
Skinning

Character Animation

• The task of moving a complex, artificial character in a

life-like manner

– Animating characters is a particularly demanding area

– Animated character must move and deform in a manner

that is plausible to the viewer

Character Animation

• Animating a character model

described as a polygon mesh by

moving each vertex in the mesh is

impractical

• Instead - specify the motion of

characters through the movement of

an internal articulated skeleton

– Movement of the surrounding polygon mesh
may then be deduced

• Mesh must deform in a manner that the

viewer would expect, consistent with

underlying muscle and tissue

Articulated Models

• A collection of objects connected

by joints in a hierarchical structure

• The objects and their relative

connections define the static

object skeleton

• The joint parameters (angles)

define the stance of the model

• Animation is achieved by

changing the joint parameters

Human Skeleton

• Complex structure
– Adult: 206 bones

• Spine: 33 vertebrae
– Impractical to model each vertebra

– Typically use 3/4 spine links

• Shoulders
– Can translate

as well as rotate

– Wide range of motion

– Prone to dislocation

• Fingers?

Joint Approximations

Character Animation - Skeleton

• These soft-bodied models appear to have
hierarchies, much like rigid bodies

• So we can define an independent hierarchy
of bones assumed to lie within the geometry

– This is called a skeleton
• Analogous to a human skeleton

– The movement of the bones
drives the overlaid geometry

– Parts of the geometry bend
and flex depending on
the nearby bones

Skeleton

Skinning

• Skinning is the process of attaching a

renderable skin to an underlying articulated

skeleton.

• There are several approaches to skinning with

varying degrees of realism and complexity.

• Binding refers to the initial attachment of the

skin to the underlying skeleton and assigning

any necessary information to the vertices

Rigid Skinning

• Set of rigid components

– Each component attached
to a single bone

– Each component mesh is simply
transformed into world space by
the appropriate joint world matrix.

– Robots and simple characters made
up from a collection of rigid components
can be rendered through classical hierarchical
rendering approaches.

– This results in every vertex in the final rendered
character being transformed by exactly one
matrix.

Rigid Skinning

• For every vertex, we compute the world

space position by transforming the local

space position by the appropriate

joint world matrix

• Every vertex in each mesh is transformed

from the joint local space where it is

defined into world space, where it can

be used for further processing such

as lighting and rendering.

• Works fine for robots, mechanical characters, and vehicles

– Not appropriate for organic characters with continuous skin.

Rigid Skinning Limitations

• Consider human joints

– When they bend, the body shape bends as well

• No distinct parts

– We cannot represent this with rigid bodies

• Or the pieces would separate, where there should be

stretching or compression

Rigging

• Each vertex in the mesh can be attached to
more than one joint
– Each attachment affects the vertex with a

different strength or weight.

• The final transformed vertex position is a
weighted average of the initial position
transformed by each of the attached joints.

• Many vertices will only need to attach to
one or two joints and rarely is it necessary to
attach a vertex to more than four.

Rigging

• The artist manually

creates a skeleton

for the target model

– Define correspondences

between

mesh and skeleton

Head:

1.0

Arm: 1.0Upperarm: 0.5
Forearm: 0.5

Rigging

• Associate each point with nearest link

– When link moves, transform its points.

• Each point gets affected by several links

– Take weighted average

– Adjust the weights until it looks good

Rigging

http://graphics.cs.uh.edu/ble/papers/2012sa-ssdr/SSDR-

presentation.pdf

http://graphics.cs.uh.edu/ble/papers/2012sa-ssdr/SSDR-presentation.pdf

Rigging

http://graphics.cs.uh.edu/ble/papers/2012sa-ssdr/SSDR-

presentation.pdf

http://graphics.cs.uh.edu/ble/papers/2012sa-ssdr/SSDR-presentation.pdf

Rigging

http://graphics.cs.uh.edu/ble/papers/2012sa-ssdr/SSDR-

presentation.pdf

http://graphics.cs.uh.edu/ble/papers/2012sa-ssdr/SSDR-presentation.pdf

Rigging

http://graphics.cs.uh.edu/ble/papers/2012sa-ssdr/SSDR-

presentation.pdf

http://graphics.cs.uh.edu/ble/papers/2012sa-ssdr/SSDR-presentation.pdf

Rigging

Automatic Rigging

• Rigging is time-consuming and tedious

even for experienced animators

• The change in the behaviour of a
vertex as its weights are changed

is often counterintuitive and it may

not be clear whether a value exists

which gives the desired position.

• Some researches have looked at automatic rigging methods
– e.g. “Automatic Rigging and Animation of 3D Characters” Baran & Popovic

• Online solutions, e.g., www.mixamo.com

http://www.mixamo.com/

Linear Blend Skinning

• Used in games, a.k.a.

– Linear blend skinning

– Skeletal subspace deformation

– Enveloping

– Vertex Blending

• Determines the new position of a vertex by

linearly combining the results of the vertex

transformed rigidly with each bone.

– Each influencing bone is given a scalar weight wi

– Weighted sum gives the vertex’s position in the new pose

– Weights set such that sum of all weights for a vertex = 1

Hardware Skinning

• 3D artist supplies for each vertex

– Index or indices of the joint(s) to which it is

bound

• 4 joint limit typical

– A weighting factor for each joint describing how

much influence that joint should have

• Must sum up to 1

• Last weight often omitted & calculated at runtime

Vertex Data Structure

• struct SkinnedVertex {
float m_position[3] // (Px, Py, Pz)

float m_normal[3] // (Nx, Ny, Nz)

float m_u, M_v; // texture coordinates

int m_jointIndex[4] // joint indices

float m_jointWeight[3]; //joint weights, last omitted

}

Mathematics of Skinning

• Need a matrix to transform the vertices (in model space) of

the mesh from original positions into new positions

Bind Pose Current Pose

Simple Example

• Lets take a one-jointed skeleton example

– Model space – M

– Joint space – J

– Bind pose – B

– Current pose – C (new pos & ori in model space)

𝑣𝑀
𝐵

𝑣𝑀
𝐶

Bind Pose Current Pose

Simple Example

• Trick: position of a vertex bound to a joint is

constant when expressed in that joints

coordinate system

– Take bind-pose position of vertex

• convert to joint space

• move joint to current pose

• convert back to model space

Simple Example

𝑣𝑀
𝐵 𝑣𝑀

𝐶

(-10,20)

(1,3)

(1,3)

(60,35)
Bind Pose

Current Pose

Simple Example

• Bind pose of joint in model space:

– 𝐵𝑗→𝑀
– This matrix transforms point from J to M

• Now, consider 𝑣𝑀
𝐵 , need in joint space

– Convert using inverse bind pose matrix

– (𝐵𝑗→𝑀)
−1

– 𝑣𝑗 = (𝐵𝑗→𝑀)
−1
𝑣𝑀
𝐵

• If 𝐶𝑗→𝑀 is the joints current pose

– Convert 𝑣𝑗 back to model space

– 𝑣𝑀
𝐶 = 𝐶𝑗→𝑀(𝐵𝑗→𝑀)

−1
𝑣𝑀
𝐵

Skinning matrix

𝐾𝑗

Complex Example

𝑣𝑀
𝐵 𝑣𝑀

𝐶

(-10,20)

(1,3)

(1,3)

(60,35)

More Complex Example

• Previous example only considered one joint

• Extend to multiple joint skeleton
– Make sure that 𝐵𝑗→𝑀 and 𝐶𝑗→𝑀 calculated

properly for joint in question (concatenate
transformation of parents)

– Calculate an array of skinning matrices, one for
each joint called the matrix palette.

• Matrix palette is passed to rendering engine
when rendering a skinned mesh
– Used to transform vertex from bind pose to

current pose

Matrix Management

• 𝐶𝑗→𝑀 changes every frame as the character
assumes different poses over time

• (𝐵𝑗→𝑀)
−1

constant throughout the game

– Generally cached with skeleton

– Not calculated at runtime

• Animation engines calculate local poses for
each joint 𝐶𝑗→𝑃(𝑗) then convert into global poses
𝐶𝑗→𝑀 before multiplying by corresponding
cached inverse bind pose matrix

• This gives us a 𝐾𝑗 for each joint

Model-to-World Transform

• Need to transform each vertex to world

space

• Pre-multiply palette of skinning matrices by

the object’s model-to-world transform

– Save rendering engine

one matrix multiply per vertex

• (𝐾𝑗)𝑊 = 𝑀𝑀→𝑊𝐶𝑗→𝑀 (𝐵𝑗→𝑀)
−1

• Why not bake this transform?

• Ok sometimes but sometimes not?

Animation Instancing

• For crowds

– Keep model-to-world transforms separate

– Share single matrix palette across all characters

Multiple Joints per Vertex

• When a vertex is skinned to more than one joint

– Calculate model space position for each joint

– Take a weighted average of resulting positions

– Weights provided by artist (must sum to 1)

• For a vertex skinned to N joints, with indices j0 to

jN-1 & weights w0 to wN-1, equation:

𝑣𝑀
𝐶 =

𝑖=0

𝑁−1

𝑤𝑖𝑗𝐾𝑗𝑖𝑣𝑀
𝐵

𝑣𝑀
𝐵

Multiple Joints per Vertex

𝑣𝑀
𝐶 =

𝑖=0

𝑁−1

𝑤𝑖𝐾𝑗𝑖𝑣𝑀
𝐵

𝑣𝑀
𝐵 𝑣𝑀

𝐶𝑤0 = 0.4𝑗1
𝑗0

𝑗0
𝑤1 = 0.6𝑗1

= 𝑤0* + 𝑤1*

Problems

• Volume loss as joints rotated to extreme

angles

– Collapsing elbow joint

– Candy wrapper effect on wrist

• Due to lack of flexibility in the framework

• Linear interpolation of transformation

matrices is not equivalent to linear

interpolation of their rotations

Popularity

• Simplicity and computational efficiency

Other approaches exist

Solutions

• Avoid poses with big variation angles

• Add extra bones

• Use a more sophisticated linear blend

skinning solution

– Dual quaternions

• Use a non-linear blend skinning solution

Muscle-Based Models

