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Chapter 1

Universal Serial Bus
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1.1 Introduction

The Universal Serial Bus (USB) protocol is designed to enable communication
between many devices by sharing a data bus. The USB specification calls for
one of these devices to be a USB Host, which interfaces with the bus via a
component called the USB Host Controller. Other devices respond to requests
from the USB Host, and cannot initiate traffic on their own.

This documentation offers an abridged overview of the USB 2.0 Specification
as it pertains to the low speed capabilities of a USB Host Controller. The low
speed USB protocol is primarily intended for interactive devices with data rates
ranging from 10 to 100kbps.

1.2 USB Topology

A USB system consists of one host and many devices. A function is a logical
part of a device. For example, a multipurpose printer may have many functions:
printer, scanner, etc; however, a mouse typically has just one function which
represents its whole state. Many devices can be connected to a single host con-
troller by using USB hubs, with each function within each device acknowledged
as a separate entity. Figure 1.1 gives a general overview of a USB system.

Host Controller

USB Hub

Mouse USB Hub

External

Drive

External

Drive

Keyboard

Figure 1.1: Example USB topology

USB devices are recognized as both physical and logical components. The
structure is defined as follows:
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Device The physical device that has a single USB connection. This can either
plug into a USB hub or directly into the host. Examples are familiar:
mice, keyboards, printers, etc.

Function As explained above, a USB device may have more than one function.
A web camera may have multiple functions; for example, one camera
function and one microphone function. A function is constituted by one
or more endpoints.

Endpoint An endpoint is a point of transfer for a function. The USB host
establishes connections between its endpoints and a function’s endpoints
in order to perform transfers to and from the function. Different endpoints
within a function typically represent different types of transfers, which are
discussed below.

Hubs are unsupported by the low speed USB protocol; they will be ignored
for the remainder of this document.

1.3 Logical Protocol

Data transfer over USB is initiated by the host controller. USB low speed
protocol includes the following types of transfers:

Control Transfer Used to perform setup and non-data tasks, such as assigning
a device to an address or reading information on the device capabilities.
Control transfers don’t occur at regular intervals – this is the behavior of
interrupt transfers (below).

Interrupt Transfer Used for periodic endpoint polling. The polling interval
is requested by the function and carried out by the host controller. An
interrupt transfer can either be used to send data to the device or to receive
data from it. Once the host controller has established a connection to an
interrupt endpoint, interrupt endpoint polling continues indefinitely (until
the device is no longer present).

A transfer is subdivided into one or more stages. An interrupt transfer
only has one stage: a data stage (in either the transmit or receive direction). A
control transfer is broken up into the following stages:

Setup Stage Informs the device of the type of control transfer that is about
to occur; i.e. if the device should prepare to receive data, what data
the device should return to the host controller, etc. Keep in mind that
all control transfers are initiated by the USB host, so the setup stage is
always in the transmission direction.

Data Stage This stage is used to transfer data to/from the device. Though
this stage will be used in almost all transfers, it is optional.
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Status Stage Acknowledges via a handshake. If the host controller sent data,
it will ask the device to acknowledge that the data was received correctly.
Likewise, if the host controller received data, it will inform the device that
the data was received correctly.

A stage is subdivided into one or more transactions. A transaction can be
thought of as an atomic operation on a USB line — when a transaction is being
performed it will not be interrupted until it completes if the protocol is followed.
The structure of a transaction is discussed below and is shown in Figure 1.2.

Token Packet This is the first piece of information, and is always sent by the
host controller. The token packet informs the device of whether it should
be sending the data packet or receiving it.

Data Packet Either sent by the device or the host controller. The data packet
is of variable length.

Handshake Packet If the host controller sent the data packet, it will wait for
a handshake packet from the device. If the device sent the data packet, it
will wait for a handshake packet from the host controller.

See Figure 1.3 for clarification.

Figure 1.2: USB transaction structure

Figure 1.3: Packet ordering
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1.3.1 Control Transfer Grammar

Grammars are often useful to clarify ambiguities.1 The following grammar de-
fines the logical structure of USB communication for control transfers. Though
not explicitly mentioned, packets consist of several concatenated fields, the first
of which is a packet identifier, abbreviated as PID in the below.

Transfer Subtypes

<control-transfer> ::= <control-write> | <control-read> | <control-no-data>

<control-write> ::= <setup-stage> <data-out-stage> <status-in-stage>

<control-read> ::= <setup-stage> <data-in-stage> <status-out-stage>

<control-no-data> ::= <setup-stage> <status-in-stage>

Stages

<setup-stage> ::= <setup-transaction>

<data-out-stage ::= <data-out-transaction>*

<data-in-stage ::= <data-in-transaction>*

<status-in-stage> ::= <status-in-transaction>

<status-out-stage> ::= <status-out-transaction>

Transactions

Notably, all data transactions that take place with respect to an endpoint require
that that data PID be toggled from Data0 PID to Data1 PID on successful
transfer.2

<setup-transaction> ::= <setup-token-packet> <data-0-packet> <opt-handshake>

<data-out-transaction> ::= <out-token-packet> <data-packet> <opt-handshake>

<data-in-transaction> ::= <in-token-packet> <data-packet> <opt-handshake>

<status-in-transaction> ::= <in-token-packet> <data-1-packet> <opt-handshake>

<status-out-transaction> ::= <out-token-packet> <zero-len-data-1-packet> <opt-handshake>

Packets

<token-packet> ::= <setup-token-packet> | <out-token-packet> | <in-token-packet>

<setup-token-packet> ::= <setup-pid> <address> <endpoint-number> <crc5>

<out-token-packet> ::= <out-pid> <address> <endpoint-number> <crc5>

<in-token-packet> ::= <in-pid> <address> <endpoint-number> <crc5>

<data-packet> ::= <data-0-packet> | <data-1-packet>

<data-0-packet> ::= <data-0-pid> <payload> <crc16>

<data-1-packet> ::= <data-1-pid> <payload> <crc16>

<handshake> ::= <ack-pid> | <nak-pid> | <stall-pid>

1Though, ironically, determining whether or not an (arbitrary) grammar is ambiguous is a
provably undecidable problem.

2Further information can be found in section 8.6 of the USB2.0 Specification
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1.4 Physical Protocol

1.4.1 Signaling

USB low speed is defined as 1.5 Mb/s. Individual bits are held for 666 ns,
determined by:

1
1.5× 106

= 666× 10−9 s

For example, in Figure 1.4 the width of an individual bit is 666 ns.

1.4.2 Differential Encoding

USB communication travels on two of the lines on the USB cable: the D+ and
D- lines. Bits are differentially encoded; see Table 1.1 for an overview of line
states and Figure 1.4 for an example of bus traffic.

D+ D- State Meaning
0 0 SE0 Single-ended 0.
0 1 J Differential 0.
1 0 K Differential 1.
1 1 SE1 Single-ended 1; illegal bus state.

Table 1.1: Differential encoding for low speed

For low speed communication a differential 0 is also called a “J” state, and
a differential 1 is called a “K” state.

1.4.3 Idle States

A low speed device will use a pull-up network on the D- line. The effect of this
is a J state on the bus in cases where the lines are not being driven and a low
speed device is attached. See Figure 1.4 for an idea of what USB communication
with a low speed device may look like. In the figure, the signals begin in the
idle J state and a sequence of bits are subsequently signaled.

-

Time

D+

D-

0 0 1 0 1 0 1 0 1 1 0

Figure 1.4: Example of bus communication
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1.4.4 NRZI Encoding

Data sent on the bus is encoded using the Non-Return to Zero Inverted (NRZI)
algorithm. A zero is sent by toggling the state of the line and a one is sent by
keeping the state the same. See Table 1.2 for clarification.

Bit to be sent Previous line state New line state
0 0 1
0 1 0
1 0 0
1 1 1

Table 1.2: NRZI encoding

NRZI encoding means that the data that is transmitted on the bus does not
match up to the data that is meant to be sent. For example, the bit stream
011001 would be sent as 000100. Note that for the first bit transmitted, the
previous line state is assumed to be 13.

1.4.5 Bit Stuffing

In addition to NRZI encoding, USB protocol specifies that data sent on the bus
must be bit stuffed. To ensure that the bus is toggled at a minimum frequency
during communication, a 0 must be inserted into the bit sequence (before NRZI
encoding) if there is a sequence of six ones. To illustrate, the bit sequence:

0101 1111 1100

would need to become

0101 1111 1010 0

in order to ensure that the bus state is toggled and that communicating
devices have a synchronization mechanism. Note that the 0 that is inserted will
result in the bus state being toggled when it is transmitted, due to the NRZI
encoding.

1.4.6 Special Signals

Several “special” signals are defined for transitioning between device states (de-
scribed in Section 1.5.1.

Reset Used to reset a device to a known initial state. The host controller holds
a single-ended 0 for at least 20 ms and subsequently idles the lines.

3This is because of the sync field transmitted at the beginning of every packet, which ends
with the the bus in a K state.
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Resume If a device is in a “suspended” state, this signal is used to wake a
device without resetting it. A differential 1 is held for 20 ms. An end-of-
packet (EOP) is then sent, after which the lines are idled. Devices enter
the suspend state after 3ms of no bus activity; i.e. if the host controller
neglects to send a keep alive signal at the start of every frame.

End of Packet Used both after a packet has been transmitted and at the end
of a resume signal. Signaled by two USB bit-times of a single-ended 0,
followed by one bit-time of a J state (differential 0).

1.4.7 Frames

USB traffic is divided into frames, one frame being equal to one millisecond. At
the start of a frame the host controller must send a keep alive signal to each
device to prevent devices from going into the suspend state. Within a frame,
the host controller must dedicate enough time to interrupt transfers to poll all
of the endpoints with interrupt transfers. After that, the host controller uses
the remaining time to perform control transfers.

1.5 Bus Enumeration

When the host controller detects a J state driven on the bus, it assumes that a
USB device has been plugged in. The host controller then executes the following
steps:

1. Host waits for at least 100 ms to account for the insertion process.

2. Host resets the device. Device should now be at address 0 and the default
control pipe will be open (default state).

3. Host queries the device descriptor from the devices default control pipe.

4. The host controller assigns a unique address to the device.

5. Host queries all configuration descriptors from the device, then sets one.
At this point, the device will begin to draw the amount of power requested
by the assigned interface.

6. Host queries all other remaining descriptors (interface, endpoint, etc.) and
sets up any requested interrupt transfers.

1.5.1 Device States

The externally visible states for a device (those states that are recognized by
the host controller) are enumerated in the following:

Attached Device is attached to the bus, but is only powered with the default
amount of power.
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Powered After the USB host analyzes the power requirements for the device
(which it queries through “Get Configuration Requests”), it determines
which configuration it can satisfy power requirements for. The host sets
the satisfiable configuration for the device (through a “Set Configuration
Request”), and provides the necessary amount of power to the device.
With all these steps completed, the device enters powered state. In the
powered state, the device must be reset to enter the default state.

Suspended After being powered, a device may enter the suspended state after
three milliseconds of bus inactivity. The device’s function cannot be used
in this state, and it must be resumed into the previous state (the state of
the device before suspension).

Default After being attached and powered, but before being configured, the
device will only respond via its default endpoint at address zero.

Address Device has been assigned a unique address. Will respond on the
default endpoint at its assigned address.

Configured Host has assigned a configuration to the device. The default end-
point is still addressable, but now any endpoints specified by the assigned
configuration are available as well.
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Chapter 2

Host Controller Interface
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2.1 API Overview

Our code base roughly follows the Open Host Controller Interface (OHCI) Spec-
ification. We chose to implement this standard both to take advantage of the
venerable code structure and to assist in the design process. As such, our Host
Controller API follows naturally from the specification, but offers some conve-
nient higher-level functionality in addition.

2.2 Descriptors

The OHCI specification relies heavily on the notion of descriptors. A descriptor
is an object that describes the state and capabilities of an endpoint, device,
transfer, etc. While the USB specification already defines standard descriptors
for devices, configurations, and endpoints, etc., the OHCI specification defines
two descriptors that are used only by the host controller driver. These are
explained below:

2.2.1 Endpoint Descriptor

An endpoint descriptor has the following fields:

Function Address The USB address of the device with the endpoint described
by this descriptor.

Endpoint Number The number of the endpoint within the device.

Direction Describes the direction of the endpoint. This can be one of three
values: IN or OUT, or the direction can be determined by the token packet
PID of the transaction being executed. The latter is generally the case for
control endpoints, while the former is the usually the case for interrupt
endpoints.

Speed An endpoint can be full- or low-speed.

Skip A flag to be set if the host controller driver should ignore processing this
endpoint when executing stage descriptors.

Format Set to 0, unless the endpoint is isochronous, in which case this field is
set to 1.

Halted Set by the host controller when an error in processing a stage descriptor
occurs on this endpoint.

Toggle Carry Contains the last data toggle value from a retired stage descrip-
tor.

Head Pointer Points to the first stage descriptor queued to this endpoint de-
scriptor.
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Tail Pointer Points to the last stage descriptor that is queued on this endpoint
descriptor.

Next Endpoint Points to the next endpoint descriptor in the linked list.

The following fields were added to our implementation to simplify the struc-
ture of the host controller:

Interrupt Interval Rather than creating an entire binary tree to store inter-
rupt endpoint descriptors, we use a separate linked list. This field is used
to determine how often to execute the stage descriptor attached to an
interrupt endpoint descriptor, rather than using the depth of the binary
tree.

2.2.2 Stage Descriptor

A stage descriptor describes one or more transactions that need to be processed
together. For example, as discussed in Section 1.3, a control transfer is made of
three stages: a setup stage, data stage, and status stage. Each of these stages
is queued to the appropriate control endpoint, where they will be processed by
the host controller. What follows is a description of each of the fields within a
stage descriptor:

Buffer Rounding If this field is set to 0, then the last data packet received
from an endpoint must exactly fill the data buffer. If set to 1, then the
last data packet received by an endpoint may be shorter than the buffer
and not cause an error.

Direction A combination of the direction that data flows and the PID of the
transactions within the stage. This can be OUT, IN, or SETUP. This PID
is applied to the token packet of the transactions.

Our implementation also defines a STATUS PID, which is used in a special
case for the status stage of a control transfer.

Data Toggle This field determines the DATA0/1 PID of any data packets
within the stage. This can also be set to toggle in accordance to the
Toggle Carry field of the endpoint descriptor this stage is associated with.

Error Count Incremented each time there is a transmission error (i.e. mal-
formed CRC, etc.). If this count reaches 3 the error code is recorded and
the stage is retired to the done queue.

Condition Code Contains the status of the last completed transaction within
the stage.

Our implementation has also added;

Buffer Pointer to the data payload either to be transmitted or received by the
host controller. If this payload is larger than the maximum packet size of
the device it will be broken into multiple transactions and sent in pieces.
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Buffer Bit Count Total size (in bits) of the allocated buffer.

2.3 Asynchronous I/O

The high level API interface uses an asynchronous I/O mechanism. When
submitting an I/O request an object is immediately returned that represents a
future result — this representation is appropriately called a Deffered.1

When a Deferred is returned, one can add a series of callbacks to it. A
callback is a function that is passed by reference and called at some later time.
Callbacks are added in chains to a deferred, so that when all I/O has completed
the result (e.g., a data buffer) is passed into the first callback in the chain. The
first callback in the chain passes its return value to the second callback in the
chain, and so on.

Because callbacks are an efficient and straightforward mechanism for im-
plementing deferreds, there is also a mechanism for handling errors in callback
chains, which we term “errbacks”. Errbacks may be used in conjunction with
callbacks in order to handle all kinds of I/O result processing scenarios.

In order to perform correct memory management, there is also a special
Deferred deletion mechanism that the API implements, as demonstrated in the
following:

deferred_t deferred = usb_driver_submit_request(...);
deferred_add_callback(deferred, &good_result_func);
deferred_add_errback(deferred, &bad_result_func);
deferred_add_callback(deferred, &next_good_result_func);
deferred_add_both(deferred, DEFERRED_DELETE);

The deferred_add_both acts as a kind of “finally” mechanism that acts in
both the callback and errback chain to ensure the deferred deletion occurs via
the special DEFERRED_DELETE construct provided. Note that function references
may also be added via the deferred_add_both method.

2.4 USB Driver

The USB Driver exists as the sole member of the USB Function layer — the
rest of the functionality at the USB Function layer level is implemented by the
library user. The USB Driver acts as a main-loop mechanism for USB device
communication that allows for user functionality injection.

The USB Driver is initialized with a user function which is called as the USB
Driver’s main loop iterates. The main loop is initiated by usb_driver_run, and
calls the user function dynamically — in other words, it can be changed during
runtime using usb_driver_set_user_function, allowing for a good deal of
flexibility. The most common manner of using this user function is as some

1The deferred mechanism implemented was inspired by the Twisted Python framework:
http://twistedmatrix.com
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form of state machine that enqueues requests for the USB system and handles
the results via callbacks chained onto Deferreds.

The user specifies the frequency of two parameters in running the USB
Driver’s main loop: control stages per main loop iteration and iterations per
done queue cleaning. Adjusting these parameters should allow the user to ap-
propriately configure the frequency with which the user function is called.

2.5 Host Controller Driver

The host controller driver is the bridge between the client software and the
host controller (see Figure 2.1). The host controller driver is responsible for
enumerating new devices attached to the bus, and scheduling and executing
transactions. A linked list of control and interrupt endpoints2 is created and
modified as devices are connected/disconnected from the bus. The host con-
troller driver schedules transactions by attaching a descriptor to the appropriate
control or interrupt endpoint.

Note that unlike the implementation described by the OHCI, the host con-
troller driver of this project must be controlled by the USB client software.
There are no interrupts defined within the code to handle frames or scheduling
stages — these tasks must be initiated by the client software. This decision was
made partly to simplify the program structure, but mostly to give the client
software the most control over the host controller driver. If the client software
has a large computation to process, the host controller is able to respect that
and does not need to operate every frame.

Host Controller

USB Device

Client Software

Host Controller Driver

OHCI

Figure 2.1: Open Host Controller overview

Every frame the host controller driver “walks” the list and executes stages
in the order in which they are queued on the endpoint descriptor. For example,
Figure 2.2 shows an example setup. There are three control endpoints and three
interrupt endpoints enumerated.

The leftmost control endpoint descriptor has three stages queued on it: a
setup stage, data stage, and status stage. Together, these make up a control

2Only these two endpoints are used in low speed USB communication.
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......

Setup Stage Setup Stage

Data Stage

Status Stage

Status Stage

......
Endpoint Endpoint Endpoint

Interrupt Interrupt Interrupt

Data Stage Data Stage

Control Endpoint List:

Interrupt Endpoint List:

Control

Endpoint

Control

Endpoint

Control

Endpoint

Figure 2.2: Example endpoint enumeration
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transfer that might request a device descriptor, set an address, or do any other
number of tasks. The rightmost control endpoint of Figure 2.2 has only two
stages queued on it, representing a control transfer with no data stage.

The other endpoint list is of interrupt endpoints. An interrupt transfer
has only one stage, and only one transfer can be associated with a particular
interrupt endpoint. The interrupt endpoint descriptor has an interrupt interval
field that gets queried to determine the rate at which to poll the device.

At the start of a frame the host controller driver will first “walk” the control
endpoint list to determine if there are any stages that need to be executed. If
there are, these will be sent to the host controller to be processed and transfered.
The host controller driver will then use the remaining time within the frame to
execute any outstanding control interrupt transfers.

As stages are completed they are moved to the done queue to be processed
by the client software. The host controller driver presents methods to the client
software that provide access to the payload from a data stage.

2.6 Host Controller

The host controller, assumed to be implemented in hardware by the OHCI,
is implemented in software on the Mega32. The host controller is generally
responsible for all aspects of “framing” USB traffic: this includes sending keep-
alive signals at the start of frames, creating transactions from stage descriptors,
NRZI-encoding/decoding bus traffic, etc. Rather than doing these tasks in
hardware, they are done in software, and as such must be scheduled by the host
controller driver.

The major functions of the host controller — as implemented in software —
are:

• Find stages to perform from the interrupt or control endpoint lists.

• Perform a stage on the bus. Record the result; this may include a data
payload received by the device, the exit code (handshake received by the
device), and/or the number of retries attempted before aborting the stage.

• Report this information to the host controller driver.

These functions are explained in greater detail below:

2.6.1 Finding Stages

The host controller driver can request the host controller to find a stage to
perform. The driver specifies if the control or endpoint list should be walked
to find a stage. The host controller returns with the first stage from the first
endpoint with a stage to perform, beginning from the head of the endpoint list.
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2.6.2 Performing Stages

After finding a stage to be performed, the host controller driver will then task
the host controller with performing the stage. This involves analyzing the stage
descriptor, deciding on the transmission direction for the data packet, and craft-
ing token and data packets for the SIE.

Any stage to be performed will need no more than one token packet. Multiple-
transaction data stages of control transfers use an identical token packet for each
transaction. The host controller creates one token packet object for the entire
stage. Data packets, however, can be different on transmissions. If the host
controller will be sending a payload larger than the maximum packet size, it
must be broken up across multiple transactions. Each of these transactions will
require a unique data packet with relevant portion of the payload. Thus when
performing a stage with a payload, the host controller will create the required
number of data packets in advance.

With the token and data packets prepared, the host controller begins to use
the SIE to perform the stage. The token packet is reused for each data packet
sent. After the transaction is performed using the SIE, the host controller
checks the handshake received. If the device returns a STALL or NAK the host
controller logs the error, and will retry the transaction a maximum of three
times3. On stages that receive a payload, the data received by the device is
stored into the stage descriptor.

2.6.3 Reporting Results

The host controller reports the result of a stage transfer to the host controller
driver by using the error count, handshake result, and function return results to
indicate if the device did not respond/sent a bad handshake, or if memory errors
were encountered and the host controller was unable to execute. This data is in
turn provided to the user program, where it can be used to alter program flow.

2.7 Limitations

2.7.1 Low Speed Operation

The most prominent limitation of this implementation of a USB 2.0 host con-
troller is that only low-speed communication is supported. The Atmel Mega32,
with a maximum clock speed of 16 MHz, is simply not fast enough to support
full-speed communication. At low speed the Mega32 must be able to send one
bit every 10 cycles (with a 15 MHz clock). Combined with needing to NRZI
encode, bit stuff, and process the data all in software, even making low-speed
communication is barely feasible. The speed required to enable full-speed com-
munication is beyond the capabilities of the Mega32.

3Complying with both USB 2.0 and OHCI specifications.
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Hub Support

A necessary consequence of only supporting low-speed communication is that
USB hubs are not supported. Hubs rely on full- and high-speed communication
to the host controller, and make use of hub-specific protocols that are different
than normal communication. The speed required to support hubs is, as stated
above, beyond the Mega32.

2.7.2 CRC Verification

USB specification defines the bus turn-around time of a transaction — the
amount of time allowed between successive packets — to be between 4 and 7.5
bit-times of the bus. In low speed operation this equates to between 2.6 µs and
4.9 µs of delay after a packet has finished the end-of-packet (EOP) signal. This
is also equivalent to 40 to 75 cycles on the Mega32.

In this amount of time the host controller is expected to verify the CRC
received by the device on data IN packets against the data payload. If a CRC
does not match the payload received, the host is expected to issue a NAK
handshake and retry the packet.

Because of speed constraints the Mega32 is not able to complete a CRC
verification in 75 cycles or less. To complete such a check the host controller
would need to decode the NRZI encoding, bit-unstuff the packet, and generate
a check CRC, all within 75 cycles. Even with hand-optimized assembly this is
not possible on a Mega32 with a completely software-based implementation.

The host controller will always send an ACK handshake to a device after a
data IN packet, no matter if the CRC checks or not. This is a limitation of the
host controller due to speed constraints.

2.8 Future Improvements

2.8.1 Hardware Assistance

Though the host controller was able to implement NRZI encoding and bit stuff-
ing in software, these tasks would be best left to specialized hardware. The
logic required is not very complex, and could be implemented using standard
7400 components or an FPGA. Having these functions implemented in hard-
ware would alleviate some load from the host controller, leaving more time to
schedule transfers or for the user process.

NRZI Encoding

NRZI encoding/decoding can be implemented in hardware using some combi-
nation of T-type flip flops and a clock running at twice the frequency of the bit
rate (1.5 Mb/s). A circuit for hardware NRZI encoding is shown in Figure 2.3.
Note that the clock needed for low-speed communication would be:
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2× 1.5 Mb/s = 3.0 Mb/s = 3× 106 Hz

clk

TX

D+

D−

J

CLK

K

Q

Q

CLR

VDD

1

12

4

13

2

3

Figure 2.3: Example NRZI encoding circuit

The rising edge of the clock would need to be synchronized with the output
of the Mega32 so that a new input would be latched once per USB bit time.
Because the input TX is tied to both J and K the input will toggle when TX is
low, and maintain its state when TX is high. This accomplishes NRZI encoding.

Bit Stuffing

While the logic to accomplish bit stuffing might not be feasible with standard
7400 components, an FPGA would be sufficient to do hardware bit stuffing.
By monitoring the same clock signal that the NRZI encoding circuit uses, the
FPGA could keep a buffer of bits that get queued as 0’s get inserted into the
bit stream for bit stuffing. Bit unstuffing would be similar; the FPGA would
buffer two or more bytes at the beginning of a packet4, and remove stuffed bits
as the input stream is read.

2.8.2 Power Requirements

The hardware setup described in this documentation has no ability to provide
requested power levels to devices beyond the default power level (100mA on
VBUS). Having a software mechanism which actuated power increases would be
a useful addition for more complex devices.

4Two bytes is the largest amount that a packet size could increase by due to bit stuffing
in USB low speed.
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Chapter 3

Using SIAM32
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3.1 Introduction

The SIAM32 library is designed with ease of integration in mind. Using the
library consists of the following steps:

1. Moving the main() procedure of the existing application.

2. Including the library header siam32.h.

3. Defining a few constants.

4. Constructing the hardware & connecting to it.

Each of these steps will be covered in greater detail below. SIAM32 was
built during development with gcc and programmed with avrdude, and the
documentation will assume that these tools are being used. It may be possible
to compile with another tool.

3.2 Transition to Asynchronous Callbacks

3.2.1 Callbacks Explained

The SIAM32 library uses callbacks to interface with the user program. When a
USB function is called a pointer to a callback function is provided. When the
USB function completes it will call the callback function.

This framework is set up because USB communication takes place at a rate
that is much faster than code compiled for the Mega32 can generally handle.
A USB device will go into the sleep state (see section 1.5.1) after 3 ms. The
library calls to execute a complete transaction alone take about 1 ms; when
paired with a user program that is not constantly communicating on the USB
the device will most likely fall into the sleep state before every transaction.

Rather than sending a resume signal before every USB function call — each
resume signal takes 25 ms — the library is set up to queue up multiple trans-
actions and execute them in batches.

3.2.2 Main loop

The most important callback function of any program using SIAM32 is the
callback to the program’s main(). The SIAM32 library has to occupy the actual
main() loop of the Mega32, so the user program provides a callback to what
would be the main function. The usb_main() function will function as if it were
being called continuously by a while(1) loop in the main() function.

See the pseudo-code below for clarification1.
1This is not how the main() function actually works, but for all intents and purposes the

usb main() function sees it as such.
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int
main()
{

while(1)
{

if(usb_main())
return 0;

}
}

When the usb_main() function returns a non-zero number the program will
terminate. The structure of most applications on the Mega32 will use some
form of infinite loop within the main() function, so this shuffling should not be
cumbersome. The other constraint placed on the main callback function is that
it must return in finite time: no USB activity will take place until the main
callback has returned2. For more description of the deferreds and asynchronous
I/O see Section 2.3.

3.3 Define Statements

Definitions that must be made for the included SIE to function:

• AVR_GCC: Optimized AVR assembly code is used in place of some high-
level C functions. Also needed to turn on the SIE (see Chapter 4) and
actually have the library work on AVR hardware.

• USBPORT: The PORTX that the hardware is connected to, e.g. PORTA.

• USBPIN: Likewise, the PINX to use when reading from the hardware. Should
be the same I/O port as the USBPORT3.

• F_CPU: The clock speed in Hertz.

These are not defined in the source but rather specified in the gcc compile
flags4. Use the -D flag to specify compile-time flags:

gcc ... -D AVR_GCC -D F_CPU=15000000UL -D USBPORT=PORTA -D USBPIN=PINA

Every program must define the clock speed as 15000000UL for the USB
communication to happen at the correct speed5.

2Ideally the turn-around time is within 1 ms.
3Unless the USB hardware takes up more than one port on the Mega32, which the writers

cannot imagine a need for.
4More realistically in the program’s Makefile.
5This necessitates the need for a 15 MHz crystal. The library will not operate correctly

with a 16 MHz crystal.
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3.4 USB Hardware

A more in-depth overview of the hardware is given in Chapter 5.
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Chapter 4

Serial Interface Engine
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4.1 Introduction

The Serial Interface Engine (SIE) is the lowest software layer of the USB Host
Controller. The SIE reads transactions provided by the interface layer and
translates them into bus traffic using the USB transceiver board.

The SIE is capable of taking a buffer provided by the USB interface layer
and creating token, data, and handshake packets. It then sends — or receives
— these packets using the USB transceiver board. It is composed of heavily
optimized assembly code that meets the USB 2.0 specifications.

4.2 Design

4.2.1 Software Interface

Because the SIE must adhere to strict timing requirements it does not have
time to perform much processing on the data passed to it. The SIE expects the
input data to be already encoded into NRZI1 and bit-stuffed2.

4.2.2 Token & Data Buffers

These buffers hold the data to be transmitted during a token or data packet
transfer, respectively. The data must be formatted into fields as per the USB
specification. Figure 4.1 outlines the structure of a token and data packet buffer.

Token packet PID Address Endpoint CRC5

Payload CRC16Data packet

Figure 4.1: The structure of token and data buffers.

The data in the buffer is stored with the first bit to be sent in the most
significant position of the first byte of the buffer. For example, to send the bit
sequence 01011001 (starting on the left bit, ending on the rightmost bit) the
data would be stored as:

buffer[0] = 0b01011001;

The SIE will send the most significant bit of the byte first, and the least
significant bit last. After that it will advance one byte and repeat the same
process. To send the bit sequence 01011001 00110100 (again, from left to
right) the buffer would be created as:

1Non-Return to Zero Inverted encoding. For more information see Section 1.4.4.
2USB specification does not allow for more than six ones to be transmitted in a row. If

six ones need to be transmitted, they must be followed by a zero inserted into the bit stream.
For more information see Section 1.4.5.
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buffer[0] = 0b01011001;
buffer[1] = 0b00110100;

It’s helpful to think of the data in the buffer as the bit stream “read off”
as bytes3. Therefore to store an OUT PID (value 0x01, length of 8 bits4) into
the buffer, the buffer would have to be formatted as in Figure 4.2. The PID is

PID Field: 10000111

lsbmsb

PIDPID

Stored in buffer: 1 0 0 0 0 1 1 1

msb lsb

Figure 4.2: Bit ordering within the PID field.

sent (as are all other fields) LSB first. The PID is stored in the buffer in the
manner shown with the first bit to be sent (the LSB of the original PID field)
in the MSB position of the buffer.

The token buffer will never be modified by the SIE, nor will the data buffer
on a data transmit. On a data receive, however, the SIE will modify the data
buffer by storing the data received from the USB function. The data will be
stored with the first bit of each byte received in the most significant bit of the
buffer byte. Thus if the SIE receives the bit stream 01000011 the data in the
buffer will appear as 0x43. After the SIE has written a full byte it will write
the next byte of the buffer. The first byte received will be in buffer[0], the
second in buffer[1], and so on.

4.2.3 Token & Data Packet Length

This field stores the length — in bits — of the token and data buffers, respec-
tively. Each of these values has to be equal to or less than 2555. This length
must include increases in length due to bit-stuffing, which is not performed by
the SIE.

The SIE will modify both the token and data packet lengths during a trans-
fer. The token packet length will always be decremented as the SIE transmits
each bit. On a successful token packet transmission the token packet length
after the transfer will be 0. If the SIE did not manage to send the requested
number of bits, the length will be non-zero6.

3Remember that the fields must be in the stream already reversed; a field is sent least
significant bit to most significant bit

4Remember that the PID field is actually the concatenation of the PID and its inverse.
5The long explanation is that this value is stored in an 8-bit register during the assembly.

An number larger than 255 would overflow in the register and seem to be the wrong value to
the code.

6In practice this has never happened. The only practical scenario is that somehow an
interrupt broke the transaction. Even that would never happen because the SIE will disable
interrupts before beginning the transaction.
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Likewise, the SIE will modify the data packet length. This depends, however,
on the direction of the transfer. On a data transmit the length will be modified
in the same fashion as the token packet length (i.e. it should be zero after the
transaction completes). On a data receive, however, the data packet length will
increase by the number of bits received7.

4.2.4 Handshake result

On transactions that send data the handshake result buffer will be filled with
the handshake returned by the USB function. This is always one byte in length.
It is stored the same way as the data buffer, with the first bit received in the
most significant position in the handshake byte.

4.2.5 Data direction

This field takes a value of the type transmission_direction_t that indicates
whether the SIE should send or receive the data in the data buffer.

4.2.6 Data encoding

This field takes a value of the type encoding_t that indicates if the data and
token buffers have been NRZI encoded and bit-stuffed. This value is not read
by the SIE and should be used by other layers to keep track of the state of the
buffers.

4.3 Implementation

The SIE is implemented almost exclusively in assembly. This is necessary to
ensure that the code meets the timing requirements of the USB specification8

and that the code base is as compact and efficient as possible.
The SIE is structured as loops of transmit and receive code with decision-

making logic in between. This logic determines whether to send or receive the
data packet, and the same for the handshake. The overall execution of the SIE
can be summarized with:

1. Transmit the token sync field, the payload (token buffer), and the end-of-
packet for the token.

2. Determine, based on the data direction variable, whether to send or receive
the data packet.

(a) If receiving the data packet, begin to wait for the USB function to
transmit a sync field. After receiving the sync, begin capturing the
data.

7Note that this includes bits received as a result of bit stuffing. These are not discarded
or accounted for by the SIE.

8Meaning one bit transmitted exactly every ten cycles.
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Upon receiving the entire data packet (signaled by receiving a single-
ended-zero) check to see if the data received is actually a handshake
from the device. A handshake would be sent, for example, if the
host9 requests data that the function is not ready to send. In this
case the host may receive a STALL or NAK handshake.

(b) If transmitting the data packet follow the same procedure as trans-
mitting the token packet. Send the sync, the payload, and the end-
of-packet.

3. Now determine whether to send or receive a handshake.

(a) If the host transmitted the data packet begin to wait for the hand-
shake. Like receiving a data packet, the host will wait for the sync
field from the function. Upon receiving that it will record a byte’s
worth of data from the function and store that as the handshake.

(b) If the host received the data packet an ACK handshake will be sent
regardless of the correctness of the data CRC10. Again, the SIE will
transmit a sync field, a byte representing an ACK handshake, and
an end-of-packet.

(c) A third, special case, is that the host received a handshake instead
of a data packet above. In this situation the transaction has already
been terminated by the USB function and no more data should be
sent. The host will not transmit a handshake.

The following sections will explain the important sections of the SIE assem-
bly.

4.3.1 Transmitting a packet

The assembly that reads bytes from a token or data buffer and transmits on
the bus is heavily optimized and thus hard to understand. What follows is an
explanation of how it works.

This is the assembly code11:

mov r21, __zero_reg__
ldi r20, 0x01

9In this description the terms host and SIE are exchangeable.
10This is a limitation of the SIE. To completely comply to the USB specification the host

has to validate the data packet payload against the CRC16 sent with it. If the two don’t
match, the host will send a NAK (to indicate a possible bus error). The SIE only has about
75 cycles to complete such a check, and this is not enough time. Thus it will always send an
ACK handshake.

11The code shown here may differ slightly from the code in the source. Any differences are
due to the manner in which gcc expects assemly statements. Other (minor) differences may
include directions of shifts and/or initialization code, but the thrust of this discussion should
be unchanged.

30



.sie_tx_buffer:
ld r10, x+

.sie_tx_bit:
lsl r10
rol r20
out USBPORT, r20

dec r16
breq .sie_tx_done

add r21, r3
brcs .sie_tx_buffer

ldi r20, 0x01
rjmp .sie_tx_bit

.sie_tx_done:

Before explaining each line in detail it is useful to note what the code ac-
complishes:

• Buffer a byte from a specified memory location.

• For each bit in that buffer drive the data bus lines according to its differ-
ential form.

• After transmitting a bit, decrement the bit count. If the bit count is zero,
the entire packet has been transmitted. The end-of-packet is not handled
by the above code.

Initialization

The code is initialized through these two lines at the beginning:

mov r21, __zero_reg__
ldi r20, 0x01

Register 21 is cleared to 0 (this could also be done with a ldi r21 0x00)
and register 20 is set to 0x01. Register 21 is set to 0 because it is used to count
the number of bits transmitted in the current byte. Register 20 is set to 1, but
the reason is a bit indirect: the register will be shifted left later in the loop,
and this 1 will be shifted into a bit that drives the enable line. This reasoning
is explained below. Note that r3 is initialized to 0x20 at the beginning of the
SIE assembly, before any transmit or receive code.
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Buffering

The next line of code will buffer a byte from memory:

.sie_tx_buffer:
ld r10, x+

The code is given a label because it will be branched to later in the loop.
The memory location is assumed to be preloaded in the register pair x12. Note
that the value of x is incremented after each load. The next time this load
instruction is executed, x will already point to the next byte to buffer.

Bit load and transmit

.sie_tx_bit:
lsl r10
rol r20
out USBPORT, r20

At the beginning of this code we have a byte that needs to be transmitted
stored in r10. The register r20 has also been set to 0x01 as a result of the
initialization instructions above.

The first instruction shifts the buffer register left. The most significant bit
of that register will be shifted into the carry bit of the status register, C. The
SIE is essentially “grabbing” the most significant bit of the buffer, and at the
same time shifting it left, getting it ready for the next iteration of the loop when
the next significant bit is needed.

The second left shift is different in that it will use the carry bit as the bit
to shift in on the right. So when that shift is executed the bit that was shifted
off in the previous instruction will be shifted into the register into the least
significant bit. Figure 4.3 shows how the data flows between these two registers.

0 76543210 7654321 C

r10 r20

msblsb msb

TX Enable

Figure 4.3: Data flow between registers.

Remember that r20 was initialized to 0x01, not just 0. Before the register
is shifted, that 1 is stored in bit 0. When the carry bit is shifted in on the right,
that 1 gets shifted into bit 1. This will become significant when the register is
output on the port.

12This register pair is the combination of registers 24 and 25, needed to address a memory
location.
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The output statement takes r20 and outputs on the port defined by the user
program for USB use. This is when the pins that are set become significant. It
would be helpful to review the hardware documentation at this point. Recall
that the output pin assignments as given in Table 4.1.

Pin Assigment
0 TX
1 & 2 Enable (pins 1 & 2 are ORed together)
3 Single-ended-zero enable

Table 4.1: Output pin assignments

The MSB of the buffer register r10 was shifted — via the carry bit — into bit
0 of the output register r20. This gets assigned to TX, which via the transceiver
board gets differentially encoded into D+ and D-. The 0x01 that was initially
in bit 0 of the output register got moved into bit 1, which connects to one of the
enable inputs. The SIE is thus able to have the transceiver board output the
correct differential signal, as well as set the enable line to drive the bus, with
one output statement.

Token/Data packet length

dec r16
breq .sie_tx_done

The SIE uses r16 to make sure that it transmits the correct number of bits,
as the amount of valid data in the token or data buffer can vary. This register
is pre-loaded with the number of bits to transfer. After each bit is sent the SIE
decrements the bit count and check if the count is now equal to zero. If this
check evaluates to true, the SIE will branch out of the transmit loop because it
has finished transmitting all bits.

Bit count

Every eight bits transmitted the SIE needs to buffer another byte from memory.
The following add and branch accomplishes this in the minimum number of
cycles:

add r21, r3
brcs .sie_tx_buffer

Remember that r21 was cleared as part of the initialization routine, and that
r3 is loaded with 0x20. After every bit transmitted r3 is added to r21 and the
result is stored in r21. Because the registers are eight bits wide, this addition
will set the carry flag every eight times: 8 × 32 = 256, which is expressed as
0x100. Not only will the carry flag be set, but the register will be cleared to
0x00 again. No cycles are wasted clearing the register.
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When the carry is set — signalling the end of a byte — the transmit loop
jumps to sie_tx_buffer, where the SIE loads another byte from the token/data
buffer into r10.

Loop back

ldi r20, 0x01
rjmp .sie_tx_bit

If the code reaches this point then the SIE is in the middle of a byte that has
been buffered. The SIE performs the same initialization that it did at the start
of the transmit loop and sets r20 to 0x01. Register r21 isn’t touched because
that is being used to determine the bit count of the current byte. After the
register is re-initialized the SIE jumps back to the sie_tx_bit label.

Notice that if the SIE needed to buffer another byte, it will not execute this
code before the first bit of the newly buffered byte is transmitted on the port.
This leads to a problem: the reason that r20 is set to 0x01 is so the shift left
moves the 1 into the enable pin. If the transceiver board had only one pin for
the enable line, the SIE would not be able to guarantee that the enable line is
set when the first bit of the next byte is transmitted (it will be the last bit that
was transmitted, which could be either 1 or 0).

This is why both pins 1 and 2 are ORed together to form the enable line.
When the SIE needs to buffer another byte, it can go right on and send the first
bit. The 1 in pin 1 — from the 0x01 originally loaded in r21 — will be shifted
into pin 2. The SIE can guarantee that pin 2 will be 1. In order to make use of
both pins 1 and 2 the transceiver board ORs the two pins together to form one
enable line.
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Chapter 5

Hardware
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5.1 Introduction

This document will describe the physical layer of the USB engine. This consists
of hardware to perform the following functions:

• Encode the output of the microcontroller into a differential signal.

• Drive/release the data lines under control of the software.

• When needed, drive both lines low.

• Fit on a single port of the Mega32

5.2 Design

These constraints are met with standard 7400 ICs. The design is shown in
Figure 5.1.
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Figure 5.1: The final hardware design

The following sections will explain the design.

5.2.1 Encoding the output

A USB connector has two data lines: D+ and D-. Together these are used to
transmit a differential signal. The states of the line are shown in Table 5.1.

The Serial Interface Engine on the Mega32 only outputs one line: TX. This
line needs to be encoded into a differential signal in order to be transmitted
on the bus. Encoding the output of the microcontroller is solved by adding an
inverter to the output, and using the output of that along with the original
signal.
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D+ D- Meaning
0 0 Single-ended 0
0 1 Differential 0
1 0 Differential 1
1 1 Illegal state

Table 5.1: States allowed by the USB specification

This solution works for the differential 0 and 1 states, but does not allow
us to drive a single-ended 0. In order to this the differential lines are fed into
a 2-input 2:1 multiplexer. D+ and D- are connected to the “A” inputs, and
the “B” inputs are tied to ground. By toggling the select line of the MUX the
hardware can select either the differential signal or pull both lines to ground
(i.e. the single-ended 0).

At this point the output of the MUX is either a differential 1 or 0, or a
single-ended 0. This is all that is needed to transmit on the bus.

5.2.2 Transmit and receive

To operate correctly the USB host needs to be able to monitor the data lines for
communication from devices as well as drive the data lines to transmit data. To
do this the hardware sends the output of the MUX (explained above) through
a tri-state buffer for each of the data lines.

When the enable of the tri-state buffers is set the host can drive the lines
with the output of the MUX. When the enable line is not set a device will be
able to drive the data lines without interference from the host.

The hardware necessary to receive a signal is easier. The data lines can be
connected directly to the port on the Mega32. The SIE requires two copies of
D+ and one D-.

5.2.3 Port configuration

In total the host controller uses seven out of the eight pins on the Mega32. See
Table 5.2.

Pin Function Notes
0 Tx
1 Enable ORed with pin 2 to form one enable line.
2 Enable See pin 1.
3 SE0 Single-ended 0 enable.
4 N/A
5 D-
6 D+ Two copies of this signal are required.
7 D+ See pin 6.

Table 5.2: Pin assignments
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5.2.4 USB timing considerations

The USB 2.0 specification has constraints on the electrical performance of a
USB connection. The host controller hardware has to meet or exceed these
specifications. A few of the timing constraints that pertain to the hardware are
listed in Table 5.3.

Measurement Expected performance
Data line rise/fall time 10ns < t < 20rs
Differential “cross point” 1.3V < V < 2.0V

Table 5.3: Certain timing restrictions

Meeting the rise/fall time

This constraint is given by the hardware for free. Both the inverter and Mega32
rise/fall time is about 12ns, as is the delay of the tri-state buffers.

Meeting the cross point

This requirement states that during transitions from a differential 1 to 0 (and
vice versa) the voltage at which the differential lines are equal must be between
1.3V and 2.0V. This is at the bus (where voltage is from 0V to 3.3V), but this
requirement is hard to meet earlier in the hardware even when the voltages are
at the TTL level.

The easiest way to encode the output into a differential signal is to use an
inverter to create the D- signal, which is what the simple design discussed above
did. However, this breaks the cross point requirement. Refer to Figure 5.2 to
help explain this problem.

The illustrated transition is from a differential 1 to a differential 0. The
problem is that the inverter will not switch until the input voltage (TX) crosses
below 2.0 volts. Only when this happens will the inverter pull D- high. By this
point, however, the TX line is so close to 0V that the D- line “crosses” D+ at
a very low voltage (about 1.0V to 1.1V). This is out of spec. In order for the
cross point to meet the specifications the cross point needs to be at about 2.5V
at this stage in the hardware.

The same problem occurs at the transition from a differential 0 to a differ-
ential 1, albeit at a voltage closer to 5V.

The way the hardware gets around this is to use a buffer on the TX line. D-
is still generated by an inverter, but instead of D+ being the original TX line
the TX line is fed into a buffer, the output of which is D+. Because the buffer
and inverter have similar input voltage thresholds they switch at the same time.
This returns the cross point to spec.

38



T

V

5V

0V

D−

D+

2V

TX

Figure 5.2: Data lines plotted during a transition

39



Appendix A

Acknowledgments

40



We’d like to recognize and thank the following individuals for their contri-
butions, who have — directly or indirectly — influenced this project and helped
us bring it to completion:

• Benjamin Hutton, for being on the original team that created the first
revision; in the process proving that USB on a Mega32 was indeed possible.
Several portions of his code have survived through the many revisions.

• Professor Bruce R. Land, for being a tremendous source of wisdom and
practical know-how, as well as providing impetus for the project. Without
his ECE 476 class this project would have never began.

41


	Universal Serial Bus
	Introduction
	USB Topology
	Logical Protocol
	Control Transfer Grammar

	Physical Protocol
	Signaling
	Differential Encoding
	Idle States
	NRZI Encoding
	Bit Stuffing
	Special Signals
	Frames

	Bus Enumeration
	Device States


	Host Controller Interface
	API Overview
	Descriptors
	Endpoint Descriptor
	Stage Descriptor

	Asynchronous I/O
	USB Driver
	Host Controller Driver
	Host Controller
	Finding Stages
	Performing Stages
	Reporting Results

	Limitations
	Low Speed Operation
	CRC Verification

	Future Improvements
	Hardware Assistance
	Power Requirements


	Using SIAM32
	Introduction
	Transition to Asynchronous Callbacks
	Callbacks Explained
	Main loop

	Define Statements
	USB Hardware

	Serial Interface Engine
	Introduction
	Design
	Software Interface
	Token & Data Buffers
	Token & Data Packet Length
	Handshake result
	Data direction
	Data encoding

	Implementation
	Transmitting a packet


	Hardware
	Introduction
	Design
	Encoding the output
	Transmit and receive
	Port configuration
	USB timing considerations


	Acknowledgments

