
Bad Career.1  Patterson 1997

Computing Research Association
Academic Careers Workshop
Denver, CO June 4-5, 1997

David A. Patterson
Computer Science Division

EECS Department
University of California at Berkeley

http://http.cs.berkeley.edu/~patterson/talks.html

How to Have a Bad Career How to Have a Bad Career
in Research/Academia in Research/Academia

Bad Career.2  Patterson 1997

Outline

• Part I: Key Advice for a Bad Career

• Part II: Key Advice on Alternatives to a Bad Career

• Topics covered in both parts
– Selecting a Problem
– Picking a Solution
– Performing the Research
– Evaluating the Results
– Communicating Results
– Transferring technology

Bad Career.3  Patterson 1997

Bad Career Move #1: Be THE leading expert

• Invent a new field!
– Make sure its slightly different

• Be the real Lone Ranger: Don’t work with others
– No ambiguity in credit
– Adopt the Prima Donna personality

• Research Horizons
– Never define success
– Avoid Payoffs of less than 20 years
– Stick to one topic for whole career
– Even if technology appears to leave you behind,

stand by your problem

Bad Career.4  Patterson 1997

Announcing a New Architecture Field:
“Control Flow”

• Advantages:
No loads or stores=> simple memory system
No I/O beyond single LED

• Start a new sequence of courses & new journal on
Theory & Practice of Control Flow

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

A

B

AA

B

AA

B

AA

B

A

B B

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

• People use computers to make decisions; get data out
of way to make decisions in parallel! (“data unrolling”)

Bad Career.5  Patterson 1997

Announcing a New Operating System Field:
“Disability Based Systems”

• Computer Security is increasing in importance
– Insight: capability based addressing almost right

• Idea: Create list of things that process CANNOT do!

• Key Question:
should you store disabilities with each user
or with the objects they can’t access?

• Other topics: encrypted disabilities, disability-based
addressing

• Start a new sequence of courses & new journal on Theory
& Practice of Disability-Based Systems

Bad Career.6  Patterson 1997

• “Femto” – microkernels, only more so

• “Omni” – omnipresent, run femtokernels everywhere:
– Operating System
– Applications
– VCRs
– automobiles

• Key contribution: Employment

Announcing yet another New O.S. Field:
“Omni-Femtokernels”

Bad Career.7  Patterson 1997

Bad Career Move #2: Let Complexity Be Your Guide
(Confuse Thine Enemies)

• Best compliment:
“Its so complicated, I can’t understand a thing you’ve said!”

• Easier to claim credit for subsequent good ideas
– If no one understands, how can they contradict your claim?

• It’s easier to be complicated
– Also: to publish it must be different; N+1st incremental change

• If it were not unsimple then how could distinguished
colleagues in departments around the world be positively
appreciative of both your extraordinary intellectual grasp of
the nuances of the issues as well as the depth of your
contribution?

Bad Career.8  Patterson 1997

Bad Career Move #3: Never be Proven Wrong

• Avoid Implementing Anything

• Avoid Quantitative Experiments
– If you’ve got good intuition, who needs experiments?
– Why give grist for critics’ mill?
– Takes too long to measure

• Avoid Benchmarks

• Projects whose payoff is ≥ 20 years
gives you 19 safe years

Bad Career.9  Patterson 1997

Bad Career Move #4:
Use the Computer Scientific Method

Computer Scientific Method

• Hunch

• 1 experiment
& change all parameters

• Discard if doesn’t support hunch

• Why waste time? We know this

Obsolete Scientific Method

• Hypothesis

• Sequence of experiments

• Change 1 parameter/exp.

• Prove/Disprove Hypothesis

• Document for others to
reproduce results

Bad Career.10  Patterson 1997

Bad Career Move #5:
Don’t be Distracted by Others (Avoid Feedback)

• Going to conferences and visiting companies just uses up
valuable research time

– Travel time, having to interact with others, serve on program
committees, ...

• Always dominate conversations: Silence is ignorance
– Corollary: Loud is smart

• Don’t read

• Don’t be tainted by interaction with users, industry

• Reviews
– If it's simple and obvious in retrospect => Reject
– Quantitative results don't matter if they just show you what

you already know => Reject
– Everything else => Reject

Bad Career.11  Patterson 1997

Bad Career Move #6:
Publishing Journal Papers IS Technology Transfer

• Target Archival Journals: the Coin of the Academic Realm
– It takes 2 to 3 years from submission to publication

=> timeless

• As the leading scientist, your job is to publish in journals;
it’s not your job to make you the ideas palatable to the
ordinary engineer

Bad Career.12  Patterson 1997

Bad Career Move #7:
Writing Tactics for a Bad Career

• Student productivity = number of papers
– Number of students: big is beautiful
– Never ask students to implement: reduces papers

• Legally change your name to Aaaanderson (Swedish spelling)

1
idea

4
journal papers

16
extended abstracts

64
technical reports

“Publication
pyramid

of
success”

• Papers: It’s Quantity, not Quality
– Personal Success = Length of Publication List
– “The LPU (Least Publishable Unit) is Good for You”

Bad Career.13  Patterson 1997

5 Writing Commandments for a Bad Career

I. Thou shalt not define terms, nor explain anything.

II. Thou shalt replace “will do” with “have done”.

III. Thou shalt not mention drawbacks to your approach.

IV. Thou shalt not reference any papers.

V. Thou shalt publish before implementing.

Bad Career.14  Patterson 1997

7 Talk Commandments for a Bad Career

I. Thou shalt not illustrate.

II. Thou shalt not covet brevity.

III. Thou shalt not print large.

IV. Thou shalt not use color.

V. Thou shalt not skip slides in a long talk.

VI. Thou shalt cover thy naked slides.

VII. Thou shalt not practice.

Bad Career.15  Patterson 1997

Following all the commandments

• We describe the philosophy and design of the control flow machine, and present the results of detailed simulations of the
performance of a single processing element. Each factor is compared with the measured performance of an advanced von
Neumann computer running equivalent code. It is shown that the control flow processor compares favorably, given a
reasonable degree of parallelism in the program.

• We present a denotational semantics for a logic program to construct a control flow for the logic program. The control flow is
defined as an algebraic manipulator of idempotent substitutions and it virtually reflects the resolution deductions. We also
present a bottom-up compilation of medium grain clusters from a fine grain control flow graph. We compare the basic block
and the dependence sets algorithms that partition control flow graphs into clusters.

• Our compiling strategy is to exploit coarse-grain parallelism at function application level: and the function application level
parallelism is implemented by fork-join mechanism. The compiler translates source programs into control flow graphs based
on analyzing flow of control, and then serializes instructions within graphs according to flow arcs such that function
applications, which have no control dependency, are executed in parallel.

• A hierarchical macro-control-flow computation allows them to exploit the coarse grain parallelism inside a macrotask, such as
a subroutine or a loop, hierarchically. We use a hierarchical definition of macrotasks, a parallelism extraction scheme among
macrotasks defined inside an upper layer macrotask, and a scheduling scheme which assigns hierarchical macrotasks on
hierarchical clusters.

• We apply a parallel simulation scheme to a real problem: the simulation of a control flow architecture, and we compare the
performance of this simulator with that of a sequential one. Moreover, we investigate the effect of modelling the application
on the performance of the simulator. Our study indicates that parallel simulation can reduce the execution time significantly if
appropriate modelling is used.

• We have demonstrated that to achieve the best execution time for a control flow program, the number of nodes within the
system and the type of mapping scheme used are particularly important. In addition, we observe that a large number of
subsystem nodes allows more actors to be fired concurrently, but the communication overhead in passing control tokens to
their destination nodes causes the overall execution time to increase substantially.

• The relationship between the mapping scheme employed and locality effect in a program are discussed. The mapping
scheme employed has to exhibit a strong locality effect in order to allow efficient execution. We assess the average number of
instructions in a cluster and the reduction in matching operations compared with fine grain control flow execution.

• Medium grain execution can benefit from a higher output bandwidth of a processor and finally, a simple superscalar processor
with an issue rate of ten is sufficient to exploit the internal parallelism of a cluster. Although the technique does not
exhaustively detect all possible errors, it detects nontrivial errors with a worst-case complexity quadratic to the system size. It
can be automated and applied to systems with arbitrary loops and nondeterminism.

Bad Career.16  Patterson 1997

Outline

• Part I: Key Advice for a Bad Career
– Invent a field and Stick to it
– Let Complexity be Your Guide (Confuse Thine Enemies)
– Never be Proven Wrong
– Use the Computer Scientific Method
– Avoid Feedback
– Publishing Journal Papers is Technology Transfer
– Write Many (Bad) Papers by following 5 writing

commandments
– Give Bad Talks by following 7 talk commandments

• Part II: Alternatives to a Bad Career

Bad Career.17  Patterson 1997

One Alternative Strategy to a Bad Career

• Caveats:
– From a project leader’s point of view
– Works for me; not the only way
– Primarily from academic, computer systesm perspective at a

“top tier” department

• Goal is to have impact:
Change way people do Computer Science & Engineering

• 6 Steps

 1) Selecting a problem

 2) Picking a solution

 3) Running a project

 4) Finishing a project

 5) Quantitative evaluation

 6) Transferring technology

Bad Career.18  Patterson 1997

1) Selecting a Problem
Invent a new field & stick to it?
• No! Do “Real Stuff”: solve problem

that someone cares about

• No! Use separate, short projects
– Always takes longer than expected
– Matches student “lifetimes”
– Long effort in fast changing field???
– Learning: Number of projects vs.

Number of years
– If going to fail, better to know soon

• Match the strengths and
weaknesses of local environment

• Strive for multi-disciplinary,
multiple investigator projects

– 1 expert/key area => coverage +
no “turf” issues

• Make sure you are excited enough
to work on it for 3-5 years

– prototypes are exciting

Bad Career.19  Patterson 1997

My first project
• Multiprocessor project with 2 other hardware faculty

• 1977: Design our own instruction set, microprocessor,
interconnection topology, routing, boards, systems,
operating system

• Experience:
– none in VLSI
– none in microprocessors
– none in networking
– none in operating systems

• Resources:
– No staff
– No dedicated computer (used department PDP-11/70)
– No CAD tools
– No applications
– No funding

• Results: 2 journal papers, 12 conference papers, 20 TRs

• Impact???

Bad Career.20  Patterson 1997

2) Picking a solution
Let Complexity Be Your Guide?

• No! Keep things simple unless a very
good reason not to

– Pick innovation points carefully, and
be compatible everywhere else

– Best results are obvious in retrospect
“Anyone could have thought of that”

• Complexity cost is in longer design,
construction, test, and debug

– Fast changing field + delays
=> less impressive results

Use the Computer Scientific Method?

• No! Run experiments to discover real
problems

• “Use intuition to ask questions,
not answer them”, John Ousterhout

Bad Career.21  Patterson 1997

(And Pick A Good Name!)

Reduced
 I nstruction
Set
Computers

Redundant
Array of
 I nexpensive
Disks Intelligent

R
A
M …

• Its a marketplace of ideas, so pick a memorable
name that recalls the project

Bad Career.22  Patterson 1997

Avoid Feedback?
• No! Periodic Project Reviews with

Outsiders
– Twice a year: 3-day retreat
– faculty, students, staff + guests
– Key piece is feedback at end
– Helps create deadlines

• Consider mid-course correction
– Fast changing field & 3-5 year

projects => assumptions changed

• Pick size and members of team
carefully

• Attracting students as new faculty
– Be on admissions committee
– Give talk for undergrad recruitment

(free pizza ,why go to X ,...) as well
as a research talk at school Y

– Teach intro grad course in Fall

3) Running a project

P

Bad Career.23  Patterson 1997

• People count projects you finish,
not the ones you start

• Successful projects go through an
unglamorous, hard phase

– Design is more fun than making it
work.

– “No winners on a losing team;
no losers on a winning team”
Dean Smith (UNC basketball coach)

– “You can quickly tell whether or not
the authors have ever built
something and made it work”
John Hennessy

• Reduce the project if its late
– “Adding people to a late project

makes it later” Fred Brooks, Jr.

• Finishing a project is how people
acquire taste in selecting good
problems, finding simple solutions

4) Finishing a project

Bad Career.24  Patterson 1997

5) Evaluating Quantitatively

Never be Proven Wrong?

• No! If you can’t be proven wrong,
then you can’t prove you’re right

 “Better to curse the candle
 than curse the darkness.”

• Report in sufficient detail for others
to reproduce results

– can’t convince others
if they can’t get same results

• For better or for worse,
benchmarks shape a field

• Good ones accelerate progress
– good target for development

• Bad benchmarks hurt progress
– help real users v. help sales?

Bad Career.25  Patterson 1997

6) Transferring technology
(by convincing others) Publishing Journal Papers IS

Technology Transfer?
• No! Missionary work: “Sermons”

first, then they read papers
– Selecting problem is key: “Real stuff”

» Ideally, more interest as time passes

– Change minds with believable
experiments & by building artifacts

– Prima Donnas interfer with transfer

• My experience: industry is reluctant
to embrace change

“The problem in this business isn’t to
keep people from stealing your ideas;
its making them steal your ideas!”
 Howard Aiken, ≈ 1950

– Need 1 bold company to take chance
and be successful

– Then rest of industry must follow
» RISC with Sun, RAID with (Compaq, …)

Bad Career.26  Patterson 1997

6) Transferring technology
 (by starting a company)

• Pros
– Personal satisfaction:

seeing your product used
by others

– Personal $$$ (potentially)
– Fame

• Cons
– Learn about business plans,

sales vs. marketing,
financing, personnel
benefits, hiring, …

– Spend time doing above vs.
research/development

– Fame

Bad Career.27  Patterson 1997

Case Study: Kendall Square Research (KSR)

1986 KSR founded by Henry Burkhardt III

12/91 “Supercomputing: innovative entry into massively parallel
computing market”, Edge: Work-Group Computing Report

 1/92 “Parallel system called easy to program,” Gov. Computer News

 2/92 “Kendall Square bucking trend by adopting custom RISC chip”
(“has raised $63 million in capital”), Electronic News

 3/93 “Henry Burkhardt III: with wit and energy, the former child prodigy and
cofounder of Data General is shaking up the supercomputer industry,”
IEEE Spectrum

 6/93 “Kendall Square Research Corporation reports increase in revenues &
third consecutive quarter profitability,”Work-Group Computing Report

11/93 “Kendall Square extends server; takes massively parallel-processing
KSR system to next level” (“$24.7 million 1st half of year”),PC Week

12/93 “Executive resignation”(“Under fire from shareholders, Henry Burkhardt
III resigned last week as president of KSR. Burkhardt… and several
company directors are being sued by shareholders for allegedly
exaggerating revenue for the last two years.”), PC Week

 9/94 KSR files Chapter 11, stops selling computers

Bad Career.28  Patterson 1997

Summary: Leader’s Role Changes during Project
P

Bad Career.29  Patterson 1997

Acknowledgments

• Many of these ideas were borrowed from (inspired by?)
Tom Anderson, David Culler, Al Davis, John Hennessy,
Steve Johnson, John Ousterhout, Bob Sproull, Carlo
Séquin and many others

• CRA page on “Academic Careers Workshop”
 http://www.cra.org/Activities/conferences/
workshops.htm

• “Academic Careers for Experimental Computer Scientists
and Engineers,” National Research Council, June 1994
http://www2.nas.edu/cstbweb/index.html
(look in Completed Reports and then follow links)

Other Resources

Bad Career.30  Patterson 1997

Conclusion: Alternatives to a Bad Career

• Evaluation of academic research uses bad benchmarks
=> can skew academic behavior

• Goal is to have impact:
Change way people do Computer Science & Engineering

– At teaching college goal is change way people teach CS&E
 e.g., I followed same steps in doing computer literacy course

• Many 4 - 5 year projects gives more chances for impact

• Do “Real Stuff”: make sure you are solving some problem that
someone (else) cares about

• Feedback is key: seek out & value critics

• Taste is critical in selecting research problems, solutions,
experiments, & communicating results; acquired by feedback

• Your real legacy is people, not paper: create environments
that develop professionals of whom you are proud

• Students are the coin of the academic realm

