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Windowing

Zoom in; re-center and zoom in; select by outlining

Computational Geometry Lecture 8: Windowing queries



Interval trees
Priority search trees

Segment trees
Windowing again

Windowing

Given a set of n axis-parallel line
segments, preprocess them into a
data structure so that the ones that
intersect a query rectangle can be
reported efficiently
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Interval querying

Given a set I of n intervals on the real line, preprocess them
into a data structure so that the ones containing a query
point (value) can be reported efficiently
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Splitting a set of intervals

The median x of the 2n endpoints partitions the intervals into
three subsets:

Intervals Ileft fully left of x

Intervals Imid that contain (intersect) x

Intervals Iright fully right of x

x
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Interval tree: recursive definition

The interval tree for I has a root node ν that contains x and

the intervals Ileft are stored in the left subtree of ν

the intervals Imid are stored with ν

the intervals Iright are stored in the right subtree of ν

The left and right subtrees are proper interval trees for Ileft
and Iright
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Interval tree: left and right lists

How is Imid stored?

x

Observe: If the query point is left of x, then only the left
endpoint determines if an interval is an answer

Symmetrically: If the query point is right of x, then only the
right endpoint determines if an interval is an answer
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Interval tree: left and right lists

x

Make a list Lleft using the left-to-right order of the left
endpoints of Imid

Make a list Lright using the right-to-left order of the right
endpoints of Imid

Store both lists as associated structures with ν
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Interval tree: example
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Interval tree: storage

The main tree has O(n) nodes

The total length of all lists is 2n because each interval is
stored exactly twice: in Lleft and Lright and only at one node

Consequently, the interval tree uses O(n) storage
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Interval querying

Algorithm QueryIntervalTree(ν ,qx)
1. if ν is not a leaf
2. then if qx < xmid(ν)
3. then Traverse list Lleft(ν), starting at the interval

with the leftmost endpoint, reporting all the
intervals that contain qx. Stop as soon as
an interval does not contain qx.

4. QueryIntervalTree(lc(ν),qx)
5. else Traverse list Lright(ν), starting at the interval

with the rightmost endpoint, reporting all
the intervals that contain qx. Stop as soon
as an interval does not contain qx.

6. QueryIntervalTree(rc(ν),qx)
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Interval tree: query example
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Interval tree: query example
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Interval tree: query example
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Interval tree: query example
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Interval tree: query example
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Interval tree: query example
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Interval tree: query example

s1

s2 s3

s4

s5
s7

s8 s9

s10

s11

s12
s6

s7, s5, s6
s5, s6, s7

s8
s8

s9, s10
s9, s10

s12, s11
s11, s12

s4, s3, s2
s4, s3, s2

s1
s1

Lleft Lright

Computational Geometry Lecture 8: Windowing queries



Interval trees
Priority search trees

Segment trees
Windowing again

Definition
Querying
Construction

Interval tree: query example
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Interval tree: query example
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Interval tree: query example
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Interval tree: query example
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Interval tree: query time

The query follows only one path in the tree, and that path
has length O(logn)

The query traverses O(logn) lists. Traversing a list with k′

answers takes O(1+ k′) time

The total time for list traversal is therefore O(log+k), with
the total number of answers reported (no answer is found
more than once)

The query time is O(logn)+O(logn+ k) = O(logn+ k)
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Interval tree: query example

Algorithm ConstructIntervalTree(I)
Input. A set I of intervals on the real line
Output. The root of an interval tree for I
1. if I = /0
2. then return an empty leaf
3. else Create a node ν . Compute xmid, the median of the

set of interval endpoints, and store xmid with ν

4. Compute Imid and construct two sorted lists for Imid:
a list Lleft(ν) sorted on left endpoint and a list
Lright(ν) sorted on right endpoint. Store these two
lists at ν

5. lc(ν) ← ConstructIntervalTree(Ileft)
6. rc(ν) ← ConstructIntervalTree(Iright)
7. return ν
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Interval tree: result

Theorem: An interval tree for a set I of n intervals uses O(n)
storage and can be built in O(n logn) time. All intervals that
contain a query point can be reported in O(logn+ k) time,
where k is the number of reported intervals.

Computational Geometry Lecture 8: Windowing queries



Interval trees
Priority search trees

Segment trees
Windowing again

Back to the plane
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Back to the plane

Suppose we use an interval tree on the x-intervals of the
horizontal line segments?

Then the lists Lleft and Lright are not suitable anymore to solve
the query problem for the segments corresponding to Imid
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Back to the plane
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Back to the plane
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Segment intersection queries

We can use a range tree as the associated structure; we only
need one that stores all of the endpoints, to replace Lleft and
Lright

Instead of traversing Lleft or Lright, we perform a query with
the region left or right, respectively, of q
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Segment intersection queries

s7

s6

q

s5

s9

s2

s22

q
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Segment intersection queries

In total, there are O(n) range trees that together store 2n
points, so the total storage needed by all associated structures
is O(n logn)

A query with a vertical segment leads to O(logn) range
queries

If fractional cascading is used in the associated structures, the
overall query time is O(log2 n+ k)

Question: How about the construction time?
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Definition
Querying

3- and 4-sided ranges

Considering the associated structure, we only need 3-sided
range queries, whereas the range tree provides 4-sided range
queries

Can the 3-sided range query problem be solved more efficiently
than the 4-sided (rectangular) range query problem?
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Scheme of structure
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Heap and search tree

A priority search tree is like a heap on x-coordinate and binary
search tree on y-coordinate at the same time

Recall the heap:

6
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2

3 7

4

8 11

5

131014129
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Heap and search tree

A priority search tree is like a heap on x-coordinate and binary
search tree on y-coordinate at the same time

Recall the heap:

6
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8 11

5

131014129

Report all values ≤ 4
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Priority search tree

If P = /0, then a priority search tree is an empty leaf

Otherwise, let pmin be the leftmost point in P, and let ymid be
the median y-coordinate of P\{pmin}
The priority search tree has a node ν that stores pmin and
ymid, and a left subtree and right subtree for the points in
P\{pmin} with y-coordinate ≤ ymid and > ymid

pmin
ymid

pmin
ymid
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Priority search tree
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Query algorithm

Algorithm QueryPrioSearchTree(T,(−∞ : qx]× [qy : q′y])
1. Search with qy and q′y in T

2. Let νsplit be the node where the two search paths split
3. for each node ν on the search path of qy or q′y
4. do if p(ν) ∈ (−∞ : qx]× [qy : q′y] then report p(ν)
5. for each node ν on the path of qy in the left subtree of νsplit
6. do if the search path goes left at ν

7. then ReportInSubtree(rc(ν),qx)
8. for each node ν on the path of q′y in the right subtree of νsplit
9. do if the search path goes right at ν

10. then ReportInSubtree(lc(ν),qx)
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Structure of the query
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Structure of the query
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Query algorithm

ReportInSubtree(ν ,qx)
Input. The root ν of a subtree of a priority search tree and a

value qx

Output. All points in the subtree with x-coordinate at most qx

1. if ν is not a leaf and (p(ν))x ≤ qx

2. then Report p(ν)
3. ReportInSubtree(lc(ν),qx)
4. ReportInSubtree(rc(ν),qx)

This subroutine takes O(1+ k) time, for k reported answers
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Query algorithm

The search paths to y and y′ have O(logn) nodes. At each
node O(1) time is spent

No nodes outside the search paths are ever visited

Subtrees of nodes between the search paths are queried like a
heap, and we spend O(1+ k′) time on each one

The total query time is O(logn+ k), if k points are reported
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Priority search tree: result

Theorem: A priority search tree for a set P of n points uses
O(n) storage and can be built in O(n logn) time. All points
that lie in a 3-sided query range can be reported in
O(logn+ k) time, where k is the number of reported points
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Scheme of structure
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Storage of the structure

Question: What are the storage requirements of the
structure for querying with a vertical segment in a set of
horizontal segments?
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Query time of the structure

Question: What is the query time of the structure for
querying with a vertical segment in a set of horizontal
segments?
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Result

Theorem: A set of n horizontal line segments can be stored in
a data structure with size O(n) such that intersection queries
with a vertical line segment can be performed in O(log2 n+ k)
time, where k is the number of segments reported
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Result

Recall that the windowing problem is solved with a
combination of a range tree and the structure just described

Theorem: A set of n axis-parallel line segments can be stored
in a data structure with size O(n logn) such that windowing
queries can be performed in O(log2 n+ k) time, where k is the
number of segments reported
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Definition
Querying
Storage

Windowing

Given a set of n arbitrary,
non-crossing line segments,
preprocess them into a data
structure so that the ones that
intersect a query rectangle can be
reported efficiently
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Windowing

Two cases of intersection:

An endpoint lies inside the query
window; solve with range trees

The segment intersects a side of
the query window; solve how?
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Using a bounding box?

If the query window intersects the
line segment, then it also intersects
the bounding box of the line segment
(whose sides are axis-parallel
segments)

So we could search in the 4n
bounding box sides
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Using a bounding box?

But: if the query window intersects
bounding box sides does not imply
that it intersects the corresponding
segments
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Windowing

Current problem of our interest:

Given a set of arbitrarily oriented,
non-crossing line segments, preprocess
them into a data structure so that the ones
intersecting a vertical (horizontal) query
segment can be reported efficiently
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Using an interval tree?

q q
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Interval querying

Given a set I of n intervals on the real line, preprocess them
into a data structure so that the ones containing a query
point (value) can be reported efficiently

We have the interval tree, but we will develop an alternative
solution
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Interval querying

Given a set S = {s1,s2, . . . ,sn } of n segments on the real line,
preprocess them into a data structure so that the ones
containing a query point (value) can be reported efficiently

s1
s2

s3

s4 s5

s6 s7
s8

The new structure is called the segment tree
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Locus approach

The locus approach is the idea to partition the solution space
into parts with equal answer sets

s1
s2

s3

s4 s5

s6 s7
s8

For the set S of segments, we get different answer sets before
and after every endpoint
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Locus approach

Let p1,p2, . . . ,pm be the sorted set of unique endpoints of the
intervals; m≤ 2n

p1 p2 p3 p4 p5 p6 p7 p8

s1
s2

s3

s4 s5

s6 s7
s8

The real line is partitioned into

(−∞,p1), [p1,p1],(p1,p2), [p2,p2], (p2,p3), . . . , (pm,+∞),

these are called the elementary intervals
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Locus approach

We could make a binary search tree that has a leaf for every
elementary interval
(−∞,p1), [p1,p1],(p1,p2), [p2,p2], (p2,p3), . . . , (pm,+∞)

Each segment from the set S can be stored with all leaves
whose elementary interval it contains: [pi,pj] is stored with

[pi,pi],(pi,pi+1), . . . , [pj,pj]

A stabbing query with point q is then solved by finding the
unique leaf that contains q, and reporting all segments that it
stores
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Locus approach

(−∞, p1)
[p1, p1]

(p1, p2)
[p2, p2]

(p2, p3)
[p3, p3]

(p3, p4)
[p4, p4]

(p4, p5)
[p5, p5]

(p5, p6)
[p6, p6]

(p6, p7)
[p7, p7]

(p8,+∞)(p7, p8)
[p8, p8]

s1
s2

s3

s4 s5

s6 s7
s8
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Locus approach

s1
s2

s3

s4 s5

s6 s7
s8

p1 p2 p3 p4 p5 p6 p7 p8
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Locus approach

Question: What are the storage requirements and what is
the query time of this solution?
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Towards segment trees

In the tree, the leaves store
elementary intervals

But each internal node
corresponds to an interval too:
the interval that is the union
of the elementary intervals of
all leaves below it

(pi, pi+1)
[pi+1, pi+1]

(pi+1, pi+2)
[pi+2, pi+2]

(pi, pi+2]

pi pi+1 pi+2
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Towards segment trees

s1
s2

s3

s4 s5

s6 s7
s8

p1 p2 p3 p4 p5 p6 p7 p8

(p2, p4] (p6,+∞)

(p1, p2]
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Towards segment trees

Let Int(ν) denote the interval of node ν

To avoid quadratic storage, we store any segment sj as high
as possible in the tree whose leaves correspond to elementary
intervals

More precisely: sj is stored with ν if and only if

Int(ν) ⊆ sj but Int(parent(ν)) 6⊆ sj
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Towards segment trees

(pi, pi+1)
[pi+1, pi+1]

(pi+1, pi+2)
[pi+2, pi+2]

(pi, pi+2]

pi pi+1 pi+2

(pi, pi+2]

pi−2 pi−1

(pi−2, pi+2]

(pi−2, pi+2]

sj

ν

Int(ν)

Int(parent(ν))
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Segment trees

A segment tree on a set S of segments is a balanced binary
search tree on the elementary intervals defined by S, and each
node stores its interval, and its canonical subset of S in a list
(unsorted)

The canonical subset (of S) of a node ν is the subset of
segments sj for which

Int(ν) ⊆ sj but Int(parent(ν)) 6⊆ sj
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Segment trees

s1
s2

s3

s4 s5

s6 s7
s8

p1 p2 p3 p4 p5 p6 p7 p8s1, s2

s1, s2

s3, s4

s1, s3, s4

s5

s5
s3, s5

s6

s6

s7

s6, s7

s8
s7, s8 s7, s8

s1
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Segment trees

s1
s2

s3

s4 s5

s6 s7
s8

p1 p2 p3 p4 p5 p6 p7 p8s1, s2

s1, s2

s3, s4

s1, s3, s4

s5

s5
s3, s5

s6

s6

s7

s6, s7

s8
s7, s8 s7, s8

s1
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Segment trees

Question: Why are no segments stored with nodes on the
leftmost and rightmost paths of the segment tree?
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Query algorithm

The query algorithm is trivial:

For a query point q, follow the path down the tree to the
elementary interval that contains q, and report all segments
stored in the lists with the nodes on that path
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Example query

s1
s2

s3

s4 s5

s6 s7
s8

p1 p2 p3 p4 p5 p6 p7 p8s1, s2

s1, s2

s3, s4

s1, s3, s4

s5

s5
s3, s5

s6

s6

s7

s6, s7

s8
s7, s8 s7, s8

s1
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Example query

s1
s2

s3

s4 s5

s6 s7
s8

p1 p2 p3 p4 p5 p6 p7 p8s1, s2

s1, s2

s3, s4

s1, s3, s4

s5

s5
s3, s5

s6

s6

s7

s6, s7

s8
s7, s8 s7, s8

s1
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Query time

The query time is O(logn+ k), where k is the number of
segments reported
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Segments stored at many nodes

A segment can be stored in several lists of nodes. How bad
can the storage requirements get?
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Segments stored at many nodes

Lemma: Any segment can be stored at up to two nodes of
the same depth

Proof: Suppose a segment si is stored at three nodes ν1, ν2,
and ν3 at the same depth from the root

ν1 ν2 ν3
sisisi

parent(ν2)

si
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Segments stored at many nodes

If a segment tree has depth O(logn), then any segment is
stored in at most O(logn) lists ⇒ the total size of all lists is
O(n logn)

The main tree uses O(n) storage

The storage requirements of a segment tree on n segments is
O(n logn)
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Result

Theorem: A segment tree storing n segments (= intervals) on
the real line uses O(n logn) storage, can be built in O(n logn)
time, and stabbing queries can be answered in O(logn+ k)
time, where k is the number of segments reported

Property: For any query, all segments containing the query
point are stored in the lists of O(logn) nodes

Computational Geometry Lecture 8: Windowing queries



Interval trees
Priority search trees

Segment trees
Windowing again

Segment tree variation
Querying
Storage

Back to windowing

Problem arising from windowing:

Given a set of arbitrarily oriented,
non-crossing line segments, preprocess
them into a data structure so that the ones
intersecting a vertical (horizontal) query
segment can be reported efficiently
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Idea for solution

The main idea is to build a segment tree on the x-projections
of the 2D segments, and replace the associated lists with a
more suitable data structure
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s1

s2
s3

s4

s5

s6

s7 s8

p1 p2 p3 p4 p5 p6 p7 p8s1, s2

s1, s2

s3, s4

s1, s3, s4

s5

s5
s3, s5

s6

s6

s7

s6, s7

s8
s7, s8 s7, s8

s1
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p1 p2 p3 p4 p5 p6 p7 p8s1, s2
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Observe that nodes now correspond to vertical slabs of the
plane (with or without left and right bounding lines), and:

if a segment si is stored with a node ν , then it crosses the
slab of ν completely, but not the slab of the parent of ν

the segments crossing a slab have a well-defined
top-to-bottom order

Int(ν)

sj sj is stored at one
or more nodes
below ν
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s1

s3

s4

s5

p3 p4

s1, s3, s4

s5

s5

Computational Geometry Lecture 8: Windowing queries



Interval trees
Priority search trees

Segment trees
Windowing again

Segment tree variation
Querying
Storage

s1

s3

s4

s5

p3 p4

s1, s3, s4

s5

s5
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Querying

Recall that a query is done with a vertical
line segment q

Only segments of S stored with nodes on
the path down the tree using the
x-coordinate of q can be answers

At any such node, the query problem is:
which of the segments (that cross the slab
completely) intersects the vertical query
segment q?

q
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Querying

We store the canonical
subset of a node ν in a
balanced binary search tree
that follows the
bottom-to-top order in its
leaves

q

s1

s2

s3

s4

s5

s6

s7

s1

s2

s4

s6

s5

s3

s1

s2

s3

s4

s5

s6

s7
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Data structure

A query with q follows one path down the main tree, using
the x-coordinate of q

At each node, the associated tree is queried using the
endpoints of q, as if it is a 1-dimensional range query

The query time is O(log2 n+ k)
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Data structure

The data structure for intersection queries with a vertical
query segment in a set of non-crossing line segments is a
segment tree where the associated structures are binary
search trees on the bottom-to-top order of the segments in
the corresponding slab

Since it is a segment tree with lists replaced by trees, the
storage remains O(n logn)
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Result

Theorem: A set of n non-crossing line segments can be
stored in a data structure of size O(n logn) so that intersection
queries with a vertical query segment can be answered in
O(log2 n+k) time, where k is the number of answers reported

Theorem: A set of n non-crossing line segments can be
stored in a data structure of size O(n logn) so that windowing
queries can be answered in O(log2 n+ k) time, where k is the
number of answers reported

Computational Geometry Lecture 8: Windowing queries


	Interval trees
	Definition
	Querying
	Construction

	Priority search trees
	Definition
	Querying

	Segment trees
	Definition
	Querying
	Storage

	Windowing again
	Segment tree variation
	Querying
	Storage


