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Abstract-- We deconstruct and compare the two dominant exist-
ing approaches for L1 data cache (L1D) error protection, with
respect to performance, L2 cache bandwidth, power, and area.
The two approaches are: (1) parity on the L1D with write-through
to an ECC-protected L2, and (2) ECC protection on the L1D.
Qualitatively, the first approach requires a write-through L1D,
which places a large bandwidth and power demand on the L2.
The second approach adds more bits in the L1D for error protec-
tion, which adds to the L1D’s area and power while degrading its
performance. Our quantitative results show that the relative costs
of the second approach are small and that its benefits outweigh
these costs. We also present a new error protection scheme, called
the Punctured ECC Recovery Cache (PERC), that achieves the
best features of both existing schemes.

I. INTRODUCTION
Our primary goal in this paper is to evaluate the commer-

cially dominant error correction schemes for L1 data caches
(L1D), so that microarchitects will be able to choose the appro-
priate scheme for their system. We quantitatively compare
these schemes with respect to four metrics: performance, L2
cache bandwidth, power consumption, and area. We do not
evaluate the latency or power consumption of error recovery,
since recovery is a rare event that has negligible impact. As
with almost all other studies of fault tolerance for memory
structures, our fault model includes single and multiple bit
errors in cache blocks. We compare the fault tolerance of each
scheme by how many bit errors it can correct; although being
able to detect additional bit errors is helpful, it still requires OS
intervention or a reboot.

In Section II., we discuss existing approaches for providing
L1D error protection. Existing commercial microprocessors
tend to use one of two approaches. The first option, used by the
Pentium4 [9], UltraSPARC IV [15], and Power4 [5], among
others, is to use an error detecting code (EDC) on the L1D. If
an error is detected, then the data is recovered from the L2, in
which every block is protected with an error correcting code
(ECC). We refer to this scheme as EDC/ECC. The second
option, used by the AMD K8 [1] and Alpha 21264 [11], is to
use ECC on both the L1D and the L2. We call this scheme
ECC/ECC. Qualitatively, the differences between EDC/ECC
and ECC/ECC are that EDC/ECC leads to a smaller and faster
L1D, at the expense of more L2 bandwidth and power.

In Section III., we present a new design, called the Punc-
tured ECC Recovery Cache (PERC), that combines some of

the best aspects of existing schemes. We add only the bits
needed for error detection to the L1D, keeping it fast and small
like EDC/ECC. If an error is detected, we then fetch the addi-
tional bits for error correction from the dedicated PERC. With
PERC, we can use stronger ECC codes than with ECC/ECC
while achieving the same performance as the more weakly pro-
tected ECC/ECC system,

Our experimental results, described in Section IV., use
SimpleScalar [4] and CACTI [10] to compare the performance,
L2 bandwidth usage, power, and die area of existing schemes
and PERC. The results show that either ECC/ECC or PERC is
generally preferable, based on all of these aspects.

The contributions of this paper are the following:
•Thorough experimental evaluation of existing schemes for

L1D error protection,
•Quantitative results which demonstrate a clear advantage

of ECC/ECC over EDC/ECC, and
• PERC, which tolerates more errors than ECC/ECC with

slightly better performance and less power.

II. EXISTING ERROR PROTECTION SCHEMES
Commercial microprocessors tend to use either EDC/ECC

or ECC/ECC.
EDC/ECC. In all commercial systems we have found, the
EDC is a simple parity bit that can detect single-bit errors, and
the ECC can correct single bit errors. We will thus evaluate this
“SEC-SED” (single error correction, single error detection)
scheme in this paper. EDC/ECC requires a write-through L1D
and cache inclusion. However, a write-through L1D signifi-
cantly increases the bandwidth that is demanded of the L2
cache. The additional L2 accesses also drive up power con-
sumption.
ECC/ECC. In most schemes we have found, the ECC can cor-
rect single bit errors and detect double and single bit errors;
thus, we will evaluate ECC/ECC schemes with “SEC-DED”
protection. ECC/ECC enables a write-back L1D and a non-
inclusive cache hierarchy. However, ECC on the L1D also
increases the size of each block more than EDC and thus
degrades L1D access time. ECC can also increase access
latency, with respect to EDC, due to its greater computational
demands. In particular, a write to a subset of a block requires a
read-modify-write (RMW) if the ECC is computed across the
whole block. RMWs are slower than writes and may require
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adding ports on the cache. Applying ECC at the word granular-
ity avoids RMWs, but it requires more check bits per block and
thus a larger, slower, and more power-hungry L1D.
Other Schemes. Kim and Somani [12] use parity caching and
shadow checking to selectively protect the most recently used
cache blocks. Zhang et al. [17] maintain multiple copies of cer-
tain blocks in the L1D, and they use these replicas for error
detection and correction. Several proposals [12, 13, 3] use
early writebacks of dirty blocks (or scrubbing) to reduce the
lifetime of dirty blocks in the L1D. Similarly, Asadi et al. [3]
periodically refresh L1D blocks with data from the L2. None
of these schemes can provide traditional guarantees for error
coverage (i.e., all errors of type Y are tolerated), since coverage
depends on data access patterns. Zhang [16] uses a replication
cache (R-cache), which holds replicas outside the L1D to avoid
using its precious resources just for replicas. The R-cache can
protect all cache blocks, but entries in the small R-cache must
frequently be written back to the L2, which places some band-
width and power burden on the L2 (but less than EDC/ECC).
Li et al. [13] protect clean L1D blocks with parity (and re-fetch
from the ECC-protected L2 on an error) and dirty blocks with
ECC.

III. PUNCTURED ECC RECOVERY CACHE
The goal of the PERC is to be able to tolerate errors in the

L1D without significantly degrading performance, increasing
L2 bandwidth, or increasing power usage.

A.   Punctured Error Codes
Error codes add r check bits to each k-bit piece of data to

create n-bit (n=r+k) codewords that contain information
redundancy. The error detection and correction capabilities of a
code are determined by its Hamming distance, which is the

minimum number of bits in which any two codewords differ
from each other. A code can detect d-bit errors with a Ham-
ming distance of d+1 and correct c-bit errors with a distance of
2c+1.

For PERC, we leverage the properties of punctured error
codes [6, 7]. What differentiates a punctured code is that the r
check bits can be separated into rd bits for detection and rc bits
for correction (r = rd + rc). We denote the rd punctured error
detection bits as EDCp and the rc punctured error correction
bits as ECCp, and we denote non-punctured codes with EDCnp
and ECCnp. Given the datum and EDCp, we can detect all d-bit
errors. Given the datum, EDCp, and ECCp, we can correct all
c-bit errors. The values of d and c depend on the Hamming dis-
tance of the chosen code.

In our PERC design, we use a punctured Reed-Solomon
code. We assume that EDCp and ECCp will be added at the
word granularity, instead of block granularity, to avoid having
to perform RMWs for every store that does not write the entire
block. The code adds 8 bits per 32-bit word. One bit provides a
Hamming distance of two and is used for single-bit error detec-
tion, while the remaining seven bits provide single-bit error
correction, which is the same as the EDC/ECC and ECC/ECC
schemes we will compare against. The tag bits and status bits
for each block are protected with the same code. Other punc-
tured codes exist, but exploring them is beyond the scope of
this paper.

B.   Using Punctured Codes in the PERC
The organization of the PERC, as illustrated in Figure 1, is

similar to that of the L1D. It has the same number of frames
and the same set associativity. For each data word in the L1D,
the PERC has a corresponding ECCp code. The difference is
that each block in the PERC has one more field than the corre-

Fig. 1. Simplified example of cache hierarchy with PERC. We assume that block tags and state are 32 bits (28-bit tag, 4-bit
state). We assume direct-mapped caches with data blocks that are only 8 bytes long (2 32-bit words). We do not show the
recovery path for when an error is detected in the L1D and ECC must be fetched from PERC. The size of rd and rc depend
on the particular punctured error code chosen. The example assumes that ECCnp is the concatenation of EDCp and ECCp.
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sponding block in the L1D, since it must hold the ECCP for
that block’s tags and state. In Figure 1, we show a system in
which the data word and the tag/state happen to be the same
size. The number of EDCp and ECCp bits (rd and rc, respec-
tively) are a function of the desired amount of error detec-
tion/correction capability.

The operation of the PERC is as follows:
•Load hit in L1D: Read data and EDCp from L1D. If EDCp

indicates error, then recover (see below).
• Store hit in L1D: Write data and computed EDCp to L1D;

write computed ECCp to PERC.
•Replacement from L1D to L2: Read data word and EDCp

from L1D and read ECCp from PERC. Write this com-
bined block into L2. Assumes that ECCnp is concatenation
of EDCp and ECCp.1

• Fill from L2 to L1D to satisfy L1D miss: Read block from
L2, placing data word and EDCp in L1D and placing
ECCp in PERC.

•Recover from error detected during L1D load: Read ECCp
from PERC and use it with data block and EDCp to correct
error; provide corrected data word to processor; store cor-
rected data and EDCp to L1D; store ECCp to PERC.

The key to achieving our goals is that the PERC allows us
to keep the ECCp bits out of the L1D. With PERC we can use
stronger ECC codes than with ECC/ECC while achieving the
same performance as an ECC/ECC system with less error cor-
rection capability, since the ECCp bits are in the PERC and
thus do not impact the L1D access latency. Moreover, we can
save power and die area by not keeping status bits in the PERC,
since they will always mirror those in the L1D. PERC does not
affect the L1D access time except by adding extra capacitive
load to the data bus that carries store data to the L1D. The
PERC is a write-only structure except during L1 writebacks
and in the uncommon case that an error is detected by the
EDCp. Only then do we read from the PERC. In this scenario,
we must wait for all outstanding writes to the PERC to com-
plete before recovering the data. Since replacements are fairly

uncommon and error recovery is rare, this small amount of
waiting is unimportant.

IV. EXPERIMENTAL EVALUATION
We compare the following five single-error correcting

schemes to each other and to an unprotected cache (denoted
Unprotected): EDC/ECC on the word granularity (EDC-word),
ECC/ECC on the block granularity (ECC-block), ECC/ECC on
the word granularity (ECC-word), an 8-entry R-cache [16], and
PERC. We evaluate these schemes in the common error-free
case, since errors are rare and thus have negligible impact.

1.  Many punctured error codes exist for which this is true.

TABLE I. TARGET SYSTEM PARAMETERS

clock frequency 3 GHz

pipeline depth 12 stages

pipeline width 4

instr fetch buffer 40 entries

instr window 64 entries

load-store queue 64 entries

reorder buffer 128 entries

functional units 4 integer ALUs (1 cycle), 1 integer
mult/div (7/12), 2 load/store units (1)

floating point
units

4 FP ALUs (4 cycles), 1 FP mult/div
(4/12)

branch predictor gshare: BHT is 4096 entries, BHT
entry is 2-bit counter, BHR is 8 bits

registers 192

L1 D-cache 64K total size, 2-way, 32B blocks, 2
ports, 3-cycle latency

L1 I-cache 64K total size, 2-way, 32B blocks, 2
ports, 3-cycle latency (pipelined)

L2 cache 1M total size, 16-way, 64B blocks, 1
port, 8-cycle latency (pipelined)

main memory 150-cycle latency
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Fig. 2. L1D access latency as function of cache size Fig. 3. L1D access latency as function of error
detection/correction capability
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A.   Methodology and System Model
We use CACTI 3.0 [10], modeling 90nm technology, to

determine the latency and power consumption of the cache
structures. Using the cache latencies generated by CACTI, we
simulate the microprocessor using SimpleScalar 4.0 [4]. We
simulate all of the SPEC CPU benchmarks with the reference
inputs, and we use single SimPoints [14] (100M instructions)
to sample their executions. Table I describes our microproces-
sor.

B.   Performance
In Figure 2, we plot L1D latency as a function of the

cache’s size, and we normalize the latencies to those of unpro-
tected caches. When we refer to a cache as being 64 KB, for
example, we mean that the actual data blocks comprise 64 KB.
The tags, state, and error code bits are not counted as part of
that 64 KB, but these extra bits affect the cache’s access
latency, power, and area.

We observe that access latencies are similar for all schemes
except ECC-block. As expected, the cache access latencies for
the R-cache and PERC are similar to that of EDC-word, which
is less than a 1% increase compared to Unprotected.

ECC-word is less than 10% slower than Unprotected
because the access latency is generally determined by the data
array’s word-line decoder [2]. As we add bits to each word for
ECC-word, the word-line becomes longer and its capacitance
increases. This extra capacitance slows the access somewhat,
but not greatly.

The one exception to the cycle time being determined by
the word-line decoder is ECC-block. For ECC-block, the cycle
time is determined by the circuit driving the multiplexors
which select which way should be returned. Because the entire
block must be read from the cache, every bit in the block needs
to be multiplexed.

We previously claimed that PERC can offer stronger error
protection than ECC-word with the same L1D access latency,
because the ECCp bits are in the PERC instead of the L1D. In
Figure 3, we plot the absolute L1D access latency for various
error correction strengths. In the figure, SEC, DEC, TEC, and
QEC refer to Single, Double, Triple, and Quadruple Error Cor-
rection, respectively. For example, QEC can correct all errors
of 4 bits or less. The results show that PERC with DEC has
similar access latency as ECC-word with SEC, and PERC with
QEC has similar latency as ECC-word with DEC. As transient
error rates continue to increase and stronger error correction
codes become necessary, this advantage of PERC could
become important.

The impact of L1D latency on overall microprocessor per-
formance is shown in Figure 4. Differences between bench-
marks are mostly due to differing demands on the L1D and
differing abilities to overlap useful work while waiting for
cached data. As expected from the results in Figure 2, ECC-
word and PERC have comparable performance to Unprotected.
Also unsurprisingly, ECC-block performs poorly. The other
schemes, even those with comparable cache access latencies,
sometimes suffer in overall performance because of the extra
bandwidth demands they place on the L2 cache. EDC-word

and the R-cache, on average, only degrade performance by
about 5-10%, but the slowdown is as much as 50% on the
benchmark apsi.

C.   L2 Cache Bandwidth
One motivation for PERC is that it reduces pressure on the

L2 cache by not requiring a write-through L1D like EDC-
word. In Figure 5, we plot the mean L2 bandwidth for each
benchmark for error protection scheme. Neither ECC scheme
nor PERC requires any additional L2 bandwidth. In fact, ECC-
block uses far less bandwidth, because its performance is so
much worse (i.e., it transfers the same number of bytes to the
L2 but over a much longer time period). EDC-word and the R-
cache require substantially more L2 bandwidth than Unpro-
tected. These increases in L2 bandwidth represent either a large
cost (more L2 ports) or a decrease in performance due to con-
tention for the L2. In general, the benchmarks with the greatest
increases in L2 bandwidth exhibit the most performance degra-
dation, but some benchmarks with very low Unprotected L2
usage (e.g., crafty) can tolerate a large percentage increase.

D.   Power Consumption
In Figure 6, we plot the common-case, error-free power

usage per L1D access of each scheme as a function of the
cache size, normalized to the power of Unprotected. For EDC-
word, this power includes the average additional power used
for write-throughs to the L2. To compute this, we use the mean
fraction of stores, which is 24.9% of all cache accesses, and
multiply this by the power consumed by an L2 access. For the
R-cache, the power includes the power used by the R-cache
itself, as well as power used for additional writebacks to the L2
(beyond those performed by Unprotected). For PERC, the
power includes the power used by the PERC for stores,
replacements from the L1D to the L2, and fills from the L2 to
the L1D.

ECC-word and PERC use power that is comparable to
Unprotected, although PERC consistently uses less power than
ECC-word. EDC-word uses more power because of the addi-
tional write-throughs to the L2. ECC-block uses more power
than these two schemes because of how many bits need to be
accessed. The R-cache uses 30-61% more power than Unpro-
tected just for R-cache accesses, even though it is a small struc-
ture, due to its full associativity. This corroborates research
which has shown that fully associative structures can use as
much as five times as much power as similarly sized RAMs
[8]. Moreover, the R-cache scheme uses a significant amount
of extra power at the L2.

E.   Die Area
While area is generally not the most critical resource in

most systems, we want to make sure that no design uses an
egregious amount of area. In Figure 7, we plot the area (nor-
malized to Unprotected) required to store the L1D data and
error protection bits for a cache that can tolerate single-bit
errors, as a function of the cache size (including auxiliary
structures, such as the R-cache or PERC). We see that ECC-
block is usually the largest (except for the 64KB cache size)
due to the need to output more bits. Conversely, EDC-word has
4



a very small overhead of just one bit per word. In between
these extremes, the relative overheads of the other three
schemes vary based on the size of the cache. We believe these
results show that any of these schemes are acceptable from an
area consideration.

V. CONCLUSIONS
Our experimental results show that using ECC on the word

granularity in the L1D cache is almost always preferable to the
other prominent technique of using EDC on the L1 with ECC
on the L2. Our evaluation of PERC shows that it achieves per-
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formance that is comparable to these two existing approaches,
while using the same bandwidth as ECC (which is the same as
for an unprotected cache) and slightly less power than ECC.
Moreover, PERC can offer performance advantages over
ECC/ECC in three scenarios: (1) if stronger error correction
codes are desired, (2) if the additional bits for ECC (as com-

pared to EDC) would require a change in the geometry of the
L1D, because this change in geometry could significantly slow
down the L1D, and (3) if, for future technologies, the addi-
tional bits for ECC (as compared to EDC) cause significant
slowdown.
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