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Abstract. In this note we give an introduction to the theory of formal

group laws.

1. Introduction

Assume you want to define a group operation without some underlying

set. Then, one might want to define the product z of x and y. One could

try doing this by setting z = F (x, y) for some power series F . We also want

our group law to be associative, which translates into requiring the power

series to satisfy F (X,F (Y,Z)) = F (F (X,Y ), Z). Lastly, we need an identity

element, which means that we should also assume that F (X, 0) = X and

F (0, Y ) = Y . It appears that we can assume that F (X,Y ) = X+Y+(terms

of degree ≥ 2). Then, our group law automatically guarantees that inverses

exist.

Formal groups arise in Number Theory, Algebraic Topology and Lie The-

ory. In fact their origin lies in the theory of Lie groups. A Lie group is an

n dimensional manifold endowed with a group structure. Once we choose

coordinates around the identity element of the Lie group, the multiplication

on the Lie group can be expressed using power series. This procedure gives

us a formal group law. In characteristic 0, the formal group law and the Lie
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algebra happen to carry the same information, but this is not the case in

characteristic p. In number theory, formal group laws play a crucial role in

the study of elliptic curves and Dirichlet series of L-functions.

2. Some preliminaries

We will denote by R[[T ]] the ring of formal power series in T over a

commutative ring R. Next we define a metric on R[[T ]].

Definition 2.1. We define the following metric in R[[T ]]. If f(T ) =
∑
i≥0

aiT
i

and g(T ) =
∑
i≥0

biT
i, we set

d(f, g) =
1

2k
,

where k is the first k ∈ N so that ak 6= bk. We let 1
2∞ = 0.

Remark 2.2. It is easy to check that d : R[[T ]]× R[[T ]]→ Z≥0 is actually

a metric. In fact, (R[[T ]], d) is a complete metric space.

3. Formal Groups (1 dimensional)

We denote by R a commutative ring with identity.

Definition 3.1. A (one parameter) formal group F defined over R is a

power series F (X,Y ) ∈ R[[X,Y ]] satisfying:

(1) F (X,Y ) = X + Y+(terms of degree ≥ 2)

(2) F (X,F (Y, Z)) = F (F (X,Y ), Z) (associativity)

We call F the formal group law of F . If in addition we have that

F (X,Y ) = F (Y,X), we say that F is a commutative formal group.

Remark 3.2. It is true that (1) and (2) imply that F is commutative,

provided that R has no torsion nilpotents, meaning there is no element r ∈
R \ {0} for which there exist n,m ∈ N so that rn = mr = 0. We will see

a proof of this fact when R has no non zero torsion elements in section 6.

We say that r ∈ R is a torsion element if there exists some n ∈ Z \ {0} so

that nr = 0.

Lemma 3.3. For a formal group F defined over R, given by a power series

F (X,Y ) ∈ R[[X,Y ]], we also have

(1) F (X, 0) = X and F (0, Y ) = Y .
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(2) There is a unique power series i(T ) ∈ R[[T ]] such that F (T, i(T )) =

0.

Proof. Part 1: Consider

F (X,Y ) = X + Y +
∑

i+j≥2
cijX

iY j = f(X) + g(Y ) +XYH(X,Y ), (1)

where

f(X) := F (X, 0) = X +
∑
i≥2

ci0X
i,

g(Y ) := F (0, Y ) = Y +
∑
j≥2

c0jY
j .

By associativity, we have that F (X,F (0, Y )) = F (F (X, 0), Y ). Equiva-

lently,

f(X) + g(g(Y )) +Xg(Y )H(X, g(Y )) = f(f(X)) + g(Y ) + f(X)Y H(f(X), Y ).

Note here that the compositions of the power series above are still power

series, since f(0) = g(0) = 0. Equating parts independent of X and parts

independent of Y in this equation, we get that

f(X) = f(f(X)) and g(Y ) = g(g(Y )). (2)

We will now see that this implies that f(X) = X. Similarly, we can get that

g(Y ) = Y . Assume the contrary, i.e. that there exists a smallest non zero

n ≥ 2 so that cn0 6= 0. Then, equation (2) yields that∑
i≥2

ci0f(X)i = 0, (3)

or equivalently that

cn0(X + cn0X
n + terms of degree ≥ n+ 1)n (4)

+
∑

i≥n+1

ci0(X + terms of degree ≥ n)i = 0.

Equating the coefficients of Xn on both sides of the above equation yields

that cn0 = 0, contradicting its definition. Hence, f(X) = X. This finishes

the proof.

Part 2:

Proof of existence of i(T ):
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In view of part (1) above, we know that F (X,Y ) has the form

F (X,Y ) = X + Y +
∑

i≥1,j≥1
cijX

iY j . (5)

Throughout this proof, we will denote by (Tn) the ideal of R[[T ]] generated

by Tn, for n ∈ N.

We will construct inductively a sequence of polynomials {gn}n∈N, so that

gn+1(T )− gn(T ) ∈ (Tn+1), and (6)

F (T, gn(T )) ∈ (Tn+1). (7)

Then, one can see that (6) yields d(gn+1, gn) ≤ 1
2n+1 . Using the usual tele-

scopic trick then yields that {gn}n∈N is a Cauchy sequence in the complete

metric space R[[T ]]. Hence, the limit lim
n→∞

gn exists, and we will denote this

by i(T ). Moreover, (7) implies that d(F (T, gn(T )), 0) ≤ 1
2n+1 . Taking the

limit as n→∞ in the last inequality gives that d(F (T, lim
n→∞

gn(T )), 0) = 0,

or that F (T, i(T )) = 0, as desired.

We are now left to construct the sequence of polynomials {gn}n∈N with

the desired properties.

For n = 1, we must have g1(T ) = −T . Then, we get that F (T, g1(T )) =∑
i≥1,j≥1

cijT
i(−T )j ∈ (T 2), as wanted. For the inductive step, assume that

we have defined gn(T ) so that F (T, gn(T )) ∈ (Tn+1). We will now find

some λ ∈ R, so that gn+1(T ) = gn(T ) + λTn+1 satisfies the property that

F (T, gn+1(T )) ∈ (Tn+2). Then obviously, we will have that gn+1(T ) −
gn(T ) ∈ (Tn+1). Therefore, the inductive step will be done.



FORMAL GROUPS 5

Notice that

F (T, gn(T ) + λTn+1) = T + gn(T ) + λTn+1

+
∑

i≥1,j≥1
cijT

i(gn(T ) + λTn+1)j

= T + gn(T ) + λTn+1 +
∑

i≥1,j≥1
cijT

ign(T )j

+
∑
i≥1

cijT
i
∑

j≥k≥1

(
j

k

)
gn(T )j−k(λTn+1)k

= F (T, gn(T )) + λTn+1

+
∑
i≥1

cijT
i
∑

j≥k≥1

(
j

k

)
gn(T )j−k(λTn+1)k (8)

This in turn implies that

F (T, gn(T ) + λTn+1)− F (T, gn(T ))− λTn+1 ∈ (Tn+2). (9)

Now, in light of the induction hypothesis, we have that there exists unique

a ∈ R so that

F (T, gn(T ))− aTn+1 ∈ (Tn+2). (10)

Adding (9) and (10), yields that

F (T, gn(T ) + λTn+1)− (λ+ a)Tn+1 ∈ (Tn+2). (11)

We must now choose λ = −a and define gn+1(T ) = gn(T )− aTn+1.

By induction, the proof is done.

Proof of uniqueness:

First note that by construction in the proof of existence there is a unique

sequence of polynomials {gn}n∈N so that (6) and (7) are satisfied. Assume

that for a(T ) =
∑
i≥0

aiT
i ∈ R[[T ]] we have that F (T, a(T )) = 0. We will

show that a(T ) is the unique power series satisfying this relation. Consider

an(T ) =
∑

0≤i≤n
aiT

i and note that a(T ) = lim
n→∞

an(T ), where the limit is

taken with respect to the metric d. We will see that the sequence of poly-

nomials {an}n∈N satisfies (6) and (7). Indeed, obviously from its definition

an+1(T ) − an(T ) = an+1T
n+1 so (6) is satisfied. Moreover, using F (X,Y )
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as defined in (5), we have

F (T, an(T )) = F (T, a(T )−
∑

s≥n+1

asT
s)

= T + a(T )−
∑

s≥n+1

asT
s +

∑
i≥1,j≥1

cijT
i

a(T )−
∑

s≥n+1

asT
s

j

.

This yields that there exists h(T ) ∈ R[[T ]] such that

F (T, an(T )) = T + a(T )−
∑

s≥n+1

asT
s +

∑
i≥1,j≥1

cijT
i(a(T ))j + Tn+1h(T ).

This is equivalent to

F (T, an(T )) = T + a(T )−
∑

s≥n+1

asT
s + F (T, a(T ))− T − a(T ) + Tn+1h(T ).

Since F (T, a(T )) = 0 we get

F (T, an(T )) = −
∑

s≥n+1

asT
s + Tn+1h(T ) ∈ (Tn+1).

Therefore, {an}n∈N satisfies (7). Hence, as noted in the beginning of this

proof {an}n∈N is unique. Therefore, its limit a(T ) ∈ R[[T ]] is the unique

power series satisfying F (T, a(T )) = 0. �

Remark 3.4. Note that in proposition 3.3 we do not need to assume that

F is commutative.

We proceed to provide some examples of formal groups.

Example 3.5. F (x, y) = x+ y+ cxy ∈ R[[x, y]] for some c ∈ R is a formal

group (associativity can be easily checked), whereas F (x, y) = x+y+x2 +y2

is not a formal group (even though F (x, y) = F (y, x)).

One could ask the question whether there are other F (x, y) ∈ R[x, y] that

give rise to a formal group. It turns out the ones given in the preceding

example are actually all such formal groups. We will establish this fact

next.

Theorem 3.6. If F (x, y) is a formal group for some F (x, y) ∈ R[x, y], then

F (x, y) = x+ y + cxy for some c ∈ R.

Proof. Assume that the greatest power of x appearing in F (x, y) is n,

whereas the greatest power of y is k, where F (x, y) = x + y+(terms of
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degree ≥ 2). Associativity forces F (x, F (y, z)) = F (F (x, y), z). Notice that

the greatest power of z appearing in the left hand side of this equation is

k2, whereas in the right hand side it is k. This yields that k = k2. Similarly,

the greatest power of x appearing in the left hand side of this equation is n,

whereas in the right hand side it is n2. This yields that n = n2. Moreover

n + k ≥ 2. Therefore, n = k = 1. This now implies that F (x, y) has the

desired form. �

Example 3.7. The formal additive group, denoted by Ĝa , is given by the

formal group law F (X,Y ) = X + Y .

Example 3.8. The formal multiplicative group, denoted by Ĝm, is given by

the formal group law F (X,Y ) = X + Y +XY .

Definition 3.9. Let (F , F ) and (G , G) be formal groups defined over R. A

homomorphism from F to G defined over R, is a power series (with no

constant term) f(T ) ∈ R[[T ]] satisfying

f(F (X,Y )) = G(f(X), f(Y )).

Definition 3.10. Two formal groups (F , F ) and (G , G) defined over R

are isomorphic over R, if there are homomorphisms f : F → G and

g : G → F defined over R with

f(g(T )) = g(f(T )) = T.

Example 3.11. Let (F , F ) be a formal group. We can define a map [m] :

F → F for m ∈ Z inductively, as follows:

[0](T ) = 0 and [m+ 1](T ) = F ([m]T, T ).

Moreover, assuming i(T ) is the unique power series satisfying F (T, i(T )) = 0

as in Lemma 3.3, we define [m− 1](T ) = F ([m](T ), i(T )). We call [m] the

multiplication by m map.

We will see that the multiplication by m map is a formal group homo-

morphism. Actually [m] is an F isomorphism, provided that m ∈ R∗. In

that direction, we will prove the following Lemma.

Lemma 3.12. Let α ∈ R∗ and f(T ) ∈ R[[T ]] a power series given as

f(T ) = αT + ( terms of degree ≥ 2).

Then, there is a unique power series g(T ) ∈ R[[T ]] such that f(g(T )) = T .

Moreover g(f(T )) = T .
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Proof. Throughout the proof we denote by (Tn) the ideal of R[[T ]] gener-

ated by Tn, for n ∈ N.

We will construct inductively a sequence of polynomials {gn}n∈N so that

for all n ∈ N

f(gn(T ))− T ∈ (Tn+1). (12)

gn+1(T )− gn(T ) ∈ (Tn+1). (13)

Then, (13) implies that d(gn+1, gn) ≤ 1
2n+1 , and using the usual telescopic

tric this yields that {gn}n∈N is a Cauchy sequence in the complete metric

space (R[[T ]], d). Hence, the limit lim
n→∞

gn = g exists. Now (12) yields

that for all n ∈ N, d(f(gn), T ) ≤ 1
2n+1 . Hence, letting n → ∞ we get that

f(g(T )) = T . This will finish the proof of the first statement of the lemma.

We will now construct {gn}n∈N. For n = 1, we define g1(T ) = α−1T .

Suppose now that gn−1 is defined. We will proceed to construct gn(T ).

In particular we will find a µ ∈ R, so that gn−1 + µTn has the property

f(gn−1(T ) + µT )− T ∈ (Tn+1). Then, we will set gn(T ) = gn−1 + µTn.

Hence, we are left to find µ ∈ R so that

f(gn−1(T ) + µT )− T ∈ (Tn+1). (14)

Notice that

f(gn−1(T ) + µTn)− f(gn−1(T ))− αµTn ∈ (Tn+1). (15)

Moreover, in light of the induction hypothesis, we get that

f(gn−1(T ))− T − βTn ∈ (Tn+1), (16)

for some β ∈ R. Adding now (15) and (16), we get that

f(gn−1(T ) + µTn)− (αµ+ β)Tn − T ∈ (Tn+1). (17)

Leting now µ = −β · α−1 ∈ R, we get that

f(gn−1(T ) + µTn)− T ∈ (Tn+1). (18)

This finishes the inductive step. By induction, the construction is done.

We will now see that also g(f(T )) = T .

Indeed note that by our construction g(0) = 0. Moreover we proved

that f(g(T )) = T , which implies that f ′(0)g′(0) = 1. Hence, since f ′(0) ∈
R∗, we also have that g′(0) ∈ R∗. This now implies that g(T ) = bT +
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(terms of degree ≥ 2), for some b ∈ R∗. Therefore, as we proved, there exist

some h(T ) ∈ R[[T ]] so that g(h(T )) = T . Applying now f in this equation,

we get that f(g(h(T ))) = f(T ). This in turn implies that h(T ) = f(T ).

Therefore, g(f(T )) = T .

Next we will establish the uniqueness of g(T ).

Assume that there exists some q(T ) so that f(q(T )) = T . Applying g

to this equation, yields that g(f(q(T )) = g(T ). This, in light of the fact

that g(f(T )) = T , implies that q(T ) = g(T ), yielding the uniqueness of the

inverse. �

Proposition 3.13. Let F be a formal group over R, and let m ∈ Z. The

following statements are true:

(1) [m]T = mT + ( higher order terms).

(2) If m ∈ R∗, then [m] : F → F is an isomorphism.

Proof. Part 1: We will prove this statement inductively on m. First, we

will prove for m ∈ N. For m = 0, we have that [0](T ) = 0 = 0 · T and the

statement holds. Assume now that the statement holds for some m ≥ 1.

We will see that it also holds for m+ 1. By definition,

[m+ 1](T ) = F ([m]T, T ) = [m]T + T + ( terms of degree ≥ 2).

The induction hypothesis now, yields that

[m+ 1](T ) = mT + ( terms of degree ≥ 2) + T + ( terms of degree ≥ 2)

= (m+ 1)T + ( terms of degree ≥ 2).

Hence, by induction the statement is true. Similarly, using the recursive

definition of the multiplication by m map, we get that the statement is also

true all m ∈ Z.

Part 2: This now is an immediate result of Part 1 and Lemma 3.12. �

4. Groups associated to formal groups

Generally a formal group resembles a group operation, with no actual

underlying group. However, if the ring R is local and complete and the

variables are assigned values from the maximal ideal, then the power series

defining the formal group will converge in R, thus giving rise to a group. In

this section we will talk about this group.

We will use the following notation:
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Notation 4.1. R a complete local ring

M the maximal ideal of R

k the residue field R/M
F a formal group defined over R with formal group law F (x, y).

Definition 4.2. The group associated to F/R, denoted F (M), is the set

M with the group operations

x⊕F y = F (x, y) (addition) for x, y ∈M,

	Fx = i(x) (inverse) for x ∈M

The identity element of this group is 0, since Proposition 3.3, yields that

x⊕F 0 = x, 0⊕F y = y

Remark 4.3. (1) For n ≥ 1, we denote F (Mn) the subset of F (M)

consisting of the set Mn.

(2) Note that since R is complete the power series F (x, y) and i(x) con-

verge in R for x, y ∈ M. The axioms of a formal group now imply

that F (M) is a group and F (Mn) a subgroup.

Proposition 4.4. (1) For each n ≥ 1, the map

F (Mn)/F (Mn+1)→Mn/Mn+1

induced by the identity map on sets is an isomorphism of groups.

(2) Let p be the characteristic of k (p = 0 is allowed). Then every torsion

element of F (M) has order a power of p.

Proof. Part 1:

The fact that the given map is bijective is an immediate consequence of the

fact that the underlying sets are the same (with different group operation).

Hence, it suffices to prove that it is a group homomorphism. Equivalently,

we have to show that for x, y ∈Mn

x⊕ y − (x+ y) ∈Mn+1.

Recall that x ⊕ y = F (x, y) = x + y + ( terms of order ≥ 2) Therefore for

x, y ∈Mn

x⊕ y − (x+ y) ∈M2n ⊆Mn+1

This proves the statement.

Part 2:
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Consider x ∈ F (M) a torsion element. Then, there exists m ≥ 1 so

that [m]x = 0. Without loss of generality we can assume that m is coprime

with p, since otherwise, we can consider the torsion element pnx, for an

appropriate n, instead. We have to show that x = 0. Note that if m = 1,

we have x = 0 and the statement is trivial. Therefore, we may assume that

m > 1. Equivalently, we have to show that the group homomorphism

[m] : F (M)→ F (M)

has kernel 0. Recall that p is characteristic of the residue field and note

that since m is coprime with p by our assumption, we have that m /∈ M.

Therefore, m ∈ R∗. Now, the result follows from Proposition 3.13. �

5. The Invariant Differential

In this section R is an arbitrary ring as in the beginning. We will intro-

duce the notion of an invariant differential associated with the formal group

F/R. We will use the invariant differential to give a description for the

multiplication by p map on F , where p ∈ Z prime. In section 6 we will use

the invariant differential to introduce the formal logarithm.

Definition 5.1. An invariant differential on F/R is a differential form

ω(T ) = P (T )dT ∈ R[[T ]]dT

satisfying

ω ◦ F (T, S) = ω(T ).

Equivalently, this can be restated as

P (F (T, S))FX(T, S) = P (T ),

where FX(X,Y ) is the partial derivative of F with respect to the first vari-

able.

In the case when P (0) = 1, we say that the invariant differential is nor-

malized.

Example 5.2. On the additive formal group, an invariant differential is

ω(T ) = dT .

The following Proposition ensures the existence of an invariant differen-

tial in a formal group F/R. Furthermore, it shows that if the invariant

differential is normalized it is actually unique and has a prescribed form.
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Proposition 5.3. Consider F/R a formal group. Then, there exists a

unique normalized invariant differential on F/R. It is given as

ω(T ) = FX(0, T )−1dT.

Moreover, every other invariant differential on F/R is of the form aω for

some a ∈ R.

Proof. Consider ω(T ) = FX(0, T )−1dT ∈ R[[T ]]dT . We will show that it is

an invariant differential. We have to check that

FX(0, F (T, S))−1FX(T, S) = FX(0, T )−1,

or equivalently that

FX(0, F (T, S)) = FX(T, S)FX(0, T ).

To see this recall that the formal group is associative, hence

F (U,F (T, S)) = F (F (U, T ), S).

Differentiating this with respect to U and setting U = 0, we obtain

FX(0, F (T, S)) = FX(F (0, T ), S)FX(0, T ).

This in light of the fact that F (0, T ) = T as seen in Lemma 3.3, yields

the desired equality. Moreover, ω is normalized since FX(0, S) = 1 +

(terms of degree ≥ 1).

Hence, we have seen that ω as defined in the Proposition is a normalized

invariant differential on F/R.

It remains to see that any invariant differential on F/R is of the form aω

for some a ∈ R. Note that this also yields that ω is the unique normalized

invariant differential on F/R.

Consider ω(T ) = P (T )dT ∈ R[[T ]]dT an invariant differential on F/R.

Then,

P (F (T, S))FX(T, S) = P (T ).

Setting T = 0 yields in light of Lemma 3.3 that

P (S)FX(0, S) = P (0),

or, since FX(0, S) = 1 + (terms of degree ≥ 1) and hence invertible, that

P (S)dS = P (0)FX(0, S)−1dS.
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Therefore, ω(S) = aFX(0, S)−1dS, where a = P (0) ∈ R, as desired. This

yields the result. �

The following Corollary of this Proposition will come in hand later.

Corollary 5.4. Consider F/R, G /R formal groups with normalized invari-

ant differentials ωF and ωG . Let f : F → G be a formal group homomor-

phism. Then,

ωG ◦ f = f ′(0)ωF

Proof. Let F (x, y), G(x, y) be the formal group laws associated with F

and G respectively. We will see that ωG ◦ f is an invariant differential of

F . Then, in light of Proposition 5.3, since ωF is the normalized invariant

differential of F , we have that ωG ◦ f = aωF for some a ∈ R. Comparing

then initial terms, we get that f ′(0) = a. This will imply the result.

To see that ωG ◦ f is an invariant differential of F , note that since f is a

formal group homomorphism, we know that

ωG ◦ f(F (T, S)) = ωG (G(f(T ), f(S)).

Now since ωG is an invariant differential for G , the latest equality implies

that

(ωG ◦ f)(F (T, S)) = (ωG ◦ f)(T ).

This in turn yields that ωG ◦ f is an invariant differential for F as claimed.

�

We will now provide a description for the multiplication by p map, where

p is prime, associated to the formal group F .

Corollary 5.5. Let F/R be a formal group and p ∈ Z a prime number.

Then, there exist power series f(T ), g(T ) ∈ R[[T ]] with f(0) = g(0) = 0 so

that

[p](T ) = pf(T ) + g(T p).

Proof. In view of Proposition 3.13, we have that [p]′(0) = p. Combining

this fact with Corollary 5.4, we get that

pω(T ) = ω ◦ [p](T ).

This in turn, yields that

pω(T ) = (1 + ...)[p]′(T )dT.
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Notice now that the series (1 + ...) is invertible in R[[T ]]. Therefore, the

last equation implies that [p]′(T ) ∈ pR[[T ]]. Thus every term aTn in the

series of [p](T ) satisfies either a ∈ pR or p|n, yielding the desired form for

[p](T ). �

6. The Formal Logarithm

Let us first introduce a definition.

Definition 6.1. We call a ring R torsion-free if it has no torsion elements,

i.e. if n ∈ Z and a ∈ R satisfy na = 0, then either n = 0 or a = 0.

Recall from Example 3.7 that the formal additive group is given by the

formal group law F (X,Y ) = X+Y and is denoted by Ĝa. In this section we

will introduce the formal logarithm. This way we will get an isomorphism

of a formal group defined over a torsion-free ring R with the additive group.

As an application this yields that every one parameter formal group over a

torsion-free ring is commutative.

In this section, R will be a torsion-free ring, commutative, with identity.

Definition 6.2. Let R be a ring of characteristic 0, K = R⊗ZQ and F/R

a formal group. Let

ω(T ) = (1 + c1T + c2T
2 + c3T

3 + ...)dT

be the normalized invariant differential on F/R. The formal logarithm

of F/R is the power series∫
ω(T ) = T +

c1
2
T 2 +

c2
3
T 3 + ... ∈ K[[T ]].

The formal exponential of F/R is the unique power series expF (T ) ∈
K[[T ]] satisfying

logF ◦ expF (T ) = expF ◦ logF (T ) = T.

Note that the existence and uniqueness of the formal exponential is justified

by Lemma 3.12.

Remark 6.3. By its definition the formal logarithm of F/R is unique, since

in view of Proposition 5.3, the normalized invariant differential of a formal

group is unique.

We will now prove the main Proposition of this section.
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Proposition 6.4. Let F/R be a formal group over a ring R with charac-

teristic 0. Then,

logF : F → Ĝa

is an isomorphism of formal groups over K = R⊗Z Q.

Proof. As noted in view of Lemma 3.12, there exists an inverse of logF ,

namely expF . Therefore to prove that the map given in the statement of

this proposition is an isomorphism of formal groups, it suffices to prove that

it is a homomorphism. To see this, consider ω(T ) the normalized invariant

differential on F/R. Then,

ω(F (T, S)) = ω(T ).

Integrating this relation with respect to T , yields that

logF F (T, S) = logF (T ) + f(S)

for some f(S) ∈ K[[S]]. Taking T = 0 and using Proposition 3.3, implies

that f(S) = logF (S). Therefore,

logF F (T, S) = logF (T ) + logF (S).

Equivalently, we have seen that logF : F → Ĝa is a formal group homo-

morphism as claimed. �

We are now in shape to prove that formal groups over a torsion-free ring

are commutative. This is the main application of this section.

Theorem 6.5. Suppose that R is a torsion-free ring and F (X,Y ) ∈ R[X,Y ]

is a formal group law satisfying only axioms (1), (2) in definition 3.1. Then,

axiom (3) is also true, i.e.

F (X,Y ) = F (Y,X).

Proof. Note that in constructing the invariant differential, formal logarithm

and formal exponential and proving their basic properties, we have only used

the associativity of the formal group law and the fact that

F (X, 0) = X and F (0, Y ) = Y.

This follows using only the first two axioms of the formal group, as presented

in Proposition 3.3. Thus, as shown in Proposition 6.4, letting K = R ⊗Z Q
there exist logF , expF ∈ K[[T ]] so that

F (X,Y ) = exp
(logF (X)+logF (Y ))
F .
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In particular, F (X,Y ) = F (Y,X) in K[[X,Y ]]. Note now that R is a

torsion free ring as defined in 6.1, therefore it is embedded into R ⊗Z Q
by the natural map mapping r to r ⊗ 1. Moreover, F (X,Y ) ∈ R[[X,Y ]].

Therefore, F (X,Y ) = F (Y,X) in R[[X,Y ]] and F is commutative. �

Lemma 6.6. Let R be a ring with characteristic 0 and let f(T ) =
∞∑
n=1

an
n!
Tn

be a power series with an ∈ R and a1 ∈ R∗. Then, in light of proposition

3.12, there exists a unique power series satisfying f(g(T )) = T . We claim

that it can be written as

g(T ) =

∞∑
n=1

bn
n!
Tn,

with b1 ∈ R∗, bn ∈ R.

Proof. Differentiating f(g(T )) = T yields f ′(g(T ))g′(T ) = 1. Letting T = 0

implies that

b1 = g′(0) =
1

f ′(0)
=

1

a1
∈ R∗.

Differentiating for a second time yields that

f ′(g(T ))g′′(T ) + f ′′(g(T ))g′(T )2 = 0

Letting T = 0 expresses a1b2 as a polynomial a1, a2, b1. Repeating this

process shows that for every n ≥ 2, f ′(g(T ))g(n)(T ) can be expressed as a

polynomial with integer coefficients in f (i)(g(T )) and g(j)(T ) for 1 ≤ i ≤ n

and 1 ≤ j ≤ n − 1. Evaluating at T = 0 expresses a1bn as a polynomial in

a1, ..., an, b1, ..., bn−1. Since a1, b1 ∈ R∗ we see inductively that bn ∈ R for

all n ∈ N, as claimed. �

In view of this Lemma and the definition of the formal logarithm, we get

the following proposition:

Proposition 6.7. Let R be a ring with characteristic 0 and let F/R be a

formal group. Then

logF (T ) =
∞∑
n=1

an
n
Tn and expF (T ) =

∞∑
n=1

bn
n!
Tn,

with an, bn ∈ R and a1 = b1 = 1.
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7. The n-dimensional formal group law

In this section we will see how to define a Lie bracket on the n−dimensional

affine space using the n-dimensional formal group.

A formal group law of dimension n is given by a set of n power se-

ries F(i) of 2n variables x1, , xn, y1, , yn, satisfying F(i)(x, y) = xi + yi +

(higher order terms). Moreover, letting x = (x1, . . . , xn), y = (y1, . . . , yn)

and F (x, y) = (F(1)(x, y), . . . , F(n)(x, y)), we demand further that F (x, F (y, z)) =

F (F (x, y), z).

We can now write

F (x, y) = x+ y +B(x, y) + terms of degree ≥ 3,

where B(x, y) = (B(1)(x, y), ..., B(n)(x, y)) is an n-tuple of quadratic poly-

nomials in x1, ..., xn, y1, ..., yn. As in Lemma 3.3, we see that B(i) have the

form

B(i)(x, y) =
∑

1≤p,q≤n
cipqxpyq.

Theorem 7.1. We can define a Lie Algebra structure on the n dimensional

affine space by means of this formula, as

[x, y] = B(x, y)−B(y, x).

Proof. Obviously [x, x] = 0. Moreover, the fact that B(x, y) has only degree

2 terms of the form XiYj , ensures that it is bilinear. Hence, the Lie bracket

as defined in the theorem is bilinear. It remains to check that the Jacobi

identity is satisfied. Consider x, y, z in the n−dimensional affine space. We

have to check that

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Throughout the proof we will use ,without explicit mention, the fact that

B(x, y) is bilinear. Note that

[x, [y, z]] = B(x, [y, z])−B([y, z], x)

= B(x,B(y, z))−B(x,B(z, y))−B(B(y, z), x) +B(B(z, y), x).

(19)

For ease of notation, we write C(x, y) for the degree 3 terms in F (x, y).

More specifically, F (x, y) = x+ y+B(x, y) +C(x, y) + terms of degree ≥ 4.
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Associative of the formal group law, yields that

F (x, F (y, z)) = F (F (x, y), z).

Equating now terms of degree < 4 in this equation, yields that

x+ y + z +B(y, z) +B(x, y) +B(x, z) +B(x,B(y, z)) + C(y, z) + C(x, y + z)

= x+ y + z +B(x, y) +B(x, z) +B(y, z) +B(B(x, y), z) + C(x, y) + C(x+ y, z).

or equivalently that

B(x,B(y, z)) + C(y, z) + C(x, y + z) = B(B(x, y), z) + C(x, y) + C(x+ y, z).

Thus,

s1 = B(B(x, y), z)−B(x,B(y, z)) = C(y, z)− C(x, y) + C(x, y + z)− C(x+ y, z).(20)

Moreover

s2 = B(B(z, y), x)−(B(z,B(y, x)) = C(y, x)− C(z, y) + C(z, y + x)− C(z + y, x).(21)

s3 = B(B(x, z), y)−(B(x,B(z, y)) = C(z, y)− C(x, z) + C(x, y + z)− C(x+ z, y).(22)

s4 = B(B(y, x), z)−(B(y,B(x, z)) = C(x, z)− C(y, x) + C(y, x+ z)− C(y + x, z).(23)

s5 = B(B(z, x), y)−(B(z,B(x, y)) = C(x, y)− C(z, x) + C(z, x+ y)− C(z + x, y).(24)

s6 = B(B(y, z), x)−(B(y,B(z, x)) = C(z, x)− C(y, z) + C(y, x+ z)− C(y + z, x).(25)

An easy calculation shows that the Jacobi identity is equivalent to veri-

fying that

−s1 + s2 + s3 + s4 − s5 − s6 = 0.

This is true and seen by adding the terms from (20), (21), (22), (23), (24),

(25) with the appropriate signs and noting carefully all cancelations that

occur.

�

Definition 7.2. The Lie algebra defined as in Theorem 7.1 is called the Lie

algebra of the formal group law F (x, y).
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