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Overview

hardware view

software view

CUDA programming

first practical

Course materials are available at:

https://people.maths.ox.ac.uk/gilesm/cuda/index.html
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Hardware view

At the top-level, a PCIe graphics card with a many-core
GPU and high-speed graphics “device” memory sits inside
a standard PC/server with one or two multicore CPUs:

DDR4 GDDR6
or HBM

PCIe

motherboard
“host”

graphics card
“device”
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Hardware View

An NVIDIA GPU is modular

SM SM SM SM

L2 cache

SM SM SM SM

L1 cache /

shared memory

✟✟✟✟✟✟✟

❏
❏
❏
❏
❏
❏
❏
❏
❏
❏

✏✏✏✏✏

❅
❅
❅
❅
❅

SM = Streaming Multiprocessor – there can be many more
than shown here!
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Hardware view

New HPC & professional graphics cards every 2 years,
roughly. HPC cards have excellent double precision (DP)
capabilities – both have special “tensor cores” for AI/ML

Ampere (compute capability 8.0):
A100 released in 2020, smaller A30 later
A2, A10, A16, A40 (compute capability 8.6, poor DP)

Hopper (compute capability 9.0):
H100 released in 2023, H200 in 2024
L4, L40 (compute capability 8.9, poor DP) for
inference and Virtual Desktop Infrastructure

Blackwell (compute capability 10.0):
B100 announced early 2024, shipping by the end of
2024 to select customers?
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Hardware view

In addition there are consumer/gaming cards with excellent
single precision (SP) capabilities, ray tracing support, and
“tensor cores” for AI/ML, but much poorer on DP

Ada Lovelace (compute capability 8.9):
GeForce RTX 4060 / 4060 Ti
GeForce RTX 4070 / 4070 Ti
GeForce RTX 4080
GeForce RTX 4090

Blackwell RTX 5000 series GPUs due end of 2024?
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Hardware view

The key building block in an NVIDIA GPUs is a “streaming
multiprocessor” (SM) – the A100 has 108 of them each with:

32 FP64 cores + 64 FP32 cores + 64 INT32 cores

64k registers

192KB of shared memory/L1 cache

up to 2K threads per SM

In addition the A100 has:

40MB of L2 cache

bandwidth of 1.6TB/s to external HBMe memory

optional 600GB/s NVlink to other GPUs
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Multithreading

Key hardware feature is that the cores in a SM are SIMT
(Single Instruction Multiple Threads) cores:

groups of 32 cores execute the same instructions
simultaneously, but with different data

similar to AVX vectorisation on Intel Xeons

32 threads all doing the same thing at the same time

natural for graphics processing and much scientific
computing

SIMT is also a natural choice for many-core chips to
simplify each core
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Multithreading

Lots of active threads is the key to high performance:

no “context switching”; each thread has its own
registers (up to 255 of them), which limits the number of
active threads

threads on each SM execute in groups of 32 called
“warps” – execution alternates between “active” warps,
with warps becoming temporarily “inactive” when
waiting for data
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Multithreading

originally, each thread completed one operation before
the next started to avoid complexity of pipeline overlaps

✲

time1 2 3 4 5✲✲ ✲

1 2 3 4 5✲✲ ✲

1 2 3 4 5✲✲ ✲

however, NVIDIA have now relaxed this, so each thread
can have multiple independent instructions overlapping

memory access from device memory has a delay of
200-400 cycles; with 40 active warps this is equivalent
to 5-10 operations, so enough to hide the latency?
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Software view

At the top level, we have a main process which runs on the
CPU and performs the following steps:

1. initialises card

2. allocates memory in host and on device

3. copies data from host to device memory

4. launches multiple instances of execution “kernel” on
device

5. copies data from device memory to host

6. repeats 3-5 as needed

7. de-allocates all memory and terminates

Lecture 1 – p. 11/34



Software view

At a lower level, within the GPU:

each instance (or copy) of the kernel executes on a SM

if the number of instances exceeds the number of SMs,
then more than one will run at a time on each SM if
there are enough registers and shared memory, and the
others will wait in a queue (on the GPU) and run later

all threads within one instance can access local shared
memory but can’t see what the other instances are
doing (even if they are on the same SM)

there are no guarantees on the order in which the
instances execute
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CUDA

CUDA is NVIDIA’s program development environment:

based on C/C++ with some extensions

Fortran support also available

lots of sample codes and good documentation
– fairly short learning curve

AMD has developed HIP, a CUDA lookalike:

compiles to CUDA for NVIDIA hardware

compiles to ROCm for AMD hardware
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CUDA Components

Installing CUDA on a system, there are 2 components:

Driver
low-level software that controls the graphics card

Toolkit (currently on version 12.5)
nvcc CUDA compiler
Nsight plugin for Eclipse or Visual Studio
profiling and debugging tools
lots of libraries

In addition, NVIDIA makes available lots of sample codes in
a GitHub repository:

https://github.com/NVIDIA/cuda-samples
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CUDA programming

Already explained that a CUDA program has two pieces:

host code on the CPU which interfaces to the GPU

kernel code which runs on the GPU

At the host level, there is a choice of 2 APIs
(Application Programming Interfaces):

run-time
simpler, more convenient

driver
much more verbose, more flexible (e.g. allows
run-time compilation)

We will only use the run-time API in this course, and that is
all I use in my own research.
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CUDA programming

At the host code level, there are library routines for:

memory allocation on graphics card

data transfer to/from device memory
constants
ordinary data

error-checking

timing

There is also a special syntax for launching multiple
instances of the kernel process on the GPU.
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CUDA programming

In its simplest form it looks like:

kernel_routine<<<gridDim, blockDim>>>(args);

gridDim is the number of instances of the kernel
(the “grid” size)

blockDim is the number of threads within each
instance
(the “block” size)

args is a limited number of arguments, usually mainly
pointers to arrays in graphics memory, and some
constants which get copied by value

The more general form allows gridDim and blockDim to
be 2D or 3D to simplify application programs
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CUDA programming

At the lower level, when one instance of the kernel is started
on a SM it is executed by a number of threads,
each of which knows about:

some variables passed as arguments

pointers to arrays in device memory (also arguments)

global constants in device memory

shared memory and private registers/local variables

some special variables:
gridDim size (or dimensions) of grid of blocks
blockDim size (or dimensions) of each block
blockIdx index (or 2D/3D indices) of block
threadIdx index (or 2D/3D indices) of thread
warpSize always 32 so far, but could change
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CUDA programming

1D grid with 4 blocks, each with 64 threads:

gridDim = 4

blockDim = 64

blockIdx ranges from 0 to 3

threadIdx ranges from 0 to 63

r❄
blockIdx.x=1, threadIdx.x=44
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CUDA programming

The kernel code looks fairly normal once you get used to
two things:

code is written from the point of view of a single thread
quite different to OpenMP multithreading
similar to MPI, where you use the MPI “rank” to
identify the MPI process
all local variables are private to that thread

need to think about where each variable lives (more on
this in the next lecture)

any operation involving data in the device memory
forces its transfer to/from registers in the GPU
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Host code
int main(int argc, char **argv) {
float *h_x, *d_x; // h=host, d=device
int nblocks=2, nthreads=8, nsize=2*8;

h_x = (float *)malloc(nsize*sizeof(float));
cudaMalloc((void **)&d_x,nsize*sizeof(float));

my_first_kernel<<<nblocks,nthreads>>>(d_x);

cudaMemcpy(h_x,d_x,nsize*sizeof(float),
cudaMemcpyDeviceToHost);

for (int n=0; n<nsize; n++)
printf(" n, x = %d %f \n",n,h_x[n]);

cudaFree(d_x); free(h_x);
}
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Kernel code
#include <helper_cuda.h>

__global__ void my_first_kernel(float *x)
{
int tid = threadIdx.x + blockDim.x*blockIdx.x;

x[tid] = (float) threadIdx.x;
}

global identifier says it’s a kernel function

each thread sets one element of x array

within each block of threads, threadIdx.x ranges
from 0 to blockDim.x-1, so each thread has a unique
value for tid
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CUDA programming

Suppose we have 1000 blocks, and each one has 128
threads – how does it get executed?

On current hardware, would probably get 8-12 blocks
running at the same time on each SM, and each block
has 4 warps =⇒ 32-48 warps running on each SM

Each clock tick, SM warp scheduler decides which warps
to execute next, choosing from those not waiting for

data coming from device memory (memory latency)

completion of earlier instructions (pipeline delay)

Programmer doesn’t have to worry about this level of detail,
just make sure there are lots of threads / warps
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CUDA programming

Queue of waiting blocks:

Multiple blocks running on each SM:

SM SM SM SM

❄ ❄ ❄ ❄
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CUDA programming

In this simple case, we had a 1D grid of blocks, and a 1D
set of threads within each block.

If we want to use a 2D set of threads, then
blockDim.x, blockDim.y give the dimensions, and
threadIdx.x, threadIdx.y give the thread indices

and to launch the kernel we would use something like

dim3 nthreads(16,4);
my_new_kernel<<<nblocks,nthreads>>>(d_x);

where dim3 is a special CUDA datatype with 3 components
.x,.y,.z each initialised to 1.
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CUDA programming

A similar approach is used for 3D threads and 2D / 3D grids;
can be very useful in 2D / 3D finite difference applications.

How do 2D / 3D threads get divided into warps?

1D thread ID defined by

threadIdx.x +
threadIdx.y * blockDim.x +
threadIdx.z * blockDim.x * blockDim.y

and this is then broken up into warps of size 32.
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Practical 1

start from code shown above (but with comments)

test error-checking and printing from kernel functions

modify code to add two vectors together (including
sending them over from the host to the device)

if time permits, look at CUDA samples
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Practical 1

Things to note:

memory allocation
cudaMalloc((void **)&d x, nbytes);

data copying
cudaMemcpy(h x,d x,nbytes,

cudaMemcpyDeviceToHost);

reminder: prefix h and d to distinguish between
arrays on the host and on the device is not mandatory,
just helpful labelling

kernel routine is declared by global prefix, and is
written from point of view of a single thread
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Practical 1

Second version of the code is very similar to first, but uses
a header file for various safety checks – gives useful
feedback in the event of errors.

check for error return codes:
checkCudaErrors( ... );

check for kernel failure messages:
getLastCudaError( ... );
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Practical 1

One thing to experiment with is the use of printf within
a CUDA kernel function:

essentially the same as standard printf; minor
difference in integer return code

each thread generates its own output; use conditional
code if you want output from only one thread

output goes into an output buffer which is transferred
to the host and printed later (possibly much later?)

buffer has limited size (1MB by default), so could lose
some output if there’s too much

need to use either cudaDeviceSynchronize(); or
cudaDeviceReset(); at the end of the main code to
make sure the buffer is flushed before termination
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Practical 1

The practical also has a third version of the code which
uses “managed memory” based on Unified Memory.

In this version

there is only one array / pointer, not one for CPU and
another for GPU

the programmer is not responsible for moving the data
to/from the GPU

everything is handled automatically by the CUDA
run-time system
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Practical 1

This leads to simpler code, but it’s important to understand
what is happening because it may hurt performance:

if the CPU initialises an array x, and then a kernel uses
it, this forces a copy from CPU to GPU

if the GPU modifies x and the CPU later tries to read
from it, that triggers a copy back from GPU to CPU

Personally, I prefer to keep complete control over data
movement, so that I know what is happening and I can
maximise performance.
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ARC “htc” cluster
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htc-g045 htc-g046 htc-g047 htc-g048 htc-g049

htc-login

gateway

external network

university network

gateway.arc.ox.ac.uk is for external access
htc-login.arc.ox.ac.uk is the head/login node
the DGX compute nodes each have 8 Volta V100 GPUs
read the ARC notes before starting the practical
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Key reading

CUDA C++ Programming Guide:

Section 1: Introduction

Section 2: Programming Model

Section 5.4: performance of different GPUs

Section 6: CUDA-enabled GPUs

Sections 7.1 – 7.4: C language extensions

Section 7.33: printf output

Section 16: features of different GPUs

These are the section numbers for the HTML version of the
document; add 3 when looking at the PDF version!
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Lecture 2: different memory
and variable types

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute
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Memory

Key challenge in modern computer architecture

no point in blindingly fast computation if data can’t be
moved in and out fast enough

need lots of memory for big applications

very fast memory is also very expensive

end up being pushed towards a hierarchical design
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CPU Memory Hierarchy

❄
faster

more expensive
smaller

32–128 GB
2–3GHz DDR4Main memory

12–30 MB (shared)
2GHz SRAML3 Cache

L1/L2 Cache
48KB + 1.25MB
3GHz SRAM

registers

200+ cycle access, 60–180GB/s

25-35 cycle access, 25–50GB/s

5-12 cycle access, 100–200GB/s

❄

✻

❄❄
✻✻

❄❄❄
✻✻✻
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Memory Hierarchy

Execution speed relies on exploiting data locality

temporal locality: a data item just accessed is likely to
be used again in the near future, so keep it in the cache

spatial locality: neighbouring data is also likely to be
used soon, so load them into the cache at the same
time using a ‘wide’ bus (like a multi-lane motorway)

This wide bus is only way to get high bandwidth to slow
main memory
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Caches

The cache line is the basic unit of data transfer;
typical size is 64 bytes ≡ 8× 8-byte items.

With a single cache, when the CPU loads data into a
register:

it looks for line in cache

if there (hit), it gets data

if not (miss), it gets entire line from main memory,
displacing an existing line in cache (usually least
recently used)

When the CPU stores data from a register:

same procedure
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Importance of Locality

Typical workstation:
20 Gflops per core
40 GB/s L3←→ L2 cache bandwidth
64 bytes/line

40GB/s ≡ 600M line/s ≡ 5G double/s

At worst, each flop requires 2 inputs and has 1 output,
forcing loading of 3 lines =⇒ 200 Mflops

If all 8 variables/line are used, then this increases to 1.6
Gflops.

To get up to 20Gflops needs temporal locality, re-using data
already in the L2 cache.
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GPU Architecture

Volta GPU

SM SM SM SM

L2 cache

SM SM SM SM

L1 cache /

shared memory

✟✟✟✟✟✟✟

❏
❏
❏
❏
❏
❏
❏
❏
❏
❏

✏✏✏✏✏

❅
❅
❅
❅
❅
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Volta

usually 32 bytes cache line (8 floats or 4 doubles)

V100: 4096-bit memory path from HBM2e device
memory to L2 cache =⇒ up to 900 GB/s bandwidth

unified 6MB L2 cache for all SM’s

each SM has 96kB of shared memory / L1 cache

no global cache coherency as in CPUs, so should
(almost) never have different blocks updating the same
global array elements
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GPU Memory Hierarchy

❄
faster

more expensive
smaller

32 GB
HBMeDevice memory

6MB (shared)
L2 Cache

L1/shared
96KB

registers

200-300 cycle access, 1500GB/s

200-300 cycle access, 50GB/s?

20-35 cycle access, 200GB/s
(128 Bytes/cycle)

❄

✻

❄❄
✻✻

❄❄❄
✻✻✻
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Importance of Locality

20Tflops GPU
1280 GB/s memory←→ L2 cache bandwidth
32 bytes/line

1280 GB/s ≡ 40G line/s ≡ 160G double/s

At worst, each flop requires 2 inputs and has 1 output,
forcing loading of 3 lines =⇒ 13 Gflops

If all 4 doubles/line are used, increases to 50 Gflops

To get up to 8 TFlops needs about 50 flops per double
transferred to/from device memory

Even with careful implementation, many algorithms are
bandwidth-limited not compute-bound
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Practical 1 kernel
__global__ void my_first_kernel(float *x)
{
int tid = threadIdx.x + blockDim.x*blockIdx.x;

x[tid] = threadIdx.x;
}

32 threads in a warp will address neighbouring
elements of array x

if the data is correctly “aligned” so that x[0] is at the
beginning of a cache line, then x[0] – x[31] will be in
same cache line – a “coalesced” transfer

hence we get perfect spatial locality
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A bad kernel
__global__ void bad_kernel(float *x)
{
int tid = threadIdx.x + blockDim.x*blockIdx.x;

x[1000*tid] = threadIdx.x;
}

in this case, different threads within a warp access
widely spaced elements of array x – a “strided” array
access

each access involves a different cache line, so
performance will be much worse
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Global arrays

So far, concentrated on global / device arrays:

held in the large device memory

allocated by host code

pointers held by host code and passed into kernels

continue to exist until freed by host code

since blocks execute in an arbitrary order, if one block
modifies an array element, no other block should read
or write that same element
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Global variables

Global variables can also be created by declarations with
global scope within kernel code file

__device__ int reduction_lock=0;

__global__ void kernel_1(...) {
...

}

__global__ void kernel_2(...) {
...

}
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Global variables

the __device__ prefix tells nvcc this is a global
variable in the GPU, not the CPU.

the variable can be read and modified by any kernel

its lifetime is the lifetime of the whole application

can also declare arrays of fixed size

can read/write by host code using special routines
cudaMemcpyToSymbol, cudaMemcpyFromSymbol
or with standard cudaMemcpy in combination with
cudaGetSymbolAddress

in my own CUDA programming, I rarely use this
capability but it is occasionally very useful
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Constant variables

Very similar to global variables, except that they can’t be
modified by kernels:

defined with global scope within the kernel file using the
prefix __constant__

initialised by the host code using
cudaMemcpyToSymbol, cudaMemcpyFromSymbol
or cudaMemcpy in combination with
cudaGetSymbolAddress

I use it all the time in my applications; practical 2 has an
example
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Constant variables

Only 64KB of constant memory, but big benefit is that each
SM has a 8KB cache

when all threads read the same constant, almost as fast
as a register

doesn’t tie up a register, so very helpful in minimising
the total number of registers required
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Constants

A constant variable has its value set at run-time

But code also often has plain constants whose value is
known at compile-time:

#define PI 3.1415926f

a = b / (2.0f * PI);

Leave these as they are – they seem to be embedded into
the executable code so they don’t use up any registers

Don’t forget the f at the end if you want single precision;
in C/C++

single× double = double
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Registers

Within each kernel, by default, individual variables are
assigned to registers:
__global__ void lap(int I, int J,

float *u1, float *u2) {
int i = threadIdx.x + blockIdx.x*blockDim.x;
int j = threadIdx.y + blockIdx.y*blockDim.y;
int id = i + j*I;

if (i==0 || i==I-1 || j==0 || j==J-1) {
u2[id] = u1[id]; // Dirichlet b.c.’s

}
else {
u2[id] = 0.25f * ( u1[id-1] + u1[id+1]

+ u1[id-I] + u1[id+I] );
}
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Registers

64K 32-bit registers per SM

up to 255 registers per thread

up to 2048 threads per SM (at most 1024 per thread
block)

max registers per thread =⇒ 256 threads

max threads =⇒ 32 registers per thread

8× difference between “fat” and “thin” threads
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Registers

What happens if your application needs more registers?

They “spill” over into L1 cache, and from there to device
memory – precise mechanism unclear, but

either certain variables become device arrays with one
element per thread

or the contents of some registers get “saved” to device
memory so they can used for other purposes, then the data
gets “restored” later

Either way, the application suffers from the latency and
bandwidth implications of using device memory
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Local arrays

What happens if your application uses a little array?

__global__ void lap(float *u) {

float ut[3];

int tid = threadIdx.x + blockIdx.x*blockDim.x;

for (int k=0; k<3; k++)
ut[k] = u[tid+k*gridDim.x*blockDim.x];

for (int k=0; k<3; k++)
u[tid+k*gridDim.x*blockDim.x] =
A[3*k]*ut[0]+A[3*k+1]*ut[1]+A[3*k+2]*ut[2];

}
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Local arrays

In simple cases like this (quite common) compiler converts
to scalar registers:

__global__ void lap(float *u) {
int tid = threadIdx.x + blockIdx.x*blockDim.x;
float ut0 = u[tid+0*gridDim.x*blockDim.x];
float ut1 = u[tid+1*gridDim.x*blockDim.x];
float ut2 = u[tid+2*gridDim.x*blockDim.x];

u[tid+0*gridDim.x*blockDim.x] =
A[0]*ut0 + A[1]*ut1 + A[2]*ut2;

u[tid+1*gridDim.x*blockDim.x] =
A[3]*ut0 + A[4]*ut1 + A[5]*ut2;

u[tid+2*gridDim.x*blockDim.x] =
A[6]*ut0 + A[7]*ut1 + A[8]*ut2;

}
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Local arrays

In more complicated cases, array is put into device memory

this is because registers are not dynamically
addressable – compiler has to specify exactly which
registers are used for each instruction

still referred to in the documentation as a “local array”
because each thread has its own private copy

held in L1 cache by default, may never be transferred
to device memory

96kB of L1 cache equates to 24k 32-bit variables,
which is 24 per thread when using 1024 threads

beyond this, it will have to spill to device memory
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Shared memory

In a kernel, the prefix __shared__ as in

__shared__ int x_dim;
__shared__ float x[128];

declares data to be shared between all of the threads in
the thread block – any thread can set its value, or read it.

There can be several benefits:

essential for operations requiring communication
between threads (e.g. summation in lecture 4)

useful for data re-use

alternative to local arrays in device memory
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Shared memory

If a thread block has more than one warp, it’s not
pre-determined when each warp will execute its instructions
– warp 1 could be many instructions ahead of warp 2,
or well behind.

Consequently, almost always need thread synchronisation
to ensure correct use of shared memory.

Instruction

__syncthreads();

inserts a “barrier”; no thread/warp is allowed to proceed
beyond this point until the rest have reached it (like a roll
call on a school outing)
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Shared memory

So far, have discussed statically-allocated shared memory
– the size is known at compile-time

Can also create dynamic shared-memory arrays but this is
more complex

Total size is specified by an optional third argument when
launching the kernel:
kernel<<<blocks,threads,shared_bytes>>>(...)

Using this within the kernel function is complicated/tedious;
see Section 7.2.3 in CUDA C++ Programming Guide
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Read-only arrays

With “constant” variables, each thread reads the same
value.

In other cases, we have arrays where the data doesn’t
change, but different threads read different items.

In this case, can get improved performance by telling the
compiler by declaring global array with

const restrict

qualifiers so that the compiler knows that it is read-only
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Vector variables / 16-bit floats

Section 7.3 of CUDA C++ Programming Guide: CUDA
defines small vectors

double2,double3,double4: 2, 3, or 4 doubles

float2,float3,float4: 2, 3, or 4 floats

similar for ints, uints, etc.

Individual components are labelled .x, .y, .z, .w

Also, CUDA defines two kinds of 16-bit floats

half,half2: IEEE fp16 variables
(very limited range: 6×10−5 – 6×104)
bfloat16,bfloat162: bfloat16 variables
(same range as float but much lower precision)

Lecture 2 – p. 29/36



Built-in variables

Section 7.4 of CUDA C++ Programming Guide:

gridDim: type dim3 (like uint3 but all three
components .x, .y, .z initialised to 1 by default)

blockIdx: type uint3

blockDim: type dim3

threadIdx: type uint3

warpSize: type int

(always 32 so far, but might change in future?)
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Non-blocking loads/stores

What happens with the following code?

__global__ void lap(float *u1, float *u2) {
float a;

a = u1[threadIdx.x + blockIdx.x*blockDim.x]
...
...
c = b*a;
u2[threadIdx.x + blockIdx.x*blockDim.x] = c;
...
...

}

Load doesn’t block until needed; store also doesn’t block
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Active blocks per SM

Each block require certain resources:

threads

registers (registers per thread × number of threads)

shared memory (static + dynamic)

Together these determine how many blocks can be run
simultaneously on each SM – up to a maximum of 32 blocks
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Active blocks per SM

My general advice:

number of active threads depends on number of
registers each needs

good to have at least 4 active blocks per SM, each
with at least 128 threads

smaller number of blocks when each needs lots of
shared memory

larger number of blocks when they don’t need any
shared memory
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Active blocks per SM

On Volta:

maybe 4 big blocks (512 threads) if each needs a lot of
shared memory

maybe 12 small blocks (128 threads) if no shared
memory needed

or 4 small blocks (128 threads) if each thread needs
lots of registers

Very important to experiment with different block sizes to
find what gives the best performance.
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Summary

dynamic device arrays

static device variables / arrays

constant variables / arrays

registers

spilled registers

local arrays

shared variables / arrays

Lecture 2 – p. 35/36



Key reading

CUDA C++ Programming Guide:

Sections 7.1-7.4 – essential

Sections 3.2.2, 3.2.4

Other reading:

Wikipedia article on caches:
en.wikipedia.org/wiki/CPU cache
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Lecture 3: control flow and
synchronisation

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute
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Warp divergence

Threads are executed in warps of 32, with all threads in the
warp executing the same instruction at the same time.

What happens if different threads in a warp need to do
different things?

if (x<0.0)
z = x-2.0;

else
z = sqrt(x);

This is called warp divergence – CUDA will generate correct
code to handle this, but to understand the performance you
need to understand what CUDA does with it
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Warp divergence

This is not a new problem.

Old CRAY vector supercomputers had a logical merge
vector instruction

z = p ? x : y;

which stored the relevant element of the input vectors x,y
depending on the logical vector p, equivalent to

for(i=0; i<I; i++) {
if (p[i]) z[i] = x[i];
else z[i] = y[i];

}
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Warp divergence

Similarly, NVIDIA GPUs have predicated instructions which
are carried out only if a logical flag is true.

p: a = b + c; // computed only if p is true

In the previous example, all threads compute the logical
predicate and two predicated instructions

p = (x<0.0);
p: z = x-2.0; // single instruction
!p: z = sqrt(x);
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Warp divergence

Note that:

sqrt(x) would usually produce a NaN when x<0, but
it’s not really executed when x<0 so there’s no problem

all threads execute both conditional branches, so
execution cost is sum of both branches
=⇒ potentially large loss of performance
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Warp divergence

Another example:

if (n>=0)
z = x[n];

else
z = 0;

x[n] is only read here if n>=0

don’t have to worry about illegal memory accesses
when n is negative
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Warp divergence

If the branches are big, nvcc compiler inserts code to
check if all threads in the warp take the same branch
(warp voting) and then branches accordingly.

p = ...

if (any(p)) {
p: ...
p: ...

}

if (any(!p)) {
!p: ...
!p: ...

}
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Warp divergence

Note:

doesn’t matter what is happening with other warps
– each warp is treated separately

if each warp only goes one way that’s very efficient

warp voting costs a few instructions, so for very simple
branches the compiler just uses predication without
voting
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Warp divergence

In some cases, can determine at compile time that all
threads in the warp must go the same way

e.g. if case is a run-time argument

if (case==1)
z = x*x;

else
z = x+2.3;

In this case, there’s no need to vote
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Warp divergence

Warp divergence can lead to a big loss of parallel efficiency
– one of the first things I look out for in a new application.

In worst case, effectively lose factor 32× in performance if
one thread needs expensive branch, while rest do nothing

Typical example: PDE application with boundary conditions

if boundary conditions are cheap, loop over all nodes
and branch as needed for boundary conditions

if boundary conditions are expensive, use two kernels:
first for interior points, second for boundary points
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Warp divergence

Another example: processing a long list of elements where,
depending on run-time values, a few require very expensive
processing

GPU implementation:

first process list to build two sub-lists of “simple” and
“expensive” elements

then process two sub-lists separately

Note: none of this is new – this is what we did 35 years ago
on CRAY and Thinking Machines systems.

What’s important is to understand hardware behaviour and
design your algorithms / implementation accordingly
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Synchronisation

Already introduced __syncthreads(); which forms a
barrier – all threads wait until every one has reached this
point.

When writing conditional code, must be careful to make
sure that all threads do reach the __syncthreads();

Otherwise, can end up in deadlock
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Typical application

// load in data to shared memory
...
...
...

// synchronisation to ensure this has finished

__syncthreads();

// now do computation using shared data
...
...
...
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Synchronisation

There are other synchronisation instructions which are
similar but have extra capabilities:

int __syncthreads_count(predicate)

counts how many predicates are true

int __syncthreads_and(predicate)

returns non-zero (true) if all predicates are true

int __syncthreads_or(predicate)

returns non-zero (true) if any predicate is true

I’ve not used these, and don’t currently see a need for them
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Warp voting

There are similar warp voting instructions which operate at
the level of a warp:

int __all(predicate)

returns non-zero (true) if all predicates in warp are true

int __any(predicate)

returns non-zero (true) if any predicate is true

unsigned int __ballot(predicate)

sets nth bit based on nth predicate

Again, I’ve never used these
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Atomic operations

Occasionally, an application needs threads to update a
counter in shared memory.

__shared__ int count;

...

if ( ... ) count++;

In this case, there is a problem if two (or more) threads try
to do it at the same time
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Atomic operations

Using standard instructions, multiple threads in the same
warp will only update it once.

❄

time

thread 0 thread 1 thread 2 thread 3

read read read read

add add add add

write write write write
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Atomic operations

With atomic instructions, the read/add/write becomes a
single operation, and they happen one after the other

❄

time

thread 0 thread 1 thread 2 thread 3

read/add/write

read/add/write

read/add/write

read/add/write
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Atomic operations

Several different atomic operations are supported:

addition / subtraction
atomicAdd, atomicSub

minimum / maximum
atomicMin, atomicMax

increment / decrement
atomicInc, atomicDec

exchange / compare-and-swap
atomicExch, atomicCAS

bitwise AND / OR / XOR
atomicAnd, atomicOr, atomicXor

Fast for variables in shared memory, only slightly slower for
variables in device global memory (operations performed in
L2 cache) Lecture 3 – p. 19/36



Atomic operations

Compare-and-swap:
int atomicCAS(int* address,int compare,int val);

if compare equals old value stored at address then
val is stored instead

in either case, routine returns the value of old

seems a bizarre routine at first sight, but can be very
useful for atomic locks
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Global atomic lock

// global variable: 0 unlocked, 1 locked
__device__ int lock=0;

__global__ void kernel(...) {
...

if (threadIdx.x==0) {
// set lock
do {} while(atomicCAS(&lock,0,1));

...

// free lock
lock = 0;

}
} Lecture 3 – p. 21/36



Global atomic lock

Problem: when a thread writes data to device memory the
order of completion is not guaranteed, so global writes may
not have completed by the time the lock is unlocked

__global__ void kernel(...) {
...

if (threadIdx.x==0) {
do {} while(atomicCAS(&lock,0,1));
...
__threadfence(); // wait for writes to finish

// free lock
lock = 0;

}
} Lecture 3 – p. 22/36



__threadfence

__threadfence_block();

wait until all global and shared memory writes are
visible to

all threads in block

__threadfence();

wait until all global and shared memory writes are
visible to

all threads in block
all threads, for global data
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Summary

lots of esoteric capabilities – don’t worry about most of
them

essential to understand warp divergence – can have a
very big impact on performance

__syncthreads() is vital – will see another use of it
in next lecture

the rest can be ignored until you have a critical need
– then read the documentation carefully and look for
relevant NVIDIA sample codes
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Key reading

CUDA C++ Programming Guide:

Section 5.4.2: control flow and predicates

Section 5.4.3: synchronization

Section 7.5: __threadfence() and variants

Section 7.6: __syncthreads() and variants

Section 7.14: atomic functions

Section 7.19: warp voting
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2D Laplace solver

Jacobi iteration to solve discrete Laplace equation on a
uniform grid:

for (int j=0; j<J; j++) {
for (int i=0; i<I; i++) {

id = i + j*I; // 1D memory location

if (i==0 || i==I-1 || j==0 || j==J-1)
u2[id] = u1[id];

else
u2[id] = 0.25*( u1[id-1] + u1[id+1]

+ u1[id-I] + u1[id+I] );
}

}
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2D Laplace solver

How do we tackle this with CUDA?

each thread responsible for one grid point

each block of threads responsible for a block of the grid

conceptually very similar to data partitioning in MPI
distributed-memory implementations, but much simpler

(also similar to blocking techniques to squeeze the best
cache performance out of CPUs)

great example of usefulness of 2D blocks and 2D “grid”s
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2D Laplace solver
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2D Laplace solver
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2D Laplace solver
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Each block of threads processes one of these grid blocks,
reading in old values and computing new values
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2D Laplace solver

__global__ void lap(int I, int J,
const float* __restrict__ u1,

float* __restrict__ u2) {

int i = threadIdx.x + blockIdx.x*blockDim.x;
int j = threadIdx.y + blockIdx.y*blockDim.y;
int id = i + j*I;

if (i==0 || i==I-1 || j==0 || j==J-1) {
u2[id] = u1[id]; // Dirichlet b.c.’s

}
else {
u2[id] = 0.25 * ( u1[id-1] + u1[id+1]

+ u1[id-I] + u1[id+I] );
}

}
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2D Laplace solver

Assumptions:

I is a multiple of blockDim.x

J is a multiple of blockDim.y

hence grid breaks up perfectly into blocks

Can remove these assumptions by testing whether
i, j are within grid
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2D Laplace solver

threads

✲ I

✻

J

real grid
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2D Laplace solver

__global__ void lap(int I, int J,
const float* __restrict__ u1,

float* __restrict__ u2) {

int i = threadIdx.x + blockIdx.x*blockDim.x;
int j = threadIdx.y + blockIdx.y*blockDim.y;
int id = i + j*I;

if (i==0 || i==I-1 || j==0 || j==J-1) {
u2[id] = u1[id]; // Dirichlet b.c.’s

}
else if (i<I && j<J) {
u2[id] = 0.25f * ( u1[id-1] + u1[id+1]

+ u1[id-I] + u1[id+I] );
}

}
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2D Laplace solver
How does cache function in this application?
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if block size is a multiple of 32 in x-direction, then
interior corresponds to set of complete cache lines

“halo” points above and below are full cache lines too

“halo” points on side are the problem – each one
requires the loading of an entire cache line

optimal block shape has aspect ratio of roughly 8:1 if
cache line is 32 bytes == 8 floats
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3D Laplace solver

practical 3

each thread does an entire line in z-direction

x, y dimensions cut up into blocks in the same way
as 2D application

laplace3d.cu and laplace3d kernel.cu
follow same approach described above

this used to give the fastest implementation, but a new
version uses 3D thread blocks, with each thread
responsible for just 1 grid point

the new version has lots more integer operations, but
is still faster, perhaps due to many more active threads
– in either case the application is probably
bandwidth-limited
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Lecture 4: warp shuffles,
and reduction / scan operations

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute
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Warp shuffles

Warp shuffles are a faster mechanism for moving data
between threads in the same warp.

There are 4 variants:

shfl up sync
copy from a lane with lower ID relative to caller

shfl down sync
copy from a lane with higher ID relative to caller

shfl xor sync
copy from a lane based on bitwise XOR of own lane ID

shfl sync
copy from indexed lane ID

Here the lane ID is the position within the warp
( threadIdx.x%warpSize for 1D blocks)
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Warp shuffles

T shfl up sync(unsigned mask, T var,
unsigned int delta);

mask controls which threads are involved — usually set
to -1 or 0xffffffff, equivalent to all 1’s

var is a local register variable (int, unsigned int, long
long, unsigned long long, float or double)

delta is the offset within the warp – if the appropriate
thread does not exist (i.e. it’s off the end of the warp)
then the value is taken from the current thread

T shfl down sync(unsigned mask, T var,
unsigned int delta);

defined similarly
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Warp shuffles

T shfl xor sync(unsigned mask, T var, int
laneMask);

an XOR (exclusive or) operation is performed between
laneMask and the calling thread’s laneID to
determine the lane from which to copy the value

(laneMask controls which bits of laneID are “flipped”)

a “butterfly” type of addressing, very useful for reduction
operations and FFTs

T shfl sync(unsigned mask, T var, int
srcLane);

copies data from srcLane
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Warp shuffles

Very important

Threads may only read data from another thread
which is actively participating in the shuffle
command. If the target thread is inactive, the
retrieved value is undefined.

This means you must be very careful with conditional code.
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Warp shuffles

Two ways to sum all the elements in a warp: method 1

for (int i=1; i<warpSize; i*=2)
value += __shfl_xor_sync(-1, value, i);
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Warp shuffles

Two ways to sum all the elements in a warp: method 2

for (int i=warpSize/2; i>0; i=i/2)
value += __shfl_down_sync(-1, value, i);
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Reduction

The most common reduction operation is computing the
sum of a large array of values:

averaging in Monte Carlo simulation

computing RMS change in finite difference computation
or an iterative solver

computing a vector dot product in a CG or GMRES
iteration
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Reduction

Other common reduction operations are to compute a
minimum or maximum.

Key requirements for a reduction operator ◦ are:

commutative: a ◦ b = b ◦ a
associative: a ◦ (b ◦ c) = (a ◦ b) ◦ c

Together, they mean that the elements can be re-arranged
and combined in any order.

(Note: in MPI there are special routines to perform
reductions over distributed arrays.)
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Approach

Will describe things for a summation reduction – the
extension to other reductions is obvious

Assuming each thread starts with one value, the approach
is to

first add the values within each thread block, to form a
partial sum

then add together the partial sums from all of the blocks

I’ll look at each of these stages in turn
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Local reduction

The first phase is contructing a partial sum of the values
within a thread block.

Question 1: where is the parallelism?

“Standard” summation uses an accumulator, adding one
value at a time =⇒ sequential

Parallel summation of N values:

first sum them in pairs to get N/2 values

repeat the procedure until we have only one value
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Local reduction

Question 2: any problems with warp divergence?

Note that not all threads can be busy all of the time:

N/2 operations in first phase

N/4 in second

N/8 in third

etc.

For efficiency, we want to make sure that each warp is
either fully active or fully inactive, as far as possible.
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Local reduction

Question 3: where should data be held?

Threads need to access results produced by other threads:

global device arrays would be too slow, so use shared
memory

need to think about synchronisation
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Local reduction

Pictorial representation of the algorithm:✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈
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second half added pairwise to first half
by leading set of threads
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Local reduction

__global__ void sum(float *d_sum,float *d_data)
{
extern __shared__ float temp[];
int tid = threadIdx.x;

temp[tid] = d_data[tid+blockIdx.x*blockDim.x];

for (int d=blockDim.x/2; d>0; d=d/2) {
__syncthreads();
if (tid<d) temp[tid] += temp[tid+d];

}

if (tid==0) d_sum[blockIdx.x] = temp[0];
}
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Local reduction

Note:

use of dynamic shared memory – size has to be
declared when the kernel is called

use of syncthreads to make sure previous
operations have completed

first thread outputs final partial sum into specific place
for that block

could use shuffles when only one warp still active

alternatively, could reduce each warp, put partial sums
in shared memory, and then the first warp could reduce
the sums – requires only one syncthreads
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Global reduction: version 1

This version of the local reduction puts the partial sum for
each block in a different entry in a global array

These partial sums can be transferred back to the host for
the final summation – practical 4
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Global reduction: version 2

Alternatively, can use the atomic add discussed in the
previous lecture, and replace

if (tid==0) d_sum[blockIdx.x] = temp[0];

by

if (tid==0) atomicAdd(&d_sum,temp[0]);
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Global reduction: version 2

More general reduction operations could use the atomic
lock mechanism, also discussed in the previous lecture:

if (tid==0) d_sum[blockIdx.x] = temp[0];

by

if (tid==0) {
do {} while(atomicCAS(&lock,0,1)); // set lock

*d_sum += temp[0];
__threadfence(); // wait for write completion

lock = 0; // free lock
}
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Scan operation

Given an input vector ui, i = 0, . . . , I−1, the objective of a
scan operation is to compute

vj =
∑

i<j

ui for all j < I.

Why is this important?

a key part of many sorting routines

arises also in particle filter methods in statistics

related to solving long recurrence equations:

vn+1 = (1−λn)vn + λnun

a good example that looks impossible to parallelise
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Scan operation

Before explaining the algorithm, here’s the “punch line”:

some parallel algorithms are tricky – don’t expect them
all to be obvious

check NVIDIA’s sample codes, check the literature
using Google – don’t put lots of effort into re-inventing
the wheel

the relevant literature may be more than 30 years old
– back to the glory days of CRAY vector computing
and Thinking Machines’ massively-parallel CM5
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Scan operation

Similar to the global reduction, the top-level strategy is

perform local scan within each block

add on sum of all preceding blocks

Will describe two approaches to the local scan, both similar
to the local reduction

first approach:
very simple using shared memory, but O(N logN)
operations

second approach:
more efficient using warp shuffles with O(N)
operations
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Local scan: version 1
✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉
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after n passes, each sum has local plus preceding 2n−1
values

log2N passes, and O(N) operations per pass
=⇒ O(N logN) operations in total
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Local scan: version 1

__global__ void scan(float *d_data) {

extern __shared__ float temp[];
int tid = threadIdx.x;
temp[tid] = d_data[tid+blockIdx.x*blockDim.x];

for (int d=1; d<blockDim.x; d=2*d) {
__syncthreads();
float temp2 = (tid >= d) ? temp[tid-d] : 0;
__syncthreads();
temp[tid] += temp2;

}

...
}
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Local scan: version 1

Notes:

increment is set to zero if no element to the left

both __syncthreads(); are needed

Confession: my most common CUDA programming error
is failing to use a __syncthreads(); when needed
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Local scan: version 2
The second version starts by using warp shuffles to perform
a scan within each warp, and store the warp sum:

__global__ void scan(float *d_data) {
__shared__ float temp[32];
float temp1, temp2;
int tid = threadIdx.x;
temp1 = d_data[tid+blockIdx.x*blockDim.x];

for (int d=1; d<32; d=2*d) {
temp2 = __shfl_up_sync(-1, temp1,d);
if (tid%32 >= d) temp1 += temp2;

}

if (tid%32 == 31) temp[tid/32] = temp1;
__syncthreads();
...
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Local scan: version 2
Next we perform a scan of the warp sums (assuming no
more than 32 warps):

if (tid < 32) {
temp2 = 0.0f;
if (tid < blockDim.x/32)

temp2 = temp[tid];

for (int d=1; d<32; d=2*d) {
temp3 = __shfl_up_sync(-1, temp2,d);
if (tid%32 >= d) temp2 += temp3;

}
if (tid < blockDim.x/32) temp[tid] = temp2;

}
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Local scan: version 2

Finally, we add the sum of previous warps:

__syncthreads();

if (tid >= 32) temp1 += temp[tid/32 - 1];

...
}
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Global scan: version 1

To complete the global scan there are two options

First alternative:

use one kernel to do local scan and compute partial
sum for each block

use host code to perform a scan of the partial sums

use another kernel to add sums of preceding blocks
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Global scan: version 2

Second alternative – do it all in one kernel call

However, this needs the sum of all preceding blocks to add
to the local scan values

Problem: blocks are not necessarily processed in order,
so could end up in deadlock waiting for results from a block
which doesn’t get a chance to start.

Solution: use atomics to create an in-order block ID
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Global scan: version 2

Declare a global device variable

__device__ int my_block_count = 0;

and at the beginning of the kernel code use

__shared__ int my_blockId;
if (threadIdx.x==0) {
my_blockId = atomicAdd(&my_block_count, 1);

}
__syncthreads();

which returns the old value of my_block_count and
increments it, all in one operation.

This gives us a way of launching blocks in strict order.
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Global scan: version 2

In the second approach to the global scan, the kernel code
does the following:

get in-order block ID

perform scan within the block

wait until another global counter

__device__ volatile int my_block_count2 = 0;

shows that preceding block has computed the sum of
the blocks so far

get the sum of blocks so far, increment the sum with the
local partial sum, then increment my_block_count2

add previous sum to local scan values and store the
results
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Global scan: version 2

// get global sum, and increment for next block

if (tid == 0) {
// volatile qualifier critical here
do {} while( my_block_count2 < my_blockId );

shared_sum = global_sum; // copy to shared
global_sum += local_sum; // increment sum
__threadfence(); // wait for write

my_block_count2++; // increment block counter
}

__syncthreads();
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Scan operation

Conclusion: this is all quite tricky!

Advice: best to first see if you can get working code from
someone else (e.g. investigate Thrust C++ library)

Don’t re-invent the wheel unless you really think you can do
it better.
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Recurrence equation

Given sn, un, want to compute vn defined by

vn = sn vn−1 + un

(Often have
vn = (1−λn) vn−1 + λn un

with 0<λn<1 so this computes a running weighted
average, but that’s not important here.)

Again looks naturally sequential, but in fact it can be
handled in the same way as the scan.
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Recurrence equation

Starting from

vn = sn vn−1 + un

vn−1 = sn−1 vn−2 + un−1

then substituting the second equation into the first gives

vn = (snsn−1) vn−2 + (snun−1 + un)

so (sn−1, un−1), (sn, un) −→ (snsn−1, snun−1 + un)

Repeat at each level of the scan, eventually getting

vn = s′nv−1 + u′n

where v−1 represents the last element of the previous block.
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Recurrence equation

When combining the results from different blocks we have
the same choices as before:

store s′, u′ back to device memory, combine results for
different blocks on the CPU, then for each block we
have v−1 and can complete the computation of vn
use atomic trick to launch blocks in order, and then after
completing first phase get v−1 from previous block to
complete the computation.

Similarly, the calculation within a block can be performed
using shuffles in a two-stage process:

1. use shuffles to compute solution within each warp

2. use shared memory and shuffles to combine results
from different warps and update solution from first stage
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Key reading

CUDA C++ Programming Guide:

Section 7.22: warp shuffle instructions

Section 7.21: new warp reduction instruction
– this is only for integers currently, and I have not
experimented with it
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CUDA libraries

Originally, NVIDIA planned to provide only one or two
maths libraries, but over time these have steadily increased

CUDA math library
all of the standard math functions you would expect
(i.e. very similar to what you would get from Intel)

various exponential and log functions
trigonometric functions and their inverses
hyperbolic functions and their inverses
error functions and their inverses
Bessel and Gamma functions
vector norms and reciprocals (esp. for graphics)
mainly single and double precision – a few in half
precision
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CUDA libraries

cuBLAS

basic linear algebra subroutines for dense matrices
includes matrix-vector and matrix-matrix product
it is possible to call cuBLAS routines from user
kernels – device API
some support for a single routine call to do a “batch”
of smaller matrix-matrix multiplications
also support for using CUDA streams to do a large
number of small tasks concurrently
simpleCUBLAS example in Practical 5 – taken from
NVIDIA sample codes
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CUDA libraries

cuBLAS is a set of routines to be called by user host code:

helper routines:
memory allocation
data copying from CPU to GPU, and vice versa
error reporting

compute routines:
matrix-matrix and matrix-vector product
Warning! Some calls are asynchronous, i.e. the call
starts the operation but the host code then continues
before it has completed

cuBLASxt extends cuBLAS to multiple GPUs
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CUDA libraries

cuFFT
1D, 2D, 3D Fast Fourier Transform

has most variations found in FFTW and elsewhere

like cuBLAS, routines called by user host code:
helper routines include “plan” construction
compute routines perform 1D, 2D, 3D FFTs
it supports doing a “batch” of independent
transforms, e.g. applying 1D transform to a 3D
dataset

simpleCUFFT example in Practical 5 – taken from
NVIDIA sample codes
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CUDA libraries

cuTENSOR
tensor linear algebra library
makes extensive use of new Tensor Cores

cuSPARSE
various routines to work with sparse matrices
includes sparse matrix-vector and matrix-matrix
products
could be used for iterative solution
also has solution of sparse triangular system
note: batched tridiagonal solver is in cuBLAS not
cuSPARSE
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CUDA libraries

cuRAND
random number generation
XORWOW, mrg32k3a, Mersenne Twister and
Philox 4x32 10 pseudo-random generators
Sobol quasi-random generator (with optional
scrambling)
uniform, Normal, log-Normal, Poisson outputs
also device level routines for RNG within kernels

cuSOLVER:
key LAPACK dense solvers, 3 – 6x faster than MKL
sparse direct solvers, 2–14x faster than CPU
latest version uses iterative refinement with
low-precision Tensor Core operations
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CUDA libraries

CUB
collection of basic building blocks (e.g. sort, scan,
reduction) at three levels: device, thread block, warp

available from github.com/NVIDIA/cub

CUTLASS (CUDA Templates for Linear Algebra
Subroutines)

collection of CUDA C++ template abstractions for
implementing matrix-multiplication (GEMM)

available from github.com/NVIDIA/cutlass

AmgX
library for algebraic multigrid

available from developer.nvidia.com/amgx
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CUDA Libraries

NCCL
NVIDIA Collective Communications Library
multi-GPU over both PCIe and NVlink
multi-node over NVIDIA/Mellanox NICs

cuDNN
library for Deep Neural Networks

nvGraph
Page Rank, Single Source Shortest Path, Single
Source Widest Path

NPP (NVIDIA Performance Primitives)
library for imaging and video processing
includes functions for filtering, JPEG decoding, etc.Lecture 5 – p. 9/30



CUDA Libraries

Thrust
high-level C++ template library with an interface
based on the C++ Standard Template Library (STL)
very different philosopy to other libraries; users write
standard C++ code (no CUDA) but get the benefits
of GPU parallelisation
also supports x86 execution
relies on C++ object-oriented programming; certain
objects exist on the GPU, and operations involving
them are implicitly performed on the GPU
I’ve not used it, but for some applications it can be
very powerful – e.g. lots of built-in functions for
operations like sort and scan
also simplifies memory management and data
movement Lecture 5 – p. 10/30



CUDA Libraries

Kokkos
another high-level C++ template library
developed in the US DoE Labs, so considerable
investment in both capabilities and on-going
software maintenance
again I’ve not used it, but possibly worth investigating
for more information see
https://github.com/kokkos/kokkos/wiki
https://trilinos.org/packages/kokkos/
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Useful header files

dbldbl.h available from
https://gist.github.com/seibert/5914108
Header file for double-double arithmetic for
quad-precision (developed by NVIDIA, but published
independently under the terms of the BSD license)

cuComplex.h part of the standard CUDA distribution
Header file for complex arithmetic – defines a class and
overloaded arithmetic operations.

helper math.h available with NVIDIA sample codes
Defines operator-overloading operations for CUDA
intrinsic vector datatypes such as float4
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Other libraries

MAGMA
a new LAPACK for GPUs – higher level numerical
linear algebra, layered on top of CUBLAS

open source – freely available from
https://icl.utk.edu/magma/

developed by Jack Dongarra, Jim Demmel and
others
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Other libraries

ArrayFire from Accelereyes:
was commercial software, but now open source
supports both CUDA and OpenCL execution
C, C++ and Fortran interfaces
wide range of functionality including linear algebra,
image and signal processing, random number
generation, sorting
www.accelereyes.com/products/arrayfire

NVIDIA maintains webpages with links to a variety of CUDA
libraries:
developer.nvidia.com/gpu-accelerated-libraries
and other tools:
developer.nvidia.com/tools-ecosystem
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The 7 dwarfs

Phil Colella, senior researcher at Lawrence Berkeley
National Laboratory, talked about “7 dwarfs” of
numerical computation in 2004

expanded to 13 by a group of UC Berkeley professors
in a 2006 report: “A View from Berkeley”

www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

key algorithmic kernels in many scientific computing
applications

very helpful to focus attention on HPC challenges and
development of libraries and problem-solving
environments/frameworks.
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The 7 dwarfs

dense linear algebra

sparse linear algebra

spectral methods

N-body methods

structured grids

unstructured grids

Monte Carlo
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Dense linear algebra

cuBLAS

cuSOLVER

CUTLASS

MAGMA

ArrayFire
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Sparse linear algebra

iterative solvers:
some available in PetSc
others can be implemented using sparse
matrix-vector multiplication from cuSPARSE
NVIDIA has AmgX, an algebraic multigrid library

direct solvers:
NVIDIA’s cuSOLVER

SuperLU and STRUMPACK:
https://www.exascaleproject.org/wp-content/
uploads/2022/06/LiSherrySparseBofSlides.pdf
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Spectral methods

cuFFT
library provided / maintained by NVIDIA

nothing else needed?
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N-body methods

OpenMM

http://openmm.org/

open source package to support molecular
modelling, developed at Stanford

Fast multipole methods:
ExaFMM by Yokota and Barba:
http://www.bu.edu/exafmm/
https://lorenabarba.com/figshare/exafmm-10-years-7-re-writes

-the-tortuous-progress-of-computational-research/

FMM2D by Holm, Engblom, Goude, Holmgren:
http://user.it.uu.se/∼stefane/freeware
software by Takahashi, Cecka, Fong, Darve:
onlinelibrary.wiley.com/doi/10.1002/nme.3240/pdf
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Structured grids

lots of people have developed one-off applications

no great need for a library for single block codes
(though possible improvements from “tiling”?)

multi-block codes could benefit from a general-purpose
library, mainly for MPI communication

Oxford OPS project has developed a high-level
open-source framework for multi-block codes,
using GPUs for code execution and MPI for
distributed-memory message-passing

all implementation details are hidden from “users”, so
they don’t have to know about GPU/MPI programming

Lecture 5 – p. 21/30



Unstructured grids

In addition to GPU implementations of specific codes there
are projects to create high-level solutions which others can
use for their application codes:

Alonso, Darve and others (Stanford)

Oxford / Imperial College project developed OP2,
a general-purpose open-source framework based on
a previous framework built on MPI

See https://op-dsl.github.io/ for both OPS
and OP2

Lecture 5 – p. 22/30



Monte Carlo

NVIDIA cuRAND library

some use examples among NVIDIA sample codes

Accelereyes ArrayFire library

nothing else needed except for more output
distributions?
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Tools
Debugging using NVIDIA Compute Sanitizer:

compute-sanitizer --tool memcheck
detects array out-of-bounds errors, and mis-aligned
device memory accesses

compute-sanitizer --tool racecheck
checks for shared memory race conditions:

Write-After-Write (WAW): two threads write data to
the same memory location but the order is uncertain
Read-After-Write (RAW), Write-After-Read (WAR):
one thread writes & one reads, with uncertain order

compute-sanitizer --tool initcheck
detects reading of uninitialised device memory

compute-sanitizer --tool synccheck
detects incorrect use of syncthreads and related
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Tools
Other languages:

CUDA Fortran: available from NVIDIA

Python:
https://developer.nvidia.com/cuda-python
https://numba.pydata.org/

MATLAB: can call kernels directly, or use OOP like
Thrust to define MATLAB objects which live on the GPU
https://www.mathworks.com/solutions/gpu-computing.html

Mathematica: similar to MATLAB?
https://reference.wolfram.com/language/CUDALink/tutorial/Overview.html

R:
https://developer.nvidia.com/blog/accelerate-r-applications-cuda/

http://www.r-tutor.com/gpu-computing
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Tools

OpenACC (“More Science, Less Programming”):

like Thrust, aims to hide CUDA programming by doing
everything in the top-level CPU code

programmer takes standard C/C++/Fortran code and
inserts pragmas saying what can be done in parallel
and where data should be located

https://www.openacc.org/

OpenMP 5.0 is similar but newer:

strongly pushed by Intel to accommodate Xeon Phi and
unify things, in some sense

https://www.openmp.org/wp-content/uploads/

20210924-OpenMP-update-for-DOE.pdf
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Tools

Integrated Development Environments (IDE):

Nsight Visual Studio edition – NVIDIA plug-in for
Microsoft Visual Studio
developer.nvidia.com/nsight-visual-studio-edition

Nsight Eclipse edition – IDE for Linux systems
(now distributed as plug-ins for standard Eclipse)
developer.nvidia.com/nsight-eclipse-edition

these come with editor, debugger, profiler integration
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Tools

NVIDIA Nsight Compute CLI profiler ncu:

standalone software for Linux and Windows systems

uses hardware counters to collect a lot of useful
information

I think only 1 SM is instrumented – implicitly assumes
the others are behaving similarly

lots of things can be measured, but a limited number of
counters, so it runs the application multiple times if
necessary to get full info

see practical 3 for an example of its use

can also visualise output using ncu-ui
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
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Tools

GPU Direct:

webpage:
https://developer.nvidia.com/gpudirect

software support for direct data transfers from one GPU
to another

works across PCIe within a single machine

works across PCIe-connected network adapters
between different systems

includes capabilities to work with cameras and other
video input devices (e.g. for self-driving cars)

very important in applications which might otherwise be
limited by PCIe bandwidth
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Summary

active work on all of the dwarfs

in most cases, significant effort to develop general
purpose libraries or frameworks, to enable users to get
the benefits without being CUDA experts

too much going on for one person (e.g. me) to keep
track of it all

NVIDIA maintains a webpage with links to CUDA
tools/libraries:
developer.nvidia.com/cuda-tools-ecosystem

the existence of this ecosystem is part of why I think
CUDA will remain more used than OpenCL for HPC
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Overview

synchronicity

streams

multiple GPUs

other odds and ends
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Warnings

I haven’t tried most of what I will describe

some details sometimes change from one version of
CUDA to the next – everything here is for the latest
version

overall, keep things simple unless it’s really needed for
performance

if it is, proceed with extreme caution, do practicals 6, 11
and 12, and check out the NVIDIA sample codes
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Synchronicity

A computer system has lots of components:

CPU(s)

GPU(s)

memory controllers

network cards

Many of these can be doing different things at the same
time – usually for different processes, but sometimes
for the same process
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Synchronicity

The von Neumann model of a computer program is
synchronous with each computational step taking place
one after another

this is an idealisation – almost never true in practice

compiler frequently generates code with overlapped
instructions (pipelined CPUs) and does other
optimisations which re-arrange execution order and
avoid redundant computations

however, it is usually true that as a programmer you can
think of it as a synchronous execution when working out
whether it gives the correct results

when things become asynchronous, the programmer
has to think very carefully about what is happening and
in what order

Lecture 6 – p. 5/36



Synchronicity

With GPUs we have to think even more carefully:

host code executes on the CPU(s);
kernel code executes on the GPU(s)

. . . but when do the different bits take place?

. . . can we get better performance by being clever?

. . . might we get the wrong results?

Key thing is to try to get a clear idea of what is going on
– then you can work out the consequences
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GPU code

for each warp, code execution is effectively
synchronous

different warps execute in an arbitrary overlapped
fashion – use syncthreads() if necessary to
ensure correct behaviour

different thread blocks execute in an arbitrary
overlapped fashion

All of this has been described over the past 3 days
– nothing new here.

The focus of these new slides is on host code and the
implications for CPU and GPU execution
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Host code

Simple / default behaviour:

1 CPU

1 GPU

1 thread on CPU (i.e. scalar code)

1 default “stream” on GPU

Note: within the GPU, all operations in the default stream
operate strictly in sequence, each one finishing before the
next one starts
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Host code

most CUDA calls are synchronous / blocking:

example: cudaMemcpy

host call starts the copying and waits until it has
finished before the next instruction in the host code
why? – ensures correct execution if subsequent host
code reads from, or writes to, the data being copied

NOTE: cudaMemcpy operates asynchronously when
copying no more than 64kB from host to device – it does
this by first copying the data to a host buffer, before
returning to the host code (see Section 3.2.8.1 in the
Programming Guide)
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Host code

CUDA kernel launch is asynchronous / non-blocking;
host call starts the kernel execution, but doesn’t wait for
it to finish before going on to next instruction

similar for cudaMemcpyAsync
starts the copy but doesn’t wait for completion
has to be done through a “stream”
must use page-locked memory (also known as
pinned memory) to guarantee it is asynchronous
– see documentation

host will wait for completion at a blocking cudaMemcpy
or cudaDeviceSynchronize call

benefit? can reduce execution time by overlapping CPU
and GPU execution
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Page-locked memory

Section 3.2.6:

host memory is usually paged, so run-time system
keeps track of where each page is located

for higher performance, can fix some pages, but means
less memory available for everything else

CUDA uses this for better host <–> GPU bandwidth,
and also to hold “device” arrays in host memory

can provide up to 100% improvement in bandwidth

also, may be necessary for cudaMemcpyAsync to be
asynchronous, especially for device to host transfers

allocated using cudaHostAlloc, or registered by
cudaHostRegister
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Host code
cudaMemcpy(d_u1,h_u1,bytes,cudaMemcpyHostToDevice);

kernel_code<<<dimGrid, dimBlock>>>(d_u1, d_u2);

gold_code(h_u1,h_u2);

cudaMemcpy(h_u1,d_u1,bytes,cudaMemcpyDeviceToHost);

time

GPU

CPU

cudaMemcpy kernel_code cudaMemcpy

gold_code
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Host code

What could go wrong?

kernel timing – need to make sure it’s finished

could be a problem if the host uses data which is
read/written directly by kernel, or transferred by
cudaMemcpyAsync

cudaDeviceSynchronize() can be used to ensure
correctness (similar to syncthreads() for kernel
code)
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Multiple Streams

Quoting from Section 3.2.8.5 in the CUDA Programming
Guide:

Applications manage the concurrent operations
described above through streams.

A stream is a sequence of commands (possibly
issued by different host threads) that execute in
order.

Different streams, on the other hand, may execute
their commands out of order with respect to one
another or concurrently.
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Multiple Streams

Optional stream argument for

kernel launch

cudaMemcpyAsync

with streams creating using cudaStreamCreate

Within each stream, CUDA operations are carried out in
order (i.e. FIFO – first in, first out); one finishes before the
next starts

Key to getting better performance is using multiple streams
to overlap things

Lecture 6 – p. 15/36



Default stream

The way the default stream behaves in relation to others
depends on a compiler flag:

no flag, or --default-stream legacy

old (bad) behaviour in which a cudaMemcpy or kernel
launch on the default stream blocks/synchronizes with
other streams

--default-stream per-thread

new (good) behaviour in which the default stream
doesn’t affect the others

note: flag label is a bit odd – it has other effects too
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Example 1

cudaStream_t streams[8];

float *data[8];

for (int i=0; i<8; i++) {

cudaStreamCreate(&streams[i]);

cudaMalloc(&data[i], N * sizeof(float));

}

for (int i=0; i<8; i++) {

// launch a tiny kernel on default stream

k<<<1, 1>>>();

// launch one worker kernel per stream

kernel<<<1, 64, 0, streams[i]>>>(data[i], N);

}

cudaDeviceSynchronize();
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Example 1

old behaviour:

time

default

stream 0

stream 1

stream 2

stream 3

stream 4

stream 5

stream 6

stream 7

k

kernel

k

kernel

k

kernel

k

kernel

k
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Example 1

new behaviour:

time

default

stream 0

stream 1

stream 2

stream 3

stream 4

stream 5

stream 6

stream 7

k

kernel

k

kernel

k

kernel

k

kernel

k

kernel

k

kernel

k

kernel

k

kernel
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Default stream

The second (main?) effect of the flag comes when using
multiple threads (e.g. OpenMP or POSIX multithreading)

In this case the effect of the flag is to create separate
independent (i.e. non-interfering) default streams for each
thread

Using multiple default streams, one per thread, is a good
alternative to using multiple “proper” streams
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Example 2

omp_set_num_threads(8);

float *data[8];

for (int i = 0; i < 8; i++)

cudaMalloc(&data[i], N * sizeof(float));

#pragma omp parallel for

for (int i = 0; i < 8; i++) {

printf(" thread ID = %d \n",omp_get_thread_num());

// launch one worker kernel per thread

kernel<<<1, 64>>>(data[i], N);

}

cudaDeviceSynchronize();
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Stream commands

Each stream executes a sequence of kernels, but
sometimes you also need to do something on the host.

There are at least two ways of coordinating this:

use a separate thread for each stream
it can wait for the completion of all pending tasks,
then do what’s needed on the host

use just one thread for everything
for each stream, add a callback function to be
executed (by a new thread) when the pending tasks
are completed
it can do what’s needed on the host, and then launch
new kernels (with a possible new callback) if wanted
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Stream commands

cudaStreamCreate()
creates a stream and returns an opaque “handle”

cudaStreamCreateWithPriority()
additionally defines an execution priority

cudaStreamSynchronize()
waits until all preceding commands have completed

cudaStreamQuery()
checks whether all preceding commands have
completed

cudaStreamAddCallback()
adds a callback function to be executed on the host
once all preceding commands have completed
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Stream events

Useful for synchronisation and timing between streams:

cudaEventCreate(event)
creates an “event”

cudaEventRecord(event,stream)
puts an event into a stream (by default, stream 0)

cudaEventSynchronize(event)
CPU waits until event occurs

cudaStreamWaitEvent(stream,event)
stream waits until event occurs

cudaEventQuery(event)
check whether event has occured

cudaEventElapsedTime(time,event1,event2)
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Two use cases

One important use case for streams is to overlap PCIe
transfers with kernel computation for real-time signal
processing.

time

stream 0

stream 1

stream 2

H2D kernel D2H

H2D kernel D2H

H2D kernel D2H

In the best case this gives a factor 3× improvement when
the data transfers take as long as the kernel computation
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Two use cases

A second use case is to overlap the execution of lots of
small independent kernels which otherwise would execute
sequentially.

Using multiple streams keeps all of the SMs in a big GPU
busy.

time

stream 0

stream 1

stream 2

stream 3

k1 k5

k2 k6

k3 k7

k4 k8
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Multiple devices

What happens if there are multiple GPUs?

CUDA devices within the system are numbered, not always
in order of decreasing performance

by default a CUDA application uses the lowest number
device which is “visible” and available

visibility controlled by environment variable
CUDA VISIBLE DEVICES

current device can be set by using cudaSetDevice

cudaGetDeviceProperties does what it says

each stream is associated with a particular device
– current device for a kernel launch or a memory copy

see simpleMultiGPU example in NVIDIA samples

see Section 3.2.9 for more information Lecture 6 – p. 27/36



Multiple devices

If a user is running on multiple GPUs, data can go directly
between GPUs (peer – peer) – doesn’t have to go via CPU

very important when using direct NVlink interconnect –
much faster than PCIe

cudaMemcpy can do direct copy from one GPU’s
memory to another

a kernel on one GPU can also read directly from an
array in another GPU’s memory, or write to it

this even includes the ability to do atomic operations
with remote GPU memory

for more information see Section 6.13, “Peer Device
Memory Access” in CUDA Runtime API documentation:
https://docs.nvidia.com/cuda/cuda-runtime-api/
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Multi-user support

What if different processes try to use the same device?

Depends on system compute mode setting (Section 3.4):

in “default” mode, each process uses the fastest device
good when one very fast card, and one very slow
not good when you have 2 identical fast GPUs

in “exclusive” mode, each process is assigned to first
unused device; it’s an error if none are available

cudaGetDeviceProperties reports mode setting

mode can be changed by sys-admin using
nvidia-smi command line utility
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Makefile

Compiling:

Makefile for first few practicals uses nvcc to compile
both the host and the device code

internally it uses gcc for the host code, at least by
default
device code compiler based on open source LLVM
compiler

sometimes, prefer to use other compilers (e.g. icc,
mpicc) for main code that doesn’t have any CUDA calls

this is fine provided you use -fPIC flag for
position-independent-code (don’t know what this means
but it ensures interoperability)

can also produce libraries for use in the standard way
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Makefile

Prac 6 Makefile:
INC := -I$(CUDA_HOME)/include -I.
LIB := -L$(CUDA_HOME)/lib64 -lcudart
FLAGS := --ptxas-options=-v --use_fast_math

main.o: main.cpp
g++ -c -fPIC -o main.o main.cpp

prac6.o: prac6.cu
nvcc prac6.cu -c -o prac6.o $(INC) $(FLAGS)

prac6: main.o prac6.o
g++ -fPIC -o prac6 main.o prac6.o $(LIB)

Lecture 6 – p. 31/36



Makefile

Prac 6 Makefile to create a library:
INC := -I$(CUDA)/include -I.
LIB := -L$(CUDA)/lib64 -lcudart
FLAGS := --ptxas-options=-v --use_fast_math

main.o: main.cpp
g++ -c -fPIC -o main.o main.cpp

prac6.a: prac6.cu
nvcc prac6.cu -lib -o prac6.a $(INC) $(FLAGS)

prac6a: main.o prac6.a
g++ -fPIC -o prac6a main.o prac6.a $(LIB)
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Makefile

Other compiler options:

-arch=sm 80
specifies GPU architecture

-Xptxas -dlcm=ca
uses L1/L2 cache in usual way – general default, also
implies 128 byte cache line

-Xptxas -dlcm=cg
bypass L1 cache / go straight to L2 – default for
read-only access, 32 byte cache line
(potentially useful to keep L1 cache for register spills)
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Occupancy and Cooperative Groups

CUDA Runtime API: Section 6.8 – Occupancy

cudaOccupancyMaxActiveBlocksPerMultiprocessor

calculates the maximum number of copies of the kernel
which can run in a single SM.

For an example of its use see:
https://developer.nvidia.com/blog/

cuda-pro-tip-occupancy-api-simplifies-launch-configuration/

Multiplied by the number of SMs gives the maximum
number of blocks which can execute simultaneously without
any queueing. With new Cooperative Groups (see CUDA
C++ Programming Guide: Section 8) can launch these
together and synchronize across the group.
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CUDA graphs

CUDA graphs (Section 3.2.8.7):

I think this looks really interesting as an alternative to
streams with programmed interdependencies, but I
haven’t yet had time to try it out

enables a programmer to specify a set of computational
tasks as a task DAG (Directed Acyclic Graph)

GPU is responsible for managing the DAG, noting when
tasks complete and launching new tasks that are now
able to run

can also “capture” a DAG by noting what happens
within streams
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Conclusions

This lecture has discussed a number of more advanced
topics

As a beginner, you can ignore almost all of them

As you get more experienced, you will probably want to
start using some of them to get the very best performance

Lecture 6 – p. 36/36



Lecture 7:
tackling a new application

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Lecture 7 – p. 1/27



Initial planning

1) Has it been done before?

check with Google

ask a local expert

check CUDA sample codes

sign up to the CUDA Developer Program (free)
and check out relevant Video-on-Demand talks
from the last GTC (GPU Technology Conference)

check out the NVIDIA Developer blogs:
https://developer.nvidia.com/blog
(very good for info on new hardware architectures as
well as new software features)
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Initial planning

2) Where is the parallelism?

efficient CUDA execution needs thousands of threads

usually obvious, but if not
go back to 1)

talk to an expert – they love a challenge

go for a long walk

may need to re-consider the mathematical algorithm
being used, and instead use one which is more
naturally parallel – but this should be a last resort!
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Initial planning

Sometimes you need to think about “the bigger picture”

Already considered 3D finite difference example:

lots of grid nodes so lots of inherent parallelism

even for ADI method, a grid of 2563 has 2562 tri-diagonal
solutions to be performed in parallel so OK to assign
each one to a single warp

(optional lecture 8 on how best to solve tri-diagonal
equations on GPUs – involves doing more computation
to reduce the amount of communication)

but what if we have a 2D or even 1D problem to solve?
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Initial planning

If we only have one such problem to solve, why use a GPU?

But in practice, often have many such problems to solve:

different initial data

different model constants

This adds to the available parallelism
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Initial planning

2D:

128KB of shared memory on Ampere == 32K float
so grid of 642 could be held within shared memory

one kernel for entire calculation

each block handles a separate 2D problem; possibly
two block per SM

for bigger 2D problems, might need to split each one
across more than one block

separate kernel for each timestep / iteration
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Initial planning

1D:

can certainly hold entire 1D problem within shared
memory of one SM

maybe best to use a separate block for each 1D
problem, and have multiple blocks executing
concurrently on each SM

but for implicit time-marching need to solve single
tri-diagonal system in parallel – how?
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Initial planning

Parallel Cyclic Reduction (PCR): starting from

an xn−1 + xn + cn xn+1 = dn, n = 0, . . . N−1

with a0 = cN−1 = 0, subtract an times row n−1, and cn times
row n+1 and re-normalise to get

a∗n xn−2 + xn + c∗n xn+2 = d∗n

with a∗m=0 for m<2 and c∗m=0 for m≥N−2.

Repeating this log2N times gives the value for xn (since the
values of the final a’s and c’s will be zero) and each step
can be done in parallel.

(Practical 7 uses shared memory, but if N ≤ 32 it fits in a
single warp and can be implemented using shuffles.)
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Initial planning

3) Break the algorithm down into its constituent pieces

each will probably lead to its own kernels

do your pieces relate to the 7 dwarfs?

re-check literature for each piece – sometimes the
same algorithm component may appear in widely
different applications

check whether there are existing libraries which may be
helpful

Lecture 7 – p. 9/27



Initial planning

4) Is there a problem with warp divergence?

GPU efficiency can be completely undermined if there
are lots of divergent branches

may need to implement carefully – lecture 3 example:

processing a long list of elements where, depending on
run-time values, a few involve expensive computation:

first process list to build two sub-lists of “simple” and
“expensive” elements

then process two sub-lists separately

. . . or again seek expert help
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Initial planning

5) Is there a problem with host <–> device bandwidth?

usually best to move whole application onto GPU,
so not limited by PCIe v4 bandwidth (32GB/s)

occasionally, OK to keep main application on the host
and just off-load compute-intensive bits

dense linear algebra is a good off-load example;
data is O(N2) but compute is O(N3) so fine if
N is large enough
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Heart modelling

Heart modelling is another interesting example:

keep PDE modelling (physiology, electrical field)
on the CPU

do computationally-intensive cellular chemistry on GPU
(naturally parallel)

minimal data interchange each timestep
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Initial planning

6) is the application compute-intensive or data-intensive?

break-even point is roughly 40 operations (FP and
integer) for each 32-bit device memory access
(assuming full cache line utilisation)

good to do a back-of-the-envelope estimate early on
before coding =⇒ changes approach to implementation

Lecture 7 – p. 13/27



Initial planning

If compute-intensive:

don’t worry (too much) about cache efficiency

minimise integer index operations

if using double precision, think whether it’s needed

If data-intensive:

ensure efficient cache use – may require extra coding

may be better to re-compute some quantities rather
than fetching them from device memory

if using double precision, think whether it’s needed
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Initial planning

Need to think about how data will be used by threads,
and therefore where it should be held:

registers (private data)

shared memory (for shared access)

device memory (for big arrays)

constant arrays (for global constants)

“local” arrays (efficiently cached)
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Initial planning

If you think you may need to use “exotic” features like
atomic locks:

look for NVIDIA sample codes demonstrating use of the
feature

write some trivial little test problems of your own

check you really understand how they work

Never use a new feature for the first time on a real problem!
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Initial planning

Read NVIDIA documentation on performance optimisation:

Section 5 of CUDA C++ Programming Guide

CUDA C++ Best Practices Guide

Volta Tuning Guide

Ampere Tuning Guide

Hopper Tuning Guide
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Programming and debugging

Many of my comments here apply to all scientific computing

Though not specific to GPU computing, they are perhaps
particularly important for GPU / parallel computing because

debugging can be hard!

Above all, you don’t want to be sitting in front of a 50,000
line code, producing lots of wrong results (very quickly!)
with no clue where to look for the problem
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Programming and debugging

plan carefully, and discuss with an expert if possible

code slowly, ideally with a colleague, to avoid mistakes
but still expect to make mistakes!

code in a modular way as far as possible, thinking how
to validate each module individually

build-in self-testing, to check that things which ought to
be true, really are true

(In major projects I have a cpp flag DIAGS; the larger
the value, the more self-testing the code does)

overall, should have a clear debugging strategy to
identify existence of errors, and then find the cause

includes a sequence of test cases of increasing
difficulty, testing out more and more of the code
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Programming and debugging

When working with shared memory, be careful to think
about thread synchronisation.

Very important!
Forgetting a

__syncthreads();

may produce errors which are unpredictable / rare
— the worst kind.

Also, make sure all threads reach the synchronisation point
— otherwise could get deadlock.

Reminder: compute-sanitizer --tool racecheck
to check for race condition
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Programming and debugging

In developing laplace3d, my approach was to

first write CPU code for validation

next check/debug CUDA code with printf statements
as needed, with different grid sizes:

grid equal to 1 block with 1 warp (to check basics)

grid equal to 1 block and 2 warps (to check
synchronisation)

grid smaller than 1 block (to check correct treatment
of threads outside the grid)

grid with 2 blocks

then turn on all compiler optimisations
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Performance improvement

The size of the thread blocks can have a big effect on
performance:

often hard to predict optimal size a priori

optimal size can also vary on different hardware

with early GPUs, could gain 2× improvement by
re-optimising the block sizes

probably not as much change these days between
successive generations

(not so much change in SMs, more a change in the
number of SMs, the size of L2 cache, and new features
like Tensor Cores)
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Performance improvement

A number of numerical libraries (e.g. FFTW, ATLAS) now
feature auto-tuning – optimal implementation parameters
are determined when the library is installed on the specific
hardware

I think this is a good idea for GPU programming, though I
have not seen it used by others:

write parameterised code

use optimisation (possibly brute force exhaustive
search) to find the optimal parameters

an Oxford student, Ben Spencer, developed a simple
flexible automated system to do this – can try it in one
of the mini-projects
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Performance improvement

Use profiling to understand the application performance:

where is the application spending most time?

how much data is being transferred?

are there lots of cache misses?

there are a number of on-chip counters to provide this
kind of information

The Nsight Compute profiler is powerful

provides lots of information (a bit daunting at first)

gives hints on improving performance

The Nsight Systems profiler gives a top-level view and is
relatively easy to use. Lecture 7 – p. 24/27



Going further

In some cases, a single GPU is not sufficient

Shared-memory option:

single system with up to 16 GPUs

GPUs linked by either PCIe (direct or via CPU) or
NVlink (much faster)

single process with a separate host thread for each
GPU, or use just one thread and switch between GPUs

can transfer data directly between GPUs – NVIDIA
software will use the fastest route, avoiding the CPU if
possible
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Going further

Distributed-memory option:

a cluster, with each node having 1 or 2 GPUs

nodes connected by high-speed Ethernet/Infiniband
networking with PCIe network cards

simplest approach is MPI message-passing, with
separate process for each GPU

modern MPI software has full support for CUDA, with
direct data transfers (no intermediate copies in CPU)
where possible

https://developer.nvidia.com/mpi-solutions-gpus
https://developer.nvidia.com/gpudirect

Lecture 7 – p. 26/27



Final words

it continues to be an exciting time for HPC

coding to get a good fraction of peak performance
remains challenging – computer science objective
should be to simplify this for developers through

libraries
domain-specific high-level languages
code transformation

confident prediction: GPUs and other accelerators such
as vector units will remain dominant in HPC for next 10
years, so it’s worth your effort to re-design and
re-implement your algorithms
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Keeping up-to-date

Important in scientific computing to keep an eye on what is
happening with both hardware and software

(I am self-taught through reading lots of blogs and websites,
as well as academic papers on scientific computing)

Remember: at times the business aspects are as important
as the technical in thinking about how things are developing

Current market capitalization (i.e. company value)

NVIDIA: $ 1150 bn

AMD: $ 187 bn

Intel: $ 148 bn

10 years ago the order would have been reversed!
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Hardware trends

NVIDIA high-end GPU performance and bandwidth

2008 2010 2012 2014 2016 2018 2020 2022

10 2

10 3

10 4

10 5
FP32 Performance and Bandwidth over Time

35% increase per year 

25% increase per year 

FP32 GFlop/s

BW GB/s
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Hardware trends

Compute / bandwidth ratio
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Hardware trends

Roofline model (image copyright Rambus Inc.)
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Hardware trends

Increasing energy consumption by NVIDIA GPUs – moving
to chilled-water cooling blocks

2008 2010 2012 2014 2016 2018 2020 2022
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Power consumption over time
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NVIDIA
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NVIDIA

Volta came out in 2017/18:
V100 for HPC
80 SMs
32GB HBM2 memory
special “tensor cores” for machine learning
– much faster for TensorFlow & PyTorch

Ampere came out in 2020:
A100 for HPC
108 SMs
40-80 GB HBM2 memory
wider range of “tensor core” capabilities
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NVIDIA

NVIDIA DGX Station A100
https://www.nvidia.com/en-us/data-center/dgx-station-a100/

4 NVIDIA A100 GPUs, each with 80GB HBM2
64-core AMD CPU
512 GB DDR4 memory, 10 TB SSD
600GB/s NVlink interconnect between the GPUs

NVIDIA DGX A100 Deep Learning server
https://www.nvidia.com/en-us/data-center/dgx-a100/

8 NVIDIA A100 GPUs, each with 80GB HBM2
2 × 64-core AMD “Rome” CPUs
2 TB DDR4 memory, 30 TB SSD
600GB/s NVlink interconnect between the GPUs
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NVIDIA

Hopper has come out in 2023:
H100 for HPC
228-264 SMs
80GB HBM2 memory
40MB L2 cache
NVlink improvements – up to 50% faster, 900GB/s
PCIe v5.0 – 2× improvement

Grace CPU has also arrived in 2023:
Arm-based
up to 72 cores
550GB/s bandwidth to LPDDR5X memory
900GB/s NVlink connection to Hopper GPU
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NVIDIA

Current status:

big AI companies are competing to buy huge numbes
(10,000+) of Hopper H100 GPUs – some orders are
worth over $1bn

supply is limited, prices have become inflated, and it’s
very difficult for academics to get any

emergence of Grace CPU is significant – gives NVIDIA
freedom to design their own combined CPU/GPU
offerings with high bandwith interconnect, like AMD

(maybe also signifies ARM breakthrough into the server
market?)
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AMD
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Top500

Top 5 on Top500 list, June 2023:

#1 Frontier (DoE/ORNL, USA)
HPE: 40,000 AMD MI250X GPUs

#2 Fugaku (RIKEN, Japan)
Fujitsu: 160,000 Fujitsu/ARM CPUs with vector units

#3 Lumi (EuroHPC/CSC, Finland)
HPE: 10,000 AMD MI250X GPUs

#4 Leonardo (EuroHPC/CINECA, Italy)
Atos: 14,000 NVIDIA A100 GPUs

#5 Summit (DoE/ORNL, USA)
IBM: 28,000 NVIDIA V100 GPUs
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AMD

Frontier: #1 supercomputer based on Linpack performance

sited at Oak Ridge National Laboratory (DoE)

1.7 Exaflops, 21 MW

system from HPE; CPUs and GPUs from AMD

9,472 compute nodes, each with one EPYC CPU,
four MI250X GPUs and 4TB of flash memory Lecture 8 – p. 14/26



AMD

over past decade AMD has had excellent CPUs and
GPUs (and pioneered chiplet packaging) but has not
invested enough in software – that is changing

hired lots of software specialists in the past 2 years,
including many of the NAG team responsible for ACML
(AMD’s version of Intel’s MKL libraries)

“Genoa” Zen4 EPYC CPUs:
up to 64 cores with vector units and 384MB L3
now getting about 20% share of server market

Frontier has previous generation “Trento” Zen3 EPYC
CPUs
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AMD

Instinct GPUs:
MI250X has 220 Compute Units, each with 64
stream procs, and 128 GB HBM2e memory with up
to 3.2 TB/s bandwidth: comparable to A100 GPU,
including for PyTorch
new MI300X will be broadly competitive with H100,
depending on price and availability
programmed using AMD’s ROCm (very similar to
CUDA) with extensive library support
portability provided through HIP (Heterogeneous
computing Interface for Portability) with compilation
to either CUDA or AMD’s ROCm:
https://rocmdocs.amd.com/en/latest/Programming Guides/HIP-GUIDE.html
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AMD

AMD’s ROCm eco-system:
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AMD

AMD’s HIP – some example code:

char* inputBuffer;

char* outputBuffer;

hipMalloc((void**)&inputBuffer, (strlength+1)*sizeof(char));

hipMalloc((void**)&outputBuffer, (strlength+1)*sizeof(char));

hipMemcpy(inputBuffer, input, (strlength+1)*sizeof(char),

hipMemcpyHostToDevice);

hipLaunchKernelGGL(helloworld, dim3(1),dim3(strlength), 0, 0,

inputBuffer, outputBuffer );

hipMemcpy(output, outputBuffer,(strlength+1)*sizeof(char),

hipMemcpyDeviceToHost);

hipFree(inputBuffer);

hipFree(outputBuffer);
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AMD

Now for some kernel code:

__global__ void helloworld(char* in, char* out)

{

int num = hipThreadIdx_x + hipBlockDim_x * hipBlockIdx_x;

out[num] = in[num] + 1;

}

Can see why it is fairly easy for AMD’s HIPIFY tool to
convert most simple CUDA code to HIP – this is another
reason to avoid “exotic” CUDA features as much as
possible.

Warning: AMD GPUs have a warp size of 64, not 32, so
use warpSize variable in your code rather than
hard-coding a warp size of 32.
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AMD
ROCm and HIP look very similar to CUDA – probably
required to win the major DoE and EU contracts

pricing and availability of GPUs are both much better
than NVIDIA currently, especially for academics

(major AI companies are placing $1bn orders with
NVIDIA so no GPUs left for us!)

AMD’s software eco-system is still maturing – will take
at least another 5 years to get close to CUDA

still, very good to see competition in the marketplace
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Intel
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Intel

current “Sapphire Rapids” Xeon-SP CPUs:
up to 60 cores, each with one or two 512-bit
AVX-512 vector units per core (512 bits = 16 floats)
up to 112.5MB L3 (shared), 2MB L2 per core
up to 250 GB/s memory bandwidth
CPU Max variants have up to 64 GB HBM2e

“Ponte Vecchio” a.k.a. Data Center GPU Max:
128 Xe cores, each with 16 × 256-bit vector units
400MB L2 cache, 64GB HBM2 with 8192-bit bus
shipping now, but limited software support
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Intel

Intel is pushing their Data Parallel C++ implementation of
SYCL (an “open standard” that no-one else is adopting)

part of Intel’s OneAPI software which aims to support
all hardware platforms

translation code (from Codeplay) enables execution on
NVIDIA and AMD GPUs

I have no experience with it, but Intel has a bad record
of pushing novel hardware/software for a few years then
abandoning it, so I fully expect them to axe their new
Data Center GPU Max chips

their standard C/C++ compilers and MKL libraries
remain very good for multithreaded/vectorized CPU
execution
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Others

Special designs, solely for the needs of Machine Learning:

Google: Tensor Processing Unit (TPU)

Graphcore: Colossus Intelligent Processing Unit

Cerebras: in-memory computing (lots of computing
elements interspersed within a huge amount of memory
in wafer-scale chips)

It seems unlikely that Google will get into the hardware
business in a big way, and if any startup makes real
progress they’ll be bought out by NVIDIA, AMD or Intel.
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Outlook

My current software assessment:

CUDA is dominant in HPC because of
ease-of-use
NVIDIA dominance of hardware, with huge sales in
machine learning in particular
extensive library support
support for many different languages
(Fortran, Python, R, MATLAB, etc.)
extensive eco-system of tools

HIP is a real threat to that dominance by offering
platform independence with compilation to both CUDA
and AMD’s ROCm
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Final words

NVIDIA holds a dominant market position, maybe hard
to justify their huge market valuation but they’re the
leader for a good reason – they have excellent hardware
and software, and focussed early of the needs of ML

Even as the gaming market shrinks, the auto market is
the next big one they’re working on

By addressing their software weakness, AMD is back in
the game for both HPC and ML – great to have
competition again

I remain unconvinced by Intel’s new hardware and
software products, though traditional Xeon CPUs
remain powerful and sell well

Other vendors are unlikely to break through significantly
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