
Chisel: Constructing Hardware in a
Scala Embedded Language

Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee,
Andrew Waterman, Rimas Avižienis, John Wawrzynek, Krste Asanović

EECS Department, UC Berkeley ∗

{jrb|huytbvo|richards|yunsup|waterman|rimas|johnw|krste}@eecs.berkeley.edu

ABSTRACT
In this paper we introduce Chisel, a new hardware construc-
tion language that supports advanced hardware design using
highly parameterized generators and layered domain-specific
hardware languages. By embedding Chisel in the Scala pro-
gramming language, we raise the level of hardware design ab-
straction by providing concepts including object orientation,
functional programming, parameterized types, and type in-
ference. Chisel can generate a high-speed C++-based cycle-
accurate software simulator, or low-level Verilog designed to
map to either FPGAs or to a standard ASIC flow for syn-
thesis. This paper presents Chisel, its embedding in Scala,
hardware examples, and results for C++ simulation, Verilog
emulation and ASIC synthesis.

Categories and Subject Descriptors
B.6.3 [Logic Design]: [Design Aids – automatic synthesis,
hardware description languages]

General Terms
Design, Languages, Performance

Keywords
CAD

1. INTRODUCTION
The dominant traditional hardware-description languages

(HDLs), Verilog and VHDL, were originally developed as
hardware simulation languages, and were only later adopted
as a basis for hardware synthesis. Because the semantics of
these languages are based around simulation, synthesizable

∗Research supported by DoE Award DE-SC0003624, and
by Microsoft (Award #024263) and Intel (Award #024894)
funding and by matching funding by U.C. Discovery (Award
#DIG07-10227).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June 3-7, 2012, San Francisco, California, USA.
Copyright 2012 ACM 978-1-4503-1199-1/12/06 ...$10.00.

designs must be inferred from a subset of the language, com-
plicating tool development and designer education. These
languages also lack the powerful abstraction facilities that
are common in modern software languages, which leads to
low designer productivity by making it difficult to reuse com-
ponents. Constructing efficient hardware designs requires
extensive design-space exploration of alternative system mi-
croarchitectures [9] but these traditional HDLs have limited
module generation facilities and are ill-suited to producing
and composing the highly parameterized module generators
required to support thorough design-space exploration. Re-
cent extensions such as SystemVerilog improve the type sys-
tem and parameterized generate facilities but still lack many
powerful programming language features.

To work around these limitations, one common approach
is to use another language as a macro processing language
for an underlying HDL. For example, Genesis2 uses Perl to
provide more flexible parameterization and elaboration of
hardware blocks written in SystemVerilog [9]. The language
called Verischemelog [6] provides a Scheme syntax for spec-
ifying modules in a similar format to Verilog. JHDL [1]
equates Java classes with modules. HML [7] uses standard
ML functions to wire together a circuit. These approaches
allow familiar and powerful languages to be macro languages
for hardware netlists, but effectively require leaf components
of the design to be described in the underlying HDL. This
combined approach is cumbersome, combining the poor ab-
straction facilities of the underlying HDL with a completely
different high-level programming model that does not un-
derstand hardware types and semantics.

An alternative approach is to begin from a domain-specific
application programming language from which a hardware
block is generated. Esterel [2] uses event-based statements
to program hardware for reactive systems. DIL [4] is an in-
termediate language targeted at stream processing and hard-
ware virtualization. Bluespec [3] supports a general concur-
rent computation model, based on guarded atomic actions.
While these can provide great designer productivity when
the task in hand matches the pattern encoded in the appli-
cation programming model, they are a poor match for tasks
outside their domain. For example, the design of a pro-
grammable microprocessor is not well described in a stream
programming model, and guarded atomic actions are not a
natural way to express a high-level DSP algorithm. Further-
more, in general it is difficult to derive an efficient microar-
chitecture from a higher-level computation model, especially
if the goal is a programmable engine to run many applica-
tions, where the human designer would prefer to write a

generator to explore this design space in detail.
In this paper, we introduce Chisel (Constructing Hard-

ware In a Scala Embedded Language), a new hardware de-
sign language we have developed based on the Scala pro-
gramming language [8]. Chisel is intended to be a simple
platform that provides modern programming language fea-
tures for accurately specifying low-level hardware blocks,
but which can be readily extended to capture many use-
ful high-level hardware design patterns. By using a flexible
platform, each module in a project can employ whichever
design pattern best fits that design, and designers can freely
combine multiple modules regardless of their programming
model. Chisel can generate fast cycle-accurate C++ simu-
lators for a design, or generate low-level Verilog suitable for
either FPGA emulation or ASIC synthesis with standard
tools. We present several design examples and results from
emulation and synthesis experiments.

2. CHISEL OVERVIEW
Instead of building a new hardware design language from

scratch, we chose to embed hardware construction primi-
tives within the Scala programming language. We chose
Scala for a number of reasons: Scala 1) is a very powerful
language with features we feel are important for building
circuit generators, 2) is specifically developed as a base for
domain-specific languages, 3) compiles to the JVM, 4) has a
large set of development tools and IDEs, and 5) has a fairly
large and growing user community. Chisel comprises a set
of Scala libraries that define new hardware datatypes and a
set of routines to convert a hardware data structure into ei-
ther a fast C++ simulator or low-level Verilog for emulation
or synthesis. This section describes the features of the base
Chisel system, whereas the next two sections describe how
Chisel supports abstraction and powerful generators.

2.1 Chisel Datatypes
The basic Chisel datatypes are used to specify the type of

values held in state elements or flowing on wires. In Chisel, a
raw collection of bits is represented by the Bits type. Signed
and unsigned integers are considered subsets of fixed-point
numbers and are represented by types Fix and UFix respec-
tively. Boolean values are represented as type Bool. Note
that these types are distinct from Scala’s builtin types such
as Int. Constant or literal values are expressed using Scala
integers or strings passed to constructors for the types.

Chisel provides a Bundle class, which the user extends
to make collections of values with named fields (similar to
structs in other languages):

class MyFloat extends Bundle {
val sign = Bool()
val exponent = UFix(width = 8)
val significand = UFix(width = 23)

}
val x = new MyFloat()
val xs = x.sign

The keyword val is part of Scala, and is used to name vari-
ables that have values that won’t change. The width named
parameter to the UFix constructor specifies the number of
bits in the type. Chisel also provides Vecs for indexable
collections of values:

// Vector of five 23-bit signed integers.
val myVec = Vec(5) { Fix(width = 23) }
val reg3 = myVec(3) // Connect to one element of vector.

Bundles and Vecs can be arbitrarily nested to build com-
plex data structures. The set of primitive classes (Bits, Fix,
UFix, Bool) plus the aggregate classes (Bundles and Vecs)
all inherit from a common superclass, Data. Every object
that ultimately inherits from Data can be represented as a
bit vector in a hardware design.

2.2 Combinational Circuits
A circuit is represented as a graph of nodes in Chisel. Each

node is a hardware operator that has zero or more inputs
and that drives one output. A literal is a degenerate node
that has no inputs and drives a constant value on its output.
One way to create and wire together nodes is using textual
expressions:

(a & b) | (~c & d)

where & and | represent bitwise-AND and -OR respectively,
and ~ represents bitwise-NOT. The names a through d rep-
resent named wires of some (unspecified) width. Any simple
expression can be converted directly into a circuit tree, with
named wires at the leaves and operators forming the inter-
nal nodes. The final circuit output of the expression is taken
from the operator at the root of the tree, in this example,
the bitwise-OR.

Simple expressions can build circuits in the shape of trees,
but to construct circuits in the shape of arbitrary directed
acyclic graphs (DAGs), we must describe fan-out. In Chisel,
we can name a wire holding a subexpression by declaring a
variable, then referencing it multiple times in subsequent
expressions:

val sel = a | b
val out = (sel & in1) | (~sel & in0)

The named Chisel wire sel holds the output of the first
bitwise-OR operator so that the output can be used multiple
times in the second expression.

Bit widths are automatically inferred unless set manually
by the user. The bit-width inference engine starts from the
graph’s input ports and calculates node output bit widths
from their respective input bit widths, always preserving
exact results unless an explicit truncation is requested.

2.3 Functions
We can define functions to factor out a repeated piece of

logic that we later reuse multiple times in a design:
def clb(a: Bits, b: Bits, c: Bits, d: Bits) = (a & b) | (~c & d)
val out = clb(a,b,c,d)

The def keyword is part of Scala and introduces a function
definition, with each argument followed by a colon then its
type, and the function return type given after the colon fol-
lowing the argument list. The equals (=) sign indicates the
start of the function definition.

2.4 Ports and Components
Ports are used as interfaces to hardware components. A

port is simply any Data object that has directions assigned
to its members. An example port declaration is as follows:

class FIFOInput extends Bundle {
val ready = Bool(OUTPUT)
val valid = Bool(INPUT)
val data = Bits(32, INPUT)

}

FIFOInput becomes a new type that can be used in compo-
nent interfaces or for named collections of wires.

The direction of an object can also be assigned at instan-
tiation time:

class ScaleIO extends Bundle {
val in = new MyFloat().asInput
val scale = new MyFloat().asInput
val out = new MyFloat().asOutput

}

By folding directions into the object declarations, Chisel is
able to provide powerful wiring constructs described later.

In Chisel, components are very similar to modules in Ver-
ilog, defining a hierarchical structure in the generated cir-
cuit. The hierarchical component namespace is accessible in
downstream tools to aid in debugging and physical layout.
A user-defined component is defined as a class which: (1) in-
herits from Component, (2) contains an interface stored in a
port field named io, and (3) wires together subcircuits in its
constructor. As an example, consider defining a two-input
multiplexer as a component:

class Mux2 extends Component {
val io = new Bundle {
val sel = Bits(1, INPUT)
val in0 = Bits(1, INPUT)
val in1 = Bits(1, INPUT)
val out = Bits(1, OUTPUT)

}
io.out := (io.sel & io.in1) | (~io.sel & io.in0)

}

The wiring interface to a component is a collection of ports
in the form of a Bundle, held in a field named io. The :=

assignment operator, used here in the body of the definition,
is a special operator in Chisel that wires the input of left-
hand side to the output of the right-hand side.

Port classes represent the interface to a component, and
users can organize interfaces into hierarchies using standard
Scala facilities. For example, a user could define a simple
link for handshaking data as follows:

class SimpleLink extends Bundle {
val data = Bits(16, OUTPUT)
val rdy = Bool(OUTPUT)

}

We can then extend SimpleLink by adding parity bits using
bundle inheritance:

class PLink extends SimpleLink {
val parity = Bits(5, OUTPUT)

}

From there we can define a filter interface by nesting two
PLinks into a new FilterIO bundle:

class FilterIO extends Bundle {
val x = new PLink().flip
val y = new PLink()

}

where flip recursively changes the “gender” of a bundle,
changing input to output and output to input.

We can now define a filter by defining a filter class extend-
ing component:

class Filter extends Component {
val io = new FilterIO()
...

}

where the io field contains FilterIO.
Beyond single elements, vectors of elements form richer hi-

erarchical interfaces. For example, in order to create a cross-
bar with a vector of inputs, producing a vector of outputs,
and selected by a UFix input, we utilize the Vec constructor:

class CrossbarIo(n: Int) extends Bundle {
val in = Vec(n){ new PLink().flip() }
val sel = UFix(ceilLog2(n), INPUT)
val out = Vec(n){ new PLink() }

}

where Vec takes a size as the first argument and a block
returning a port as the second argument.

We can now compose two filters into a filter block as fol-
lows:

class Block extends Component {
val io = new FilterIO()
val f1 = new Filter()
val f2 = new Filter()
f1.io.x <> io.x
f1.io.y <> f2.io.x
f2.io.y <> io.y

}

where <> bulk connects interfaces between components. Bulk
connections connect leaf ports of the same name to each
other. After all connections are made and the circuit is be-
ing elaborated, Chisel warns users if ports have other than
exactly one connection.

2.5 State Elements
The simplest form of state element supported by Chisel is

a positive-edge-triggered register, which can be instantiated
functionally as:

Reg(in)

This circuit has an output that is a copy of the input signal
in delayed by one clock cycle. Note that we do not have to
specify the type of Reg as it will be automatically inferred
from its input when instantiated in this way. In the current
version of Chisel, clock and reset are global signals that are
implicitly included where needed.

Using registers, we can quickly define a number of useful
circuit constructs. For example, a rising-edge detector that
takes a boolean signal in and outputs true when the current
value is true and the previous value is false is given by:

def risingedge(x: Bool) = x && !Reg(x)

2.6 Conditional Updates
In the previous examples with registers, we simply wired

their inputs to combinational logic blocks. When describing
the operation of state elements, it is often useful to instead
specify when updates to the registers will occur and to spec-
ify these updates spread across several separate statements.
Chisel provides conditional update rules in the form of the
when construct to support this style of sequential logic de-
scription. For example,

val r = Reg() { UFix(width = 16) }
when (c === UFix(0)) {

r := r + UFix(1)
}

where register r is updated at the end of the current clock
cycle only if c is zero. The argument to when is a predicate
circuit expression that returns a Bool. The update block
following when can only contain update statements using the
update operator :=, simple expressions, and named wires
defined with val.

In a sequence of conditional updates, the last conditional
update whose condition is true takes priority. For example,

when (c1) { r := Bits(1) }
when (c2) { r := Bits(2) }

leads to r being updated according to the following truth
table:

c1 c2 r
0 0 r r unchanged
0 1 2
1 0 1
1 1 2 c2 takes precedence over c1

when (c1)
 { r <== e1 }

when (c2)
 { r <== e2 }

clock

out

c2

e2

tf

enable in

r

c1

e1

tf

0 0
Initial values

Figure 1: Equivalent hardware constructed for con-
ditional updates.

Figure 1 shows how each conditional update can be viewed
as inserting a mux before the input of a register to select
either the update expression or the previous input according
to the when predicate. In addition, the predicate is OR-ed
into a firing signal that drives the load enable of the register.
The compiler places initialization values at the beginning of
the chain so that if no conditional updates fire in a clock
cycle, the load enable of the register will be deasserted and
the register value will not change.

3. ABSTRACTION
In this section we discuss abstraction within Chisel. Ab-

straction is an important aspect of Chisel as it 1) allows
users to conveniently create reusable objects and functions,
2) allows users to define their own data types, and 3) allows
users to better capture particular design patterns by writing
their own domain-specific languages on top of Chisel.

3.1 Polymorphism and Parameterized Types
Scala is a strongly typed language and uses parameterized

types to specify generic functions and classes. Chisel users
can define their own reusable functions and classes using
parameterized classes. For instance we can write a param-
eterized function for defining an inner-product FIR digital
filter generically over Chisel Num’s. The inner product FIR
filter can be mathematically defined as:

y[t] =
∑
j

wj ∗ xj [t− j] (1)

where x is the input and w is a vector of weights. In Chisel
this can be defined as:

def innerProductFIR[T <: Num] (w: Array[Int], x: T) =
foldR(Range(0, w.length).map(i => Num(w(i))

* delay(x, i)), _ + _)

def delay[T <: Bits](x: T, n: Int): T =
if (n == 0) x else Reg(delay(x, n - 1))

def foldR[T <: Bits] (x: Seq[T], f: (T, T) => T): T =
if (x.length == 1) x(0) else f(x(0),

foldR(x.slice(1, x.length), f))

where delay creates an n-cycle delayed copy of its input and
foldR (for “fold right”) constructs a reduction circuit given
a binary combiner function f. In this case, foldR creates a
summation circuit. Finally, the innerProductFIR function

is constrained to work on inputs of type Num for which Chisel
multiplication and addition are defined.

Like parameterized functions, we can also parameterize
classes to make them more reusable. For instance, we can
generalize the Filter class, defined in section 2.4, to use any
kind of link. We do so by parameterizing the FilterIO class
and defining the constructor to take a zero-argument type
constructor function as follows:

class FilterIO[T <: Data]()(type: => T) extends Bundle {
val x = type.asInput.flip
val y = type.asOutput

}

We can now define Filter by defining a component class
that also takes a link type constructor argument and passes
it through to the FilterIO interface constructor:

class Filter[T <: Data]()(type: => T) extends Component {
val io = (new FilterIO()){ type }
...

}

3.2 Abstract Data Types
Through support for abstract data types, Chisel permits

much simpler code than would otherwise be possible. For
example, consider constructing a block, such as the FFT, re-
quiring arithmetic on complex numbers. In Chisel, complex
numbers can be defined as follows:

class Complex(val real: Fix, val imag: Fix) extends Bundle {
def +(b: Complex): Complex =

new Complex(real + b.real, imag + b.imag)
...

}

where we overload infix operators to provide an intuitive
algebraic interface. Complex numbers can now be used in
both the interface and in arithmetic:

class Example extends Component {
val io = new Bundle {

val a = new Complex(Fix(2, INPUT), Fix(2, INPUT))
val b = new Complex(Fix(2, INPUT), Fix(2, INPUT))
val out = new Complex(Fix(2, OUTPUT), Fix(2, OUTPUT))

}
val c = io.a + io.b
io.out.r := c.r
io.out.i := c.i

}

4. GENERATORS
A key motivation for embedding Chisel in Scala is to sup-

port highly parameterized circuit generators, a weakness of
traditional HDLs.

4.1 Cache Generator
One example of a highly parameterized subsystem is a

memory cache generator. In Chisel, the basic configuration
options can first be defined:

object CacheParams {
val DIR_MAPPED = 0
val SET_ASSOC = 1
val WRITE_THRU = 0
val WRITE_BACK = 1

}

The main body of the cache generator component can then
be declared with desired generator parameters and optional
default values. The io bundle then references two IO inter-
face bundles, one specifying a connection to a CPU and the
other defining the memory interface. Computed parameters
are then defined, followed by the main body of the generator:

class Cache(cache_type: Int = DIR_MAPPED,
associativity: Int = 1,
line_size: Int = 128,
cache_depth: Int = 16,
write_policy: Int = WRITE_THRU
) extends Component {

val io = new Bundle() {
val cpu = new IoCacheToCPU()
val mem = new IoCacheToMem().flip()

}
val addr_idx_width = (log(cache_depth) / log(2)).toInt
val addr_off_width = (log(line_size/32) / log(2)).toInt
val addr_tag_width = 32 - addr_idx_width - addr_off_width - 2
val log2_assoc = (log(associativity) / log(2)).toInt
...
if (cache_type == DIR_MAPPED)

...
}

The resulting Cache generator can then be used in a larger
system:

...
val data_cache = new Cache(cache_type = SET_ASSOC, line_size = 64)
connection_to_cpu <> data_cache.io.cpu
connection_to_mem <> data_cache.io.mem
...

4.2 Sorting Network
In addition to offering flexible parameterization, Chisel

supports recursive creation of hardware subsystems. In the
example below a simple sorting network is specified using a
two-input SortBlock defined with handshaking ports. First,
a simple queue IO interface data type is defined by extend-
ing the Bundle class. This data type will be used to define
connections between the sorting primitives:

class IoSortBlockOut extends Bundle() {
val output = Bits(sort_data_size, OUTPUT)
val output_rdy = Bool(OUTPUT)
val has_output = Bool(OUTPUT)
val pop = Bool(INPUT)

}

The SortBlock primitive is then defined to output the
minimum of the two inputs, subject to handshaking:

class SortBlock extends Component() {
override val io = new Bundle() {
val in1 = new IoSortBlockOut()
val in2 = new IoSortBlockOut()
val out = new IoSortBlockOut()

}
...

}

Using this sorting primitive, it is then possible to define a
recursive architecture to find the minimum of a vector of
numbers. SortVector below recursively finds the minimum
of the first and second halves of the input vector, and re-
turns the minimum of the two results. This example also
demonstrates the power of using Bundle to combine inputs
and outputs along with arrays of Bundle using Vec.

class SortVector(in_width: Int) extends Component() {
val io = new Bundle() {
val in_vec = Vec(in_width) { new IoSortBlockOut().flip }
val out = new IoSortBlockOut()

}
val min1 = new SortPair()
min1.io.out <> io.out
val midpoint = in_width / 2
if (in_width < 4) {
// Connect first input directly to min1
min1.io.in1 <> io.in_vec(0)

} else {
val min_first_half = new SortVector(midpoint)
for (i <- 0 until midpoint)
min_first_half.io.in_vec(i) <> io.in_vec(i)

min1.io.in1 <> min_first_half.io.out
}
if (in_width < 3) {

min1.io.in2 <> io.in_vec(1)
} else {

val min_second_half = new SortVector(in_width - midpoint)
for (i <- midpoint until in_width)

min_second_half.io.in_vec(i - midpoint) <> io.in_vec(i)
min1.io.in2 <> min_second_half.io.out

}
}

Note that Verilog is not able to describe this type of recur-
sion, and a designer would need to use a different language,
such as Python, to generate Verilog from a recursive routine.

4.3 Memory
Memories are given special treatment in Chisel since hard-

ware implementations of memory have many variations, e.g.,
FPGA memories are instantiated quite differently from ASIC
memories. Chisel defines a memory abstraction that can
map to either simple Verilog behavioral descriptions, or to
instances of memory modules that are available from exter-
nal memory generators provided by foundry or IP vendors.
In the simplest form, Chisel allows memory to be defined
with a single write port and multiple read ports as follows:

Mem(depth: Int,
target: Symbol = ’default, readLatency: Int = 0)

where depth is the number of memory locations, target is
the type of memory used, readLatency is the latency of read
ports to be defined on the memory. A memory object can
then be read from using the read(rdAddress) method. For
example, an audio recorder could be defined as follows:

def audioRecorder(n: Int) = {
val addr = counter(UFix(n));
val ram = Mem(n).write(button(), addr)
ram.read(Mux(button(), UFix(0), addr))

}

where a counter is used as an address generator into a mem-
ory. The device records while button is true, or plays back
when false.

We can use simple memory to create register files. For
example we can make a one write port, two read port register
file with 32 registers as follows:

val regs = Mem(32)
regs.write(wr_en, wr_addr, wr_data)
val idat = regs.read(iaddr)
val mdat = regs.read(maddr)

where a new read port is created for each call to read.
Additional parameters are available to mimic common

memory behaviors, to aid with the process of mapping to
real-world hardware. The following is an example of a mem-
ory that is first defined with no memory ports, after which
read, write, or read/write ports are added:

val regfile =
Mem(64, readLatency = 1,

hexInitFile = "hex_init_values.txt");
regfile.write(addr_in, data_in1, wen, w_mask = bit_mask);
val read_data = regfile.read(addr_in);

By default, this memory will be compiled to Verilog RTL.
To produce a reference to a Verilog instance of a memory
module, one adds target = ’inst to the constructor call.
When Chisel compiles to Verilog, a second file will be gener-
ated, e.g., design.conf, which can be used by the synthesis
design flow to construct the requested memory objects.

5. FAST C++ SIMULATOR
Fast simulation is crucial to reduce hardware develop-

ment time. Custom logic simulation engines can provide
fast cycle-accurate simulation, but are generally too expen-
sive to be used by individual designers. FPGA emulation
approaches are valuable but the FPGA tool flow can take
hours to map a design iteration. Conventional software Ver-
ilog RTL simulators are popular, as they can be run by in-
dividual designers on workstations or shared server farms,
but are slow.

For Chisel, we have developed a fast C++ simulator for
RTL debugging. The Chisel compiler produces a C++ class
for each Chisel design, with a C++ interface including clock-
low and clock-high methods. We rely on two techniques to
accelerate execution. First, the simulator code generation
strategy is based on a templated C++ multi-word bit-vector
runtime library that executes all the basic Chisel operators.
The C++ templates specialize operations for bit vectors us-
ing a two-level template scheme that is first parameterized
on bits and then on words. In particular, all overhead is
removed for the case where the RTL bit vector fits into the
host machine’s native word size. Second, we remove as much
branching as possible in the code so that we can best utilize
the ILP available in a modern processor and minimize the
number of stalls.

6. RESULTS
In this section, we present preliminary results on using

Chisel for various hardware designs. To measure designer
productivity, we took a simple 3-stage 32-bit RISC processor
that was originally hand-written in Verilog, and converted
it to equivalent Chisel code. The original Verilog code was
3020 lines of code whereas the resulting Chisel code was only
1046 lines, yielding a nearly 3× reduction.

To compare quality of results, we used a set of floating-
point primitive components we have designed in Chisel, in-
cluding multiplication, addition, and several data conver-
sion operators. A 64-bit Fused-Multiply-Add (FMA) unit
has been mapped to both Verilog and C++ emulation code,
and both results have been simulated in testbenches using
SoftFloat and TestFloat [5] to verify IEEE-754-2008 compli-
ance. The generated Verilog was mapped to a commercial
65 nm process and compared to the same design described
using hand-coded Verilog, and as expected there was no sig-
nificant difference in results:

Source Clock Period Total Area Logic Area

Chisel 7ns 62197 um2 60801 um2

Verilog 7ns 62881 um2 61485 um2

Chisel 2.5ns, Retimed 66472 um2 61279 um2

Verilog 2.5ns, Retimed 67034 um2 62227 um2

To compare the speed of simulation using the Chisel C++
simulator, we used a more sophisticated 64-bit five-stage in-
order RISC pipeline with a floating-point unit, MMU, and
caches. We compared the speed of Chisel C++ simulation
and Synopsys VCS Verilog simulation when booting a re-
search OS on this processor (88, 291, 350 cycles total) with
results as follows:

Simulator Time (s) Speedup
VCS RTL simulator 5390 1.00
Chisel C++ RTL simulator 694 7.77

The Chisel-generated C++ simulator is approximately 8×

faster than VCS.
Finally, we have developed a complete 64-bit vector pro-

cessor including FPUs, MMUs, and 32 K 4-way set-associative
instruction and data caches. The Chisel code was used to
generate an LVS and DRC-clean GDSII layout in an IBM
45 nm SOI 10-metal layer process using memory-compiler-
generated 6T and 8T SRAM blocks. Total area was 1.76mm2,
with a critical path of 1 ns.

7. CONCLUSION
Chisel makes the power of a modern software program-

ming language available for hardware design, supporting
high-level abstractions and parameterized generators with-
out mandating a particular computational model, while also
providing high-quality Verilog RTL output and a fast C++
simulator.

The Chisel system and hardware libraries are being made
available as an open-source project available at:
http://chisel.eecs.berkeley.edu

to encourage wide adoption.

8. ACKNOWLEDGEMENTS
We’d like to thank Christopher Batten for sharing his fast

multiword C++ template library that inspired our fast emu-
lation library. We’d also like to thank all the Berkeley EECS
graduate students who participated in the Chisel bootcamp
and have given feedback on Chisel after using it in various
classes and research projects.

9. REFERENCES
[1] Bellows, P., and Hutchings, B. JHDL – an HDL

for reconfigurable systems. IEEE Symposium on
FPGAs for Custom Computing Machines (1998).

[2] Berry, G., and Gonthier, G. The Esterel
synchronous programming language: Design, semantics,
implementation. Science of Computer Programming 10,
2 (1992).

[3] Bluespec Inc. Bluespec(tm) SystemVerilog Reference
Guide: Description of the Bluespec SystemVerilog
Language and Libraries. Waltham, MA, 2004.

[4] Goldstein, S., and Budiu, M. Fast compilation for
pipelined reconfigurable fabrics. ACM/FPGA
Symposium on Field Programmable Gate Arrays (1999).

[5] Hauser, J. The softfloat and testfloat packages.
http://www.jhauser.us/arithmetic/index.html.

[6] Jenning, J., and Beuscher, E. Verischemelog:
Verilog embedded in scheme. Proceedings of DSL’99:
The 2nd conference on Domain Specific Languages
(Oct 1999).

[7] Li, Y., and Leeser, M. HML – a novel hardware
description language and its translation to VHDL.
IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 8, 1 (Oct 2000).

[8] Odersky, M. e. a. Scala programming language.
http://www.scala-lang.org/.

[9] Shacham, O., Azizi, O., Wachs, M., Qadeer, W.,
Asgar, Z., Kelley, K., Stevenson, J.,
Solomatnikov, A., Firoozshahian, A., Lee, B.,
Richardson, S., and M., H. Rethinking digital
design: Why design must change. IEEE Micro
(Nov/Dec 2010).

10. SUPPLEMENTAL
In this section we give more detailed examples, results,

and discussion of Chisel.

10.1 Builtin Operators
Chisel defines a set of hardware operators for the builtin

types which can be found in Table 1.

10.2 Layers of Languages
Scala was designed to support the creation of embedded

domain-specific languages. In fact, it is easy to create a
series of languages, one layered on top of another, resulting
in improved clarity and efficiency in specification. As a small
example, we can easily build a switch statement involving
a series of comparisons against a common key, based on the
Chisel conditional updates introduced earlier.

As a small example, we can easily build a switch state-
ment involving a series of comparisons against a common
key, based on the Chisel conditional updates introduced ear-
lier.

switch construct translates into
switch(idx) {
is(v1) { u1 }
is(v2) { u2 }
}

when (idx === v2) { u2 }
when (idx === v1) { u1 }

The switch construct supports simple specification of FSMs:

val s_even :: s_odd :: Nil = Enum(2){ UFix() }
val state = Reg(resetVal = s_even)
switch (s.in) {

is (s_even) { state <== s_odd }
is (s_odd) { state <== s_even }

}

We are exploring embedding new domain-specific languages
in Chisel to provide high-level behavioral synthesis.

10.3 Scala Embedding Discussion
Embedding Chisel in Scala gave a number of advantages

but also presented a number of challenges.
In Scala, we are able to cleanly integrate Chisel compo-

nents, bundles and interfaces with Scala classes. Using in-
trospection, we can find all relevant fields and their names in
Scala objects. Scala also provides a number of facilities for
writing domain-specific languages including operator over-
loading.

Unfortunately, there are other areas where it is still chal-
lenging to customize the language seamlessly. The first one
is providing a succinct literal format. Unfortunately, unlike
Common Lisp, in Scala it is impossible to define new tokens.
The second one is that, at least in standard Scala, it is im-
possible to overload existing syntax, such as if statements.
In general, there is no way to extend the Scala syntax in ar-
bitrary ways. Higher-order functions and lightweight thunks
help, but the result is that the Chisel syntax is slightly more
awkward than we’d ideally like.

Yet another challenge is providing informative error mes-
sages. When errors occur, it is possible to provide stack
backtraces to report to users on what line number an error
occurred. Unfortunately, it is challenging to filter the stack
trace to give the user the exact line the error occurred.

Although Scala has a large number of data types, we are
not able to completely layer our hardware data types on to
these Scala ones. We instead built a parallel type hierarchy.
Scala has a very powerful parameterized type system that
allows us to create generic functions and classes that can

be precisely type checked. Unfortunately, the type system
is not able to infer bit widths automatically, so we have to
add a separate bit-width inference pass, as described below.
The advantage is that our Chisel design is more portable to
other host languages.

10.4 Bitwidth Inference
Users are required to set bitwidths of ports and registers,

but otherwise, bit widths on wires are automatically inferred
unless set manually by the user. The bit-width inference en-
gine starts from the graph’s input ports and calculates node
output bit widths from their respective input bit widths ac-
cording to the following set of rules:

operation bit width
z = x + y wz = max(wx, wy) + 1

z = x - y wz = max(wx, wy) + 1

z = x & y wz = max(wx, wy)

z = Mux(c, x, y) wz = max(wx, wy)

z = w * y wz = wx + wy

z = x << n wz = wx + maxNum(n)

z = x >> n wz = wx - minNum(n)

z = Cat(x, y) wz = wx + wy

z = Fill(n, x) wz = wx * maxNum(n)
where for instance wz is the bit width of wire z, and the &

rule applies to all bitwise logical operations.
The bit-width inference process continues until no bit width

changes. Except for right shifts by known constant amounts,
the bit-width inference rules specify output bit widths that
are never smaller than the input bit widths, and thus, out-
put bit widths either grow or stay the same. Furthermore,
the width of a register must be specified by the user either
explicitly or from the bitwidth of the reset value. From these
two requirements, we can show that the bit-width inference
process will converge to a fixpoint.

10.5 BlackBox’s
Users can create wrappers for existing opaque IP com-

ponents using BlackBoxes which are Components with only
IO and no body. For example, a Verilog-based memory con-
troller module can be linked in by defining it as a subclass
of BlackBox:

class MemoryController extends BlackBox {
val io = new MemoryIo();

}

and then by instantiating it and connecting to it as done
with any other Chisel component. The emitted Verilog will
then contain code to create and wire in the module.

10.6 Vending Machine FSM Example
Here is an example of a vending machine FSM defined

with a switch statement:

class VendingMachine extends Component {
val io = new Bundle {

val nickel = Bool(INPUT)
val dime = Bool(INPUT)
val rdy = Bool(OUTPUT) }

val s_idle :: s_5 :: s_10 :: s_15 :: s_ok :: Nil = Enum(5){UFIx()}
val state = Reg(resetVal = s_idle)
switch (state) {

is (s_idle) {
when (io.nickel) { state := s_5 }
when (io.dime) { state := s_10 }

} is (s_5) {
when (io.nickel) { state := s_10 }
when (io.dime) { state := s_15 }

} is (s_10) {
when (io.nickel) { state := s_15 }

Example Explanation

Bitwise operators. Valid on Bits, Fix, UFix, Bool.

val invertedX = ~x Bitwise-NOT
val hiBits = x & Bits("h_ffff_0000") Bitwise-AND
val flagsOut = flagsIn | overflow Bitwise-OR
val flagsOut = flagsIn ^ toggle Bitwise-XOR

Bitwise reductions. Valid on Bits, Fix, and UFix. Returns Bool.

val allSet = andR(x) AND-reduction
val anySet = orR(x) OR-reduction
val parity = xorR(x) XOR-reduction

Equality comparison. Valid on Bits, Fix, UFix, and Bool. Returns Bool.

val equ = x === y Equality
val neq = x != y Inequality

Shifts. Valid on Bits, Fix, and UFix.

val twoToTheX = Fix(1) << x Logical left shift.
val hiBits = x >> UFix(16) Right shift (logical on Bits & UFix, arithmetic on Fix).

Bitfield manipulation. Valid on Bits, Fix, UFix, and Bool.

val xLSB = x(0) Extract single bit, LSB has index 0.
val xTopNibble = x(15,12) Extract bit field from end to start bit position.
val usDebt = Fill(3, Bits("hA")) Replicate a bit string multiple times.
val float = Cat(sign,exponent,mantissa) Concatenates bit fields, with first argument on left.

Logical operations. Valid on Bools.
val sleep = !busy Logical NOT.
val hit = tagMatch && valid Logical AND.
val stall = src1busy || src2busy Logical OR.
val out = Mux(sel, inTrue, inFalse) Two-input mux where sel is a Bool.

Arithmetic operations. Valid on Nums: Fix and UFix.
val sum = a + b Addition.
val diff = a - b Subtraction.
val prod = a * b Multiplication.
val div = a / b Division.
val mod = a % b Modulus

Arithmetic comparisons. Valid on Nums: Fix and UFix. Returns Bool.
val gt = a > b Greater than.
val gte = a >= b Greater than or equal.
val lt = a < b Less than.
val lte = a <= b Less than or equal.

Table 1: Chisel operators on builtin data types.

when (io.dime) { state := s_ok }
} is (s_15) {
when (io.nickel) { state := s_ok }
when (io.dime) { state := s_ok }

} is (s_ok) {
state := s_idle

}
}
io.rdy := (state === s_ok)

}

10.7 Simulation Performance
In Section 6 we compared simulation speed for a 64-bit

five-stage RISC processor design using a Chisel-generated
C++ simulator and Synopsys VCS Verilog simulation. Ta-
ble 2 is a more complete breakdown of the results in terms
of compile time, run time, and total time. We also include
results for a Chisel-generated FPGA emulation, which pro-
vides the fastest per-cycle emulation performance but with
a large compile time.

Because of compilation time, the fastest backend for sim-

ulation performance depends on the number of target cycles
to be simulated. While the Chisel C++ emulator runs ap-
proximately 10× faster than VCS, as shown in Figure 2, this
advantage is only realized when simulating millions of cycles
or more. FPGA emulation is only fastest for simulations
exceeding billions of target cycles. We are planning to ex-
periment with techniques to improve the compile-time per-
formance of the Chisel-generated C++ code, possibly with
switches to optimize for compile-time or run-time.

10.8 FIFO
A generic FIFO could be defined as shown in Figure 3 and

used as follows:

class DataBundle() extends Bundle {
val A = UFix(width = 32);
val B = UFix(width = 32);

}

object FifoDemo {
def apply () = (new Fifo(32)){ new DataBundle() };

Simulator Compile Compile Run Run Total Total
Time (s) Speedup Time (s) Speedup Time (s) Speedup

VCS RTL simulator 22 1.000 5368 1.00 5390 1.00
Chisel C++ RTL simulator 119 0.184 575 9.33 694 7.77
Virtex-6 FPGA 3660 0.006 76 70.60 3736 1.44

Table 2: Comparison of simulation time between Chisel C++ simulator, Synopsys VCS Verilog simulation,
and FPGA emulation, on a 64-bit five-stage RISC processor running an OS boot test.

105 106 107 108 109101

102

103

104

105

106

Simulated Cycles

Ti
m

e
(s

)

Chisel C++ (gcc −O0)
Chisel C++ (gcc −O3)
Chisel Verilog (VCS)
Chisel Verilog (Virtex−6)

Figure 2: A comparison of total time required to
compile and simulate a system using various back-
ends from Chisel.

}

It is also possible to define a generic decoupled interface:

class ioDecoupled[T <: Data]()(data: => T) extends Bundle() {
val ready = Bool(INPUT)
val valid = Bool(OUTPUT)
val bits = data.asOutput

}

This template can then be used to add a handshaking pro-
tocol to any set of signals:

class decoupledDemo extends ioDecoupled()(new DataBundle())

The FIFO interface in Figure 3 can be now be simplified as
follows:

class FifoIO[T <: Data]()(gen: => T) extends Bundle() {
val enq = new ioDecoupled()(gen).flip()
val deq = new ioDecoupled()(gen)

}

10.9 Generated Verilog
Running the Chisel compiler on the FIFO example gener-

ates the Verilog code shown in Figure 4 .
The Verilog output from Chisel might need to be sim-

ulated together with other existing Verilog IP blocks. We
compared the Verilog simulation speed of the Chisel-generated
Verilog versus hand-written behavioral Verilog for a 64-bit
data-parallel processor design, including pipelined single and
double-precision FMA units, and a pipelined 64-bit integer
multiplier. We ran 92 test assembly programs on both VCS-
generated simulators. The Chisel-generated Verilog simula-
tor was 1.65× slower in total than the behavioral Verilog

class FifoIO[T <: Data]()(gen: => T) extends Bundle() {
val enq_val = Bool(INPUT)
val enq_rdy = Bool(OUTPUT)
val deq_val = Bool(OUTPUT)
val deq_rdy = Bool(INPUT)
val enq_dat = gen.asInput
val deq_dat = gen.asOutput

}

class Fifo[T <: Data] (n: Int)(gen: => T) extends Component {
val io = new FifoIO()(gen)
val enq_ptr = Reg(resetVal = UFix(0, sizeof(n)))
val deq_ptr = Reg(resetVal = UFix(0, sizeof(n)))
val is_full = Reg(resetVal = Bool(false))
val do_enq = io.enq_rdy && io.enq_val
val do_deq = io.deq_rdy && io.deq_val
val is_empty = !is_full && (enq_ptr === deq_ptr)
val deq_ptr_inc = deq_ptr + UFix(1)
val enq_ptr_inc = enq_ptr + UFix(1)
val is_full_next =

Mux(do_enq && ~do_deq && (enq_ptr_inc === deq_ptr), Bool(true),
Mux(do_deq && is_full, Bool(false),

is_full))
enq_ptr := Mux(do_enq, enq_ptr_inc, enq_ptr)
deq_ptr := Mux(do_deq, deq_ptr_inc, deq_ptr)
is_full := is_full_next
val ram = Mem(n, do_enq, enq_ptr, io.enq_dat)
io.enq_rdy := !is_full
io.deq_val := !is_empty
ram.read(deq_ptr) <> io.deq_dat

}

Figure 3: Parameterized FIFO example.

simulator due to the low-level structural nature of the Ver-
ilog code generated by Chisel. However, we have not yet
tuned the Verilog output for Verilog simulation performance,
and we believe even the current slowdown is acceptable to
enable co-simulation.

10.10 Chisel Components
Chisel has been in use for over a year and a number of

components have been written in it. We developed the fol-
lowing components as part of our research infrastructure,
many of which are used in the vector processor described in
Section 10.11:

• clock dividers

• queues

• decoders, encoders, popcount

• scoreboards

• integer ALUs

• LFSR

• Booth multiplier, iterative divider

• ROMs, RAMs, CAMs

• TLB

• direct-mapped caches, set-associative blocking caches

module Fifo(input clk, input reset,
input io_enq_val,
output io_enq_rdy,
output io_deq_val,
input io_deq_rdy,
input [31:0] io_enq_dat_A,
input [31:0] io_enq_dat_B,
output[31:0] io_deq_dat_A,
output[31:0] io_deq_dat_B);

wire T0;
wire is_empty;
wire T1;
reg[4:0] deq_ptr;
wire[4:0] T2;
wire[4:0] deq_ptr_inc;
wire do_deq;
reg[4:0] enq_ptr;
wire[4:0] T3;
wire[4:0] enq_ptr_inc;
wire do_enq;
wire T4;
reg[0:0] is_full;
wire is_full_next;
wire T5;
wire T6;
wire T7;
wire T8;
wire T9;
wire T10;
wire T11;

assign io_deq_val = T0;
assign T0 = ! is_empty;
assign is_empty = T11 && T1;
assign T1 = enq_ptr == deq_ptr;
assign T2 = do_deq ? deq_ptr_inc : deq_ptr;
assign deq_ptr_inc = deq_ptr + 1’h1/* 1*/;
assign do_deq = io_deq_rdy && io_deq_val;
assign T3 = do_enq ? enq_ptr_inc : enq_ptr;
assign enq_ptr_inc = enq_ptr + 1’h1/* 1*/;
assign do_enq = io_enq_rdy && io_enq_val;
assign io_enq_rdy = T4;
assign T4 = ! is_full;
assign is_full_next = T7 ? 1’h1/* 1*/ : T5;
assign T5 = T6 ? 1’h0/* 0*/ : is_full;
assign T6 = do_deq && is_full;
assign T7 = T9 && T8;
assign T8 = enq_ptr_inc == deq_ptr;
assign T9 = do_enq && T10;
assign T10 = ~ do_deq;
assign T11 = ! is_full;

always @(posedge clk) begin
if(reset) begin
deq_ptr <= 5’h0/* 0*/;

end else if(1’h1/* 1*/) begin
deq_ptr <= T2;

end
if(reset) begin
enq_ptr <= 5’h0/* 0*/;

end else if(1’h1/* 1*/) begin
enq_ptr <= T3;

end
if(reset) begin
is_full <= 1’h0/* 0*/;

end else if(1’h1/* 1*/) begin
is_full <= is_full_next;

end
end

endmodule

Figure 4: Verilog Generated from Chisel for the
FIFO example

Figure 5: Data-parallel processor layout results

• direct-mapped caches, set-associative non-blocking caches

• prefetcher

• fixed-priority arbiters, round-robin arbiters

• single-precision, double-precision floating-point units

• 64-bit decoupled in-order single-issue 5-stage processor

• 64-bit vector unit (data-parallel processor)

We are working to factor these components into a standard
library from which developers can more readily build large-
scale designs.

We have taught a class in advanced computer architecture
design where all students produced projects in Chisel. Ex-
ample projects included accelerators for security, FFT, and
spatial computing.

Additionally, Berkeley EECS graduate student Chris Ce-
lio is developing a number of educational processor microar-
chitectures with associated labs to help undergraduates learn
computer architecture. These included a microcoded pro-
cessor, one-stage, two-stage, and five-stage pipelines, and
an out-of-order processor, all with accompanying visualiza-
tions.

10.11 Data-Parallel Processor Layout Results
The data-parallel processor layout results using IBM 45nm

SOI 10-metal layer process using memory compiler gener-
ated 6T and 8T SRAM blocks are shown in Figure 5.

