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Chapter 2Conditional Independen
e andFa
torizationA graphi
al model 
an be thought of as a probabilisti
 database, a ma
hine that 
an answer\queries" regarding the values of sets of random variables. We build up the database in pie
es, usingprobability theory to ensure that the pie
es have a 
onsistent overall interpretation. Probabilitytheory also justi�es the inferential ma
hinery that allows the pie
es to be put together \on the 
y"to answer queries.Consider a set of random variables fX1;X2; : : : ;Xng and let xi represent the realization ofrandom variable Xi. Ea
h random variable may be s
alar-valued or ve
tor-valued. Thus xi is ingeneral a ve
tor in a ve
tor spa
e. In this se
tion, for 
on
reteness, we assume that the randomvariables are dis
rete; in general, however, we make no su
h restri
tion. There are several kinds ofquery that we might be interested in making regarding su
h an ensemble. We might, for example,be interested in knowing whether one subset of variables is independent of another, or whether onesubset of variables is 
onditionally independent of another subset of variables given a third subset.Or we might be interested in 
al
ulating 
onditional probabilities|the probabilities of one subset ofvariables given the values of another subset of variables. Still other kinds of queries will be des
ribedin later 
hapters. In prin
iple all su
h queries 
an be answered if we have in hand the joint proba-bility distribution, written P (X1 = x1;X2 = x2; : : : ;Xn = xn). Questions regarding independen
e
an be answered by fa
toring the joint probability distribution, and questions regarding 
onditionalprobabilities 
an be answered by appropriate marginalization and normalization operations.To simplify our notation, we will generally express dis
rete probability distributions in terms ofthe probability mass fun
tion p(x1; x2; : : : ; xn), de�ned as p(x1; x2; : : : ; xn) , P (X1 = x1;X2 =x2; : : : ;Xn = xn). We also will often use X to stand for fX1; : : : ;Xng, and x to stand forfx1; : : : ; xng, so that P (X1 = x1;X2 = x2; : : : ;Xn = xn) 
an be written more su

in
tly asP (X = x), or, more su

in
tly still, as p(x). Note also that subsets of indi
es are allowed whereversingle indi
es appear. Thus if A = f2; 4g and B = f3g, then XA is shorthand for fX2;X4g, XB isshorthand for fX3g, and P (XA = xA jXB = xB) is shorthand for P (X2 = x2;X4 = x4 jX3 = x3).While it is in fa
t our goal to maintain and manipulate representations of joint probabilities,we must not be naive regarding the size of the representations. In the 
ase of dis
rete random3



4 CHAPTER 2. CONDITIONAL INDEPENDENCE AND FACTORIZATIONvariables, one way to represent the joint probability distribution is as an n-dimensional table,in whi
h ea
h 
ell 
ontains the probability p(x1; x2; : : : ; xn) for a spe
i�
 setting of the variablesfx1; x2; : : : ; xng. If ea
h variable xi ranges over r values, we must store and manipulate rn numbers,a quantity exponential in n. Given that we wish to 
onsider models in whi
h n is in the hundredsor thousands, su
h a naive tabular representation is out.Graphi
al models represent joint probability distributions more e
onomi
ally, using a set of\lo
al" relationships among variables. To de�ne what we mean by \lo
al" we avail ourselves ofgraph theory.2.1 Dire
ted graphs and joint probabilitiesLet us begin by 
onsidering dire
ted graphi
al representations. A dire
ted graph is a pair G(V; E),where V is a set of nodes and E a set of (oriented) edges. We will assume that G is a
y
li
.Ea
h node in the graph is asso
iated with a random variable. Formally, we assume that thereis a one-to-one mapping from nodes to random variables, and we say that the random variables areindexed by the nodes in the graph. Thus, for ea
h i 2 V, there is an asso
iated random variable Xi.Letting V = f1; 2; : : : ; ng, as we often do for 
onvenien
e, the set of random variables asso
iatedwith the graph is given by fX1;X2; : : : ;Xng.Although nodes and random variables are rather di�erent formal obje
ts, we will �nd it 
onve-nient to ignore the distin
tion, letting the symbol \Xi" refer both to a node and to its asso
iatedrandom variable. Indeed, we will often gloss over the distin
tion between nodes and random vari-ables altogether, using language su
h as \the marginal probability of node Xi."Note that we will also sometimes use lower-
ase letters|that is, the realization variables xi|to label nodes, further blurring distin
tions. Given the stri
t one-to-one 
orresponden
e that weenfor
e between the notation for random variables (Xi) and their realizations (xi), however, this isunlikely to lead to 
onfusion.It would be rather in
onvenient to be restri
ted to the symbol \X" for random variables, and weoften use other symbols as well. Thus, we may 
onsider examples in whi
h sets su
h as fW;X; Y; Zgor fX1;X2;X3; Y1; Y2; Y3g denote the set of random variables asso
iated with a graph. As long asit is 
lear whi
h random variable is asso
iated with whi
h node, then formally the random variablesare \indexed" by the nodes in the graph as required, even though the indexing is not ne
essarilymade expli
it in the notation.Ea
h node has a set of parent nodes, whi
h 
an be the empty set. For ea
h node i 2 V, welet �i denote the set of parents of node i. We also refer to the set of random variables X�i asthe \parents" of the random variable Xi, exploiting the one-to-one relationship between nodes andrandom variables.We use the lo
ality de�ned by the parent-
hild relationship to 
onstru
t e
onomi
al represen-tations of joint probability distributions. To ea
h node i 2 V we asso
iate a fun
tion fi(xi; x�i).These fun
tions are assumed to have the properties of 
onditional probability distributions: thatis, fi(xi; x�i) is nonnegative and sums to one with respe
t to xi for ea
h value of x�i . We impose noadditional 
onstraint on these fun
tions; in parti
ular, there is no assumption of any relationshipbetween the fun
tions at di�erent nodes.



2.1. DIRECTED GRAPHS AND JOINT PROBABILITIES 5Let V = f1; 2; : : : ; ng. Given a set of fun
tions ffi(xi; x�i) : i 2 Vg, we de�ne a joint probabilitydistribution as follows: p(x1; x2; : : : ; xn) , nYi=1 fi(xi; x�i): (2.1)That is, we de�ne the joint probability as a produ
t of the lo
al fun
tions at the nodes of thegraph. To verify that the de�nition obeys the 
onstraints on a joint probability, we 
he
k: (1) theright-hand side is 
learly nonnegative; and (2) the assumption that ea
h fa
tor fi(xi; x�i) sums toone with respe
t to xi, together with the assumption that the graph is a
y
li
, implies that theright-hand side sums to one with respe
t to fx1; x2; : : : ; xng. In parti
ular, we 
an sum \ba
kward"from the leaves of the graph, summing over the values of leaf nodes and removing the nodes fromthe graph, obtaining a value of one at ea
h step.1By 
hoosing spe
i�
 numeri
al values for the fun
tions fi(xi; x�i), we generate a spe
i�
 jointprobability distribution. Ranging over all possible numeri
al 
hoi
es for these fun
tions, we de�nea family of joint probability distributions asso
iated with the graph G. It will turn out that thisfamily is a natural mathemati
al obje
t. In parti
ular, as we will see later in this 
hapter, thisfamily 
an be 
hara
terized not only in terms of produ
ts of lo
al fun
tions, but also more \graph-theoreti
ally" in terms of the patterns of edges in the graph. It is this relationship between thedi�erent ways to 
hara
terize the family of probability distributions asso
iated with a graph thatis the key to the underlying theory of probabilisti
 graphi
al models.With a de�nition of joint probability in hand, we 
an begin to address the problem of 
al
u-lating 
onditional probabilities under this joint. Suppose in parti
ular that we 
al
ulate p(xi jx�i)under the joint probability in Eq. (2.1). What, if any, is the relationship between this 
onditionalprobability and fi(xi; x�i), a fun
tion whi
h has the properties of a 
onditional probability but isotherwise arbitrary? As we ask the reader to verify in Exer
ise ??, these fun
tions are in fa
t oneand the same. That is, under the de�nition of joint probability in Eq. (2.1), the fun
tion fi(xi; x�i)is ne
essarily the 
onditional probability of xi given x�i . Put di�erently, we see that the fun
tionsfi(xi; x�i) must form a 
onsistent set of 
onditional probabilities under a single joint probability.This is a pleasant and somewhat surprising fa
t given that we 
an de�ne the fun
tions fi(xi; x�i)arbitrarily.Given that fun
tions fi(xi; x�i) are in fa
t 
onditional probabilities, we hen
eforth drop the finotation and write the de�nition in terms of p(xi jx�i):2p(x1; x2; : : : ; xn) = nYi=1 p(xi jx�i): (2.2)1If this point is not 
lear now, it will be 
lear later when we dis
uss inferen
e algorithms.2Eq. (2.2) is often used as the de�nition of the joint probability for a dire
ted graphi
al model. Su
h a de�nitionrisks 
ir
ularity, however, be
ause it is not 
lear in advan
e that an arbitrary 
olle
tion of 
onditional probabilities,fp(xi j x�i)g, are ne
essarily 
onditionals under the same joint probability. Moreover, it is not 
lear in advan
e thatan arbitrary 
olle
tion of 
onditional probabilities is internally 
onsistent. We thus prefer to treat Eq. (2.1) as thede�nition and view Eq. (2.2) as a 
onsequen
e. Having made this 
autionary note, however, for simpli
ity we referto Eq. (2.2) as the \de�nition" of joint probability in the remainder of the 
hapter.
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Figure 2.1: An example of a dire
ted graphi
al model.We refer to the 
onditional probabilities p(xi jx�i) as the lo
al 
onditional probabilities asso
iatedwith the graph G. These fun
tions are the building blo
ks whereby we synthesize a joint distributionasso
iated with the graph G.Figure 2.1 shows an example on six nodes. A

ording to the de�nition, we obtain the jointprobability as follows:p(x1; x2; x3; x4; x5; x6) = p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2)p(x5 jx3)p(x6 jx2; x5); (2.3)by taking the produ
t of the lo
al 
onditional distributions.Let us now return to the problem of representational e
onomy. Are there 
omputational ad-vantages to representing a joint probability as a set of lo
al 
onditional probabilities?Ea
h of the lo
al 
onditional probabilities must be represented in some manner. In later 
hapterswe will 
onsider a number of possible representations for these probabilities; indeed, this represen-tational issue is one of the prin
ipal topi
s of the book. For 
on
reteness, however, let us make asimple 
hoi
e here. For a dis
rete node Xi, we must represent the probability that node Xi takeson one of its possible values, for ea
h 
ombination of values for its parents. This 
an be done usinga table. Thus, for example, the probability p(x1) 
an be represented using a one-dimensional table,and the probability p(x6 jx2; x5) 
an be represented using a three-dimensional table, one dimensionfor ea
h of x2; x5 and x6. The entire set of tables for our example is shown in Figure 2.2, wherefor simpli
ity we have assumed that the nodes are binary-valued. Filling these tables with spe
i�
numeri
al values pi
ks out a spe
i�
 distribution in the family of distributions de�ned by Eq. (2.3).In general, ifmi is the number of parents of nodeXi, we 
an represent the 
onditional probabilityasso
iated with node Xi with an (mi + 1)-dimensional table. If ea
h node takes on r values, thenwe require a table of size rmi+1.We have ex
hanged exponential growth in n, the number of variables in the domain, for expo-nential growth in mi, the number of parents of individual nodes Xi (the \fan-in"). This is veryoften a happy ex
hange. Indeed, in many situations the maximum fan-in in a graphi
al model isrelatively small and the redu
tion in 
omplexity 
an be enormous. For example, in hidden Markov
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Figure 2.2: The lo
al 
onditional probabilities represented as tables. Ea
h of the nodes is assumedto be binary-valued. Ea
h of these tables 
an be �lled with arbitrary nonnegative numeri
al values,subje
t to the 
onstraint that they sum to one for given �xed values of the parents of a node. Thus,ea
h 
olumn in ea
h table must sum to one.



8 CHAPTER 2. CONDITIONAL INDEPENDENCE AND FACTORIZATIONmodels (see Chapter 12), ea
h node has at most a single parent, while the number of nodes n 
anbe in the thousands.The fa
t that graphs provide e
onomi
al representations of joint probability distributions isimportant, but it is only a �rst hint of the profound relationship between graphs and probabilities.As we show in the remainder of this 
hapter and in the following 
hapter, graphs provide mu
h morethan a data stru
ture; in parti
ular, they provide inferential ma
hinery for answering questionsabout probability distributions.2.1.1 Conditional independen
eAn important 
lass of questions regarding probability distributions has to do with 
onditional inde-penden
e relationships among random variables. We often want to know whether a set of variablesis independent of another set, or perhaps 
onditionally independent of that set given a third set.Independen
e and 
onditional independen
e are important qualitative aspe
ts of probability theory.By de�nition, XA and XB are independent, written XA ?? XB , if:p(xA; xB) = p(xA)p(xB); (2.4)and XA and XC are 
onditionally independent given XB , written XA ?? XC jXB , if:p(xA; xC jxB) = p(xA jxB)p(xC jxB); (2.5)or, alternatively, p(xA jxB ; xC) = p(xA jxB); (2.6)for all xB su
h that p(xB) > 0. Thus, to establish independen
e or 
onditional independen
e weneed to fa
tor the joint probability distribution.Graphi
al models provide an intuitively appealing, symboli
 approa
h to fa
toring joint prob-ability distributions. The basi
 idea is that representing a probability distribution within thegraphi
al model formalism involves making 
ertain independen
e assumptions, assumptions whi
hare embedded in the stru
ture of the graph. From the graphi
al stru
ture other independen
e rela-tions 
an be derived, re
e
ting the fa
t that 
ertain fa
torizations of joint probability distributionsimply other fa
torizations. The key advantage of the graphi
al approa
h is that su
h fa
torizations
an be read o� from the graph via simple graph sear
h algorithms. We will des
ribe su
h an al-gorithm in Se
tion 2.1.2; for now let us try to see in general terms why graphi
al stru
ture shoulden
ode 
onditional independen
e.The 
hain rule of probability theory allows a probability mass fun
tion to be written in a generalfa
tored form, on
e a parti
ular ordering for the variables is 
hosen. For example, a distributionon the variables fX1;X2; : : : ;X6g 
an be written as:p(x1; x2; x3; x4; x5; x6)= p(x1)p(x2 jx1)p(x3 jx1; x2)p(x4 jx1; x2; x3)p(x5 jx1; x2; x3; x4)p(x6 jx1; x2; x3; x4; x5);where we have 
hosen the usual arithmeti
 ordering of the nodes. In general, we have:p(x1; x2; : : : ; xn) = nYi=1 p(xi jx1; : : : ; xi�1): (2.7)



2.1. DIRECTED GRAPHS AND JOINT PROBABILITIES 9Comparing this expansion, whi
h is true for an arbitrary probability distribution, with the de�-nition in Eq. (2.2), we see that our de�nition of joint probability involves dropping some of the
onditioning variables in the 
hain rule. Inspe
ting Eq. (2.6), it seems natural to try to interpretthese missing variables in terms of 
onditional independen
e. For example, the fa
t that p(x4 jx2)appears in Eq. (2.3) in the pla
e of p(x4 jx1; x2; x3) suggests that we should expe
t to �nd that X4is independent of X1 and X3 given X2.Taking this idea a step further, we might posit that missing variables in the lo
al 
onditionalprobability fun
tions 
orrespond to missing edges in the underlying graph. Thus, p(x4 jx2) appearsas a fa
tor in Eq. (2.3) be
ause there are no edges from X1 and X3 to X4. Transferring theinterpretation from missing variables to missing edges we obtain a probabilisti
 interpretationfor the missing edges in the graph in terms of 
onditional independen
e. Let us formalize thisinterpretation.De�ne an ordering I of the nodes in a graph G to be topologi
al if for every node i 2 V the nodesin �i appear before i in the ordering. For example, the ordering I = (1; 2; 3; 4; 5; 6) is a topologi
alordering for the graph in Figure 2.1. Let �i denote the set of all nodes that appear earlier thani in the ordering I, ex
luding the parent nodes �i. For example, �5 = f1; 2; 4g for the graph inFigure 2.1.As we ask the reader to verify in Exer
ise ??, the set �i ne
essarily 
ontains all an
estors ofnode i (ex
luding the parents �i), and may 
ontain other nondes
endant nodes as well.Given a topologi
al ordering I for a graph G we asso
iate to the graph the following set of basi

onditional independen
e statements: fXi ?? X�i jX�ig (2.8)for i 2 V. Given the parents of a node, the node is independent of all earlier nodes in the ordering.For example, for the graph in Figure 2.1 we have the following set of basi
 
onditional indepen-den
ies: X1 ?? ; j ; (2.9)X2 ?? ; j X1 (2.10)X3 ?? X2 j X1 (2.11)X4 ?? fX1;X3g j X2 (2.12)X5 ?? fX1;X2;X4g j X3 (2.13)X6 ?? fX1;X3;X4g j fX2;X5g; (2.14)where the �rst two statements are va
uous.Is this interpretation of the missing edges in terms of 
onditional independen
e 
onsistent withour de�nition of the joint probability in Eq. (2.2)? The answer to this important question is \yes,"although proof will be again postponed until later. Let us refer to our example, however, to providea �rst indi
ation of the basi
 issues.Let us verify that X1 and X3 are independent of X4 given X2 by dire
t 
al
ulation from the



10 CHAPTER 2. CONDITIONAL INDEPENDENCE AND FACTORIZATIONjoint probability in Eq. (2.3). We �rst 
ompute the marginal probability of fX1;X2;X3;X4g:p(x1; x2; x3; x4) = Xx5 Xx6 p(x1; x2; x3; x4; x5; x6) (2.15)= Xx5 Xx6 p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2)p(x5 jx3)p(x6 jx2; x5) (2.16)= p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2)Xx5 p(x5 jx3)Xx6 p(x6 jx2; x5) (2.17)= p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2); (2.18)and also 
ompute the marginal probability of fX1;X2;X3g:p(x1; x2; x3) = Xx4 p(x1)p(x2 jx1)p(x3 jx1)p(x4 jx2) (2.19)= p(x1)p(x2 jx1)p(x3 jx1): (2.20)Dividing these two marginals yields the desired 
onditional:p(x4 jx1; x2; x3) = p(x4 jx2); (2.21)whi
h demonstrates the 
onditional independen
e relationship X4 ?? fX1;X3g jX2.We 
an readily verify the other 
onditional independen
ies in Eq. (2.14), and indeed it is nothard to follow along the lines of the example to prove in general that the 
onditional indepen-den
e statements in Eq. (2.8) follow from the de�nition of joint probability in Eq. (2.2). Thuswe are li
ensed to interpret the missing edges in the graph in terms of a basi
 set of 
onditionalindependen
ies.More interestingly, we might ask whether there are other 
onditional independen
e statementsthat are true of su
h joint probability distributions, and whether these statements also have agraphi
al interpretation.For example, for the graph in Figure 2.1 it turns out that X1 is independent of X6 givenfX2;X3g. This is not one of the basi
 
onditional independen
ies in the list in Eq. (2.14), but it isimplied by that list. We 
an verify this 
onditional independen
e by algebra. In general, however,su
h algebrai
 
al
ulations 
an be tedious and it would be appealing to �nd a simpler method for
he
king 
onditional independen
ies. Moreover, we might wish to write down all of the 
onditionalindependen
ies that are implied by our basi
 set. Is there any way to do this other than by tryingto fa
torize the joint distribution with respe
t to all possible triples of subsets of the variables?A solution to the problem is suggested by examining the graph in Figure 2.3. We see that thenodes X2 and X3 separate X1 from X6, in the sense that all paths between X1 and X6 pass throughX2 or X3. Moreover, returning to the list of basi
 
onditional independen
ies in Eq. (2.14), we seethat the parents X�i blo
k all paths from the node Xi to the earlier nodes in a topologi
al ordering.This suggests that the notion of graph separation 
an be used to derive a graphi
al algorithm forinferring 
onditional independen
e.We will have to take some 
are, however, to make the notion of \blo
king" pre
ise. For example,X2 is not ne
essarily independent of X3 given X1 and X6, as would be suggested by a naiveinterpretation of \blo
king" in terms of graph separation.
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Figure 2.3: The nodes X2 and X3 separate X1 from X6.We will pursue the analysis of blo
king and 
onditional independen
e in the following se
tion,where we provide a general graph sear
h algorithm to solve the problem of �nding implied inde-penden
ies.Let us make a �nal remark on the de�nition of the set of basi
 
onditional independen
e state-ments in Eq. (2.8). Note that this set is dependent on both the graph G and on an ordering I. Itis also possible to make an equivalent de�nition that is de�ned only in terms of the graph G. Inparti
ular, re
all that the set �i ne
essarily in
ludes all an
estors of i (ex
luding the parents �i).Note that the set of an
estors is independent of the ordering I. We thus might 
onsider de�ninga basi
 set of independen
e statements that assert the 
onditional independen
e of a node fromits an
estors, 
onditional on its parents. It turns out that the independen
e statements in this sethold if and only if the independen
e statements in Eq. (2.8) hold. As we ask the reader to verifyin Exer
ise ??, this equivalen
e follows easily from the \Bayes ball" algorithm that we present inthe following se
tion.The de�nition in Eq. (2.8) was 
hosen so as to be able to 
ontrast the de�nition of the jointprobability in Eq. (2.2) with the general 
hain rule in Eq. (2.7). An order-independent de�nition ofthe basi
 set of 
onditional independen
ies is, however, an arguably more elegant 
hara
terizationof 
onditional independen
e in a graph, and it will take 
enter stage in our more formal treatmentof 
onditional independen
e and Markov properties in Chapter 16.2.1.2 Conditional independen
e and the Bayes ball algorithmThe algorithm that we des
ribe is 
alled the Bayes ball algorithm, and it has the 
olorful inter-pretation of a ball boun
ing around a graph. In essen
e it is a \rea
hability" algorithm, under aparti
ular de�nition of \separation."Our approa
h will be to �rst dis
uss the 
onditional independen
e properties of three 
anoni
al,three-node graphs. We then embed these properties in a proto
ol for the boun
ing ball; these arethe lo
al rules for a graph-sear
h algorithm.Two �nal remarks before we des
ribe the algorithm. In our earlier dis
ussion in Se
tion 2.1.1,
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X Y Z X Y Z

(a) (b)Figure 2.4: (a) The missing edge in this graph 
orresponds to the 
onditional independen
e state-ment X ?? Z jY . As suggested in (b), 
onditioning on Y has the graphi
al interpretation of blo
kingthe path between X and Z.and also in the 
urrent se
tion, we presented 
onditional independen
e as being subservient to thebasi
 de�nition in Eq. (2.2) of the joint probability. That is, we justi�ed an assertion of 
onditionalindependen
e by fa
torizing Eq. (2.2) or one of its marginals. This is not the only point of viewthat we 
an take, however. Indeed it turns out that this relationship 
an be reversed, with Eq. (2.2)being derived from a 
hara
terization of 
onditional independen
e, and we will also introdu
e thispoint of view in this se
tion. By the end of the 
urrent se
tion we hope to have 
lari�ed what ismeant by a \
hara
terization of 
onditional independen
e."On a related note, let us re
all a remark that was made earlier, whi
h is that to ea
h graph weasso
iate a family of joint probability distributions. In terms of the de�nition of joint probability inEq. (2.2), this family arises as we range over di�erent 
hoi
es of the numeri
al values of the lo
al
onditional probabilities p(xi jx�i). Our work in the 
urrent se
tion 
an be viewed as providing analternative, more qualitative, 
hara
terization of a family of probability distributions asso
iated toa given graph. In parti
ular we 
an view the 
onditional independen
e statements generated by theBayes ball algorithm as generating a list of 
onstraints on probability distributions. Those jointprobabilities that meet all of the 
onstraints in this list are in the family, and those that fail to meetone or more 
onstraints are out. It is then an interesting question as to the relationship betweenthis 
hara
terization of a family of probability distributions in terms of 
onditional independen
eand the more numeri
al 
hara
terization of a family in terms of lo
al 
onditional probabilities. Thisis the topi
 of Se
tion 2.1.3.Three 
anoni
al graphsAs we dis
ussed in Se
tion 2.1.1, the missing edges in a dire
ted graphi
al model 
an be interpretedin terms of 
onditional independen
e. In this se
tion, we 
esh out this interpretation for threesimple graphs.Consider �rst the graph shown in Figure 2.4, in whi
h X, Y , and Z are 
onne
ted in a 
hain.There is a missing edge between X and Z, and we interpret this missing edge to mean that X andZ are 
onditionally independent given Y ; thus:X ?? Z jY: (2.22)Moreover, we assert that there are no other 
onditional independen
ies asso
iated with this graph.



2.1. DIRECTED GRAPHS AND JOINT PROBABILITIES 13Let us justify the �rst assertion, showing that X ?? Z jY 
an be derived from the assumed formof the joint distribution for dire
ted models Eq. (2.2). We have:p(x; y; z) = p(x)p(y jx)p(z j y); (2.23)whi
h implies: p(z jx; y) = p(x; y; z)p(x; y) (2.24)= p(x)p(y jx)p(z j y)p(x)p(y jx) (2.25)= p(z j y); (2.26)whi
h establishes the independen
e.The se
ond assertion needs some explanation. What do we mean when we say that \there are noother 
onditional independen
ies asso
iated with this graph"? It is important to understand thatthis does not mean that no further 
onditional independen
ies 
an arise in any of the distributionsin the family asso
iated with this graph (that is, distributions that have the fa
torized form inEq. (2.23)). There are 
ertainly some distributions whi
h exhibit additional independen
ies. Forexample, we are free to 
hoose any lo
al 
onditional probability p(y jx); suppose that we 
hoose adistribution in whi
h the probability of y happens to be the same no matter the value of x. We
an readily verify that with this parti
ular 
hoi
e of p(y jx), we obtain X ?? Y .The key point, then, is that Figure 2.4 does not assert that X and Y are ne
essarily depen-dent (i.e., not independent). That is, edges that are present in a graph do not ne
essarily implydependen
e (whereas edges that are missing do ne
essarily imply independen
e). But the \la
kof independen
e" does have a spe
i�
 interpretation: the general theory that we present in Chap-ter 16 will imply that if a statement of independen
e is not made, then there exists at least onedistribution for whi
h that independen
e relation does not hold. For example, it is easy to �nddistributions that fa
torize as in Eq. (2.23) and in whi
h X is not independent of Y .In essen
e, the issue 
omes down to a di�eren
e between universally quanti�ed statementsand existentially quanti�ed statements, with respe
t to the family of distributions asso
iated witha given graph. Asserted 
onditional independen
ies always hold for these distributions. Non-asserted 
onditional independen
ies sometimes fail to hold for the distributions asso
iated with agiven graph, but sometimes they do hold. This of 
ourse has important 
onsequen
es for algorithmdesign. In parti
ular, if we build an algorithm that is based on 
onditional independen
ies, thealgorithm will be 
orre
t for all of the distributions asso
iated with the graph. An algorithm basedon the absen
e of 
onditional independen
ies will sometimes be 
orre
t, sometimes not.For an intuitive interpretation of the graph in Figure 2.4, letX be the \past," Y be the \present,"and Z be the \future." Thus our 
onditional independen
e statement X ?? Z jY translates into thestatement that the past is independent of the future given the present, and we 
an interpret thegraph as a simple 
lassi
al Markov 
hain.Our se
ond 
anoni
al graph is shown in Figure 2.5. We asso
iate to this graph the 
onditionalindependen
e statement: X ?? Z jY; (2.27)
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(a)

X

Y

Z X

Y

Z

(b)Figure 2.5: (a) The missing edge in this graph 
orresponds to the 
onditional independen
e state-ment X ?? Z jY . As suggested in (b), 
onditioning on Y has the graphi
al interpretation of blo
kingthe path between X and Z.and on
e again we assert that no other 
onditional independen
ies asso
iated with this graph.A justi�
ation of the 
onditional independen
e statement follows from the fa
torization rule.Thus: p(x; y; z) = p(y)p(x j y)p(z j y) (2.28)implies: p(x; z j y) = p(y)p(x j y)p(z j y)p(y) (2.29)= p(x j y)p(z j y); (2.30)whi
h means that X and Z are independent given Y .An intuitive interpretation for this graph 
an be given in terms of a \hidden variable" s
enario.Let X be the variable \shoe size," and let Z be the variable \amount of gray hair." In the generalpopulation, these variables are strongly dependent, be
ause 
hildren tend to have small feet and nogray hair. But if we let Y be \
hronologi
al age," then we might be willing to assert that X ?? Z jY ;that is, given the age of a person, there is no further relationship between the size of their feetand the amount of gray hair that they have. The hidden variable Y \explains" all of the observeddependen
e between X and Z.Note on
e again we are making no assertions of dependen
e based on Figure 2.5. In parti
ular,we do not ne
essarily assume that X and Z are dependent be
ause they both \depend" on thevariable Y . (But we 
an assert that there are at least some distributions in whi
h su
h dependen
iesare to be found).Finally, the most interesting 
anoni
al graph is that shown in Figure 2.6. Here the 
onditionalindependen
e statement that we asso
iate with the graph is a
tually a statement of marginalindependen
e: X ?? Z; (2.31)
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(a) (b)

X

Y

Z

X Z

Figure 2.6: (a) The missing edge in this graph 
orresponds to the marginal independen
e statementX ?? Z. As shown in (b), this is a statement about the subgraph de�ned onX and Z. Note moreoverthat 
onditioning on Y does not render X and Z independent, as would be expe
ted from a naive
hara
terization of 
onditional independen
e in terms of graph separation.whi
h we leave to the reader to verify in terms of the form of the joint probability. On
e again, weassert that no other 
onditional independen
ies hold. In parti
ular, note that we do not assert any
onditional independen
e involving all three of the variables.The fa
t that we do not assert that X is independent of Z given Y in Figure 2.6 is an importantfa
t that is worthy of some dis
ussion. Based on our earlier dis
ussion, we should expe
t to beable to �nd s
enarios in whi
h a variable X is independent of another variable Z, given no otherinformation, but on
e a third variable Y is observed these variables be
ome dependent. Indeed,su
h a s
enario is provided by a \multiple, 
ompeting explanation" interpretation of Figure 2.6.Suppose that Bob is waiting for Ali
e for their noontime lun
h date, and let flate = \yes"gbe the event that Ali
e does not arrive on time. One explanation of this event is that Ali
e hasbeen abdu
ted by aliens, whi
h we en
ode as faliens = \yes"g (see Figure 2.7). Bob uses Bayes'theorem to 
al
ulate the probability P (aliens = \yes" j late = \yes") and is dismayed to �nd thatit is larger than the base rate P (aliens = \yes"). Ali
e has perhaps been abdu
ted by aliens.Now let fwat
h = \no"g denote the event that Bob forgot to set his wat
h to re
e
t daylightsavings time. Bob now 
al
ulates P (aliens = \yes" j late = \yes";wat
h = \no") and is relievedto �nd that the probability of faliens = \yes"g has gone down again. The key point is thatP (aliens = \yes" j late = \yes") 6= P (aliens = \yes" j late = \yes";wat
h = \no"), and thusaliens is not independent of wat
h given late.On the other hand, it is reasonable to assume that aliens is marginally independent of wat
h;that is, Bob's wat
h-setting behavior and Ali
e's experien
es with aliens are presumably unrelatedand we would evaluate their probabilities independently, outside of the 
ontext of the missed lun
hdate.This kind of s
enario is known as \explaining-away" and it is 
ommonpla
e in real-life situations.Moreover, there are other su
h s
enarios (e.g., those involving multiple, synergisti
 explanations)
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aliens

late

watch

Figure 2.7: A graph representing the fa
t that Ali
e is late for lun
h with Bob, with two possibleexplanations|that she has been abdu
ted by aliens and that Bob has forgotten to set his wat
hto re
e
t daylight savings time.in whi
h variables that are marginally independent be
ome dependent when a third variable isobserved. We 
learly do not want to assume in general that X is independent of Z given Y inFigure 2.6.Graph separationWe would like to forge a general link between graph separation and assertions of 
onditional inde-penden
e. Doing so would allow us to use a graph-sear
h algorithm to answer queries regarding
onditional independen
e.Happily, the graphs in Figure 2.4 and Figure 2.5 exhibit situations in whi
h naive graph sepa-ration 
orresponds dire
tly to 
onditional independen
e. Thus, as shown in Figure 2.4(b), shadingthe Y node blo
ks the path from X to Z, and this 
an be interpreted in terms of the 
onditionalindependen
e of X and Z given Y . Similarly, in Figure 2.5(b), the shaded Y node blo
ks the pathfrom X to Z, and this 
an be interpreted in terms of the 
onditional independen
e of X and Zgiven Y .On the other hand, the graph in Figure 2.6 involves a 
ase in whi
h naive graph separationand 
onditional independen
e are opposed. It is when the node Y is unshaded that X and Z areindependent; when Y is shaded they be
ome dependent. If we are going to use graph-theoreti
ideas to answer queries about 
onditional independen
e, we need to pay parti
ular attention to this
ase.The solution is straightforward. Rather than relying on \naive" separation, we de�ne a newnotion of separation that is more appropriate to our purposes. This notion is known as d-separation,for \dire
ted separation." We provide a formal dis
ussion of d-separation in Chapter 16; in the
urrent 
hapter we provide a simple operational de�nition of d-separation in terms of the Bayesball algorithm.
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X

Y

Z

W

V

Figure 2.8: We develop a set of rules to spe
ify what happens when a ball arrives from a node Xat a node Y , en route to a node Z.The Bayes ball algorithmThe problem that we wish to solve is to de
ide whether a given 
onditional independen
e statement,XA ?? XB jXC , is true for a dire
ted graph G. Formally this means that the statement holds forevery distribution that fa
tors a

ording to G, but let us not worry about formal issues for now,and let our intuition|aided by the three 
anoni
al graphs that we have already studied|help usto de�ne an algorithm to de
ide the question.The algorithm is a \rea
hability" algorithm: we shade the nodes XC , pla
e a ball at ea
h ofthe nodes XA, let the balls boun
e around the graph a

ording to a set of rules, and ask whetherany of the balls rea
h one of the nodes in XB . If none of the balls rea
h XB , then we assert thatXA ?? XB jXC is true. If a ball rea
hes XB then we assert that XA ?? XB jXC is not true.The basi
 problem is to spe
ify what happens when a ball arrives at a node Y from a node X,en route to a node Z (see Figure 2.8). Note that we fo
us on a parti
ular 
andidate destinationnode Z, ignoring the other neighbors that Y may have. (We will be trying all possible neighbors,but we fo
us on one at a time). Note also that the balls are allowed to travel in either dire
tionalong the edges of the graph.We spe
ify these rules by making referen
e to our three 
anoni
al graphs. In parti
ular, referringto Figure 2.4, suppose that ball arrives at Y from X along an arrow oriented from X to Y , and weare 
onsidering whether to allow the ball to pro
eed to Z along an arrow oriented from Y to Z.Clearly, if the node Y is shaded, we do not want the ball to be able to rea
h Z, be
ause X ?? Z jYfor this graph. Thus we require the ball to be \blo
ked" in this 
ase. Similarly, if a ball arrivesat Y from Z, we do not allow the ball to pro
eed to X; again the ball is blo
ked. We summarizethese rules with the diagram in Figure 2.9(a).
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X Y Z X Y Z

(a) (b)Figure 2.9: The rules for the 
ase of one in
oming arrow and one outgoing arrow. (a) When themiddle node is shaded, the ball is blo
ked. (b) When the middle node is unshaded, the ball passesthrough.On the other hand, if Y is not shaded, then we want to allow the ball to rea
h Z from X(and similarly X from Z), be
ause we do not want to assert 
onditional independen
e in this 
ase.Thus we have the diagram in Figure 2.9(b), whi
h shows the ball \passing through" when Y is notshaded.Similar 
onsiderations apply to the graph in Figure 2.5, where the arrows are oriented outwardfrom the node Y . On
e again, if Y is shaded we do not want the ball to pass between X and Z,thus we require it to be blo
ked at Y . On the other hand, if Y is unshaded we allow the ball topass through. These rules are summarized in Figure 2.10.Finally, we 
onsider the graph in Figure 2.6 in whi
h both of the arrows are oriented towardsnode Y (this is often referred to as a \v-stru
ture"). Here we simply reverse the rules. Thus, if Yis not shaded we require the ball to be blo
ked, re
e
ting the fa
t that X and Z are marginallyindependent. On the other hand, if Y is shaded we allow the ball to pass through, re
e
ting thefa
t that we do not assert that X and Z are 
onditionally independent given Y . The rules for thisgraph are given in Figure 2.11.We also intend for these rules to apply to the 
ase in whi
h the sour
e node and the destinationnode (X and Z, respe
tively) are the same. That is, when a ball arrives at a node, we 
onsiderea
h possible outgoing edge in turn, in
luding the edge the ball arrives on.Consider �rst the 
ase in whi
h the ball arrives along an edge that is oriented from X to Y . Inthis 
ase, the situation is e�e
tively one in whi
h a ball arrives on the head of an arrow and departson the head of an arrow. This situation is 
overed by Figure 2.11. We see that the ball should beblo
ked if the node is unshaded and should \pass through" if the node is shaded, a result that issummarized in Figure 2.12. Note that the a
tion of \passing through" is better des
ribed in this
ase as \boun
ing ba
k."The remaining situation is the one in whi
h the ball arrives along an edge that is oriented fromY to X. The ball arrives on the tail of an arrow and departs on the tail of an arrow, a situationwhi
h is 
overed by Figure 2.10. We see that the ball should be blo
ked if the node is shaded andshould boun
e ba
k if the node is unshaded, a result that is summarized in Figure 2.13.Let us 
onsider some examples. Figure 2.14 shows a 
hain-stru
tured graphi
al model (a Markov
hain) on a set of nodes fX1;X2; : : : ;Xng. The basi
 
onditional independen
ies for this graph (
f.
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(a)

X

Y

Z X

Y

Z

(b)Figure 2.10: The rules for the 
ase of two outgoing arrows. (a) When the middle node is shaded,the ball is blo
ked. (b) When the middle node is unshaded, the ball passes through.

(a)

X

Y

Z

(b)

X

Y

Z

Figure 2.11: The rules for the 
ase of two outgoing arrows. (a) When the middle node is shaded,the ball passes through. (b) When the middle node is unshaded, the ball is blo
ked.
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(a) (b)

X Y X Y

Figure 2.12: The rules for this 
ase follow from the rules in Figure 2.11. (a) When the ball arrivesat an unshaded node, the ball is blo
ked. (b) When the ball arrives at a shaded node, the ball\passes through," whi
h e�e
tively means that it boun
es ba
k.

(a) (b)

X Y X Y

Figure 2.13: The rules for this 
ase follow from the rules in Figure 2.10. (a) When the ball arrivesat an unshaded node, the ball \passes through," whi
h e�e
tively means that it boun
es ba
k. (b)When the ball arrives at a shaded node, the ball is blo
ked.
1X 2X 3X X 4 X 5

Figure 2.14: The separation of X3 from X1, given its parent, X2, is a basi
 independen
e statementfor this graph. But 
onditioning on X3 also separates any subset of X1;X2 from any subset ofX4;X5, and all of these separations also 
orrespond to 
onditional independen
ies.
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1X

2X

3X

X 4

X 5

X6

Figure 2.15: A ball arriving at X2 from X1 is blo
ked from 
ontinuing on to X4. Also, a ballarriving at X6 from X5 is blo
ked from 
ontinuing on to X2.Eq. (2.8)) are the 
onditional independen
ies:Xi+1 ?? fX1;X2; : : : ;Xi�1g jXi: (2.32)There are, however, many other 
onditional independen
ies that are implied by this basi
 set, su
has: X1 ?? X5 jX4; X1 ?? X5 jX2; X1 ?? X5 j fX2;X4g; (2.33)ea
h of whi
h 
an be established from algebrai
 manipulations starting from the de�nition of thejoint probability. Indeed, in general we 
an obtain the 
onditional independen
e of any subset of\future" nodes from any subset of \past" nodes given any subset of nodes that separates thesesubsets. This is 
learly the set of 
onditional independen
e statements pi
ked out by the Bayes ballalgorithm; the ball is blo
ked when it arrives at X3 from either the left or the right.Consider the graph in Figure 2.1 and 
onsider the 
onditional independen
e X4 ?? fX1;X3g jX2whi
h we demonstrated to hold for this graph (this is one of the basi
 set of 
onditional indepen-den
ies for this graph; re
all Eqs. 2.9 through eq:example-set-of-basi
-CI). Using the Bayes ballapproa
h, let us 
onsider whether it is possible for a ball to arrive at node X4 from either node X1or node X3, given that X2 is shaded (see Figure 2.15). To arrive at X4, the ball must pass throughX2. One possibility is to arrive at X2 from X1, but the path through to X4 is blo
ked be
ause ofFigure 2.9(a). The other possibility is to arrive at X2 via X6. However, any ball arriving at X6must do so via X5, and su
h a ball is blo
ked at X6 be
ause of Figure 2.11(b).Note that balls 
an also boun
e ba
k at X2 and X6, but this provides no help with respe
t toarriving at X4.We 
laimed in Se
tion 2.1.1 that X1 ?? X6 j fX2;X3g, a 
onditional independen
e that is not inthe basi
 set. Consider a ball starting at X1 and traveling to X3 (see Figure 2.16). Su
h a ball
annot pass through to X5 be
ause of Figure 2.9(a). Similarly, a ball 
annot pass from X1 throughX2 (to either X4 or X6) be
ause of Figure 2.9(a).
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1X

2X

3X

X 4

X 5

X6

Figure 2.16: A ball 
annot pass through X2 to X6 nor through X3.
1X

2X

3X

X 4

X 5

X6

Figure 2.17: A ball 
an pass from X2 through X6 to X5, and then
e to X3.We also 
laimed in Se
tion 2.1.1 that it is not the 
ase that X2 ?? X3 j fX1;X6g. To establish this
laim we note that a ball 
an pass through X2 to X6 be
ause of Figure 2.9(b), and (see Figure 2.17)
an then pass from through X6 to X5, on the basis of Figure 2.11(a). The ball then passes throughX5 and arrives at X3. Intuitively (and loosely), the observation of X6 implies the possibility of an\explaining-away" dependen
y between X2 and X5. Clearly X5 and X3 are dependent, and thusX2 and X3 are dependent.Finally, 
onsider again the s
enario with Ali
e and Bob, and suppose that Bob does not a
tuallyobserve that Ali
e fails to show at the hour that he expe
ts her. Suppose instead that Bob is animportant exe
utive and there is a se
urity guard for Bob's building who reports to Bob whether aguest has arrived or not. We augment the model to in
lude a node report for the se
urity guard'sreport and, as shown in Figure 2.18, we hang this node o� of the node late. Now observation ofreport is essentially as good as observation of late, parti
ularly if we believe that the se
urityguard is reliable. That is, we should still have aliens ?? wat
h, and moreover we should not assert
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aliens

late

watch

reportFigure 2.18: An extended graphi
al model for the Bob-Ali
e s
enario, in
luding a node report forthe se
urity guard's report.aliens ?? wat
h j report. That is, if the se
urity guard reports that Ali
e has not arrived, thenBob worries about aliens and subsequently has his worries alleviated when he realizes that he hasforgotten about daylight savings time.This pattern is what the Bayes ball algorithm delivers. Consider �rst the marginal independen
ealiens ?? wat
h. As 
an be veri�ed from Figure 2.19(a), a ball that starts at aliens is blo
ked frompassing though late dire
tly to wat
h. Moreover, although a ball 
an pass through late to report,su
h a ball dies at report. Thus the ball 
annot arrive at wat
h.Consider now the situation when report is observed (Figure 2.19(b)). As before a ball thatstarts at aliens is blo
ked from passing though late dire
tly to wat
h; however, a ball 
an passthrough late to report. At this point Figure 2.12(b) implies implies that the ball boun
es ba
k atreport. The ball 
an then pass through late on the path from report to wat
h. Thus we 
annot
on
lude independen
e of aliens and wat
h in the 
ase that report is observed.Some further thought will show that it suÆ
es for any des
endant of late to be observed inorder to enable the explaining-away me
hanism and render aliens and wat
h dependent.RemarksWe hope that the reader agrees that the Bayes ball algorithm is a simple, intuitively-appealingalgorithm for answering 
onditional independen
e queries. Of 
ourse, we have not yet provided afully-spe
i�ed algorithm, be
ause there are many implementational details to work out, in
ludinghow to represent multiple balls when XA and XB are not singleton sets, how to make sure thatthe algorithm 
onsiders all possible paths in an eÆ
ient way, how to make sure that the algorithmdoesn't loop, et
. But these details are just that|details|and with a modi
um of e�ort the reader
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aliens

late

watch

report report

(a) (b)

late

aliens watch

Figure 2.19: (a) A ball 
annot pass from aliens to wat
h when no observations are made on lateor report. (b) A ball 
an pass from aliens to wat
h when report is observed.
an work out su
h an implementation. Our main interest in the Bayes ball algorithm is to providea handy tool for qui
k evaluation of 
onditional independen
e queries, and to provide 
on
retesupport for the more formal dis
ussion of 
onditional independen
e that we undertake in the nextse
tion.2.1.3 Chara
terization of dire
ted graphi
al modelsA key idea that has emerged in this 
hapter is that a graphi
al model is asso
iated with a familyof probability distributions. Moreover, as we now dis
uss, this family 
an be 
hara
terized in twoequivalent ways.Let us de�ne two families and then show that they are equivalent. A
tually we defer the proofof equivalen
e until Chapter 16, but we state the theorem here and dis
uss its 
onsequen
es.The �rst family is de�ned via the de�nition of joint probability for dire
ted graphs, whi
h werepeat here for 
onvenien
e. Thus for a dire
ted graph G, we have:p(x1; x2; : : : ; xn) , nYi=1 p(xi jx�i): (2.34)Let us now 
onsider ranging over all possible numeri
al values for the lo
al 
onditional probabilitiesfp(xi jx�i)g, imposing only the restri
tion that these fun
tions are nonnegative and normalized.For dis
rete variables this would involve ranging over all possible real-valued tables on nodes xiand their parents. While in pra
ti
e, we often want to 
hoose simpli�ed parameterizations insteadof these tables, for the general theory we must range over all possible tables.
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1X
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1X2X X 4
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2X X 4 1X 3X,{               }

1XX 42X 3X,{               }

(a) (b)

1X 2X

2X 4X

Figure 2.20: The list in (b) shows all of the 
onditional independen
ies that hold for the graph in(a).For ea
h 
hoi
e of numeri
al values for the lo
al 
onditional probabilities we obtain a parti
-ular probability distribution p(x1; : : : ; xn). Ranging over all su
h 
hoi
es we obtain a family ofdistributions that we refer to as D1.Let us now 
onsider an alternative way to generate a family of probability distributions asso
i-ated with a graph G. In this approa
h we will make no use of the numeri
al parameterization ofthe joint probability in Eq. (2.34)|this approa
h will be more \qualitative."Given a graph G we 
an imagine making a list of all of the 
onditional independen
e statementsthat 
hara
terize the graph. To do this, imagine running the Bayes ball algorithm for all triples ofsubsets of nodes in the graph. For any given triple XA, XB and XC , the Bayes ball algorithm tellsus whether or not XA ?? XB jXC should be in
luded in the list asso
iated with the graph.For example, Figure 2.20 shows a graph, and all of its asso
iated 
onditional independen
estatements. In general su
h lists 
an be signi�
antly longer than the list in this example, but theyare always �nite.Now 
onsider all possible joint probability distributions p(x1; : : : ; xn), where we make no restri
-tions at all. Thus, for dis
rete variables, we 
onsider all possible n-dimensional tables. For ea
hsu
h distribution, imagine testing the distribution against the list of 
onditional independen
iesasso
iated with the graph G. Thus, for ea
h 
onditional independen
e statement in the list, we testwhether the distribution fa
torizes as required. If it does, move to the next statement. If it doesnot, throw out this distribution and try a new distribution. If a distribution passes all of the testsin the list, we in
lude that distribution in a family that we denote as D2.In Chapter 16, we state and prove a theorem that shows that the two families D1 and D2 are thesame family. This theorem, and an analogous theorem for undire
ted graphs, provide a strong andimportant link between graph theory and probability theory and are at the 
ore of the graphi
al
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hara
terizations of probability distributions via numeri
alparameterization and 
onditional independen
e statements are one and the same, and allow us touse these 
hara
terizations inter
hangeably in analyzing models and de�ning algorithms.2.2 Undire
ted graphi
al modelsThe world of graphi
al models divides into two major 
lasses|those based on dire
ted graphsand those based on undire
ted graphs.3 In this se
tion we dis
uss undire
ted graphi
al models,also known as Markov random �elds, and 
arry out a development that parallels our dis
ussionof the dire
ted 
ase. Thus we will present a fa
torized parameterization for undire
ted graphs,a 
onditional independen
e semanti
s, and an algorithm for answering 
onditional independen
equeries. There are many similarities to the dire
ted 
ase|and mu
h of our earlier work on dire
tedgraphs 
arries over|but there are interesting and important di�eren
es as well.An undire
ted graphi
al model is a graph G(V; E), where V is a set of nodes that are in one-to-one 
orresponden
e with a set of random variables, and where E is a set of undire
ted edges.The random variables 
an be s
alar-valued or ve
tor-valued, dis
rete or 
ontinuous. Thus we willbe 
on
erned with graphi
al representations of a joint probability distribution, p(x1; x2; : : : ; xn)|amass fun
tion in the dis
rete 
ase and a density fun
tion in the 
ontinuous 
ase.2.2.1 Conditional independen
eAs we saw in Se
tion 2.1.3, there are two equivalent 
hara
terizations of the 
lass of joint probabilitydistributions asso
iated with a dire
ted graph. Our presentation of dire
ted graphi
al models began(in Se
tion 2.1) with the fa
torized parameterization and subsequently motivated the 
onditionalindependen
e 
hara
terization. We 
ould, however, have turned this dis
ussion around and startedwith a set of 
onditional independen
e axioms, subsequently deriving the parameterization. In the
ase of undire
ted graphs, indeed, this latter approa
h is the one that we will take. For undire
tedgraphs, the 
onditional independen
e semanti
s is the more intuitive and straightforward of thetwo (equivalent) 
hara
terizations.To spe
ify the 
onditional independen
e properties of a graph, we must be able to say whetherXA ?? XC jXB is true for the graph, for arbitrary index subsets A, B, and C. For dire
ted graphswe de�ned the 
onditional independen
e properties operationally, via the Bayes ball algorithm (weprovide a 
orresponding de
larative de�nition in Chapter 16). For undire
ted graphs we go straightto the de
larative de�nition.We say that XA is independent of XC given XB if the set of nodes XB separates the nodesXA from the nodes XC , where by \separation" we mean naive graph-theoreti
 separation (seeFigure 2.21). Thus, if every path from a node in XA to a node in XC in
ludes at least one nodein XB , then we assert that XA ?? XC jXB holds; otherwise we assert that XA ?? XC jXB does nothold.3There is also a generalization known as 
hain graphs that subsumes both 
lasses. We will dis
uss 
hain graphsin Chapter ??.
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XA

XB

XCFigure 2.21: The set XB separates XA from XC . All paths from XA to XC pass through XB .As before, the meaning of the statement \XA ?? XC jXB holds for a graph G" is that everymember of the family of probability distributions asso
iated with G exhibits that 
onditional in-dependen
e. On the other hand, the statement \XA ?? XC jXB does not hold for a graph G"means|in its strong form|that some distributions in the family asso
iated with G do not exhibitthat 
onditional independen
e.Given this de�nition, it is straightforward to develop an algorithm for answering 
onditionalindependen
e queries for undire
ted graphs. We simply remove the nodes XB from the graph andask whether there are any paths from XA to XC . This is a \rea
hability" problem in graph theory,for whi
h standard sear
h algorithms provide a solution.Comparative semanti
sIs it possible to redu
e undire
ted models to dire
ted models, or vi
e versa? To see that this is notpossible in general, 
onsider Figure 2.22.In Figure 2.22(a) we have an undire
ted model that is 
hara
terized by the 
onditional indepen-den
e statements X ?? Y j fW;Zg andW ?? Z j fX;Y g. If we try to represent this model in a dire
tedgraph on the same four nodes, we �nd that we must have at least one node in whi
h the arrowsare inward-pointing (a \v-stru
ture"). (Re
all that our graphs are a
y
li
). Suppose without lossof generality that this node is Z, and that this is the only v-stru
ture. By the 
onditional indepen-den
e semanti
s of dire
ted graphs, we have X ?? Y jW , and we do not have X ?? Y j fW;Zg. We areunable to represent both 
onditional independen
e statements, X ?? Y j fW;Zg andW ?? Z j fX;Y g,in the dire
ted formalism.On the other hand, in Figure 2.22(b) we have a dire
ted graph 
hara
terized by the singleton
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W

X Y

Z

X Y

Z

(a) (b)Figure 2.22: (a) An undire
ted graph whose 
onditional independen
e semanti
s 
annot be 
apturedby a dire
ted graph on the same nodes. (b) A dire
ted graph whose 
onditional independen
esemanti
s 
annot be 
aptured by an undire
ted graph on the same nodes.independen
e statement X ?? Y . No undire
ted graph on three nodes is 
hara
terized by thissingleton set. A missing edge in an undire
ted graph only between X and Y 
aptures X ?? Y jZ,not X ?? Y . An additional missing edge between X and Z 
aptures X ?? Y , but implies X ?? Z.We will show in Chapter 16 that there are some families of probability distributions that 
an berepresented with either dire
ted or undire
ted graphs. There is no good reason to restri
t ourselvesto these families, however. In general, dire
ted models and undire
ted models are di�erent modelingtools, and have di�erent strengths and weaknesses. The two together provide modeling powerbeyond that whi
h 
ould be provided by either alone.2.2.2 ParameterizationAs in the 
ase of dire
ted graphs, we would like to obtain a \lo
al" parameterization for undire
tedgraphi
al models. For dire
ted graphs the parameterization was based on lo
al 
onditional prob-abilities, where \lo
al" had the interpretation of a set fi; �ig 
onsisting of a node and its parents.The de�nition of the joint probability as a produ
t of su
h lo
al probabilities was motivated viathe 
hain rule of probability theory.In the undire
ted 
ase it is rather more diÆ
ult to utilize 
onditional probabilities to representthe joint. One possibility would be to asso
iate to ea
h node the 
onditional probability of thenode given its neighbors. This approa
h falls prey to a major 
onsisten
y problem, however|it ishard to ensure that the 
onditional probabilities at di�erent nodes are 
onsistent with ea
h otherand thus with a single joint distribution. We are not able to 
hoose these fun
tions independentlyand arbitrarily, and this poses problems both in theory and in pra
ti
e.A better approa
h turns out to be to abandon 
onditional probabilities altogether. By so doingwe will lose the ability to give a lo
al probabilisti
 interpretation to the fun
tions used to representthe joint probability, but we will retain the ability to 
hoose these fun
tions independently and



2.2. UNDIRECTED GRAPHICAL MODELS 29arbitrarily, and we will retain the all-important representation of the joint as a produ
t of lo
alfun
tions.A key problem is to de
ide the domain of the lo
al fun
tions; in essen
e, to de
ide the meaningof \lo
al" for undire
ted graphs. It is here that the dis
ussion of 
onditional independen
e in theprevious se
tion is helpful. In parti
ular, 
onsider a pair of nodes Xi and Xj that are not linked inthe graph. The 
onditional independen
e semanti
s imply that these two nodes are 
onditionallyindependent given all of the other nodes in the graph (be
ause upon removing this latter set there
an be no paths from Xi to Xj). Thus it must be possible to obtain a fa
torization of the jointprobability that pla
es xi and xj in di�erent fa
tors. This implies that we 
an have no lo
alfun
tion that depends on both xi and xj in our representation of the joint. Su
h a lo
al fun
tion,say  (xi; xj; xk), would not fa
torize with respe
t to xi and xj in general|re
all that we areassuming that the lo
al fun
tions 
an be 
hosen arbitrarily.Re
all that a 
lique of a graph is a fully-
onne
ted subset of nodes. Our argument thus far hassuggested that the lo
al fun
tions should not be de�ned on domains of nodes that extend beyondthe boundaries of 
liques. That is, if Xi and Xj are not dire
tly 
onne
ted, they do not appeartogether in any 
lique, and 
orrespondingly there should be no lo
al fun
tion that refers to bothnodes. We now 
onsider the 
ip side of the 
oin. Should we allow arbitrary fun
tions that arede�ned on all of the 
liques? Indeed, an interpretation of the edges that are present in the graph interms of \dependen
e" suggests that we should. We have not de�ned dependen
e, but heuristi
ally,dependen
e is the \absen
e of independen
e" in one or more of the distributions asso
iated with agraph. If Xi and Xj are linked, and thus appear together in a 
lique, we 
an a
hieve dependen
ebetween them by de�ning a fun
tion on that 
lique.The maximal 
liques of a graph are the 
liques that 
annot be extended to in
lude additionalnodes without losing the property of being fully 
onne
ted. Given that all 
liques are subsets of oneor more maximal 
liques, we 
an restri
t ourselves to maximal 
liques without loss of generality.Thus, if X1, X2, and X3 form a maximal 
lique, then an arbitrary fun
tion  (x1; x2; x3) already
aptures all possible dependen
ies on these three nodes; we gain no generality by also de�ningfun
tions on sub-
liques su
h as fX1;X2g or fX2;X3g.4In summary, our arguments suggest that the meaning of \lo
al" for undire
ted graphs shouldbe \maximal 
lique." More pre
isely, the 
onditional independen
e properties of undire
ted graphsimply a representation of the joint probability as a produ
t of lo
al fun
tions de�ned on the max-imal 
liques of the graph. This argument is in fa
t 
orre
t, and we will establish it rigorously inChapter 16. Let us pro
eed to make the de�nition and explore some of its 
onsequen
es.Let C be a set of indi
es of a maximal 
lique in an undire
ted graph G, and let C be the setof all su
h C. A potential fun
tion,  XC (xC), is a fun
tion on the possible realizations xC of themaximal 
lique XC .Potential fun
tions are assumed to be nonnegative, real-valued fun
tions, but are otherwisearbitrary. This arbitrariness is 
onvenient, indeed ne
essary, for our general theory to go through,4While there is no need to 
onsider non-maximal 
liques in developing the general theory relating 
onditionalindependen
e and fa
torization|our topi
 in this se
tion|in pra
ti
e it is often 
onvenient to work with potentialson non-maximal 
liques. This issue will return in Se
tion 2.3 and in later 
hapters. Let us de�ne joint probabilitiesin terms of maximal 
liques for now, but let us be prepared to relax this de�nition later.
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Figure 2.23: The maximal 
liques in this graph in are fX1;X2g, fX1;X3g, fX2;X4g, fX3;X5g,and fX2;X5;X6g. Letting all nodes be binary, we represent a joint distribution on the graph viathe potential tables that are displayed.but it also presents a problem. There is no reason for a produ
t of arbitrary fun
tions to benormalized and thus de�ne a joint probability distribution. This is a bullet whi
h we simply haveto bite if we are to a
hieve the desired properties of arbitrary, independent potentials and a produ
trepresentation for the joint.Thus we de�ne: p(x) , 1Z YC2C  XC (xC); (2.35)where Z is the normalization fa
tor: Z ,Xx YC2C  XC (xC); (2.36)obtained by summing the produ
t in Eq. (2.35) over all assignments of values to the nodes X.An example is shown in Figure 2.23. The nodes in this example are assumed dis
rete, andthus tables 
an be used to represent the potential fun
tions. An overall 
on�guration x pi
ks outsubve
tors xC , whi
h determine parti
ular 
ells in ea
h of the potential tables. Taking the produ
tof the numbers in these 
ells yields an unnormalized representation of the joint probability p(x).
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X Y ZFigure 2.24: An undire
ted representation of a three-node Markov 
hain. The 
onditional indepen-den
e asso
iated with this graph is X ?? Z jY .The normalization fa
tor Z is obtained by summing over all 
on�gurations x. There are anexponential number of su
h 
on�gurations and it is unrealisti
 to try to perform su
h a sum bynaively enumerating all of the summands. Note, however, that the expression being summed overis a fa
tored expression, in whi
h ea
h fa
tor refers to a lo
al set of variables, and thus we 
anexploit the distributive law. This is an issue that is best dis
ussed in the 
ontext of the moregeneral dis
ussion of probabilisti
 inferen
e, and we return to it in Chapter 3.Note, however, that we do not ne
essarily have to 
al
ulate Z. In parti
ular, re
all that a
onditional probability is a ratio of two marginal probabilities. The fa
tor Z appears in both ofthe marginal probabilities, and 
an
els when we take the ratio. Thus we 
al
ulate 
onditionals bysumming a
ross unnormalized probabilities|the numerator in Eq. (2.35)|and taking the ratio ofthese sums.The interpretation of potential fun
tionsAlthough lo
al 
onditional probabilities do not provide a satisfa
tory approa
h to the parameteri-zation of undire
ted models, it might be thought that marginal probabilities 
ould be used instead.Thus, why not repla
e the potential fun
tions  XC (xC) in Eq. (2.35) with marginal probabilitiesp(xC)?An example will readily show that this approa
h is infeasible. Consider the model shown inFigure 2.24. The 
onditional independen
e that is asso
iated with this graph is X ?? Z jY . Thisindependen
e statement implies (by de�nition) that the joint must fa
torize as:p(x; y; z) = p(y)p(x j y)p(z j y): (2.37)The 
liques in Figure 2.24 are fX;Y g and fY;Zg. We 
an multiply the �rst two fa
tors in Eq. (2.37)together to obtain a potential fun
tion p(x; y) on the �rst 
lique, leaving p(z j y) as the potentialfun
tion on the se
ond 
lique. Alternatively, we 
an multiply p(z j y) by p(y) to yield a potentialp(y; z) on the se
ond 
lique, leaving p(x j y) as the potential on the �rst 
lique. Thus we 
an obtaina fa
torization in whi
h one of the potentials is a marginal probability, and the other is a 
onditionalprobability. But we are unable to obtain a representation in whi
h both potentials are marginalprobabilities. That is: p(x; y; z) 6= p(x; y)p(y; z): (2.38)In fa
t, it is not hard to see that p(x; y; z) = p(x; y)p(y; z) implies p(y) = 0 or p(y) = 1, and thatthis representation is thus a rather limited and unnatural one.
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Figure 2.25: (a) A 
hain of binary random variables Xi, where Xi 2 f�1; 1g. (b) A set of potentialtables that en
ode a preferen
e for neighboring variables to have the same values.In general, potential fun
tions are neither 
onditional probabilities nor marginal probabilities,and in this sense they do not have a lo
al probabilisti
 interpretation. On the other hand, po-tential fun
tions do often have a natural interpretation in terms of pre-probabilisti
 notions su
has \agreement," \
onstraint," or \energy," and su
h interpretations are often useful in 
hoosingan undire
ted model to represent a real-life domain. The basi
 idea is that a potential fun
tionfavors 
ertain lo
al 
on�gurations of variables by assigning them a larger value. The global 
on-�gurations that have high probability are, roughly, those that satisfy as many of the favored lo
al
on�gurations as possible.Consider a set of binary random variables, Xi 2 f�1; 1g; i = 0; : : : ; n, arrayed on a one-dimensional latti
e as shown in Figure 2.25(a). In physi
s, su
h latti
es are used to model magneti
behavior of 
rystals, where the binary variables have an interpretation as magneti
 \spins." All elsebeing equal, if a given spinXi is \up"; that is, if Xi = 1, then its neighborsXi�1 and Xi+1 are likelyto be \up" as well. We 
an easily en
ode this in a potential fun
tion, as shown in Figure 2.25(b).Thus, if two neighboring spins agree, that is, if Xi = 1 and Xi�1 = 1, or if Xi = �1 and Xi�1 = �1,we obtain a large value for the potential on the 
lique fXi�1;Xig. If the spins disagree we obtaina small value.The fa
t that potentials must be nonnegative 
an be in
onvenient, and it is 
ommon to exploitthe fa
t that the exponential fun
tion, f(x) = exp(x), is a nonnegative fun
tion, to representpotentials in an un
onstrained form. We let: XC (xC) = expf�HC(xC)g; (2.39)for a real-valued fun
tion HC(xC), where the negative sign is a standard 
onvention. Thus if we



2.2. UNDIRECTED GRAPHICAL MODELS 33range over arbitrary HC(xC), we 
an range over legal potentials.The exponential representation has another useful feature. In parti
ular, produ
ts of exponen-tials behave ni
ely, and from Eq. (2.35) we obtain:p(x) = 1Z YC2C expf�HC(xC)g (2.40)= 1Z expf�XC2CHC(xC)g (2.41)as an equivalent representation of the joint probability for undire
ted models. The sum in the latterexpression is generally referred to as the \energy":H(x) ,XC2CHC(xC) (2.42)and we have represented the joint probability of an undire
ted graphi
al model as a Boltzmanndistribution: p(x) = 1Z expf�H(x)g: (2.43)Without going too far astray into the origins of the Boltzmann representation in statisti
al physi
s,let us nonetheless note that the representation of a model in terms of energy, and in parti
ular therepresentation of the total energy as a sum over lo
al 
ontributions to the energy, is ex
eedinglyuseful. Many physi
al theories are spe
i�ed in terms of energy, and the Boltzmann distributionprovides a translation from energies into probabilities.Quite apart from any 
onne
tion to physi
s, the undire
ted graphi
al model formalism is oftenquite useful in domains in whi
h global 
onstraints on probabilities are naturally de
omposable intosets of lo
al 
onstraints, and the undire
ted representation is apt at 
apturing su
h situations.2.2.3 Chara
terization of undire
ted graphi
al modelsIn Se
tion 2.1.3 we dis
ussed a theorem that shows that the two di�erent 
hara
terizations of thefamily of probability distributions asso
iated with a dire
ted graphi
al model|one based on lo
al
onditional probabilities and the other based on 
onditional independen
e assertions|were thesame. A formally identi
al theorem holds for undire
ted graphs.For a given undire
ted graph G, we de�ne a family of probability distributions, U1, by rangingover all possible 
hoi
es of positive potential fun
tions on the maximal 
liques of the graph.We de�ne a se
ond family of probability distributions, U2, via the 
onditional independen
eassertions asso
iated with G. Con
retely, we make a list of all of the 
onditional independen
estatements, XA ?? XB jXC , asserted by the graph, by assessing whether the subset of nodes XA isseparated from XB when the nodes XC are removed from the graph. A probability distribution isin U2 if it satis�es all su
h 
onditional independen
e statements, otherwise it is not.In Chapter 16 we state and prove a theorem, the Hammersley-Cli�ord theorem, that showsthat U1 and U2 are identi
al. Thus the 
hara
terization of probability distributions in terms ofpotentials on 
liques and 
onditional independen
e are equivalent. As in the dire
ted 
ase, this isan important and profound link between probability theory and graph theory.
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ed two kinds of graphi
al model representations in this 
hapter|dire
ted graph-i
al models and undire
ted graphi
al models. In ea
h of these 
ases we have de�ned 
onditionalindependen
e semanti
s and 
orresponding parameterizations. Thus, in the dire
ted 
ase, we have:p(x) , nYi=1 p(xi jx�i); (2.44)and in the undire
ted 
ase, we have: p(x) , 1Z YC2C  XC (xC): (2.45)By ranging over all possible 
onditional probabilities in Eq. (2.44) or all possible potential fun
tionsin Eq. (2.45) we obtain 
ertain families of probability distributions, in parti
ular exa
tly thosedistributions whi
h respe
t the 
onditional independen
e statements asso
iated with a given graph.Conditional independen
e is an ex
eedingly useful 
onstraint to impose on a joint probabilitydistribution. In pra
ti
al settings 
onditional independen
e 
an sometimes be assessed by domainexperts, and in su
h 
ases it provides a powerful way to embed qualitative knowledge about therelationships among random variables into a model. Moreover, as we will dis
uss in the following
hapter, the relationship between 
onditional independen
e and fa
torization allows the develop-ment of powerful general inferen
e algorithms that use graph-theoreti
 ideas to 
ompute marginalprobabilities of interest. We often impose 
onditional independen
e as a rough, tentative assump-tion in a domain so as to be able to exploit the eÆ
ient inferen
e algorithms and begin to learnsomething about the domain.On the other hand, 
onditional independen
e is by no means the only kind of 
onstraint thatone 
an impose on a probabilisti
 model. Another large 
lass of 
onstraints arise from assumptionsabout the algebrai
 stru
ture of the 
onditional probabilities or potential fun
tions that de�ne amodel. In parti
ular, rather than ranging over all possible 
onditional probabilities or potentialfun
tions, we may wish to range over a proper subset of these fun
tions, thus de�ning a propersubset of the family of probability distributions asso
iated with a graph. Thus, in pra
ti
e we oftenwork with redu
ed parameterizations that impose 
onstraints on probability distributions beyondthe stru
tural 
onstraints imposed by 
onditional independen
e.We will present many examples of redu
ed parameterizations in later 
hapters. Let us brie
y
onsider two su
h examples in the remainder of this se
tion to obtain a basi
 appre
iation of someof the issues that arise.Dire
ted graphi
al models require 
onditional probabilities, and if the number of parents ofa given node is large, then the spe
i�
ation of the 
onditional probability 
an be problemati
.Consider in parti
ular the graph shown in Figure 2.26(a), where all of the variables are assumedbinary (for simpli
ity), and where the number of parents of Y is assumed large. In parti
ular, ifY has 50 parents, then ranging over \all possible 
onditional probabilities" means spe
ifying 250numbers, one probability for ea
h 
on�guration of the parents. Clearly su
h a spe
i�
ation 
annot
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1X 2X X 50

YFigure 2.26: An example in whi
h a node has many parents. In su
h a graph, a general spe
i�-
ation of the lo
al 
onditional probability distribution requires an impra
ti
ally large number ofparameters.be stored on a 
omputer, and, equally problemati
ally, it would be impossible to 
olle
t enoughdata to be able to estimate these numbers with any degree of pre
ision. We are for
ed to 
onsider\redu
ed parameterizations." One su
h parameterization, dis
ussed in detail in Chapter 8, is thefollowing: p(Y = 1 jx) = f(�1x1 + �2x2 + � � �+ �mxm); (2.46)for a given fun
tion f(�) whose range is the interval (0; 1) (we will provide examples of su
h fun
tionsin Chapter 8). Here, we need only spe
ify the 50 numbers �i to spe
ify a distribution.In general, we 
an 
onsider dire
ted graphi
al models in whi
h ea
h node is parameterized asshown in Eq. (2.46). The family of probability distributions asso
iated with the model as a wholeis that obtained by ranging over all possible values of �i in the de�ning 
onditional probabilities.This is a proper sub-family of the family of distributions asso
iated with the graph.If pra
ti
al 
onsiderations often for
e us to work with redu
ed parameterizations, of what valueis the general de�nition of \the family of distributions asso
iated with a graph"? As we will seein Chapter 4 and Chapter 17, given a graph, eÆ
ient probabilisti
 inferen
e algorithms 
an bede�ned that operate on the graph. These algorithms are based solely on the graph stru
ture andare 
orre
t for any distribution that respe
ts the 
onditional independen
ies en
oded by the graph.Thus su
h algorithms are 
orre
t for any distribution in the family of distributions asso
iated witha graph, in
luding those in any proper sub-family asso
iated with a redu
ed parameterization.Similar issues arise in undire
ted models. Consider in parti
ular the graph shown in Fig-ure 2.27(a). From the point of view of independen
e, there is little to say|there are no indepen-den
e assertions asso
iated with this graph. Equivalently, the family of probability distributionsasso
iated with the graph is the set of all possible probability distributions on the three variables,obtained by ranging over all possible potential fun
tions  (x1; x2; x3). Suppose, however, that weare interested in models in whi
h the potential fun
tion is de�ned algebrai
ally as a produ
t of
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Figure 2.27: (a) An undire
ted graph whi
h makes no independen
e assertions. (b) An undire
tedgraph whi
h asserts X3 ?? fX1;X2g.fa
tors on smaller subsets of variables. Thus, we might let: (x1; x2; x3) = f(x1; x2)g(x3); (2.47)or let:  (x1; x2; x3) = r(x1; x2)s(x2; x3)t(x1; x3); (2.48)for given fun
tions f , g, r, s and t. Ranging over all possible 
hoi
es of these fun
tions, we obtainpotentials that are ne
essarily members of the family asso
iated with the graph in Figure 2.27(a)|be
ause all su
h potentials respe
t the (va
uous) 
onditional independen
e requirement. The poten-tial in Eq. (2.47), however, also respe
ts the (non-va
uous) 
onditional independen
e requirementof the graph in Figure 2.27(b). We would normally use this latter graph if we de
ide (a priori) torestri
t our parameterization to the form given in Eq. (2.47). On the other hand, the potentialgiven in Eq. (2.48) is problemati
 in this regard|there is no smaller graph that represents this
lass of potentials. Any graph with a missing edge makes an independen
e assertion regarding oneor more pairs of variables, and  (x1; x2; x3) = r(x1; x2)s(x2; x3)t(x1; x3) does not respe
t su
h anassertion, when we range over all fun
tions r, s and t.Thus we see that \fa
torization" is a ri
her 
on
ept than \
onditional independen
e." Thereare families of probability distributions that 
an be de�ned in terms of 
ertain fa
torizations of thejoint probability that 
annot be 
aptured solely within the undire
ted or dire
ted graphi
al modelformalism. From the point of view of designing inferen
e algorithms, this might not be viewed asa problem, be
ause an algorithm that is 
orre
t for the graph is 
orre
t for a distribution in anysub-family de�ned on the graph. However, by ignoring the algebrai
 stru
ture of the potential, wemay be missing opportunities for simplifying the algebrai
 operations of inferen
e.In Chapter 4 we introdu
e fa
tor graphs, a graphi
al representation of probability distributionsin whi
h su
h redu
ed parameterizations are made expli
it. Fa
tor graphs allow a more �ne-grainedrepresentation of probability distributions than is provided by either the dire
ted or the undire
tedgraphi
al formalism, and in parti
ular allow the fa
torization of the potential in Eq. (2.48) to be
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itly in the graph. While fa
tor graphs provide nothing new in terms of rep-resenting and exploiting 
onditional independen
e relationships|the main theme of the 
urrent
hapter|they do provide a way to represent and exploit algebrai
 relationships, an issue that willreturn in Chapter 4.2.4 SummaryIn this 
hapter we have presented some of the basi
 de�nitions and basi
 issues that arise whenone asso
iates probability distributions with graphs. A key idea that we have emphasized is that agraphi
al model is a representation of a family of probability distributions. This family is 
hara
-terized in one of two equivalent ways|either in terms of a numeri
al parameterization or in termsof a set of 
onditional independen
ies. Both of these 
hara
terizations are important and useful,and it is the interplay between these 
hara
terizations that gives the graphi
al models formalismmu
h of its distin
tive 
avor.Dire
ted graphs and undire
ted graphs have di�erent parameterizations and di�erent 
ondi-tional independen
e semanti
s, but the key 
on
ept of using graph theory to 
apture the notion ofa joint probability distribution being 
onstru
ted from a set of \lo
al" pie
es is the same in the two
ases.We have also introdu
ed simple algorithms that help make the problem of understanding 
on-ditional independen
e in graphi
al models more 
on
rete. The reader should be able to utilizethe Bayes ball algorithm to read o� 
onditional independen
e statements from dire
ted graphs.Similarly, for undire
ted graphs the reader should understand that naive graph separation en-
odes 
onditional independen
e. Conditional independen
e assertions in undire
ted graphs 
an beassessed via a graph rea
hability algorithm.2.5 Histori
al remarks and bibliography


