Lecture 1: an introduction to CUDA

Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Lecture 1 – p. 1/34

Overview

- hardware view
- software view
- CUDA programming
- first practical

Course materials are available at:

https://people.maths.ox.ac.uk/gilesm/cuda/index.html

At the top-level, a PCIe graphics card with a many-core GPU and high-speed graphics "device" memory sits inside a standard PC/server with one or two multicore CPUs:

SM = Streaming Multiprocessor – there can be many more than shown here!

Lecture 1 – p. 4/34

New HPC & professional graphics cards every 2 years, roughly. HPC cards have excellent double precision (DP) capabilities – both have special "tensor cores" for AI/ML

- Ampere (compute capability 8.0):
 - A100 released in 2020, smaller A30 later
 - A2, A10, A16, A40 (compute capability 8.6, poor DP)
- Hopper (compute capability 9.0):
 - H100 released in 2023, H200 in 2024
 - L4, L40 (compute capability 8.9, poor DP) for inference and Virtual Desktop Infrastructure
- Blackwell (compute capability 10.0):
 - B100 announced early 2024, shipping by the end of 2024 to select customers?

In addition there are consumer/gaming cards with excellent single precision (SP) capabilities, ray tracing support, and "tensor cores" for AI/ML, but much poorer on DP

- Ada Lovelace (compute capability 8.9):
 - GeForce RTX 4060 / 4060 Ti
 - GeForce RTX 4070 / 4070 Ti
 - GeForce RTX 4080
 - GeForce RTX 4090

Blackwell RTX 5000 series GPUs due end of 2024?

The key building block in an NVIDIA GPUs is a "streaming multiprocessor" (SM) – the A100 has 108 of them each with:

- 32 FP64 cores + 64 FP32 cores + 64 INT32 cores
- 64k registers
- 192KB of shared memory/L1 cache
- up to 2K threads per SM

In addition the A100 has:

- 40MB of L2 cache
- bandwidth of 1.6TB/s to external HBMe memory
- optional 600GB/s NVlink to other GPUs

Multithreading

Key hardware feature is that the cores in a SM are SIMT (Single Instruction Multiple Threads) cores:

- groups of 32 cores execute the same instructions simultaneously, but with different data
- similar to AVX vectorisation on Intel Xeons
- 32 threads all doing the same thing at the same time
- natural for graphics processing and much scientific computing
- SIMT is also a natural choice for many-core chips to simplify each core

Multithreading

Lots of active threads is the key to high performance:

- no "context switching"; each thread has its own registers (up to 255 of them), which limits the number of active threads
- threads on each SM execute in groups of 32 called "warps" – execution alternates between "active" warps, with warps becoming temporarily "inactive" when waiting for data

Multithreading

originally, each thread completed one operation before the next started to avoid complexity of pipeline overlaps

however, NVIDIA have now relaxed this, so each thread can have multiple independent instructions overlapping

memory access from device memory has a delay of 200-400 cycles; with 40 active warps this is equivalent to 5-10 operations, so enough to hide the latency?

Software view

At the top level, we have a main process which runs on the CPU and performs the following steps:

- 1. initialises card
- 2. allocates memory in host and on device
- 3. copies data from host to device memory
- 4. launches multiple instances of execution "kernel" on device
- 5. copies data from device memory to host
- 6. repeats 3-5 as needed
- 7. de-allocates all memory and terminates

Software view

At a lower level, within the GPU:

- each instance (or copy) of the kernel executes on a SM
- If the number of instances exceeds the number of SMs, then more than one will run at a time on each SM if there are enough registers and shared memory, and the others will wait in a queue (on the GPU) and run later
- all threads within one instance can access local shared memory but can't see what the other instances are doing (even if they are on the same SM)
- there are no guarantees on the order in which the instances execute

CUDA

CUDA is NVIDIA's program development environment:

- based on C/C++ with some extensions
- Fortran support also available
- lots of sample codes and good documentation
 fairly short learning curve

AMD has developed HIP, a CUDA lookalike:

- compiles to CUDA for NVIDIA hardware
- compiles to ROCm for AMD hardware

CUDA Components

Installing CUDA on a system, there are 2 components:

Driver

- Iow-level software that controls the graphics card
- Toolkit (currently on version 12.5)
 - nvcc CUDA compiler
 - Nsight plugin for Eclipse or Visual Studio
 - profiling and debugging tools
 - lots of libraries

In addition, NVIDIA makes available lots of sample codes in a GitHub repository:

https://github.com/NVIDIA/cuda-samples

Already explained that a CUDA program has two pieces:

- host code on the CPU which interfaces to the GPU
- kernel code which runs on the GPU

At the host level, there is a choice of 2 APIs (Application Programming Interfaces):

- run-time
 - simpler, more convenient
- driver
 - much more verbose, more flexible (e.g. allows run-time compilation)

We will only use the run-time API in this course, and that is all I use in my own research.

At the host code level, there are library routines for:

- memory allocation on graphics card
- data transfer to/from device memory
 - constants
 - ordinary data
- error-checking
- timing

There is also a special syntax for launching multiple instances of the kernel process on the GPU.

In its simplest form it looks like:

kernel_routine<<<gridDim, blockDim>>>(args);

- gridDim is the number of instances of the kernel (the "grid" size)
- blockDim is the number of threads within each instance (the "block" size)
- args is a limited number of arguments, usually mainly pointers to arrays in graphics memory, and some constants which get copied by value

The more general form allows gridDim and blockDim to be 2D or 3D to simplify application programs

At the lower level, when one instance of the kernel is started on a SM it is executed by a number of threads, each of which knows about:

- some variables passed as arguments
- pointers to arrays in device memory (also arguments)
- global constants in device memory
- shared memory and private registers/local variables
- some special variables:
 - gridDim size (or dimensions) of grid of blocks
 - blockDim size (or dimensions) of each block
 - blockIdx index (or 2D/3D indices) of block
 - Interval thread thre
 - warpSize always 32 so far, but could change

1D grid with 4 blocks, each with 64 threads:

- gridDim = 4
- > blockDim = 64
- blockIdx ranges from 0 to 3
- threadIdx ranges from 0 to 63

The kernel code looks fairly normal once you get used to two things:

- code is written from the point of view of a single thread
 - quite different to OpenMP multithreading
 - similar to MPI, where you use the MPI "rank" to identify the MPI process
 - all local variables are private to that thread
- need to think about where each variable lives (more on this in the next lecture)
 - any operation involving data in the device memory forces its transfer to/from registers in the GPU

Host code

h_x = (float *)malloc(nsize*sizeof(float)); cudaMalloc((void **)&d_x,nsize*sizeof(float));

my_first_kernel<<<nblocks,nthreads>>>(d_x);

for (int n=0; n<nsize; n++)
 printf(" n, x = %d %f \n",n,h_x[n]);</pre>

cudaFree(d_x); free(h_x);
}

Kernel code

#include <helper_cuda.h>

```
__global___ void my_first_kernel(float *x)
{
  int tid = threadIdx.x + blockDim.x*blockIdx.x;
  x[tid] = (float) threadIdx.x;
}
```

- __global__ identifier says it's a kernel function
- each thread sets one element of x array
- within each block of threads, threadIdx.x ranges from 0 to blockDim.x-1, so each thread has a unique value for tid

Suppose we have 1000 blocks, and each one has 128 threads – how does it get executed?

On current hardware, would probably get 8-12 blocks running at the same time on each SM, and each block has 4 warps \implies 32-48 warps running on each SM

Each clock tick, SM warp scheduler decides which warps to execute next, choosing from those not waiting for

- data coming from device memory (memory latency)
- completion of earlier instructions (pipeline delay)

Programmer doesn't have to worry about this level of detail, just make sure there are lots of threads / warps

Multiple blocks running on each SM:

In this simple case, we had a 1D grid of blocks, and a 1D set of threads within each block.

If we want to use a 2D set of threads, then
blockDim.x, blockDim.y give the dimensions, and
threadIdx.x, threadIdx.y give the thread indices

and to launch the kernel we would use something like

```
dim3 nthreads(16,4);
my_new_kernel<<<nblocks,nthreads>>>(d_x);
```

where dim3 is a special CUDA datatype with 3 components .x, .y, .z each initialised to 1.

A similar approach is used for 3D threads and 2D / 3D grids; can be very useful in 2D / 3D finite difference applications.

How do 2D / 3D threads get divided into warps?

1D thread ID defined by

```
threadIdx.x +
threadIdx.y * blockDim.x +
threadIdx.z * blockDim.x * blockDim.y
```

and this is then broken up into warps of size 32.

- start from code shown above (but with comments)
- test error-checking and printing from kernel functions
- modify code to add two vectors together (including sending them over from the host to the device)
- if time permits, look at CUDA samples

Things to note:

memory allocation cudaMalloc((void **)&d_x, nbytes);

data copying

- reminder: prefix h_ and d_ to distinguish between arrays on the host and on the device is not mandatory, just helpful labelling
- kernel routine is declared by __global__ prefix, and is written from point of view of a single thread

Second version of the code is very similar to first, but uses a header file for various safety checks – gives useful feedback in the event of errors.

- check for error return codes: checkCudaErrors(...);
- check for kernel failure messages: getLastCudaError(...);

One thing to experiment with is the use of printf within a CUDA kernel function:

- essentially the same as standard printf; minor difference in integer return code
- each thread generates its own output; use conditional code if you want output from only one thread
- output goes into an output buffer which is transferred to the host and printed later (possibly much later?)
- buffer has limited size (1MB by default), so could lose some output if there's too much
- need to use either cudaDeviceSynchronize(); or cudaDeviceReset(); at the end of the main code to make sure the buffer is flushed before termination

The practical also has a third version of the code which uses "managed memory" based on Unified Memory.

In this version

- there is only one array / pointer, not one for CPU and another for GPU
- the programmer is not responsible for moving the data to/from the GPU
- everything is handled automatically by the CUDA run-time system

This leads to simpler code, but it's important to understand what is happening because it may hurt performance:

- if the CPU initialises an array x, and then a kernel uses it, this forces a copy from CPU to GPU
- if the GPU modifies x and the CPU later tries to read from it, that triggers a copy back from GPU to CPU

Personally, I prefer to keep complete control over data movement, so that I know what is happening and I can maximise performance.

ARC "htc" cluster

external network

- gateway.arc.ox.ac.uk is for external access
- htc-login.arc.ox.ac.uk is the head/login node
- the DGX compute nodes each have 8 Volta V100 GPUs
- read the ARC notes before starting the practical

Key reading

CUDA C++ Programming Guide:

- Section 1: Introduction
- Section 2: Programming Model
- Section 5.4: performance of different GPUs
- Section 6: CUDA-enabled GPUs
- Sections 7.1 7.4: C language extensions
- Section 7.33: printf output
- Section 16: features of different GPUs

These are the section numbers for the HTML version of the document; add 3 when looking at the PDF version!

Lecture 2: different memory and variable types

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Lecture 2 – p. 1/36

Memory

Key challenge in modern computer architecture

- no point in blindingly fast computation if data can't be moved in and out fast enough
- need lots of memory for big applications
- very fast memory is also very expensive
- end up being pushed towards a hierarchical design
CPU Memory Hierarchy

Memory Hierarchy

Execution speed relies on exploiting data *locality*

- temporal locality: a data item just accessed is likely to be used again in the near future, so keep it in the cache
- spatial locality: neighbouring data is also likely to be used soon, so load them into the cache at the same time using a 'wide' bus (like a multi-lane motorway)

This wide bus is only way to get high bandwidth to slow main memory

Caches

The cache line is the basic unit of data transfer; typical size is 64 bytes $\equiv 8 \times 8$ -byte items.

With a single cache, when the CPU loads data into a register:

- it looks for line in cache
- if there (hit), it gets data
- if not (miss), it gets entire line from main memory, displacing an existing line in cache (usually least recently used)

When the CPU stores data from a register:

same procedure

Importance of Locality

Typical workstation: 20 Gflops per core 40 GB/s L3 ↔ L2 cache bandwidth 64 bytes/line

 $40GB/s \equiv 600M$ line/s $\equiv 5G$ double/s

At worst, each flop requires 2 inputs and has 1 output, forcing loading of 3 lines \implies 200 Mflops

If all 8 variables/line are used, then this increases to 1.6 Gflops.

To get up to 20Gflops needs temporal locality, re-using data already in the L2 cache.

GPU Architecture

Volta

- usually 32 bytes cache line (8 floats or 4 doubles)
- V100: 4096-bit memory path from HBM2e device memory to L2 cache \implies up to 900 GB/s bandwidth
- unified 6MB L2 cache for all SM's
- each SM has 96kB of shared memory / L1 cache
- no global cache coherency as in CPUs, so should (almost) never have different blocks updating the same global array elements

GPU Memory Hierarchy

Importance of Locality

20Tflops GPU 1280 GB/s memory \longleftrightarrow L2 cache bandwidth 32 bytes/line

1280 GB/s \equiv 40G line/s \equiv 160G double/s

At worst, each flop requires 2 inputs and has 1 output, forcing loading of 3 lines \implies 13 Gflops

If all 4 doubles/line are used, increases to 50 Gflops

To get up to 8 TFlops needs about 50 flops per double transferred to/from device memory

Even with careful implementation, many algorithms are bandwidth-limited not compute-bound

Practical 1 kernel

```
__global___void my_first_kernel(float *x)
{
  int tid = threadIdx.x + blockDim.x*blockIdx.x;
  x[tid] = threadIdx.x;
}
```

- 32 threads in a warp will address neighbouring elements of array x
- if the data is correctly "aligned" so that x[0] is at the beginning of a cache line, then x[0] - x[31] will be in same cache line - a "coalesced" transfer
- hence we get perfect spatial locality

A bad kernel

```
__global___ void bad_kernel(float *x)
{
  int tid = threadIdx.x + blockDim.x*blockIdx.x;
  x[1000*tid] = threadIdx.x;
}
```

- In this case, different threads within a warp access widely spaced elements of array x – a "strided" array access
- each access involves a different cache line, so performance will be much worse

Global arrays

So far, concentrated on global / device arrays:

- held in the large device memory
- allocated by host code
- pointers held by host code and passed into kernels
- continue to exist until freed by host code
- since blocks execute in an arbitrary order, if one block modifies an array element, no other block should read or write that same element

Global variables

Global variables can also be created by declarations with global scope within kernel code file

```
__device__ int reduction_lock=0;
__global__ void kernel_1(...) {
   ...
}
__global__ void kernel_2(...) {
   ...
}
```

Global variables

- the __device__ prefix tells nvcc this is a global variable in the GPU, not the CPU.
- the variable can be read and modified by any kernel
- its lifetime is the lifetime of the whole application
- can also declare arrays of fixed size
- Can read/write by host code using special routines cudaMemcpyToSymbol, cudaMemcpyFromSymbol or with standard cudaMemcpy in combination with cudaGetSymbolAddress
- in my own CUDA programming, I rarely use this capability but it is occasionally very useful

Constant variables

Very similar to global variables, except that they can't be modified by kernels:

- defined with global scope within the kernel file using the prefix ______
- initialised by the host code using
 cudaMemcpyToSymbol, cudaMemcpyFromSymbol
 or cudaMemcpy in combination with
 cudaGetSymbolAddress
- I use it all the time in my applications; practical 2 has an example

Constant variables

Only 64KB of constant memory, but big benefit is that each SM has a 8KB cache

- when all threads read the same constant, almost as fast as a register
- doesn't tie up a register, so very helpful in minimising the total number of registers required

Constants

A constant variable has its value set at run-time

But code also often has plain constants whose value is known at compile-time:

#define PI 3.1415926f

a = b / (2.0f * PI);

Leave these as they are – they seem to be embedded into the executable code so they don't use up any registers

Don't forget the \pm at the end if you want single precision; in C/C++

 $\text{single} \times \text{double} = \text{double}$

Registers

Within each kernel, by default, individual variables are assigned to registers:

```
___global___ void lap(int I, int J,
                     float *u1, float *u2) {
  int i = threadIdx.x + blockIdx.x*blockDim.x;
  int j = threadIdx.y + blockIdx.y*blockDim.y;
  int id = i + j \star I;
  if (i==0 | | i==I-1 | | j==0 | | j==J-1) {
    u2[id] = u1[id]; // Dirichlet b.c.'s
  }
  else {
    u2[id] = 0.25f * (u1[id-1] + u1[id+1])
                      + u1[id-I] + u1[id+I] );
```

Registers

- 64K 32-bit registers per SM
- up to 255 registers per thread
- up to 2048 threads per SM (at most 1024 per thread block)
- max registers per thread \implies 256 threads
- max threads \implies 32 registers per thread
- $8 \times$ difference between "fat" and "thin" threads

What happens if your application needs more registers?

They "spill" over into L1 cache, and from there to device memory – precise mechanism unclear, but

either certain variables become device arrays with one element per thread

or the contents of some registers get "saved" to device memory so they can used for other purposes, then the data gets "restored" later

Either way, the application suffers from the latency and bandwidth implications of using device memory

Local arrays

What happens if your application uses a little array?

```
____global___ void lap(float *u) {
```

```
float ut[3];
```

int tid = threadIdx.x + blockIdx.x*blockDim.x;

```
for (int k=0; k<3; k++)
  ut[k] = u[tid+k*gridDim.x*blockDim.x];</pre>
```

```
for (int k=0; k<3; k++)
    u[tid+k*gridDim.x*blockDim.x] =
        A[3*k]*ut[0]+A[3*k+1]*ut[1]+A[3*k+2]*ut[2];
}</pre>
```

Local arrays

In simple cases like this (quite common) compiler converts to scalar registers:

__global__ void lap(float *u) {
int tid = threadIdx.x + blockIdx.x*blockDim.x;
float ut0 = u[tid+0*gridDim.x*blockDim.x];
float ut1 = u[tid+1*gridDim.x*blockDim.x];
float ut2 = u[tid+2*gridDim.x*blockDim.x];

Local arrays

In more complicated cases, array is put into device memory

- this is because registers are not dynamically addressable – compiler has to specify exactly which registers are used for each instruction
- still referred to in the documentation as a "local array" because each thread has its own private copy
- held in L1 cache by default, may never be transferred to device memory
- 96kB of L1 cache equates to 24k 32-bit variables, which is 24 per thread when using 1024 threads
- beyond this, it will have to spill to device memory

Shared memory

In a kernel, the prefix ____shared___ as in

shared	int	x_dim;
shared	float	x[128];

declares data to be shared between all of the threads in the thread block – any thread can set its value, or read it.

There can be several benefits:

- essential for operations requiring communication between threads (e.g. summation in lecture 4)
- useful for data re-use
- alternative to local arrays in device memory

Shared memory

If a thread block has more than one warp, it's not pre-determined when each warp will execute its instructions – warp 1 could be many instructions ahead of warp 2, or well behind.

Consequently, almost always need thread synchronisation to ensure correct use of shared memory.

Instruction

```
____syncthreads();
```

inserts a "barrier"; no thread/warp is allowed to proceed beyond this point until the rest have reached it (like a roll call on a school outing)

Shared memory

So far, have discussed statically-allocated shared memory – the size is known at compile-time

Can also create dynamic shared-memory arrays but this is more complex

Total size is specified by an optional third argument when launching the kernel:

kernel<<<blocks,threads,shared_bytes>>>(...)

Using this within the kernel function is complicated/tedious; see Section 7.2.3 in CUDA C++ Programming Guide

Read-only arrays

With "constant" variables, each thread reads the same value.

In other cases, we have arrays where the data doesn't change, but different threads read different items.

In this case, can get improved performance by telling the compiler by declaring global array with

const __restrict__

qualifiers so that the compiler knows that it is read-only

Vector variables / 16-bit floats

Section 7.3 of CUDA C++ Programming Guide: CUDA defines small vectors

- Jouble2, double3, double4: 2, 3, or 4 doubles
- float2, float3, float4: 2, 3, or 4 floats
- similar for ints, uints, etc.

Individual components are labelled .x, .y, .z, .w

Also, CUDA defines two kinds of 16-bit floats

- ▶ half, half2: IEEE fp16 variables (very limited range: $6 \times 10^{-5} - 6 \times 10^{4}$)
- bfloat16, bfloat162: bfloat16 variables (same range as float but much lower precision)

Built-in variables

Section 7.4 of CUDA C++ Programming Guide:

- gridDim: type dim3 (like uint3 but all three
 components .x, .y, .z initialised to 1 by default)
- blockIdx: type uint3
- blockDim: type dim3
- threadIdx: type uint3
- warpSize: type int
 (always 32 so far, but might change in future?)

Non-blocking loads/stores

What happens with the following code?

```
___global___ void lap(float *u1, float *u2) {
 float a;
 a = u1[threadIdx.x + blockIdx.x*blockDim.x]
  . . .
 c = b * a;
 u2[threadIdx.x + blockIdx.x*blockDim.x] = c;
}
```

Load doesn't block until needed; store also doesn't block

Active blocks per SM

Each block require certain resources:

- threads
- registers (registers per thread \times number of threads)
- shared memory (static + dynamic)

Together these determine how many blocks can be run simultaneously on each SM – up to a maximum of 32 blocks

Active blocks per SM

My general advice:

- number of active threads depends on number of registers each needs
- good to have at least 4 active blocks per SM, each with at least 128 threads
- smaller number of blocks when each needs lots of shared memory
- Iarger number of blocks when they don't need any shared memory

Active blocks per SM

On Volta:

- maybe 4 big blocks (512 threads) if each needs a lot of shared memory
- maybe 12 small blocks (128 threads) if no shared memory needed
- or 4 small blocks (128 threads) if each thread needs lots of registers

Very important to experiment with different block sizes to find what gives the best performance.

Summary

- dynamic device arrays
- static device variables / arrays
- constant variables / arrays
- registers
- spilled registers
- local arrays
- shared variables / arrays

CUDA C++ Programming Guide:

- Sections 7.1-7.4 essential
- Sections 3.2.2, 3.2.4

Other reading:

Wikipedia article on caches: en.wikipedia.org/wiki/CPU_cache

Lecture 3: control flow and synchronisation

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Lecture 3 – p. 1/36

Warp divergence

Threads are executed in warps of 32, with all threads in the warp executing the same instruction at the same time.

What happens if different threads in a warp need to do different things?

This is called *warp divergence* – CUDA will generate correct code to handle this, but to understand the performance you need to understand what CUDA does with it
This is not a new problem.

Old CRAY vector supercomputers had a logical merge vector instruction

z = p ? x : y;

which stored the relevant element of the input vectors x, y depending on the logical vector p, equivalent to

```
for(i=0; i<I; i++) {
    if (p[i]) z[i] = x[i];
    else         z[i] = y[i];
}</pre>
```

Similarly, NVIDIA GPUs have *predicated* instructions which are carried out only if a logical flag is true.

p: a = b + c; // computed only if p is true

In the previous example, all threads compute the logical predicate and two predicated instructions

p = (x<0.0); p: z = x-2.0; // single instruction !p: z = sqrt(x);

Note that:

- sqrt(x) would usually produce a NaN when x<0, but it's not really executed when x<0 so there's no problem</p>
- all threads execute both conditional branches, so execution cost is sum of both branches potentially large loss of performance

Another example:

- x[n] is only read here if $n \ge 0$
- don't have to worry about illegal memory accesses when n is negative

If the branches are big, nvcc compiler inserts code to check if all threads in the warp take the same branch (*warp voting*) and then branches accordingly.

```
p = ...
   if (any(p)) {
p: ...
p: ...
   }
   if (any(!p)) {
!p: ...
!p: ...
```

Note:

- doesn't matter what is happening with other warps
 each warp is treated separately
- if each warp only goes one way that's very efficient
- warp voting costs a few instructions, so for very simple branches the compiler just uses predication without voting

In some cases, can determine at compile time that all threads in the warp must go the same way

e.g. if case is a run-time argument

In this case, there's no need to vote

Warp divergence can lead to a big loss of parallel efficiency – one of the first things I look out for in a new application.

In worst case, effectively lose factor $32 \times$ in performance if one thread needs expensive branch, while rest do nothing

Typical example: PDE application with boundary conditions

- if boundary conditions are cheap, loop over all nodes and branch as needed for boundary conditions
- if boundary conditions are expensive, use two kernels: first for interior points, second for boundary points

Another example: processing a long list of elements where, depending on run-time values, a few require very expensive processing

GPU implementation:

- first process list to build two sub-lists of "simple" and "expensive" elements
- then process two sub-lists separately

Note: none of this is new – this is what we did 35 years ago on CRAY and Thinking Machines systems.

What's important is to understand hardware behaviour and design your algorithms / implementation accordingly

Synchronisation

Already introduced _____syncthreads (); which forms a barrier – all threads wait until every one has reached this point.

Otherwise, can end up in *deadlock*

Typical application

// load in data to shared memory

- • •
- • •
- • •

// synchronisation to ensure this has finished

____syncthreads();

// now do computation using shared data

- • •
- . . .
- •••
- • •

Synchronisation

There are other synchronisation instructions which are similar but have extra capabilities:

- int __syncthreads_count (predicate)
 counts how many predicates are true
- int __syncthreads_and(predicate)
 returns non-zero (true) if all predicates are true
- int _____syncthreads_or(predicate)

returns non-zero (true) if any predicate is true

I've not used these, and don't currently see a need for them

Warp voting

There are similar *warp voting* instructions which operate at the level of a warp:

int __all(predicate)

returns non-zero (true) if all predicates in warp are true

int ___any(predicate)

returns non-zero (true) if any predicate is true

unsigned int __ballot(predicate) sets nth bit based on nth predicate

Again, I've never used these

Occasionally, an application needs threads to update a counter in shared memory.

shared		int	count;
•••			
if ())	cour	nt++;

In this case, there is a problem if two (or more) threads try to do it at the same time

Using standard instructions, multiple threads in the same warp will only update it once.

	thread 0	thread 1	thread 2	thread 3
	read	read	read	read
time	add	add	add	add
	write	write	write	write

With atomic instructions, the read/add/write becomes a single operation, and they happen one after the other

	thread 0	thread 1	thread 2	thread 3			
time	read/add/writ	е					
	read/add/write						
	read/add/write						
			re	ead/add/write			

Several different atomic operations are supported:

- addition / subtraction atomicAdd, atomicSub
- minimum / maximum atomicMin, atomicMax
- increment / decrement atomicInc, atomicDec
- exchange / compare-and-swap
 atomicExch, atomicCAS
- bitwise AND / OR / XOR atomicAnd, atomicOr, atomicXor

Fast for variables in shared memory, only slightly slower for variables in device global memory (operations performed in L2 cache)

Compare-and-swap:

int atomicCAS(int* address, int compare, int val);

- if compare equals old value stored at address then val is stored instead
- in either case, routine returns the value of old
- seems a bizarre routine at first sight, but can be very useful for atomic locks

Global atomic lock

```
// global variable: 0 unlocked, 1 locked
___device___ int lock=0;
__global___ void kernel(...) {
  if (threadIdx.x==0) {
    // set lock
    do {} while(atomicCAS(&lock,0,1));
    // free lock
```

}

Global atomic lock

Problem: when a thread writes data to device memory the order of completion is not guaranteed, so global writes may not have completed by the time the lock is unlocked

```
___global___ void kernel(...) {
  if (threadIdx.x==0) {
    do {} while(atomicCAS(&lock,0,1));
    ____threadfence(); // wait for writes to finish
    // free lock
    lock = 0;
                                          Lecture 3 – p. 22/36
```

_threadfence

__threadfence_block();

wait until all global and shared memory writes are visible to

- all threads in block
- __threadfence();

wait until all global and shared memory writes are visible to

- all threads in block
- all threads, for global data

Summary

- Iots of esoteric capabilities don't worry about most of them
- essential to understand warp divergence can have a very big impact on performance
- syncthreads() is vital will see another use of it in next lecture
- the rest can be ignored until you have a critical need – then read the documentation carefully and look for relevant NVIDIA sample codes

Key reading

CUDA C++ Programming Guide:

- Section 5.4.2: control flow and predicates
- Section 5.4.3: synchronization
- Section 7.5: _____threadfence() and variants
- Section 7.6: ______syncthreads() and variants
- Section 7.14: atomic functions
- Section 7.19: warp voting

Jacobi iteration to solve discrete Laplace equation on a uniform grid:

}

How do we tackle this with CUDA?

- each thread responsible for one grid point
- each block of threads responsible for a block of the grid
- conceptually very similar to data partitioning in MPI distributed-memory implementations, but much simpler
- (also similar to blocking techniques to squeeze the best cache performance out of CPUs)
- great example of usefulness of 2D blocks and 2D "grid"s

Each block of threads processes one of these grid blocks, reading in old values and computing new values

__global__ void lap(int I, int J, const float* __restrict__ u1, float* __restrict__ u2) {

int i = threadIdx.x + blockIdx.x*blockDim.x; int j = threadIdx.y + blockIdx.y*blockDim.y; int id = i + j*I;

Lecture 3 – p. 31/36

Assumptions:

- I is a multiple of blockDim.x
- J is a multiple of blockDim.y
- hence grid breaks up perfectly into blocks

Can remove these assumptions by testing whether i, j are within grid

__global___void lap(int I, int J, const float* __restrict___u1, float* __restrict___u2) {

int i = threadIdx.x + blockIdx.x*blockDim.x; int j = threadIdx.y + blockIdx.y*blockDim.y; int id = i + j*I;

How does cache function in this application?

- if block size is a multiple of 32 in x-direction, then interior corresponds to set of complete cache lines
- "halo" points above and below are full cache lines too
- "halo" points on side are the problem each one requires the loading of an entire cache line
- optimal block shape has aspect ratio of roughly 8:1 if cache line is 32 bytes == 8 floats

- practical 3
- \bullet each thread does an entire line in *z*-direction
- x, y dimensions cut up into blocks in the same way as 2D application
- Japlace3d.cu and laplace3d_kernel.cu follow same approach described above
- this used to give the fastest implementation, but a new version uses 3D thread blocks, with each thread responsible for just 1 grid point
- the new version has lots more integer operations, but is still faster, perhaps due to many more active threads – in either case the application is probably bandwidth-limited

Lecture 4: warp shuffles, and reduction / scan operations

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Lecture 4 – p. 1/38

Warp shuffles

Warp shuffles are a faster mechanism for moving data between threads in the same warp.

There are 4 variants:

- __shfl_up_sync
 copy from a lane with lower ID relative to caller
- __shfl_down_sync
 copy from a lane with higher ID relative to caller
- __shfl_xor_sync
 copy from a lane based on bitwise XOR of own lane ID
- __shfl_sync
 copy from indexed lane ID

Here the lane ID is the position within the warp (threadIdx.x%warpSize for 1D blocks)
T __shfl_up_sync(unsigned mask, T var, unsigned int delta);

- mask controls which threads are involved usually set to -1 or 0xffffffff, equivalent to all 1's
- var is a local register variable (int, unsigned int, long long, unsigned long long, float or double)
- delta is the offset within the warp if the appropriate thread does not exist (i.e. it's off the end of the warp) then the value is taken from the current thread

T __shfl_down_sync(unsigned mask, T var, unsigned int delta);

defined similarly

T __shfl_xor_sync(unsigned mask, T var, int laneMask);

an XOR (exclusive or) operation is performed between laneMask and the calling thread's laneID to determine the lane from which to copy the value

(laneMask controls which bits of laneID are "flipped")

a "butterfly" type of addressing, very useful for reduction operations and FFTs

T __shfl_sync(unsigned mask, T var, int srcLane);

copies data from srcLane

Very important

Threads may only read data from another thread which is actively participating in the shuffle command. If the target thread is inactive, the retrieved value is undefined.

This means you must be very careful with conditional code.

Two ways to sum all the elements in a warp: method 1

Lecture 4 – p. 6/38

Two ways to sum all the elements in a warp: method 2

```
for (int i=warpSize/2; i>0; i=i/2)
value += __shfl_down_sync(-1, value, i);
```


Reduction

The most common reduction operation is computing the sum of a large array of values:

- averaging in Monte Carlo simulation
- computing RMS change in finite difference computation or an iterative solver
- computing a vector dot product in a CG or GMRES iteration

Reduction

Other common reduction operations are to compute a minimum or maximum.

Key requirements for a reduction operator \circ are:

- **•** commutative: $a \circ b = b \circ a$
- associative: $a \circ (b \circ c) = (a \circ b) \circ c$

Together, they mean that the elements can be re-arranged and combined in any order.

(Note: in MPI there are special routines to perform reductions over distributed arrays.)

Approach

Will describe things for a summation reduction – the extension to other reductions is obvious

Assuming each thread starts with one value, the approach is to

- first add the values within each thread block, to form a partial sum
- then add together the partial sums from all of the blocks

I'll look at each of these stages in turn

The first phase is contructing a partial sum of the values within a thread block.

Question 1: where is the parallelism?

"Standard" summation uses an accumulator, adding one value at a time \implies sequential

Parallel summation of *N* values:

- first sum them in pairs to get N/2 values
- repeat the procedure until we have only one value

Question 2: any problems with warp divergence?

Note that not all threads can be busy all of the time:

- N/2 operations in first phase
- N/4 in second
- N/8 in third
- etc.

For efficiency, we want to make sure that each warp is either fully active or fully inactive, as far as possible.

Question 3: where should data be held?

Threads need to access results produced by other threads:

- global device arrays would be too slow, so use shared memory
- need to think about synchronisation

Pictorial representation of the algorithm:


```
___global___ void sum(float *d_sum,float *d_data)
 extern ____shared___ float temp[];
 int tid = threadIdx.x;
temp[tid] = d_data[tid+blockIdx.x*blockDim.x];
 for (int d=blockDim.x/2; d>0; d=d/2) {
   _____syncthreads();
   if (tid<d) temp[tid] += temp[tid+d];</pre>
 }
```

```
if (tid==0) d_sum[blockIdx.x] = temp[0];
}
```

Note:

- use of dynamic shared memory size has to be declared when the kernel is called
- use of __syncthreads to make sure previous operations have completed
- first thread outputs final partial sum into specific place for that block
- could use shuffles when only one warp still active
- alternatively, could reduce each warp, put partial sums in shared memory, and then the first warp could reduce the sums – requires only one __syncthreads

Global reduction: version 1

This version of the local reduction puts the partial sum for each block in a different entry in a global array

These partial sums can be transferred back to the host for the final summation – practical 4

Global reduction: version 2

Alternatively, can use the atomic add discussed in the previous lecture, and replace

if (tid==0) d_sum[blockIdx.x] = temp[0];
by

if (tid==0) atomicAdd(&d_sum,temp[0]);

Global reduction: version 2

More general reduction operations could use the atomic lock mechanism, also discussed in the previous lecture:

*d_sum += temp[0]; __threadfence(); // wait for write completion

lock = 0;
} // free lock
}

Lecture 4 – p. 19/38

Given an input vector u_i , i = 0, ..., I-1, the objective of a scan operation is to compute

$$v_j = \sum_{i < j} u_i$$
 for all $j < I$.

Why is this important?

- a key part of many sorting routines
- arises also in particle filter methods in statistics
- related to solving long recurrence equations:

 $v_{n+1} = (1 - \lambda_n)v_n + \lambda_n u_n$

a good example that looks impossible to parallelise

Before explaining the algorithm, here's the "punch line":

- some parallel algorithms are tricky don't expect them all to be obvious
- check NVIDIA's sample codes, check the literature using Google – don't put lots of effort into re-inventing the wheel
- the relevant literature may be more than 30 years old – back to the glory days of CRAY vector computing and Thinking Machines' massively-parallel CM5

Similar to the global reduction, the top-level strategy is

- perform local scan within each block
- add on sum of all preceding blocks

Will describe two approaches to the local scan, both similar to the local reduction

- first approach:
 - very simple using shared memory, but $O(N \log N)$ operations
- second approach:
 - more efficient using warp shuffles with O(N) operations

- In after n passes, each sum has local plus preceding $2^n 1$ values
- $\log_2 N$ passes, and O(N) operations per pass $\implies O(N \log N)$ operations in total

```
___global___ void scan(float *d_data) {
```

```
extern ____shared___ float temp[];
int tid = threadIdx.x;
temp[tid] = d_data[tid+blockIdx.x*blockDim.x];
```

```
for (int d=1; d<blockDim.x; d=2*d) {
    _____syncthreads();
    float temp2 = (tid >= d) ? temp[tid-d] : 0;
    _____syncthreads();
    temp[tid] += temp2;
}
```

Notes:

- increment is set to zero if no element to the left
- **both** __syncthreads(); are needed

Confession: my most common CUDA programming error is failing to use a _____syncthreads(); when needed

The second version starts by using warp shuffles to perform a scan within each warp, and store the warp sum:

```
__global__ void scan(float *d_data) {
    __shared__ float temp[32];
    float temp1, temp2;
    int tid = threadIdx.x;
    temp1 = d_data[tid+blockIdx.x*blockDim.x];
```

```
for (int d=1; d<32; d=2*d) {
   temp2 = ____shfl_up_sync(-1, temp1,d);
   if (tid%32 >= d) temp1 += temp2;
}
```

```
if (tid%32 == 31) temp[tid/32] = temp1;
_____syncthreads();
```

Next we perform a scan of the warp sums (assuming no more than 32 warps):

```
if (tid < 32) {
  temp2 = 0.0f;
  if (tid < blockDim.x/32)
    temp2 = temp[tid];
  for (int d=1; d<32; d=2*d) {
    temp3 = \__shfl_up\_sync(-1, temp2,d);
    if (tid 32 \ge d) temp2 += temp3;
  }
  if (tid < blockDim.x/32) temp[tid] = temp2;</pre>
}
```

Finally, we add the sum of previous warps:

```
____syncthreads();
```

. . .

}

if (tid >= 32) temp1 += temp[tid/32 - 1];

To complete the global scan there are two options

First alternative:

- use one kernel to do local scan and compute partial sum for each block
- use host code to perform a scan of the partial sums
- use another kernel to add sums of preceding blocks

Second alternative – do it all in one kernel call

However, this needs the sum of all preceding blocks to add to the local scan values

Problem: blocks are not necessarily processed in order, so could end up in deadlock waiting for results from a block which doesn't get a chance to start.

Solution: use atomics to create an in-order block ID

Declare a global device variable

___device___ int my_block_count = 0;

and at the beginning of the kernel code use

```
__shared__ int my_blockId;
if (threadIdx.x==0) {
    my_blockId = atomicAdd(&my_block_count, 1);
}
__syncthreads();
```

which returns the old value of my_block_count and increments it, all in one operation.

This gives us a way of launching blocks in strict order.

In the second approach to the global scan, the kernel code does the following:

- get in-order block ID
- perform scan within the block
- wait until another global counter

__device___ volatile int my_block_count2 = 0;

shows that preceding block has computed the sum of the blocks so far

- get the sum of blocks so far, increment the sum with the local partial sum, then increment my_block_count2
- add previous sum to local scan values and store the results

// get global sum, and increment for next block

```
if (tid == 0) {
   // volatile qualifier critical here
   do {} while( my_block_count2 < my_blockId );
   shared_sum = global_sum; // copy to shared
   global_sum += local_sum; // increment sum
   __threadfence(); // wait for write</pre>
```

my_block_count2++; // increment block counter
}

____syncthreads();

Conclusion: this is all quite tricky!

Advice: best to first see if you can get working code from someone else (e.g. investigate Thrust C++ library)

Don't re-invent the wheel unless you really think you can do it better.

Recurrence equation

Given s_n, u_n , want to compute v_n defined by

 $v_n = s_n \ v_{n-1} + u_n$

(Often have

$$v_n = (1 - \lambda_n) v_{n-1} + \lambda_n u_n$$

with $0 < \lambda_n < 1$ so this computes a running weighted average, but that's not important here.)

Again looks naturally sequential, but in fact it can be handled in the same way as the scan.

Recurrence equation

Starting from

$$v_n = s_n v_{n-1} + u_n$$
$$v_{n-1} = s_{n-1} v_{n-2} + u_{n-1}$$

then substituting the second equation into the first gives

$$v_n = (s_n s_{n-1}) \ v_{n-2} + (s_n u_{n-1} + u_n)$$

SO $(s_{n-1}, u_{n-1}), \ (s_n, u_n) \longrightarrow (s_n s_{n-1}, s_n u_{n-1} + u_n)$

Repeat at each level of the scan, eventually getting

$$v_n = s'_n v_{-1} + u'_n$$

where v_{-1} represents the last element of the previous block.

Recurrence equation

When combining the results from different blocks we have the same choices as before:

- store s', u' back to device memory, combine results for different blocks on the CPU, then for each block we have v_{-1} and can complete the computation of v_n
- use atomic trick to launch blocks in order, and then after completing first phase get v₋₁ from previous block to complete the computation.

Similarly, the calculation within a block can be performed using shuffles in a two-stage process:

- 1. use shuffles to compute solution within each warp
- 2. use shared memory and shuffles to combine results from different warps and update solution from first stage

CUDA C++ Programming Guide:

- Section 7.22: warp shuffle instructions
- Section 7.21: new warp reduction instruction

 this is only for integers currently, and I have not
 experimented with it
Lecture 5: libraries and tools

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Lecture 5 – p. 1/30

Originally, NVIDIA planned to provide only one or two maths libraries, but over time these have steadily increased

- CUDA math library all of the standard math functions you would expect (i.e. very similar to what you would get from Intel)
 - various exponential and log functions
 - trigonometric functions and their inverses
 - hyperbolic functions and their inverses
 - error functions and their inverses
 - Bessel and Gamma functions
 - vector norms and reciprocals (esp. for graphics)
 - mainly single and double precision a few in half precision

cuBLAS

- basic linear algebra subroutines for dense matrices
- includes matrix-vector and matrix-matrix product
- it is possible to call cuBLAS routines from user kernels – device API
- some support for a single routine call to do a "batch" of smaller matrix-matrix multiplications
- also support for using CUDA streams to do a large number of small tasks concurrently
- simpleCUBLAS example in Practical 5 taken from NVIDIA sample codes

cuBLAS is a set of routines to be called by user host code:

helper routines:

- memory allocation
- data copying from CPU to GPU, and vice versa
- error reporting
- compute routines:
 - matrix-matrix and matrix-vector product
 - Warning! Some calls are asynchronous, i.e. the call starts the operation but the host code then continues before it has completed

cuBLASxt extends cuBLAS to multiple GPUs

cuFFT

- 1D, 2D, 3D Fast Fourier Transform
- has most variations found in FFTW and elsewhere
- Iike cuBLAS, routines called by user host code:
 - helper routines include "plan" construction
 - compute routines perform 1D, 2D, 3D FFTs
 - it supports doing a "batch" of independent transforms, e.g. applying 1D transform to a 3D dataset
- simpleCUFFT example in Practical 5 taken from NVIDIA sample codes

cuTENSOR

- tensor linear algebra library
- makes extensive use of new Tensor Cores
- cuSPARSE
 - various routines to work with sparse matrices
 - includes sparse matrix-vector and matrix-matrix products
 - could be used for iterative solution
 - also has solution of sparse triangular system
 - note: batched tridiagonal solver is in cuBLAS not cuSPARSE

- cuRAND
 - random number generation
 - SORWOW, mrg32k3a, Mersenne Twister and Philox_4x32_10 pseudo-random generators
 - Sobol quasi-random generator (with optional scrambling)
 - uniform, Normal, log-Normal, Poisson outputs
 - also device level routines for RNG within kernels
- cuSOLVER:
 - ▲ key LAPACK dense solvers, 3 6x faster than MKL
 - sparse direct solvers, 2–14x faster than CPU
 - latest version uses iterative refinement with low-precision Tensor Core operations

- CUB
 - collection of basic building blocks (e.g. sort, scan, reduction) at three levels: device, thread block, warp
 - available from github.com/NVIDIA/cub
- CUTLASS (CUDA Templates for Linear Algebra Subroutines)
 - collection of CUDA C++ template abstractions for implementing matrix-multiplication (GEMM)
 - available from github.com/NVIDIA/cutlass
- AmgX
 - library for algebraic multigrid
 - available from developer.nvidia.com/amgx

- NCCL
 - NVIDIA Collective Communications Library
 - multi-GPU over both PCIe and NVIink
 - multi-node over NVIDIA/Mellanox NICs
- cuDNN
 - Ibrary for Deep Neural Networks
- nvGraph
 - Page Rank, Single Source Shortest Path, Single Source Widest Path
- NPP (NVIDIA Performance Primitives)
 - library for imaging and video processing
 - includes functions for filtering, JPEG decodingturetc.p. 9/30

- Thrust
 - high-level C++ template library with an interface based on the C++ Standard Template Library (STL)
 - very different philosopy to other libraries; users write standard C++ code (no CUDA) but get the benefits of GPU parallelisation
 - also supports x86 execution
 - relies on C++ object-oriented programming; certain objects exist on the GPU, and operations involving them are implicitly performed on the GPU
 - I've not used it, but for some applications it can be very powerful – e.g. lots of built-in functions for operations like sort and scan
 - also simplifies memory management and data movement
 Lecture 5 – p. 10/30

- Sokkos
 - another high-level C++ template library
 - developed in the US DoE Labs, so considerable investment in both capabilities and on-going software maintenance
 - again I've not used it, but possibly worth investigating
 - for more information see

 https://github.com/kokkos/kokkos/wiki
 https://trilinos.org/packages/kokkos/

Useful header files

- dbldbl.h available from https://gist.github.com/seibert/5914108 Header file for double-double arithmetic for quad-precision (developed by NVIDIA, but published independently under the terms of the BSD license)
- CuComplex.h part of the standard CUDA distribution Header file for complex arithmetic – defines a class and overloaded arithmetic operations.
- helper_math.h available with NVIDIA sample codes Defines operator-overloading operations for CUDA intrinsic vector datatypes such as float4

Other libraries

- MAGMA
 - a new LAPACK for GPUs higher level numerical linear algebra, layered on top of CUBLAS
 - open source freely available from https://icl.utk.edu/magma/
 - developed by Jack Dongarra, Jim Demmel and others

Other libraries

- ArrayFire from Accelereyes:
 - was commercial software, but now open source
 - supports both CUDA and OpenCL execution
 - C, C++ and Fortran interfaces
 - wide range of functionality including linear algebra, image and signal processing, random number generation, sorting
 - www.accelereyes.com/products/arrayfire

NVIDIA maintains webpages with links to a variety of CUDA libraries:

developer.nvidia.com/gpu-accelerated-libraries
and other tools:

developer.nvidia.com/tools-ecosystem

The 7 dwarfs

- Phil Colella, senior researcher at Lawrence Berkeley National Laboratory, talked about "7 dwarfs" of numerical computation in 2004
- expanded to 13 by a group of UC Berkeley professors in a 2006 report: "A View from Berkeley"

www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

- key algorithmic kernels in many scientific computing applications
- very helpful to focus attention on HPC challenges and development of libraries and problem-solving environments/frameworks.

The 7 dwarfs

- dense linear algebra
- sparse linear algebra
- spectral methods
- N-body methods
- structured grids
- unstructured grids
- Monte Carlo

Dense linear algebra

- cuBLAS
- cuSOLVER
- CUTLASS
- MAGMA
- ArrayFire

Sparse linear algebra

- iterative solvers:
 - some available in PetSc
 - others can be implemented using sparse matrix-vector multiplication from cuSPARSE
 - NVIDIA has AmgX, an algebraic multigrid library
- direct solvers:
 - NVIDIA's cuSOLVER
 - SuperLU and STRUMPACK:

https://www.exascaleproject.org/wp-content/
uploads/2022/06/LiSherrySparseBofSlides.pdf

Spectral methods

cuFFT

- Ibrary provided / maintained by NVIDIA
- nothing else needed?

N-body methods

OpenMM

- http://openmm.org/
- open source package to support molecular modelling, developed at Stanford
- Fast multipole methods:
 - ExaFMM by Yokota and Barba:

http://www.bu.edu/exafmm/

https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes

-the-tortuous-progress-of-computational-research/

- FMM2D by Holm, Engblom, Goude, Holmgren:
 http://user.it.uu.se/~stefane/freeware
- software by Takahashi, Cecka, Fong, Darve: onlinelibrary.wiley.com/doi/10.1002/nme.3240/pdf

Structured grids

Iots of people have developed one-off applications

- no great need for a library for single block codes (though possible improvements from "tiling"?)
- multi-block codes could benefit from a general-purpose library, mainly for MPI communication
- Oxford OPS project has developed a high-level open-source framework for multi-block codes, using GPUs for code execution and MPI for distributed-memory message-passing

all implementation details are hidden from "users", so they don't have to know about GPU/MPI programming

Unstructured grids

In addition to GPU implementations of specific codes there are projects to create high-level solutions which others can use for their application codes:

- Alonso, Darve and others (Stanford)
- Oxford / Imperial College project developed OP2, a general-purpose open-source framework based on a previous framework built on MPI

See https://op-dsl.github.io/ for both OPS
and OP2

Monte Carlo

- NVIDIA cuRAND library
- some use examples among NVIDIA sample codes
- Accelereyes ArrayFire library
- nothing else needed except for more output distributions?

Debugging using NVIDIA Compute Sanitizer:

- compute-sanitizer --tool memcheck detects array out-of-bounds errors, and mis-aligned device memory accesses
- compute-sanitizer --tool racecheck checks for shared memory race conditions:
 - Write-After-Write (WAW): two threads write data to the same memory location but the order is uncertain
 - Read-After-Write (RAW), Write-After-Read (WAR): one thread writes & one reads, with uncertain order
- compute-sanitizer --tool initcheck
 detects reading of uninitialised device memory
- compute-sanitizer --tool synccheck detects incorrect use of __syncthreads and related intrinsics Lecture 5 - p. 24/30

Other languages:

- CUDA Fortran: available from NVIDIA
- Python:

https://developer.nvidia.com/cuda-python
https://numba.pydata.org/

- MATLAB: can call kernels directly, or use OOP like Thrust to define MATLAB objects which live on the GPU https://www.mathworks.com/solutions/gpu-computing.html
- Mathematica: similar to MATLAB?

https://reference.wolfram.com/language/CUDALink/tutorial/Overview.html

🧕 R:

https://developer.nvidia.com/blog/accelerate-r-applications-cuda/
http://www.r-tutor.com/gpu-computing

OpenACC ("More Science, Less Programming"):

- Iike Thrust, aims to hide CUDA programming by doing everything in the top-level CPU code
- programmer takes standard C/C++/Fortran code and inserts pragmas saying what can be done in parallel and where data should be located
- https://www.openacc.org/

OpenMP 5.0 is similar but newer:

- strongly pushed by Intel to accommodate Xeon Phi and unify things, in some sense
- https://www.openmp.org/wp-content/uploads/ 20210924-OpenMP-update-for-DOE.pdf

Integrated Development Environments (IDE):

Nsight Visual Studio edition – NVIDIA plug-in for Microsoft Visual Studio

developer.nvidia.com/nsight-visual-studio-edition

- Nsight Eclipse edition IDE for Linux systems (now distributed as plug-ins for standard Eclipse) developer.nvidia.com/nsight-eclipse-edition
- these come with editor, debugger, profiler integration

NVIDIA Nsight Compute CLI profiler ncu:

- standalone software for Linux and Windows systems
- uses hardware counters to collect a lot of useful information
- I think only 1 SM is instrumented implicitly assumes the others are behaving similarly
- Iots of things can be measured, but a limited number of counters, so it runs the application multiple times if necessary to get full info
- see practical 3 for an example of its use
- **can also visualise output using** ncu-ui https://docs.nvidia.com/nsight-compute/NsightCompute/index.html

GPU Direct:

webpage:

https://developer.nvidia.com/gpudirect

- software support for direct data transfers from one GPU to another
- works across PCIe within a single machine
- works across PCIe-connected network adapters between different systems
- includes capabilities to work with cameras and other video input devices (e.g. for self-driving cars)
- very important in applications which might otherwise be limited by PCIe bandwidth

Summary

- active work on all of the dwarfs
- in most cases, significant effort to develop general purpose libraries or frameworks, to enable users to get the benefits without being CUDA experts
- too much going on for one person (e.g. me) to keep track of it all
- NVIDIA maintains a webpage with links to CUDA tools/libraries:

developer.nvidia.com/cuda-tools-ecosystem

the existence of this ecosystem is part of why I think CUDA will remain more used than OpenCL for HPC

Lecture 6: streams, and some odds and ends

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Lecture 6 – p. 1/36

Overview

- synchronicity
- streams
- multiple GPUs
- other odds and ends

Warnings

- I haven't tried most of what I will describe
- some details sometimes change from one version of CUDA to the next – everything here is for the latest version
- overall, keep things simple unless it's really needed for performance
- if it is, proceed with extreme caution, do practicals 6, 11 and 12, and check out the NVIDIA sample codes

Synchronicity

A computer system has lots of components:

- CPU(s)
- GPU(s)
- memory controllers
- network cards

Many of these can be doing different things at the same time – usually for different processes, but sometimes for the same process

Synchronicity

The von Neumann model of a computer program is synchronous with each computational step taking place one after another

- this is an idealisation almost never true in practice
- compiler frequently generates code with overlapped instructions (pipelined CPUs) and does other optimisations which re-arrange execution order and avoid redundant computations
- however, it is usually true that as a programmer you can think of it as a synchronous execution when working out whether it gives the correct results
- when things become asynchronous, the programmer has to think very carefully about what is happening and in what order

Synchronicity

With GPUs we have to think even more carefully:

- host code executes on the CPU(s); kernel code executes on the GPU(s)
- Just when do the different bits take place?
- ... can we get better performance by being clever?
- ... might we get the wrong results?

Key thing is to try to get a clear idea of what is going on - then you can work out the consequences
GPU code

- for each warp, code execution is effectively synchronous
- different warps execute in an arbitrary overlapped fashion – use __syncthreads() if necessary to ensure correct behaviour
- different thread blocks execute in an arbitrary overlapped fashion

All of this has been described over the past 3 days – nothing new here.

The focus of these new slides is on host code and the implications for CPU and GPU execution

Simple / default behaviour:

- 🧕 1 CPU
- 🧕 1 GPU
- 1 thread on CPU (i.e. scalar code)
- 1 default "stream" on GPU

Note: within the GPU, all operations in the default stream operate strictly in sequence, each one finishing before the next one starts

Host code

- most CUDA calls are synchronous / blocking:
- example: cudaMemcpy
 - host call starts the copying <u>and waits</u> until it has finished before the next instruction in the host code
 - why? ensures correct execution if subsequent host code reads from, or writes to, the data being copied

NOTE: cudaMemcpy operates asynchronously when copying no more than 64kB from host to device – it does this by first copying the data to a host buffer, before returning to the host code (see Section 3.2.8.1 in the Programming Guide)

Host code

- CUDA kernel launch is asynchronous / non-blocking; host call starts the kernel execution, but doesn't wait for it to finish before going on to next instruction
- similar for cudaMemcpyAsync
 - starts the copy but doesn't wait for completion
 - has to be done through a "stream"
 - must use page-locked memory (also known as pinned memory) to guarantee it is asynchronous – see documentation
- host will wait for completion at a blocking cudaMemcpy or cudaDeviceSynchronize call
- benefit? can reduce execution time by overlapping CPU and GPU execution

Page-locked memory

Section 3.2.6:

- host memory is usually paged, so run-time system keeps track of where each page is located
- for higher performance, can fix some pages, but means less memory available for everything else
- CUDA uses this for better host <-> GPU bandwidth, and also to hold "device" arrays in host memory
- can provide up to 100% improvement in bandwidth
- also, may be necessary for cudaMemcpyAsync to be asynchronous, especially for device to host transfers
- allocated using cudaHostAlloc, or registered by cudaHostRegister

Host code

cudaMemcpy(d_u1,h_u1,bytes,cudaMemcpyHostToDevice); kernel_code<<<dimGrid, dimBlock>>>(d_u1, d_u2); gold_code(h_u1,h_u2);

cudaMemcpy(h_u1,d_u1,bytes,cudaMemcpyDeviceToHost);

Host code

What could go wrong?

- kernel timing need to make sure it's finished
- could be a problem if the host uses data which is read/written directly by kernel, or transferred by cudaMemcpyAsync
- cudaDeviceSynchronize() can be used to ensure correctness (similar to __syncthreads() for kernel code)

Multiple Streams

Quoting from Section 3.2.8.5 in the CUDA Programming Guide:

Applications manage the concurrent operations described above through streams.

A stream is a sequence of commands (possibly issued by different host threads) that execute in order.

Different streams, on the other hand, may execute their commands out of order with respect to one another or concurrently.

Multiple Streams

Optional stream argument for

- kernel launch
- cudaMemcpyAsync

with streams creating using cudaStreamCreate

Within each stream, CUDA operations are carried out in order (i.e. FIFO – first in, first out); one finishes before the next starts

Key to getting better performance is using multiple streams to overlap things

Default stream

The way the default stream behaves in relation to others depends on a compiler flag:

no flag, or --default-stream legacy

old (bad) behaviour in which a cudaMemcpy or kernel launch on the default stream blocks/synchronizes with other streams

--default-stream per-thread

new (good) behaviour in which the default stream doesn't affect the others

note: flag label is a bit odd – it has other effects too

```
cudaStream_t streams[8];
float *data[8];
for (int i=0; i<8; i++) {
 cudaStreamCreate(&streams[i]);
 cudaMalloc(&data[i], N * sizeof(float));
}
for (int i=0; i<8; i++) {
  // launch a tiny kernel on default stream
 k <<<1, 1>>>();
  // launch one worker kernel per stream
 kernel<<<1, 64, 0, streams[i]>>>(data[i], N);
}
cudaDeviceSynchronize();
```

old behaviour:

new behaviour:

Default stream

The second (main?) effect of the flag comes when using multiple threads (e.g. OpenMP or POSIX multithreading)

In this case the effect of the flag is to create separate independent (i.e. non-interfering) default streams for each thread

Using multiple default streams, one per thread, is a good alternative to using multiple "proper" streams

```
omp_set_num_threads(8);
float *data[8];
for (int i = 0; i < 8; i++)
  cudaMalloc(&data[i], N * sizeof(float));
#pragma omp parallel for
for (int i = 0; i < 8; i++) {
 printf(" thread ID = %d \n", omp_get_thread_num());
  // launch one worker kernel per thread
```

cudaDeviceSynchronize();

}

kernel<<<1, 64>>>(data[i], N);

Stream commands

Each stream executes a sequence of kernels, but sometimes you also need to do something on the host.

There are at least two ways of coordinating this:

- use a separate thread for each stream
 - it can wait for the completion of all pending tasks, then do what's needed on the host
- use just one thread for everything
 - for each stream, add a callback function to be executed (by a new thread) when the pending tasks are completed
 - it can do what's needed on the host, and then launch new kernels (with a possible new callback) if wanted

Stream commands

- cudaStreamCreate()
 creates a stream and returns an opaque "handle"
- cudaStreamCreateWithPriority()
 additionally defines an execution priority
- cudaStreamSynchronize()
 waits until all preceding commands have completed
- cudaStreamQuery() checks whether all preceding commands have completed
- cudaStreamAddCallback() adds a callback function to be executed on the host once all preceding commands have completed

Stream events

Useful for synchronisation and timing between streams:

- cudaEventCreate(event)
 creates an "event"
- cudaEventRecord(event, stream)
 puts an event into a stream (by default, stream 0)
- cudaEventSynchronize(event)
 CPU waits until event occurs
- cudaStreamWaitEvent(stream, event)
 stream waits until event occurs
- cudaEventQuery(event)
 check whether event has occured
- cudaEventElapsedTime(time, event1, event2)

One important use case for streams is to overlap PCIe transfers with kernel computation for real-time signal processing.

In the best case this gives a factor $3 \times$ improvement when the data transfers take as long as the kernel computation

Two use cases

A second use case is to overlap the execution of lots of small independent kernels which otherwise would execute sequentially.

Using multiple streams keeps all of the SMs in a big GPU busy.

Multiple devices

What happens if there are multiple GPUs?

CUDA devices within the system are numbered, not always in order of decreasing performance

- by default a CUDA application uses the lowest number device which is "visible" and available
- visibility controlled by environment variable CUDA_VISIBLE_DEVICES
- current device can be set by using cudaSetDevice
- cudaGetDeviceProperties does what it says
- each stream is associated with a particular device
 current device for a kernel launch or a memory copy
- see simpleMultiGPU example in NVIDIA samples
- see Section 3.2.9 for more information

Lecture 6 – p. 27/36

Multiple devices

If a user is running on multiple GPUs, data can go directly between GPUs (peer – peer) – doesn't have to go via CPU

- very important when using direct NVlink interconnect much faster than PCIe
- cudaMemcpy can do direct copy from one GPU's memory to another
- a kernel on one GPU can also read directly from an array in another GPU's memory, or write to it
- this even includes the ability to do atomic operations with remote GPU memory
- for more information see Section 6.13, "Peer Device Memory Access" in CUDA Runtime API documentation: https://docs.nvidia.com/cuda/cuda-runtime-api/

Multi-user support

What if different processes try to use the same device?

Depends on system compute mode setting (Section 3.4):

- in "default" mode, each process uses the fastest device
 - good when one very fast card, and one very slow
 - not good when you have 2 identical fast GPUs
- in "exclusive" mode, each process is assigned to first unused device; it's an error if none are available
- cudaGetDeviceProperties reports mode setting
- mode can be changed by sys-admin using nvidia-smi command line utility

Makefile

Compiling:

- Makefile for first few practicals uses nvcc to compile both the host and the device code
 - internally it uses gcc for the host code, at least by default
 - device code compiler based on open source LLVM compiler
- sometimes, prefer to use other compilers (e.g. icc, mpicc) for main code that doesn't have any CUDA calls
- this is fine provided you use -fPIC flag for position-independent-code (don't know what this means but it ensures interoperability)
- can also produce libraries for use in the standard way

Lecture 6 – p. 31/36

prac6: main.o prac6.o g++ -fPIC -o prac6 main.o prac6.o \$(LIB)

prac6.o: prac6.cu
nvcc prac6.cu -c -o prac6.o \$(INC) \$(FLAGS)

```
LIB := -L$(CUDA_HOME)/lib64 -lcudart
FLAGS := --ptxas-options=-v --use_fast_math
```

Makefile

```
INC := -I (CUDA_HOME) / include -I.
```

Prac 6 Makefile:

Makefile

```
Prac 6 Makefile to create a library:
INC := -I$ (CUDA) / include -I.
LIB := -L$ (CUDA) / lib64 - lcudart
FLAGS := --ptxas-options=-v --use_fast_math
main.o: main.cpp
     q++ -c -fPIC -o main.o main.cpp
prac6.a: prac6.cu
     nvcc prac6.cu -lib -o prac6.a $(INC) $(FLAGS)
prac6a: main.o prac6.a
     g++ -fPIC -o prac6a main.o prac6.a $(LIB)
```

Makefile

Other compiler options:

- _arch=sm_80
 specifies GPU architecture
- -Xptxas -dlcm=ca uses L1/L2 cache in usual way – general default, also implies 128 byte cache line

-Xptxas -dlcm=cg
 bypass L1 cache / go straight to L2 – default for read-only access, 32 byte cache line
 (potentially useful to keep L1 cache for register spills)

Occupancy and Cooperative Groups

CUDA Runtime API: Section 6.8 – Occupancy

cudaOccupancyMaxActiveBlocksPerMultiprocessor

calculates the maximum number of copies of the kernel which can run in a single SM.

For an example of its use see:

https://developer.nvidia.com/blog/

```
cuda-pro-tip-occupancy-api-simplifies-launch-configuration/
```

Multiplied by the number of SMs gives the maximum number of blocks which can execute simultaneously without any queueing. With new Cooperative Groups (see CUDA C++ Programming Guide: Section 8) can launch these together and synchronize across the group.

CUDA graphs

CUDA graphs (Section 3.2.8.7):

- I think this looks really interesting as an alternative to streams with programmed interdependencies, but I haven't yet had time to try it out
- enables a programmer to specify a set of computational tasks as a task DAG (Directed Acyclic Graph)
- GPU is responsible for managing the DAG, noting when tasks complete and launching new tasks that are now able to run
- can also "capture" a DAG by noting what happens within streams

This lecture has discussed a number of more advanced topics

As a beginner, you can ignore almost all of them

As you get more experienced, you will probably want to start using some of them to get the very best performance

Lecture 7: tackling a new application

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Lecture 7 – p. 1/27

- 1) Has it been done before?
- check with Google
- ask a local expert
- check CUDA sample codes
- sign up to the CUDA Developer Program (free) and check out relevant Video-on-Demand talks from the last GTC (GPU Technology Conference)
- check out the NVIDIA Developer blogs: https://developer.nvidia.com/blog (very good for info on new hardware architectures as well as new software features)

2) Where is the parallelism?

efficient CUDA execution needs thousands of threads

- usually obvious, but if not
 - go back to 1)
 - talk to an expert they love a challenge
 - go for a long walk
- may need to re-consider the mathematical algorithm being used, and instead use one which is more naturally parallel – but this should be a last resort!

Sometimes you need to think about "the bigger picture"

Already considered 3D finite difference example:

- Iots of grid nodes so lots of inherent parallelism
- even for ADI method, a grid of 256³ has 256² tri-diagonal solutions to be performed in parallel so OK to assign each one to a single warp

(optional lecture 8 on how best to solve tri-diagonal equations on GPUs – involves doing more computation to reduce the amount of communication)

but what if we have a 2D or even 1D problem to solve?

If we only have one such problem to solve, why use a GPU?

But in practice, often have many such problems to solve:

- different initial data
- different model constants

This adds to the available parallelism

2D:

- 128KB of shared memory on Ampere == 32K float so grid of 64² could be held within shared memory
 - one kernel for entire calculation
 - each block handles a separate 2D problem; possibly two block per SM
- for bigger 2D problems, might need to split each one across more than one block
 - separate kernel for each timestep / iteration
1D:

- can certainly hold entire 1D problem within shared memory of one SM
- maybe best to use a separate block for each 1D problem, and have multiple blocks executing concurrently on each SM
- but for implicit time-marching need to solve single tri-diagonal system in parallel how?

Parallel Cyclic Reduction (PCR): starting from

$$a_n x_{n-1} + x_n + c_n x_{n+1} = d_n, \quad n = 0, \dots N-1$$

with $a_0 = c_{N-1} = 0$, subtract a_n times row n-1, and c_n times row n+1 and re-normalise to get

$$a_n^* x_{n-2} + x_n + c_n^* x_{n+2} = d_n^*$$

with $a_m^*=0$ for m<2 and $c_m^*=0$ for $m\geq N-2$.

Repeating this $\log_2 N$ times gives the value for x_n (since the values of the final *a*'s and *c*'s will be zero) and each step can be done in parallel.

(Practical 7 uses shared memory, but if $N \le 32$ it fits in a single warp and can be implemented using shuffles.)

3) Break the algorithm down into its constituent pieces

- each will probably lead to its own kernels
- do your pieces relate to the 7 dwarfs?
- re-check literature for each piece sometimes the same algorithm component may appear in widely different applications
- check whether there are existing libraries which may be helpful

4) Is there a problem with warp divergence?

- GPU efficiency can be completely undermined if there are lots of divergent branches
- may need to implement carefully lecture 3 example:

processing a long list of elements where, depending on run-time values, a few involve expensive computation:

- first process list to build two sub-lists of "simple" and "expensive" elements
- then process two sub-lists separately
- or again seek expert help

5) Is there a problem with host <-> device bandwidth?

- usually best to move whole application onto GPU, so not limited by PCIe v4 bandwidth (32GB/s)
- occasionally, OK to keep main application on the host and just off-load compute-intensive bits
- dense linear algebra is a good off-load example;
 data is O(N²) but compute is O(N³) so fine if
 N is large enough

Heart modelling

Heart modelling is another interesting example:

- keep PDE modelling (physiology, electrical field) on the CPU
- do computationally-intensive cellular chemistry on GPU (naturally parallel)
- minimal data interchange each timestep

6) is the application compute-intensive or data-intensive?

- break-even point is roughly 40 operations (FP and integer) for each 32-bit device memory access (assuming full cache line utilisation)
- good to do a back-of-the-envelope estimate early on before coding \implies changes approach to implementation

If compute-intensive:

- don't worry (too much) about cache efficiency
- minimise integer index operations
- if using double precision, think whether it's needed

If data-intensive:

- ensure efficient cache use may require extra coding
- may be better to re-compute some quantities rather than fetching them from device memory
- if using double precision, think whether it's needed

Need to think about how data will be used by threads, and therefore where it should be held:

- registers (private data)
- shared memory (for shared access)
- device memory (for big arrays)
- constant arrays (for global constants)
- "local" arrays (efficiently cached)

If you think you may need to use "exotic" features like atomic locks:

- Iook for NVIDIA sample codes demonstrating use of the feature
- write some trivial little test problems of your own
- check you really understand how they work

Never use a new feature for the first time on a real problem!

Read NVIDIA documentation on performance optimisation:

- Section 5 of CUDA C++ Programming Guide
- CUDA C++ Best Practices Guide
- Volta Tuning Guide
- Ampere Tuning Guide
- Hopper Tuning Guide

Many of my comments here apply to all scientific computing

Though not specific to GPU computing, they are perhaps particularly important for GPU / parallel computing because

debugging can be hard!

Above all, you don't want to be sitting in front of a 50,000 line code, producing lots of wrong results (very quickly!) with no clue where to look for the problem

- plan carefully, and discuss with an expert if possible
- code slowly, ideally with a colleague, to avoid mistakes but still expect to make mistakes!
- code in a modular way as far as possible, thinking how to validate each module individually
- build-in self-testing, to check that things which ought to be true, really are true

(In major projects I have a ${\tt cpp}$ flag <code>DIAGS</code>; the larger the value, the more self-testing the code does)

- overall, should have a clear debugging strategy to identify existence of errors, and then find the cause
- includes a sequence of test cases of increasing difficulty, testing out more and more of the code

When working with shared memory, be careful to think about thread synchronisation.

Very important!

Forgetting a

____syncthreads();

may produce errors which are unpredictable / rare — the worst kind.

Also, make sure all threads reach the synchronisation point — otherwise could get deadlock.

Reminder: compute-sanitizer --tool racecheck to check for race condition

In developing laplace3d, my approach was to

- first write CPU code for validation
- next check/debug CUDA code with printf statements as needed, with different grid sizes:
 - grid equal to 1 block with 1 warp (to check basics)
 - grid equal to 1 block and 2 warps (to check synchronisation)
 - grid smaller than 1 block (to check correct treatment of threads outside the grid)
 - grid with 2 blocks
- then turn on all compiler optimisations

Performance improvement

The size of the thread blocks can have a big effect on performance:

- often hard to predict optimal size a priori
- optimal size can also vary on different hardware
- with early GPUs, could gain 2× improvement by re-optimising the block sizes
- probably not as much change these days between successive generations

(not so much change in SMs, more a change in the number of SMs, the size of L2 cache, and new features like Tensor Cores)

Performance improvement

A number of numerical libraries (e.g. FFTW, ATLAS) now feature auto-tuning – optimal implementation parameters are determined when the library is installed on the specific hardware

I think this is a good idea for GPU programming, though I have not seen it used by others:

- write parameterised code
- use optimisation (possibly brute force exhaustive search) to find the optimal parameters
- an Oxford student, Ben Spencer, developed a simple flexible automated system to do this – can try it in one of the mini-projects

Performance improvement

Use profiling to understand the application performance:

- where is the application spending most time?
- how much data is being transferred?
- are there lots of cache misses?
- there are a number of on-chip counters to provide this kind of information

The Nsight Compute profiler is powerful

- provides lots of information (a bit daunting at first)
- gives hints on improving performance

The Nsight Systems profiler gives a top-level view and is relatively easy to use.

Going further

In some cases, a single GPU is not sufficient

Shared-memory option:

- single system with up to 16 GPUs
- GPUs linked by either PCIe (direct or via CPU) or NVlink (much faster)
- single process with a separate host thread for each GPU, or use just one thread and switch between GPUs
- can transfer data directly between GPUs NVIDIA software will use the fastest route, avoiding the CPU if possible

Going further

Distributed-memory option:

- a cluster, with each node having 1 or 2 GPUs
- nodes connected by high-speed Ethernet/Infiniband networking with PCIe network cards
- simplest approach is MPI message-passing, with separate process for each GPU
- modern MPI software has full support for CUDA, with direct data transfers (no intermediate copies in CPU) where possible

https://developer.nvidia.com/mpi-solutions-gpus
https://developer.nvidia.com/gpudirect

Final words

- it continues to be an exciting time for HPC
- coding to get a good fraction of peak performance remains challenging – computer science objective should be to simplify this for developers through
 - libraries
 - domain-specific high-level languages
 - code transformation
- confident prediction: GPUs and other accelerators such as vector units will remain dominant in HPC for next 10 years, so it's worth your effort to re-design and re-implement your algorithms

Lecture 8: looking to the future

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Keeping up-to-date

Important in scientific computing to keep an eye on what is happening with both hardware and software

(I am self-taught through reading lots of blogs and websites, as well as academic papers on scientific computing)

Remember: at times the business aspects are as important as the technical in thinking about how things are developing

Current market capitalization (i.e. company value)

- NVIDIA: \$ 1150 bn
- AMD: \$ 187 bn
- Intel: \$ 148 bn

10 years ago the order would have been reversed!

NVIDIA high-end GPU performance and bandwidth

Lecture 8 – p. 3/26

Compute / bandwidth ratio

Roofline model (image copyright Rambus Inc.)

Increasing energy consumption by NVIDIA GPUs – moving to chilled-water cooling blocks

Market Summary > NVIDIA Corp

1.08 trillion USD

- Volta came out in 2017/18:
 - V100 for HPC
 - 80 SMs
 - 32GB HBM2 memory
 - special "tensor cores" for machine learning
 - much faster for TensorFlow & PyTorch
- Ampere came out in 2020:
 - A100 for HPC
 - 108 SMs
 - 40-80 GB HBM2 memory
 - wider range of "tensor core" capabilities

NVIDIA DGX Station A100

https://www.nvidia.com/en-us/data-center/dgx-station-a100/

- 4 NVIDIA A100 GPUs, each with 80GB HBM2
- 64-core AMD CPU
- 512 GB DDR4 memory, 10 TB SSD
- 600GB/s NVlink interconnect between the GPUs
- NVIDIA DGX A100 Deep Learning server

https://www.nvidia.com/en-us/data-center/dgx-a100/

- S NVIDIA A100 GPUs, each with 80GB HBM2
- 2×64 -core AMD "Rome" CPUs
- 2 TB DDR4 memory, 30 TB SSD
- 600GB/s NVIink interconnect between the GPUs

- Hopper has come out in 2023:
 - H100 for HPC
 - 228-264 SMs
 - 80GB HBM2 memory
 - 40MB L2 cache
 - NVlink improvements up to 50% faster, 900GB/s
 - PCIe v5.0 $2 \times$ improvement
- Grace CPU has also arrived in 2023:
 - Arm-based
 - up to 72 cores
 - 550GB/s bandwidth to LPDDR5X memory
 - 900GB/s NVlink connection to Hopper GPU

Current status:

- big AI companies are competing to buy huge numbes (10,000+) of Hopper H100 GPUs – some orders are worth over \$1bn
- supply is limited, prices have become inflated, and it's very difficult for academics to get any
- emergence of Grace CPU is significant gives NVIDIA freedom to design their own combined CPU/GPU offerings with high bandwith interconnect, like AMD

(maybe also signifies ARM breakthrough into the server market?)

Market Summary > Advanced Micro Devices, Inc.

174.19 billion USD Market capitalisation

Top500

Top 5 on Top500 list, June 2023:

- #1 Frontier (DoE/ORNL, USA)
 - HPE: 40,000 AMD MI250X GPUs
- #2 Fugaku (RIKEN, Japan)
 - Fujitsu: 160,000 Fujitsu/ARM CPUs with vector units
- #3 Lumi (EuroHPC/CSC, Finland)
 - HPE: 10,000 AMD MI250X GPUs
- #4 Leonardo (EuroHPC/CINECA, Italy)
 - Atos: 14,000 NVIDIA A100 GPUs
- #5 Summit (DoE/ORNL, USA)
 - IBM: 28,000 NVIDIA V100 GPUs

Frontier: #1 supercomputer based on Linpack performance

- sited at Oak Ridge National Laboratory (DoE)
- 1.7 Exaflops, 21 MW
- system from HPE; CPUs and GPUs from AMD
- 9,472 compute nodes, each with one EPYC CPU, four MI250X GPUs and 4TB of flash memory Lecture 8 – p. 14/26

AMD

- over past decade AMD has had excellent CPUs and GPUs (and pioneered chiplet packaging) but has not invested enough in software – that is changing
- hired lots of software specialists in the past 2 years, including many of the NAG team responsible for ACML (AMD's version of Intel's MKL libraries)
- "Genoa" Zen4 EPYC CPUs:
 - up to 64 cores with vector units and 384MB L3
 - now getting about 20% share of server market
- Frontier has previous generation "Trento" Zen3 EPYC CPUs
Instinct GPUs:

- MI250X has 220 Compute Units, each with 64 stream procs, and 128 GB HBM2e memory with up to 3.2 TB/s bandwidth: comparable to A100 GPU, including for PyTorch
- new MI300X will be broadly competitive with H100, depending on price and availability
- programmed using AMD's ROCm (very similar to CUDA) with extensive library support
- portability provided through HIP (Heterogeneous computing Interface for Portability) with compilation to either CUDA or AMD's ROCm:

https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html

AMD's ROCm eco-system:

Lecture 8 – p. 17/26

AMD's HIP – some example code:

```
char* inputBuffer;
char* outputBuffer;
```

```
hipMalloc((void**)&inputBuffer, (strlength+1)*sizeof(char));
hipMalloc((void**)&outputBuffer, (strlength+1)*sizeof(char));
```

```
hipFree(inputBuffer);
hipFree(outputBuffer);
```

Now for some kernel code:

```
__global___ void helloworld(char* in, char* out)
{
    int num = hipThreadIdx_x + hipBlockDim_x * hipBlockIdx_x;
    out[num] = in[num] + 1;
}
```

Can see why it is fairly easy for AMD's HIPIFY tool to convert most simple CUDA code to HIP – this is another reason to avoid "exotic" CUDA features as much as possible.

Warning: AMD GPUs have a warp size of 64, not 32, so use warpSize variable in your code rather than hard-coding a warp size of 32.

- ROCm and HIP look <u>very</u> similar to CUDA probably required to win the major DoE and EU contracts
- pricing and availability of GPUs are both much better than NVIDIA currently, especially for academics

(major AI companies are placing \$1bn orders with NVIDIA so no GPUs left for us!)

- AMD's software eco-system is still maturing will take at least another 5 years to get close to CUDA
- still, very good to see competition in the marketplace

Intel

Market Summary > Intel Corporation

144.07 billion USD

Market capitalisation

More about Intel Corporation →

Felecture 8 – p. 21/26

Intel

- current "Sapphire Rapids" Xeon-SP CPUs:
 - up to 60 cores, each with one or two 512-bit
 AVX-512 vector units per core (512 bits = 16 floats)
 - up to 112.5MB L3 (shared), 2MB L2 per core
 - up to 250 GB/s memory bandwidth
 - CPU Max variants have up to 64 GB HBM2e
- "Ponte Vecchio" a.k.a. Data Center GPU Max:
 - 128 Xe cores, each with 16 \times 256-bit vector units
 - 400MB L2 cache, 64GB HBM2 with 8192-bit bus
 - shipping now, but limited software support

Intel

Intel is pushing their Data Parallel C++ implementation of SYCL (an "open standard" that no-one else is adopting)

- part of Intel's OneAPI software which aims to support all hardware platforms
- translation code (from Codeplay) enables execution on NVIDIA and AMD GPUs
- I have no experience with it, but Intel has a bad record of pushing novel hardware/software for a few years then abandoning it, so I fully expect them to axe their new Data Center GPU Max chips
- their standard C/C++ compilers and MKL libraries remain very good for multithreaded/vectorized CPU execution

Others

Special designs, solely for the needs of Machine Learning:

- Google: Tensor Processing Unit (TPU)
- Graphcore: Colossus Intelligent Processing Unit
- Cerebras: in-memory computing (lots of computing elements interspersed within a huge amount of memory in wafer-scale chips)

It seems unlikely that Google will get into the hardware business in a big way, and if any startup makes real progress they'll be bought out by NVIDIA, AMD or Intel.

Outlook

My current software assessment:

- CUDA is dominant in HPC because of
 - ease-of-use
 - NVIDIA dominance of hardware, with huge sales in machine learning in particular
 - extensive library support
 - support for many different languages (Fortran, Python, R, MATLAB, etc.)
 - extensive eco-system of tools
- HIP is a real threat to that dominance by offering platform independence with compilation to both CUDA and AMD's ROCm

Final words

NVIDIA holds a dominant market position, maybe hard to justify their huge market valuation but they're the leader for a good reason – they have excellent hardware and software, and focussed early of the needs of ML

Even as the gaming market shrinks, the auto market is the next big one they're working on

- By addressing their software weakness, AMD is back in the game for both HPC and ML – great to have competition again
- I remain unconvinced by Intel's new hardware and software products, though traditional Xeon CPUs remain powerful and sell well
- Other vendors are unlikely to break through significantly