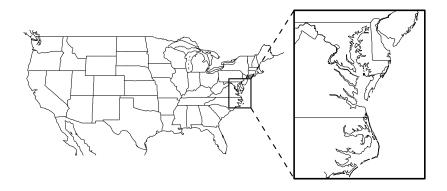
Windowing queries

Computational Geometry

Lecture 8: Windowing queries (part 2)

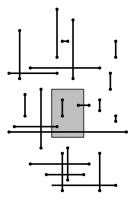
Windowing



Zoom in; re-center and zoom in; select by outlining

Windowing

Given a set of n axis-parallel line segments, preprocess them into a data structure so that the ones that intersect a query rectangle can be reported efficiently



Definition Querying Construction

Interval querying

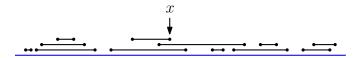
Given a set I of n intervals on the real line, preprocess them into a data structure so that the ones containing a query point (value) can be reported efficiently

Definition Querying Construction

Splitting a set of intervals

The *median* x of the 2n endpoints partitions the intervals into three subsets:

- Intervals I_{left} fully left of x
- Intervals I_{mid} that contain (intersect) x
- Intervals I_{right} fully right of x



Definition Querying Construction

Interval tree: recursive definition

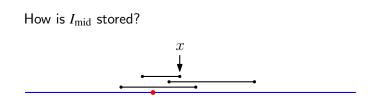
The interval tree for I has a root node v that contains x and

- the intervals I_{left} are stored in the left subtree of v
- the intervals $I_{\rm mid}$ are stored with v
- the intervals $I_{\rm right}$ are stored in the right subtree of v

The left and right subtrees are proper interval trees for $I_{\rm left}$ and $I_{\rm right}$

Definition Querying Construction

Interval tree: left and right lists

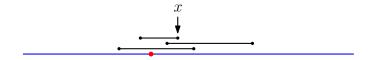


Observe: If the query point is left of *x*, then only the *left endpoint* determines if an interval is an answer

Symmetrically: If the query point is right of *x*, then only the *right endpoint* determines if an interval is an answer

Definition Querying Construction

Interval tree: left and right lists



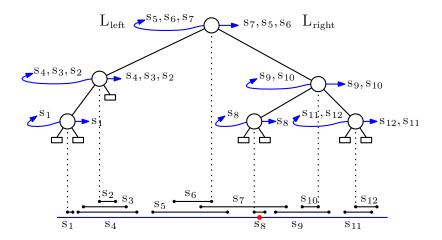
Make a list L_{left} using the left-to-right order of the *left* endpoints of I_{mid}

Make a list L_{right} using the right-to-left order of the right endpoints of I_{mid}

Store both lists as associated structures with v

Definition Querying Construction

Interval tree: example



Definition Querying Construction

Interval tree: storage

The main tree has O(n) nodes

The total length of all lists is 2n because each interval is stored exactly twice: in L_{left} and L_{right} and only at one node

Consequently, the interval tree uses O(n) storage

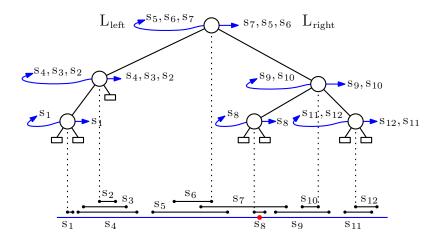
Definition Querying Construction

Interval querying

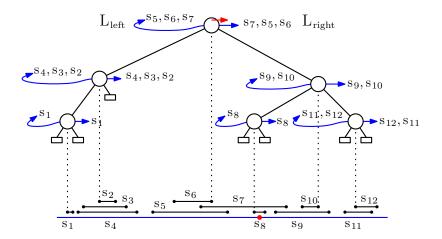
Algorithm QUERYINTERVALTREE(v, q_x)

- 1. if v is not a leaf
- 2. then if $q_x < x_{\text{mid}}(v)$
- 3. then Traverse list L_{left}(v), starting at the interval with the leftmost endpoint, reporting all the intervals that contain q_x. Stop as soon as an interval does not contain q_x.
 4. QUERYINTERVALTREE(lc(v), q_x)
- 5. else Traverse list L_{right}(v), starting at the interval with the rightmost endpoint, reporting all the intervals that contain q_x. Stop as soon as an interval does not contain q_x.
 6. QUERYINTERVALTREE(rc(v), q_x)

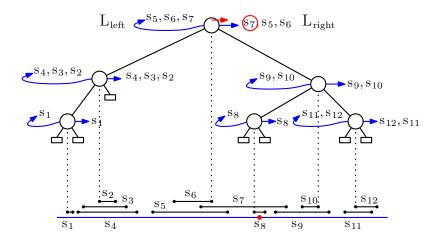
Definition Querying Construction



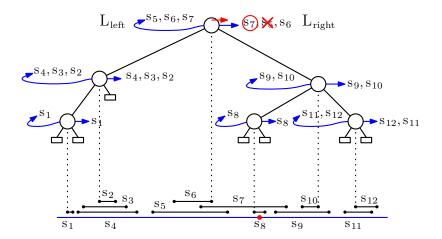
Definition Querying Construction



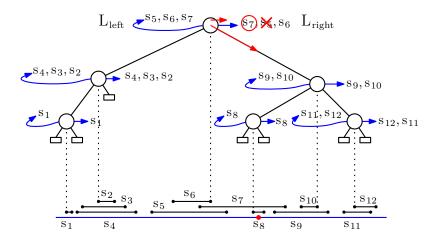
Definition Querying Construction



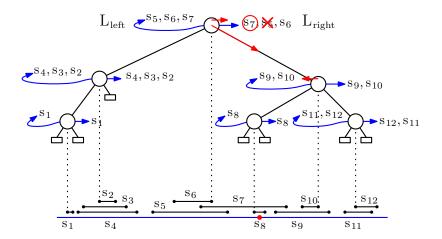
Definition Querying Construction



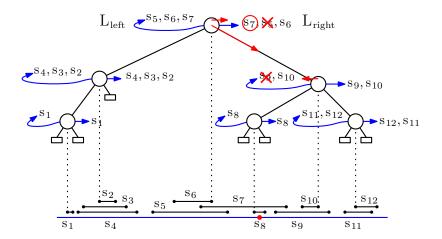
Definition Querying Construction



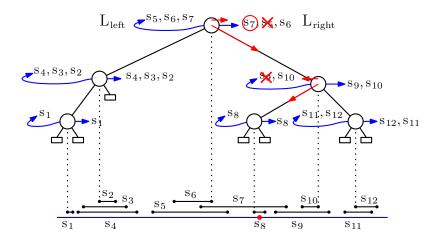
Definition Querying Construction



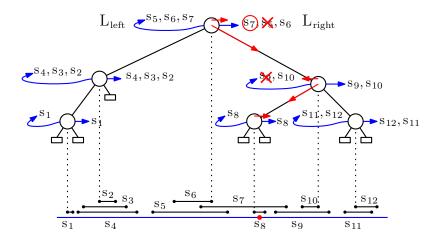
Definition Querying Construction



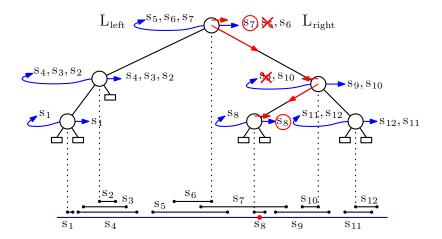
Definition Querying Construction



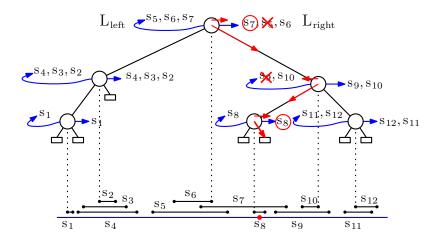
Definition Querying Construction



Definition Querying Construction



Definition Querying Construction



Definition Querying Construction

Interval tree: query time

The query follows only one path in the tree, and that path has length $O(\log n)$

The query traverses $O(\log n)$ lists. Traversing a list with k' answers takes O(1+k') time

The total time for list traversal is therefore $O(\log + k)$, with the total number of answers reported (no answer is found more than once)

The query time is $O(\log n) + O(\log n + k) = O(\log n + k)$

Definition Querying Construction

Interval tree: query example

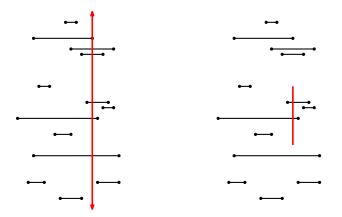
Algorithm CONSTRUCTINTERVALTREE(*I*) *Input.* A set *I* of intervals on the real line *Output.* The root of an interval tree for I if $I = \emptyset$ 1 2 then return an empty leaf 3. **else** Create a node v. Compute x_{mid} , the median of the set of interval endpoints, and store x_{mid} with v 4. Compute I_{mid} and construct two sorted lists for I_{mid} : a list $L_{\text{left}}(v)$ sorted on left endpoint and a list $L_{\rm right}(v)$ sorted on right endpoint. Store these two lists at v $lc(\mathbf{v}) \leftarrow \text{CONSTRUCTINTERVALTREE}(I_{\text{left}})$ 5. $rc(\mathbf{v}) \leftarrow \text{CONSTRUCTINTERVALTREE}(I_{right})$ 6. 7.

return V

Definition Querying Construction

Interval tree: result

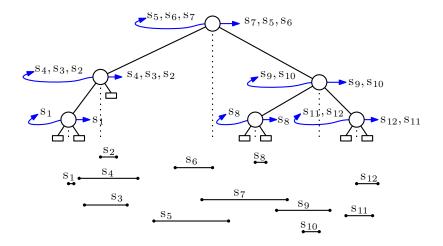
Theorem: An interval tree for a set *I* of *n* intervals uses O(n) storage and can be built in $O(n \log n)$ time. All intervals that contain a query point can be reported in $O(\log n + k)$ time, where *k* is the number of reported intervals.

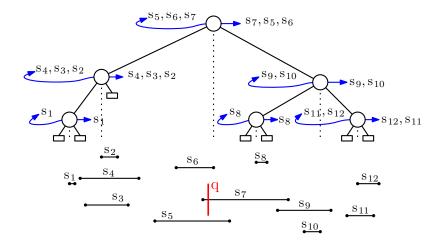


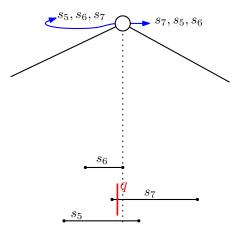
Back to the plane

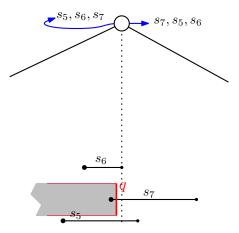
Suppose we use an interval tree on the *x*-intervals of the horizontal line segments?

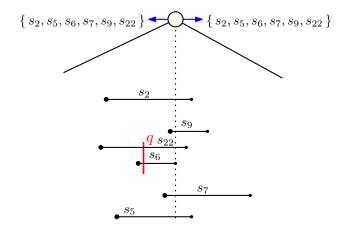
Then the lists L_{left} and L_{right} are not suitable anymore to solve the query problem for the segments corresponding to I_{mid}

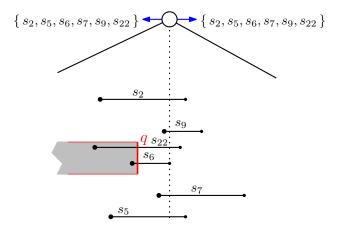


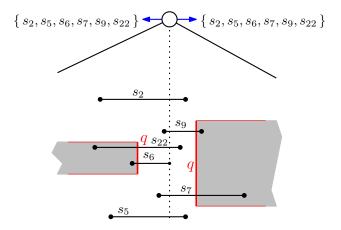










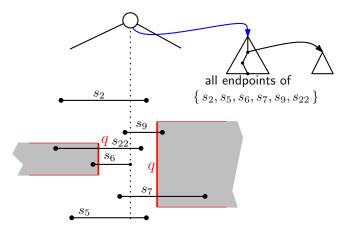


Segment intersection queries

We can use a *range tree* as the associated structure; we only need one that stores all of the endpoints, to replace L_{left} and L_{right}

Instead of traversing $L_{\rm left}$ or $L_{\rm right}$, we perform a query with the region left or right, respectively, of q

Segment intersection queries



Segment intersection queries

In total, there are O(n) range trees that together store 2n points, so the total storage needed by all associated structures is $O(n\log n)$

A query with a vertical segment leads to $O(\log n)$ range queries

If fractional cascading is used in the associated structures, the overall query time is $O(\log^2 n + k)$

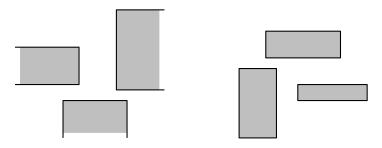
Question: How about the construction time?

Definition Querying

3- and 4-sided ranges

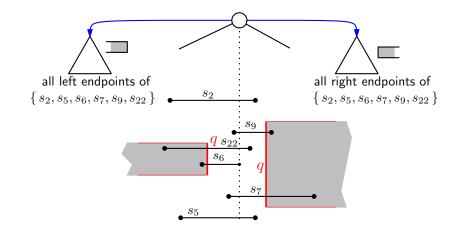
Considering the associated structure, we only need 3-sided range queries, whereas the range tree provides 4-sided range queries

Can the 3-sided range query problem be solved more efficiently than the 4-sided (rectangular) range query problem?



Definition Querying

Scheme of structure

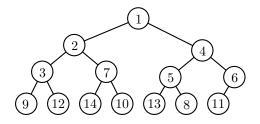


Definition Querying

Heap and search tree

A priority search tree is like a heap on *x*-coordinate and binary search tree on *y*-coordinate at the same time

Recall the heap:

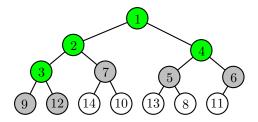


Definition Querying

Heap and search tree

A priority search tree is like a heap on *x*-coordinate and binary search tree on *y*-coordinate at the same time

Recall the heap:



Report all values ≤ 4

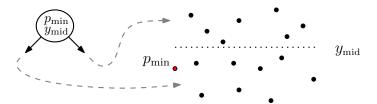
Definition Querying

Priority search tree

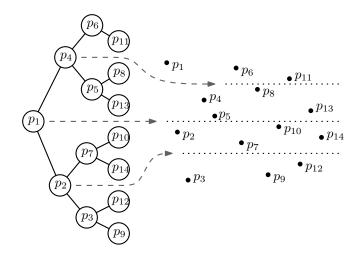
If $P = \emptyset$, then a priority search tree is an empty leaf

Otherwise, let p_{\min} be the leftmost point in P, and let y_{\min} be the median y-coordinate of $P \setminus \{p_{\min}\}$

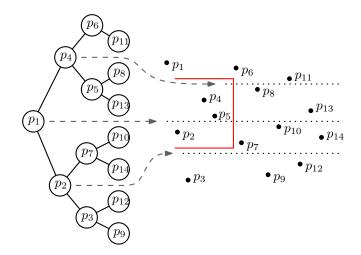
The priority search tree has a node v that stores p_{\min} and y_{\min} , and a left subtree and right subtree for the points in $P \setminus \{p_{\min}\}$ with y-coordinate $\leq y_{\min}$ and $> y_{\min}$



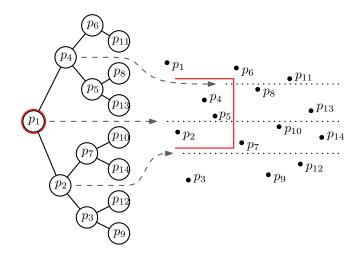
Definition Querying



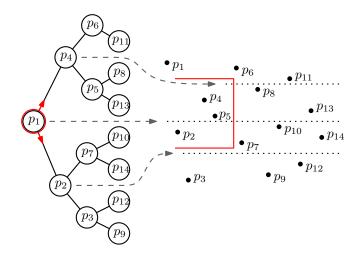
Definition Querying



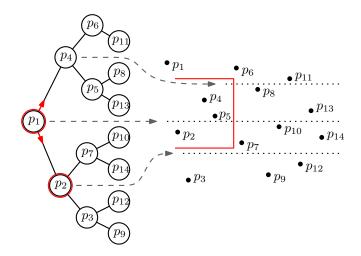
Definition Querying



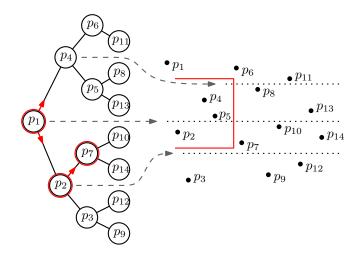
Definition Querying



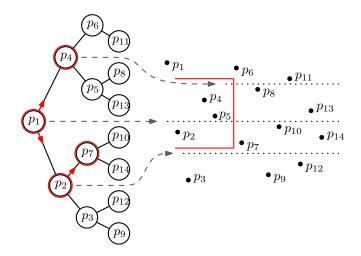
Definition Querying



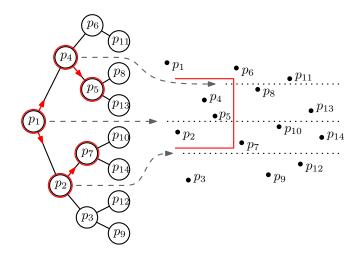
Definition Querying



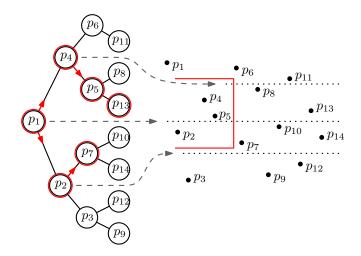
Definition Querying



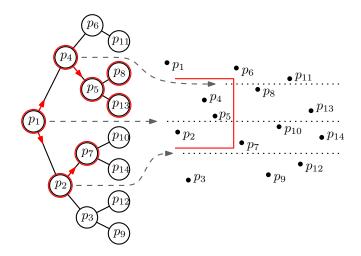
Definition Querying



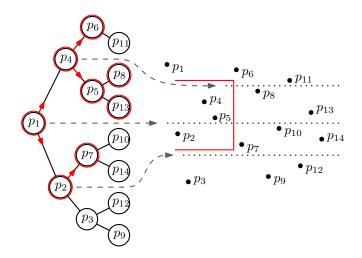
Definition Querying



Definition Querying



Definition Querying



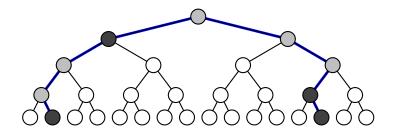
Definition Querying

Query algorithm

Algorithm QUERYPRIOSEARCHTREE($\mathcal{T}, (-\infty : q_x] \times [q_v : q'_v]$) Search with q_v and q'_v in \mathcal{T} 1. Let v_{split} be the node where the two search paths split 2. 3. **for** each node v on the search path of q_v or q'_v **do if** $p(\mathbf{v}) \in (-\infty; q_x] \times [q_v; q'_v]$ **then** report $p(\mathbf{v})$ 4. for each node v on the path of q_{y} in the left subtree of v_{split} 5. 6. **do if** the search path goes left at v 7. then REPORTINSUBTREE($rc(v), q_x$) for each node v on the path of q'_{v} in the right subtree of v_{split} 8. 9. **do if** the search path goes right at v10. then REPORTINSUBTREE($lc(v), q_x$)

Definition Querying

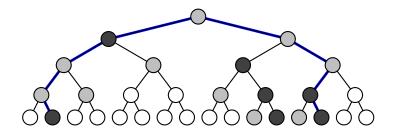
Structure of the query



Computational Geometry Lecture 8: Windowing queries

Definition Querying

Structure of the query



Definition Querying

Query algorithm

REPORTINSUBTREE(v, q_x)

Input. The root v of a subtree of a priority search tree and a value q_x

Output. All points in the subtree with *x*-coordinate at most q_x

- 1. **if** v is not a leaf and $(p(v))_x \leq q_x$
- 2. **then** Report $p(\mathbf{v})$
- 3. REPORTINSUBTREE($lc(v), q_x$)
- 4. REPORTINSUBTREE($rc(v), q_x$)

This subroutine takes O(1+k) time, for k reported answers

Definition Querying

Query algorithm

The search paths to y and y' have $O(\log n)$ nodes. At each node O(1) time is spent

No nodes outside the search paths are ever visited

Subtrees of nodes between the search paths are queried like a heap, and we spend ${\cal O}(1+k')$ time on each one

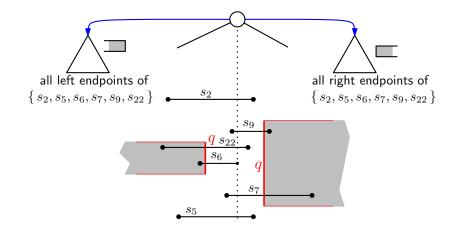
The total query time is $O(\log n + k)$, if k points are reported

Definition Querying

Priority search tree: result

Theorem: A priority search tree for a set P of n points uses O(n) storage and can be built in $O(n \log n)$ time. All points that lie in a 3-sided query range can be reported in $O(\log n + k)$ time, where k is the number of reported points

Scheme of structure



Storage of the structure

Question: What are the storage requirements of the structure for querying with a vertical segment in a set of horizontal segments?

Query time of the structure

Question: What is the query time of the structure for querying with a vertical segment in a set of horizontal segments?

Result

Theorem: A set of *n* horizontal line segments can be stored in a data structure with size O(n) such that intersection queries with a vertical line segment can be performed in $O(\log^2 n + k)$ time, where *k* is the number of segments reported

Result

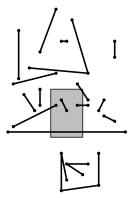
Recall that the **windowing problem** is solved with a combination of a range tree and the structure just described

Theorem: A set of *n* axis-parallel line segments can be stored in a data structure with size $O(n \log n)$ such that windowing queries can be performed in $O(\log^2 n + k)$ time, where *k* is the number of segments reported

Definition Querying Storage

Windowing

Given a set of n arbitrary, non-crossing line segments, preprocess them into a data structure so that the ones that intersect a query rectangle can be reported efficiently

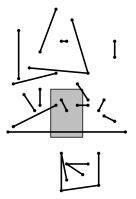


Definition Querying Storage

Windowing

Two cases of intersection:

- An endpoint lies inside the query window; solve with range trees
- The segment intersects a side of the query window; solve how?

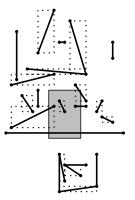


Definition Querying Storage

Using a bounding box?

If the query window intersects the line segment, then it also intersects the bounding box of the line segment (whose sides are axis-parallel segments)

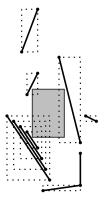
So we could search in the 4n bounding box sides



Definition Querying Storage

Using a bounding box?

But: if the query window intersects bounding box sides does not imply that it intersects the corresponding segments

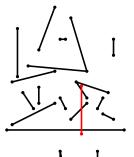


Definition Querying Storage

Windowing

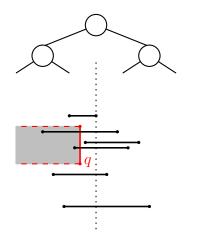
Current problem of our interest:

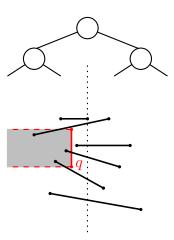
Given a set of arbitrarily oriented, non-crossing line segments, preprocess them into a data structure so that the ones intersecting a vertical (horizontal) query segment can be reported efficiently



Definition Querying Storage

Using an interval tree?





Definition Querying Storage

Interval querying

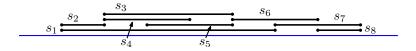
Given a set I of n intervals on the real line, preprocess them into a data structure so that the ones containing a query point (value) can be reported efficiently

We have the interval tree, but we will develop an alternative solution

Definition Querying Storage

Interval querying

Given a set $S = \{s_1, s_2, ..., s_n\}$ of *n* segments on the real line, preprocess them into a data structure so that the ones containing a query point (value) can be reported efficiently



The new structure is called the segment tree

Definition Querying Storage

Locus approach

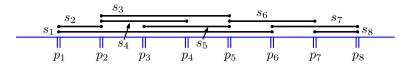
The locus approach is the idea to partition the solution space into parts with equal answer sets

For the set S of segments, we get different answer sets before and after every endpoint

Definition Querying Storage

Locus approach

Let p_1, p_2, \ldots, p_m be the sorted set of unique endpoints of the intervals; $m \leq 2n$



The real line is partitioned into $(-\infty, p_1), [p_1, p_1], (p_1, p_2), [p_2, p_2], (p_2, p_3), \dots, (p_m, +\infty),$ these are called the elementary intervals

Definition Querying Storage

Locus approach

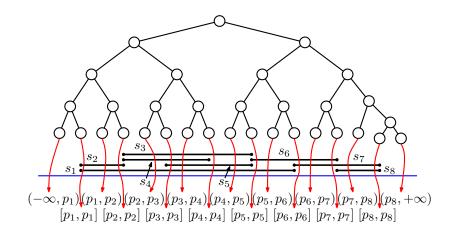
We could make a binary search tree that has a leaf for every elementary interval $(-\infty, p_1), [p_1, p_1], (p_1, p_2), [p_2, p_2], (p_2, p_3), \dots, (p_m, +\infty)$

Each segment from the set *S* can be stored with all leaves whose elementary interval it contains: $[p_i, p_j]$ is stored with $[p_i, p_i], (p_i, p_{i+1}), \dots, [p_j, p_j]$

A stabbing query with point q is then solved by finding the unique leaf that contains q, and reporting all segments that it stores

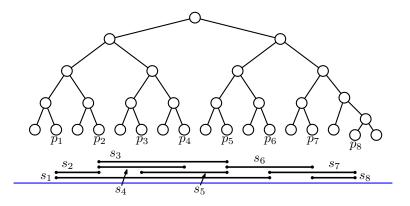
Definition Querying Storage

Locus approach



Definition Querying Storage

Locus approach



Definition Querying Storage

Locus approach

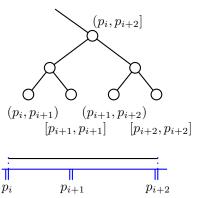
Question: What are the storage requirements and what is the query time of this solution?

Definition Querying Storage

Towards segment trees

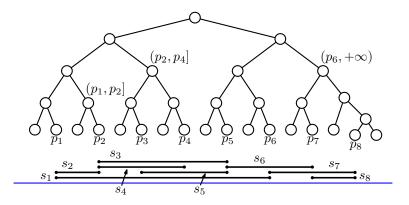
In the tree, the leaves store elementary intervals

But each internal node corresponds to an interval too: the interval that is the union of the elementary intervals of all leaves below it



Definition Querying Storage

Towards segment trees



Definition Querying Storage

Towards segment trees

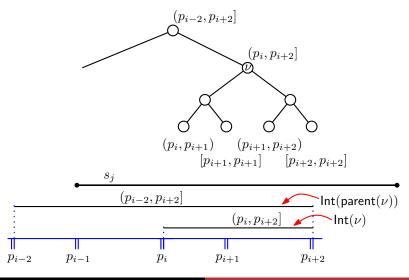
Let Int(v) denote the interval of node v

To avoid quadratic storage, we store any segment s_j as high as possible in the tree whose leaves correspond to elementary intervals

More precisely: s_j is stored with v if and only if $Int(v) \subseteq s_i$ but $Int(parent(v)) \not\subseteq s_i$

Definition Querying Storage

Towards segment trees



Computational Geometry Lecture 8: Windowing queries

Definition Querying Storage

Segment trees

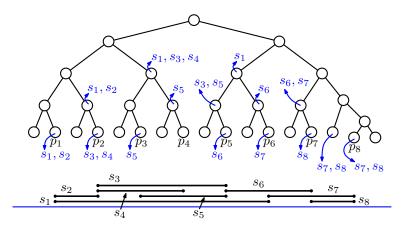
A segment tree on a set S of segments is a balanced binary search tree on the elementary intervals defined by S, and each node stores its interval, and its *canonical subset* of S in a list (unsorted)

The canonical subset (of S) of a node v is the subset of segments s_j for which

 $\operatorname{Int}(v) \subseteq s_j$ but $\operatorname{Int}(\operatorname{parent}(v)) \not\subseteq s_j$

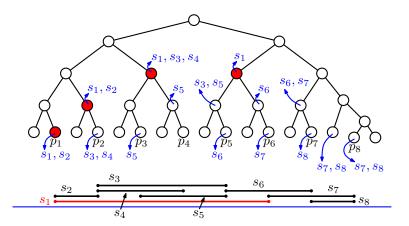
Definition Querying Storage

Segment trees



Definition Querying Storage

Segment trees



Definition Querying Storage

Segment trees

Question: Why are no segments stored with nodes on the leftmost and rightmost paths of the segment tree?

Definition Querying Storage

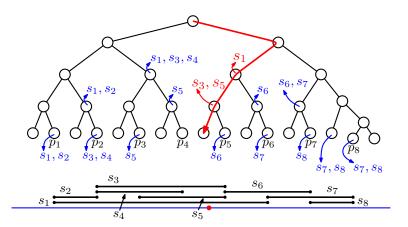
Query algorithm

The query algorithm is trivial:

For a query point q, follow the path down the tree to the elementary interval that contains q, and report all segments stored in the lists with the nodes on that path

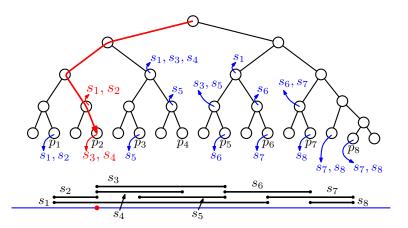
Definition Querying Storage

Example query



Definition Querying Storage

Example query



Definition Querying Storage

Query time

The query time is $O(\log n + k)$, where k is the number of segments reported

Definition Querying Storage

Segments stored at many nodes

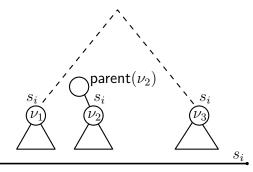
A segment can be stored in several lists of nodes. How bad can the storage requirements get?

Definition Querying Storage

Segments stored at many nodes

Lemma: Any segment can be stored at up to two nodes of the same depth

Proof: Suppose a segment s_i is stored at *three* nodes v_1 , v_2 , and v_3 at the *same depth* from the root



Definition Querying Storage

Segments stored at many nodes

If a segment tree has depth $O(\log n)$, then any segment is stored in at most $O(\log n)$ lists \Rightarrow the total size of all lists is $O(n\log n)$

The main tree uses O(n) storage

The storage requirements of a segment tree on n segments is $O(n \log n)$

Definition Querying Storage

Result

Theorem: A segment tree storing *n* segments (=intervals) on the real line uses $O(n \log n)$ storage, can be built in $O(n \log n)$ time, and stabbing queries can be answered in $O(\log n + k)$ time, where *k* is the number of segments reported

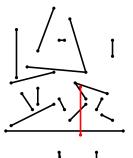
Property: For any query, all segments containing the query point are stored in the lists of $O(\log n)$ nodes

Segment tree variation Querying Storage

Back to windowing

Problem arising from windowing:

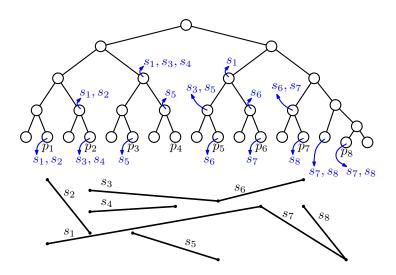
Given a set of arbitrarily oriented, non-crossing line segments, preprocess them into a data structure so that the ones intersecting a vertical (horizontal) query segment can be reported efficiently



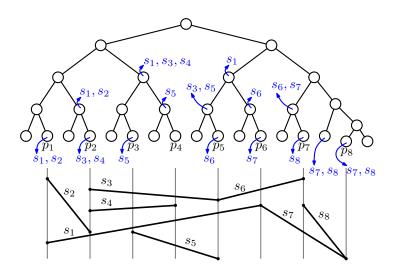
Interval trees Priority search trees Segment trees Windowing again Idea for solution

The main idea is to build a segment tree on the x-projections of the 2D segments, and replace the associated lists with a more suitable data structure

Segment tree variation Querying Storage



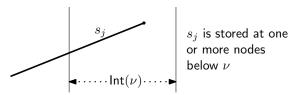
Segment tree variation Querying Storage



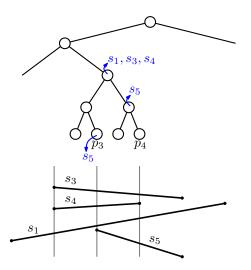
Segment tree variation Querying Storage

Observe that nodes now correspond to vertical slabs of the plane (with or without left and right bounding lines), and:

- if a segment s_i is stored with a node v, then it crosses the slab of v completely, but not the slab of the parent of v
- the segments crossing a slab have a well-defined top-to-bottom order



Segment tree variation Querying Storage



Segment tree variation Querying Storage



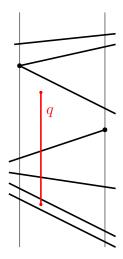
Segment tree variation Querying Storage

Querying

Recall that a query is done with a vertical line segment q

Only segments of S stored with nodes on the path down the tree using the x-coordinate of q can be answers

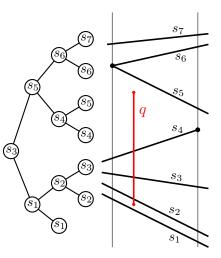
At any such node, the query problem is: which of the segments (that cross the slab completely) intersects the vertical query segment q?



Segment tree variation Querying Storage

Querying

We store the canonical subset of a node v in a balanced binary search tree that follows the bottom-to-top order in its leaves



Segment tree variation Querying Storage

Data structure

A query with q follows one path down the main tree, using the *x*-coordinate of q

At each node, the associated tree is queried using the endpoints of q, as if it is a 1-dimensional range query

The query time is $O(\log^2 n + k)$

Segment tree variation Querying Storage

Data structure

The data structure for intersection queries with a vertical query segment in a set of non-crossing line segments is a segment tree where the associated structures are binary search trees on the bottom-to-top order of the segments in the corresponding slab

Since it is a segment tree with lists replaced by trees, the storage remains $O(n \log n)$

Interval trees Priority search trees Segment trees Windowing again View Segment trees Storage

Result

Theorem: A set of *n* non-crossing line segments can be stored in a data structure of size $O(n \log n)$ so that intersection queries with a vertical query segment can be answered in $O(\log^2 n + k)$ time, where *k* is the number of answers reported

Theorem: A set of *n* non-crossing line segments can be stored in a data structure of size $O(n \log n)$ so that windowing queries can be answered in $O(\log^2 n + k)$ time, where *k* is the number of answers reported