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ABSTRACT

Across a broad range of applications, multicore technol-
ogy is the most important factor that drives today’s mi-
croprocessor performance improvements. Closely coupled is
a growing complexity of the memory subsystems with sev-
eral cache levels that need to be exploited efficiently to gain
optimal application performance. Many important imple-
mentation details of these memory subsystems are undocu-
mented. We therefore present a set of sophisticated bench-
marks for latency and bandwidth measurements to arbitrary
locations in the memory subsystem. We consider the co-
herency state of cache lines to analyze the cache coherency
protocols and their performance impact. The potential of
our approach is demonstrated with an in-depth compari-
son of ccNUMA multiprocessor systems with AMD (Shang-
hai) and Intel (Nehalem-EP) quad-core x86-64 processors
that both feature integrated memory controllers and coher-
ent point-to-point interconnects. Using our benchmarks we
present fundamental memory performance data and archi-
tectural properties of both processors. Our comparison re-
veals in detail how the microarchitectural differences tremen-
dously affect the performance of the memory subsystem.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Measurement techniques

General Terms

Performance Measurement

Keywords
Nehalem, Shanghai, Multi-core, Coherency, Benchmark

1. INTRODUCTION

Multicore technology is established in desktop and server
systems as well as in high performance computing. The
AMD Opteron 2300 family (Shanghai/Barcelona) and In-
tel’s Xeon 5500 processors (Nehalem-EP) are native x86-64
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quad-core designs for dual-socket systems. They integrate
on-chip memory controllers that reduce the memory latency
and allow the memory bandwidth to scale with the processor
count in an SMP system. Serial point-to-point links provide
cache-coherent inter-processor connections, thus creating a
cache-coherent non-uniform memory access (ccNUMA) ar-
chitecture. Both processor families feature a three level
cache hierarchy and shared last level caches.

The evolution of processor technology towards multicore
designs drives software technology as well. Parallel program-
ming paradigms become increasingly attractive to leverage
all available resources. This development goes along with a
change of memory access patterns: While independent pro-
cesses typically work on disjoint memory, parallel applica-
tions often use multiple threads to work on a shared data set.
Such parallelism, e.g. producer-consumer problems as well
as synchronization directives inherently require data move-
ment between processor cores that is preferably kept on-
chip. Common memory benchmarks such as STREAM [11]
are no longer sufficient to adequately assess the memory per-
formance of state-of-the-art processors as they do not cover
important aspects of multicore architectures such as band-
width and latency between different processor cores.

To improve this situation, we present a set of benchmarks
that can be used to determine performance characteristics of
memory accesses to arbitrary locations in multicore, multi-
processor ccNUMA systems. This includes on- and off-chip
cache-to-cache transfers that we consider to be of growing
importance. We also analyze the influence of the cache co-
herency protocol by controlling the coherency state of the
cache lines that are accessed by our benchmarks.

Based on these benchmarks we compare the performance
of the memory subsystem in two socket SMP systems with
AMD Shanghai and Intel Nehalem processors. Both proces-
sors strongly differ in the design of their cache architecture,
e.g. the last level cache implementation (non-inclusive vs.
inclusive) and the coherency protocol (MOESI vs. MESIF).
Our results demonstrate how these differences affect the
memory latency and bandwidth. We reveal undocumented
architectural properties and memory performance charac-
teristics of both processors. While a high-level analysis of
application performance is beyond the scope of this paper,
we present fundamental data to facilitate such research.

The paper is organized as follows: Section 2 outlines char-
acteristics of our test systems. Section 3 introduces the
benchmarks that we use to generate the results in Sections 4
and 5. Section 6 presents related work. Section 7 concludes
this paper and sketches future work.
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Figure 1: Block diagram of the AMD (left) and Intel (right) system architecture

2. BACKGROUND AND TEST SYSTEMS

Dual-socket SMP systems based on AMD Opteron 23**
(Shanghai) and Intel Xeon 55** (Nehalem-EP) processors
have a similar high level design as depicted in Figure 1.
The L1 and L2 caches are implemented per core, while the
L3 cache is shared among all cores of one processor. The
serial point-to-point links HyperTransport (HT) and Quick
Path Interconnect (QPI) are used for inter-processor and
chipset communication. Moreover, each processor contains
its own integrated memory controller (IMC).

Although the number of cores, clockrates, and cache sizes
are similar, benchmark results can differ significantly. For
example in SPEC’s CPU2006 benchmark, the Nehalem typ-
ically outperforms AMD’s Shanghai [1]. This is a result
of multiple aspects such as different instruction-level par-
allelism, Simultaneous Multi- Threading (SMT), and Intel’s
Turbo Boost Technology. Another important factor is the
architecture of the memory subsystem in conjunction with
the cache coherency protocol [12].

While the basic memory hierarchy structure is similar for
Nehalem and Shanghai systems, the implementation details
differ significantly. Intel implements an inclusive last level
cache in order to filter unnecessary snoop traffic. Core valid
bits within the L3 cache indicate that a cache line may be
present in a certain core. If a bit is not set, the associated
core certainly does not hold a copy of the cache line, thus
reducing snoop traffic to that core. However, unmodified
cache lines may be evicted from a core’s cache without noti-
fication of the L3 cache. Therefore, a set core valid bit does
not guarantee a cache line’s presence in a higher level cache.

AMD’s last level cache is non-inclusive [6], i.e neither ex-
clusive nor inclusive. If a cache line is transferred from the
L3 cache into the L1 of any core the line can be removed from
the L3. According to AMD this happens if it is “likely” [3]
(further details are undisclosed) that the line is only used
by one core, otherwise a copy can be kept in the L3. Both
processors use extended versions of the well-known MEST [7]
protocol to ensure cache coherency. AMD Opteron proces-
sors implement the MOESI protocol [2, 5]. The additional
state owned (O) allows to share modified data without a
write-back to main memory. Nehalem processors implement
the MESIF protocol [9] and use the forward (F) state to en-
sure that shared unmodified data is forwarded only once.

The configuration of both test systems is detailed in Ta-
ble 1. The listing shows a major disparity with respect to
the main memory configuration. We can assume that Ne-
halem’s three DDR3-1333 channels outperform Shanghai’s
two DDR2-667 channels (DDR2-800 is supported by the
CPU but not by our test system). However, the main mem-
ory performance of AMD processors will improve by switch-
ing to new sockets with more memory channels and DDR3.

We disable Turbo Boost in our Intel test system as it in-
troduces result perturbations that are often unpredictable.
Our benchmarks require only one thread per core to access
all caches and we therefore disable the potentially disadvan-
tageous SMT feature. We disable the hardware prefetchers
for all latency measurements as they introduce result varia-
tions that distract from the actual hardware properties. The
bandwidth measurements are more robust and we enable the
hardware prefetchers unless noted otherwise.

Test system

Sun Fire X4140

Intel Evaluation Platform

Processors

2x AMD Opteron 2384

2x Intel Xeon X5570

Codename

Shanghai

Nehalem-EP

Core/Uncore frequency

2.7 GHz / 2.2 GHz

2.933 Gz / 2.666 Gz

Processor Interconnect

HyperTransport, 8 GB/s

QuickPath Interconnect, 25.6 GB/s

Cache line size 64 Bytes
L1 cache 64 KiB/64 KiB (per core) 32 KiB/32 KiB (per core)
L2 cache | 512 KiB (per core), exclusive of L1 256 KiB (per core), non-inclusive
L3 cache 6 MiB (shared), non-inclusive 8 MiB (shared), inclusive of L1 and L2

Cache coherency protocol

MOESI

MESIF

Integrated memory controller

yes, 2 channel

yes, 3 channel

Main memory

8x4 GiB DDR2-667, registered, ECC
(4 DIMMS per processor)

6x2 GiB DDR3-1333, registered, ECC

(3 DIMMS per processor)

Operating system

Debian 5.0, Kernel 2.6.28.1

Table 1: Configuration of the test
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3. BENCHMARK DESIGN

Modern microprocessors feature complex cache hierarchies
that are designed to hide memory latencies and improve
memory bandwidths. These hardware features are trans-
parent for applications and only limited software control is
available. This makes it difficult to create memory bench-
marks that can provide detailed performance properties of
a given cache architecture. The benchmark design is there-
fore carefully optimized to circumvent perturbing hardware
properties. Moreover, we use the performance analysis tool
BenchIT [10] to facilitate the benchmark implementation
as well as the performance studies. Both BenchlT and the
benchmarks are available as Open Source!.

Our benchmarks provide compiler independent assembler
routines that allow us to use certain instruction sequences
that can not be generated using high level languages (e.g. to
transfer data into registers without computing on it). How-
ever, only the measurement routine itself is programmed in
assembler, the rest (e.g. thread synchronization and data
placement in the caches) is written in C. The Time Stamp
Counter is a high resolution timer that is supported by both
processors and therefore used to measure durations. Each
thread of the benchmark program is pinned to a certain pro-
cessor core. In the following description, thread N always
runs on core N. If not noted otherwise, memory is allocated
with the localalloc policy of numactl, allowing us to unveil
effects caused by the NUMA architecture.

Prior to the measurement, data is placed in the caches in
a well-defined coherency state. These states are generated
as follows:

e Modified state in caches of core N is generated by:
Thread N writing the data, which also invalidates all
copies that may exist in other cores.

e Exclusive state in caches of core N is generated by:
1) Thread N writing to the memory to invalidate copies
in other caches, 2) Thread N invalidating its cache
(c1flush instruction), 3) Thread N reading the data.

e Shared state in caches of core N is generated by:
1) Thread N caching data in exclusive state, 2) Read-
ing the data from another core.

The MESIF protocol used by the Nehalem processor pro-
vides the closely related states shared and forward. How-
ever, the forward state apparently is only relevant for the
L3 cache [8]. A cache line that is shared among multiple
processors will only be in forward state in one L3 cache.
For example, if processor 0 requests a cache line that is in
shared state in processor 1 and in forward state in proces-
sor 2, only the latter will send a response. Unfortunately,
our two socket system is too small to analyze this in detail.
The MOESI protocol of the AMD Shanghai processor uses
the additional owned state. For reading, results are equal
to the modified state, as data has to be transferred from the
cache that owns the cache line. For write access, cache lines
in owned state behave like shared cache lines, as copies of
other cores have to be invalidated.

Memory benchmarks and especially latency measurements
often show a mixture of effects from different cache levels
rather than just one. In order to separate these effects, we
explicitly place data in certain cache levels. If the data set

"http://www.benchit.org
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used for the measurement does not fit into a certain cache
level, a special cache flush routine completely replaces the
data in this (and higher) cache levels with dummy data that
is not accessed during the measurement. Another effect that
potentially influences our benchmark results are translation
lookaside buffer (TLB) misses. Huge pages are used to limit
that effect. Both processors have sufficient level 1 data trans-
lation lookaside buffers (data TLB) entries for 2 MiB pages
to cover memory sizes that exceed the total cache size.

The Latency Benchmark (see Section 4) uses pointer-
chasing to determine the minimal latency of cache and main
memory accesses. The following implementation model de-
scribes a latency measurement of core 0 accessing memory
cached by core N:

1) thread 0: warm-up TLB

2) if (N>0): sync of thread O and N

3) thread N: access data (-> E/M/S)

4) if (N>0): sync of thread O and N

5) all threads: flush caches (optional)
6) thread 0: measure latency

Step 1 ensures that all TLB entries needed for the measure-
ment are always present in core 0. Step 3 places data in the
caches of core N in a well-defined coherency state. Step 5
optionally flushes the caches. Step 6 is the final latency mea-
surement and always runs on core 0. The routine performs
a constant number of pseudo-random accesses. Every cache
line is accessed only once to avoid reuse of cache lines. No
consecutive cache lines are accessed to eliminate the influ-
ence of the adjacent line prefetcher.

The Single-Core Bandwidth Benchmark (see Sections 5.1
- 5.3) has a similar structure as the latency benchmark and
performs steps 1 to 5 identically. We again control the cache
line coherency states to unveil the effects of the coherency
protocol. We determine local, inter-core, and inter-processor
bandwidths.

The measurement routine running on core 0 (step 6) dif-
fers from the latency benchmark. It consecutively accesses a
variable amount of data to determine the read or write band-
width that is available for a single core. We solely use trans-
port instructions (MOVDQA) to load or store data (MOVNTDQ in
case of non-temporal stores) in order to avoid being limited
by arithmetic operations.

The Multi-Core Bandwidth Benchmark (see Section 5.4)
uses multiple threads concurrently to determine the aggre-
gate bandwidth for a variable number of cores accessing their
caches or main memory. This is particularly helpful to de-
termine the characteristics of shared resources such as the
L3 cache.

For this benchmark it is highly important that all parallel
threads are tightly synchronized. The benchmarks use the
Time Stamp Counter (TSC) for this purpose and therefore
require system-wide synchronous T'SCs as provided by both
test systems. The benchmark structure is as follows:

1) all threads: access data (-> E/M)

2) all threads: flush caches (optional)

3) all threads: barrier synchronization

4) thread 0: define start_time in future

5) all threads: wait for start_time

6) all threads: measure t_begin

7) all threads: access data (read or write)
8) all threads: measure t_end

9) duration = max(t_end) - min(t_begin)



4. LATENCY RESULTS

We use the latency benchmark introduced in Section 3 to
compare our test systems. We place cache lines in different
locations of the memory subsystem with different coherency
states. Our results are depicted in Figure 2 and summarized
in Table 2. We detail many of the conclusions that can be
drawn from these results in the following Sections.

4.1 On-Chip Latencies

The latencies to local caches are independent of the
coherency state since data can be read directly in all states.
Shanghai’s 3 cycle L1 latency compares to 4 cycles on Ne-
halem while the latter provides faster access to the L2/L3
caches. The L3 latency results are only valid for the selected
processors, as they depend on the core/uncore frequency ra-
tio. In general, our L1-L3 latency results correspond well to
the numbers that have been published by the vendors [3, §].

The latencies to other cores on the same processor
strongly depend on the cache line’s coherency state. On
Nehalem, shared cache lines can be accessed within 13 ns
as the copy in its inclusive L3 cache is guaranteed to be
valid.? In contrast, exclusive cache lines (one core valid bit
set) may have been modified in a higher level cache. This
forces the L3 cache to check the coherency state in the core,
thus increasing the latency to 22.2 ns. Due to the silent
eviction from higher level caches, this penalty even occurs
for cache lines that are solely present in the L3 cache. On
the contrary, the eviction of modified cache lines can not
occur silently but results in a write-back to the L3 cache
that updates the core valid bits as well. Therefore, the L3
latency is again 13 ns. Modified data that is still present in
higher cache levels is requested from the L2/L1 cache, thus
increasing the latency to 25.5/28.3 ns.

Shanghai’s cache architecture differs strongly: Cache lines
from higher level caches need to be fetched from the cores
or main memory if no copy exists in the non-inclusive L3
cache. The latencies indicate that requests for shared and
exclusive cache lines are serviced by main memory. The for-
mer case is common to avoid multiple cache line transfers.
Shanghai’s non-inclusive L3 cache shows an exclusive behav-
ior here as there is no latency improvement for accesses to
shared L1/L2 cache lines that would be caused by a copy in
the L3 cache. For exclusive cache lines it would clearly be
possible to mark them as shared and forward them to the
requesting core without main memory access. This is appar-
ently not supported by Shanghai’s MOESI implementation.

*Multiple shared cases exist on Nehalem: 1) Shared between
two cores of one processor, two core valid bits set, cache line
likely marked exclusive in L3. 2) Shared between two proces-
sors, one core valid bit set in each, line in shared/forwarding
state in L.3. The L3 provides equal latencies in all cases.

An on-chip transfer (that avoids the main memory la-
tency) only occurs if the coherency protocol requires another
core’s L1/L2 cache to provide modified data. Moreover, if
the data was originally allocated on the other socket, the
latency increases from 44 to 81 ns (not depicted). This sug-
gest that the (on-chip) request is forwarded to the (off-chip)
memory controller of the other Shanghai processor, thus re-
quiring an additional HT hop. This is a known behavior of
the dual-core Opteron [5] and apparently remains unchanged
with the shared L3 cache. On Nehalem, requests for mod-
ified cache lines are handled on-chip in this case (latency
remains at 25-28 ns).

4.2 Off-Chip Latencies

The latencies to the other processor include an addi-
tional penalty for the QPI/HT data transfer. Nehalem’s
inclusive last level cache provides fast access to unmodified
content in the other processor’s caches. For exclusive cache
lines, the latency of 63 ns includes a snoop of one core. For
shared cache lines, the remote L3 cache can answer requests
without snooping (58 ns)®. The latency for modified cache
lines is significantly higher (> 100 ns) due to write-backs to
main memory that are required by the MESIF protocol.

On Shanghai, unmodified cache lines are again not fetched
from the remote L1/L2 cache but from main memory. The
slope for memory sizes up to 576 KiB is possibly caused by
an uncore prefetcher that fights the pseudo-random mem-
ory access pattern. The L3 cache forwards exclusive data
(83 ns) while shared cache lines are fetched from main mem-
ory (118 ns). Only modified cache lines are directly for-
warded to the requesting core from all cache levels. The
advantage of Shanghai’s MOESI protocol is that the modi-
fied cache line in the remote cache can switch to the owned
state and therefore does not need to be written back to main
memory. However, the remote L3 could theoretically be
faster than the remote L1/L2 (similar to local accesses).

Interestingly, accesses to remote caches on Shanghai are
slower than accesses to the local RAM (83 vs. 77 ns). In
the latter case, the completion of the RAM access (that
occurs concurrent to the cache request) has to be delayed
until the probe miss of the remote processor returns. Unlike
on Nehalem, this is apparently quicker than a probe hit.

The latency to main memory is 65 ns for local mem-
ory and 106 ns for remote memory on the Nehalem system.
When using more than 64 MiB of memory, the latency in-
creases due to insufficient TLB entries (32 in L1 TLB). On
Shanghai we measure a memory latency of 77 ns for local
and 118 ns latency for remote accesses with stable results
up to a data set size of 96 MiB (48 L1 TLB entries).

3The shared cache line is likely to be exclusive in the L3
cache of processor 1 with two core valid bits set.

Processor Shanghai Nehalem
Source State L1 L2 L3 RAM L1 L2 L3 RAM
Local M/E/S 1.1 (3) 5.6 (15) 1.3 (4) | 3.4 (10) | 13.0 (38)
Modified 44 (119) 28.3 (33) 25.5 (75) | 13.0 (38)
Corel (on die) [Exclusive 66 - 77 15.2 (41) | 77 22.2 (65) 65
Shared 13.0 (38)
Modified 83 (224) 83 (224) 102 - 109
Core4 (other die) | Exclusive 99 - 116 118 63 (186) 106
Shared 58 (170)

Table 2: Read latencies of core 0, all results in nanoseconds (cycles)
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Figure 2: Read latencies of core 0 accessing cache lines of core 0 (local), core 1 (on die) or core 4 (other die)
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S. BANDWIDTH RESULTS

In this section we compare the available read and write
bandwidth of our test systems. For the interpretation it is
important to note that all cache lines accessed by a core
are placed in its L1 cache. Moreover, both microarchitec-
tures implement a write-allocate cache policy (except for
non-temporal stores). Any write access to a cache line that
is shared with other cores or is not present in a local cache
triggers a read for ownership that invalidates all copies in
caches of other cores before actually writing the cache line.
The write bandwidth results therefore combine effects of
reading the data from its original location and writing it into
the local caches. We use our designated cache flush routines
(see Section 3) to ensure that data is fetched or written back
solely to the intended cache level or main memory.

The results of our single-core bandwidth benchmark re-
sults show the available transfer rate when using a single
core to access data located in certain cache levels of itself
(see Section 5.1), of other cores on the same processor (see
Section 5.2), and of cores on a different processor (see Sec-
tion 5.3). Figure 3 plots the read bandwidth over the mem-
ory size for both exclusive, modified and shared cache lines.
Table 3 summarizes the results. The results for write band-
widths are presented in Figure 4 and Table 4. The main
memory bandwidth is discussed in Section 5.4 along with
the bandwidth for concurrent accesses by multiple cores.

5.1 Bandwidth to Local Caches

The read bandwidth for local cache accesses is indepen-
dent from the coherency state on both the Shanghai and
the Nehalem system. In what is the single exception among
all single core bandwidth results, Shanghai’s two 128 Bit L1
read ports can achieve a bandwidth of 79.9 GB/s, exceed-
ing the 45.6 GB/s that Nehalem can reach with only one
128 Bit port. Both processors nearly reach their theoretical
peak bandwidth in this case. Shanghai’s L2 read bandwidth
of 21.5 GB/s (64 Bit/cycle) is likely caused by a 128 Bit
interface that also has to transfer evicted data from the L1
cache due to the exclusive nature of the L2 cache. The
L3 read bandwidth of 10.3 GB/s compares to 23.9 GB/s on
Nehalem. Figure 3e shows that Shanghai’s L3 bandwidth for
shared cache lines increases marginally with higher memory
sizes. This is a minor positive effect of the non-inclusive
L3 cache that keeps copies of these shared cache lines and
therefore reduces the write-back penalty for L2 evictions.

On Nehalem, the L1 write bandwidth equals the read
bandwidth for exclusive and modified cache lines. Writing
into the L2 and L3 is slightly slower than reading. Writing

Processor Shanghai Nehalem
Source|State| L1 | L2 | L3 |RAM| L1 | L2 | L3 |RAM
Local | all |79.9]21.5{10.3 45.6| 31

M |5.5-6.810.5 9.2 [13.2
. 23.9| 13.
Corel| E |45-54] - 55 23.9 3.9 13.9
S 5.6 12 ’
M 4 4 8.6
Core4 g) 3.6 3.6 101 9.1

Table 3: Core 0 read bandwidth in GB/s with cache
lines in Modified, Exclusive or Shared state
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cache lines that are shared with another core is slower as the
second copy has to be invalidated. However, write accesses
generally achieve high bandwidths as the shared inclusive
L3 cache allows all data transfers to occur on-chip.

On Shanghai, the low write bandwidth to shared cache
lines (2.9 - 4.1 GB/s) shows that main memory accesses are
performed. The L3 cache does not handle these transfers
on-chip, even though the other processor is not involved.
For modified data, the L1 write bandwidth of 41.3 GB/s is
close to the theoretical peak (43.2 GB/s) for the two 64 Bit
write ports. However, writing into the L.2 and L3 cache only
reaches 12.9 GB/s and 9.4 GB/s, respectively. A striking
problem of Shanghai’s microarchitecture are writes to exclu-
sive cache lines. The L1 bandwidth is limited to 17.8 GB/s
in this case, less than half compared to the modified case.
This is likely caused by the non-inclusive L3 cache. Even
though it generally behaves like an exclusive cache, there is
a chance that a copy is kept in the L3 cache. This forces
write access to exclusive L1 cache lines to check and even-
tually invalidate the L3 cache. The low L1 performance
propagates into the L2 and L3 bandwidth as well.

5.2 Bandwidth to Other Cores

On Shanghai, the read bandwidth for unmodified data
from other cores’ L1 and L2 caches indicates that the re-
quests are served by main memory. This is consistent with
our latency measurements. For modified data that has to be
transferred from another core’s L1 or L2 cache, the band-
width is only slightly higher (up to 6.8 GB/s). Reading from
the L3 achieves 10.5 - 12.0 GB/s. The slope of these curves
may be induced by an inclusive behavior of the L3 cache
that keeps copies of the cache lines and therefore reduces
write-back penalties.

Writing data cached by other cores is limited by the read
for ownership. The write bandwidth reaches 3.9 GB/s for
modified data that has to be fetched from another core’s
L1/L2 cache and written into the local cache. For unmod-
ified data, bandwidth increases to 4.1 GB/s. The L3 cache
can provide a write bandwidth of 9.4 GB/s, except for shared
cache lines as they involve systemwide invalidations.

Nehalem has the advantage of an inclusive L3 cache that
can provide a read bandwidth of 23.9 GB/s for any access to
unmodified data of other cores. In contrast, the bandwidth
for transfers of modified cache lines from another core’s lo-
cal L1 or L2 cache is significantly lower with 9.2 GB/s or
13.2 GB/s, respectively.

Processor Shanghai Nehalem
Source|State| L1 | L2 [L3|RAM| L1 | L2 | L3 [RAM
M [41.3]12.9
Local T B 1179194 9.4 45.6(28.8|19.3
S 3 12914.1 25.6|21.4|16.5
M 3.9 94 36 9.4 |13.4|19.3 8.9
Corel | E 4.1 '
25.6|21.4|16.
S 11 5.6 6.5
M 2.9 2.9 8.8 10
Core4 ]; 3.4 \_ 3.0 0.9 0.3 5.9

Table 4: Core 0 write bandwidth in GB/s with cache
lines in Modified, Exclusive or Shared state
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Shanghai Nehalem

Cores L3 Cache RAM L3 Cache RAM
(Processors) | read | write | read | write | non-temporal | read | write | read | write | non-temporal

1(1) 10.3 9.4 5.5 3.6 5 239 | 19.3 13.9 8.9 8.5 (8.5%)

2 (1) 20.5 | 18.8 9.3 3.9 8.7 47.6 | 27.2 20.4 12.4 10.7 (12.3%)

3 (1) 30.3 28 9.3 3.9 8.7 74 26.4 22.9 11.8 11.5 (13%)

4 (1) 39.5 | 36.6 9.3 3.9 8.7 82 25.9 23.4 11.2 11.5 (14.1%)

8 (2) 79.4 | 73.2 18 7.7 17.4 164 51.8 41.7 22.3 23.2 (28.2%)

Table 5: L3 and main memory bandwidth in GB/s

5.3 Bandwidth to the Other Processor

The bandwidth to the second processor is mainly limited
by the processor interconnect. The unidirectional transfer
limit of HT in our Shanghai system is 4 GB/s and can be
reached when reading modified data or exclusive cache lines
from the remote L3 cache. Consistent with our latency re-
sults, shared cache lines and exclusive cache lines from the
remote L1 and L2 cache are fetched from main memory and
therefore slightly slower (3.6 GB/s). As for writing, we gen-
erally see slightly lower bandwidths (2.9 - 3.4 GB/s).

Nehalem’s QPI bandwidth limitation is 12.8 GB/s per di-
rection. Unmodified data can be read from the remote pro-
cessor with 10.1 GB/s. The read bandwidth for modified
cache lines (8.6 GB/s) is limited by the write-back to the
remote main memory that is required for the state transi-
tion to shared. Writing modified cache lines is faster as no
state transition and thus no write-back is required. Due
to the read for ownership, writing unmodified data (9.3 -
9.9 GB/s) can not exceed the 10.1 GB/s limitation.

5.4 Multicore Bandwidth

Our single core bandwidth results are not sufficient for
the evaluation of shared resources like the L3 cache and
the integrated memory controller. Our multicore bandwidth
benchmark allows us to stress these resources with multiple
concurrent memory accesses. All threads work on different
data to assure that data streams are independent from each
other. Table 5 shows the results and excludes the bandwidth
of the L1/L2 caches as these scale with the number of cores.

The L3 cache of Shanghai scales well up to four threads
per package. Two or more threads are required to fully use
the memory bandwidth of the integrated memory controller.
The write bandwidth to main memory is below 4 GB/s due
to the write allocate policy that requires reading before mod-
ifying the data. Non-temporal stores can be used to signifi-
cantly improve this situation.

Nehalem has a higher per thread and total (82 GB/s)
L3 read bandwidth, although it only scales well up to three
threads. In contrast, concurrent L3 write accesses top out
at 27.2 GB/s with two threads and bandwidth decreases
when more threads compete for L3 write access (Shanghai
performs better in this case). The main memory read band-
width of up to 23.4 GB/s shows the significant advantage
of Nehalem’s three DDR3 channels. Similar to Shanghai,
writing to main memory is significantly slower than read-
ing. However, Nehalem does not benefit as much from non-
temporal stores. We measure a significant improvement by
disabling the hardware prefetcher, but non-temporal stores
still have a relatively low bandwidth compared to the read
bandwidth. Furthermore, disabling the prefetchers decreases
the read bandwidth in what may outweigh the benefit of
non-temporal stores.
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In our single core bandwidth results, Shanghai demon-
strates a higher L1 read bandwidth than Nehalem and a
similar write bandwidth. Nehalem can perform one 128 Bit
read and one 128 Bit write simultaneously each cycle. In
contrast, Shanghai can either perform two 128 Bit loads,
two 64 Bit writes, or one read and one write. This perfectly
explains the L1 bandwidth results, however, it also suggests
that Shanghai may not perform as well for concurrent read
and write accesses, i.e. copying. Table 6 shows the results of
a modified benchmark that measures the copy bandwidth.
As expected, the Shanghai architecture is disadvantageous
in this case. The single threaded L3 copy bandwidth is sig-
nificantly higher on Nehalem while both processors perform
similarly when all cores access the L3 concurrently.

Cores Shanghai Nehalem
L1| L2 | L3 |RAM| L1 | L2 | L3 |RAM
1 55 116.11 9.7 | 3.4 179.2(34.9|24.1| 10.6
8 405|127 | 753 7.9 | 623 | 278 | 76 | 27.7

Table 6: Copy bandwidth in GB/s

6. RELATED WORK

Performance measurements are common practice to an-
alyze implementation details of the memory hierarchy. A
well-known and established benchmark is STREAM [11] al-
though it disregards many architectural details. Babka and
Tuma present their work in [4], focusing mainly on trans-
lation lookaside buffers and cache associativity. Peng et al.
compare the memory performance of dual-core processors in-
cluding a ping-pong implementation to analyze the latency
of cache-to-cache transfers [12]. However, they do not cover
inter-core bandwidths. To the best of the authors knowl-
edge, the memory benchmarks presented in this paper are
the first to explicitly consider the influence of the cache co-
herency protocol.

With respect to our test platforms, there is a fair amount
of literature that describes the AMD Opteron architecture
including the MOESI protocol in much detail [2, 5]. How-
ever, details about the “non-inclusive” .3 cache of the quad-
core Opteron are hardly available. As for our Intel Xeon test
system, we can only refer to a very limited number of rele-
vant publications. This is mostly due to the novelty of the
Nehalem microarchitecture and the MESIF protocol. Some
information can be gathered from Intel documents [8, 9].

Another important aspect is the use of a performance mea-
surement suite that allows to develop and run benchmarks
and supports the result evaluation. The Open Source tool
BenchlIT provides this functionality [10]. It runs microbench-
marks on POSIX compliant systems and helps to compare
different algorithms, implementations of algorithms, features
of the software stack and hardware details of whole systems.

“hardware prefetcher disabled



7. CONCLUSIONS AND FUTURE WORK

An effective use of the memory subsystem is a key factor
to obtain good application performance on today’s micro-
processors. With the introduction of multicore technology,
the cache hierarchy grows more complex: Besides the cache
performance of individual cores, important design goals are
aspects such as fast inter-core communication and an effi-
cient solution to maintain the coherency of all caches. In this
work we present and evaluate a set of latency and bandwidth
benchmarks for multicore x86-64 architectures that expe-
dite our understanding of the properties and performance
of the memory subsystem. Our approach is characterized
by the explicit control of the data’s cache coherency state
and the well-defined data placement in every available cache
and memory location of a multicore and multiprocessor cc-
NUMA system.

The potential of our approach is demonstrated with an
in-depth comparison of the multi-level memory subsystem
of dual-socket SMP systems based on the quad-core proces-
sors AMD Opteron 2384 (Shanghai) and Intel Xeon X5570
(Nehalem). Our results reveal significant differences in many
important aspects such as local cache performance and inter-
core communication capabilities. We find these differences
to primarily originate from two aspects: first, the inclusive-
ness of the last level cache (non-inclusive/inclusive), and sec-
ond, the cache coherency protocol (MOESI/MESIF).

The inclusive last level cache of Nehalem proves to be su-
perior in most cases. The L3 cache can serve as the central
and single unit for on-chip inter-core data transfers. Ne-
halem’s core valid bits both reduce snoop traffic to the cores
and play a key role for the performance of on-chip cache
transfers.

Shanghai’s non-inclusive L3 cache combines the disadvan-
tages of an exclusive last level cache with those of an inclu-
sive design. For example, unmodified data located in other
cores’ caches is fetched from main memory as the L3 cache
does not hold this data (disadvantage of an exclusive de-
sign). Accesses to local caches are affected as well - the
write bandwidth to unmodified L1 cache lines is severely
limited due to the possibility that cache lines are duplicated
in the L3 cache and require invalidation (disadvantage of an
inclusive design, fixed in Nehalem with the core valid bits).
We can identify few cases where Shanghai’s design prevails,
e.g. for multithreaded L3 write accesses. However, the nega-
tive effects are more prevalent as Nehalem’s memory latency
and bandwidth results often surpass those of Shanghai by a
factor of four or more.

With respect to the cache coherency, AMD’s MOESI pro-
tocol shows the expected performance advantage for accesses
to modified cache lines in remote processors. Intel’s Nehalem
prevails for unmodified cache lines in remote processors due
to its inclusive L3 cache. The exact effect of the MESIF
state forward should be limited to systems with more than
two sockets.

Shanghai’s inferior performance is to some degree caused
by its disadvantage in HT bandwidth (compared to QPI)
and low two-channel DDR2 bandwidth (compared to three-
channel DDR3). This situation will likely change with the
introduction of new processors and sockets that will en-
able the use of HT 3.0 and the support for more memory
channels and DDR3. However, Shanghai’s cache design and
coherency implementation that originates from single core
SMP systems does not match the requirements of multicore
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processors. Its non-inclusive last level cache shows funda-
mental disadvantages that likely outweigh the anticipated
cache size advantage. These findings should be considered
in the design of future multi- and manycore microarchitec-
tures.

In future work we plan to incorporate hardware perfor-
mance counters into our benchmarks. The results should al-
low the correlation of performance anomalies in applications
to properties of the underlying hardware. Furthermore, our
benchmarks will help to analyze systems with more than two
sockets (e.g. based on Nehalem-EX) as well as the ccNUMA
implementation of larger shared memory systems and future
many-core processors with even more complex cache archi-
tectures.
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