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Chapter 1

Introduction

One of the central tools of scientific computing is the fifigay oldfinite element metheda numerical
method for approximating solutions to partiatfdrential equations. The finite element method and its
cousins, the finite volume method and the boundary elemetitadesimulate physical phenomena includ-
ing fluid flow, heat transfer, mechanical deformation, arecebmagnetic wave propagation. They are
applied heavily in industry and science for marvelouslyedie purposes—evaluating pumping strategies
for petroleum extraction, modeling the fabrication andragien of transistors and integrated circuits, opti-
mizing the aerodynamics of aircraft and car bodies, andystgdohenomena from quantum mechanics to
earthquakes to black holes.

The aerospace engineer Joe F. Thompson, who commandedi@nstitiitional mesh generatiorfert
called the National Grid Project [124], wrote in 1992 that

An essential element of the numerical solution of partiffiedential equations (PDES) on gen-
eral regions is the construction of a grid (mesh) on whichefaresent the equations in finite
form. ...[A]t present it can take orders of magnitude more+haurs to construct the grid than
it does to perform and analyze the PDE solution on the grids Ehespecially true now that
PDE codes of wide applicability are becoming available, grnid generation has been cited
repeatedly as being a major pacing item. The PDE codes nalalaleatypically require much
less esoteric expertise of the knowledgeable user thanedgrith generation codes.

Two decades later, meshes are still a recurring bottlefdukautomatic mesh generation problésrto
divide a physical domain with a complicated geometry—sagltomobile engine, a human’s blood vessels,
or the air around an airplane—into small, simple piecesdalementssuch as triangles or rectangles
(for two-dimensional geometries) or tetrahedra or reatigargorisms (for three-dimensional geometries), as
illustrated in Figure 1.1. Millions or billions of elementsay be needed.

A mesh must satisfy nearly contradictory requirements: ustrtonform to the shape of the object or
simulation domain; its elements may be neither too larggamnumerous; it may have to grade from small
to large elements over a relatively short distance; and &trha composed of elements that are of the right
shapes and sizes. “The right shapes” typically include etegmthat are nearly equilateral and equiangular,
and typically exclude elements that are long and thin, dagped like a needle or a kite. However, some
applications requiranisotropicelements that are long and thin, albeit with specified oaitoins and eccen-
tricities, to interpolate fields with anisotropic secondikives or to model anisotropic physical phenomena
such as laminar air flow over an airplane wing.
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Figure 1.1:Finite element meshes of a polygonal, a polyhedral, and a curved domain. One mesh of the key has
poorly shaped triangles and no Steiner points; the other has Steiner points and all angles between 30° and 12C.
The cutaway view at lower right reveals some of the tetrahedral elements inside a mesh.

By my reckoning, the history of mesh generation falls inte#&periods, conveniently divided by decade.
The pioneering work was done by researchers from severatbes of engineering, especially mechanics
and fluid dynamics, during the 1980s—though as we shall beedrliest work dates back to at least 1970.
This period brought forth most of the techniques used todag: Delaunay, octree, and advancing front
methods for mesh generation, and mesh “clean-up” metheodsfwoving an existing mesh. Unfortunately,
nearly all the algorithms developed during this period aagife, and produce unsatisfying meshes when
confronted by complex domain geometries and stringent ddsan element shape.

Around 1988, these problems attracted the interest of refsews in computational geometry, a branch
of theoretical computer science. Whereas most engineees satisfied with mesh generators that usually
work for their chosen domains, computational geometera k#tier goal:provably good mesh generation
the design of algorithms that are mathematically guarahte@roduce a satisfying mesh, even for domain
geometries unimagined by the algorithm designer. This vilotkished during the 1990s and continues to
this day.

During the first decade of the 2000s, mesh generation becggerithan the finite element methods that
gave birth to it. Computer animation uses triangulatedasmerinodels extensively, and the most novel new
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ideas for using, processing, and generating meshes oftert decomputer graphics conferences. In eco-
nomic terms, the videogame and motion picture industriebaduly now exceed the finite element industries
as users of meshes.

Meshes find heavy use in hundreds of other applications, asieterial land surveying, image process-
ing, geographic information systems, radio propagatialyesis, shape matching, and population sampling.
Mesh generation has become a truly interdisciplinary topic

An excellent source for many aspects of mesh generationaveted by these notes is thiandbook of
Grid Generation125], which includes many chapters on the generation attired meshes, chapters that
describe advancing front methods in unusual detail by RerRieid, and Morgan [94] and Marcum [78],
and a fine survey of quadrilateral and hexahedral meshingbgesders [105]. Further surveys of the mesh
generation literature are supplied by Bern and Eppsteiarf]Thompson and Weatherill [126]. Boissonnat,
Cohen-Steiner, Mourrain, Rote, and Vegter [18] survey rdlgms for surface meshing. There is a large
literature on how to numerically evaluate the quality of &ameent; see Field [50] for a survey.

1.1 Meshes and the Goals of Mesh Generation

Meshes are categorized according to their dimensionatity @hoice of elements.Triangular meshes
tetrahedral meshegjuadrilateral meshesand hexahedral meshemre named according to the shapes of
their elements. The two-dimensional elements—trianghescpadrilaterals—serve both in modeling two-
dimensional domains and surface meshemmbedded in three dimensions, which are prevalent in canput
graphics, boundary element methods, and simulationsofihies and shells.

Tetrahedral elements are the simplest of all polyhedraingaour vertices and four triangular faces.
Quadrilateral elements are four-sided polygons; theesiteed not be parallel. Hexahedral elements are
brick-like polyhedra, each having six quadrilateral faded their faces need not be parallel or even planar.
These notes discuss ordimplicial meshes-triangular and tetrahedral meshes—which are easier tergen
ate than quadrilateral and hexahedral ones. For some afipiis, quadrilateral and hexahedral mesitss o
more accurate interpolation and approximation. Non-sitradlelements sometimes make life easier for the
numerical analyst; simplicial elements nearly always mdkesasier for the mesh generator. For topolog-
ical reasons, hexahedral meshes can be extraordinafiilguiti to generate for geometrically complicated
domains.

Meshes are also categorized as structured or unstructirsiuctured mestsuch as a regular cubical
grid, or the triangular mesh at left in Figure 1.2, has thepprty that its vertices can be numbered so
that simple arithmetic gtices to determine which vertices share an element with atedleertex. These
notes discuss onlynstructured meshesvhich entail explicitly storing each vertex’s neighbayivertices
or elements. All the meshes in Figure 1.1 are unstructuies, the mesh at right in Figure 1.2. Structured
meshes have been studied extensively [125]; they are tiipaimarily for domains that have tractable
geometries and do not require a strongly graded mesh. Whisted meshes are much more versatile because
of their ability to combine good element shapes with odd darahapes and element sizes that grade from
very small to very large.

For most applications, the elements comprising a mesh mitestsect “nicely,” meaning that if two
elements intersect, their intersection is a vertex or edgmbrre face of both. Formally, a mesh must be a
complexdefined in Section 1.3\onconforming elemenlike those illustrated in Figure 1.3 rarely alleviate
the underlying numerical problems, so they are rarely useshstructured meshes.
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Figure 1.2:Structured vs. unstructured mesh.

>

Figure 1.3:Nonconforming elements.

The goal of mesh generation is to create elementsth#brmto the shape of the geometric domain and
meet constraints on their sizes and shapes. The next twiorsediscuss domain conformity and element
quality.

1.1.1 Domain Conformity

Mesh generation algorithms vary in what domains they carhnaesl how those domains are specified.
The input to a mesh generator—particularly one in the thditeyature—might be a simple polygon or
polyhedron. Meshing becomes moréhdult if the domain can havimternal boundarieghat no element

is permitted to cross, such as a boundary between two miatéria heat transfer simulation. Meshing
is substantially more ¢licult for domains that have curved edges and surfaces, aallgesandpatches
which are typically represented as splines or subdivisiofases. Each of these kinds of geometry requires
a different definition of what it means tdangulatea domain. Let us consider these geometries in turn.

A polygon whose boundary is a closed loop of straight edgasbeasubdivided into triangles whose
vertices all coincide with vertices of the polygon; see ®ec2.8.1 for a proof of that fact. The set containing
those triangles, their edges, and their vertices is caltedmgulationof the polygon. But as the illustration
at top center in Figure 1.1 illustrates, the triangles magdmly shaped. To mesh a polygon with only high-
quality triangles, as illustrated at upper right in the figua mesh generator usually introduces additional
vertices that are not vertices of the polygon. The addedcesrire often calle8teiner pointsand the mesh
is called aSteiner triangulatiorof the polygon.

Stepping into three dimensions, we discover that polyhedrabe substantially morefficult to trian-
gulate than polygons. It comes as a surprise to learn thay palyhedra do not have triangulations, if a
triangulationis defined to be a subdivision of a polyhedron into tetrahedirase vertices are all vertices of
the polyhedron. In other words, Steiner points are sometimendatory. See Section 4.5 for an example.

Internal boundaries exist to help apply boundary condgtifmn partial difterential equations and to sup-
port discontinuities in physical properties, likdfdrences in heat conductivity in a multi-material simula-
tion. A boundary, whether internal or external, must beespnted by a union of edges or faces of the mesh.
Elements cannot cross boundaries, and where two materadt their meshes must have matching edges
and faces. This requirement may seem innocuous, but it rmagsising much harder if the domain has small
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angles. We define geometric structures caplextewise linear complexas formally treat polygonal and
polyhedral domains, like those at upper left and centeiieffiigure 1.1, in a manner that supports internal
boundaries. Piecewise linear complexes and their triatiguis are defined in Sections 2.8.1 and 4.5.1.

Curved domains introduce moreflitulties. Some applications require elements that curvedtcimn
a domain. Others approximate a curved domain with a pieeelvisar mesh at the cost of introducing
inaccuracies in shape, finite element solutions, and seiriacmal vectors (which are important for com-
puter graphics). In finite element methods, curved domaiassametimes approximated with elements
whose faces are described by parametrized quadratic, cilear, or trilinear patches. In these notes, the
elements are always linear triangles and tetrahedra.

Domains like that at lower left in Figure 1.1 can be specifigdjbometric structures callgmecewise
smooth complexe§hese complexes are composed of smoothly curved patchetdges, but patches can
meet nonsmoothly at ridges and vertices, and internal kemigslare permitted. A ridge where patches meet
nonsmoothly is sometimes called@ease

1.1.2 Element Quality

Most applications of meshes place constraints on both thpeshand sizes of the elements. These con-
straints come from several sources. First, large anglew (t®&0) can cause large interpolation errors. In
the finite element method, these errors induce a ldiggetization error—the diterence between the com-
puted approximation and the true solution of the PDE. Secemdll angles (neardcan cause the $ihess
matrices associated with the finite element method to bmiliditioned. Small angles do not harm interpo-
lation accuracy, and many applications can tolerate themrdTsmaller elementsfier more accuracy, but
cost more computationally. Fourth, small or skinny eleraax@n induce instability in the explicit time in-
tegration methods employed by many time-dependent pHysioalations. Consider these four constraints
in turn.

The first constraint forbids large angles, including largenp angles in triangles and large dihedral an-
gles in tetrahedra. Most applications of triangulations iiem to interpolate a multivariate function whose
true value might or might not be known. For example, a survaeyay know the altitude of the land at each
pointin a large sample, and use interpolation over a trikatigun to approximate the altitude at points where
readings were not taken. There are two kindsntérpolation errorthat matter for most applications: the
difference between the interpolated function and the trueiftmcind the dierence between the gradient
of the interpolated function and the gradient of the truecfiom. Element shape is largely irrelevant for the
first kind—the way to reduce interpolation error is to use ken@lements.

However, the error in the gradient depends on both the slzaqpkthe sizes: it can grow arbitrarily large
as an element’s largest angle approaches$ 1BfR, 5, 65, 116], as Figure 1.4 illustrates. Three triaagul
tions, each having 200 triangles, are used to render a daidbdhe mesh of long thin triangles at right
has no angle greater than°9@nd visually performs only slightly worse than the isotedpiangulation at
left. The slightly worse performance is because of the loegge lengths. However, the middle paraboloid
looks like a washboard, because the triangles with largkearg@ve very inaccurate gradients.

Figure 1.5 shows why this problem occurs. Ilfebe a function—perhaps some physical quantity like
temperature—linearly interpolated on the illustratedrigle. The values of at the vertices of the bottom
edge are 35 and 65, so the linearly interpolated valué af the center of the edge is 50. This value is
independent of the value associated with the top vertexhAshgle at the upper vertex approaches’ 180
the interpolated point with value 50 becomes arbitraritysel to the upper vertex with value 40. Hence, the
interpolated gradien? f can become arbitrarily large, and is clearly specious aspanoaimation of the
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Figure 1.4:An illustration of how large angles, but not small angles, can ruin the interpolated gradients. Each
triangulation uses 200 triangles to render a paraboloid.

40

35 E 65

50

Figure 1.5:As the large angle of the triangle approaches 18C, or the sliver tetrahedron becomes arbitrarily flat,
the magnitude of the interpolated gradient becomes arbitrarily large.

true gradient. The samdfect is seen between two edges of a sliver tetrahedron thatngas each other,
also illustrated in Figure 1.5.

In the finite element method, the discretization error isallgyproportional to the error in the gradient,
although the relationship between the two depends on thedridEhe order of the basis functions used to
discretize it. In surface meshes for computer graphicgelangles cause triangles to have normal vectors
that poorly approximate the normal to the true surface, badd can create visual artifacts in rendering.

For tetrahedral elements, usually it is their largest dilkdngles (defined in Section 1.5) that matter
most [71, 116]. Nonconvex quadrilateral and hexahedrahetgs, with angles exceeding I8@abotage
interpolation and the finite element method.

The second constraint on meshes is that many applicatish&lfemall angles, although fewer than
those that forbid large angles. If your application is thétdirelement method, then the eigenvalues of
the stithess matrix associated with the method ideally should bsteled as close together as possible.
Matrices with poor eigenvalue specti@ezt linear equation solvers by slowing down iterative mdghand
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introducing large roundderrors into direct methods. The relationship between etgérslgape and matrix
conditioning depends on the PDE being solved and the basisifuns and test functions used to discretize
it, but as a rule of thumb, it is the small angles that are delatis: the largest eigenvalue of thefsigss
matrix approaches infinity as an element’'s smallest angbecaghes zero [57, 7, 116]. Fortunately, most
linear equation solvers cope well with a few bad eigenvalues

The third constraint on meshes governs element size. Maish meneration algorithms take as input
not just the domain geometry, but also a space-varying fieldthat specifies the ideal size, and sometimes
anisotropy, of an element as a function of its position indbenain. (The size field is often implemented
by interpolation over dackground mesh A large number ofine (small) elements may be required in
one region where they are needed to attain good accuracgn-attere the physics is most interesting, as
amid turbulence in a fluid flow simulation—whereas other@agimight be better served lbgarse(large)
elements, to keep their number small and avoid imposing amdwelming computational burden on the
application. The ideal element in one part of the mesh may imavolume by a factor of a million or more
from the ideal element in another part of the mesh. If elesyehuuniform size are used throughout the
mesh, one must choose a size small enough to guarariagesu accuracy in the most demanding portion
of the problem domain, and thereby incur excessively laogeputational demands.

A graded meslis one that has large disparities in element size. Ideaftygsh generator should be able
to gradefrom very small to very large elements over a short distahktmevever, overly aggressive grading
introduces skinny elements in the transition region. The §ield alone does not determine element size:
mesh generators often create elements smaller than spdoifiraintain good element quality in a graded
mesh, and to conform to small geometric features of a domain.

Given a coarse mesh—one with relatively few elements—igpéctlly easy taefineit, guided by the
size field, to produce another mesh having a larger numbemafler elements. The reverse process is
much harder. Hence, mesh generation algorithms often setslves the goal of being able, in principle,
to generate as coarse a mesh as possible.

The fourth constraint forbids unnecessarily small or skinlements for time-dependent PDEs solved
with explicit time integration methods. The stability ofpicit time integration is typically governed by
the Courant—Friedrichs—Lewy conditigd 1], which implies that the computational time step mussivall
enough that a wave or other time-dependent signal canngd anore than one element per time step. There-
fore, elements with short edges or short altitudes may farsinulation to take unnecessarily small time
steps, at great computational cost, or risk introducinggelalose of spurious energy that causes the simu-
lation to “explode.”

Some meshing problems are impossible. A polygonal domaihhhs a corner bearing & angle
obviously cannot be meshed with triangles whose anglesxediezl 30; but suppose we merely ask that
all angles be greater than 36xceptthe I* angle? This request can always be granted for a polygon with
no internal boundaries, but Figure 1.6 depicts a domain osexb of two polygons glued together that,
surprisingly, provably has no mesh whasew angles are all over 30112]. Simple polyhedra in three
dimensions inherit this hurdle, even without internal bdames. One of the biggest challenges in mesh
generation is three-dimensional domains with small angtesinternal boundaries, wherein an arbitrary
number of ridges and patches can meet at a single vertex.

1.2 A Brief History of Mesh Generation

Three classes of mesh generation algorithms predominatadays: advancing front methods, wherein
elements crystallize one by one, coalescing from the baynofaa domain to its center; grid, quadtree,
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Figure 1.6:A mesh of this domain must have a new small angle.

SN VS

Figure 1.7:Advancing front mesh generation.

and octree algorithms, which overlay a structured backgiayrid and use it as a guide to subdivide a
domain; and Delaunay refinement algorithms, the subjedtexd notes. An important fourth class is mesh
improvement algorithms, which take an existing mesh andeniialzetter through local optimization. The
few fully unstructured mesh generation algorithms that dofall into one of these four categories are not
yet in widespread use.

Automatic unstructured mesh generation for finite elemeethimds began in 1970 with an article by
C. O. Frederick, Y. C. Wong, and F. W. Edge entitled “Two-Dimeimnal Automatic Mesh Generation for
Structural Analysis” in thénternational Journal for Numerical Methods in Engineagii®3]. This startling
paper describes, to the best of our knowledge, the first Dalamesh generation algorithm, the first advanc-
ing front method, and the first algorithm for Delaunay trialagions in the plane besides slow exhaustive
search—all one and the same. The irony of this distinctighasthe authors appear to have been unaware
that the triangulations they create are Delaunay. Moreaveareful reading of their paper reveals that
their meshes areonstrainedDelaunay triangulations, a sophisticated variant of De¢gutriangulations
discussed in Section 2.8.2. The paper is not well known,gpstbecause it was two decades ahead of its
time.

Advancing front methodsonstruct elements one by one, starting from the domain demyrand ad-
vancing inward, as illustrated in Figure 1.7—or occasitynalitward, as when meshing the air around an
airplane. The frontier where elements meet unmeshed domaadled thefront, which ventures forward
until the domain is paved with elements and the front varsisAelvancing front methods are characterized
by exceptionally high quality elements at the domain bomndBhe worst elements appear where the front
collides with itself, and assuring their quality igfttult, especially in three dimensions; there is no literatur
on provably good advancing front algorithms. Advancinghfrmethods have been particularly successful
in fluid mechanics, because it is easy to place extremelp#pjsic elements or specialized elements at the
boundary, where they are needed to model phenomena suahiaatair flow.

Most early methods created vertices then triangulated timetwo separate stages [53, 24, 76]. For
instance, Frederick, Wong, and Edge [53] use “a magnetid@eacord node point data and a computer
program to generate element data.” The simple but crucid@ingight—arguably, the “true” advancing front
technique—was to interleave vertex creation with elemegdtoon, so the front can guide the placement of
vertices. Alan George [58] took this step in 1971, but it wagbtten and reinvented in 1980 by Sadek [104]
and again in 1987 by Peraire, Vahdati, Morgan, and Zienkizy®5], who also introduced support for
anisotropic triangles. Soon thereafter, methods of th&@gmheappeared for tetrahedral meshing [77, 93],
quadrilateral meshing [15], and hexahedral meshing [1€].11
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Figure 1.8:A quadtree mesh.

These notes are about provably good mesh generation algasrithat employ th®elaunay triangu-
lation, a geometric structure possessed of mathematical prepertiquely well suited to creating good
triangular and tetrahedral meshes. The defining property D&launay triangulation in the plane is that
no vertex of the triangulation lies in the interior of anyatrgle’scircumscribing disk—the unique circular
disk whose boundary touches the triangle’s three verticethiree dimensions, no vertex is enclosed by any
tetrahedron’s circumscribing sphere. Delaunay triartgaia optimize several valuable geometric criteria,
including some related to interpolation accuracy.

Delaunay refinement algorithnt®nstruct a Delaunay triangulation and refine it by insgrtiew ver-
tices, chosen to eliminate skinny or oversized elementdewalways maintaining the Delaunay property of
the mesh. The key to ensuring good element quality is to ptete creation of unnecessarily short edges.
The Delaunay triangulation serves as a guide to finding loeatto place new vertices that are far from
existing ones, so that short edges and skinny elements toegated needlessly.

Most Delaunay mesh generators, unlike advancing front atsthcreate their worst elements near the
domain boundary and their best elements in the interior.€Etnly Delaunay mesh generators, like the early
advancing front methods, created vertices and triangdithm in two separate stages [53, 25, 64]. The era
of modern meshing began in 1987 with the insight, care ofisilFrey [56], to use the triangulation as a
search structure to decide where to place the vertibetaunay refinemens the notion of maintaining a
Delaunay triangulation while inserting vertices in locats dictated by the triangulation itself. The advan-
tage of Delaunay methods, besides the optimality proeotithe Delaunay triangulation, is that they can
be designed to have mathematical guarantees: that theglwilys construct a valid mesh and, at least in
two dimensions, that they will never produce skinny eleraent

The third class of mesh generators is those that overlay aithorwith a background grid whose resolu-
tion is small enough that each of its cells overlaps a verypkneasily triangulated portion of the domain,
as illustrated in Figure 1.8. A variable-resolution gridually a quadtree or octree, yields a graded mesh.
Element quality is usually assured by warping the grid s¢ tlmashort edges appear when the cells are
triangulated, or by improving the mesh afterward.

Grid meshers place excellent elements in the domain iménibthe elements near the domain boundary
are worse than with other methods. Other disadvantagebeateridency for most mesh edges to be aligned
in a few preferred directions, which may influence subsetjfiieite element solutions, and thefidgulty of
creating anisotropic elements that are not aligned withgtite Their advantages are their speed, their ease
of parallelism, the fact that some of them have mathemagigatantees, and most notably, their robustness
for meshing imprecisely specified geometry and dirty CACaddark Yerry and Mark Shephard published
the first quadtree mesher in 1983 and the first octree mesi®8ih[130, 131].

From nearly the beginning of the field, most mesh generatistems have included a mesh “clean-up”
component that improves the quality of a finished mesh. Tosliayplicial mesh improvement heuristics
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Figure 1.9:Smoothing a vertex to maximize the minimum angle.
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Figure 1.10Bistellar flips.

offer by far the highest quality of all the methods, and excélbentrol of anisotropy. Their disadvantages
are the requirement for an initial mesh and a lack of mathiealaguarantees. (They can guarantee they will
not make the mesh worse.)

The ingredients of a mesh improvement method are a set dfttecesformations, which replace small
groups of tetrahedra with other tetrahedra of better qualitd a schedule that searches for opportunities
to apply them.Smoothings the act of moving a vertex to improve the quality of the etaits adjoining
it. Smoothing does not change the topology (connectivifythe mesh.Topological transformationare
operations that change the mesh topology by removing elenfiemm a mesh and replacing them with a
different configuration of elements occupying the same space.

Smoothing is commonly applied to each interior vertex ofrressh in turn, perhaps for several passes
over the mesh. The simplest and most famous way to smootheninvertex is to move it to the centroid
of the vertices that adjoin it. This method, which dates katdkast to Kamel and Eisenstein [68] in 1970, is
calledLaplacian smoothingpecause of its interpretation as a Laplacian finifeedénce operator. It usually
works well for triangular meshes, but it is unreliable farééedra, quadrilaterals, and hexahedra.

More sophisticated optimization-based smoothers begappear in the 1990s [91, 23, 90]. Slower
but better smoothing is provided by the nonsmooth optirfemagdlgorithm of Freitag, Jones, and Plass-
mann [54], which can optimize the worst element in a groupiistance, maximizing the minimum di-
hedral angle among the tetrahedra that share a specifiekvé&r some quality measures, optimal mesh
smoothing can be done with generalized linear programniindiigure 1.9 illustrates a smoothing step that
maximizes the minimum angle among triangles.

The simplest topological transformation is #adge flipin a triangular mesh, which replaces two triangles
with two different triangles. Figure 1.10 also illustrates severalagmals transformations for tetrahedra,
which mathematicians cadistellar flips There are analogous transformations for tetrahedra fijatzdals,
and hexahedra. Similar flips exist for quadrilaterals andhedra; see Bern, Eppstein, and Erickson [9] for
a list.

Mesh improvement is usually driven by a schedule that searttte mesh for elements that can be im-
proved by local transformations, ideally as quickly as fies Canann, Muthukrishnan, and Phillips [22]
provide a fast triangular mesh improvement schedule. Stipated schedules for tetrahedral mesh im-
provement are provided by Joe [67], Freitag and Olliviee@o[55], and Klingner and Shewchuk [70]. For
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Figure 1.11:The mesh generator’s nemesis: a sliver tetrahedron.

a list of flips for quadrilateral and hexahedral meshes, sw@,B=ppstein, and Erickson [9]. Kinney [69]
describes mesh improvement methods for quadrilateral @seshhere does not seem to have been much
work on applying hexahedral flips.

The story of provably good mesh generation is an interplaileds between Delaunay methods and
methods based on grids, quadtrees, and octrees. The fikgthhyggood mesh generation algorithm, by
Baker, Grosse, and Rarty [6] in 1988, employs a square grid. The first provablydybelaunay refinement
algorithm in the plane, by Chew [35], followed the next ye@he first provably good three-dimensional
Delaunay refinement algorithm is by Dey, Bajaj, and Sugif@ba Although their algorithm is guaranteed
to eliminate most types of bad tetrahedra, a few bad tetratadigh through: a type of tetrahedron called a
sliver or kite.

The canonical sliver is formed by arranging four verticesiad the equator of a sphere, equally spaced,
then perturbing one of the vertices slightlff the equator, as Figure 1.11 illustrates. A sliver can hake-di
dral angles arbitrarily close t@nd 180 yet have no edge that is particularly short. Provably goneisi
removal is one of the most fliicult theoretical problems in mesh generation, althoughhnreprovement
algorithms beat slivers consistently in practice.

None of the provably good algorithms discussed above pedraded meshes. The first mesh generator
offering provably good grading is the 1990 quadtree algoritfiBesn, Eppstein, and Gilbert [10], which
meshes a polygon so no new angle is less tha#°18t has been influential in part because the meshes
it produces are not only graded, lize-optimal the number of triangles in a mesh is at most a constant
factor times the number in the smallest possible mesh (med$y triangle count) having no angle less than
18.4°. Ironically, the algorithm produces too many triangles ¢oppactical—but only by a constant factor.
Neugebauer and Diekmann [88] improve the algorithm by @ptasquare quadrants with rhomboids.

A groundbreaking 1992 paper by Jim Ruppert [100, 102] omg¢pigar meshing brought guaranteed
good grading and size optimality to Delaunay refinementrilyms. Ruppert’s algorithm, described in
Chapter 6, accepts nonconvex domains with internal boiggland produces graded meshes of modest size
and high quality in practice.

The first tetrahedral mesh generatdieoing size optimality is the 1992 octree algorithm of Mitkthe
and Vavasis [84]. Remarkably, Mitchell and Vavasis [85kexted their mathematical guarantees to meshes
of polyhedra of any dimensionality by usigdimensional 9-trees. Shewchuk [113, 114] generalized the
tetrahedral Delaunay refinement algorithm of Dey, Bajaj, &ngihara from convex polyhedra to piecewise
linear complexes; the algorithm appears in Chapter 7.

The first provably good meshing algorithm for curved surédoghree dimensions is by Chew [37]; see
the aforementioned survey by Boissonnat et al. [18] for awdision of subsequent algorithms. Guaranteed-
quality triangular mesh generators for two-dimensionahdms with curved boundaries include those by
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Figure 1.12:From left to right, a simplicial complex, a polyhedral complex, a piecewise linear complex, and a
piecewise smooth complex. The shaded areas are triangles, convex polygons, linear 2-cells, and smooth 2-cells,
respectively. In the piecewise linear complex, observe that several linear cells have holes, one of which is filled
by another linear cell (darkly shaded).

Boivin and Ollivier-Gooch [19] and Pav and Walkington [92fabelle and Shewchuk [72] provide a prov-
ably good triangular mesh generator that produces angotneeshes in the plane, and Cheng, Dey, Ramos,
and Wenger [32] generalize it to generate anisotropic nesheurved surfaces in three-dimensional space.

1.3 Simplices, Complexes, and Polyhedra

Tetrahedra, triangles, edges, and vertices are instaficgimplices In these notes, | represent meshes and
the domains we wish to mesh esmplexes There are several fierent types of complexes, illustrated in
Figure 1.12, which all share two common properties. Firsgraplex is a set that contains not only volumes
such as tetrahedra, but also the faces, edges, and veltitese volumes. Second, the cells in a complex
must intersect each other according to specified rules,independ on the type of complex.

The simplest type of complex issamplicial complexwhich contains only simplices. The mesh gen-
eration algorithms in these notes produce simplicial cexgsd. More general apolyhedral complexes
composed of convex polyhedra; these “polyhedra” can be pfdamension from zero on up. The most
important polyhedral complexes for mesh generation ardam®usVoronoi diagramand theDelaunay
subdivision defined in Section 2.2.

Theorists use two other kinds of complexes to specify dom#inbe triangulated Piecewise linear
complexesdefined in Sections 2.8.1 and 4.5.1ffeli from polyhedral complexes by permitting noncon-
vex polyhedra and by relaxing the rules of intersection osthpolyhedraPiecewise smooth complexes
introduced by Cheng, Dey, and Ramos [31] generalize straidhges and flat facets to curved ridges and
patches.

To a mathematician, a “triangle” is a set of points, whichudes all the points inside the triangle as
well as the points on the three edges. Likewise, a polyhedrarset of points covering its entire volume.
A complex is a set of sets of points. We define these and otlmnefeic structures in terms ofte hulls
and convex hulls. Simplices, convex polyhedra, and theedaare convex sets of points. A point €eis
convexf for every pair of pointsp, q € C, the line segmenpqis included inC.

Definition 1 (affine hull). Let X = {x1, X, ..., Xk} be a set of points ifRd, A point p is areffine combination
of the points in X if it can be written p Zikzlwixi for a set of scalaweightsw; such thatzj:‘zlwi = 1

A point p isaffinely independenaf X if it is not an gfine combination of points in X. The points in X are
affinely independerif no point in X is an gine combination of the others. B, no more than & 1 points
can be ginely independent. Thagfine hullof X, denoteaff X, is the set of all fine combinations of points
in X, as illustrated in Figure 1.13. A-Rat, also known as amtffine subspacds the gfine hull of k+ 1



Simplices, Complexes, and Polyhedra 13
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Figure 1.13:Examples of affine hulls and convex hulls in the plane.

affinely independent points; soflat is a vertex, dl-flat is a line, a2-flat is a plane, etc. Ad — 1)-flat in
RY is called ahyperplaneA k-flat is said to havdimensiork.

Definition 2 (convex hull) A point p is aconvex combinatiomf the points in X if it can be written as an
affine combination with all the weights nonnegative; i.e.> w0 for all i. The convex hullof X, denoted
convX, is the set of all convex combinations of points in X, asithted in Figure 1.13. An alternative
definition is thatconvX is the most exclusive convex point set such thatoénvX.

Simplices and convex polyhedra are convex hulls of finitepsets, withk-simplices being the simplest
possiblek-dimensional polyhedra. One way that mathematical langubgyiates from lay usage is that a
“face” of a polyhedron can be of any dimension; mathematiiase “facet” to denote what a layman calls
a “face.”

Definition 3 (simplex) A k-simplexr is the convex hull of a set X ofk1 affinely independent points. In
particular, a O-simplex is avertex a 1-simplex is aredge a 2-simplex is atriangle and a3-simplex is a
tetrahedron A k-simplex is said to hawdimensionk. A simplex is daceof r if it is the convex hull of a
nonempty subset of X. Facesmotome in all dimensions from zér¢r’s vertices) to k;r is a face ofr.

A simplex is gproper faceof 7 if it is the convex hull of a proper subset of X; i.e. any faceegtr. In
particular, the (k — 1)-faces ofr are calledfacetsof r; 7 has k+ 1 facets. For instance, the facets of a
tetrahedron are its four triangular faces.

Definition 4 (simplicial complex) A simplicial complexy, also known as &iangulation is a set contain-
ing finitely? many simplices that satisfies the following two restricgion

e 7 contains every face of every simplex/in

1Some writers use the convention that the empty set is a skngbldimension—1 and a face of every simplex, albeit not a
proper face. | make no use of this convention.

2Topologists usually define complexes so they have countaibtinality. | restrict complexes to finite cardinality teoéd some
interesting quirks, like the possibility that a polygonhvi I angle can be meshed with a countably infinite set of trianggesng
no angle less than 20
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e For any two simplicesr, T € 7, their intersectiors N 7 is either empty or a face of bothandr.

Convex polyhedra are as easy to define as simplices, bufadiees are trickier. Whereas the convex hull
of a subset of a simplex’s vertices is a face of the simplexctinvex hull of an arbitrary subset of a cube’s
vertices is usually not a face of the cube. The faces of a alydn are defined below in termssafpporting
hyperplanesobserve that this definition is consistent with the defimtof a face of a simplex above.

Definition 5 (convex polyhedron)A convex polyhedrois the convex hull of a finite point set. A polyhedron
whose gine hull is a k-flat is called adpolyhedronand is said to havelimensionk. A 0O-polyhedron is a
vertex, al-polyhedron is an edge, andZapolyhedron is @oolygon Theproper facesf a convex polyhedron
C are the polyhedra that can be generated by taking the iattien of C with a hyperplane that intersects
C’s boundary but not C’s interior; such a hyperplane is cdleesupporting hyperplanef C. For example,
the proper faces of a cube are six squares, twelve edges,ightivertices. Thdacesof C are the proper
faces of C and C itself. THacetsof a k-polyhedron are itgk — 1)-faces.

A polyhedral complex imposes exactly the same restrictaas simplicial complex.

Definition 6 (polyhedral complex) A polyhedral comple# is a set containing finitely many convex poly-
hedra that satisfies the following two restrictions.

e P contains every face of every polyhedrorfin

e For any two polyhedra (D € P, their intersection G D is either empty or a face of both C and D.

Piecewise linear complexes are sets of polyhedra that dmecgessarily convex. | call these polyhedra
linear cells

Definition 7 (linear cell) A lineark-cellis the union of a finite number of convex k-polyhedra, alludeld
in some common k-flat. A line@rcell is a vertex, a lineak-cell is sometimes called@olygon and a linear
3-cell is sometimes called@olyhedron

Fork > 1, a lineark-cell can have multiple connected components. These do mo; removing a
linear cell from a complex and replacing it with its connelctemponents, or vice versa, makes no material
difference. To simplify the exposition, | will forbid disconrted linear 1-cells in complexes; i.e. the only
linear 1-cells are edges. Foe= 2, alinear cell can be only tenuously connected; e.g. a wifitwo squares
that intersect at a single point is a linear 2-cell, even gfoitiis not a simple polygon.

Another diference between linear cells and convex polyhedra is thaefieadthe faces of a linear cell
in a fundamentally dferent way that supports configurations like those in Figdt8sand 1.12. A linear
cell’s faces are not an intrinsic property of the linear eédine, but depend on the complex that contains it.
| defer the details to Section 2.8.1, where | define piecelingar complexes.

Piecewise smooth complexes are sets of cells calteabth cellswhich are similar to linear cells except
that they are not linear, but are smooth manifolds.

A complex or a mesh is a representation of a domain. The foisreeset of sets of points, and the latter
is a set of points. The following operator collapses the farto the latter.

Definition 8 (underlying space)Theunderlying spacef a compleXP, denoted#®), is the union of its cells;
that is,|P| = Ucep C.
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Ideally, a complex provided as input to a mesh generatioordlgn and the mesh produced as output
should cover exactly the same points. This ideal is not adwassible—for example, if we are generating
a linear tetrahedral mesh of a curved domain. When it is a&ebieve call itexact conformity

Definition 9 (exact conformity) A complex/~ exactly conformdo a complexP if |77| = || and every cell
in P is a union of cells ir7". We also say that is a subdivisionof P.

1.4 Metric Space Topology

This section introduces basic notions from point set togyplihat underlie triangulations and other com-
plexes. They are prerequisites for more sophisticatedagjmal ideas—manifolds and homeomorphisms—
introduced in Sections 1.6 and 1.7. A complex of linear el@smeannot exactly conform to a curved domain,
which raises the question of what it means for a triangutatiiobe a mesh of such a domain. To a layman,
the word topology evokes visions of “rubber-sheet topologlye idea that if you bend and stretch a sheet
of rubber, it changes shape but always preserves the uintgdtructure of how it is connected to itself.
Homeomorphismsféer a rigorous way to state that a mesh preserves the topof@gamain.

Topology begins with a séf of points—perhaps the points comprising ttelimensional Euclidean
spaceRY, or perhaps the points on the surface of a volume such aeeanug. We suppose that there is a
metric dp, q) that specifies the scaldistancebetween every pair of points g € T. In the Euclidean space
RY we choose the Euclidean distance. On the surface of theecanug, we could choose the Euclidean
distance too; alternatively, we could choose ¢fa®desic distancenamely the length of the shortest path
from p to g on the mug’s surface.

Let us briefly review the Euclidean metric. We write point®ihasp = (p1, p2. ..., Pd), Where eaclp;
is a real-valuedoordinate The Euclidean nornof a pointp € R%is ||p|| = (Zf':l piz)l/z, and theEuclidean
distancebetween two pointp,q € R4 isd(p,q) = [Ip -l = (Zid:l(pi - qi)2)1/2. | also use the notation
d(:, -) to express minimum distances between point BeGC T,

d(p, Q) inf{d(p,q) : g€ Q} and
d(P. Q) inf{d(p,q) : pe Pge Q}.

The heart of topology is the question of what it means for adebints—say, a squiggle drawn on a
piece of paper—to beonnected After all, two distinct points cannot be adjacent to eadiegt they can
only be connected to another by an uncountably infinite bafaitermediate points. Topologists solve that
mystery with the idea dfmit points

Definition 10 (limit point). Let Q< T be a point set. A point g T is alimit point of Q, also known as an
accumulation poinof Q, if for every real numbe¢ > 0, however tiny, Q contains a point+g p such that

thatd(p,q) < e.

In other words, there is an infinite sequence of pointQithat get successively closer and closer to
p—without actually beingp—and get arbitrarily close. Stated succinctigp, Q \ {p}) = 0. Observe that it
doesn’t matter whethgy € Q or not.

Definition 11 (connected) Let Q C T be a point set. Imagine coloring every point in Q either red or
blue. Q isdisconnectedf there exists a coloring having at least one red point antkast one blue point,
wherein no red point is a limit point of the blue points, andbioe point is a limit point of the red points.
A disconnected point set appears at left in Figure 1.14. Isuch coloring exists, Q isonnectegdlike the
point set at right in Figure 1.14.
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Figure 1.14:The disconnected point set at left can be partitioned into two connected subsets, which are colored
differently here. The point set at right is connected. The dark point at its center is a limit point of the lightly colored
points.
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Figure 1.15:Closed, open, and relatively open point sets in the plane. Dashed edges and open circles indicate
points missing from the point set.

In these notes, | frequently distinguish between closedogeah point sets. Informally, a triangle in the
plane isclosedif it contains all the points on its edges, aoenif it excludes all the points on its edges, as
illustrated in Figure 1.15. The idea can be formally extehiieany point set.

Definition 12 (closure) Theclosureof a point set Qc T, denotedCl Q, is the set containing every point
in Q and every limit point of Q. A point set Qdétosedif Q = CIQ, i.e. Q contains all its limit points. The
complementf a point set Q ifl'\ Q. A point set Q ipenif its complement is closed, i.8\ Q = CI(T\ Q).

For example, let (Ol) denote arpen intervalon the real number line—the set containing evesyR
such thatr > 0 andr < 1, and let [01] denote aclosed interval0, 1) U {0} U {1}. The numbers zero and
one are both limit points of the open interval, so Clp= [0, 1] = CI[0,1]. Therefore, [01] is closed
and (Q1) is not. The numbers zero and one are also limit points ottmeplemenof the closed interval,
R\ [0,1], so (Q1) is open, but [01] is not.

The terminology is misleading because “closed” and “opee’ret opposites. In every nonempty metric
spaceT, there are at least two point sets that are both closed and @@ndT. The interval (01] on the
real number line is neither open nor closed.

The definition ofopen sehides a subtlety that often misleads newcomers to poinbpetdagy: a triangle
7 that is open in the metric spac ais not open in the metric spad¥. Every point int is a limit point of
R3\ 7, because you can find sequences of points that approfei the side. In recognition of this quirk,
a simplexo- c RY is said to beelatively operif it is open relative to its fiine hull. It is commonplace to
abuse terminology by writing “open simplex” for a simplexaths only relatively open, and | follow this
convention in these notes. Particularly useful is the cphoéan “open edge,” an edge that is missing its
endpoints, illustrated in Figure 1.15.

Informally, the boundary of a point s€tis the set of points wher® meets its complemefit \ Q. The
interior of Q contains all the other points €. Limit points provide formal definitions.

Definition 13 (boundary; interior) The boundaryof a point set Q in a metric spack, denotedBdQ, is
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the intersection of the closures of Q and its complementBideg) = CIQ N CI(T \ Q). Theinteriorof Q,
denotedntQ, is Q\BdQ = Q\ CI(T \ Q).

For example, Bd[01] = {0,1} = Bd(0,1) and Int[Q1] = (0,1) = Int (0, 1). The boundary of a triangle
(closed or open) in the Euclidean plane is the union of tleaglie’s three edges, and its interior is an open
triangle, illustrated in Figure 1.15. The terinsundaryandinterior have the same misleading subtlety as
open sets: the boundary of a triangle embeddékfiis the whole triangle, and its interior is the empty set.
Therefore, theelative boundaryandrelative interiorof a simplex are its boundary and interior relative to its
affine hull rather than the entire Euclidean space. Again, hadtause terminology by writing “boundary”
for relative boundary and “interior” for relative interior

Definition 14 (bounded; compactjThediameterof a point set Q isup, .o d(p. d). The set Q idounded
if its diameter is finite, ounboundedf its diameter is infinite. A point set Q in a metric spacedsnpactf
it is closed and bounded.

Besides simplices and polyhedra, the point sets we use mtstse notes are balls and spheres.

Definition 15 (Euclidean ball) In RY, the Euclideand-ball with center ¢ and radius r, denoted®r),
is the point set B, r) = {p € RY : d(p,c) < r}. A1l-ballis an edge, and &-ball is sometimes called
a disk. A unit ballis a ball with radiusl. The boundary of the d-ball is called tlt&uclidean ¢ — 1)-
sphereand denoted &,r) = {p € RY : d(p,c) = r}. For example, a circle is 4-sphere, and a layman’s
“sphere” in R3 is a 2-sphere. If we remove the boundary from a ball, we haveotien Euclideam-ball
Bo(C,r) = {pe RY: d(p,c) <r}.

The foregoing text introduces point set topology in termmetric spaces. Surprisingly, it is possible to
define all the same concepts without the use of a metric, pordinates, or any scalar values at @tpo-
logical spacesare a mathematical abstraction for representing the tgyadd a point set while excluding
all information that is not topologically essential. In sieenotes, all the topological spaces have metrics.

1.5 How to Measure an Element

Here, | describe ways to measure the size, angles, andygoiditsimplicial element, and | introduce some
geometric structures associated with simplices—most itaptly, their circumspheres and circumcenters.

Definition 16 (circumsphere) Let r be a simplex embedded Bf. A circumsphergor circumscribing
sphereof ris a(d — 1)-sphere whose boundary passes through every vertexlafstrated in Figure 1.16.
A circumball or circumscribing ballof 7 is a d-ball whose boundary is a circumsphererofA closed cir-
cumballincludes its boundary—the circumsphere—anapan circumbalkxcludes it. Ifr is a k-simplex,
the kcircumballof 7 is the unique k-ball whose boundary passes through evetgxefr, and its rel-
ative boundary is thé€k — 1)-circumspheref r. | sometimes call &-circumball acircumdiskand al-

circumsphere &ircumcircle

If T is ad-simplex inRY, it has one unique circumsphere and circumball; butifis dimension less than
d, it has an infinite set of circumspheres and circumballs.stem a triangler in R3, for example. There is
only one circumcircle of, which passes througts three vertices, but has infinitely many circumspheres,
and the intersection of any of those circumspheres wilaffine hull is7’s circumcircle. The smallest
of these circumspheres is special, because its centerdie% @ffine hull, it has the same radius as
circumcircle, and’s circumcircle is its equatorial cross-section. Cédl smallest circumcircle, illustrated
in Figure 1.17, itgdliametric circle and callr’s smallest circumdisk itdiametric disk
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circumball inball min—containment ba

Figure 1.16:Three spheres associated with a triangle.

Figure 1.17:A triangle, two circumspheres of the triangle of which the smaller (solid) is the triangle’s diamet-
ric sphere, the triangle’s circumcircle (the equatorial cross-section of the diametric sphere), and the triangle’s
circumcenter.

Definition 17 (diametric sphere)The diametric spheref a simplexr is the circumsphere of with the
smallest radius, and theiametric ballof 7 is the circumball ofr with the smallest radius, whose boundary
is the diametric sphere. Thoércumcenteof r is the point at the center afs diametric sphere, which always
lies onaft r. Thecircumradiusof 7 is the radius ofr’s diametric sphere.

The significance of circumcenters in Delaunay refinemendrélygns is that the best place to insert a
new vertex into a mesh is often at the circumcenter of a paitgped element, domain boundary triangle,
or domain boundary edge. In a Delaunay mesh, these circuarseae locally far from other mesh vertices,
so inserting them does not create overly short edges.

Other spheres associated with simplicial elements areipdhere and the min-containment sphere, both
illustrated in Figure 1.16.

Definition 18 (insphere) Theinball, or inscribed ball of a k-simplex is the largest k-ball B- . Observe
that B is tangent to every facet ef Theinsphereof r is the boundary of B, thimcenterof r is the point at
the center of B, and thieradiusof 7 is the radius of B.

Definition 19 (min-containment sphere)rhe min-containment ballor minimum enclosing ballof a k-
simplexr is the smallest k-ball B> 7. The min-containment ball is always a diametric ball of agfadr.
Themin-containment sphei& 7 is the boundary of B.

Finite element practitioners often represent the size aflament by the length of its longest edge, but
one could argue that the radius of its min-containment spisea slightly better measure, because there are
sharp error bounds for piecewise linear interpolation @uaplicial elements that are directly proportional
to the squares of the radii of their min-containment sphddesails appear in Section 4.4.
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Needle Cap

Figure 1.18:Skinny triangles have circumdisks larger than their shortest edges.

A quality measurgs a mapping from elements to scalar values that estimagesuitability of an el-
ement’s shape independently of its size. The most obvioafityuneasures of a triangle are its smallest
and largest angles, and a tetrahedron can be judged by @drdirangles. | denote the angle between two
vectorsu andv as

u-v
Z(u,Vv) = arccos—.
[ullv]

| compute an angle xyzof a triangle as/(x -y, z-y).

A dihedral angleis a measure of the angle separating two planes or polygdR&-efor example, the
facets of a tetrahedron or 3-polyhedron. Suppose that twéeftats meet at an edge, wherey andz are
points inR3. Letw be a point lying on one of the facets, andxdie a point lying on the other. Itis helpful
to imagine the tetrahedramxyz The dihedral angle separating the two facets is the samnle aepgarating
Awyzandaxyz namelyZ(u,v) whereu = (y — w) x (z—w) andv = (y — X) x (z— X) are vectors normal to
AwyzandAxyz

Elements can go bad infierent ways, and it is useful to distinguish types of skineyrents. There are
two kinds of skinny triangles, illustrated in Figure 1.1&eualles, which have one edge much shorter than the
others, and caps, which have an angle neaf 8@ a large circumdisk. Figure 1.1&@&rs a taxonomy of
types of skinny tetrahedra. The tetrahedra in the top rovglireny in one dimension and fat in two. Those
in the bottom row are skinny in two dimensions and fat in ongeds, spindles, spades, caps, and slivers
have a dihedral angle near X8@he others may or may not. Spikes, splinters, and all thratietra in the
top row have a dihedral angle nedr the others may or may not. The cap, which has a vertex quisedb
the center of the opposite triangle, is notable for a lardie smgle, near 360 Spikes also can have a solid
angle arbitrarily close to 360and all the skinny tetrahedra can have a solid angle aribjtcdose to zero.

There are several surprises. The firstis that spires, @dsging skinny, can have all their dihedral angles
between 60 and 90, even if two edges are separated by a plane angle rie@res with good dihedral
angles are harmless in many applications, and are indiapknat the tip of a needle-shaped domain, but
some applications eschew them anyway. The second surptisatia spear or spindle tetrahedron can have
a dihedral angle near 18Without having a small dihedral angle. By contrast, a trlangth an angle near
180 must have an angle neat.0

For many purposes—mesh improvement, for instance—it isat#e to have a single quality measure
that punishes both angles neédrahd angles near 180and perhaps spires as well. Most quality measures
are designed to reach one extreme value for an equilatenagite or tetrahedron, and an opposite extreme
value for a degenerate element—a triangle whose verti@sdlinear, or a tetrahedron whose vertices
are coplanar. In these notes, the most important qualitysoreas theradius-edge ratip because it is
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Figure 1.19:A taxonomy of skinny tetrahedra, adapted from Cheng, Dey, Edelsbrunner, Facello, and Teng [29].

naturally bounded by Delaunay refinement algorithms (affesttpointed out by Miller, Talmor, Teng, and
Walkington [81]).

Definition 20 (radius-edge ratio)Theradius-edge ratiof a simplex is R/¢min, Where R ig’s circumradius
and{min is the length of its shortest edge.

We would like the radius-edge ratio to be as small as possibtanges fromeo for most degenerate
simplices down to 1V3 = 0.577 for an equilateral triangle ov6/4 = 0.612 for an equilateral tetrahedron.
But is it a good estimate of element quality?

In two dimensions, the answer is yes. A triangle’s radiugeadtio is related to its smallest anglgn

by the formula
R 1

Figure 1.20 illustrates how this identity is derived for @mgle xyzwith circumcentec. Observe that the

trianglesyczand xczare isosceles, so their apex anglesdyez= 180 — 2¢ and/xcz= 180 — 2¢ — 26.
Thereforeyp = 20min and{min = 2RSiNGmin. This reasoning holds evendfis negative.

The smaller a triangle’s radius-edge ratio, the largerritalgest angle. The angles of a triangle sum to
180, so the triangle’s largest angle is at most 18®9,in; hence an upper bound on the radius-edge ratio
places bounds on both the smallest and largest angles.

In three dimensions, however, the radius-edge ratio is a&flaweasure. It screens out all the tetrahedra
in Figure 1.19 except slivers. A degenerate sliver can haeslias-edge ratio as small ag¥2 = 0.707,
which is not far from the 12 of an equilateral tetrahedron. Delaunay refinementigigos are guaranteed
to remove all tetrahedra with large radius-edge ratiosthmyt do not promise to remove all slivers.

There are other quality measures that screen out all thengkatrahedra in Figure 1.19, including
slivers and spires, but Delaunay refinement does not pramiseund these measures. A popular measure
is theradius ratio r/R, suggested by Cavendish, Field, and Frey [25], whei®7’s inradius andR is
its circumradius. It obtains a maximum value gf2Ifor an equilateral triangle or/8 for an equilateral
tetrahedron, and a minimum value of zero for a degenerateegit which implies that it approaches zero
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X fmin y
Figure 1.20:Relationships between the circumradius R, shortest edge £min, and smallest angle 6.

as any dihedral angle separating faces approaches @r 180, any plane angle separatint edges
approachesor 180, or any solid angle at’s vertices approaches @r 360

For a triangler, the radius ratio is related to the smallest arfiglg by the inequalities

. Hmin r gmin
2sirf < — < 2tan2n
2 ~ R ™ 2’

which implies that it approaches zerots, approaches zero, and vice versa.

Two unfortunate properties of the circumradius are that ielatively expensive to compute for a tetra-
hedron, and it can be numerically unstable. A tiny pertudpadf the position of one vertex of a skinny
tetrahedron can induce an arbitrarily large change in isuairadius. Both the radius-edge ratio and the
radius ratio inherit these problems. In these respectsttarmpiality measure for tetrahedra is triume-
length measure M3, suggested by Parthasarathy, Graichen, and Hathawayvj®@JeV is the volume
of a tetrahedron anéns is the root-mean-squared length of its six edges. It obtainsaximum value
of 1/(6 V2) for an equilateral tetrahedron and a minimum value of fer@ degenerate tetrahedron. The
volume-length measure is numerically stable and fasteoitgpute than a tetrahedron’s circumradius. It has
proven itself as a filter against all poorly shaped tetrah@ahd as an objective function for mesh improve-
ment algorithms, especially optimization-based smogthin@].

1.6 Maps and Homeomorphisms

Two metric spaces are considered to be the same if the pbattsdomprise them are connected the same
way. For example, the boundary of a cube can be deformed isphe@re without cutting or gluing it. They
have the same topology. We formalize this notion of topaabéquality by defining a function that maps
the points of one space to points of the other and preservetitey are connected. Specifically, the function
preserves limit points.

A function from one space to another that preserves limihfgois called acontinuous functioror a
map® Continuity is just a step on the way to topological equivakerbecause a continuous function can

3There is a small caveat with this characterization: a fumagi that maps a neighborhood ®fto a single poing(x) may be
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Figure 1.21:(a) A 1-ball. (b) Spaces homeomorphic to the 1-sphere. (c) Spaces homeomorphic to the 2-ball.
(d) An open 2-ball. It is homeomorphic to R?, but not to a closed 2-balll.

map many points to a single point in the target space, or mamimts to a given point in the target space.
True equivalence is marked byhmmeomorphisma one-to-one function from one space to another that
possesses both continuity and a continuous inverse, sbirtlighoints are preserved in both directions.

Definition 21 (continuous function; map)Let T and U be metric spaces. A functiongT — U is
continuous if for every set Q T and every limit point g T of Q, g p) is either a limit point of the set(®)
or in g(Q). Continuous functions are also called maps.

Definition 22 (homeomorphism)Let T andU be metric spaces. A homeomorphism is a bijective (one-to-
one) map ht T — U whose inverse is continuous too. Two metric spaces are hoorghic if there exists
a homeomorphism between them.

Homeomorphism induces an equivalence relation among ersgieices, which is why two homeomor-
phic metric spaces are calléapologically equivalentFigure 1.21(b, c) shows pairs of metric spaces that
are homeomorphic. A less obvious example is that the opdrdtiall IEBg = {x e RY: |x < 1} is homeo-
morphic to the Euclidean spa@, a fact demonstrated by the mhfp) = (1/(1 - |p|))p. The same map
shows that the open unit halfb&l® = {x € RY : |x < 1 andxq > 0} is homeomorphic to the Euclidean
halfspacgx € RY : xg4 > 0}.

Homeomorphism gives us a purely topological definition oftibhmeans to triangulate a domain.

Definition 23 (triangulation of a metric spacef simplicial compleX is a triangulation of a metric space
T if its underlying spac¢X| is homeomorphic ta.

1.7 Manifolds

A manifold is a set of points that is locally connected in atipatar way. A 1-manifold has the structure of
a piece of string, possibly with its ends tied in a loop, andraghifold has the structure of a piece of paper

continuous, but technicallg(x) is not a limit point of itself, so in this sense a continuouadtion might not preserve all limit
points. This technicality does not apply to homeomorphibetsause they are bijective.
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Figure 1.22:Mobius band.

or rubber sheet that has been cut and perhaps glued alonlyés-e-a category that includes disks, spheres,
tori, and Mobiis bands.

Definition 24 (manifold). A metric space is a k-manifold, or simply manifold, if every pointeX has a
neighborhood homeomorphic B or HK. The dimension & is k.

A manifold can be viewed as a purely abstract metric spacie can be embedded into a metric space
or a Euclidean space. Even without an embedding, every oidréan be partitioned into boundary and
interior points. Observe that these words mean veffgidint things for a manifold than they do for a metric
space.

Definition 25 (boundary, interior) The interiorIintX of a manifoldX is the set of points ix that have a
neighborhood homeomorphic B¥. The boundanBdX of X is the set of pointZ \ IntX. Except for the
case of0-manifolds (points) whose boundary is emfy,% consists of points that have a neighborhood
homeomorphic t&I¥. If BAX is the empty set, we say thats without boundary.

For example, the closed di&K is a 2-manifold whose interior is the open digkand whose boundary
is the circleS. The open disB2 is a 2-manifold whose boundary is the empty set. So is theidfan space
R?, and so is the sphef#. The open disk is homeomorphicR¥, but the sphere is topologicallyftirent
from the other two. Moreover, the sphere is compact (boumaedclosed with respect &%) whereas the
other two are not.

A 2-manifold X is non-orientableif starting from a pointp one can walk orZ and end up on the
opposite side of when returning t@. OtherwiseX is orientable. Spheres and balls are orientable, whereas
the Mobilis bandn Figure 1.22 is a non-orientable 2-manifold.

A surfaceis a 2-manifold that is a subspace®f. Any compact surface without boundaryR¥ is
an orientable 2-manifold. To be non-orientable, a compadase must have a honempty boundary or be
embedded in a 4- or higher-dimensional Euclidean space.

A surface can sometimes be disconnected by removing one rerloaps(1-manifolds without bound-
ary) from it. Thegenusof a surface ig if 2g is the maximum number of loops that can be removed from
the surface without disconnecting it; here the loops arenfitrd to intersect each other. For example, the
sphere has genus zero as any loop cuts it into two surfacestorfis has genus one: a circular cut around
its neck and a second circular cut around its circumferefiasfrated in Figure 1.23(a), allow it to unfold
into a rectangle, which topologically is a disk. A third loapuld cut it into two pieces. Figure 1.23(b)
shows a 2-manifold without boundary of genus 2. Althoughghtgenus surface can have a very complex
shape, all compact 2-manifolds of gerawithout boundary are homeomorphic to each other.
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Figure 1.23:(a) Removal of the bold loops opens up the torus into a topological disk. (b) Every surface without
boundary in R3 resembles a sphere or a conjunction of one or more tori.



Chapter 2

Two-Dimensional Delaunay Triangulations

The Delaunay triangulation is a geometric structure thgtrexers have used for meshes since mesh gener-
ation was in its infancy. In two dimensions, it has a strikadyantage: among all possible triangulations
of a fixed set of points, the Delaunay triangulation maximsittee minimum angle. It also optimizes several
other geometric criteria related to interpolation accwyrdiit is your goal to create a triangulation without
small angles, it seems almost silly to consider a triangaiiahat is not Delaunay. Delaunay triangulations
have been studied thoroughly, and excellent algorithma\a#able for constructing and updating them.

A constrained triangulation is a triangulation that enésrthe presence of specified edges—for example,
the boundary of a nonconvex object. A constrained Delaunaggulation relaxes the Delaunay property
just enough to recover those edges, while enjoying optignalioperties similar to those of a Delaunay
triangulation. Constrained Delaunay triangulations aa&rly as popular as their unconstrained ancestors.

This chapter surveys two-dimensional Delaunay trianguat constrained Delaunay triangulations,
and their geometric properties. See Fortune [52] for anradtese survey of Delaunay triangulations, and
Aurenhammer [4] for a survey of many more types of Voronogdians.

Figure 2.1:A Delaunay triangulation.

25
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Figure 2.2:Incremental construction of a lexicographic triangulation.

2.1 Triangulations of a Planar Point Set

The wordtriangulationusually refers to a simplicial complex, but it has multipleanings when we discuss
atriangulation ofsome geometric entity that is being triangulated. Therdraaagulations of point sets,
polygons, polyhedra, and many other structures. Consiglatgin the plane (or in any Euclidean space).

Definition 26 (triangulation of a point set)Let V (for “vertices”) be a finite set of points in the plane. A
triangulation ofV is a simplicial compleg™ such that

e V is the set of vertices i, and

e the union of all the simplices i is the convex hull of V.

Does every point set have a triangulation? Yes. Consideetieographic triangulatiorillustrated in
Figure 2.2. To construct one, sort the poil@sicograpically(that is, byx-coordinate, ordering points with
the samex-coordinate according to thejrcoordinates), yielding a sorted sequeRrgevs, .. ., v, of points.
Define the lexicographic triangulation of the firsti points by induction as follows. The first triangulation
is 71 = {v1}. Each subsequent triangulatiorvis= 75_1 U {vi} U {conv(v;} U o) : o € T7i_1 and the relative
interior of conv{v;} U o) intersects no simplex if;_1}.

V has a triangulation even if all its points are collinedt; containsn vertices,n — 1 collinear edges
connecting them, and no triangles.

A triangulation ofn points in the plane has at most 2 5 triangles and 8— 6 edges as a consequence
of Euler’s formula. With no change, Definition 26 definesrigalations of point sets in higher-dimensional
Euclidean spaces as well.

2.2 The Delaunay Triangulation

The Delaunay triangulatiorof a point setV, introduced by Boris Nikolaevich Delone [43] in 1934, is a
triangulation ofV whose triangles are particularly nicely shaped. FigurdlRidtrates a Delaunay triangu-

lation. Its defining characteristic is tlegnpty circumcircle propertyno triangle has a circumscribing circle

that encloses any point M.

Definition 27 (circumcircle) Thecircumcircle or circumscribing circleof a triangle is the unique circle
that passes through all three of its verticesciicumcircleof an edge is any circle that passes through both
its vertices.

In the plane, an edge has an infinite set of circumcirclesaadle has only one.
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Figure 2.4:Three ways to define a Delaunay structure in the presence of cocircular vertices. (a) Include all the
Delaunay simplices. (b) Choose a subset of Delaunay simplices that comprises a triangulation. (c) Exclude all
crossing Delaunay edges, and fuse overlapping Delaunay triangles into Delaunay polygons.

Definition 28 (Delaunay) In the context of a finite point set V, a triangleDglaunayif its vertices are in V
and its circumcircle impty—encloses no pointin V. Note that any number of points caml&Delaunay
triangle’s circumcircle.

An edge iDelaunayif its vertices are in V and it has at least one empty circucieir

A Delaunay triangulationf V, denotedel V, is a triangulation of V in which every triangle is Delau-
nay, as illustrated in Figure 2.3.

You might wonder whether every point set has a Delaunaydtiktion, and how many Delaunay trian-
gulations a point set can have. The answer to the first queistiyes.” Section 2.3 gives some intuition for
why this is true, and Section 2.4 gives a proof.

The Delaunay triangulation &f is unique if and only if no four points iV lie on a common empty
circle, a fact proven in Section 2.7. Otherwise, there aral@y triangles and edges whose interiors
intersect, as illustrated in Figure 2.4(a). Most applmasi omit some of these triangles and edges so that
the survivors form a simplicial complex, as in Figure 2.4[®@gpending on which Delaunay simplices you
keep and which you discard, you obtaitffdient Delaunay triangulations.

It is sometimes useful to unite the intersecting trianghs a single polygon, depicted in Figure 2.4(c).
The Delaunay subdivisiowmbtained this way is a polyhedral complex, rather than a lkomapcomplex. It
has the advantage of being the geometric dual of the faoresoi diagram

Clearly, a simplex’s being Delaunay does not guaranteeittigtn everyDelaunay triangulation of a
point set. But a slightly stronger property does provide therantee.
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Figure 2.5: Every edge on the boundary of a convex triangulation is strongly Delaunay, because it is always
possible to find an empty circle that passes through its endpoints and no other vertex.

Definition 29 (strongly Delaunay)In the context of a finite point set V, a trianglés strongly Delaunayf
its vertices are in V and no pointin V lies insideonits circumcircle, except the verticesaf

An edge e istrongly Delaunayf its vertices are in V and it has at least one circumcirclattho point
in V lies inside or on, except the vertices of e.

Every pointin V is a strongly Delaunay vertex.

Every Delaunay triangulation of contains every strongly Delaunay simplex, a fact provenen-S
tion 2.7. The Delaunay subdivision contains the stronglialeay edges and triangles, and no others.

Consider two examples of strongly Delaunay edges. Firstyesdge on the boundary of a triangulation
of V is strongly Delaunay. Figure 2.5 shows why. Second, the edgeecting a point € V to its nearest
neighborw € V is strongly Delaunay, because the smallest circle paskimogghv andw does not enclose
nor touch any other point i. Therefore, every Delaunay triangulation connects evertex to its nearest
neighbor.

2.3 The Parabolic Lifting Map

Given a finite point se¥, theparabolic lifting mapof Seidel [107, 48] transforms the Delaunay subdivision
of V into faces of a convex polyhedron in three dimensions, astithted in Figure 2.6. This relationship
between Delaunay triangulations and convex hulls has tweemuences. First, it makes many properties of
the Delaunay triangulation intuitive. For example, frore fact that every finite point set has a polyhedral
convex hull, it follows that every finite point set has a Delay triangulation. Second, it brings to mesh
generation the power of a huge literature on polytope thandyalgorithms: every convex hull algorithm is
a Delaunay triangulation algorithm!

The parabolic lifting map sends each point (x,y) € E? to a pointp* = (x,y, X2 + y?) € E3. Call p*
thelifted companiorof p.

Consider the convex hull corw() of the lifted pointsV* = {v" : v € V}. Figure 2.6 illustrates its
downward-facing faces. Formally, a fadeof conv(V*) is downward-facingf no point in conv{/™") is
directly below any point inf, with respect to the-axis. Call the collection of downward-facing faces the
undersideof conv(V*). Projecting the underside of cowA) to the x-y plane (by discarding every point’s
z-coordinate) yields the Delaunay subdivision\af If V has more than one Delaunay triangulation, this
Delaunay subdivision has non-triangular polygons, like llexagon in Figure 2.4(c). Triangulating these
polygonal faces yields a Delaunay triangulation.

For a simplexr in the plane, itdifted companiorr™ is the simplex embedded E® whose vertices are
the lifted companions of the vertices @f Note thato™ is flat, and does not curve to hug the paraboloid.
The following lemma and theorem show that every Delaunaykrs lifted companion is included in a
downward-facing face of conV(").
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Figure 2.6:The parabolic lifting map.

Lemma 1. Let C be a circle in the plane. Let'™C= {p* : p € C} be the ellipse obtained by lifting C to
the paraboloid. Then the points offdie on a plane h, which is not parallel to the z-axis. Furthem
every point p inside C lifts to a pointtbelow h, and every point p outside C lifts to a poirtabove h.
Therefore, testing whether a point p is inside, on, or o@sidis equivalent to testing whether the lifted
point p" is below, on, or above h.

Proof. LetO andr be the center and radius©f respectively. Lep be a point in the plane. Thecoordinate
of p* is |pl?. By expandindO — p|?, we have the identityp|? = 20 - p — |O]? + |O — p|°.

With O andr fixed andp € E? varying, the equatioz = 20 - p — |0} + r2 defines a plana in E3, not
parallel to thez-axis. For every poinp € C,|O - p| =1, soC* c h. For every poinp ¢ C,if O—p| <,
then the lifted poinp* lies belowh, and if|O — p| > r, thenp® lies aboven. |

Theorem 2 (Seidel [107]) Leto be a simplex whose vertices are in V, anddétbe its lifted companion.
Theno is Delaunay if and only ier* is included in some downward-facing facecohv(V*). The simplex
o is strongly Delaunay if and only i* is a downward-facing face aonv(V*).

Proof. If o is Delaunayg- has a circumcircl€ that encloses no point M. Let h be the unique plane iB*
that includes<C*. By Lemma 1, no point itv* lies belowh. Because the vertices oft are inC*, h> o*.
Therefore o™ is included in a downward-facing face of the convex hulMdt If o is strongly Delaunay,
every point inV* lies aboveh except the vertices af*. Thereforeg* is a downward-facing face of the
convex hull ofv*.

The converse implications follow by reversing the argument |

The parabolic lifting map works equally well for Delaunaiatrgulations in three or more dimensions;
Lemma 1 and Theorem 2 generalize to higher dimensions witnounew ideas. Theorem 2 implies that
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Figure 2.7:At left, eis locally Delaunay. At right, e is not.

any algorithm for constructing convex hulls of point set€ffit! can construct the Delaunay triangulation
of a point set inE¢.

The relationship between Delaunay triangulations andeohulls was first discovered by Brown [21],
who proposed a €lierent lifting map that projectg onto a sphere. The parabolic lifting map is numerically
better behaved than the spherical one.

2.4 The Delaunay Lemma

Perhaps the most important result about Delaunay triatignkais theDelaunay Lemmgaproven by Boris
Delaunay himself [43]. It provides an alternative charaz#gion of the Delaunay triangulation: a triangu-
lation whose edges atecally Delaunay

Definition 30 (locally Delaunay) Let e be an edge in a triangulation of a planar point set. If e is an
edge of fewer than two triangles if, then e is said to bcally Delaunay If e is an edge of exactly two
trianglesty andrz in 7, then e idocally Delaunayif it has a circumcircle enclosing no vertex-of nor 7.
Equivalently, the circumcircle aof; encloses no vertex @b. Equivalently, the circumcircle af, encloses
no vertex ofry.

Figure 2.7 shows two €ferent triangulations of six vertices. In the triangulatairieft, the edges is
locally Delaunay, because the depicted circumcircle dbes not enclose either vertex oppositédNever-
thelessg is not Delaunay, thanks to other vertices insgiecircumcircle. In the triangulation at righg,is
not locally Delaunay; every circumcircle efencloses at least one of the two vertices oppasite

The Delaunay Lemma has several uses. First, it providesarhtime algorithm to determine whether
a triangulation is Delaunay: simply test whether every dddecally Delaunay. Second, it implies a simple
algorithm for producing a Delaunay triangulation calledfiip algorithm (Section 2.5). The flip algorithm
helps to prove that Delaunay triangulations have usefuh@ity properties. Third, the Delaunay Lemma
helps to prove the correctness of other algorithms for cao8hg Delaunay triangulations.

As with many properties of Delaunay triangulations, thiérd map provides intuition for the Delaunay
Lemma. On the lifting map, the Delaunay Lemma is essentiblyobservation that a simple polyhedron
is convex if and only if its has neeflex edge A reflex edge is an edge where the polyhedron is locally
nonconvex; that is, the dihedral angle at which the two adljgi faces meet along that edge exceeds 180
measured through the interior of the polyhedron. If a tridagion has an edge that is not locally Delaunay,
that edge’s lifted companion is a reflex edge of the liftedrtgulation (by Lemma 1).

Theorem 3 (Delaunay Lemma [43])Let7 be a triangulation of a point set V. The following three state
ments are equivalent.
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(@) (b)

Figure 2.8:(a) Because 7’s circumcircle encloses v, some edge between v and 7 is not locally Delaunay. (b) Be-
cause V lies above e; and inside 7's circumcircle, and because w; lies outside (or on) 7's circumcircle, v must lie
inside 71's circumcircle.

A. Every triangle in/ is Delaunay (i.e7” is Delaunay).
B. Every edge i is Delaunay.

C. Every edge i is locally Delaunay.

Proof. If the points inV are all collinearV has only one triangulation, which trivially satisfies altdlh
properties.

Otherwise, lete be an edge i17"; eis an edge of at least one triangtecs 7. If 7 is Delaunay,r’s
circumcircle is empty, and becauss circumcircle is also a circumcircle & e is Delaunay. Therefore,
Property A implies Property B. If an edge is Delaunay, it isatly locally Delaunay too, so Property B
implies Property C. The proof is complete if Property C iraplProperty A. Of course, this is the hard part.

Suppose that every edgefnis locally Delaunay. Suppose for the sake of contradictian Property A
does not hold. Then some triangle 7 is not Delaunay, and some vertex V is insider’s circumcircle.
Let e be the edge of that separatesfrom the interior ofr, as illustrated in Figure 2.8(a). Without loss of
generality, assume thef is oriented horizontally, withr belowe;.

Draw a line segment from the midpoint ef to v—see the dashed line in Figure 2.8(a). If the line
segment intersects some vertex other thareplacev with the lowest such vertex. Let, e, €3, ..., en be
the sequence of triangulation edges (from bottom to top)sehelative interiors the line segment intersects.
Becauses is a triangulation ol, every point on the line segment lies either in a single giamr on an
edge. Lew,; be the vertex above that forms a triangle; in conjunction withe. Observe thaiv,, = v.

By assumptione; is locally Delaunay, sov; lies on or outside the circumcircle of As Figure 2.8(b)
shows, it follows that the circumcircle @f encloses every point aboeg inside the circumcircle of, and
hence encloses Repeating this argument inductively, we find that the eirciucles ofro, ..., Ty enclose
v. Butwy, = vis a vertex ofry,, which contradicts the claim thatis inside the circumcircle of,. [ |
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Figure 2.9:In this nonconvex quadrilateral, e cannot be flipped.
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Figure 2.10:(a) The edge eis locally Delaunay. (b) The edge e is not locally Delaunay. The edge created by a
flip of eis locally Delaunay.

2.5 The Flip Algorithm

Theflip algorithmhas at least three uses: it is a simple algorithm for comgwiBelaunay triangulation, it

is the core of a constructive proof that every finite set ohfmin the plane has a Delaunay triangulation, and
it is the core of a proof that the Delaunay triangulation mites several geometric criteria when compared
with all other triangulations of the same point set.

Let V be a point set you wish to triangulate. The flip algorithm bsgwith any triangulatiorr™ of V;
for instance, the lexicographic triangulation describe&ection 2.1. The Delaunay Lemma tells us that
is Delaunay if and only if every edge if is locally Delaunay. The flip algorithm repeatedly chooseg a
edge that is not locally Delaunay, afiighsit.

The union of two triangles that share an edge is a quadriatend the shared edge is a diagonal of
the quadrilateral. To flip an edge is to replace it with thedyilateral’s other diagonal, as illustrated in
Figure 2.7. An edge flip is legal only if the two diagonals cresach other—equivalently, if the quadrilateral
is convex. Figure 2.9 shows that not every edge can be flippechuse the quadrilateral might not be
convex. Fortunately, unflippable edges are always locadiialnay.

Lemma 4. Let e be an edge in a triangulation of V. Either e is locally &elay, or e is flippable and the
edge created by flipping e is locally Delaunay.

Proof: Letv andw be the vertices opposite Consider the quadrilateral defined &y, andw, illustrated
in Figure 2.10. LeC be the circle that passes throughnd the vertices .

If wis on or outsideC, as in Figure 2.10(a), then the empty cir€@edemonstrates that is locally
Delaunay.

Otherwise,w is inside the section of bounded bye and opposites. This section is shaded in Fig-
ure 2.10(b). The quadrilateral is thus strictly convexesdflippable. Furthermore, the circle that is tangent
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to C atv and passes throughdoes not enclose the endpointsspbecaus€ encloses it, as Figure 2.10(b)
demonstrates. Therefore, the edgeis locally Delaunay. |

Lemma 4 shows that the flip algorithm can flip any edge thatisawally Delaunay, thereby creating an
edge that is. Unfortunately, the outer four edges of the dlaaeral might discover that they are no longer
locally Delaunay, even if they were locally Delaunay beftre flip. If the flip algorithm repeatedly flips
edges that are not locally Delaunay, will it go on forever?

Theorem 5. Given a triangulation of n points, the flip algorithm termtea afterO(n?) edge flips, yielding
a Delaunay triangulation.

Proof: Let7 be the initial triangulation provided as input to the flip@alghm. Let7* = {o* : 0 € 7} be
the initial triangulation lifted to the parabolic liftingap; 7+ is a simplicial complex embedded &?. If 7°
is Delaunay, them " triangulates the underside of coM(); otherwise, by Lemma 1, the edgesfthat
are not locally Delaunay lift to reflex edgesof .

By Lemma 4, an edge flip replaces an edge that is not locallguely with one that is. In the lifted
triangulation7 ", a flip replaces a reflex edge with a convex edge. Qdie the set containing the four
vertices of the two triangles that share the flipped edgenToav@Q*) is a tetrahedron whose upper faces
are the pre-flip simplices and whose lower faces are thefppstimplices. Imagine the edge flip as the act
of gluing the tetrahedron con@(") to the underside of *.

Each edge flip monotonically lowers the lifted triangulatieo once flipped, an edge can never reappear.
The flip algorithm can perform no more tha¢n — 1)/2 flips—the number of edges that can be defined on
vertices—so it must terminate. But the flip algorithm teratas only when every edge is locally Delaunay.
By the Delaunay Lemma, the final triangulation is Delaunay. [ |

The fact that the flip algorithm terminates helps to prove pleent sets have Delaunay triangulations.

Corollary 6. Every finite set of points in the plane has a Delaunay triaagoh.

Proof: Section 2.1 demonstrates that every finite point set hagst ¢ae triangulation. By Theorem 5, the
application of the flip algorithm to that triangulation pragts a Delaunay triangulation. |

If a point set has more than one Delaunay triangulation, thalfyyorithm will find one of them. Which
one it finds depends upon the starting triangulation and itierén which flips are performed.

An efficient implementation of the flip algorithm requires one aitrgredient. How quickly can you
find an edge that is not locally Delaunay? To repeatedly testyeedge in the triangulation would be slow.
Instead, the flip algorithm maintains a list of edges thathnigpt be locally Delaunay. The list initially
contains every edge in the triangulation. Thereafter, thefforithm iterates the following procedure until
the list is empty, whereupon the algorithm halts.

e Remove an edge from the list.
e Check whether the edge is still in the triangulation, anajfwghether it is locally Delaunay.

e Ifthe edge is present but not locally Delaunay, flip it, and ek four edges of the flipped quadrilateral
to the list.
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The list may contain multiple copies of the same edge, byt doeno harm.

Implemented this way, the flip algorithm runsdin + k) time, wheren is the number of vertices (or
triangles) of the triangulation, aridis the number of flips performed. In the worst case, ®(n?), giving
O(n?) running time. But there are circumstances where the fliprétlyn is fast in practice. For instance, if
the vertices of a Delaunay mesh are perturbed by small displants during a physical simulation, it might
take only a small number of flips to restore the Delaunay ptgpén this circumstance, the flip algorithm
probably outperforms any algorithm that reconstructs tia@gulation from scratch.

2.6 The Optimality of the Delaunay Triangulation

Delaunay triangulations are valuable in part because théyne several geometric criteria: the smallest
angle, the largest circumcircle, and the largest min-gontant circle. Themin-containment circlef a
triangle is the smallest circle that encloses it. For a gianvith no obtuse angles, the circumcircle and the
min-containment circle are the same, but for an obtuseglgathe min-containment circle is smaller.

Theorem 7. Among all the triangulations of a point set, there is a Delaytriangulation that maximizes
the minimum angle in the triangulation, minimizes the latggrcumcircle, and minimizes the largest min-
containment circle.

Proof: Each of these properties is locally improved when an edgeigh#ot locally Delaunay is flipped;
Lemma 8 below demonstrates this for the first two proper{iesmit the min-containment property in favor
of a general-dimensional proof in Section 4.4.) There igas$i one optimal triangulation. If 7 has an
edge that is not locally Delaunay, flipping that edge produ®other optimal triangulation. When the flip
algorithm runs with7™ as its input, every triangulation it iterates through isimgt by induction, and by
Theorem 5, that includes a Delaunay triangulation. |

Lemma 8. Flipping an edge that is not locally Delaunay increases theimum angle and reduces the
largest circumcircle among the triangles changed by the flip

Proof: Let uvbe the flipped edge, and Istvwwuandaxuvbe the triangles deleted by the flip, sarxuand
Axwvare the triangles created by the flip.

The angle opposite the edgev is “wvu before the flip, and’wxu after the flip. As Figure 2.11 il-
lustrates, because the circumcirclerafvu encloses, the latter angle is greater than the former angle by
Thales’ Theorem, a standard and ancient fact about cirdemgtry. Likewise, the flip increases the angles
oppositewy, vx, andxu.

Each of the other two angles of the new triangléguwand Zwvx, is a sum of two pre-flip angles that
merge wheruvis deleted. It follows that all six angles of the two post-flilangles exceed the smallest of
the four angles thatv participates in before the flip.

Suppose without loss of generality that the circumcirclewiuis at least as large as the circumcircle
of Axwy, and thatwxu < Zuwyx, implying that/wxuis acute. Because the circumcirclexofivuencloses
X, it is larger than the circumcircle afwxuy, as illustrated in Figure 2.11. It follows that the largesg-flip
circumcircle is larger than the largest post-flip circuroler |

Theorem 7 guarantees that if a point set has only one Deldtinagulation, the Delaunay triangulation
is optimal. But what if a point set has more than one Delauriaggulation?EveryDelaunay triangulation
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V, V,

u u

Figure 2.11A Delaunay flip increases the angle opposite edge uwand, if Zwxuis acute, reduces the circumcircle
of the triangle adjoining that edge.

optimizes these criteria, because any Delaunay triarignlatan be transformed to any other Delaunay
triangulation of the same points by a sequence of edge flipls tat every intermediate triangulation is
Delaunay, and each flip preserves optimality.

Unfortunately, the optimality properties of Theorem 7 da generalize to Delaunay triangulations in
dimensions higher than two, with the exception of minimigihe largest min-containment circle. However,
the list of optimality properties in Theorem 7 is not completSection 4.4 discusses criteria related to
interpolation error for which Delaunay triangulations ofyalimension are optimal.

The flip algorithm and the Delaunay triangulation’s propert maximizing the minimum angle were
both introduced by a classic paper by Charles Lawson [73;wdilso introduced the incremental insertion
algorithm for constructing a Delaunay triangulation. D&vedo and Simpson [42] were the first to show that
two-dimensional Delaunay triangulations minimize theést min-containment circle. Rajan [96] shows
that higher-dimensional Delaunay triangulations mingrtize largest min-containment hypersphere.

2.7 The Uniqueness of the Delaunay Triangulation

The strength of a strongly Delaunay simplex is that it appéaeveryDelaunay triangulation of a point
set. If a point set has multiple Delaunay triangulationsyttiiffer only in their choices of simplices that are
merely Delaunay. Hence, if a point set has no four cocirqubgmts, it has only one Delaunay triangulation.

Let us prove these facts. Loosely speaking, the followiegthm says that strongly Delaunay simplices
intersect nicely.

Theorem 9. Leto be a strongly Delaunay simplex, and tebe a Delaunay simplex. Thenn 7 is either
empty or a shared face of bathandr.

Proof. If T is a face ofr, the theorem follows immediately. Otherwisehas a vertex thato- does not have.
Becauser is Delaunay, it has an empty circumcir€le. Becauser is strongly Delaunay, it has an empty
circumcircleC, that does not pass throughillustrated in Figure 2.12. Butlies onC,, soC, # C..

The intersection of circumcirclg, N C, contains either zero, one, or two points. In the first two sase
the theorem follows easily, so suppose it is two poimtandx, and letf be the unique line through and
X. On one side of, an arc ofC, encloses an arc @, and becaus€, is empty, no vertex of lies on this
side of¢. Symmetrically, no vertex of- lies on the other side of. Thereforeg Nt c ¢. It follows that
o N ¢ is eitherd, {w}, {x}, or the edgavx. The same is true afn ¢, and therefore o~ N . [ |

Theorem 9 leads us to see that if a point set has several Rslatiangulations, they éier only by the
simplices that are not strongly Delaunay.
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Figure 2.12:A strongly Delaunay simplex o intersects any Delaunay simplex 7 at a shared face of both. The
illustration at right foreshadows the fact that this result holds for higher-dimensional Delaunay triangulations too.

Theorem 10. Every Delaunay triangulation of a point set contains evergrgyly Delaunay simplex.

Proof. Let 7 be any Delaunay triangulation of a point 8&tLet o be any strongly Delaunay simplex. Let
p be a point in the relative interior of.

Some Delaunay simplexin 7~ contains the poinp. By Theorem 9¢- N 7 is a shared face of andr.
But o N 7 containsp, which is in the relative interior of-, soo- Nt = o. Thereforeo is a face ofr, so
ogeT. |

An immediate consequence of this theorem is that “most” {peéts—at least, most point sets with
randomly perturbed real coordinates—have just one Delatri@agulation.

Corollary 11. Let V be a point set. Suppose no four points in V lie on a commutyecircle. Then V has
at most one Delaunay triangulation.

Proof. Because no four points lie on a common empty circle, everaley simplex is strongly Delaunay.
By Theorem 10, every Delaunay triangulatiorvo€ontains every Delaunay simplex. By definition, no De-
launay triangulation contains a triangle that is not Detgurdence, the Delaunay triangulation is uniquely
defined as the set of all Delaunay triangles and their faces. |

2.8 Constrained Delaunay Triangulations in the Plane

As planar Delaunay triangulations maximize the minimumlendo they solve the problem of triangular
mesh generation? No, for two reasons illustrated in Figulr®. First, skinny triangles might appear anyway.
Second, the Delaunay triangulation of a domain’s verticeghtmot respect the domain’s boundary. Both
these problems can be solved by introducing additionalogstas illustrated.

An alternative solution to the second problem is to usmistrained Delaunay triangulatiofCDT).
A CDT is defined with respect to a set of points aegjmentshat demarcate the domain boundary. Every
segment is required to become an edge of the CDT. The trisnfjieCDT arenotrequired to be Delaunay;
instead, they must beonstrained Delaunagya property that partly relaxes the empty circumcircle prop

One virtue of a CDT is that it can respect arbitrary segmerntisowt requiring the insertion of any
additional vertices (besides the vertices of the segme#tspther is that the CDT inherits the Delaunay
triangulation’s optimality: among all triangulations ofpaint setthat include all the segmentthe CDT
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Figure 2.13:The Delaunay triangulation (upper right) may omit domain edges and contain skinny triangles. A
Steiner Delaunay triangulation (lower left) can fix these faults by introducing new vertices. A constrained Delaunay
triangulation (lower right) fixes the first fault without introducing new vertices.

. fLot g Y

Figure 2.14: A two-dimensional piecewise linear complex and its constrained Delaunay triangulation. Each
polygon may have holes, slits, and vertices in its interior.

maximizes the minimum angle [74], minimizes the largestwincircle, and minimizes the largest min-
containment circle. CDTs in the plane were mathematicallgnilized by Lee and Lin [74] in 1986, though
algorithms that unwittingly construct CDTs appeared mumimer [53, 89].

2.8.1 Piecewise Linear Complexes and their Triangulations

The domain over which a CDT is defined (and the input to a CDTstrantion algorithm) is not just a set
of points, but rather a complex composed of points, edgeaspatygons, illustrated in Figure 2.14. The
purpose of the edges is to dictate that triangulations o€timeplex must contain those edges. The purpose
of the polygons is to specify the region to be triangulatetie polygons are not necessarily convex, and
they may have holes.

Definition 31 (piecewise linear complex; segment; wall) the plane, giecewise linear complePLC) X
is a finite set of vertices, edges, and polygons that satisfeefollowing properties.

e The vertices and edgesdnform a simplicial complex. That i& contains both vertices of every edge
in X, and the relative interior of an edge i intersects no vertex iX nor any other edge iX.

e For each polygon f inX, the boundary of f is a union of edgesin

e If two polygons inX intersect, their intersection is a union of edges and verimX. (For example,
in Figure 2.14 fn g is a union of three edges and a vertexin) This rule implies that two polygons’
interiors cannot intersect.)
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Following Ruppert [102], the edges in a PLX are calledsegmentgo distinguish them from other
edges in a triangulation oX. The polygons in a PLC are calledlls.

Theunderlying spacefa PLCX, denotedX], is the union of its contents; that i&| = Jcx . Usually,
the underlying space is the domain to be triangulated.

Every simplicial complex and every polyhedral complex id&PBut PLCs are more general, and not
just because they permit nonconvex polygons. As Figure @lstrates, segments and isolated vertices
can float in a wall’s interior, constraining how the wall camtbangulated. One purpose of these floating
constraints is to permit the application of boundary candg at appropriate locations in a mesh of a PLC.

Whereas the faces of a simplex are defined in a way that degetedg on the simplex, and the faces of
a convex polyhedron are too, the faces of a wall are definedun@amentally dferent way that depends
on both the wall and the PLC it is a part of. An edge of a wall niggn a union of several segments in the
PLC; these segments and their vertices are faces of the vélLC may contain segments and edges that
lie in the relative interior of a wall; these are also considito be faces of the wall, because they constrain
how the wall can be subdivided into triangles.

Definition 32 (face of a linear cell) Thefacesof a linear cell (polygon, edge, or vertex) f in a PLXCare
the linear cells inX that are subsets of f, including f itself.

A triangulation ofX must cover every wall and include every segment.
Definition 33 (triangulation of a planar PLC)Let X be a PLC in the plane. Ariangulation ofX is a
simplicial complex/ such that

e X and7 have the same vertices,
e 7 contains every edge i (and perhaps additional edges), and

o [T1=1X].

It is not difficult to see that a simplex can appear in a triangulatioki ofily if it respectsX.

Definition 34 (respect) A simplexo respectsa PLC X if o C |X| and for every fe X that intersectsr,
f N o is a union of faces of~. (Usually, but not always, that union is one facevobr o itself.) In other
words, f fully includes every face efwhose relative interior intersects f.

Theorem 12. Every simple polygon has a triangulation. Every PLC in thengl has a triangulation too.

Proof: Let P be a simple polygon. IP is a triangle, it clearly has a triangulation. Otherwisejsider the
following procedure for triangulating. Let Zuvwbe a corner oP having an interior angle less than 280
Two such corners are found by lettirdpe the lexicographically least or greatest verteof

If the open edgew lies strictly in P’s interior, then cuttingruvw from P yields a polygon having one
edge fewer; triangulate it recursively. Otherwiseivw contains at least one vertex Bfbesideq, v, and
w, as illustrated in Figure 2.15. Among those verticesxlbe the vertex furthest from the lingfaw. The
open edgerx must lie strictly inP’s interior, because if it intersected an edgePothat edge would have a
vertex further from & uw. Cutting P at vx produces two simple polygons, each with fewer edges Bjan
triangulate them recursively. In either case, the prooegunduces a triangulation &t

1if you take the vertices and edges of a planar PLC and disbargdlygons, you have a simplicial complex with no triangles
This complex is called planar straight line grap(PSLG). Most publications about CDTs take a PSLG as the jrgma assume
that the CDT should cover the PSLG’s convex hull. PLCs areereapressive, as they can restrict the triangulation to asrorex
region of the plane.
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Figure 2.15:The edge vx cuts this simple polygon into two simple polygons.

Figure 2.16:nserting a segment into a triangulation.

Let X be a planar PLC. Consider the following procedure for tridating X. Begin with an arbitrary
triangulation of the vertices i, such as the lexicographic triangulation described iniSe&.1. Examine
each segment iX to see if it is already an edge of the triangulation. Insedhemissing segment into
the triangulation by deleting all the edges and triangles ifftersect its relative interior, creating the new
segment, and retriangulating the two polygonal cavities tbreated (one on each side of the segment),
as illustrated in Figure 2.16. The cavities might not be $&mmwlygons, because they might have edges
dangling in their interiors, as shown. But it is straightfard to verify that the procedure discussed above
for triangulating a simple polygon works equally well foravaty with dangling edges.

The act of inserting a segment never deletes another segbesatuse two segmentsihcannot cross.
Therefore, after every segment is inserted, the trianigmatontains all of them. Finally, delete any sim-
plices not included inX]. [ |

Definition 33 does not permif” to have vertices absent froAj, but mesh generation usually entails
adding new vertices to guarantee that the triangles haveduglity. This motivates the notion of a Steiner
triangulation.

Definition 35 (Steiner triangulation of a planar PLC; Steiner Delaunangulation; Steiner point)Let X
be a PLC in the plane. Ateiner triangulation ok, also known as @onforming triangulation oX or a
mesh ofX, is a simplicial compleg such that

e 7 contains every vertex iN (and perhaps additional vertices),
e every edge iX is a union of edges iff, and
o [7T]=1X].

The new vertices iff, absent fromX, are calledSteiner points

A Steiner Delaunay triangulatiarf X, also known as @onforming Delaunay triangulatioof X, is a
Steiner triangulation oX in which every simplex is Delaunay.

If the Delaunay triangulation of the vertices in a planar PX@oes not respect all the segmentsXin
it is always possible to find a Steiner Delaunay triangutatibX by adding Steiner points, as illustrated at
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lower left in Figure 2.13. Unfortunately, the number of &tipoints might be large. The best algorithm to
date, by Bishop [13], triangulates a PLC havingegments and vertices with the addition a@(m?® + mn)
Steiner points. Edelsbrunner and Tan [49] exhibit a PLC iregu®(mn) Steiner points. Closing the gap
between th&(nm?° + mn) andQ(mn) bounds remains an open problem. The large number of Stedneis
that some PLCs need motivates the constrained Delaunagtiztion, which needs none.

2.8.2 The Constrained Delaunay Triangulation

Constrained Delaunay triangulations (CDT#)eo a way to force a triangulation to respect the edges in a
PLC without introducing new vertices, while maintainingrs® of the advantages of Delaunay triangula-
tions. However, it is necessary to relax the requiremeritahériangles be Delaunay. The terminology can
be confusing: whereas every Steiner Delaunay triangulaia Delaunay triangulation (of some point set),
constrained Delaunay triangulations generally are not.

Recall the Delaunay Lemma: a triangulation of a point setatabDnay if and only if every edge is lo-
cally Delaunay. Likewise, there is a Constrained Delaunawmina (Section 2.8.3) thaffers the simplest
definition of a CDT: a triangulation of a PLC is constrainedddmay if and only if every edge is locally
Delaunayor a segment. Thus, a CDTfthrs from a Delaunay triangulation in three ways: it is notasec
sarily convey, it is required to contain the edges in a PL@,those edges are exempted from being locally
Delaunay.

The defining characteristic of a CDT is that every triangledsstrained Delaunay, as defined below.

Definition 36 (visibility). Two points x and y areisible to each other if the line segment xy respeXts
recall Definition 34. We also say that x and y caeeeach other. A linear cell inX that intersects the
relative interior of xy but does not include xy is saidocludethe visibility between x and y.

Definition 37 (constrained Delaunay)n the context of a PLX, a simplexo is constrained Delaunafit
satisfies the following three conditions.

e X containso’s vertices.
e o respectsX.

e There is a circumcircle of that encloses no vertex i that is visible from a point in the relative
interior of o

Figure 2.17 illustrates examples of a constrained Delaeulgge and a constrained Delaunay triangle
7. Bold lines indicate PLC segments. Althougihas no empty circumcircle, the depicted circumcircle of
e encloses no vertex that is visible from the relative inteabe. There are two vertices inside the circle,
but both are hidden behind segments. Hermds, constrained Delaunay. Similarly, the circumcirclerof
encloses two vertices, but both are hidden from the intefierby segments, sois constrained Delaunay.

Definition 38 (constrained Delaunay triangulatiord constrained Delaunay triangulati6@DT) of a PLC
X is a triangulation ofX in which every triangle is constrained Delaunay.

Figure 2.18 illustrates a PLC, a Delaunay triangulationt®fertices, and a constrained Delaunay tri-
angulation of the PLC. In the CDT, every triangle is consiedi Delaunay, every edge that is not a PLC
segment is constrained Delaunay, and every vertex isltyidanstrained Delaunay.
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Figure 2.17:The edge e and triangle  are constrained Delaunay. Bold lines represent segments.

@ (b) (©)

Figure 2.18:(a) A piecewise linear complex. (b) The Delaunay triangulation of its vertices. (c) Its constrained
Delaunay triangulation.

CDTs and Steiner Delaunay triangulations are twibedént ways to force a triangulation to conform
to the boundary of a geometric domain. CDTs partly sacrifiee Delaunay property for the benefit of
requiring no new vertices. For mesh generation, new vertice usually needed anyway to obtain good
triangles, so many Delaunay meshing algorithms use StBiekaunay triangulations. But some algorithms
use a hybrid of CDTs and Steiner Delaunay triangulationgbse it helps to reduce the number of new
vertices. ASteiner CDTor conforming CDTof X is a Steiner triangulation of in which every triangle is
constrained Delaunay.

2.8.3 Properties of the Constrained Delaunay Triangulatia

For every property of Delaunay triangulations discussetthig chapter, there is an analogous property of
constrained Delaunay triangulations. This section surim@gathem. Proofs are omitted, but each of them
is a straightforward extension of the corresponding proofXelaunay triangulations.

The Delaunay Lemma generalizes to CDTs, and provides aludadftnative definition: a triangulation
of a PLCX is a CDT if and only if every one of its edges is locally Delayioa a segment irX.

Theorem 13(Constrained Delaunay Lemma)et 7 be a triangulation of a PLCX. The following three
statements are equivalent.

e Every triangle in7 is constrained Delaunay (i.€- is constrained Delaunay).

e Every edge irv notin X is constrained Delaunay.
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e Every edge i’ notinX is locally Delaunay. [ |

One way to construct a constrained Delaunay triangulati@RiLC X is to begin with any triangulation
of X. Apply the flip algorithm, modified so that it never flips a semr repeatedly choose any edge of
the triangulation that is not i’X and not locally Delaunay, and flip it. When no such edge sesyithe
Delaunay Lemma tells us that the triangulation is consé@iDelaunay.

Theorem 14. Given a triangulation of a PLC having n vertices, the modifigalalgorithm (which never
flips a PLC segment) terminates aftfn?) edge flips, yielding a constrained Delaunay triangulationi

Corollary 15. Every PLC has a constrained Delaunay triangulation. |

The CDT has the same optimality properties as the Delauragtlation, except that the optimality is
with respect to a smaller set of triangulations—those theltide the PLC's edges.

Theorem 16. Among all the triangulations of a PLC, every constrainedddelay triangulation maximizes
the minimum angle in the triangulation, minimizes the latggrcumcircle, and minimizes the largest min-
containment circle. [ ]

A sufficient but not necessary condition for the CDT to be uniqubkas o four vertices are cocircular.

Theorem 17. If no four vertices in a PLC lie on a common circle, then the &S one unique constrained
Delaunay triangulation. |



Chapter 3

Algorithms for Constructing Delaunay
Triangulations

The first published Delaunay triangulation algorithm | knofvappears in a 1967 paper by J. Desmond
Bernal and John Finney [12]. Bernal was a father of strutticdogy who discovered the structure of
graphite and was awarded a Stalin Peace Prize. Finney, IBdast Ph.D. student, implemented a program
that produces a three-dimensional Voronoi diagram and iisedcharacterize the structures of liquids,
amorphous metal alloys, protein molecules, and randomipggk Finney’s is the brute force algorithm:
test every possible tetrahedron (every combination of fautices) to see if its circumsphere is empty,
takingO(n®) time—or more generallyp(n®+?) time for d-dimensional Delaunay triangulations.

Besides this brute force algorithm and the flip algorithneréhare three classic types of algorithm for
constructing Delaunay triangulations.

Gift-wrapping—also calledyraph traversal pivoting, andincremental search-is an obvious algorithm
that is rediscovered frequently [53, 26, 79, 121, 123]. @ifapping algorithms construct Delaunay triangles
one at atime, using the previously computed triangles as@a@ewhich new triangles crystallize. They are
closely related t@dvancing front method®r mesh generation. Gift-wrapping generalizes easilybd €
and to higher dimensions, and it is easy to implement, bstdifficult to make fast. Section 3.8 describes
a basic gift-wrapping algorithm that triangulategoints in the plane i¥(n?) worst-case time, or a PLC
in the plane witm vertices andn segments iD(n’m) time. The bottleneck of gift-wrapping is identifying
new triangles, so the fastest gift-wrapping algorithmsdifferentiated by sweep orderings for constructing
the triangles [108, 51] or sophisticated vertex searchegjias [47, 120].

In the decision-tree model of computation, setsgfoints in the plane sometimes requidénlogn)
time to triangulate. The first Delaunay triangulation aitfom to run in optimaD(nlogn) time was the 1975
divide-and-conquer algorithmf Shamos and Hoey [111], subsequently simplified by Lee ahd&hter [75]
and Guibas and Stolfi [60] and sped up by Dwyer [46]. The dihddd-conquer algorithm partitions a set of
points into two halves separated by a line, recursively ategpthe Delaunay triangulation of each subset,
and merges the two triangulations into one. This algoritamains the fastest planar Delaunay triangulator
in practice [112], and the reader interested in implemenitins urged to read the guide by Guibas and
Stolfi [60], which includes detailed pseudocode. Howeuee, divide-and-conquer strategy is not fast in
three dimensions.

Incremental insertion algorithmisert vertices into a Delaunay triangulation one at a tialeays
restoring the Delaunay property to the triangulation befoserting another vertex. Some incremental in-
sertion algorithms run in worst-case optimal time. Thedsasthree-dimensional Delaunay triangulators in

43
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practice are in this class. Moreover, théeience between a Delaunay triangulation algorithm and a mod
ern Delaunay mesh generator is that the former is given @Néhntices at the outset, whereas the latter uses
the triangulation to decide where to place additional eedj making incremental insertion obligatory. Sec-
tions 3.3-3.5 study incremental insertion, and Sectionriréduces a more sophisticated vertex ordering
method called diased randomized insertion ordérat speeds up incremental insertion for large points sets.

All three types of algorithm extend to constrained Delautreggngulations. There are a divide-and-
conquer algorithm [34] and a gift-wrapping algorithm [1@8&t both run in worst-case optim@(nlogn)
time, but because they are complicated, these algorithensegly implemented.

The most commonly used CDT construction method in practisearemental insertion: first construct
a Delaunay triangulation of the PLC's vertices, then infetPLC’s segments one by one. The algorithms
commonly used to perform segment insertion in practice laxg, dut a specialized incremental algorithm
described in Section 3.9 runs in expeat¥d logn+ nlog? m) time. Realistic PLCs have few segments long
enough to cross many edges, and it is typical to obs@fméogn) running time in practice.

3.1 The Orientation and Incircle Predicates

Most geometric algorithms perform a mix of combinatoriatlarumerical computations. The numerical
computations are usually packagedyasmetric primitive®f two types:geometric constructorthat create
new entities, such as the point where two specified linessate, andyeometric predicatethat determine
relationships among entities, such as whether or not tveslintersect at all. Many Delaunay triangulation
algorithms require just two predicates, called dheentationandincircle tests.

The most used predicate in computational geometry is tlemtation test. Led, b, andc be three points
in the plane. Consider a functionrr@~nt2D(a, b, €) that returns a positive value if the poirdsb, andc
are arranged in counterclockwise order, a negative valtieeifpoints are in clockwise order, and zero if
the points are collinear. Another interpretation, impott@r many geometric algorithms, is thak@~t2D
returns a positive value d lies to the left of the directed linec. The orientation test can be implemented
as a matrix determinant that computes the signed area ohitfadlgdogram determined by the vectars ¢
andb —c,

ax ay 1
OriEnt2D(a,b,c) = | by by 1 (3.1
cx ¢ 1
R A 3.2
| (3.2)

These expressions extend to higher dimensions by adding ao@ columns for additional points and
coordinate axes. Given four poirdsh, ¢, andd in E3, define @uent3D(a, b, ¢, d) to be the signed volume
of the parallelepiped determined by the vectrsd, b — d, andc — d. It is positive if the points occur in
the orientation illustrated in Figure 3.1, negative if thamcur in the mirror-image orientation, and zero if
the four points are coplanar. You can applyght-hand rule orient your right hand with fingers curled to
follow the circular sequendecd. If your thumb points toward, Orient3D is positive.

a a, 1

bx Zyy bz 1 ax—dx ay—-dy a,—d,
Orint3D(a, b, c,d) = | * z =| bx—dx by-dy b,-d,

Ck G C 1 Y

de d d 1 cx—dx ¢y —dy c;—d;
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a b &

Figure 3.1:A triangle and a tetrahedron, both having positive orientation.

Most planar Delaunay triangulation algorithms use a pegdi&iCrcre(a, b, ¢, d) that returns a positive
value ifd lies inside the unique (and possibly degenerate) circtauina, b, andc, assuming that the latter
three points occur in counterclockwise order around thaecinnCircLE returns zero if and only if all four
points lie on a common circle or line~NCircLE is derived from @Qient3D and Lemma 1, which shows
that testing whether a point is inside a circle is equivaterdn orientation test on the points lifted by the
parabolic lifting map.

ax ay £+i
2

INCircLE(a, b, C, d) EX :/y 2)2( I :Xy

dy dy d§ + dg 1

ax—0dx ay—-dy (ax- dx)2 +(ay - dy)2

= | by—dx by—dy (bx— dy)? + (by - dy)2 . (3.4)

Cx — CIx Cy - dy (Cx - dx)2 + (Cy - dy)2

N

(3.3)

These expressions also extend easily to higher dimenslatsa, b, ¢, d, ande be five points inE3,
with the first four ordered so thate@~t3D(a, b, ¢, d) is nonnegative. The function$erere(a, b, ¢, d, €) is
positive if e lies inside the sphere passing throwgtb, ¢, andd; negative ife lies outside the sphere; and
zero if all five points are cospherical or coplanar.

ax ay a aj+ay+a; 1
by by b, b2+b2+b2 1
INSpHERE(R, b, C,d,€) = | Ccx C C c>2(+cy+c§ 1
dy dy d, dR+d2+d2 1
& § & g+reg+e 1
-6 -6 -6 (A-6)°+(@y-9g)+ (@ -e)
_ by — e by—ey b, - e (bx—ex)2+(by_ey)2+(bz—ez)2
T e -8 G-& (x-e)+ (- 6) +(C - &)
dy—ex dy—-¢ d,—g (dx—ex)2+(dy_ey)2+(dz—ez)2

Orient2D, OrienT3D, INCircLE, and NSprERE have the symmetry property that interchanging any two of
their parameters reverses their sign. If the points c occur in clockwise ordernCircLe behaves as if the
circle’s outside were its inside. Likewise, ifr@~xt3D(a, b, ¢, d) is negative, the sign returned bySpHErRE
is reversed.

Expressions (3.1) and (3.2) can be shown to be equivalentigyles algebraic transformations, as can
Expressions (3.3) and (3.4) with a little morféaet. Expressions (3.2) and (3.4) should be strongly preterr
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Procedure Purpose

AbDTRIANGLE(U, V, W) Add a positively oriented triangleuvw

DeLere TriaNGLE(U, V, W) | Delete a positively oriented triangtauvw

Abiacent(U, V) Return a vertexv such thatauvwis a positively oriented triangle
ApJAcENTONE(U) Return vertices, w such thatauvwis a positively oriented triangle

Figure 3.2:An interface for a triangulation data structure.

over Expressions (3.1) and (3.3) for fixed precision floafpognt computation, because they lose far less
accuracy to roundderror. Ideally, some form of exact arithmetic should be usegerform these tests, or
the triangulation algorithms cannot be guaranteed to wortectly.

3.2 A Dictionary Data Structure for Triangulations

Two data structures are commonly used to implement triatigul algorithms: edge-based data structures,
of which the best known is the doubly connected edge list,[86¢ triangle-based data structures. What
these two data structures have in common is that recordssepredges or triangles, and the records store
pointers that point at neighboring edges or triangles. Mamptementations of triangulation algorithms read
and change these pointers directly; experience showshbag implementations arefiitult to code and
debug.

Here, | advocate an interface that does not expose poimtéhg ttriangulation algorithms that use the
data structure. Triangulation algorithms access thedukation in a natural way, by adding or deleting
triangles specified by their vertices. It is wholly the resgibility of the triangulation storage library to
determine triangle adjacencies, and to correctly mairaainpointers it uses internally. This policy, which
originates with Blelloch et al. [17, 16], improves prograemproductivity and simplifies debugging.

The interface appears in Figure 3.2. Two procedures,TRianGLE and DeLeTETRIANGLE, Create and
delete triangles by specifying the vertices of a triangleleoed so that all the triangles stored in the data
structure have positive orientation. The data structufereas the invariant that only two triangles may
adjoin an edge, and only one on each side of the edge. Therdftie data structure contains a positively
oriented trianglenuvw and an application calls ¥bTriancLE(U, V, X), the triangleauvxis rejected and the
data structure does not change.

At least two query operations are supported. The procedurscé&r(u, V) returns a vertexv if the
triangulation includes a positively oriented trianglevw, or the empty set otherwise. pfcent(u, v) and
Apiacent(v, U) return diferent triangles, on opposite sides of the edgeThe procedure BiacentONE(U)
identifies an arbitrary triangle having vertexor returns the empty set if no such triangle exists.

A fast way to implement Auacent efficiently is to store each triangleuvwthree times in a hash table,
keyed on the directed edgas, vw, andwu. A hash table can store triangles and query edges in expected
constant time. For a more compact representation thatligesisonably fast, see Blandford, Blelloch,
Clemens, and Kadow [16].

Unfortunately, it takes substantial additional memory tagntee that the BacentOne query will run
fast. Many algorithms for Delaunay triangulation and meghian be implemented without it, so | recom-
mend using AsacentONE as little as possible, and settling for a slow but memdfcient implementation,
perhaps even searching the entire hash table. A good cormggamplementation is to maintain an array
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Figure 3.3:The Bowyer—Watson algorithm in the plane. At left, a Delaunay triangulation and a new vertex to
insert. At center, every triangle whose circumcircle encloses the new vertex is shaded. These triangles are no
longer Delaunay. At right, the shaded triangles disappear, replaced by new triangles that connect the new vertex
to the edges of the cavity.

that stores, for each vertex a vertexv such that the most recently added triangle adjoiniradso hadv

for a vertex. When AsacentONE(U) is invoked, it looks up the edgess andvu in the hash table to find
an adjoining triangle in expected constant time. The probiéth this implementation is that the triangles
having edgaiv may have been subsequently deleted, in which case a triadg@ingu must be found
some other way (e.g. searching the entire hash table). Howalserve that this catastrophe will not occur
if every triangle deletion is followed by triangle creatsthat cover all the same vertices—which is true of
most of the algorithms discussed in this book.

The interface and data structure extend easily to permisttage of edges that are not part of any
triangle. For example, an edge that is not an edge of any triangle can be represented bygtativg
keyed on the directed edge, whereg is a special entity called thghost vertex

3.3 Inserting a Vertex into a Delaunay Triangulation

Lawson [73] invented the first algorithm for inserting a esrinto a Delaunay triangulation and restoring
the Delaunay property, but it works only in the plane. A dligliaster algorithm that works in any dimen-

sionality was discovered independently by Bowyer [20],iHeline [62, 63], and Watson [128]. Bowyer and
Watson simultaneously submitted it@mmputer Journahnd found their articles published side by side.

Consider inserting a new vertexnto a Delaunay triangulation. If a triangle’s circumce@ncloses,
that triangle is no longer Delaunay, so it must be deleteds 3Jinggests thBowyer—Watson algorithm

¢ Find one triangle whose circumcircle encloses
e Find all the others (in time linear in their number) by a defitbt search in the triangulation.
e Delete them all, evacuating a polyhedral cavity, which sdgd in Figure 3.3.

e For each edge of this cavity, create a new triangle joiningtt v, as illustrated.

The first step is calledoint location Most Delaunay mesh generation algorithms generate nevcesr
inside the circumcircles of badly shaped or oversized gflies) in which case point location is free. However,
point location is not free for the domain vertices providedrgut to the mesh generator. Locating these
points in the triangulation is sometimes the most costly @mplicated part of the incremental insertion
algorithm. Incremental insertion is really a class of Delaytriangulation algorithms, flerentiated by their
point location methods. Clarkson and Shor [39] describeiat pacation method that helps a randomized
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INSERTV ERTEX (U, V, W, X)
uis the vertex to insertavwxis a positively oriented triangle whose circumcircle eselgu. }
DeLETE TRIANGLE(V, W, X)
DigCavrty(U, v, w)
DicCavity(u, w, X)
DicCavity(U, X, V)

A OWODNPEPE—T

DicCavity(u, v, W)

{ uis a new vertex. Is the oriented trianglevwDelaunay?

5 X < ADJACENT(W, V) { Find Awvxopposite the edgewfromu }

6 if x#0  { Do nothing if the triangle has already been delgted

7 if INCircLE(U, V, W, X) > 0

8 DELETETRIANGLE(W, V, X) { auvwandawvxare not Delaunay

9 DicCaviry(u, Vv, X)

10 DicCavity(Uu, X, W)

11 elseApp TRIANGLE(U, V, W) { vwis an edge of the cavity anguvwis Delaunay}

Figure 3.4:Algorithm for inserting a vertex u into a Delaunay triangulation, given a triangle Avwxwhose circum-
circle encloses u.

incremental insertion algorithm to construct the Delaumangulation ofn vertices in expecte@(nlogn)
time. Section 5.5 describes a point location method thahsee be even faster in practice, albeit only if the
vertices are carefully ordered as described in Section 5.4.

Figure 3.4 gives pseudocode for vertex insertion, omitthmg point location step. It interleaves the
second, third, and fourth steps of the Bowyer—Watson algor{rather than performing them in sequence),
thereby achieving simplicity and speed although obscutiegalgorithm'’s workings.

The following three results demonstrate the correctneseeoBowyer—Watson algorithm if a correct
point location algorithm is available. The first result sisotliat the deleted triangles—those that are no
longer Delaunay—comprise a star-shaped polygon. Thigfzatantees that a depth-first search (the second
Bowyer—Watson step) will find all the triangles that are noger Delaunay, and that the third and fourth
Bowyer—Watson steps yield a simplicial complex.

Lemma 18. The union of the triangles whose circumcircles enclose vasraected star-shaped polygon,
meaning that for every point p in the polygon, the polygoihuides the line segment pv.

Proof: Prior to the insertion o¥, the triangulation is Delaunay, so all of its edges are lgdakélaunay. Let

7 be a triangle whose circumcircle enclose&et p be any point in the interior of. By the same inductive
reasoning employed in the proof of the Delaunay Lemma (8e&ti4), every triangle that intersects the line
segmenipv also hass inside its circumcircle. The result follows. |

The lifting map gives us intuition for why Lemma 18 is unsusprg: it says that the facets of the lifted
triangulation that are visible from the lifted vertek are connected.

The key to proving that the updated triangulation is Delgurdo show that all its edges are Delaunay
and apply the Delaunay Lemma. The following lemma shows eliaty newly created edge is strongly
Delaunay, and therefore appears in every Delaunay triatigalof the vertices.

Lemma 19. Let v be a newly inserted vertex. Lebe a triangle that is deleted because its circumcircle
encloses v. Let w be a vertexwofThe edge vw is strongly Delaunay.
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w

Figure 3.5:Because r was Delaunay before v was inserted, vwis strongly Delaunay.

Figure 3.6:Inserting a vertex outside the triangulation. The open circle is the ghost vertex. The circular arrow
indicates two ghost edges that are really the same edge. Three ghost triangles and three solid triangles (shaded)
are deleted and replaced with two new ghost triangles and six new solid triangles.

Proof: See Figure 3.5. The circumcircle oncloses no vertex but LetC be the circle that is tangent to
7’s circumcircle atw and passes through C demonstrates thaivis strongly Delaunay. |

Theorem 20. A triangulation produced by applying the Bowyer—Watsorodatgm to a Delaunay triangu-
lation is Delaunay.

Proof: It follows from Lemma 18 that the update produces a triangureof the point set augmented with
the new point. All the surviving old triangles are Delaunatherwise they would have been deleted. It
follows that their edges are Delaunay too. By Lemma 19, athefnewly created edges are Delaunay as
well. By the Delaunay Lemma, the new triangulation is Dekun |

3.4 Inserting a Vertex Outside a Delaunay Triangulation

The Bowyer—Watson algorithm works only if the newly insdrtertex lies in the triangulation. However,
there is an elegant way to represent a triangulation solteailgorithm, with almost no changes, can insert
a vertex outside the triangulation equally well. Imaginativery edge on the boundary of the triangulation
adjoins aghost triangle as illustrated in Figure 3.6. The third vertex of every ghdsngle is theghost
vertex a vertex “at infinity” shared by every ghost triangle. Evghost triangle has twghost edgeshat
adjoin the ghost vertex. A triangle that is not a ghost isezh#isolid triangle

The ghost triangles are explicitly stored in the triangolatiata structure. They are not merely cosmetic;
they make it possible for the Bowyer—Watson algorithm fiicently traverse the triangulation boundary,
and thus they are essential to obtaining an incrementatiosalgorithm with optimal running time.
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Figure 3.7: The ghost triangle uvgis deleted if a new vertex is inserted in the shaded open halfplane (as at
center) or on uv (as at right). The union of the open halfplane and uvis the outer halfplane of uvg

Consider an edgev on the boundary of a triangulation, directed clockwise atbthe boundary. Define
a positively oriented ghost triangleuvg, whereg is the ghost vertex. Like any other triangleyvg has
a circumcircle—albeit a degenerate one—and must be delletedew vertex is inserted “inside” it. The
definition of “circumcircle” is a bit tricky, though. The @umcircle degenerates to the lin @av, which
divides the plane into two open halfplanes.

There are two cases in which the ghost trianglerg must be deleted (i.aivis no longer a boundary
edge of the triangulation), both illustrated in Figure 3f7a vertex is inserted in the open halfplane on the
other side of & uv from the triangulation, or if a vertex is inserted on the opeilgeuv. Call the union of
these two regions theuter halfplaneof uv. It is neither an open nor closed halfplane, but something in
between. It is the set of points enclosed by the circumcotleuvgin the limit asg moves away from the
triangulation.

A new vertex inserted outside the triangulation causesadt lene ghost triangle to be deleted, and
perhaps some solid (non-ghost) triangles as well. Two navatiary edges, two new ghost triangles, and an
arbitrary number of solid triangles are created, as ilatstt in Figure 3.6.

Ghost triangles have an intuitive interpretation in terrighe lifting map. Imagine that ife3, the solid
triangles are lifted to the paraboloid, and the ghost tliem@nd ghost edges are vertical—parallel to the
z-axis. By magic, the ghost vertex is interpreted as beingctly above every other vertex at an infinite
height. The faces of the convex hull of this three-dimensi@oint set, including the magic ghost vertex,
are in one-to-one correspondence with the faces and ghuest & the Delaunay triangulation.

A popular alternative to ghost triangles is to enclose thpiirvertices in a giant triangular bounding
box, illustrated in Figure 3.8. After all the vertices haveeh inserted, every triangle having a bounding
box vertex is deleted. Thefticulty with this approach is that the bounding box verticey teave concave
divots in the triangulation if they are too close, and it i2 pasy to determine how far away they need
to be. One solution to this problem is to compute a weightel&y triangulation, assigning the three
bounding box vertices weights of negative infinity. Thegedhnfinite weights must be incomparable—say,
00, 2°, and 2" —so that kCircLE tests involving two of the bounding box vertices operatesistently.
This approach seems to run more slowly (perhaps by 10%) teaghost triangle implementation. Another
solution is to fill the divots with the segment insertion aitfum described in Section 3.9.

3.5 The Running Time of Vertex Insertion

How expensive is vertex insertion, leaving out the cost aflocation? This section considers two cases:
the worst case, and the expected case when vertices argethgerandom order. The latter case is a part
of an incremental insertion algorithm that computes thealehy triangulation oh vertices in expected
O(nlogn) time, and it also introduces an elegant algorithm analgsisnique calletbackward analysis
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Figure 3.8:Enclosing the vertices in a large triangular bounding box.

Figure 3.9:Each vertex insertion can delete ®(n) triangles and create ®(n) others.

Figure 3.9 illustrates the worst case. A single vertex it@eican delet®(n) triangles and creat®(n)
others, taking®(n) time. Moreover, this dismal performance can be repeate®{n) successive vertex
insertions. Therefore, the incremental insertion algonifor constructing a Delaunay triangulation takes
@(n?) time if the vertices and their insertion order are chosediybaThe grid arrangement and vertex
ordering in the figure are common in practice.

Fortunately, there are better ways to order the vertextioseoperations. Theandomized incremental
insertion algorithminserts the vertices in random order, with each permutatidhe vertices being equally
likely. Surprisingly, theexpectechumber of triangles created by each successive verteximseperation
is less than six, as Theorem 21 below shows. The catch islthla¢ aertices must be known in advance, so
that a random permutation can be computed. The randomigedtaim is excellent for creating an initial
triangulation of the vertices of a domain, but its analysisginot apply to the vertices that are subsequently
generated during mesh generation, because their ordeotchamandomized. Nevertheless, the theorem
provides intuition for why constant-time vertex insertisrso commonly observed in mesh generation.

Theorem 21. Let V be a set of n vertices in the plane. Ket, vo,...,Vvy) be a permutation of V chosen
uniformly at random from the set of all such permutations.iFe|[0, n], let7; be the Delaunay triangulation
constructed by inserting the first i vertices in order. Wheis ¥nserted into7;_; to create7;, the expected
number of new triangles (including ghost triangles) crehie less than six. An expected total @fn)
triangles are created and deleted during the n vertex ingestthat construcy .

This theorem is most easily proved witlackward analysisa remarkable analysis technique that Sei-
del [110] summarizes thus:Ahalyze an algorithm as if it was running backwards in tinment output to
input” Imagine that instead of inserting a randomly chosen veiriex7;_1, you are deleting a randomly
chosen vertex frorff;. Because a random permutation written backward is stilhdoen permutation, each
vertex in7; is deleted with equal probability.
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Proof of Theorem 21: For every vertex of 7i, the number of triangles adjoining including ghost
triangles, is equal to the degreewfcounting one ghost edge\fis on the boundary of the triangulation.
Whenv; is inserted into7i_; to construct?;, every new triangle created hgsfor a vertex. Therefore, the
expected number of new triangles created is equal to thectegheegree of;.

There is one technical fliculty: if four vertices of7; lie on a common empty circle, thefy depends
on the order in which the vertices are inserted. ThusSjdde the Delaunay subdivision ¢, o, .. ., Vi},
wherein triangles ify; sharing a common circumcircle are merged into a polygonalR&om Section 2.2
thatS; contains the strongly Delaunay edges/ofand no others, and is therefore unique. By Lemma 19,
every edge adjoining in 7; is strongly Delaunay, so the degreevpin 75 is equal to the degree &fin S;.

Because the permutation is chosen uniformly at random, eatéx ofS; is equally likely to bevi. The
expected degree of a randomly chosen verte;jifor any planar graph) is less than six, by the following
reasoning.

Leti + 1, e andf denote the number of vertices, edges, and trianglgs,oespectively, with the ghost
vertex, ghost edges, and ghost triangles included. By Budteimula,i + 1 — e+ f = 2. Each triangle has
three edges, and each edge is shared by two triangles,=s@% Eliminating f from Euler’s formula gives
e = 3i — 3. Each edge has two vertices, so the total number of edgexviecidences isi6- 6, and the
average degree of a non-ghost vertegins less than 6 6/i. The average degree of a non-ghost vertex in
Si cannot be greater.

Each vertex insertion creates, in expectation, fewer thanew triangles, so the expected total number
of triangles created during thevertex insertions is i@(n). A triangle cannot be deleted unless it is created
first, so the expected total number of triangles deletedsis ialO(n). |

Theorem 21 bounds not only the number of structural charm#slso the running time of the depth-
first search in the Bowyer—Watson algorithm. This searcitsvad! the triangles that are deleted and all the
triangles that share an edge with a deleted triangle. Digsthsearch takes time linear in the number of
visited triangles, and therefore linear in the number oétal triangles.

It follows that the expected running time of the randomizedtémental insertion algorithnexcluding
point location, is inD(n). We shall see that point location is the dominant cost ofigerithm.

A general fact about randomized algorithms is that thereclsaace that they will run much, much more
slowly than their expected running time, but the probapiit that is exceedingly small. If the incremental
insertion algorithm gets unlucky and endures a slow vertsgrition like those depicted in Figure 3.9, other,
faster vertex insertions will probably make up for it. Thelpability that many such slow vertex insertions
will occur in one run is tiny, but it can happen.

The argument in the proof of Theorem 21, which is the first kmowse of backward analysis in computa-
tional geometry, originates in a paper by Chew [36]. Chewjsqy describes an algorithm for computing the
Delaunay triangulation of a convex polygon, or deleting desefrom a Delaunay triangulation, in expected
linear time. Backward analysis was popularized by a chagmaper by Seidel [110].

3.6 Inserting a Vertex into a Constrained Delaunay Trianguétion

To “insert a vertex into a CDT” is to take as input the CDT of ®oRLCX and a new vertex to insert,
and produce the CDT ok U {v}. An implementation might also support the insertion of aewev on a
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T Insertion

Figure 3.10:nserting or deleting a vertex vin a CDT. Bold edges are segments. The shaded polygon is the union
of the deleted/created triangles. Simplices not intersecting the interior of the shaded polygon are constrained
Delaunay before and after. When v is inserted, depth-first search on the graph G identifies the deleted triangles.
Observe that although v lies inside 7’s circumcircle, V's insertion does not delete T because G does not connect 7
to any deleted triangle.

segment € X, in which case the algorithm subdivide$nto two subsegments; ands, having vertexv,
and produces the CDT of U {v, s1, S5} \ {S}.

With a small change, the Bowyer—Watson algorithm can insemrtexv into a CDT, as Figure 3.10
illustrates. The change, of course, is that the algorithlatds the triangles that are no longenstrained
Delaunay. Fortunately, it is possible to enumerate thdaadtes without performing expensive visibility
tests. To accomplish that, the first step—point location-ddithe triangle that contains There may be
two such triangles, i’ lies on a triangulation edge. The second step—the deptiséesch that identifies
triangles that are no longer constrained Delaunay—shoeveémwalk across a segment. As Figure 3.10
shows, this restriction sfices to ensure that only triangles whose interiors are @gibmv will be deleted.

If vlies on a segment i, depth-first searches must be run from both of the two adjgifiangles. The
third and fourth steps of the Bowyer—Watson algorithm doai@nge. In a straightforward extension of
the proofs in Section 3.3, one can show that the depth-fiesthdinds all the triangles that are no longer
constrained Delaunay, the cavity is always star-shapetithenalgorithm works correctly.

3.7 The Gift-Wrapping Step

Gift-wrapping algorithms rely on a simple procedure thatstoucts a triangle adjoining a specified edge.
Let e = uw be an oriented edge. ThHmnt of e is the open halfplane to the left ofiy, and a positively
oriented trianglesuwvis said to ben front of e Thebackof eis the open halfplane to the right afv, and

a positively oriented trianglawuvis said to bebehind e

During the execution of a gift-wrapping algorithm, an oteshedge constructed by the algorithm is said
to beunfinishedf the algorithm has not yet identified the triangle in froftlee edge. A gift-wrapping step
finishesthe edge by constructing that triangle, or by determinirag there is no such triangle because the
edge is on the boundary of the domain.

A edgee has an infinite number of circumcircles, any one of which cancbntinuously deformed
into any other such that every intermediate circle is alsiraumcircle ofe. Imagine beginning with a
circumcircle that encloses no vertex in frontefthen deforming it so it expands in front efand shrinks
behinde, always remaining a circumcircle ef as illustrated in Figure 3.11. As the circumcircle deforms
its center always lies oés bisector.
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Figure 3.11:An empty circumcircle of e, expanding in search of a vertex v.

Finisu(e, V, K)

{ eis an oriented edgé/ is the set of vertices in a PL&. K is the set of segments iXi. }
{ Finisu returns a triangle that finishesor 0 if none exists.}

1 T 0

2 p « an arbitrary point in the relative interior ef(e.g. its midpoint)

3 for each vertex € V

4 if vis in front ofeand (= = 0 or the circumcircle ofr enclosew)

5 if no segmens € K occludes the visibility betweenand p

6 T « conveuv)

7 return =

Figure 3.12:Algorithm to gift-wrap one constrained Delaunay triangle. For an ordinary Delaunay triangulation,
omit Line 5.

Eventually, the expanding portion of the circumcircle ntitgduch a vertew that is visible from the
relative interior ofe, in which case the gift-wrapping step construets: conv(e U v), thereby finishing
e. Lemma 22 below shows thatis constrained Delaunay & is constrained Delaunay or a segment.
Alternatively, the expanding portion of the circumcirclegimt never touch a vertex, in which caeds
on the boundary of the convex hull of the vertices.

Although the expanding circumcircle gives the right intuitfor which vertex is chosen, the algorithm
that implements a gift-wrapping step works the opposite, Wwgyshrinking the front of the circumcircle: it
scans through the vertices in front®@and remembers which vertex, so far, minimizes the portiothef
circumcircle in front ofe.

Figure 3.12 gives pseudocode for the gift-wrapping stepe @ifi-wrapping step take@(n) time for a
Delaunay triangulation, a@(nm) time for a CDT, whera = |V| is the number of vertices amd = |K| is the
number of segments. Line 5 of the pseudocode accounts féadte of m.

Lemma 22. If the edge e is constrained Delaunay or a segment, the dlgoffinisa returns a constrained
Delaunay triangler.

Proof. There is a total ordering of the set of alé circumcircles such that, if one circumcircle precedes
another, the former circumcircle encloses the portion efléitter in front ofe. It is easy to see that, among
the vertices inV that are in front ofe and visible frome's relative interior, Lines 3—6 choose the vertex
such thatr = conv( U v) has the last circumcircle in this ordering. Henew, circumcircle encloses no
vertex that is in front ok and visible frome's relative interior.
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Figure 3.13:A gift-wrapping failure because of cocircular vertices.

If eis a segment, then no vertex that is beh@&ehd insider’s circumcircle is visible from the interior
of 7, sot is constrained Delaunay.

If eis constrained Delaunay, it has a circumcircle that enslasevertex visible from the relative interior
of e. This circumcircle does not encloggeso it must enclose every point on or behetthatr’s circumcircle
encloses. It follows that's circumcircle encloses no vertex visible from the intenbr, sor is constrained
Delaunay. |

3.8 The Gift-Wrapping Algorithm

This section describes a basic gift-wrapping algorithmcdanstructing Delaunay trianglations and CDTs.
Be forewarned that if the input PLC or point set has four qotdar vertices, gift-wrapping can make
decisions that are mutually inconsistent and fail to carcéta valid triangulation. Figure 3.13 depicts
a simple, unconstrained example where Delaunay gift-wrapfails. Gift-wrapping can be modified to

handle these inputs by symbolically perturbing the vertexghts, or by identifying groups of cocircular

vertices that can see each other and triangulating thenh aticz.

The gift-wrapping algorithm begins with the segments ofRh€, upon which the constrained Delaunay
triangles crystallize one by one. The core of the algoritsma ioop that selects an unfinished edge and
finishes it by invoking the procedurenisu in Figure 3.12. Often, the new triangle finishes more than one
unfinished edge. To detect this circumstance, the algornittaimtains the unfinished edges in a dictionary
(e.g. a hash table) so they can be quickly looked up by theiexéndices. The data structure in Section 3.2
is easily modified to serve this purpose while also storiegtiangulation. Pseudocode for the gift-wrapping
algorithm appears in Figure 3.14.

The algorithm can construct Delaunay triangulations tooile pseudocode assumes tNatontains at
least one segment that can serve as a seed upon which tahmiitchhgulation. When there are no segments,
seed the algorithm by constructing one strongly Delaungg-eean arbitrary vertex and its nearest neighbor
will do—and entering it (twice, with both orientations) inet dictionary.

The algorithm take®(n?) time for a Delaunay triangulation, 6(n’m) time for a CDT, where = |V| is
the number of vertices amd = |K| is the number of segments. These are not impressive spepasialy
when compared to the incremental insertion or divide-amijoer algorithms. However, gift-wrapping
is easy to implement and fast enough for small jobs, suchteaangulating the cavity evacuated when a
vertex is deleted or a segment is inserted in a triangulafidoreover, there are several ways to speed up
gift-wrapping that make it more practical.
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GirrWraPCDT(V, K)
{ Vis the set of vertices in a PL&. K is the set of segments iXi. }
1 for each segmerg € K that adjoins a wall on one side only
2 Entersin the dictionary, oriented so its front adjoins a wall
3 while the dictionary is not empty
{ Loop invariant: the dictionary contains all the unfinishedes.}
4 Remove an oriented edgdrom the dictionary
5 7 « FinisuH(e, V, K)
6 ifr#0
7 AbpDTRIANGLE(t)
8 for each oriented edgkeof T excepte
9 if fisinthe dictionary
10 Removef from the dictionary
11 elseEnterf in the dictionary with reversed orientation
(facing away fromr)

Figure 3.14.Gift-wrapping algorithm for constructing a CDT.

One specialized class of gift-wrapping algorithms sseeepline algorithmthat construct the triangles
in a disciplined order, making it possible to determine Whiertex finishes each edge without an exhaustive
search. Fortune [51] developed such an algorithm for Delgtnangulations. Seidel [109] extended it to
CDTs. Both algorithms run i@(nlogn) time.

Another way to avoid exhaustive search is to subdivide theginto square buckets, record the ver-
tices in their respective buckets, and finish each edge hbytieg through the buckets in an appropriate
order. Dwyer [47] shows that if the vertices are distributeiformly at random in a disk, this technique
finishes each face i@(1) expected time, so an entire Delaunay triangulation @odnstructed ird(n)
expected time. Moreover, the algorithm extends to higheredisions, still with expected linear running
time! Unfortunately, this method does not extend easily OI'€, and not all real-world point sets are so
nicely distributed. It is easy to construct a point set foiakhmost of the points fall into one bucket.

3.9 Inserting a Segment into a Constrained Delaunay Trianghation

To “insert a segmentinto a CDT" is to take as input the CDT oL & X and a new segmestto insert, and
produce the CDT oK U {s}. It is only meaningful ifX U {s} is a valid PLC—that isX already contains the
vertices ofs (otherwise, they must be inserted first, as described in@e816), and the relative interior af
intersects no segment or vertexAn This section presents a gift-wrapping algorithm for seghmesertion.

It appears in an article by Anglada [3], but it was part of thiklbre of the field before that paper appeared.
It is difficult to trace who thought of the algorithm first.

Let 7 be the CDT ofX. If se T, then7 is also the CDT ofX U {s}. Otherwise, the algorithm begins
by deleting from7 the edges and triangles that intersect the relative intefis. All of 7's simplices not
deleted remain constrained Delaunay afi&s inserted. Next, the algorithm adddo the complex, and it
retriangulates the two polygonal cavities on each sidevath constrained Delaunay triangles. Recall from
Figure 2.16 that the cavities might have segments dangtitiggir interiors.

Let P be one of the two polygons; its edges inclugleThe algorithm GrWrapCDT could gift-wrap
P starting from any edge dP, but there are several advantages to gift-wrapping feooutward. First,
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Figure 3.15:Gift-wrapping one triangle from a newly inserted segment s.

gift-wrapping froms makes it possible to eliminate the visibility tests (Linef3~avisu) and the dictionary
of unfinished edges, speeding up the algorithm by a facton.o6econd, gift-wrapping frons gives the
best likelihood of subdividing into two half-sized polygons, improving the speed of theoatgm. Third,
the algorithm is guaranteed to work correctly eved ifias four or more cocircular vertices. Be forewarned
that gift-wrapping without visibility tests does not wor&reectly for all polygons, but it works for segment
insertion.

The cavity retriangulation algorithm is as follows. Begiyn @ift-wrapping one constrained Delaunay
triangle in front ofs, as illustrated in Figure 3.15. Letandw be the vertices o§, and letauwv be the
positively oriented triangle produced by the gift-wrapgpstep. The cavity retriangulation algorithm calls
itself recursively on the oriented edgesandvw (if they are unfinished).

The running time of the first gift-wrapping step is propon@b to the numbem of vertices ofP. If
we are lucky, it will splitP into two polygons of roughly half the size, and the recursiaéls will also
enjoy balanced splits, so the time required to triangufatell be in O(mlogm). In the worst case, each
gift-wrapping step might simply cut one triangl& of P without subdividingP into smaller polygons, and
it will take ®(m?) time to triangulateP. In practice, ifmis large,P is probably long and thin and will enjoy
well-balanced recursive calls.






Chapter 4

Three-Dimensional Delaunay
Triangulations

Three-dimensional triangulations are sometimes calliedhedralizations. Delaunay tetrahedralizations are
not quite as fective as planar Delaunay triangulations at producing etesof good quality, but they are
nearly as popular in the mesh generation literature as tlwekdimensional cousins. Many properties of
Delaunay triangulations in the plane generalize to higiveedsions, but many of the optimality properties
do not. Notably, Delaunay tetrahedralizations do not m&enthe minimum angle (whether plane angle
or dihedral angle). Figure 4.1 depicts a three-dimensiooahterexample. The hexahedron at the top is
the convex hull of its five vertices. The Delaunay triangolabf those vertices, to the left, includes a thin
tetrahedron known asdiver or kite, whose vertices are nearly coplanar and whose dihedra¢sicgh be
arbitrarily close to @ and 180. A triangulation of the same vertices that is not Delauntipwer right, has
better quality.

This chapter surveys Delaunay triangulations and com&tdaDelaunay triangulations in three (and oc-
casionally more) dimensions. Constrained Delaunay ttikatgpns generalize uneasily to three dimensions,
because there are polyhedra that do not have any tetralzaticai at all.

.

Figure 4.1: This hexahedron has two tetrahedralizations. The Delaunay tetrahedralization at left includes an
arbitrarily thin sliver tetrahedron. The non-Delaunay tetrahedralization at right consists of two nicely shaped
tetrahedra.

59
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Figure 4.2: At center, the Delaunay tetrahedralization of the points at left. At right, the circumsphere of one
Delaunay tetrahedron with two cross-sections showing it is empty.

4.1 Triangulations of a Point Set inEY

Definition 26 in Section 2.1 defines a triangulation of a sepaihts to be a simplicial complex whose
vertices are the points and whose union is the convex hutleopbints. With no change, the definition holds
in any finite dimensionl. Figures 4.1-4.4 illustrate triangulations of point setthree dimensions. Every
finite point set inEY has a triangulation; for example, the lexicographic tri#agon of Section 2.1 also
generalizes to higher dimensions with no change.

Let V be a set oh points inEY. Recall from Section 2.1 that if all the points Vhare collinear, they
have one triangulation havingvertices andh — 1 collinear edges connecting them. This is true regardless
of d; the triangulation is one-dimensional, although it is edde inEY. More generally, if the fine hull
of V is k-dimensional, then every triangulation ffis ak-dimensional triangulation embeddedEf: the
simplicial complex has at least okesimplex but noK + 1)-simplex.

The complexityof a triangulation is its total number of simplices of all dinsions. Whereas a planar
triangulation ofn points hasd(n) triangles and edges, a surprising property of higher-dsimal triangu-
lations is that they can have superlinear complexity. Fgu@ shows a triangulation of points that has
0(n?) edges and tetrahedra, which is asymptotically the largasiber possible in three dimensions. Every
vertex lies on one of two non-intersecting lines, and thermnie tetrahedron for each pairing of an edge on
one line and an edge on the other. This isdhéy triangulation of these points, and it is Delaunay.

An n-vertex triangulation irE% can have a maximum @(n/%/21) d-simplices. Of course, most applica-
tions do best with linear-complexity meshes. The existaitgangulations with much higher complexity
is a potential pitfall for mesh generation algorithms, espléy if the input vertices resemble those in Fig-
ure 4.2.

4.2 The Delaunay Triangulation in E¢

Delaunay triangulations generalize easily to higher disimms. LetV be a finite set of points ifE9, for
d > 1. Leto be ak-simplex (for anyk < d) whose vertices are . Let S be a hypersphere ig%; S is a
circumsphereor circumscribing sphereof o if S passes through every vertex®f If k = d, theno has a
unique circumsphere; otherwise has infinitely many circumspheres.
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Figure 4.3:Three renderings of a Delaunay tetrahedralization.

-

Figure 4.4: A Delaunay subdivision comprising two cubic cells and their faces. The least-vertex Delaunay
triangulation subdivides each 2-face into triangles adjoining the face’s lexicographically minimum vertex, and
likewise subdivides each 3-face into tetrahedra.

A simplex o is Delaunayif there exists a circumsphere ofthat encloses no point M. Clearly, every
face of a Delaunay simplex is Delaunay too. A simpleis strongly Delaunayf there exists a circumsphere
S of o such that no point itV lies insideor on S, except the vertices af. Every point inV is trivially
a strongly Delaunay vertex. Belaunay triangulatiorDelV of V is a triangulation ofV in which every
d-simplex is Delaunay, as Figure 4.2 shows. Figure 4.3 depichore typical Delaunay tetrahedralization,
with complexity linear in the number of vertices.

The parabolic lifting map generalizes to higher dimenstons It maps each poimt = (p1, p2,..., Pg) €
E to its lifted companionthe pointp™ = (p1, Pz..... Pd. P2 + P3 + -+ + p3) in E4*L. Consider thed +
1)-dimensional convex hull of the lifted pointy," = {v* : v € V}. Projecting the downward-facing
faces of conW™) to EY yields a polyhedral complex called tBelaunay subdivisionf V, which is easily
transformed to its complement, the Voronoi diagranvof

If V is generig its Delaunay subdivision is simplicial antlhas exactly one Delaunay triangulation,

Definition 39 (generic) Let V be a point set in € Let k be the dimension of thgfiae hull of V. V is
genericif no k+ 2 points in V lie on a common hypersphere.

If V if not generic, the Delaunay subdivision may have non-sicigllfaces; recall Figure 2.4. In that
case,V has multiple Delaunay triangulations, whicHfdr according to how the non-simplicial faces are
triangulated.

Whereas each non-simplicial face in a two-dimensional D@ subdivision can be triangulated inde-
pendently, in higher dimensions the triangulations areahwalys independent. Figure 4.4 illustrates a set
of twelve points inE2 whose Delaunay subdivision includes two cubic cells thatesla square 2-face. The
square face can be divided into two triangles in twidedlent ways, and each cube can be divided into five or
six tetrahedra in several ways, but they are not indepentieatriangulation of the square face constrains
how both cubes are triangulated.
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A least-vertex triangulatioprovides one way to safely subdivide a polyhedral complexarsimplicial
complex. To construct it, triangulate the 2-faces throdgidtfaces in order of increasing dimension. To
triangulate a non-simplicidd-face f, subdivide it intok-simplices of the form conw(U g), wherev is the
lexicographically minimum vertex of, andg varies over thel — 1)-simplices onf’s subdivided boundary
that do not contain. The choice of the lexicographically minimum vertex of eéate ensures that the face
triangulations are compatible with each other.

4.3 Properties of Delaunay Triangulations inEd

Many properties of planar Delaunay triangulations disedss Chapter 2 generalize to higher dimensions.
A few of them are summarized below. Proofs are omitted, bcih @ them is a straightforward extension
of the corresponding proof for two dimensions.

Recall that dacetof a polyhedral complex is a(- 1)-face, and a facet of a triangulation isca 1)-
simplex. The Delaunay Lemma provides an alternative defimibf a Delaunay triangulation: a triangu-
lation of a point set in which every facet is locally Delaundyfacet f in a triangulatiorn7~ is said to be
locally Delaunayff it is a face of fewer than twal-simplices in7, or it is a face of exactly twal-simplices
71 andr, and it has a circumsphere enclosing no vertex;afor 72. (Equivalently, the circumsphere of
encloses no vertex ab. Equivalently, the circumsphere of encloses no vertex af;.)

Theorem 23(Delaunay Lemma)Let 7 be a triangulation of a finite set V of points ifff EThe following
three statements are equivalent.

e Every d-simplex it is Delaunay (i.e7 is Delaunay).
e Every facetirns is Delaunay.

e Every facetins is locally Delaunay. [ |

As in the plane, a generic point set has exactly one Delaui@gulation, composed of every strongly
Delaunay simplex. The following three theorems have esbnthe same proofs as in Section 2.7.

Theorem 24. Leto be a strongly Delaunay simplex, and telbe a Delaunay simplex. Thenn t is either
empty or a shared face of bathandr.

Theorem 25. Every Delaunay triangulation of a point set contains evergrggly Delaunay simplex.

Corollary 26. A generic point set has exactly one Delaunay triangulation.

4.4 The Optimality of the Delaunay Triangulation in E¢

Some optimality properties of Delaunay triangulationsdhiol any dimension. Rippa [98] investigates the
use of two-dimensional triangulations for piecewise linegerpolation of a quadratic bivariate function. If
the function is isotropic—of the form(x® + y?) + 8x + yy + 6—then the Delaunay triangulation minimizes
the interpolation error measured in thg-norm for everyq > 1, compared with all other triangulations of
the same points. Melissaratos [80] generalizes Rippalgtreshigher dimensions. (If the function is not
isotropic, but it is parabolic rather than hyperbolic, thka optimal triangulation is a weighted Delaunay
triangulation in which the function determines the verteights.)
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D’Azevedo and Simpson [42] show that a two-dimensional Diesy triangulation minimizes the radius
of the largest min-containment circle of its simplices, &ajan [96] generalizes this result to Delaunay tri-
angulations and min-containment spheres of any dimeni#ipriBhe min-containment spheia a simplex
is the smallest hypersphere that encloses the simplex.

Rajan’s result and a theorem of Waldron [127] together inglihird optimality result, also related
to multivariate piecewise linear interpolation. Suppose ynust choose a triangulation to interpolate an
unknown function, and you wish to minimize the largest pwise error in the domain. After you choose
the triangulation, an adversary will choose the worst fidsssmooth function for your triangulation to
interpolate, subject to a fixed upper bound on the absolutetire (i.e. second directional derivative) of
the function anywhere in the domain. The Delaunay triartgarids your optimal choice.

To better understand these three optimality propertiassider multivariate piecewise linear interpola-
tion on a triangulatioff of a point seV. Let7 " = {o* : o~ € 7} be the triangulation lifted by the parabolic
lifting map; 7 is a simplicial complex embedded &E*1. Think of 7+ as inducing a continuous piecewise
linear function7 *(p) that maps each poimt € conv(V) to a real value.

How well does7 * approximate the paraboloid? Lefip) = 7 (p) — |p|* be the error in the interpolated
function7* as an approximation of the parabolgff. At each vertew € V, e(v) = 0. Becausep|? is
convex, the error satisfie$p) > 0 for all p € conv(V).

Theorem 27. At every point pe conv(V), every Delaunay triangulatioir of V minimizes/ *(p), and
therefore minimizes the interpolation errof®@, among all triangulations of V.

Proof. If 7 is Delaunay, the * is the set of faces of the underside of the convex hull céhyEf the
lifted vertices (or a subdivision of those faces if some @nthare not simplicial). No triangulation whose
vertices aré/* can pass through any point below covivy. |

Corollary 28 (Melissaratos [80]) Every Delaunay triangulation of V minimizgsg|,, for every Lebesgue
norm Lg, and every other norm monotonic in e. [ |

Theorem 29(Rajan [96]) Every Delaunay triangulation of V minimizes the largest4wamtainment sphere,
compared with all other triangulations of V. [ |

| omit the proof because of its length.

The optimality of the Delaunay triangulation for controtlithe largest min-containment radius dovetails
nicely with an error bound for piecewise linear interpaatterived by Waldron [127]. Le&Z. be the space
of scalar functions defined over coM)(that haveC! continuity and whose absolute curvature nowhere
exceeds. In other words, for everyf € C¢, every pointp € conv({V), and every unit direction vecta,
the magnitude of the second directional derivati{/¢p) is at mostc. This is a common starting point for
analyses of piecewise linear interpolation error.

Let f be a function inC¢. Leto C conv(V) be a simplex (of any dimensionality) with min-containment
radiusrme. Leth, be a linear function that interpolatdésat the vertices ofr. Waldron shows that for all
p € o, the absolute errde(p)| = |h,(p) — f(p)| is at mostcr?,./2. Furthermore, this bound is sharp: for
every simplexo- with min-containment radiusy, there is a functiorf € C; and a pointp € o such that
le(p)| = cr,./2. That function isf (p) = c|p|?/2, and that point i = Op.

Theorem 30. Every Delaunay triangulatiofi” of V minimizes

+ —
rfggfpegg%) [77(p) - TP,

the worst-case pointwise interpolation error, among aktigulations of V.
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Figure 4.5:Schénhardt’s untetrahedralizable polyhedron (center) is formed by rotating one end of a triangular
prism (left), thereby creating three diagonal reflex edges. The convex hull of any four polyhedron vertices (right)
sticks out.

Proof. For any triangulatiory”, maxicc, MaXpeconviv) I7 7 (P) — F(P)| = cr2,,,/2, whererma is the largest
min-containment radius among all the simplice§inThe result follows immediately from Theorem 2.

One of the reasons why Delaunay triangulations are impbiddrecause, in the senses of Theorems 27
and 30, the Delaunay triangulation is an optimal piecewrseal interpolating surface. Of coursp) is
not the only criterion for the merit of a triangulation usext interpolation. Many applications need the
interpolant to approximate the gradient—that is, not onlyst *(p) approximatef (p), but V7 *(p) must
approximatev f (p) well too. For the goal of approximatirigf (p) in three or more dimensions, the Delaunay
trianguation is sometimes far from optimal even for simpledtions like the paraboloifi(p) = |p|*. This
is why eliminating slivers is a crucial problem in Delaunagsh generation.

4.5 Three-Dimensional Constrained Delaunay Triangulatios

Constrained Delaunay triangulations generalize to threeaye dimensions, but whereas every piecewise
linear complex in the plane has a CDT, not every three-diimaas PLC has one. Worse yet, there exist
simple polyhedra that do not have triangulations at all-+ihathey cannot be subdivided into tetrahedra
without creating new vertices (i.e. tetrahedron vertited are not vertices of the polyhedron).

E. Sctonhardt [106] furnishes an example depicted in Figure 4.6e &asiest way to envision this
polyhedron is to begin with a triangular prism. Imagine giag the prism so that its bottom triangular face
cannot move, while twisting the top triangular face so iates slightly about its center while remaining
horizontal. This rotation breaks each of the three squaresfanto two triangular faces along a diagonal
reflex edge—-an edge at which the polyhedron is locally nonconvex. Atftées transformation, the upper left
corner and lower right corner of each (former) square faeesaparated by a reflex edge and are no longer
visible to each other within the polyhedron. Any four veecof the polyhedron include two separated by a
reflex edge; thus, any tetrahedron whose vertices are @smicthe polyhedron does not lie entirely within
the polyhedron. Therefore, Sahhardt's polyhedron cannot be triangulated without aolidi#l vertices. It
can be subdivided into tetrahedra with the addition of orréexeat its center.

Adding to the dificulty, Ruppert and Seidel [103] prove that it is NP-hard tbedmine whether a
polyhedron has a triangulation, or whether it can be subidivinto tetrahedra with onk/additional vertices
for an arbitrary constarik

The following sections discuss triangulations and CDTsadflpedra and PLCs in three dimensions. It
is possible to refine any polyhedron or PLC by adding new eeston its edges so that it has a constrained
Delaunay triangulation. This fact makes CDTs useful inghagnensions.
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Figure 4.6: A three-dimensional piecewise linear complex and its constrained Delaunay triangulation. Each
polygon and polyhedron may have holes, slits, and vertices in its relative interior. Each polyhedron may also have
polygons in its interior.

4.5.1 Piecewise Linear Complexes and their Triangulations E¢

The domain over which a general-dimensional CDT is defineal general-dimensional piecewise linear
complex, which is a set of linear cells—points, edges, pohgy and polyhedra—as illustrated in Figure 4.6.
The linear cells constrain how the complex can be triangdtatach linear cell in the complex must be a
union of simplices in the triangulation. The union of theskm cells specifies the region to be triangulated.

Definition 40 (piecewise linear complex; segment; wall; facé)piecewise linear complefPLC) X is a
finite set of linear cells that satisfies the following prajpes.

e The vertices and edges form a simplicial complex.

e For each linear cell fe X, the boundary of f is a union of linear cells X

e If two distinct linear cells fg € X intersect, their intersection is a union of linear cells A all

having lower dimension than at least one of f or g. (See Fig@r&4 and 4.6.)

As in the planeX’s edges are calledegmentand its polygons are calledalls. Its underlying spacées
|X| = Usex T, which is usually the domain to be triangulated. Taeesof a linear cell f e X are the linear
cells inX that are subsets of f, including f itself.

The notion of a PLC was proposed by Miller, Talmor, Teng, Wadkon, and Wang [82}. A triangula-
tion of a PLC must cover every polyhedron, respect everygumy and include every segment.

Definition 41 (triangulation of a PLC) Let X be a PLC. Ariangulation ofX is a simplicial compleg such
that

e X and7 have the same vertices,
e every linear cell inX is a union of simplices ifir (which implies that every edge Xiisin7"), and

o [T1=1X].

IMiller et al. call it apiecewise linear systgnbut their construction is so obviously a complex that a glesim name seems
obligatory. The present definition isftérent from Miller’s, but nearly equivalent, with one trudfdrence: Miller does not impose
the first condition given here, but permits vertices to li¢ha relative interior of an edge. Disallowing such vertisgsplifies the
presentation while entailing no essential loss of gengrddecause edges with vertices in their relative interdars be subdivided
into edges that obey the condition.
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Figure 4.8:Chazelle’s polyhedron.

Schbnhardt’s polyhedron shows that not every PLC has a triatigul. Every convex polyhedron has
a triangulation; what about convex polyhedra with intesedments? Figure 4.7 illustrates a PLC with no
triangulation, consisting of a cube inside which three ogthnal segments pass by each other but do not
intersect. If any one of the segments is omitted, the PLC hasgulation. This example shows that,
unlike with planar triangulations, it is not always possibd insert a new edge into a tetrahedralization.

Because some polyhedra and PLCs do not have triangulaBteigger triangulations (Definition 35) are
even more important in three dimensions than in the planazé€lte [27] shows that everyvertex polyhe-
dron has a Steiner triangulation with at mé¥h?) vertices, found by constructingvartical decomposition
of the polyhedron. The same is true for PLCs of complexitynfortunately, there are polyhedra for which
it is not possible to do better; Figure 4.8 depicts Chazefelyhedron [27], which hasvertices anad)(n)
edges, but cannot be divided into fewer th@m?) convex bodies. Chazelle and Palios [28] show that the
worst-case complexity of subdividing a polyhedron is redato its number of reflex edges: they give an
algorithm that divides any polyhedron witlreflex edges int@(n + r?) tetrahedra, and they show that some
polyhedra withr reflex edges cannot be divided into fewer tigim + r?) convex bodies.

It appears likely, thoughitis proven only in two dimensipthat there exist PLCs whose smallest Steiner
Delaunay triangulations are asymptotically larger thartmallest Steiner triangulations. Algorithms by
Murphy, Mount, and Gable [87], Cohen-Steiner, Colin de Vere, and Yvinec [40], Cheng and Poon [33],
and Rand and Walkington [97] can find a Steiner Delaunay tiettealization of any three-dimensional
polyhedron, but they might introduce a superpolynomial bemof new vertices. No known algorithm
for finding Steiner Delaunay tetrahedralizations is gua@d to introduce only a polynomial number of
new vertices, and no algorithm of any complexity has bef@ered for four- or higher-dimensional Steiner
Delaunay triangulations. Moreover, the existing algarishall seem to introduce an unnecessarily large
number of vertices near small domain angles. These proldambe partly remediated by Steiner CDTs.
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Figure 4.9:A constrained Delaunay tetrahedron 7.

4.5.2 The Constrained Delaunay Triangulation inE3

Three-dimensional constrained Delaunay triangulatispsra to retain most of the advantages of Delaunay
triangulations while respecting constraints. But Figutés 4.7, and 4.8 demonstrate that some PLCs, even
some polyhedra, have no triangulation at all. Moreover,espolyhedra that do have triangulations do not
have CDTs. Nevertheless, CDTs are useful because, if we ilirgwto add new vertices, a Steiner CDT
might require many fewer vertices than a Steiner Delaunagdulation.

As in the plane, a Constrained Delaunay Lemma states thag #ie several equivalent definitions of
“constrained Delaunay triangulation.” The simplest i #&DT is a triangulation of a PLC in which every
facet not included in a wall is locally Delaunay. A CDTi@irs from a Delaunay triangulation in three ways:
it is not necessarily convex, it is required to respect a PArte] the facets of the CDT that are included in
walls are exempt from being locally Delaunay.

The primary definition of CDT specifies that every tetrahadi® constrained Delaunay, defined as
follows.

Definition 42 (constrained Delaunay)n the context of a PLX, a simplexo is constrained Delaunayit
satisfies the following three conditions.

e X containso’s vertices.
e o respectsX. (Recall Definition 34.)

e There is a circumsphere of that encloses no vertex iXithat is visible from any point in the relative
interior of o

Two points arevisible to each other (equivalently, caseeeach other) ifiX| includes the open line
segment connecting the two points, but no linear celimtersects only part of that open line segment. A
linear cell that intersects the open line segment but doeemtirely include it is said toccludethe visibility
between the two points.

Figure 4.9 depicts a constrained Delaunay tetrahetlrdhe faces ot whose relative interiors intersect
the wall f are included inf, sor respectsX. The circumsphere afencloses one vertex butv is not visible
from any point in the interior of, becausd occludes its visibility.

Definition 43 (constrained Delaunay triangulatiord constrained Delaunay triangulati6@DT) of a PLC
X is a triangulation ofX in which every tetrahedron is constrained Delaunay, and\etréangle that is not
a face of a tetrahedron is constrained Delaunay.
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Figure 4.10:Left: a PLC with no CDT. Center: the sole tetrahedralization of this PLC. Its three tetrahedra are
not constrained Delaunay. Right: the two Delaunay tetrahedra do not respect the central segment.

Figure 4.6 illustrates a PLC and its CDT. Observe that the Ra€a polygon that is not a face of any
polyhedron; this face is triangulated with constrainedabehy triangles.

Figure 4.10 illustrates a PLC that has no CDT because of aegpgthat runs vertically through the
domain interior. There is only one tetrahedralization @ tALC—composed of three tetrahedra encircling
the central segment—and its tetrahedra are not constréiedinay, because each of them has a visible
vertex inside its circumsphere. Whereas walls usuallylbEmough visibility to ensure their presence in
a CDT, segments usually do not. But segments can dictatatB&T does not exist at all. If the central
segment in Figure 4.10 is removed, the PLC has a CDT made wmodetrahedra.

A Steiner CDTor conforming CDTof X is a Steiner triangulation ok in which every tetrahedron
is constrained Delaunay, and every triangle that is not a t#ca tetrahedron is constrained Delaunay.
Algorithms for constructing Steiner CDTs (e.g. mesh getiemaalgorithms) must sometimes place new
vertices on segments to force the triangulation to respecht

45.3 The CDT Theorem

Although not all piecewise linear complexes have consé@iDelaunay triangulations, there is an easily
tested, sfiicient (but not necessary) condition that guarantees th&iaeéxists. A three-dimensional PLC
X is edge-protected every edge inX is strongly Delaunay.

Theorem 31(CDT Theorem [118]) Every edge-protected PLC has a CDT. O

Itis not suficient for every edge iX to be Delaunay. If all six vertices of Sghhardt's polyhedron lie on
a common sphere, then all of its edges (and all its faces) al&ubay, but it still has no tetrahedralization.
It is not possible to place the vertices of $ahardt’s polyhedron so that all three of its reflex edges are
strongly Delaunay, though any two may be.

What if a PLC that you wish to triangulate is not edge-prad@t You can make it edge-protected by
adding vertices on its segments—a task that any Delaunaly gegeration algorithm must do anyway. The
augmented PLC has a CDT, which is a Steiner CDT of the orig?h&l.

Figure 4.11 illustrates the flierence between using a Delaunay triangulation and usingfaf@Dmesh
generation. With a Delaunay triangulation, the mesh geaenaust insert new vertices that guarantee that
every segment is a union of Delaunay (preferably stronglialieay) edges, and every wall is a union
of Delaunay (preferably strongly Delaunay) triangles. WMt CDT, new vertices must be inserted that
guarantee that every segment is a union of strongly Delaadggs; but then the augmented PLC is edge-
protected, and the CDT Theorem guarantees that the wallseceatovered without inserting any additional
vertices. The advantage of a CDT is that many fewer vertidgbte required.
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Figure 4.11:Comparison of Steiner Delaunay triangulations and Steiner CDTs. For clarity, vertices inside each
box are shown, but tetrahedra are not. For both types of triangulation, missing segments are recovered by insert-
ing new vertices until each segment is a union of strongly Delaunay edges. In a Steiner Delaunay triangulation,
additional vertices are inserted until each wall is a union of strongly Delaunay triangles. In a Steiner CDT, no
additional vertices need be inserted; the walls are recovered by computing a CDT.

Testing whether a PLK is edge-protected is straightforward. Form the Delaunapgulation of the
vertices inX. If a segments € X is missing from the triangulation, thenis not strongly Delaunay, and
X is not edge-protected. His present, it is Delaunay. Testing whether a Delaunay segmis strongly
Delaunay is equivalent to determining whether the Voromdygon dual tos is nondegenerate.

4.5.4 Properties of the Constrained Delaunay Triangulatia in E3

This section summarizes the properties of three-dimeas©DTs. Proofs of the claims in this section may
be found elsewhere [118].

The Delaunay Lemma for three-dimensional CDTs providedtamative definition of CDT: a triangu-
lation of a PLCX is a CDT if and only if every one of its facets is locally Delayror is included in a wall
in X.

Theorem 32(Constrained Delaunay Lemma)et X be a PLC in which every linear cell is a face of some
polyhedron inX, so there are no dangling polygons. L&tbe a triangulation ofX. The following three
statements are equivalent.

A. Every tetrahedron ifi” is constrained Delaunay (i.€- is constrained Delaunay).
B. Every facet irv” not included in a wall inX is constrained Delaunay.
C. Every facet irv” not included in a wall inX is locally Delaunay. |
A constrained Delaunay triangulatioh of X induces a two-dimensional triangulation of each wall
f e X, namelyT |t = {o € T : o C f}. Statement B above implies that the triangle§Tin need not be

constrained Delaunay with respectXe—but theyare constrained Delaunay with respect to the wiglin
the following sense.

Theorem 33. Let7 be a CDT of a three-dimensional PLE. Let f € X be a wall. Let7|; be the set
of simplices in7 that are included in f. Lei]|s be the set of faces of f (including f itselfX|s is a
two-dimensional PLC embedded in three-dimensional spdHuen7 | is a CDT ofX]+. [ |

A PLC isgenericif its vertices are generic. A generic PLC has a unique CDiThiés one at all.
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Theorem 34. A generic piecewise linear complex has at most one consitidelaunay triangulation.ll

A consequence of Theorems 33 and 34 is that, if a PLC is gereef@®T construction algorithm can
begin by computing the two-dimensional CDTs of the wallgnthuse them to help compute the three-
dimensional CDT of the PLC, secure in the knowledge that thk twangulations will match the volume
triangulation.

CDTs inherit the optimality properties of Delaunay triafegions described in Section 4.4, albeit with
respect to a smaller set of triangulations, hamely the gritations of a PLC. However, if a PLC has no
CDT, finding the optimal triangulation is an open problem.

Theorem 35. If a PLC X has a CDT, then every CDT &f minimizes the largest min-containment sphere,
compared with all other triangulations of. Every CDT ofX also optimizes the criteria discussed in
Theorems 27, 28, and 30. |



Chapter 5

Algorithms for Constructing Delaunay
Triangulations in E®

The most popular algorithms for constructing Delaunayatetdralizations are incremental insertion and
gift-wrapping algorithms, both of which generalize to #a@ more dimensions with little fliculty. This
chapter reprises those algorithms, with attention to theets that are élierent in three dimensions. In
particular, the analysis of the running time of point looativith conflict lists is more complicated in three
dimensions than in the plane. | use this gap as an opporttmitytroduce a more sophisticated vertex
ordering and its analysis. Instead of fully randomizingdhger in which vertices are inserted, | recommend
using abiased randomized insertion ordérat employs just enough randomness to ensure that thetegpec
running time is the worst-case optin@(n?)—or better yetQ(nlogn) time for the classes of point sets most
commonly triangulated in practice—while maintaining egbspatial locality that implementations of the
algorithm use the memory hierarchy mof@aently. This vertex ordering, combined with a simpler ggoin
location method, yields the fastest three-dimensionah®y triangulators in practice.

CDTs have received much less study in three dimensionsithami There are two classes of algorithm
available: gift-wrapping and incremental wall inserti@ift-wrapping is easier to implement; it is not much
different in three dimensions than in two. It runglinh) time for Delaunay triangulations a@{nmh time
for CDTs, wheren is the number of verticesn is the total complexity of the PLC’s polygons, ahds the
number of tetrahedra produced. There is a variant of theag#ipping algorithm that, by constructing the
tetrahedra in a disciplined order and using other trickssdavisibility computations [115], runs i@(nh)
worst-case time, but | omit it here.

Perhaps the fastest three-dimensional CDT constructigorighm in practice is similar to the one |
advocate in two dimensions. First, construct a Delaunaygpillation of the PLC's vertices, then insert its
walls one by one with a flip algorithm [117]. This algorithmnstructs a CDT irO(n? logn) time, though
there are reasons to believe it will rundi{nlogn) time on most PLCs in practice. Be forewarned, however,
that this algorithm only works on edge-protected PLCs! T&igarely a fatal restriction, because a mesh
generation algorithm that uses CDTs should probably insatices on the PLC’s edges to make it edge-
protected and ensure that it has a CDT. Some PLCs have CDpgalest being edge-protected; if they are
generic, their CDTs can be constructed by gift-wrapping.

71
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Procedure Purpose

ADDTETRAHEDRON(U, V, W, X) Add a positively oriented tetrahedromwx

DeLeteTETRAHEDRON(U, V, W, X) | Delete a positively oriented tetrahednawwx

AbJacent(U, V, W) Return a vertex such thauvwxis a positively oriented tetrahedron
ADpJacENTONE(U) Return vertices, w, x such thauvwxis a positively oriented tetrahedron

Figure 5.1:An interface for a tetrahedralization data structure.
5.1 A Dictionary Data Structure for Tetrahedralizations

Figure 5.1 summarizes an interface for storing a tetrathedraplex, analogous to the interface for planar
triangulations in Section 3.2. Two procedurespAeTraHEDRON and D:LETE TETRAHEDRON, Specify a tetra-
hedron to be added or deleted by listing its vertices withsitppe orientation, as described in Section 3.1.
The procedure Aiacent recovers the tetrahedron adjoining a specified orientaddtilar face, or returrés

if there is no such tetrahedron. The vertices of a tetrahedr@y include the ghost vertex. The data structure
enforces the invariant that only two tetrahedra may adjairaagular face, and only one on each side of the
face.

The simplest fast implementation echoes the implememtagscribed in Section 3.2. Store each tetra-
hedronauvwxfour times in a hash table, keyed on the oriented faa@sn, Auxyv, Auwx, andavxw. To
support AsacentONE queries, an array stores, for each vetea triangleauvwsuch that the most recently
added tetrahedron adjoininchasauvwfor a face.

The interface and data structure extend easily to permistbiage of triangles or edges that are not
part of any tetrahedron, but it does not support fast ad@cguoeries on edges. For a substantially more
space-#icient representation, see Blandford, Blelloch, Clemend keadow [16].

5.2 Delaunay Vertex Insertion inE3

The Bowyer—Watson algorithm extends in a straightforwaey wo three (or more) dimensions. Recall
that the algorithm inserts a vertexnto a Delaunay triangulation in four steps. First, find osteghedron
whose circumsphere enclosegpoint location). Second, a depth-first search in the tugagpn finds all

the other tetrahedra whose circumspheres enalpge time proportional to their number. Third, delete
these tetrahedra, as illustrated in Figure 5.2. The unigheofieleted tetrahedra is a star-shaped polyhedral
cavity. Fourth, for each triangular face of the cavity, ¢teemnew tetrahedron joining it with as illustrated.
Figure 5.3 gives pseudocode that interleaves the secadrdi,and fourth steps.

To support inserting vertices that lie outside the triaatjah, each triangular face on the boundary of
the triangulation adjoins ghost tetrahedromnalogous to the ghost triangles of Section 3.4, havingethre
real vertices and a ghost vertgxLet Auvwbe a boundary triangle, oriented so the triangulation isrikin
The incremental insertion algorithm stores a positiveigmed tetrahedronvwgin the triangulation data
structure.

There are two cases in whiciwvwgmust be deleted, i.euvwis no longer a boundary triangle: if a vertex
is inserted in the open halfspace in frontzafvw, or if a newly inserted vertex lies in the open circumdisk
of auvw(i.e. itis coplanar withuvwand enclosed by its circumcircle). Call the union of these tegions
the outer halfspacef Auvw. It is the set of points enclosed by the circumspherawfgin the limit asg
moves away from the triangulation.
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Figure 5.2:The Bowyer-Watson algorithm in three dimensions. A new vertex falls inside the circumspheres of
the two tetrahedra illustrated at left. These tetrahedra may be surrounded by other tetrahedra, which for clarity are
not shown. The two tetrahedra and the face they share (shaded) are deleted. At center, the five new Delaunay
edges. At right, the nine new Delaunay triangles—one for each edge of the cavity. Six new tetrahedra are
created—one for each face of the cavity.

INSERTVERTEX3D(U, V, W, X, Y)

{ uis the vertex to insertvwxyis a positively oriented tetrahedron whose circumsphectosasu. }
1 DELETETETRAHEDRON(V, W, X, )

CoNSIDER TETRAHEDRON(U, X, W, V)

ConsIDER TETRAHEDRON(U, Y, V, W)

ConsIDERTETRAHEDRON(U, V, Y, X)

CoNsIDERTETRAHEDRON(U, W, X, Y)

a b wnN

CoNsIDER TETRAHEDRON(U, V, W, X)
{ uis a new vertex. Is the oriented tetrahedmmvxDelaunay?

6 y « Apiacent(V, W, X)  { Find tetrahedrornwxyopposite the facetwxfromu }

7 ify#0  { Do nothing if the tetrahedron has already been delgted

8 if INSPHERE(U, V, W, X,Y) > 0

9 DeLETETETRAHEDRON(V, W, X, ) { Tetrahedraivwxandvwxyare not Delaunay
10 CoNSIDERTETRAHEDRON(U, V, W, Y)

11 CoNSIDER TETRAHEDRON(U, W, X, V)

12 CoNSIDERTETRAHEDRON(U, X, V, Y)

13 elseAppTeTrRAHEDRON(U, V,W, X)  { vwxis a facet of the cavity andvwxis Delaunay

Figure 5.3: Algorithm for inserting a vertex u into a Delaunay triangulation, given a tetrahedron vwxy whose
circumsphere encloses u. To adapt the code for a weighted Delaunay triangulation, replace the INSPHERE test
in Line 8 with Orient4D(u*, v, w*, X", y*), and choose an input tetrahedron vwxywhose witness hyperplane is
above u*.

5.3 The Running Time of Vertex Insertion in E3

How expensive is vertex insertion, leaving out the cost afplocation? The insertion of a single vertex
into ann-vertex Delaunay triangulation can del@¢én?) tetrahedra if the triangulation is the one depicted
in Figure 4.2. However, a single vertex insertion can ongate®(n) tetrahedra: observe that the boundary
of the cavity is a planar graph, so the cavity has fewer thlbaindary triangles.

It follows that during a sequence ofvertex insertion operations, at ma&¢n?®) tetrahedra are created.
A tetrahedron can only be deleted if it is first created, so@dt®(n?) tetrahedra are deleted, albeit possibly
most of them in a single vertex insertion.
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Randomizing the vertex insertion order does not improvedhreimbers. Fad-dimensional Delaunay
triangulations, the worst-case total number of simplicesmted and deleted by the incremental insertion
algorithm is in@®(n'%2+1) " and the expected total number of simplices created aretedbbyrandom
incremental insertion is i®(n%/21). In the worst case, randomization makes an asymptdtierdince only
whend is even.

However, a special case that occurs frequently in practimgal accounts it seems to be the norm—
is the circumstance where the Delaunay triangulation hagptaxity linear, rather than quadratic, in the
number of vertices, and moreover the intermediate triatgurs produced during incremental insertion
have expected linear complexity. For point sets with thapprty, a random insertion order guarantees that
each vertex insertion will create and delete an expectestanhnumber of tetrahedra, just as it does in the
plane, and we shall see that the random incremental insatgorithm runs in expecte@(nlogn) time.
This running time is often observed in practice, even in aigfimensions. Be forewarned, however, that
there are point sets for which the final triangulation hasdincomplexity but the intermediate triangulations
have expected quadratic complexity, thereby slowing ddwerelgorithm dramatically.

Moreover, even for worst-case point sets, randomizatidpstte support fast point location. Recall that
the last three steps of the Bowyer—Watson algorithm rumie foroportional to the number of tetrahedra they
delete and create, so the running time of the three-dimeakincremental insertion algorithrexcluding
point location, is inO(n?). With conflict lists and a random insertion order, pointdtion is no more
expensive than this, so the random incremental insertigoridhm achieves an optimal expected running
time of O(n?).

5.4 Biased Randomized Insertion Orders

The advantage of inserting vertices in random order is thgudrantees that the expected running time of
point location is optimal, and that pathologically slowccimstances like those illustrated in Figure 3.9 are
unlikely to happen. But there is a serious disadvantagetamrnvertex insertions tend to interact poorly with
the memory hierarchy in modern computers, especiallyaimemory. Ideally, data structures representing
tetrahedra and vertices that are close together geomnbtgbauld be close together in memory—a property
calledspatial locality—for better cache and virtual memory performance.

Amenta, Choi, and Rote [2] show that the permutation of gegidoes not need to be uniformly random
for the running time to be optimal. Aiased randomized insertion ord@BRIO) is a permutation of the
vertices that has strong spatial locality but retains ehaagdomness to obtain an expected running time
in O(n?). Their experiments show that a BRIO greatly improves tifieiency of the memory hierarchy—
especially virtual memory.

Their experiments also show that incremental insertiofieaels superior running times in practice when
it uses a BRIO but replaces the conflict list with a point lcmaimethod that simply walks from the pre-
viously inserted vertex toward the next inserted verteg; Section 5.5. Although walking point location
does not fer as strong a theoretical guarantee on running time as datdisfl, this incremental insertion
algorithm is perhaps the most attractive in practice, agritlmines excellent speed with a simple implemen-
tation.

Let n be the number of vertices to triangulate. A BRIO orders thetices in a sequence ebunds
numbered zero throudtog, n]. Each vertex is assigned to the final round, rofind, n], with probability
1/2. The remaining vertices are assigned to the second-lastireith probability ¥2, and so on. Each
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Figure 5.4:walking to the triangle that contains p.

vertex is assign to round zero with probability/2)'°%" < 1/n. The incremental insertion algorithm
begins by inserting the vertices in round zero, then roured and so on to roundog, n].

Within any single round, the vertices can be arranged in any ordéout threatening the worst-case
expected running time of the algorithm. Hence, we order #r@ces within each round to create as much
spatial locality as possible. One way to do this is to indegtvertices in the order they are encountered on a
space-filling curve such as a Hilbert curve or a z-order culwvsther way, which Amenta et al. tested, is to
store the vertices in an octreelod tree, refined so each leaf node contains only a few vertibes order
the vertices by a traversal of the tree. (Octree traversaiésway to sort vertices along a Hilbert or z-order
curve.)

The tendency of vertices that are geometrically close twyeb be close together in the ordering does
not necessarily guarantee that the data structures assbevith them will be close together in memory.
Amenta et al. addressed this question experimentally byeimenting BRIOs in three fferent Delaunay
triangulation programs written by threeffdirent people, and showing that all three run faster with aBRI
than with a vertex permutation chosen uniformly at randaspeeially when the programs run out of main
memory and have to resort to virtual memory.

Whether you use the traditional random incremental inseglgorithm or a BRIO, you face the problem
of bootstrapping the algorithm. The most practical appnaado choose fourfénely independent vertices,
construct their Delaunay triangulation (a single tetrabeyl create four adjoining ghost tetrahedra, con-
struct a conflict list, and insert the remaining vertices rardom order (a uniformly chosen permutation or
a BRIO). Even if the four bootstrap vertices are not chosadaely, it is possible to prove that the expected
asymptotic running time of the algorithm is not compromised

5.5 Point Location by Walking

By experimentation, Amenta, Choi, and Rote [2] demonstitad, in conjuction with a BRIO, a simple
point location method calledalking appears to outperform conflict lists in practice, althouggrée is no
guarantee of a fast running time. A walking point locatiogaaithm simply traces a straight line through
the triangulation, visiting tetrahedra that intersectlihe as illustrated in Figure 5.4, until it arrives at a
tetrahedron that contains the new vertex [60]. In conjamctiith a vertex permutation chosen uniformly at
random (rather than a BRIO), walking point location visitany tetrahedra and is very slow. But walking is
fast in practice if it follows two guidelines: the verticdsosild be inserted in an order that has much spatial
locality, such as a BRIO, and each walk should begin at the neagntly created tetrahedron. Then the
typical walk visits a small constant number of tetrahdra.

To avoid a long walk between rounds of a BRIO, the vertex ofegy. the tree traversal or the direction
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of the space-filling curve) should be reversed on even-nuedb@unds, so each round begins near where
the previous round ends.

Amenta et al. observe that the three-dimensional incremhgrstertion algorithm with a BRIO and walk-
ing point location appears to run in linear time, not cougtihe initial O(nlogn)-time computation of a
BRIO. For the point sets in their experiments, this obséoudtolds whether they use a BRIO or a spatial
ordering (generated by traversing an octree) that has mtmraness at all. Randomness is often unnecessary
in practice—frequently, simply sorting the vertices al@gpace-filling curve will yield excellent speed—
but because points sets like that illustrated in Figure B2cammon in practice, | recommend choosing a
BRIO to prevent the possibility of a pathologically slow ring time.

5.6 The Gift-Wrapping Algorithm in E3

The gift-wrapping algorithm described in Section 3.8 regsifew new ideas to work in three (or more)
dimensions. The algorithm constructs tetrahedra one ahe, tand maintains a dictionary of unfinished
facets. The pseudocode foiwkn and GrrWrapCDT can be reused, with triangles replaced by tetrahedra,
oriented edges replaced by oriented facets, and circulesireplaced by circumspheres.

The biggest change is that triangles, not segments, seealghdgthm. But the walls in a PLC are
polygons, and are not always triangles. Recall from Thed8rthat a CDT of a PLCX induces a two-
dimensional CDT of each wall iX. To seed the three-dimensional gift-wrapping algorithme oan first
compute the two-dimensional CDT of each wall, then use tia@gies in these CDTs to seed the three-
dimensional algorithm.

To gift-wrap a Delaunay triangulation, seed the algorithithwne strongly Delaunay triangle. One way
to find one is to choose an arbitrary input point and its neareighbor. For the third vertex of the triangle,
choose the input point that minimizes the radius of the eitsfough the three vertices. If the set of input
points is generic, the triangle having these three vertcsgongly Delaunay.

If the input (PLC or point set) is not generic, gift-wrappiisgn even greater danger in three dimensions
than in the plane. Whereas the planar gift-wrapping algoritan handle subsets of four or more cocircular
points by identifying them and giving them special treatimem such approach works reliably in three
dimensions. Imagine a point set that includes six pointsgyan a common empty sphere. Suppose that
gift-wrapping inadvertently tetrahedralizes the spaceiad these points so they are the vertices of a hollow
cavity shaped like S@mnhardt’s polyhedron (from Section 4.5). The algorithml\w# unable to fill the
cavity. By far the most practical solution is to symboliggderturb the points so that they are generic. The
same perturbation should also be used to compute the twerdional CDTs of the PLC’s walls.

Another dfficulty is that the input PLC might not have a CDT, in which cagewrapping will fail in
one of two ways. One possibility is that the algorithm wilil f finish an unfinished facet, even though
there is a vertex in front of that facet, because no vertexantfof that facet is visible from the facet’s
interior. This failure is easy to detect. The second pobifsibs that the algorithm will finish a facet by
constructing a tetrahedron that is not constrained Delgeither because the tetrahedron’s circumsphere
encloses a visible vertex, or because the tetrahedrorsatisrthe preexisting simplices wrongly (not in a
complex). An attempt to gift-wrap Sohhardt's polyhedron brings about the last fate. The allgoribe-
comes substantially slower if it tries to detect these fadu Perhaps a better solution is to run the algorithm
only on PLCs that are edge-protected or otherwise knownve G&DTSs.

A strange property of the CDT is that it is NP-hard to deteenitnether a PLC has a CDT, if the PLC is
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not generic [59]. However, a polynomial-time algorithmvs#able for generic PLCs: run the gift-wrapping
algorithm, and check whether it succeeded.

Gift-wrapping take€)(nh) time for a Delaunay triangulation, a¥(nmh time for a CDT, wherea is the
number of input pointanis the total complexity of the input walls, afds the number of tetrahedra in the
CDT; his usually linear im, but could be quadratic in the worst case.

5.7 Inserting a Vertex into a Constrained Delaunay Trianguétion in E®

Section 3.6 describes how to adapt the Bowyer—Watson vergextion algorithm to CDTs in the plane.
The same adaptions work for three-dimensional CDTSs, buktisea catch: even if a PL& has a CDT, an
augmented PLX U {v} might not have one. This circumstance can be diagnosedelepth-first search
step of the Bowyer—Watson algorithm in one of two ways: byf#we that the cavity is not star-shaped, thus
one of the newly created tetrahedra has nonpositive otienteor by the fact that a segment or polygon
runs through the interior of the cavity. An implementati@maheck explicitly for these circumstances, and
signal that the vertex cannot be inserted.






Chapter 6

Two-Dimensional Delaunay Refinement
Algorithms for Quality Mesh Generation

Delaunay refinement algorithms for mesh generation opésateaintaining a Delaunay or constrained De-
launay triangulation, which is refined by inserting carlgfplaced vertices until the mesh meets constraints
on element quality and size.

These algorithms are successful because they exploitaddagorable characteristics of Delaunay tri-
angulations. One such characteristic, already mentiom&hapter 2, is Lawson’s result that a Delaunay
triangulation maximizes the minimum angle among all pdeditiangulations of a point set. Another fea-
ture is that inserting a vertex is a local operation, and Basdnexpensive except in unusual cases. The
act of inserting a vertex to improve poor-quality elementsme part of a mesh will not unnecessarily per-
turb a distant part of the mesh that has no bad elements. éfartine, Delaunay triangulations have been
extensively studied, and good algorithms for their cortdiom are available.

The greatest advantage of Delaunay triangulations is legsws. The central question of any Delaunay
refinement algorithm is, “Where should the next vertex beriesl?” As Section 6.1 will demonstrate, a
reasonable answer is, “As far from other vertices as pasSilila new vertex is inserted too close to another
vertex, the resulting small edge will engender thin trizsgl

Because a Delaunay triangle has no vertices in its circutegin Delaunay triangulation is an ideal
search structure for finding points that are far from othetiees. (It's no coincidence that the circumcenter
of each triangle of a Delaunay triangulation is a vertex ef¢hrresponding Voronoi diagram.)

This chapter begins with a review of Delaunay refinementrélyos introduced by L. Paul Chew and
Jim Ruppert. Ruppert [101] proves that his algorithm presugicely graded, size-optimal meshes with no
angles smaller than about.Z0. | also discuss theoretical and practical issues in trikating regions with
small angles. The foundations built here undergird theetltienensional Delaunay refinement algorithms
examined in the next chapter.
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Figure 6.1: Any triangle whose circumradius-to-shortest edge ratio is larger than some bound B is split by
inserting a vertex at its circumcenter. The Delaunay property is maintained, and the triangle is thus eliminated.
Every new edge has length at least B times that of shortest edge of the poor triangle.

6.1 The Key Idea Behind Delaunay Refinement

The central operation of Chew's and Ruppert’s Delaunay eefient algorithms, as well as the three-
dimensional algorithms described in the next chapter, ésittisertion of a vertex at the circumcenter of
an element of poor quality. The Delaunay property is maiadj using Lawson’s algorithm or the Bowyer—
Watson algorithm for the incremental update of Delaunangulations. The poor-quality triangle cannot
survive, because its circumcircle is no longer empty. Fewity, | refer to the act of inserting a vertex at
a triangle’s circumcenter aplitting a triangle. The idea dates back at least to the engineetargtlire of
the mid-1980s [56]. If poor triangles are split one by on¢hesi all will eventually be eliminated, or the
algorithm will run forever.

The main insight behind all the Delaunay refinement algorlfs that the refinement loop is guaranteed
to terminate if the notion of “poor quality” includes onlydngles that have a circumradius-to-shortest edge
ratio larger than some appropriate bouhdRecall that the only new edges created by the Delaunaytioser
of a vertexv are edges connected ¥qsee Figure 6.1). Becausds the circumcenter of some Delaunay
trianglet, and there were no vertices inside the circumcirclelufforev was inserted, no new edge can be
shorter than the circumradius bfBecausé has a circumradius-to-shortest edge ratio larger Baavery
new edge has length at ledstimes that of the shortest edgetof

Ruppert’s Delaunay refinement algorithm [102] employs anonf B = V2, and Chew’s second Delau-
nay refinement algorithm [37] employs a boundBf 1. Chew's first Delaunay refinement algorithm [35]
splits any triangle whose circumradius is greater thanghgth of the shortest edge in the entire mesh, thus
achieving a bound oB = 1, but forcing all triangles to have uniform size. With théseinds, every new
edge created is at least as long as some other edge alreddyrimesh. Hence, no vertex is ever inserted
closer to another vertex than the length of the shortest editpe initial triangulation. Delaunay refinement
must eventually terminate, because the augmented triatigubvill run out of places to put vertices. When
it does, all angles are bounded betweery2@nd 1386° for Ruppert’s algorithm, and between°3hd 120
for Chew'’s.

Henceforth, a triangle whose circumradius-to-shortegeeadtio is greater thaB is said to beskinny
Figure 6.2 provides a fferent intuition for why all skinny triangles are eventualjminated by Delaunay
refinement. The new vertices that are inserted into a triatign (grey dots) are spaced roughly according
to the length of the shortest nearby edge. Because skirangtas have relatively large circumradii, their
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Needle

Figure 6.2:Skinny triangles have circumcircles larger than their shortest edges. Each skinny triangle may be
classified as a needle, whose longest edge is much longer than its shortest edge, or a cap, which has an angle
close to 18C°. (The classifications are not mutually exclusive.)

circumcircles are inevitably popped. When enough vertaresintroduced that the spacing of vertices is
somewhat uniform, large empty circumcircles cannot adjaiall edges, and no skinny triangles can remain
in the Delaunay triangulation. Fortunately, the spacingestices does not need to be so uniform that the
mesh is poorly graded; this fact is formalized in Section4.3

These ideas generalize without change to higher dimensidm&agine a triangulation that has no
boundaries—perhaps it has infinite extent, or perhapsstitiea periodic space that “wraps around” at
the boundaries. Regardless of the dimensionality, Delavefanement can eliminate all simplices having
a circumradius-to-shortest edge ratio greater than ortepwuti creating any edge shorter than the shortest
edge already present.

Unfortunately, my description of Delaunay refinement thardias a gaping hole: mesh boundaries have
not been accounted for. The flaw in the procedure describ@gedb that the circumcenter of a poor triangle
might not lie in the mesh at all. Delaunay refinement alganghincluding the two-dimensional algorithms
of Chew and Ruppert and the three-dimensional algorithrasrideed in the next chapter, are distinguished
primarily by how they handle boundaries. Boundaries cooapdi mesh generation immensely, and the
difficulty of coping with boundaries increases in higher dimensi

6.2 Chew’s First Delaunay Refinement Algorithm

Paul Chew has published at least two Delaunay refinementithlgs of great interest. The first, described
here, produces triangulations of uniform density [35]. $keond, which can produce graded meshes [37],
is discussed in Section 6.4.

Given a constrained Delaunay triangulation whose shoetdgt has lengthyin, Chew’s first algorithm
splits any triangle whose circumradius is greater thap, and hence creates a uniform mesh. The algorithm
never introduces an edge shorter tigy), SO any two vertices are separated by a distance of athggst
The augmented triangulation will eventually run out of @sto put vertices, and termination is inevitable.

Of course, the boundaries of the mesh may prevent some skiangles from being eliminated. Fig-
ure 6.3 illustrates an example in which there is a poor-tyuaiangle, but no vertex can be placed inside its
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Figure 6.3: The bold triangle could be eliminated by inserting a vertex in its circumcircle. However, a vertex
cannot be placed outside the triangulation domain, and it is forbidden to place a vertex within a distance of hnin
from any other vertex. The forbidden region includes the shaded disks, which entirely cover the bold triangle.

circumcircle without creating an edge smaller thg,, which would compromise the termination guaran-
tee. Chew circumvents this problem by subdividing the bauied (possibly with a smaller value b;,)
beforecommencing Delaunay refinement.

The input to Chew’s algorithm is a PSLG that is presumed tedmment-boundeaneaning that the
region to be triangulated is entirely enclosed within segisie(Any PSLG may be converted to a segment-
bounded PSLG by any two-dimensional convex hull algoritim,convex triangulation is desired.) Untri-
angulated holes in the PSLG are permitted, but these musbalsounded by segments. A segment must lie
anywhere a triangulated region of the plane meets an ugtrlated region. The input PSLG is not allowed
to have two adjoining segments separated by an angle lasStha

For some paramethrchosen by the user, all segments are divided into subsegmante lengths are in
the rangeli, V3h]. The paramete must be chosen small enough that such a partition exists.Veevees
are placed at the division points. Furthermdrenay be no larger than the smallest distance between any
two vertices of the resulting partition. (If a vertex is ads a segment, this latter restriction may necessitate
a smaller value ofi than would be indicated by the input vertices alone.)

Chew constructs the constrained Delaunay triangulatighisimodified PSLG, then applies Delaunay
refinement while maintaining the invariant that the tridlagjon is constrained Delaunay. Circumcenters of
triangles whose circumradii are larger tHaare inserted, one at a time. When no such triangle remaias, th
algorithm terminates.

Because no subsegment has length greater t/8m and specifically because no boundary subsegment
has such length, the circumcenter of any triangle whoseiradius exceedsfalls within the mesh, at a
distance of at leadt/2 from any subsegment. Why? If a circumcenter is a distarsztleanh/2 from a
subsegment whose length is no greater tv@, then the circumcenter is a distance less thémmm one
of the subsegment’s endpoints.

Upon termination, no circumradius is longer tharand no edge is shorter th&éinso no triangle has
a circumradius-to-shortest edge ratio larger than one,tle@dnesh contains no angle smaller thari. 30
Furthermore, no edge is longer tham 2f the length of a Delaunay edge is greater thantBen at least one
of the two Delaunay triangles that contain it has a circunusthrger tharh and is eligible for splitting.)

Chew's first algorithm handles boundaries in a simple andaglemanner, at the cost that it only pro-
duces meshes of uniform density, as illustrated in Figuée 6.
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Figure 6.4:A mesh generated by Chew's first Delaunay refinement algorithm. (Courtesy Paul Chew).

Figure 6.5: A demonstration of the ability of Delaunay refinement to achieve large gradations in triangle size
while constraining angles. No angle is smaller than 24°.

6.3 Ruppert’'s Delaunay Refinement Algorithm

Jim Ruppert’s algorithm for two-dimensional quality meséngration [102] is perhaps the first theoreti-
cally guaranteed meshing algorithm to be truly satisfactorpractice. It extends Chew'’s first Delaunay
refinement algorithm by allowing the density of trianglevaoy quickly over short distances, as illustrated
in Figure 6.5. The number of triangles produced is typicaftyaller than the number produced either by
Chew'’s algorithm or the Bern—Eppstein—Gilbert quadtrgedihm [11], as Figure 6.6 shows.

| have mentioned that Chew independently developed a selbetalinay refinement algorithm quite
similar to Ruppert’s [37]. | present Ruppert’s algorithnsfin part because Ruppert's earliest publications
of his results [100, 101] slightly predate Chew’s, and maim¢cause the algorithm is accompanied by a
proof that it produces meshes that are both nicely gradediaeeoptimal Size optimality means that, for
a given bound on the minimum angle, the algorithm producesshmvhose size (number of elements)
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Figure 6.6:Meshes generated by the Bern—-Eppstein—Gilbert quadtree-based algorithm (top), Chew’s first De-
launay refinement algorithm (center), and Ruppert’'s Delaunay refinement algorithm (bottom). For this polygon,
Chew’s second Delaunay refinement algorithm produces nearly the same mesh as Ruppert's. (The first mesh
was produced by the program tripoint, courtesy Scott Mitchell.)
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Figure 6.7:Segments are split recursively (while maintaining the constrained Delaunay property) until no sub-
segment is encroached.

is at most a constant factor larger than the size of the setglessible mesh that meets the same angle
bound. (The constant depends upon the angle bound, butdépendent of the input PSLG. The constant
can be explicitly calculated for any specific angle bound jtis too large to be useful as a practical bound.)
Sections 6.4.2 and 6.4.3 apply Ruppert’s analysis meth@h#v’s algorithm, which yields better bounds
on element quality than Ruppert’s.

6.3.1 Description of the Algorithm

Ruppert’s algorithm is presented here with a few modificetiom Ruppert’s original presentation. The
most significant change is that the algorithm here begink thi¢ constrained Delaunay triangulation of
the segment-bounded PSLG provided as input. In contragip@tis presentation begins with a Delaunay
triangulation, and the missing segments are recovereddghrstitching, described in Section 6.

Ruppert’s algorithm inserts additional vertices (whiléngsLawson’s algorithm or the Bowyaiatson
algorithm to maintain the constrained Delaunay propentyi all triangles satisfy the constraints on quality
and size set by the user. Like Chew’s algorithm, Ruppert’y digide each segment into subsegments—
but not as the first step of the algorithm. Instead, the dlgarinterleaves segment splitting with triangle
splitting. Initially, each segment comprises one subsegméertex insertion is governed by two rules.

e Thediametral circleof a subsegment is the (unique) smallest circle that enslitgesubsegment. A
subsegment is said to mmcroachedf a vertex other than its endpoints lies on or inside its diam
tral circle, and the encroaching vertex is visible from theefior of the subsegment. (Visibility is
obstructed only by other segments.) Any encroached sulmgghmt arises is immediately split into
two subsegments by inserting a vertex at its midpoint, astiiated in Figure 6.7. These subsegments
have smaller diametral circles, and may or may not be enbezhthemselves; splitting continues
until no subsegment is encroached.

e Each skinny triangle (having a circumradius-to-shorteigieeratio greater than some bouBY is
normally split by inserting a vertex at its circumcenteggteliminating the triangle. However, if the
new vertex would encroach upon any subsegment, then it iss@itted; instead, all the subsegments
it would encroach upon are split.

Encroached subsegments are given priority over skinngglés. The order in which subsegments are
split, or skinny triangles are split, is arbitrary.

When no encroached subsegments remain, all triangles ayad ed the triangulation are Delaunay. A
mesh produced by Ruppert’s algorithm is Delaunay, and mbicjonstrained Delaunay.
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A sample input PSLG.

A third encroached
subsegment is split.

Although the vertex was
rejected, the segment it
encroached upon is still
marked for bisection.

The encroached

N
N
N

Constrained Delaunay
triangulation of the input
vertices. Encroached
segments are bold.

N
/AN

The last encroached
subsegment is split.
Find a skinny triangle.

I
I
Jeas

The encroached
segment is split, and
the skinny triangle that
led to its bisection is
eliminated.

The skinny triangle was
not eliminated. Attempt

One encroached
subsegment is
bisected.

The skinny triangle’s
circumcenter is
inserted. Find another
skinny triangle.

A circumcenter is
successfully inserted,
creating another skinny
triangle.

lirS
PR

This time, its
circumcenter is inserted

And another.

X

This circumcenter
encroaches upon a
segment, and is
rejected.

The triangle’s
circumcenter is
rejected.

The final mesh. No

successfully. There’s
only one skinny triangle
left.

angle is smaller than

to insert its
20.7°.

circumcenter again.

segment will be split.

Figure 6.8:A complete run of Ruppert’s algorithm with an upper bound of B = V2 on circumradius-to-shortest
edge ratios. The first two images are the input PSLG and the constrained Delaunay triangulation of its vertices. In
each image, highlighted subsegments or triangles are about to be split, and open vertices are rejected because
they encroach upon a subsegment.
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Figure 6.9:1f the circumcenter v of a triangle t lies outside the triangulation, then some subsegment s is en-
croached.

Figure 6.8 illustrates the generation of a mesh by Ruppeltjsrithm from start to finish. Several
characteristics of the algorithm are worth noting. Firfgihe circumcenter of a skinny triangle is considered
for insertion and rejected, it may still be successfullyeied later, after the subsegments it encroaches upon
have been split. On the other hand, the act of splitting tlsobsegments is sometimes enough to eliminate
the skinny triangle. Second, the smaller features at thested of the mesh lead to the insertion of some
vertices to the right, but the size of the triangles on thhtrigmains larger than the size of the triangles on
the left. The smallest angle in the final mesh is321

There is a loose end to tie up. What should happen if the cicember of a skinny triangle falls outside
the triangulation? Fortunately, the following lemma shales question is moot.

Lemma 36. Let T be a segment-bounded Delaunay triangulation. (Heacg,edge of T that belongs to
only one triangle is a subsegment.) Suppose that T has noactwd subsegments. Let v be the circum-
center of some trianglet of T. Thenvliesin T.

Proof: Suppose for the sake of contradiction thidies outsideT. Let ¢ be the centroid of; c clearly lies
insideT. Because the triangulation is segment-bounded, the ligmaltcvy must cross some subsegment
s, as Figure 6.9 illustrates. (If there are several such gubeats, lets be the subsegment nearest
Becausev is entirely enclosed by the circumcircle pfthe circumcircle must enclose a portionfout
the constrained Delaunay property requires that the cicowte enclose no vertex visible from so the
circumcircle cannot enclose the endpoints.of

Because& and the center dfs circumcircle lie on opposite sides gfthe portion of the circumcircle that
lies strictly on the same side sfasc (the bold arc in the illustration) is entirely enclosed bg tliametral
circle of s. Each vertex of lies ont’s circumcircle and either is an endpoint gfor lies on the same side
of sasc. Up to two of the vertices df may be endpoints of, but at least one vertex ¢fmust lie strictly
inside the diametral circle & But T has no encroached subsegments by assumption; the rekisfdly
contradiction. |

Lemma 36 ders the best reason why encroached subsegments are giwaty@ver skinny triangles.
Because a circumcenter is inserted only when there are moasted subsegments, one is assured that the
circumcenter will be within the triangulation. The act ofigmg encroached subsegments rids the mesh of
triangles whose circumcircles lie outside it. The lemmalse aeassuring to applications (like some finite
volume methods) that require all triangle circumcenteigetaithin the triangulation.
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Figure 6.10:The radius of each disk illustrated here is the local feature size of the point at its center.

In addition to being required to satisfy a quality criteridriangles can also be required to satisfy a
maximum size criterion. In a finite element problem, thengigs must be small enough to ensure that
the finite element solution accurately approximates the salution of some partial fierential equation.
Ruppert’s algorithm can allow the user to specify an uppenidan allowable triangle areas or edge lengths,
and the bound may be a function of each triangle’s locatiamngles that exceed the local upper bound
are split, whether they are skinny or not. So long as the fondiounding the sizes of triangles is itself
everywhere greater than some positive constant, therettgreat to the algorithm’s termination guarantee.

6.3.2 Local Feature Sizes of Planar Straight Line Graphs

The claim that Ruppert’s algorithm produces nicely gradedimes is based on the fact that the spacing of
vertices at any location in the mesh is within a constanbfaat the sparsest possible spacing. To formalize
the idea of “sparsest possible spacing,” Ruppert introsladeinction called théocal feature sizewhich is
defined over the plane relative to a specific PSLG.

Given a PSLGX, the local feature size Ifg] at any pointp is the radius of the smallest disk centered at
p that intersects two nonincident vertices or segmenis @¢ffwo distinct features, each a vertex or segment,
are said to béncidentif they intersect.) Figure 6.10 illustrates the notion byilgg examples of such disks
for a variety of points.

The local feature size of a point is proportional to the sgsirpossible spacing of vertices in the neigh-
borhood of that point in any triangulation that respectsstbgments and has no skinny triangles. The func-
tion Ifs(") is continuous and has the property that its directionalegves (where they exist) are bounded
in the range 1, 1]. This property leads to a lower bound (within a constantdato be derived in Sec-
tion 6.3.4) on the rate at which edge lengths grade from stod#irge as one moves away from a small
feature. Formally, this is what it means for a mesh to be ‘Igigeaded.”
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Lemma 37 (Ruppert [102]) For any PSLG X, and any two points u and v in the plane,

Ifs(V) < Ifs(u) + [uM.

Proof: The disk having radius Ifsfj centered atl intersects two nonincident featuresXf The disk having
radius Ifs(1) + |uv centered aw contains the prior disk, and thus also intersects the saroddatures.
Hence, the smallest disk centered #that intersects two nonincident featuresfias radius no larger than
Ifs(u) + |uv. |

This lemma generalizes without change to higher dimensibtise triangulation domain is nonconvex
or nonplanar, the lemma can also be generalized to use deaigtsnces—Ilengths of shortest paths that
are constrained to lie within the triangulation domain—téasl of straight-line distances. The proof relies
only on the triangle inequality: i is within a distance of Ifa() of each of two nonincident features, then
is within a distance of Ifs() + |uM of each of those same two features.

6.3.3 Proof of Termination

Ruppert’s algorithm can eliminate any skinny triangle bseriing a vertex, but new skinny triangles might
take its place. How can we be sure the process will ever stofhid section and the next, | present two
proofs of the termination of Ruppert’s algorithm. The fissimilar to the proof that Chew’s first algorithm
terminates, and is included for its intuitive value, andaaese it dfers the best bound on the lengths of the
shortest edges. The second proof, adapted from Ruppkats etter bounds on the lengths of the longer
edges of a graded mesh, and thus shows that the algorithmige®daneshes that are nicely graded and
size-optimal. The presentation here uses a flow graph tosexghe intuition behind Ruppert’s proof and its
natural tendency to bound the circumradius-to-shortest eatio.

Both proofs require thaB > V2, and that any two incident segments (segments that shanedpoint)
in the input PSLG are separated by an angle éf@Ogreater. (Ruppert asks for angles of at least 80t
the weaker bound sfices.) For the second proof, these inequalities must be. stric

A mesh vertexs any vertex that has been successfully inserted into trehrfiecluding the input ver-
tices). Arejected verteis any vertex that is considered for insertion but rejecechiise it encroaches upon
a subsegment. With each mesh vertex or rejected vertassociate aimsertion radius {, equal to the
length of the shortest edge connected tmmediately aftew is introduced into the triangulation. Consider
what this means in threeféerent cases.

e If vis an input vertex, then, is the Euclidean distance betweeand the nearest input vertex visible
fromv. See Figure 6.11(a).

e If vis a vertex inserted at the midpoint of an encroached subsagtherr, is the distance between
v and the nearest encroaching mesh vertex; see Figure 6.1fli{i®re is no encroaching mesh vertex
(some triangle’s circumcenter was considered for inseftiat rejected as encroaching), therns the
radius of the diametral circle of the encroached subsegraadthence the length of each of the two
subsegments thus produced; see Figure 6.11(c).

e If vis a vertex inserted at the circumcenter of a skinny trignflenr,, is the circumradius of the
triangle. See Figure 6.11(d).
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@) (b)

(d)

Figure 6.11:The insertion radius r, of a vertex v is the distance to the nearest vertex when v first appears in
the mesh. (a) If vis an input vertex, ry is the distance to the nearest other input vertex. (b) If v is the midpoint of
a subsegment encroached upon by a mesh vertex, ry is the distance to that vertex. (c) If v is the midpoint of a
subsegment encroached upon only by a rejected vertex, ry is the radius of the subsegment’s diametral circle. (d)
If vis the circumcenter of a skinny triangle, ry is the radius of the circumcircle.

If a vertex is considered for insertion but rejected becaisen encroachment, its insertion radius is
defined the same way—as if it had been inserted, even thoigyhat actually inserted.

Each vertew, including any rejected vertex, haparentvertex p(v), unlessv is an input vertex. Intu-
itively, p(v) is the vertex that is “responsible” for the insertiormofThe parent is defined as follows.

e If vis an input vertex, it has no parent.

e If vis a vertex inserted at the midpoint of an encroached subsegrienp(v) is the encroaching
vertex. (Note thap(v) might be a rejected vertex; a parent need not be a mesh Jyettekere are
several encroaching vertices, choose the one nearest

e If vis a vertex inserted (or rejected) at the circumcenter ofiangktriangle, thenp(v) is the most
recently inserted endpoint of the shortest edge of thaidt@a If both endpoints of the shortest edge
are input vertices, choose one arbitrarily.

Each input vertex is the root of a tree of vertices. Howevdratns interesting is not each tree as a
whole, but the sequence of ancestors of any given vertexhabims a sort of history of the events leading
to the insertion of that vertex. Figure 6.12 illustrates plaeents of all vertices inserted or considered for
insertion during the sample execution of Ruppert’s algaonitn Figure 6.8.

I will use these definitions to show why Ruppert’'s algorithenntinates. The key insight is that no
descendant of a mesh vertex has an insertion radius snalertte vertex’s own insertion radius—unless
the descendant’s local feature size is even smaller. Thwerefio edge will ever appear that is shorter than
the smallest feature in the input PSLG. To prove these faotssider the relationship between the insertion
radii of a vertex and its parent.

Lemma 38. Let v be a vertex, and let p p(v) be its parent, if one exists. Then eithgrx Ifs(v), or
rv > Crp, where

e C = Bifvisthe circumcenter of a skinny triangle;

e C = 1/V2if vis the midpoint of an encroached subsegment and p is #jected) circumcenter of a
skinny triangle;
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Figure 6.12:Trees of vertices for the example of Figure 6.8. Arrows are directed from parents to their children.
Children include all inserted vertices and one rejected vertex.

e C = 1/(2cosw) if vand p lie on incident segments separated by an angte (@fith p encroaching
upon the subsegment whose midpoint is v), whBte< o < 90°; and

e C =sinaif vand p lie on incident segments separated by an angle<o#5°.

Proof: If vis an input vertex, there is another input vertex a distariag 'om v, so Ifs{) < ry, and the
lemma holds.

If vis inserted at the circumcenter of a skinny triangle, therpérentp is the most recently inserted
endpoint of the shortest edge of the triangle; see Figur&(@&)1 Hence, the length of the shortest edge of
the triangle is at least,. Because the triangle is skinny, its circumradius-to-sfstiedge ratio is at leaBf
so its circumradius is, > Brp.

If vis inserted at the midpoint of an encroached subsegs)émere are four cases to consider. The first
two are all that is needed to prove the termination of Ruggpaltjorithm if no angle smaller than 9@s
present in the input. The last two cases consider fleets of acute angles.

¢ If the parentp is an input vertex, or was inserted in a segment not incidetite segment containing
s, then by definition, Ifs) < ry.

e If pis a circumcenter that was considered for insertion buttegebecause it encroaches uppn
thenp lies on or inside the diametral circle ef Because the mesh is constrained Delaunay, one can
show that the circumcircle centered @contains neither endpoint & Hence,ry > rp/ V2. See
Figure 6.13(b) for an example where the relation is equality
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Figure 6.13:The relationship between the insertion radii of a child and its parent. (a) When a skinny triangle
is split, the child’s insertion radius is at least B times larger than that of its parent. (b) When a subsegment is
encroached upon by the circumcenter of a skinny triangle, the child’s insertion radius may be a factor of V2
smaller than the parent’s, as this worst-case example shows. (c, d) When a subsegment is encroached upon by
a vertex in an incident segment, the relationship depends upon the angle a separating the two segments.

e If v andp lie on incident segments separated by an amglghere 45 < a < 90°, the vertexa
(for “apex”) where the two segments meet obviously canmeiriside the diametral circle & see
Figure 6.13(c). Becausgis encroached upon by, p lies on or inside its diametral circle. To find
the worst-case (smallest) valuergfr,, imagine that, anda are fixed; them, = |[vp is minimized
by making the subsegmeastas short as possible, subject to the constraint phagnnot fall outside
its diametral circle. The minimum is achieved when= 2r,. Basic trigonometry shows th{d >

I'n/ cosa, and therefore, > r,/(2 cosa).

e If vandplie on incident segments separated by an angiéerea < 45°, thenr,/r, is minimized not
whenp lies on the diametral circle, but wheris the orthogonal projection qf onto s, as illustrated
in Figure 6.13(d). Hence, > rpsina. |

Lemma 38 limits how quickly the insertion radii can decretiseugh a sequence of descendants of a
vertex. If vertices with ever-smaller insertion radii cahibe generated, then edges shorter than existing
features cannot be introduced, and Delaunay refinemenaisgteed to terminate.

Figure 6.14 expresses this notion as a flow graph. Verticesliaided into three classes: input ver-
tices (which are omitted from the figure because they canadicipate in cycles)free verticesnserted
at circumcenters of triangles, asdgment verticemserted at midpoints of subsegments. Labeled arrows
indicate how a vertex can cause the insertion of a child whssation radius is some factor times that of its
parent. If the graph contains no cycle whose product is lems tne, termination is guaranteed. This goal
is achieved by choosinB to be at leasty2, and ensuring that the minimum angle between input segment
is at least 60. The following theorem formalizes these ideas.

Theorem 39. LetIfsyin be the shortest distance between two nonincident entitesti¢es or segments) of
the input PSLG&.

'Equivalently, Ifs;, = minyIfs(u), whereu is chosen from among the input vertices. The proof that befinifions are
equivalent is omitted, but it relies on the recognition fifi/o points lying on nonincident segments are separateal tgtancel,
then at least one of the endpoints of one of the two segmeseparated from the other segment by a distanckafless. Note
that Ifsyin is not a lower bound for Ifsf over the entire domain; for instance, a segment may hawghéfs.,;,, in which case the
local feature size at its midpoint is |fg/2.
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Figure 6.14 Flow diagram illustrating the worst-case relation between a vertex's insertion radius and the insertion
radii of the children it begets. If no cycles have a product smaller than one, Ruppert's Delaunay refinement
algorithm will terminate. Input vertices are omitted from the diagram because they cannot contribute to cycles.

Suppose that any two incident segments are separated byge ahat least6(°, and a triangle is
considered to be skinny if its circumradius-to-shortesjeedhtio is larger than B, where B V2. Ruppert's
algorithm will terminate, with no triangulation edge sherthanlfsm;,.

Proof: Suppose for the sake of contradiction that the algorithmothices an edge shorter than}fsinto
the mesh. Lee be the first such edge introduced. Clearly, the endpoinéscahnot both be input vertices,
nor can they lie on nonincident segments. L.k the most recently inserted endpoineof

By assumption, no edge shorter thap,lfsexisted before was inserted. Hence, for any ancestaf v
that is a mesh vertexg > Ifspin. Let p = p(v) be the parent of, and letg = p(p) be the grandparent of
(if one exists). Consider the following cases.

e If vis the circumcenter of a skinny triangle, then by Lemmar3g&; Brp > \/irp.

e If vis the midpoint of an encroached subsegment@igithe circumcenter of a skinny triangle, then
by Lemma 38y, > rp/ V2 > Bry/ V2 > rg. (Recall thatp is rejected.)

e If vandp lie on incident segments, then by Lemma 88% rp/(2 cose). Becauser > 60°, ry > rp.

In all three cases,, > r for some ancesta of v in the mesh. It follows that, > Ifsyn, contradicting
the assumption that has length less than [fs. It also follows that no edge shorter thanylfsis ever
introduced, so the algorithm must terminate. [ |

By design, Ruppert’s algorithm terminates only when a#irigles in the mesh have a circumradius-to-
shortest edge ratio @ or better; hence, at termination, there is no angle sméil&er arcsin}B. If B= V2,
the smallest value for which termination is guaranteed,ngbesis smaller than 2@°. Section 6.4 describes
a way to improve this bound.
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What about running time? A constrained Delaunay triangatatan be constructed i@(nlogn)
time [34], wherenis the size of the input PSLG. Once the initial triangulai®doomplete, well-implemented
Delaunay refinement algorithms invariably take time lineahe number of additional vertices that are in-
serted. Ruppert (personal communication) exhibits a PSt.@hich his algorithm take®(h?) time, where
h is the size of the final mesh, but the example is contrived ant pathological examples do not arise in
practice.

6.3.4 Proof of Good Grading and Size-Optimality

Theorem 39 guarantees that no edge of a mesh produced by Reigbgorithm is shorter than Ifg,.
This guarantee may be satisfying for a user who desires aramimesh, but it is not satisfying for a user
who requires a spatially graded mesh. What follows is a ptbaf each edge of the output mesh has
length proportional to the local feature sizes of its endfgiHence, edge lengths are determined by local
considerations; features lying outside the disk that defihe local feature size of a point can only weakly
influence the lengths of edges that contain that point. Gteasizes vary quickly over short distances where
such variation is desirable to help reduce the number afgiés in the mesh. Readers may skip this section
without afecting their understanding of the rest of the chapter.

Lemma 38 was concerned with the relationship between thertios radii of a child and its parent.
The next lemma is concerned with the relationship betwesé) It and Ifs)/r,. For any vertew, define
Dy = Ifs(v)/ry. Think of Dy as the one-dimensional density of vertices neahenv is inserted, weighted
by the local feature size. One would like this density to bsraall as possibleD, < 1 for any input vertex,
but D, tends to be larger for a vertex inserted late.

Lemma 40. Let v be a vertex with parent § p(v). Suppose that,r> Crp (following Lemma 38). Then
Dy <1+ Dp/C.

Proof: By Lemma 37, Ifs() < Ifs(p) + |vp. By definition, the insertion radiug is |vp if pis a mesh vertex,
whereas ifp is a rejected circumcenter, thep> |vp. Hence, we have

Ifs(v) < Ifs(p)+ry
< Peir
< E v+ Iy
The result follows by dividing both sides loy. |

Lemma 40 generalizes to any dimension, because it religsupmdn Lemma 37. Ruppert’s first main
result follows.

Lemma 41(Ruppert [102]) Consider a mesh produced by Ruppert’s algorithm. Suppesgtthlity bound
B is strictly larger than V2, and the smallest angle between two incident segments implé PSLG is
strictly greater thar60°. There exist fixed constants > 1 and Ds > 1 such that, for any vertex v inserted
(or considered for insertion and rejected) at the circunteemf a skinny triangle, < Dr, and for any
vertex v inserted at the midpoint of an encroached subsegmerc Ds. Hence, the insertion radius of
every vertex has a lower bound proportional to its local tgatsize.
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Proof: Consider any non-input vertexwith parentp = p(v). If pis an input vertex, the®, = Ifs(p)/r, <
1. Otherwise, assume for the sake of induction that the lemsntiaie for p, so thatD, < Dt if pis a
circumcenter, an®,, < Ds if pis a midpoint. HenceD, < maxDr, Ds}.

First, suppose is inserted or considered for insertion at the circumceatea skinny triangle. By
Lemma 38y, > Brp. Thus, by Lemma 40D, < 1 + maxDr, Ds}/B. It follows that one can prove that
Dy < Dt if Dt is chosen so that

maxD+, D
1+ y <Dr. (6.1)
Second, supposeis inserted at the midpoint of a subsegmenif its parentp is an input vertex or lies
on a segment not incident ) then Ifs{) < ry, and the theorem holds. His the circumcenter of a skinny
triangle (considered for insertion but rejected becausadgtoaches upos), ry > rp/ V2 by Lemma 38, so

by Lemma 40D, < 1+ V2Dr.
Alternatively, if p, like v, is a segment vertex, ahndv lie on incident segments, then> r,/(2 cosa)

by Lemma 38, and thus by Lemma 40, < 1 + 2Dg cosa. It follows that one can prove th@l, < Ds if
Ds is chosen so that

IA

1+ V2Dt Ds, and (6.2)
1+2Dscosa < Ds. (6.3)

A

If the quality boundB is strictly larger thanv2, Inequalities (6.1) and (6.2) are simultaneously satisfie
by choosing

_ B+1 Do (+ V2)B

B- 2 T B2
If the smallest input anglenmin is strictly greater than 60 Inequalities (6.3) and (6.1) are satisfied by
choosing

T

1 D
Dr=1+—.

Dg= ———M—,
S 1 - 2cosamin B

One of these choices will dominate, depending on the valti@amdami,. In either case, iB > V2 and
amin > 60°, there are values @t andDg that satisfy all the inequalities. |

Note that asB approachesy?2 or « approaches 60 Dt and Ds approach infinity. In practice, the
algorithm is better behaved than the theoretical boundesstggthe vertex density approaches infinity only
after B drops below one.

Theorem 42(Ruppert [102]) For any vertex v of the output mesh, the distance to its neasghbor w is
at leastlfs(v)/(Ds + 1).

Proof: Inequality (6.2) indicates thdds > D, so Lemma 41 shows that [f§(r, < Dgs for any vertexv. If
v was added aftew, then the distance between the two verticay is Ifs(v)/Ds, and the theorem holds. If
w was added after, apply the lemma tav, yielding

Ifs(w)

VW > 'y =
VW > Ty Ds

By Lemma 37, Ifs@) + v > Ifs(v), so

> Ifs(v)D; |vvv|'
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Figure 6.15:Meshes generated with Ruppert's algorithm for several different angle bounds. The algorithm does
not terminate for angle bounds of 34.3° or higher on this PSLG.

It follows that|vw{ > Ifs(v)/(Ds + 1). [ |

To give a specific example, consider triangulating a PSL@itgeno acute input angles) so that no angle
of the output mesh is smaller than°1fenceB = 1.93. For this choice oB, Dt = 5.66 andDs = 9.01.
Hence, the spacing of vertices is at worst about ten timedlesnthan the local feature size. Away from
boundaries, the spacing of vertices is at worst seven timedler than the local feature size.

Figure 6.15 illustrates the algorithm’s grading for a verief angle bounds. Ruppert’s algorithm typi-
cally terminates for angle bounds much higher than the gimailly guaranteed 2@, and typically exhibits
much better vertex spacing than the provable worst-casedsamply.

Ruppert [102] uses Theorem 42 to prove the size optimalith@imeshes his algorithm generates, and
his result has been improved by Mitchell [83]. Mitchell'stirem is stated below, but the lengthy proof is
omitted.
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Theorem 43 (Mitchell [83]). LetIfst(p) be the local feature size at p with respect to a triangulafion
(treating T as a PSLG), wheredfs(p) remains the local feature size at p with respect to the ingit®.
Suppose a triangulation T with smallest anglbas the property that there is some constant-kl such
that for every point p, #fst(p) > Ifs(p). Then the cardinality (number of triangles) of T is less ttkan
times the cardinality of any other triangulation of the inRELG with smallest anglg where ks € O(kf/e).

[ |

Theorem 42 can be used to show that the precondition of Thedgeis satisfied by meshes generated
by Ruppert’s algorithm (witlk; o« Ds). Hence, the cardinality of a mesh generated by Ruppeg&righm
is within a constant factor of the cardinality of the bestgibe mesh satisfying the angle bound. However,
the constant factor hidden in Mitchell’s theorem is muchlarge to be a meaningful guarantee in practice.

6.4 Chew’s Second Delaunay Refinement Algorithm

Compared to Ruppert’s algorithm, Chew's second Delaunfiyenment algorithm [37] fiers an improved
guarantee of good grading in theory, and splits fewer subeets in practice. This section shows that the
algorithm exhibits good grading and size optimality for nigounds of up to 26° (compared with 20°

for Ruppert’s algorithm).

Chew's paper also discusses triangular meshing of curvddcas in three dimensions, but | consider
the algorithm only in its planar context.

6.4.1 Description of the Algorithm

Chew's second Delaunay refinement algorithm begins withctiestrained Delaunay triangulation of a
segment-bounded PSLG, and eliminates skinny trianglesitiir Delaunay refinement, but Chew does not
use diametral circles to determine if subsegments are adceal. Instead, it may arise that a skinny triangle
t cannot be split becausend its circumcentes lie on opposite sides of a subsegmen{Lemma 36 does
not apply to Chew’s algorithm, somay even lie outside the triangulation.) Although Chew doeisuse
the word, let us say thatis encroachedvhen this circumstance occurs.

Becausesis a subsegment, inserting a vertex &till not removet from the mesh. Instead,is rejected,
and all free vertices that lie inside the diametral circls ahd are visible from the midpoint afare deleted
from the triangulation. (Input vertices and segment vetiare not deleted.) Then, a new vertex is inserted
at the midpoint ofs. The constrained Delaunay property is maintained througalh vertex deletions and
insertions. Figure 6.16 illustrates a subsegment splitievCs algorithm.

If several subsegments lie betwaesmdc, only the subsegment nearess split. If no subsegment lies
betweent andc, butc lies precisely on a subsegment, then that subsegment igleoed encroached and
split at its midpoint.

Chew’s second algorithm produces a mesh that is not guadntebe Delaunay (only constrained
Delaunay). For the few applications that require truly Dekay triangles, Ruppert’s algorithm is preferable.
For the majority of applications, however, Chew has two athges. First, some subsegment splits are
avoided that would otherwise have occurred, so the final messh have fewer triangles. Consider two
contrasting examples. In Figure 6.6 (bottom), the segmem@so short that few are ever encroached, so
Ruppert and Chew generate virtually the same mesh. In Figl& the segments are long compared to
their local feature sizes, and Chew produces many fewerdies.
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Figure 6.16:At left, a skinny triangle and its circumcenter lie on opposite sides of a subsegment. At right, all
vertices in the subsegment’s diametral circle have been deleted, and a new vertex has been inserted at the
subsegment’s midpoint.

Figure 6.17:A PSLG, a 559-triangle mesh produced by Ruppert’s algorithm, and a 423-triangle mesh produced
by Chew’s second algorithm. No angle in either mesh is smaller than 25°.

The second advantage is that when a subsegment is split ijea vevith parentp, a better bound can
be found for the ratio betweeax andr, than Lemma 38'’s bound. This improvement leads to better di®un
on the minimum angle, the edge lengths, and the mesh catginal

6.4.2 Proof of Termination

If no input angle is less than 60Chew’s algorithm terminates for any bound on circumradasshortest
edge ratioB such thatB > V5/2 = 1.12. Therefore, the smallest angle can be bounded by up to
arcsin(¥ V5) = 26.56°.

By the reasoning of Lemma 36, if a triangle and its circumeeli on opposite sides of a subsegment,
or if the circumcenter lies on the subsegment, then someweftthe triangle (other than the subsegment’s
endpoints) lies on or inside the subsegment’s diametralecirHence, Chew’s algorithm never splits a
subsegment that Ruppert’s algorithm would not split. Itdek that the inequalities in Lemma 38 are as
true for Chew’s algorithm as they are for Ruppert’s algentiHowever, Chew will often decline to split a
subsegment that Ruppert would split, and thus splits fewlesegments overall. A consequence is that the
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(b)

Figure 6.18:(a) The case where exactly one vertex is in the semicircle. (b) The case where more than one
vertex is in the semicircle.

relationship between the insertion radii of a subsegmedpaoint and its parent can be tightened.

Lemma 44. Leto = arcsin%5 be the angle bound below which a triangle is considered skihet s be a
subsegment that is encroached because some skinny trizangdats circumcenter c lie on opposite sides of
s (or c lies on s). Let v be the vertex inserted at the midpdist @hen one of the following four statements
is true. (Only the fourth gfers from Lemma 38.)

e 1y > Ifs(V);

e Iy > Ip/(2cose), where p is a vertex that encroaches upon s and lies in a sdgsaparated by an
angle ofa > 45° from the segment containing s;

e Iy > Ipsine, where p is as above, with < 45°; or

e there is some vertex p (which is deleted from inside the diagrcle of s or lies precisely on the
diametral circle) such thaty> r, cose.

Proof: Chew's algorithm deletes all free vertices inside the dimateircle of s that are visible fronv. If
any vertex remains visible frominside the diametral circle, it is an input vertex or a segiweriex. Define
the parentp of v to be the closest such vertex. gfis an input vertex or lies on a segment not incident to
the segment that contairssthen Ifs¢) < r, and the lemma holds. If lies on an incident segment, then
rv > rp/(2cosa) for @ > 45° orry > rpcosd for o < 45° as in Lemma 38.

Otherwise, no vertex inside the diametral circlesa$ visible after the deletions, 39 is equal to the
radius of the diametral circle. This is the reason why Cheigorithm deletes the vertices: wheris
inserted, the nearest visible vertices are the subsegmdpbts, and no short edge appears.

Mentally jump back in time to just before the vertex deleioAssume without loss of generality that
lies aboves, with ¢ below. Following Lemma 36, at least one vertex ties on or inside the upper half of
the diametral circle 0. There are two cases, depending on the total number of gertio or inside this
semicircle.

If the upper semicircle encloses only one verntexisible fromyv, thent is the triangle whose vertices
areu and the endpoints of. Becausd is skinny,u must lie in the shaded region of Figure 6.18(a). The
insertion radiug, cannot be greater than the distance frote the nearest endpoint sf sor, > r, cosb.
(For a fixedry, ry is maximized whem lies at the apex of the isosceles triangle whose basams whose
base angles aie) Define the parent of to beu.

If the upper semicircle encloses more than one vertex @diboimv, consider Figure 6.18(b), in which
the shaded region represents points within a distanece fobm an endpoint of. If some vertexu lies in
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the shaded region, thep < ry; define the parent of to beu. If no vertex lies in the shaded region, then
there are at least two vertices visible franm the white region of the upper semicircle. Liebe the most
recently inserted of these vertices. The vertds at a distance of at mos} from any other vertex in the
white region, sa, < ry; define the parent ofto beu. |

Lemma 44 extends the definition of parent to accommodatedhetype of encroachment defined in
Chew's algorithm. When a subsegmeris encroached, the pareptof its newly inserted midpoint is
defined to be a vertex on or inside the diametral circlg, @iist as in Ruppert’s algorithm.

Chew's algorithm can be shown to terminate in the same maamdruppert’s. Do the fferences
between Chew's and Ruppert’s algorithms invalidate anyhefassumptions used in Theorem 39 to prove
termination? The most importantfférence is that vertices may be deleted from the mesh. Whertex g
deleted from a constrained Delaunay triangulation, noiguny vertex finds itself adjoining a shorter edge
than the shortest edge it adjoined before the deletion.s(fut follows because a constrained Delaunay
triangulation connects every vertex to its nearest vigikighbor.) Hence, each vertex’s insertion radius still
serves as a lower bound on the lengths of all edges that cotieegertex to vertices older than itself.

If vertices can be deleted, are we certain that the algonithihrun out of places to put new vertices?
Observe that vertex deletions only occur when a subsegraeslit, and vertices are never deleted from
segments. Theorem 39 sets a lower bound on the length of easkgment, so only a finite number of
subsegment splits can occur. After the last subsegmentsplinore vertex deletions occur, and eventually
there will be no space left for new vertices. Therefore, TBeo39 and Lemma 41 hold for Chew’s algorithm
as well as Ruppert’s.

The consequence of the bound proven by Lemma 44 is illustiatée flow graph of Figure 6.19. Recall
that termination is guaranteed if no cycle has a producttless one. Hence, a condition of termination is
thatBcosd > 1. As6O = arcsinz—lB, the best bound that satisfies this criterioBis= v5/2 = 1.12, which
corresponds to an angle bound of arcsir{E) = 26.56°.

6.4.3 Proof of Good Grading and Size Optimality

The main point of this section is to demonstrate that Chelgerdhm offers better theoretical guarantees
about triangle quality, edge lengths, and good grading Bwgopert’s. (We should not forget, though, that

it is Ruppert’s analysis technique that allows us to draw tioinclusion.) Whereas Ruppert only guarantees
good grading and size optimality for angle bounds less theuw207°, Chew can make these promises
for angle bounds less than about®6 and dfer better bounds on edge lengths for the angle bounds where
Ruppert’'s guarantees do hold. However, thedénces are not as pronounced in practice as in theory.
Readers whose interests are purely practical may skip eletsomn without #&ecting their understanding of
the rest of the chapter.

Let's compare Chew'’s algorithm.

Lemma 45. Consider a mesh produced by Chew'’s algorithm. Suppose tiaygoiound B is strictly larger
than V5/2, and the smallest angle between two incident segments inphePSLG is strictly greater than
60°. There exist fixed constants> 1 and Ds > 1 such that, for any vertex v inserted at the circumcenter
of a skinny triangle, R < Dr, and for any vertex v inserted at the midpoint of an encrodchédsegment,
Dy < Ds.
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Figure 6.19:Flow diagram for Chew’s algorithm.

Proof: Essentially the same as the proof of Lemma 41, except thatzaed? makes it possible to replace
Inequality (6.2) with
Dt
+ —
cosd
2BDy
14 ——
4B2 -1

Ds

(6.4)

If the quality boundB is strictly larger thany5/2, Inequalities (6.1) and (6.4) are simultaneously satis-
fied by choosing

5 (1+3) vaB?-1 o, _ VABZ-1+2B
T= 5 S = .
VaBZ_1-2 VaBZ_1-2

Dt and Ds must also satisfy Inequality (6.3), so larger valuesDgf and Ds may be needed, as in
Lemma 41. However, IB > V5/2 andamin > 60°, there are values dbt and Dg that satisfy all the
inequalities. |

Theorem 42, which bounds the edge lengths of the mesh, afpliéhew’s algorithm as well as Rup-
pert’s, but the values dDt andDs are diferent. As in Section 6.3.4, consider triangulating a PSlr€e(f
of acute angles) so that no angle of the output mesh is sntharls. ThenDr = 3.27, andDs = 4.39,
compared to the corresponding values @tband 901 for Ruppert’s algorithm. Hence, the spacing of ver-
tices is at worst a little more than five times the local featsize, and a little more than four times the local
feature size away from segments.

Because the worst-case number of triangles is proportitontile square oDs, Chew's algorithm is
size-optimal with a constant of optimality almost four tigneetter than Ruppert’'s algorithm. However,
worst-case behavior is never seen in practice, and theaabdiference between the two algorithms is less
dramatic.






Chapter 7

Three-Dimensional Delaunay Refinement
Algorithms

Herein | discuss Delaunay refinement algorithms for gemagdétrahedral meshes. The generalization of
Chew’s and Ruppert’s ideas to three dimensions is relgtshightforward, albeit not without complica-
tions. The basic operation is still the Delaunay insertiba gertex at the circumcenter of a simplex, and
the result is still a mesh whose elements have bounded ciedlins-to-shortest edge ratios.

In three dimensions, however, such a mesh is not entirelgueate for the needs of interpolation or
finite element methods. As Dey, Bajaj, and Sugihara [45%ilate, most tetrahedra with poor angles have
circumcircles much larger than their shortest edges, distuthe needle, wedge, and cap illustrated in
Figure 7.1. But there is one type calleglaver or kite tetrahedron that does not.

The canonical sliver is formed by arranging four verticegialy spaced, around the equator of a sphere,
then perturbing one of the vertices slightlff the equator, as Figure 1.11 illustrates. A sliver can have

T~ R
Sl
Needle / Wedge Cap Sliver

Figure 7.1: Tetrahedra with poor angles. Needles and wedges have edges of greatly disparate length; caps
have a large solid angle; slivers have neither, and can have good circumradius-to-shortest edge ratios. Needles,
wedges, and caps have circumspheres significantly larger than their shortest edges, and are thus eliminated
when additional vertices are inserted with a spacing proportional to the shortest edge. A sliver can easily survive
in a Delaunay tetrahedralization of uniformly spaced vertices.

103
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an admirable circumradius-to-shortest edge ratio (as m%a) yet be considered awful by most other
measures, because its volume and its shortest altitudeecanilirarily close to zero, and its dihedral angles
can be arbitrarily close to°Gand 180. Slivers have no two-dimensional analogue; any triangth sismall
circumradius-to-shortest edge ratio is considered “sklped” by the usual standards of finite element
methods and interpolation.

Slivers often survive Delaunay-based tetrahedral meshrgéon methods because their small circum-
radii minimize the likelihood of vertices being insertediiveir circumspheres (as Figure 7.1 illustrates). A
perfectly flat sliver whose edge lengths arenlfsabout the equator and2lfsyin across the diagonals is
guaranteed to survive any Delaunay refinement method thest dot introduce edges smaller thanlfs
because every point in the interior of its circumsphere istadce less than lg, from one of its vertices;
no vertex can be inserted inside the sphere.

Despite slivers, Delaunay refinement methods are valuablgenerating three-dimensional meshes.
Slivers having good circumradius-to-shortest edge rdtipgally arise in small numbers in practice. As
Section 7.3 will demonstrate, the worst slivers can ofterebgoved by Delaunay refinement, even if there is
no theoretical guarantee. Meshes with bounds on the cirdios-to-shortest edge ratios of their tetrahedra
are an excellent starting point for mesh smoothing and apéition methods that remove slivers and improve
the quality of an existing mesh. The most notable of theseasliver exudation algorithm of Cheng, Dey,
Edelsbrunner, Facello, and Teng [30], which is based onhtetjDelaunay triangulations. Even if slivers
are not removed, the Voronoi dual of a tetrahedralizatidh Wounded circumradius-to-shortest edge ratios
has nicely rounded cells, and is sometimes ideal for usesicantrol volume method [81].

In this chapter, | present a three-dimensional gener@izatf Ruppert’s algorithm that generates tetra-
hedralizations whose tetrahedra have circumradius-ootesst edge ratios no greater than the boBng
V2 = 1.41. If Bis relaxed to be greater than two, then good grading can asmdven. Size-optimality,
however, cannot be proven.
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Figure 7.2:(a) Any facet of a PLC may contain holes, slits, and vertices. (b) When a PLC is tetrahedralized,
each facet of the PLC is partitioned into triangular subfacets, which respect the holes, slits, and vertices.

]

Figure 7.3:The orthogonal projections of points and sets of points onto facets and segments.
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7.1 Definitions

Tetrahedral mesh generation necessarily divides each dd@PLC, like that depicted in Figure 7.2(a),
into triangular faces, as illustrated in Figure 7.2(b).t&ssthe triangulation edges that comprise a segment
are called subsegments, the triangular faces that conpffiseet are calledubfacets The bold edges in
Figure 7.2(b) are subsegments; other edges are not. Allediridngular faces visible in Figure 7.2(b) are
subfacets, but most of the faces in the interior of the tewladization are not.

Frequently in this chapter, | use the notion of tréhogonal projectiorof a geometric entity onto a line
or plane. Given a facet or subfadetand a pointp, the orthogonal projection prefp) of p ontoF is the
point that is coplanar witlr and lies in the line that passes througlorthogonally toF, as illustrated in
Figure 7.3. The projection exists whether or not it fall$-in

Similarly, the orthogonal projection pigfjp) of p onto a segment or subsegméhis the point that is
collinear withS and lies in the plane throughorthogonal tdS.

Sets of points, as well as points, may be projectedF HndG are facets, then pre{G) is the set
{proje(p) : p € G}.

7.2 A Three-Dimensional Delaunay Refinement Algorithm

In this section, | describe a three-dimensional Delaunéipegment algorithm that produces well-graded
tetrahedral meshes satisfying any circumradius-to-ekbedge ratio bound greater than two. Miller, Tal-
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mor, Teng, Walkington, and Wang [82] have developed a relatgorithm that does not use Delaunay
refinement.

7.2.1 Description of the Algorithm

Three-dimensional Delaunay refinement takéascat-boundedLC as its input. Tetrahedralized and unte-
trahedralized regions of space must be separated by fac#tatsin the final mesh, any triangular face not
shared by two tetrahedra is a subfacet.

Many approaches to tetrahedral mesh generation permgrigatigulate the input facets as a separate
step prior to tetrahedralizing the interior of a region. Jeblem with this approach is that these indepen-
dent facet triangulations may not be collectively idealfforming a good tetrahedralization. For instance, a
feature that lies near a facet (but not necessarily in thegptd the facet) may necessitate the use of smaller
subfacets near that feature. The present algorithm usekearapproach, wherein facet triangulations are
refined in conjunction with the tetrahedralization. Theakedralization process is not beholden to poor
decisions made earlier.

Any vertex inserted into a segment or facet during Delaurdipement remains there permanently.
However, keep in mind that the edges that partition a fadetdnbfacets areot permanent, araot treated
like subsegments, and are subject to flipping (within thetieaccording to the Delaunay criterion.

The algorithm’s first step is to construct a Delaunay tetdafléezation of the input vertices. Some input
segments and facets might be missing (or partly missing) ffas mesh. As in two dimensions, the tetrahe-
dralization is refined by inserting additional verticeitlhhe mesh, using an incremental Delaunay tetrahe-
dralization algorithm such as the Bowyer—Watson algorifp@ 128] or three-dimensional flipping [66, 96],
until all segments and facets are recovered and all congran tetrahedron quality and size are met. Vertex
insertion is governed by three rules.

e Thediametral spheref a subsegment is the (unique) smallest sphere that csrtteénsubsegment.
A subsegment is encroached if a vertex other than its entiploés inside or on its diametral sphere.
(This definition of encroachment is slightly stronger thattused by Ruppert’s algorithm, to ensure
that all unencroached subsegments are strongly Delauhéymiakes it possible to form a CDT, and
also strengthens an upcoming result called the Projecoma.) A subsegment may be encroached
whether or not it actually appears as an edge of the tetraheation. If a subsegment is missing
from the tetrahedralization, it is not strongly Delaunag #mus must be encroached. Any encroached
subsegment that arises is immediately split into two subgedgs by inserting a vertex at its midpoint.
See Figure 7.4(a).

e Theequatorial spher®f a triangular subfacet is the (unique) smallest sphertepisses through the
three vertices of the subfacet. (Thquatorof an equatorial sphere is the unique circle that passes
through the same three vertices.) A subfacet is encroaél@eddn-coplanar vertex lies inside or on
its equatorial sphere. If a subfacet is missing from thetetdralization, and it is not covered by other
faces that share the same circumcircle, then it is encroa¢fiée question of what subfacets should
not be missing from the tetrahedralization will be consédeshortly.) Each encroached subfacet
is normally split by inserting a vertex at its circumcentsee Figure 7.4(b). However, if the new
vertex would encroach upon any subsegment, it is not indgernstead, all the subsegments it would
encroach upon are split.
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Figure 7.4:Three operations for three-dimensional Delaunay refinement. (a) Splitting an encroached subseg-
ment. Dotted arcs indicate where diametral spheres intersect faces. The original subsegment is encroached
because there is a vertex in its diametral sphere. In this example, the two subsegments created by bisecting
the original subsegment are not encroached. (b) Splitting an encroached subfacet. The triangular faces shown
are subfacets of a larger facet, with tetrahedra (not shown) atop them. A vertex in the equatorial sphere of a
subfacet causes a vertex to be inserted at its circumcenter. In this example, all equatorial spheres (included the
two illustrated) are empty after the split. (c) Splitting a skinny tetrahedron. A vertex is inserted at its circumcenter.

e A tetrahedron is said to b&kinnyif its circumradius-to-shortest edge ratio is larger thame bound

B. (By this definition, not all slivers are considered skinryach skinny tetrahedron is normally split
by inserting a vertex at its circumcenter, thus eliminatimgtetrahedron; see Figure 7.4(c). However,
if the new vertex would encroach upon any subsegment or set)fthen it is not inserted; instead,
all the subsegments it would encroach upon are split. If kiveng tetrahedron is not eliminated as a
result, then all the subfacets its circumcenter would esrnaipon are split. (A subtle point is that, if
the tetrahedron is eliminated by subsegment splittingaterithm should not split any subfacets that
appear during subsegment splitting, or the bounds provienwall not be valid. Lazy programmers
beware.)

Encroached subsegments are given priority over encroathi#dcets, which have priority over skinny
tetrahedra. These encroachment rules are intended toeregussing segments and facets, and to ensure
that all vertex insertions are valid. Because all facetssaggment-bounded, Lemma 36 shows that if there
are no encroached subsegments, then each subfacet cirdenléss in the containing facet. One can also
show (with a similar proof) that if there are no encroacheofatets, then each tetrahedron circumcenter
lies in the mesh.

Missing subsegments are recovered by stitching, desciritfeelction 6. If a subsegment is missing from
a Delaunay triangulation, then the subsegment is not diy@ejaunay, so there must be a vertex (other than
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Figure 7.5:The top illustrations depict a rectangular facet and its triangulation. The bottom illustrations depict
the facet’s position as an interior boundary of a PLC, and its progress as it is recovered. Most of the vertices and
tetrahedra of the mesh are omitted for clarity. The facet triangulation and the tetrahedralization are maintained
separately. Shaded triangular subfacets in the facet triangulation (top center) are missing from the tetrahedral-
ization (bottom center). The bold dashed line (bottom center) represents a tetrahedralization edge that passes
through the facet. A missing subfacet is recovered by inserting a vertex at its circumcenter (top right and bottom
right). The vertex is independently inserted into both the triangulation and the tetrahedralization.

its endpoints) on or inside its diametral circle. This olaéion is important because it unifies the theoretical
treatment of missing subsegments and encroached subssgiregrare not missing.

When no encroached subsegment remains, missing facetscaneered in an analogous manner. The
main complication is that if a facet is missing from the meslis difficult to say what its subfacets are.
With segments there is no such problem; if a segment is ng$eam the mesh, and a vertex is inserted at
its midpoint, one knows unambiguously where the two resgliubsegments are. But how may we identify
subfacets that do not yet exist?

The solution is straightforward. For each facet, it is neaegto maintain a two-dimensional Delau-
nay triangulation of its vertices, independently from tegahedralization in which we hope its subfacets
will eventually appear. By comparing the triangles of a faciangulation against the faces of the tetra-
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Figure 7.6:1f a tetrahedron is Delaunay, the circumcircle of each of its faces is empty, because each face’s
circumcircle is a cross-section of the tetrahedron’s circumsphere.

hedralization, one can identify subfacets that need to bevered. For each triangular subfacet in a facet
triangulation, look for a matching face in the tetrahedation; if the latter is missing, insert a vertex at
the circumcenter of the subfacet (subject to rejectionlifsegments are encroached), as illustrated in Fig-
ure 7.5. The new vertex is independently inserted into bugHdcet triangulation and the tetrahedralization.
Similarly, the midpoint of an encroached subsegment ispeddently inserted into the tetrahedralization
and intoeachfacet triangulation that contains the subsegment.

In essence, Ruppert’s algorithm (and the present algoyitisas the same procedure to recover seg-
ments. However, the process of forming a one-dimensioizldulation is so simple that it passes unno-
ticed.

Which vertices of the tetrahedralization need to be comsitia a facet triangulation? It is a fact, albeit
somewhat nonintuitive, that if a facet appears in a Delaueaghedralization as a union of faces, then the
triangulation of the facet is determined solely by the eedi of the tetrahedralization that lie in the plane
of the facet. If a vertex lies near a facet, but is not coplamidin the facet, it may cause a subfacet to
be missing (as in Figure 7.5, bottom center), but it cannlo¢mtise &ect the shape of the triangulation.
Why? Suppose a subfacet of a facet appears in the tetraizatical. Then the subfacet must be a face of
a Delaunay tetrahedron. The subfacet’s circumcircle istgrbpcause its circumcircle is a cross-section of
the tetrahedron’s empty circumsphere, as illustratedguifel 7.6. Therefore, if a facet appears as a union
of faces in a Delaunay tetrahedralization, then those flores a two-dimensional Delaunay triangulation
of the facet. Because the Delaunay triangulation is uniggegpt in nondegenerate cases), vertices that do
not lie in the plane of the facet have nfiext on how the facet is triangulated.

Furthermore, because each facet is segment-bounded, gmersts are recovered (in the tetrahedral-
ization) before facets, each facet triangulation can gadglore vertices that lie outside the facet (coplanar
though they may be). A triangulation need only take into aotthe segments and vertices in the facet. The
requirements set forth in Section 4.5.1 ensure that all@f/grtices and segments of a facet must be explic-
itly identified in the input PLC. The only additional vertet be considered are those that were inserted in
segments to help recover those segments and other facetalgdrithm maintains a list of the vertices on
each segment, ready to be called upon when a facet triargulatnitially formed.

Unfortunately, if a facet's Delaunay triangulation is natique because of cocircularity degeneracies,
then the facet might be represented in the tetrahedralizhii faces that do not match the independent facet
triangulation, as Figure 7.7 illustrates. (If exact aritio is not used, nearly-degenerate cases may team
up with floating-point roundd error to make this circumstance more common.) An implentemtanust
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Figure 7.7:Afacet triangulation and a tetrahedralization may disagree due to cocircular vertices. This occurrence
should be diagnosed and fixed as shown here.

detect these cases and correct the triangulation so thatt@h@s the tetrahedralization. (It is not always
possible to force the tetrahedralization to match the gyigattion.)

To appreciate the advantages of this facet recovery metioagpare it with the most popular method [61,
129, 99]. In many tetrahedral mesh generators, facets seet@d by identifying points where the edges of
the tetrahedralization intersect a missing facet, andtimggvertices at these points. The perils of so doing
are illustrated in Figure 7.8. In the illustration, a veriexnserted where a tetrahedralization edge (bold
dashed line) intersects the facet. Unfortunately, the edgmsects the facet near one of the bounding
segments of the facet, and the new vertex creates a feaftrentty be arbitrarily small. Afterward, the
only alternatives are to refine the tetrahedra near the nesexvid a small size, or to move or remove the
vertex. Some mesh generators cope with this problem by $imapthe vertices on each facet after the facet
is competely inserted.

The encroachment-based facet recovery method does ndtsosa vertices at all. A vertex considered
for insertion too close to a segment is rejected, and a sufEssgs splitinstead. This would not necessarily
be true if edge-facet intersections were considered farfims, because such an intersection may be near
a vertex lying on the segment, and thus fail to encroach upgrsabsegments. Subfacet circumcenters are
better choices because they are far from the nearest \&réind cannot create a new small feature without
encroaching upon a subsegment.

Of course, an even better idea is to form a conforming CDT @fput PLC as soon as all the segments
have been recovered by stitching, thereby recovering ttetdavithout inserting additional vertices. This
measure helps to mitigate (but not eliminate) the unwantkxtis of small exterior feature sizes. For the
purposes of analysis, however, itis instructive to conditkevariant of the algorithm that uses unconstrained
Delaunay triangulations.

When no encroached subsegment or subfacet remains, epetysggment and facet is represented by a
union of edges or faces of the mesh. The first time the meshesdhis state, all exterior tetrahedra (lying
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Figure 7.8:0ne may recover a missing facet by inserting vertices at the intersections of the facet with edges
of the tetrahedralization, but this method might create arbitrarily small features by placing vertices close to seg-
ments.

in the convex hull of the input vertices, but outside the segénclosed by the facet-bounded PLC) should
be removed prior to splitting any skinny tetrahedra. Thissuge prevents the problems that can arise if
superfluous skinny tetrahedra are split, such as overreéineand failure to terminate because of exterior
small angles and spurious small angles formed between tGeaRt its convex hull.

One further amendment to the algorithm is necessary torotiai best possible bound on the circum-
radius-to-shortest edge ratios of the tetrahedra. It wbaldice to prove, in the manner of Lemma 38, that
whenever an encroached subfacet is split at its circumigehéginsertion radius of the newly inserted vertex
is no worse thany2 times smaller than the insertion radius of its parent. tofately, this is not true for
the algorithm described above.

Consider the two examples of Figure 7.9. If a subfacet thataios its own circumcenter is encroached,
then the distance between the encroaching vertex and theshe@rtex of the subfacet is no more than
V2 times the circumradius of the subfacet. This distance isimiaed if the encroaching vertex lies at a
pole of the equatorial sphere (where gwesare the two points of the sphere furthest from its equater), a
illustrated in Figure 7.9(a). However, if a subfacet thaésloot contain its own circumcenter is encroached,
the distance is maximized if the encroaching vertex liesheretquator, equidistant from the two vertices of
the longest edge of the subfacet, as in Figure 7.9(b). Eviieieéncroaching vertex is well away from the
equator, its distance from the nearest vertex of the subtarestill be larger thary2 times the radius of
the equatorial sphere. (I have confirmed through my impleatem that such cases do arise in practice.)

Rather than settle for a looser guarantee on quality, onenzdke a small change to the algorithm that
will yield a V2 bound. When several encroached subfacets exist, theydshatbe split in arbitrary order.
If a vertex p encroaches upon a subfadeof a facetF, but the projected point prefp) does not lie inf,
then splittingf is not the best choice. One can show (with the following lemthat there is some other
subfacetg of F that is encroached upon lyand contains prej(p). (The lemma assumes that there are
no encroached subsegments in the mesh, as they have priértigtter bound is achieved if the algorithm
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(b)

Figure 7.9:The relationship between the insertion radii of the circumcenter of an encroached subfacet and the
encroaching vertex. Crosses identify the location of an encroaching vertex having maximum distance from the
nearest subfacet vertex. (a) If the encroached subfacet contains its own circumcenter, the encroaching vertex
is no further from the nearest vertex of the subfacet than V2 times the circumradius of the subfacet. (b) If the
encroached subfacet does not contain its own circumcenter, the encroaching vertex may be further away.

equatorial S diametral  equatorial

equatorial
sphere o$

(b)

Figure 7.10:Two properties of encroached Delaunay subfacets. (a) If a vertex p encroaches upon a Delaunay
subfacet f of a facet F, but its projection into the plane containing F lies outside F, then p encroaches upon some
subsegment s of F as well. (b) If a vertex p encroaches upon a subfacet f of a Delaunay triangulated facet F,
but does not encroach upon any subsegment of F, then p encroaches upon the subfacet(s) g of F that contains

proje(p).

splitsg first and delays the splitting df indefinitely.

Lemma 46 (Projection Lemma) Let f be a subfacet of the Delaunay triangulated facet F. $apphat f
is encroached upon by some vertex p, but p does not encroachany subsegment of F. Thproj:(p)
lies in the facet F, and p encroaches upon a subfacet of F thatainsproje (p).

Proof: First, | prove that prgj(p) lies inF, using similar reasoning to that employed in Lemma 36. Ssppo
for the sake of contradiction that pggp) lies outside the facdt. Letc be the centroid of ; c clearly lies
insideF. Because all facets are segment-bounded, the line segom@amatinge to proj-(p) must intersect
some subsegmeistin the boundary of. Let S be the plane that contairssand is orthogonal té-, as
illustrated in Figure 7.10(a).

Becausef is a Delaunay subfacet &, its circumcircle (in the plane containirig) encloses no vertex
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Figure 7.11:Each subfacet’s equatorial sphere dominates the triangular prism defined by extending the subfacet
orthogonally.

of F. However, its equatorial sphere may enclose vertices—dtict p—and f might not appear in the
tetrahedralization.

It is apparent thap and prog(p) lie on the same side &, because the projection is orthogonaFo
Say that a point itnsideS if it is on the same side af asc, andoutsidesS if it is on the same side gsand
proje(p). The circumcircle off cannot enclose the endpointsybecausd is Delaunay irF. Furthermore,
the circumcenter of lies in F by Lemma 36. It follows that the portion dfs equatorial sphere outside
lies entirely inside or on the diametral spheres@¢as the figure demonstrates). Becapsginside or on the
equatorial sphere df, p also lies inside or on the diametral spheresafontradicting the assumption that
encroaches upon no subsegmeni of

It follows that prof (p) must be contained in some subfagedf F. (The containment is not necessarily
strict; prog(p) may fall on an edge interior t6, and be contained in two subfacets.) To complete the proof
of the lemma, | shall show thgtencroaches upoq If f = gthe result follows immediately, so assume that
f#0.

Again, letc be the centroid of. The line segment connectirgo proj-(p) must intersect some edge
e of the subfaceg, as illustrated in Figure 7.10(b). Lé&tbe the plane that contairsand is orthogonal to
F. Say that a point is on thg-sideif it is on the same side of asg. Because the triangulation &f is
Delaunay, the portion of’s equatorial sphere on theside lies entirely inside or on the equatorial sphere
of g. The pointp lies on theg-side or in& (because prej(p) lies ing), andp lies inside or on the equatorial
sphere off, so it must also lie inside or on the equatorial spherg a@ind hence encroaches ugpn W

One way to interpret the Projection Lemma is to imagine thatfacetF is orthogonally extended to
infinity, so that each subfacet fdefines an infinitely long triangular prism (Figure 7.11)cEaubfacet’s
equatorial sphere dominates its prism, in the sense thapiere contains any point in the prism that lies
within the equatorial sphere of any other subfacef ofif a vertexp encroaches upon any subfacetrof
thenp encroaches upon the subfacet in whose ppsgicontained. Ifp encroaches upon some subfacet of
F but is contained in none of the prisms, thealso encroaches upon some boundary subsegmént of
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Figure 7.12:Two incident facets separated by a dihedral angle of nearly 180°. What is the local feature size at
p?

In the latter case, because encroached subsegments hanity,psubsegments encroached uponpby
are split until none remains. The Projection Lemma guaemiieat any subfacets Bfthat were encroached
upon byp are eliminated in the process.

On the other hand, ip lies in the prism of a subfacgt and no subsegment is encroached, then splitting
gis a good choice. As a result, several new subfacets will@ppeleast one of which contains pr(p); if
this subfacet is encroached, then it is split as well, anasad Lintil the subfacet containing pggp) is not
encroached. The Projection Lemma guarantees that anysath&cets of that were encroached upon by
p are eliminated in the process.

7.2.2 Local Feature Sizes of Piecewise Linear Complexes

Because the shape of a facet is versatile, the definitioncal feature size does not generalize straightfor-
wardly. Figure 7.12 demonstrates théidulty. Two facetd= andG are incident at a segme8t separated
by a dihedral angle of almost 180The facets are not convex, and they may pass arbitrarisedio each
other in a region far frons. What is the local feature size at the pop#t Becausd- andG are incident,

a ball (centered ap) large enough to intersect two nonincident features must diameter as large as the
width of the prongs. However, the size of tetrahedra meigrdetermined by the distance separatignd

G, which could be arbitrarily small. The straightforward gealization of local feature size does not account
for this peccadillo of nonconvex facets.

To develop a more appropriate metric, | definfaeet regionto be any region of a facet visible from a
single point on its boundary. Visibility is defined solelythin the facet in question; the verticesandg are
visibleto each other if the line segmepdg lies entirely in the facet. Two facet regions on twéeient facets
are said to béncidentif they are defined by the same boundary point. Figure 7.18tiates two incident
facet regions, and the point that defines them. Two points)ying in F and one lying inG, are said to lie
in incident facet regions if there is any point on the sharednoary ofF andG that is visible from both
points. They are said to be nonincident feature points (&isndefined below) if no such point exists.

Similarly, if a segmens is incident to a faceF at a single vertex, thenS is said to be incident to the
facet region of visible fromg. If a vertexv is incident to a faceff, thenv is said to be incident to the facet
region ofF visible fromv.

Two distinct pointsx andy arenonincident feature poini$ x lies on a feature (vertex, segment, or facet)
fx of X, y lies on a featurdy of X, and there is no poirg € fy N fy such that the segmery is entirely
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Figure 7.13:Shaded areas are two incident facet regions. Both regions are visible from the indicated point.

A \

Figure 7.14:Two incident facets separated by a dihedral angle of nearly 180°. The definition of local feature size
should not approach zero near v, but it is nonetheless difficult to mesh the region between F and G near v.

contained infy and the segmennftg is entirely contained irfy. (Note thatq may bex ory.) If such a point
g does exist, therx andy lie in incident vertices, segments, or facet regionsofHowever, each point
may lie in several features simultaneously; so evendhdy lie in incident facet regions, they may still be
nonincident feature points (if they lie in nonincident segts, for instance).

Given a piecewise linear complé | define the local feature size If3(at a pointp to be the radius of
the smallest ball centered pthat intersects a pair of nonincident feature points.

Unfortunately, careful specification of which portions atéts are incident doesn’t solve all the prob-
lems attributable to nonconvex facets. Figure 7.14 dematest another diculty. Again, two facet$ and
G are incident at a segme8t separated by a dihedral angle slightly less thart 18de endpoint of S is a
reflex vertex ofF. The incident facet regions defined by the verdrave the same problem we encountered
in Figure 7.12: the local feature size at poinay be much larger than the distance between fdeetsd
G at pointp.

In this case, however, the problem is unavoidable. Supposelmooses a definition of local feature size
that reflects the distance betwelerandG at p. As p moves towards, Ifs(p) approaches zero, suggesting
that infinitesimally small tetrahedra are needed to meshetfien neaw. Intuitively and practically, a useful
definition of local feature size must have a positive loweurmh Therefore, Ifgf) cannot be proportional to
the distance betwednandG at p.
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The mismatch between the definition of local feature sizpgsed here and the small distance between
F andG at p reflects a fundamental fliiculty in meshing the facets of Figure 7.14—dfdulty that is
not present in Figure 7.12. In Figure 7.14, it is not posstblenesh the region betwedn andG at v
without resorting to poorly shaped tetrahedra. The faceEgure 7.12 can be meshed entirely with well-
shaped tetrahedra. The three-dimensional Delaunay redimeaigorithm discussed here outlaws inputs like
Figure 7.14, at least for the purposes of analysis.

Lemma 37, which states that ¥§(< Ifs(u) + |uv for any two pointau andv, applies to this definition of
local feature size just as it applies in two dimensions. Tilg prerequisite for the correctness of Lemma 37,
besides the triangle inequality, is that there be a comgtidefinition of which pairs of points are nonincident
feature points.

7.2.3 Proof of Termination

The proof of termination for three-dimensional Delaunafjnement is similar to that of Ruppert’s two-
dimensional algorithm. Assume that in the input PLC, any inaddent segments are separated by an angle
of 60° or greater. If a segment meets a facet at one vestexd the orthogonal projection of the segment
onto the facet intersects the interior of the facet regidindd byv, then the angle separating the segment
from the facet must be no less than arcg% = 69.3°. If the projection of the segment does not intersect
the interior of the facet, the Projection Lemma implies tiavertex on the segment can encroach upon any
subfacet of the facet without also encroaching upon a bayrsggment of the facet, so the.8B9separation
angle is unnecessary. However, there still must be°aséfaration between the segment and the segments
incident onv that bound the facet.

The condition for two incident facets is more complicateflbdth facets are convex and meet at a
segment, then it is slicient for the facets to be separated by a dihedral angle ob®greater. In general,
the two facets must satisfy the followimgojection condition

For any pointp where two facets andG meet, let vig(F) be the facet region of visible from p,
and define vig(G) likewise. By definition, vig(F) and vis,(G) are incident facet regions. No point of the
orthogonal projection of vigF) ontoG may intersect the interior of vi$G). (Here, “interior” is defined
to exclude all boundaries, including isolated slits anduinygertices in the interior of the facet.) Formally,
for any pointp on F N G, the projection condition requires that pE@yisp(F)) N interior(vis,(G)) = 0, or
equivalently, that prej(visp(G)) N interior(visy(F)) = 0.

The paydt of this restriction is that, by Lemma 46, no vertex iny(s) may encroach upon a subfacet
contained entirely in vi(G) without also encroaching upon a subsegmenGadr a subfacet ol not
entirely in vis,(G). The converse is also true. The purpose of this restricgi@o that no vertex can split
a subfacet in a facet region incident to a facet region comtgithat vertex. Otherwise, subfacets might be
split to arbitrarily small sizes through mutual encroachirie regions arbitrarily close tp.

The projection condition just defined is always satisfiedvey facets separated by a dihedral angle of
exactly 90. Itis also satisfied by facets separated by a dihedral amgiey than 90if the facets meet each
other only at segments whose endpoints are not reflex veniceither facet. (Recall Figure 7.14, which
depicts two facets that are separated by a dihedral angiegrinan 90 but fail the projection condition
because is a reflex vertex of.)

The following lemma extends Lemma 38 to three dimensioris.tite if the algorithm never splits any
encroached subfacéthat does not contain the projection pr(@) of the encroaching vertgx (Even more
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liberally, an implementation can easily measure the ifmeradii of the parenp and its potential progeny,
and may splitf if the latter is no less tha% times the former.)

The insertion radius is defined as beforgis the length of the shortest edge incidenvtionmediately
afterv is inserted. The parent of a vertex is defined as before, WwéHdllowing amendments. i is the
circumcenter of a skinny tetrahedron, its parp(y) is the most recently inserted endpoint of the shortest
edge of that tetrahedron. Vfis the circumcenter of an encroached subfacet, its pargheiencroaching
vertex closest te (whether that vertex is inserted or rejected).

Lemma 47. Let v be a vertex, and let p p(v) be its parent, if one exists. Then eithgrx Ifs(v), or
rv > Crp, where
e C = Bifvisthe circumcenter of a skinny tetrahedron;

e C = % if v is the midpoint of an encroached subsegment or the cicemmter of an encroached
subfacet;

e C= ZC}M if v and p lie on incident segments separated by an angle of if v lies in the interior of

a facet incident to a segment containing p at an angleshere4s’ < a < 90°.

Proof: If vis an input vertex, the circumcenter of a tetrahedron (Figud5(a)), or the midpoint of an
encroached subsegment, then it may be treated exactly &rimha 38. One case from that lemma is worth
briefly revisiting to show that nothing essential has change

If vis inserted at the midpoint of an encroached subsegsamid its parenp = p(v) is a circumcenter
(of a tetrahedron or subfacet) that was considered for tiosebut rejected because it encroaches upon
s, thenp lies inside or on the diametral sphere ®f Because the tetrahedralizatifatet triangulation
is Delaunay, the circumsphécegcumcircle centered gb encloses no vertices, and in particular does not
enclose the endpoints af Hence,r, < V2ry; see Figure 7.15(b) for an example where the relation
is equality. Note that the change from circles (in the twamelsional analysis) to spheres makes little
difference. Perhaps the clearest way to see this is to obsenvié tme takes a two-dimensional cross-
section that passes througland p, the cross-section is indistinguishable from the two-digienal case.

(The same argument can be made for the case whanglv lie on incident segments.)

Only the circumstance wheseis the circumcenter of an encroached subfdcetmains. Let be the
facet that contain$. There are four cases to consider.

e If the parentpis an input vertex, or if and p are nonincident feature points, then s ry.

e If pis atetrahedron circumcenter that was considered fortiosdout rejected because it encroaches
uponf, thenp lies strictly inside the equatorial sphere fofBecause the tetrahedralization is Delau-
nay, the circumsphere centeredpatontains no vertices, including the verticesfofThe subfacef
contains proj(p); otherwise, the algorithm would choose &elient encroached subfacet to split first.
The height ofp above proj(p) is no greater than,, and the distance between pr@) and the nearest

vertex of f is no greater than, (because prg[p) liesin f), sorp < V2r,. See Figure 7.15(c) for an
example where the relation is equality.

e If pwas inserted on a segment that is inciderfE tat one vertex, separated by an angle @f> 45°
(Figure 7.15(d)), the shared vertaxcannot lie inside the equatorial spherefdbecause the facét
is Delaunay triangulated. (This is true everfitloes not appear in the tetrahedralization.) Because
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Figure 7.15:The relationship between the insertion radii of a child and its parent. (a) When a skinny tetrahedron
is split, the child’s insertion radius is at least B times larger than that of its parent. (b) When a subsegment is
encroached upon by a circumcenter, the child’s insertion radius may be a factor of V2 smaller than its parent's.
(c) When a subfacet is encroached upon by the circumcenter of a skinny tetrahedron, and the subfacet contains
the orthogonal projection of the encroaching circumcenter, the child’s insertion radius may be a factor of V2
smaller than its parent’s. (d) When a subfacet is encroached upon by the midpoint of a subsegment, and the
corresponding facet and segment are incident at one vertex, the analysis differs little from the case of two incident
segments.

the segment and facet are separated by an angle thfe angleZpavis at leasta. Becausef is

encroached upon by, p lies inside its equatorial sphere. (lfis not present in the tetrahedralization,
p might lie on its equatorial sphere in a degenerate case.Jogoasly to the case of two incident
segments (see Lemma 38)qif> 45°, then{—; is minimized when the radius of the equatorial sphere
isry = |vpl, andp lies on the sphere. (If the equatorial sphere were any smiluld not contain

p.) Thereforer, > 52 u

2cosa”

Lemma 47 provides the information one needs to ensure thHaubBay refinement will terminate. As

with the two dimensional algorithms, the key is to prevent egrtex from begetting a sequence of descen-
dants with ever-smaller insertion radii.
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Figure 7.16:Flow diagram illustrating the worst-case relation between a vertex’s insertion radius and the insertion
radii of the children it begets. If no cycle has a product smaller than one, the three dimensional Delaunay
refinement algorithm will terminate.

Figure 7.16 depicts a flow graph corresponding to Lemma 47 shMertices are divided into four
classes: input vertices (which cannot contribute to cycksgment vertices (inserted into segments), facet
vertices (inserted into facet interiors), and free vegi@eserted at circumcenters of tetrahedra). As we have
seen, free vertices can father facet vertices whose inseeidii are smaller by a factor of2, and these facet
vertices in turn can father segment vertices whose inseréidii are smaller by another factor o2. Hence,
to avoid spiralling into the abyss, it is important that seginvertices can only father free vertices whose
insertion radii are at least twice as large. This constii@iet the best guaranteed circumradius-to-shortest
edge ratio aB = 2.

The need to prevent diminishing cycles also engenders theresnent that incident segments be sepa-
rated by angles of 60or more, just as it did in the two-dimensional case. A segrnmaident to a facet must
be separated by an angle of at least arcié\%Si 69.3° so that if a vertex on the segment encroaches upon

a subfacet of the facet, the child that results will have aeiition radius at least/2 larger than that of its

parent. (Recall from Lemma 47 thigt> zéﬁ-)

Theorem 48. Let Ifsyin be the shortest distance between two nonincident featurdéspof the input PLC.
Suppose that any two incident segments are separated bygia ahat least60°, any two incident facet
regions satisfy the projection condition, and any segmeeitient to a facet region at one vertex is separated

from it by an angle of at Ieaﬁtrccoszi\/E or satisfies the projection condition.

Suppose a tetrahedron is considered to be skinny if its giradius-to-shortest edge ratio is larger than
B, where B> 2. The three-dimensional Delaunay refinement algorithmmiesd above will terminate, with
no tetrahedralization edge shorter th#amin.
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Proof: Suppose for the sake of contradiction that the algorithmodhices one or more edges shorter than
Ifsmin into the mesh. Le¢ be the first such edge introduced. Clearly, the endpoinecahnot both be input
vertices, nor can they lie on nonincident feature points.\Mlee the most recently inserted endpointof

By assumption, no edge shorter thap,lfsexisted before was inserted. Hence, for any ancestaf v
that is a mesh vertex, > Ifsmin. Let p = p(v) be the parent of, letg = p(p) be the grandparent of(if one
exists), and leh = p(g) be the great-grandparentwfif one exists). Because of the projection conditian,
andp cannot lie in incident facet regions. Consider the follogvirases.

e If vis the circumcenter of a skinny tetrahedron, then by LemmaA¥ Bry, > 2ry,.

e If vis the midpoint of an encroached subsegment or the circuteicehan encroached subfacet, and
pis the circumcenter of a skinny tetrahedron, then by LemmaA¥ ~5rp > ~%rg > V2rg.

e If vis the midpoint of an encroached subsegmerig the circumcenter of an encroached subfacet,
andg is the circumcenter of a skinny tetrahedron, then by Lemma.4¥ %er > 2rg> Brp >

e If vandp lie on incident segments, then by Lemma A7 Becauser > 60°, ry > ry,.

2 co&x

e If vis the circumcenter of an encroached subfacetmiixeis on a segment incident (at a single vertex)

to the facet containing, then by Lemma 47, > 2. Becauser > arccos— rv> V2rp.

e If vis the midpoint of an encroached subsegmeris the (rejected) circumcenter of an encroached
subfacet, andj lies on a segment incident (at a single vertex) to the facetamoing p, then by
1 1
Lemmad47r, > 5P 2 75000 Becauser > arccos==—= \/_, rv>Trg.

e If vis the midpoint of an encroached subsegment, @hes been inserted on a nonincident segment
or facet region, then by the definition of parept,is the shortest edge introduced by the insertion of
v. Because andv lie on nonincident entitiegp andv are separated by a distance of at leastiifs
contradicting the assumption thahas length less than Jfg..

In the first six caseq,p, > r, for some mesh vertea that is an ancestor gd. It follows thatrp > Ifsyn,
contradicting the assumption thahas length less than [fg,. Because no edge shorter thanylfsis ever
introduced, the algorithm must terminate. |

7.2.4 Proof of Good Grading

As with the two-dimensional algorithm, a stronger termioatproof is possible, showing that each edge
of the output mesh has length proportional to the local fessizes of its endpoints, and thus guaranteeing
nicely graded meshes. The proof makes use of Lemma 40, whitérglizes unchanged to three or more
dimensions. Recall that the lemma states that, it Cr, for some vertex with parentp, then their

Ifs-weighted vertex densities are related by the forniyas 1+ <2, whereD, = 5 andD,, = =2,

Lemma 49. Suppose the quality bound B is strictly larger thanand all angles between segments and
facets satisfy the conditions listed in Theorem 48, witlnatualities replaced by strict inequalities.

Then there exist fixed constants > 1, D > 1, and Ds > 1 such that, for any vertex v inserted
(or rejected) at the circumcenter of a skinny tetrahedron,<DD-; for any vertex v inserted (or rejected)
at the circumcenter of an encroached subfacet,<DDg; and for any vertex v inserted at the midpoint
of an encroached subsegment, B Ds. Hence, the insertion radius of every vertex has a lower doun
proportional to its local feature size.
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Proof: Consider any non-input vertaxwith parentp = p(v). If pis an input vertex, the®, = ”S(p) <1
by Lemma 47. Otherwise, assume for the sake of inductionttieatemma is true fop. In elther case,
Dp < maxDr, Df, Ds}.

First, suppose is inserted or considered for insertion at the circumceoter skinny tetrahedron. By
Lemma 47, > Brp. Therefore, by Lemma 4@, < 1+ MPrDeDs) it follows that one can prove that
Dy < Dy if Dy is chosen sfiiciently large that

1+

maX{DT’BDF’ Ds} _ Dr. (7.1)

Second, supposés inserted or considered for insertion at the circumcenitarsubfacef . If its parent
pis an input vertex or i andp are nonincident feature points, thensk ry, and the theorem holds. jf
is the circumcenter of a skinny tetrahedron (rejected b&e#wencroaches updh), ry > —= by Lemma 47,

r
V2
so by Lemma 40D, < 1+ V2Dr.

Alternatively, if p lies on a segment incident to the facet containinghenr, > 2cosQ by Lemma 47,
and thus by Lemma 4@, < 1+ 2Dscosa. It follows that one can prove th&, < Df if Dg is chosen
suficiently large that

1+ V2D
1+ 2Dg cosa

< De, and (7.2)
< De. (7.3)

Third, suppose is inserted at the midpoint of a subsegmentf its parentp is an input vertex or if/
and p are nonincident feature points, then sk ry, and the theorem holds. ffis the circumcenter of a
skinny tetrahedron or encroached subfacet (rejected bedaancroaches upa), ry > i/—pz by Lemma 47,

so by Lemma 40Dy < 1+ V2 max{Dr, Dg}.

Alternatively, if p andv lie on incident segments, thep> 2cosQ by Lemma 47, and thus by Lemma 40,
Dy < 1+ 2Ds cosa. It follows that one can prove th&l, < Ds if Dg is chosen sfliciently large that

1+ V2maxDr, Dg} Ds and (7.4)
1+2Dscosa < Ds. (7.5)

IA

A

If the quality boundB is strictly larger than 2, Inequalities (7.1), (7.2), and4{7are simultaneously
satisfied by choosing

B+1+ V2 5 1+ V2)B+ V2

(3+ V2)B
B—2 F- B-2 : :

D+ =
T B-2

Ds =

If the smallest anglers between any facet and any segment is strictly greater th}m% = 69.3°,
Inequalities (7.3) and (7.4) may be satisfied by choosing

1+ 2cosaes 1+ 2
b S: b
1-2V2cosars 1- 22 cosars

F =

if these values exceed those specified above. In this cgsist B upward if necessary to satisfy Inequal-
ity (7.1).
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If the smallest anglers s between two segments is strictly greater thah, 80equality (7.5) may be
satisfied by choosing

1
Ds= —rn—,
ST1-2 coass
if this value exceeds those specified above. In this casestddy andDg upward if necessary to satisfy
Inequalities (7.1) and (7.2). |

Theorem 50. For any vertex v of the output mesh, the distance to its neagighbor is at Ieasﬁi%.

Proof: Inequality (7.4) indicates thds is larger tharDt andDg. The remainder of the proof is identical
to that of Theorem 42. [ |

To provide an example, suppo8e= 2.5 and the input PLC has no acute angles. Thgn= 9.8,
De = 149, andDs = 22.1. Hence, the spacing of vertices is at worst about 23 timedlenthan the local
feature size. Note that &approaches 2yss approaches 6Qor ars approaches arcc%%, the values of
D, Dg, andDs approach infinity.

As Figure 7.17 shows, the algorithm performs much betteractce. The upper mesh is the initial
tetrahedralization after all segments and facets aretatemnd unwanted tetrahedra have been removed
from the holes. (Some subsegments remain encroached kedarisg the segment and facet recovery
stages, my implementation only splits an encroached sufesggf it is missing or it is encroached within
the facet currently being recovered.) In this example, as s all encroached subsegments and subfacets
have been eliminated (middle left), the largest circumuado-shortest edge ratio is already less thdn 2
The shortest edge length is 1, angilfs= V5, so the spectre of edge lengths 23 times smaller than thé loc
feature size has not materialized. As the quality boBrdkecreases, the number of elements in the final
mesh increases gracefully urildrops below 105. With B = 1.04, the algorithm fails to terminate.

Figure 7.18 @ers a demonstration of the grading of a tetrahedralizat@eated by Delaunay refine-
ment. A cube has been truncated at one corner, cutfiragmortion whose width is one-millionth that of the
cube. Although this mesh satisfies a bound on circumraditshrortest edge ratio & = 1.2, reasonably
good grading is apparent. For this bound there is no thealeguarantee of good grading, but the worst
edge is 73 times shorter than the local feature size at orte ehdpoints. If a bound d@ = 2.5 is applied,
the worst edge is 9 (rather than 23) times smaller than tred feature size at one of its endpoints.

Unfortunately, the proof of good grading does not yield @&<iptimality proof as it does in the two-
dimensional case. Gary Miller and Dafna Talmor (private samication) have pointed out the coun-
terexample depicted in Figure 7.19. Inside this PLC, twarsags pass very close to each other without
intersecting. The PLC might reasonably be tetrahedrakxi¢gd a few dozen tetrahedra having bounded
circumradius-to-shortest edge ratios, if these tetrahgaiude a sliver tetrahedron whose four vertices are
the endpoints of the two interior segments. However, thé Detaunay refinement can promise is to fill
the region with tetrahedra whose edge lengths are propaitto the distance between the two segments.
Because this distance may be arbitrarily small, the algorits not size-optimal. If a Delaunay refine-
ment algorithm were developed thdtered guaranteed bounds for the dihedral angles, and notyntleee
circumradius-to-shortest edge ratios, then size-opiiynaight be proven using ideas like those with which
Mitchell and Vavasis [84, 85] demonstrate the size-optityalf their octree-based algorithms.



A Three-Dimensional Delaunay Refinement Algorithm 123

Initial tetrahedralization after segment and facet
recovery. 71 vertices, 146 tetrahedra.

B = 2.095,0min = 1.96°, Omax = 17602°, B=12,60min =1.20°, Omax= 17801,
hmin = 1, 143 vertices, 346 tetrahedra. hmin = 0.743, 334 vertices, 1009 tetrahedra.
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B = 107,9m|n = 1900, emax = 177.110, B = 1.041,9min = 0930, Hmax = 178.400,
hmin = 0.369, 1397 vertices, 5596 tetrahedra. hmin = 0.192, 3144 vertices, 13969 tetrahedra.

Figure 7.17:Several meshes of a 10 x 10 x 10 PLC generated with different bounds (B) on circumradius-to-
shortest edge ratio. Below each mesh is listed the smallest dihedral angle 6mn, the largest dihedral angle 6max,
and the shortest edge length hy,,. The algorithm does not terminate on this PLC for the bound B = 1.04.
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Figure 7.19:A counterexample demonstrating that the three-dimensional Delaunay refinement algorithm is not
size-optimal.

7.3 Sliver Removal by Delaunay Refinement

Although | have proven no theoretical guarantees aboutudelarefinement’s ability to remove sliver tetra-
hedra, it is nonetheless natural to wonder whether Delargfapement might beftective in practice. If one
inserts a vertex at the circumcenter of any tetrahedronavitimall dihedral angle, will the algorithm fail to
terminate?

As Figure 7.20 demonstrates, Delaunay refinement can stifoeeseful dihedral angle bounds. Each
of the meshes illustrated was generated by applying a lo@endi, on dihedral angles, rather than a
circumradius-to-shortest edge ratio bound. However,riigémentation prioritizes poor tetrahedra accord-
ing to their ratios, and thus slivers are split last. | suspleat the program generates meshes with fewer
tetrahedra this way, and that the likelihood of terminai®greater. Intuitively, one expects that a vertex
inserted at the circumcenter of the tetrahedron with thgelstrratio is more likely to eliminate more bad
tetrahedra.

Both meshes illustrated have dihedral angles bounded bat@® and 149. The mesh on the right
was generated with bounds on both tetrahedron volume ardidihangle, so that enough tetrahedra were
generated to ensure that the mesh on the left wasn't meralke. f{The best attainable lower bound drops
by 22° as a result.) Experiments with very large meshes suggesathanimum angle of 19can be
obtained reliably.
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B = 188,9m|n = 23.50, Gmax = 144:80, B = 202,9m|n = 21.30, emax = 14880,

hmin = 0.765, 307 vertices, 891 tetrahedra. hmin = 0.185, 1761 vertices, 7383 tetrahedra.

Figure 7.20:Meshes created by Delaunay refinement with bounds on the smallest dihedral angle fmin. Also
listed for each mesh is its largest dihedral angle 0max and its shortest edge length hy,i,. Compare with Figure 7.17
on Page 123.

Chew [38] dters hints as to why slivers might be eliminated so readilylvescan always be eliminated
by splitting it, but how can one avoid creating new sliverghie process? Chew observes that a newly
inserted vertex can only take part in a sliver if it is posigd badly relative to a triangular face already
in the mesh. Figure 7.21 illustrates the set of bad positidideft, a side view of the plane containing a
face of the tetrahedralization is drawn. A tetrahedron feirhy the face and a new vertex can have a small
dihedral angle only if the new vertex lies within the slab idegd; this slab is the set of all points within
a certain distance from the plane. Late in the Delaunay nefemé process, such a tetrahedron can only
arise if its circumradius-to-shortest edge ratio is snvallich implies that it must lie in the region colored
black in Figure 7.21 (left). Thidisallowed regiondepicted at right, is shaped like a ring with an hourglass
cross-section.

Chew shows that if the slab associated with each facefig®untly thin, a randomized Delaunay re-
finement algorithm can avoid ever placing a vertex in thelldis&d region of any face. The key idea is
that each new vertex is not inserted precisely at a circutecerather, a candidate vertex is generated at a
randomly chosen location in the inner half of the circumsplseadius. If the candidate vertex lies in some
face’s disallowed region, the candidate is rejected andvaame generated in its stead.

The algorithm will eventually generate a successful caatgidoecause the number of nearby triangular
faces is bounded, and the volume of each disallowed regismal. If the sum of the volumes of the
disallowed regions is less than the volume of the region iitkvbandidate vertices are generated, a good
candidate will eventually be found. To ensure that this doomdis met, the slabs are made very thin.

Chew derives an explicit bound on the worst-case tetralmegispect ratio, which is too small to serve
as a practical guarantee. However, there is undoubtedlgat geal of slack in the derivation. Even if the
slabs are made thick enough tery a useful bound on the minimum dihedral angle, the smalinael of the
disallowed region suggests that the practical prospeetg@sd. My non-randomized Delaunay refinement
implementation seems to verify this intuition. | have not tested whether randomization is helpful in
practice. Although randomization may reduce the frequenitly which slivers are generated, the act of
inserting vertices f-center in circumspheres weakens the bound on circumrégisBortest edge ratio.

Unfortunately, my success in removing slivers is probalig th part to the severe restrictions on input
angles | have imposed. Practitioners report that they Havenbst dificulty removing slivers at the bound-
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Figure 7.21:Left: A side view of the plane containing a triangular face. In conjunction with this face, a newly
inserted vertex can form a sliver with both a bad dihedral angle and a good circumradius-to-shortest edge ratio
only if it is inserted in the disallowed region (black). Right: An oblique view of the disallowed region of a triangular
face.

ary of a mesh, especially near small angles. Mesh improveteehniques such as optimization-based
smoothing and topological transformations can remove saintiee imperfections that cannot be removed

directly by Delaunay refinement.
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