes it would be impossible for some senders to construct
and again narrow down the possible senders. These attacks use an adversary’s
observation of all messages entering or leaving a mix in a single batch. By know-
ing which senders could know about all the possible combinations of the three
mixes involved in every possible route through the observed mix for that batch
he can narrow down the number of senders. If the adversary can make use of
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sleepers and patterns of mix firings, then he can conduct such attacks without
having to observe as much of the actual network. For example, if a message is
received that would require going through a mix that did not fire if it were sent
by one of the senders who otherwise match what is known about a route and
received message, then that sender is eliminated without having to be able to
directly observe the mix.

Disclosure attacks [18] and statistical disclosure attacks [4, 8] are long-term
intersection attacks to determine who is talking to whom by observing when
potential senders and receivers are present together and when they are not. The
statistical version provides answers with high probability rather than with cer-
tainty, but it is also much more efficient. The original versions, both statistical
and not, required a global passive observer. Later, Dingledine and Mathew-
son [20] showed how effective the attack could be when only part of the network
was observed by the adversary. Sleeper attacks can be added to eliminate or
support possible communication patterns by knowing which mixes fired and in
which order, again making it possible to have an equally effective attack with a
weaker adversary.

3 Sleepers and Onions

As already illustrated, there are settings where an adversary can learn informa-
tion from a sleeper attack on a mix network. To make our initial toy example
into something more real and concrete, suppose that an adversary (Dorm) is fol-
lowing a blog (Bob) and has some candidate posters to that blog (Alices) under
observation. For simplicity we will assume two Alices. Suppose the Alices are
known to use various anonymous communication systems, but for jurisdictional,
legal, or resource reasons, none of these are observable by the adversary. All he
can do is passively watch when either Alice sends or receives messages and he
can see when the blog updates with new posts. Suppose the Alices are unknown
to each other but both are relatively paranoid and relatively up on the anony-
mous communications literature. They thus each choose to use a high latency
mix network for sensitive communications. Bob only updates twice a day. But
given the high latency of the mix network, when Bob is observed to be updating
with an item of interest, Dorm is able to discern from the sending activity of the
Alices, and the pattern of mix firings he observed from his sleeper attacks that
one of the Alices could not have sent the information of interest but the other
could.

If we combine the pure sleeper attack with other information, Dorm may be
able to conduct this attack even if he cannot directly observe the Alices. For
example, if he is aware that they only know about different parts of the mix
network, then he can use this for an epistemic attack together with a sleeper
attack to make the same inference just described even if the only thing he can
observe is Bob’s public blog updates. Similarly if Dorm is aware that the Alices
trust some parts of the network more than others and are thus inclined to prefer
those parts [17], he can use this in conjunction with a sleeper attack and simply
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seeing Bob’s updates to indicate which Alice is the likely poster, or to increase
his confidence in previous suspicions.

Contrast this with onion routing networks. Assume the exact same situation
as the above except that instead of using mix networks the Alices are using
onion routing networks. In other words, assume the situation is exactly as above,
except that the network nodes are onion routers rather than mixes. And assume
that the Alices are communicating with Bob (or whoever) via an onion routing
protocol rather than a mix protocol.

If Alice1 did not use the onion routing network at all during the relevant
period until after Bob’s update appeared and Alice2 did, then Dorm would be
able to discern that Alice1 could not have posted the information. But this is
also true of a mix network for the same period, although the mix network can
obscure the period that either Alice’s messages could arrive at Bob. If we limit
to situations where both Alices used the network in the period before Bob’s
update, then the sleeper attack will provide no information about which Alice
posted the message in the case of an onion routing network and can determine
which Alice made the post in the case of a mix network. And, this remains true
if neither Alice is observed at all and a sleeper attack is combined with epistemic
or trust-based attack.

In this section we have looked at sleeper adversaries that are relatively trivial
to implement and deploy, either as capable of only sleeper attacks or in com-
bination with other simple attacks. We have examined such adversaries applied
to realistic communication settings involving anonymity networks. To compare
mix networks to onion routing networks in these environments we kept the ad-
versary capabilities exactly the same, and we kept the communicants, their use
of the networks and the network configurations virtually the same. The only
change was to have the network nodes run either an onion routing protocol or a
mixing protocol. In these identical settings the mix protocol can leak significant
information but the onion routing protocol leaks no information. We have thus
shown unequivocally that it wrong to say mix networks are more secure than
onion routing networks.

There are interference attacks that have been run against Tor [26, 14]. They
are not actually attacks on onion routing at the protocol level. Rather they are
attacks on implementations taking advantage of the time it takes to actually
process and send communication through the Tor network. They are thus out-
side the scope of this paper. But we will consider them briefly. The attacks found
by Danezis and Murdoch [26] have been shown by Evans et al. [14] to simply
not work against the current Tor network, which is much much larger than the
Tor network at the time of [26]. Evans et al. went on to explore extensions of
Danezis and Murdoch’s attacks that were feasible. They are feasible however,
only in combination with several other attacks that, while plausible, will work
only with certain types of application communication used in a particular way
rather than against Tor communication in general [14]. And they still require
sending a significant amount of traffic into the network at a constant rate, good
clocks relatively well synchronized, and numerous other assumptions. Thus even
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if we considered implementation rather than just protocol-level attacks, com-
pared with sleepers they require far more resources and assumptions, as well as
specialized settings and specific types of application communications.

4 Anonymity networks and their adversaries

Onion routing networks are similar to mix networks in some respects, but they
primarily derive their security from the unpredictability of routes and the in-
ability of an adversary to watch enough of the network to be likely to see both
ends of a connection. Though they have been combined with mixes for research
purposes (so that some form of mixing was done at onion routers) this is not
typical and currently considered to serve no useful purpose.

Security for mix networks is typically evaluated assuming a global passive ad-
versary (GPA). For a large distributed network a global adversary is very strong,
perhaps even unrealistically so. On the other hand, for a publicly accessible net-
work that does not require registered users, it is also unrealistic to assume the
adversary is not able to generate his own messages. Similarly, the original moti-
vation for having mix networks rather than communicating via single mixes was
that some mixes might be compromised [3]. It is also unrealistic to think that
an adversary compromising a mix might not try to add, drop, or alter messages
in his control if he can get away with doing so. For these reasons, many security
analyses add to the GPA the ability to send messages into the network and the
ability to create and/or manipulate messages at a compromised subset of the
mixes.

This is the adversary model against which Mixminion was designed and eval-
uated and the one we initially adopt. Against this adversary onion routing is
completely broken. Just the global passive element is enough to break onion
routing. It has been long understood and experimentally verified on the Tor
network, that a passive adversary can virtually always confirm the association
of inbound connections to and outbound connections from the network by the
timing and volume of traffic [27]. Indeed, it has been shown in simulation that
simply creating connections is enough, the correlation can be confirmed even
without sending any data [1]. For these reasons, we have said since inventing
onion routing that it guards against traffic analysis, not traffic confirmation.

Observations such as we have just made are the reason that people have
generally held that onion routing networks are less secure than mix networks.
And against the above adversary they are. However, many have noted that when
taking usability and performance into account, the size of both the network and
user base for onion routing networks is much larger than for mix networks [10].
The public Tor network is orders of magnitude bigger and has orders of mag-
nitude more users than the largest public mix networks that have existed. And
this is one of several reasons that onion routing networks may be more secure
than mix networks: it is much harder to have a realistic global adversary against
the much larger Tor network than against a Mixmaster or Mixminion network.
It is also easier for an adversary to apply all of its available resources to the few
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hundreds of Mixmaster users it detects than against the hundreds of thousands
of Tor users, if it could even observe them all [28]. Still these are somewhat
apples-and-oranges comparisons. Even if it is more realistic to do so, these ob-
servations are based on comparing very different network sizes and different sizes
of user base.

In the previous section, however, we have shown that (for the same network
configurations and size, with the same senders and receivers, and against the
same adversary) mix networks can leak important information when onion rout-
ing networks do not. But this does not imply that onion routing networks are in
general more secure than mix networks. As already noted, against an adversary
that includes a global observer, onion routing is completely broken. The source
and destination of every connection are exposed. A mix network is not com-
pletely broken against the above described adversary. Exactly what protection
it provides is complicated and cannot be determined without at least parameter-
izing the number of senders, receivers, and network nodes—also what fraction
of the network is compromised, what exactly the adversary can do at what rate,
the rate and distribution of sending messages, whether observations are one-time
or extended, and if so the dynamics of all the above, etc. Nonetheless, it is clear
that, even with all this, for many reasonable choices of parameters mix networks
provide some protection. One of the reasons a GPA is often chosen for analysis
is that it simplifies such analysis to a tractable level. But as already noted, such
a model is so unrealistic that it is not clear what we learn from using it. Though
one could perhaps create believable settings where the GPA makes sense, for no
application for anonymous communication yet published has it been plausible
to assume such an adversary. This adversary would need to be able to watch the
entire network, regardless of size, and yet cannot attempt to even slightly delay
messages, send messages of its own, or corrupt some users to send (or not) at
useful times.

The sleeper attack by itself requires a very weak adversary. He does not do
anything to the messages of other users in any way that plays a role in the
attack. (He cannot help affecting the firing rate and message ordering of mixes
by placing messages in them, and he could conduct a 1 attack—the complement
of an n− 1 attack, but in a pure sleeper attack we ignore these.) He corrupts no
nodes in the network. He can only observe sending and receiving behavior at a
few points. He needs to generate messages at a relatively low rate. (Call a sleeper
attack complete if the adversary always learns when a mix fires. For a complete
sleeper attack in a network of threshold mixes, he must send at least one message
per mix firing. For other types of mixes he can only achieve high likelihood of
a complete attack.) He does not need a clock at all. He only needs to tell the
ordering of mix firings relative to each other and any of the few transmissions he
observes. This is thus an attack that even a quite low-resource adversary should
be able to conduct easily. It is thus much more realistic than a global passive
adversary. Like the GPA, however, once some other parameter settings are given,
it should also prove tractable to analyze, although we do not explore that in this
paper. We thus have two adversaries that are subadversaries of the most powerful
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adversary we have described above. One, however, refines the powerful adversary
to something plausible, while the other refines it to something unrealistic.

We have uncovered something else in the above, however, besides a lesson
about useful versus inherently impractical adversary models. A generally ac-
cepted truth of computer security is that it is conservative to assume the most
powerful adversary. This has strong intuitive plausibility. If a system is secure
against a more powerful adversary it should remain secure against an adver-
sary with fewer capabilities or diminished capabilities. As has been shown in the
multilevel security literature, however, intuitions can be deceptive.

There are theoretical examples of multilevel-secure systems that are effec-
tively secure against a strong adversary but leak information against an adver-
sary with fewer capabilities [21, 16, 22]. The examples we have shown are mono-
tonic: they do not show better security of a given system in a given environment
against a more powerful adversary than against a strictly weaker adversary. An
adversary that is both globally observing and able to mount a sleeper attack
can learn more against a mix network than an adversary that can only mount a
sleeper attack. Similarly an adversary that is globally observing and can mount
a sleeper attack is able to learn more against an onion routing network than
one that can only mount a sleeper attack. Nonetheless, in the settings we have
described, when the adversary is both globally observing and lays sleepers the
mix network is stronger, whereas when the adversary is only able to lay sleepers
and can only make the smaller set of observations described above, the onion
routing network is stronger.

This result undermines a fundamentally held belief about computer security.
We typically assume the strongest possible adversary for at least two reasons.
One is that we assume that if the system is secure in that setting it will be secure
in weaker settings. Previous literature has explored what is needed to make
that assumption correct. The other reason for evaluating against the strongest
possible adversary is that we assume that if one system is more secure than
another against the stronger adversary, it will also be more secure than the other
against the weaker adversary. Our example shows that this is not necessarily
true. And this is not simply a point about differences in implementation that
can create different vulnerabilities in the different systems. The crossover occurs
with the protocols at the same level of abstraction; only the capabilities of the
adversary are diminished. And, if what makes the strongest possible adversary
stronger is something that is unrealistic, following the standard reasoning may
lead us to choose the system that is less secure against a more realistic adversary.

In a fuller analysis we intend to explore this with more mathematical detail
and rigor. We also intend to more fully explore the relationship between different
types of networks and sleeper adversaries, both alone and combined with other
adversaries. In [12] we discussed the security of combining messages with different
latency and security needs in what we called alpha mixing. As we have seen, any
kind of actual mixing (in other words, interference between received or generated
messages in a mix) can be vulnerable to sleeper attacks. But one of the variants
described was called timed alpha mixing, which was effectively a less restrictive
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variant of sg mixing. Like sg mixing, it is not actually mixing at all. Like basic
onion routing, neither of these forms of ‘mixing’ is vulnerable to sleeper attacks.
It will be interesting to explore the use of sg mixes or timed alpha mixes in
combination with onion routing to examine the interplay of security it provides.
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