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ABSTRACT
A good test suite is one that detects real faults. Because the set
of faults in a program is usually unknowable, this definition is not
useful to practitioners who are creating test suites, nor to researchers
who are creating and evaluating tools that generate test suites. In
place of real faults, testing research often uses mutants, which are
artificial faults — each one a simple syntactic variation — that are
systematically seeded throughout the program under test. Mutation
analysis is appealing because large numbers of mutants can be
automatically-generated and used to compensate for low quantities
or the absence of known real faults.

Unfortunately, there is little experimental evidence to support
the use of mutants as a replacement for real faults. This paper in-
vestigates whether mutants are indeed a valid substitute for real
faults, i.e., whether a test suite’s ability to detect mutants is corre-
lated with its ability to detect real faults that developers have fixed.
Unlike prior studies, these investigations also explicitly consider the
conflating effects of code coverage on the mutant detection rate.

Our experiments used 357 real faults in 5 open-source applica-
tions that comprise a total of 321,000 lines of code. Furthermore,
our experiments used both developer-written and automatically-
generated test suites. The results show a statistically significant
correlation between mutant detection and real fault detection, inde-
pendently of code coverage. The results also give concrete sugges-
tions on how to improve mutation analysis and reveal some inherent
limitations.
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1. INTRODUCTION
Both industrial software developers and software engineering re-

searchers are interested in measuring test suite effectiveness. While
developers want to know whether their test suites have a good chance
of detecting faults, researchers want to be able to compare differ-
ent testing or debugging techniques. Ideally, one would directly
measure the number of faults a test suite can detect in a program.
Unfortunately, the faults in a program are unknown a priori, so a
proxy measurement must be used instead.

A well-established proxy measurement for test suite effective-
ness in testing research is the mutation score, which measures a
test suite’s ability to distinguish a program under test, the origi-
nal version, from many small syntactic variations, called mutants.
Specifically, the mutation score is the percentage of mutants that
a test suite can distinguish from the original version. Mutants
are created by systematically injecting small artificial faults into
the program under test, using well-defined mutation operators.
Examples of such mutation operators are replacing arithmetic or
relational operators, modifying branch conditions, or deleting state-
ments (cf. [18]).

Mutation analysis is often used in software testing and debugging
research. More concretely, it is commonly used in the following use
cases (e.g., [3, 13, 18, 19, 35, 37–39]):
Test suite evaluation The most common use of mutation analysis
is to evaluate and compare (generated) test suites. Generally, a test
suite that has a higher mutation score is assumed to detect more real
faults than a test suite that has a lower mutation score.
Test suite selection Suppose two unrelated test suites T1 and T2
exist that have the same mutation score and |T1| < |T2|. In the
context of test suite selection, T1 is a preferable test suite as it has
fewer tests than T2 but the same mutation score.
Test suite minimization A mutation-based test suite minimiza-
tion approach reduces a test suite T to T \{t} for every test t ∈ T
for which removing t does not decrease the mutation score of T .
Test suite generation A mutation-based test generation (or aug-
mentation) approach aims at generating a test suite with a high mu-
tation score. In this context, a test generation approach augments a
test suite T with a test t only if t increases the mutation score of T .
Fault localization A fault localization technique that precisely
identifies the root cause of an artificial fault, i.e., the mutated code
location, is assumed to also be effective for real faults.

These uses of mutation analysis rely on the assumption that mu-
tants are a valid substitute for real faults. Unfortunately, there is little
experimental evidence supporting this assumption, as discussed in
greater detail in Section 4. To the best of our knowledge, only three
previous studies have explored the relationship between mutants and



real faults [1, 8, 27]. Our work differs from these previous studies
in four main aspects. (1) Our study considers subject programs that
are orders of magnitude larger. (2) Our study considers real faults
rather than hand-seeded faults. (3) Our study uses developer-written
and automatically-generated test suites. (4) Our study considers the
conflating effects of code coverage when studying the correlation
between mutant detection and real fault detection. A higher mu-
tant detection and real fault detection rate could both be caused by
higher code coverage, thus it is important to control this variable
when measuring the correlation.

Specifically, this paper extends previous work and explores the
relationship between mutants and real faults using 5 large Java
programs, 357 real faults, and 230,000 mutants. It aims to confirm
or refute the hypothesis that mutants are a valid substitute for real
faults in software testing by answering the following questions:

RESEARCH QUESTION 1. Are real faults coupled to mu-
tants generated by commonly used mutation operators?

The existence of the coupling effect [9] is a fundamental assumption
underlying mutation analysis. A complex fault is coupled to a set of
simple faults if a test that detects all the simple faults also detects
the complex fault. Prior research empirically showed the existence
of the coupling effect between simple and complex mutants [17,28],
but it is unclear whether real faults are coupled to simple mu-
tants derived from commonly used mutation operators [18, 26, 29].
Therefore, this paper investigates whether this coupling effect exists.
In addition, it studies the numbers of mutants coupled to each of the
real faults as well as their underlying mutation operators.

RESEARCH QUESTION 2. What types of real faults are not
coupled to mutants?

The coupling effect may not hold for every real fault. Therefore,
this paper investigates what types of real faults are not coupled to
any of the generated mutants. Additionally, this paper sheds light
on whether the absence of the coupling effect indicates a weakness
of the set of commonly applied mutation operators or an inherent
limitation of mutation analysis.

RESEARCH QUESTION 3. Is mutant detection correlated
with real fault detection?

Since mutation analysis is commonly used to evaluate and compare
(generated) test suites, this paper also addresses the question of
whether a test suite’s ability to detect mutants is correlated with its
ability to detect real faults.

In summary, the contributions of this paper are as follows:
• A new set of 357 developer-fixed and manually-verified real

faults and corresponding test suites from 5 programs.
• The largest study to date of whether mutants are a valid sub-

stitute for real faults using 357 real faults, 230,000 mutants,
and developer-written and automatically-generated tests.
• An investigation of the coupling effect between real faults and

the mutants that are generated by commonly used mutation
operators. The results show the existence of a coupling effect
for 73% of real faults.
• Concrete suggestions for improving mutation analysis (10%

of real faults require a new or stronger mutation operator), and
identification of its inherent limitations (17% of real faults are
not coupled to mutants).
• An analysis of whether mutant detection is correlated with

real fault detection. The results show a statistically signifi-
cant correlation that is stronger than the correlation between
statement coverage and real fault detection.

Table 1: Investigated subject programs.
Program size (KLOC), test suite size (Test KLOC), and the number of
JUnit tests (Tests) are reported for the most recent version. LOC refers to
non-comment, non-blank lines of code and was measured with sloccount
(http://www.dwheeler.com/sloccount).

Program KLOC Test KLOC Tests

Chart JFreeChart 96 50 2,205
Closure Closure Compiler 90 83 7,927
Math Commons Math 85 19 3,602
Time Joda-Time 28 53 4,130
Lang Commons Lang 22 6 2,245

Total 321 211 20,109

The remainder of this paper is structured as follows. Section 2
describes our methodology and the experiments we performed to
answer our research questions. Section 3 presents and discusses the
results. Section 4 reviews related work, and Section 5 concludes.

2. METHODOLOGY
Our goal was to test the assumption that mutants are a valid

substitute for real faults by conducting a study with real faults, using
both developer-written and automatically-generated test suites. To
accomplish this, we performed the following high-level steps:

1. Located and isolated real faults that have been previously
found and fixed by analyzing the subject programs’ version
control and bug tracking systems (Section 2.2).

2. Obtained developer-written test suites for both the faulty and
the fixed program version for each real fault (Section 2.3).

3. Automatically generated test suites for the fixed program
version for each real fault (Section 2.4).

4. Generated mutants and performed mutation analysis for all
fixed program versions (Section 2.5).

5. Conducted experiments using the real faults, mutants, and the
test suites to answer our research questions (Section 2.6).

2.1 Subject Programs
Table 1 lists the 5 subject programs we used in our experiments.

These programs satisfy the following desiderata:
1. Each program has a version control and bug tracking system,

enabling us to locate and isolate real faults.
2. Each program is released with a comprehensive test suite,

enabling us to experiment with developer-written test suites
in addition to automatically-generated ones.

2.2 Locating and Isolating Real Faults
We obtained real faults from each subject program’s version

control system by identifying commits that corrected a failure in the
program’s source code. Ideally, we would have obtained, for each
real fault, two source code versions Vbug and Vfix which differ by
only the bug fix. Unfortunately, developers do not always minimize
their commits. Therefore, we had to locate and isolate the fix for the
real fault in a bug-fixing commit.

We first examined the version control and bug tracking system of
each program for indications of a bug fix (Section 2.2.1). We refer to
a revision that indicates a bug fix as a candidate revision. For each
candidate revision, we tried to reproduce the fault with an existing
test (Section 2.2.2). Finally, we reviewed each reproducible fault to
ensure that it is isolated, i.e., the bug-fixing commit does not include
irrelevant code changes (Section 2.2.3). We discarded any fault
that could not be reproduced and isolated. Table 2 summarizes the
results of each step in which we discarded candidate revision pairs.

http://www.dwheeler.com/sloccount


Table 2: Number of candidate revisions, compilable revisions,
and reproducible and isolated faults for each subject program.

Candidate
revisions

Compilable
revisions

Reproducible
faults

Isolated
faults

Chart 80 62 28 26
Closure 316 227 179 133
Math 435 304 132 106
Time 75 57 29 27
Lang 273 186 69 65

Total 1179 836 437 357

2.2.1 Candidate Revisions for Bug-Fixing Commits
We developed a script to determine revisions that a developer

marked as a bug fix. This script mines the version control system
for explicit mentions of a bug fix, such as a bug identifier from the
subject program’s bug tracking system.

Let revfix be a revision marked as a bug fix. We assume that the
previous revision in the version control system, revbug, was faulty
(later steps validate this assumption). Overall, we identified 1,179
candidate revision pairs 〈revbug,revfix〉.

2.2.2 Discarding Non-reproducible Faults
A candidate revision pair obtained in the previous step is not

suitable for our experiments if we cannot reproduce the real fault.
Let V be the source code version of a revision rev, and let T be
the corresponding test suite. The fault of a candidate revision pair
〈revbug,revfix〉 is reproducible if a test exists in Tfix that passes on
Vfix but fails on Vbug due to the existence of the fault.

In some cases, test suite Tfix does not run on Vbug. If necessary,
we fixed build-system-related configuration issues and trivial errors
such as imports of non-existent classes. However, we did not attempt
to fix compilation errors requiring non-trivial changes, which would
necessitate deeper knowledge about the program. 836 out of 1,179
revision pairs remained after discarding candidate revision pairs
with unresolvable compilation errors.

After fixing trivial compilation errors, we discarded version pairs
for which the fault was not reproducible. A fault might not be repro-
ducible for three reasons. (1) The source code diff is empty — the
difference between revbug and revfix was only to tests, configuration,
or documentation. (2) No test in Tfix passes on Vfix but fails on Vbug.
(3) None of the tests in Tfix that fail on Vbug exposes the real fault.
We manually inspected each test of Tfix that failed on Vbug while
passing on Vfix to determine whether its failure was caused by the
real fault. Examples of failing tests that do not expose a real fault
include dependent tests [42] or non-deterministic tests. The overall
number of reproducible candidate revision pairs was 437.

2.2.3 Discarding Non-isolated Faults
Since developers do not always minimize their commits, the

source code of Vbug and Vfix might differ by both features and the
bug fix. We ensured that all bug fixes were isolated for the purposes
of our study. Isolation is important because unrelated changes could
affect the outcome of generated tests or could affect the coverage
and mutation score. Other benefits of isolation include improved
backward-compatibility of tests and the ability to focus our experi-
ments on a smaller amount of modified code.

For each of the 437 reproducible candidate revision pairs, we
manually reviewed the bug fix (the source code diff between Vbug
and Vfix) to verify that it was isolated and related to the real fault.
We divided a non-isolated bug fix into two diffs, one that represents
the bug fix and one that represents features and refactorings. We
discarded a candidate revision pair if we could not isolate the bug

Vbug VfixV1
features &
refactorings

V2
bug fix =

source code diff

Figure 1: Obtaining source code versions V1 and V2.
V1 and V2 differ by only a bug fix. Vbug and Vfix are the source code versions
of two consecutive revisions in a subject program’s version control system.
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Figure 2: Relationship between the i-th obtained test suite pair
〈Ti

pass,Ti
fail〉 and the developer-written test suites Tbug and Tfix.

Tbug and Tfix are derived from a subject program’s version control system. t̂ i
fix

is the i-th triggering test in Tfix, and t j
bug is the previous version of that test.

fix part of the diff. The result of this step was two source code
versions V1 and V2 such that V1 and V2 differ by exactly a bug fix —
no features were added and no refactorings were applied. To ensure
consistency, the review process was performed twice by different au-
thors, with a third author resolving disagreements. Different authors
reviewed different diffs to avoid introducing a systematic bias.

Figure 1 visualizes the relationship between the source code
versions V1 and V2, and how they are obtained from the source code
versions of a candidate revision pair. V2 is equal to the version Vfix,
and the difference between V1 and V2 is the bug fix. Note that V1 is
obtained by re-introducing the real fault into V2 — that is, applying
the inverse bug-fixing diff. Overall, we obtained 357 version pairs
〈V1,V2〉 for which we could isolate the bug fix.

2.3 Obtaining Developer-written Test Suites
Section 2.2 described how we obtained 357 suitable version pairs
〈V1,V2〉. This section describes how we obtained two related test
suites Tpass and Tfail made up of developer-written tests. Tpass and
Tfail differ by exactly one test, Tpass passes on V1, and Tfail fails on
V1 because of the real fault.

Since Tpass and Tfail differ by exactly one test related to the real
fault, the pairs 〈Tpass,Tfail〉 enable us to study the coupling effect
between real faults and mutants, and whether the effect exists in-
dependently of code coverage. These test suite pairs also reflect
common and recommended practice. The developer’s starting point
is the faulty source code version V1 and a corresponding test suite
Tpass, which passes on V1. Upon discovering a previously-unknown
fault in V1, a developer augments test suite Tpass to expose this fault.
The resulting test suite Tfail fails on V1 but passes on the fixed source
code version V2. Tpass might be augmented by modifying an existing
test (e.g., adding stronger assertions) or by adding a new test.
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Figure 3: Statement coverage ratios and mutation scores of the
test suites Tpass for each subject program.

We cannot directly use the existing developer-written test suites
Tbug and Tfix as Tpass and Tfail, because not all tests pass on each
committed version and because the developer may have committed
changes to the tests that are irrelevant to the fault. Therefore, we
created the test suites Tpass and Tfail based on Tbug and Tfix, as we
now describe.

Recall that for each pair 〈V1,V2〉, one or more tests expose the
real fault in V1 while passing on V2 — we refer to such a test as
a triggering test, t̂ . Let m be the number of triggering tests for
a version pair; then t̂ i denotes the i-th triggering test (1 ≤ i ≤ m).
Figure 2 visualizes how we obtained, for each real fault, m pairs of
test suites 〈T i

pass,T
i

fail〉 with the following properties:

• T i
pass passes on V1 and V2.

• T i
fail fails on V1 but passes on V2.

• T i
pass and T i

fail differ by exactly one modified or added test.

In order to fairly compare the effectiveness of Tpass and Tfail,
they must not contain irrelevant differences. Therefore, Tpass is
derived from Tfix. If Tpass were derived from Tbug instead, two
possible problems could arise. First, V1 might include features
(compared to Vbug, as described in Section 2.2), and Tfix might
include corresponding feature tests. Second, tests unrelated to the
real fault might have been added, changed, or removed in Tfix.

In summary, we applied the following steps to obtain all pairs
〈Tpass,Tfail〉 using the developer-written test suites Tbug and Tfix:

1. Manually fixed all classpath- and configuration-related test
failures in Tbug and Tfix to ensure that all failures indicate
genuine faults.

2. Excluded all tests from Tbug that fail on V1, and excluded all
tests from Tfix that fail on V2.

3. Determined all triggering tests t̂ i
fix in Tfix.

4. Created one test suite pair 〈T i
pass,T

i
fail〉 for each t̂ i

fix ∈ Tfix (as
visualized in Figure 2).

Overall, we obtained 480 test suite pairs 〈Tpass,Tfail〉 in this step.
Figure 3 summarizes the statement coverage ratios and mutation
scores for all test suites Tpass measured for classes modified by the
bug fix. The high degree of statement coverage achieved by Tpass
allowed us to obtain 258 test suite pairs for which coverage did not
increase and 222 test suite pairs for which it did.

In 80% of the cases, Tfix contained exactly one triggering test;
developers usually augment a test suite by adding or strengthening
one test to expose the fault. For the remaining cases, each triggering
test exposes the real fault differently. For example, a developer
might add two tests for a boundary condition bug fix — one test to
check the maximum and one test to check the minimum value.

Table 3: Characteristics of generated test suites.
Test suites gives the total number of test suites that passed on V2 and the
percentage of test suites that detected a real fault (Tfail). The KLOC and
Tests columns report the mean and standard deviation of lines of code and
number of JUnit tests for all test suites. Detected faults shows how many
distinct real faults the test suites detected out of the number of program
versions for which at least one suitable test suite could be generated.

Test suites KLOC Tests Detected
Total Tfail faults

EvoSuite 28,318 22.3% 10±49 68±133 182/354
-branch 10,133 21.1% 2±7 21±24 156/352
-weak 9,420 21.8% 3±8 24±27 158/352
-strong 8,765 24.1% 26±86 171±202 152/350

Randoop 3,387 18.0% 212±132 6,929±9,923 90/326
-nonnull 1,690 17.3% 200±124 6,113±9,012 78/316
-null 1,697 18.7% 224±138 7,747±10,698 84/319

JCrasher 3,436 0.6% 543±561 47,928±48,174 2/350

Total 35,141 19.7% 335±995 1,066±5,599 198/357

2.4 Automatically Generating Test Suites
We used three test generation tools for our study: EvoSuite [12],

Randoop [31], and JCrasher [6]. We attempted to use DSDCrasher
[7] instead of JCrasher, but found that it relies on the static analysis
tool ESC/Java2. This tool does not work with Java 1.5 and higher,
making it impossible to use DSDCrasher for this study.

Unlike Randoop and JCrasher, EvoSuite aims to satisfy one of
three possible criteria — branch coverage, weak mutation testing, or
strong mutation testing. We generated tests for each of the criteria.
We also selected two different configurations for Randoop, one
that allows null values as inputs (Randoop-null) and one that does
not (Randoop-nonnull). For each fixed program version V2, we
generated 30 test suites with EvoSuite for each of the selected
criteria, 6 test suites for each configuration of Randoop, and 10 test
suites with JCrasher. Each test generation tool was guided to create
tests only for classes modified by the bug fix.

Each of the test generation tools might produce tests that do not
compile or do not run without errors. Additionally, tests might
sporadically fail due to the use of non-deterministic APIs such as
time of day or random number generators. A test suite that (sporad-
ically) fails is not suitable for our study. We automatically repaired
uncompilable and failing test suites using the following workflow:

1. Removed all tests that cause compilation errors.
2. Removed all tests that fail during execution on V2.
3. Iteratively removed all non-deterministic tests; we assumed

that a test suite does not include any further non-deterministic
tests once it passed 5 times in a row.

The final output of this process was generated test suites that pass
on V2. Repairing a test suite resulted in approximately 2% of cases
in an empty test suite, when all tests failed and had to be removed.
Therefore, for all tools used to generate tests, the number of suitable
test suites, which pass on V2, is smaller than the total number of
generated test suites. Table 3 summarizes the characteristics of all
generated test suites that pass on V2. Note that unlike EvoSuite and
Randoop, JCrasher does not capture program behavior for regression
testing but rather aims at crashing a program with an unexpected
exception, explaining the low real fault detection rate.

We executed each generated test suite T̃ on V1. If it passed (T̃pass),
it did not detect the real fault. If it failed (T̃fail), we verified that the
failing tests are valid triggering tests, i.e., they do not fail due to
build system or configuration issues. Overall, the test generation
tools created 35,141 test suites that detect 198 of the 357 real faults.
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Figure 4: Statement coverage ratios and mutation scores of the generated test suites for each subject program.
The vertical axis shows the statement coverage ratio (Coverage) and the mutation score (Mutation). The horizontal axis shows the real fault detection rate.

Figure 4 gives the statement coverage ratios and mutation scores for
all generated test suites grouped by subject program, test generation
tool/configuration, and real fault detection rate.

2.5 Mutation Analysis
We used the Major mutation framework [20, 21] to create the mu-

tant versions and to perform the mutation analysis. Major provides
the following set of mutation operators: Replace constants, Replace
operators, Modify branch conditions, and Delete statements. This
set, suggested in the literature on mutation analysis [18, 24, 26, 29],
is commonly used and includes the mutation operators used by
previous studies [1, 8].

Major only mutated classes of the source code version V2 that
were modified by the bug fix. This reduces the number of mutants
irrelevant to the fault — differences in the mutation score would be
washed out otherwise.

For each of the developer-written and automatically-generated
test suites, Major computed mutation coverage and mutation score.
A test is said to cover a mutant if it reaches and executes the mutated
code. A test detects a mutant if the test outcome indicates a fault —
a test assertion fails or the test causes an exception in the mutant.

We did not eliminate equivalent mutants, which means that the
reported mutation scores might be underestimated. This is, however,
not a concern for our study because we do not interpret absolute
mutation scores. Moreover, the set of equivalent mutants is identical
for any two test suites used in a comparison.

2.6 Experiments
As described in Section 1, the goal of our study was to answer

three research questions:

1. Are real faults coupled to mutants generated by commonly
used mutation operators?

2. What types of real faults are not coupled to mutants?
3. Is mutant detection correlated with real fault detection?

After explaining why and how we controlled for code coverage, this
section explains how we answered these three questions.

2.6.1 Controlling for Code Coverage
Structural code coverage is a widely-used measure of test suite ef-

fectiveness. Differences in coverage often dominate other aspects of
test suite effectiveness, and a test suite that achieves higher coverage
usually detects more mutants and faults for that reason alone [16].
More specifically, if test suite Tx covers more code than Ty, then Tx
is likely to have a higher overall mutation score, even if Ty does a
better job in testing a smaller portion of the program.

Furthermore, no developer would use a complex, time-consuming

test suite metric such as the mutation score unless simpler ones such
as structural code coverage ratios had exhausted their usefulness.

To account for these facts, we performed our experiments in two
ways. First, we ignored code coverage and simply determined the
mutation score for each test suite using all mutants. Second, we
controlled for coverage and determined the mutation score using
only mutants in code covered by both test suites.

For the related test suite pairs 〈Tpass,Tfail〉, Tpass and Tfail may
have the same code coverage: Tpass and Tfail cover the same code if
the triggering test in Tfail does not increase code coverage.

For the automatically-generated test suites, it is highly unlikely
that T̃pass and T̃fail have the same coverage because they were in-
dependently generated. Therefore, we had to control for coverage
when using the automatically-generated test suites. We did this by
only considering the intersection of mutants covered by both test
suites. This means that a pair of generated test suites was discarded
if the intersection was the empty set.

We include the first, questionable methodology for comparison
with prior research that does not control for coverage. The second
methodology controls for coverage. It better answers whether use
of mutation analysis is profitable, under the assumption that a de-
veloper is already using the industry-standard coverage metric. Our
experiments use Cobertura [5] to compute statement coverage over
the classes modified by the bug fix.

2.6.2 Are Real Faults Coupled to Mutants Generated
by Commonly Used Mutation Operators?

The test suites Tpass and Tfail model how a developer usually
augments a test suite. Tfail is a better suite — it detects a fault that
Tpass does not. If mutants are a valid substitute for real faults, then
any test suite Tfail that has a higher real fault detection rate than
Tpass should have a higher mutation score as well. In other words,
each real fault should be coupled to at least one mutant. For each
test suite pair 〈Tpass,Tfail〉, we studied the following questions:
• Does Tfail have a higher mutation score than Tpass?
• Does Tfail have a higher statement coverage than Tpass?
• Is the difference between Tpass and Tfail a new test?

Based on the observations, we performed three analyses. (1) We
used the Chi-square test to determine whether there is a signifi-
cant association between the measured variables mutation score
increased, statement coverage increased, and test added. (2) We
determined the number of real faults coupled to at least one of the
generated mutants. (3) We measured the sensitivity of the mutation
score with respect to the detection of a single real fault — the in-
crease in the number of detected mutants between Tpass and Tfail. We
also determined the mutation operators that generated the mutants
additionally detected by Tfail. Section 3.1 discusses the results.



2.6.3 What Types of Real Faults Are Not Coupled to
Mutants?

Some of the real faults are not coupled to any of the generated
mutants, i.e., the set of mutants detected by Tpass is equal to the set
of mutants detected by Tfail. We manually investigated each such
fault. This qualitative study reveals how the set of commonly used
mutation operators should be improved. Moreover, this study shows
what types of real faults are not coupled to any mutants and there-
fore reveals general limitations of mutation analysis. Section 3.2
discusses the results.

2.6.4 Is Mutant Detection Correlated with Real Fault
Detection?

We conducted two experiments to investigate whether a test
suite’s mutation score is correlated with its real fault detection rate.
Calculating the correlation requires larger numbers of test suites per
fault, and thus we used the automatically-generated test suites. We
analyzed the entire pool of test suites derived from all test generation
tools to investigate whether the mutation score is generally a good
metric to compare the effectiveness of arbitrary test suites. The
experiments consider 194 real faults for which we could generate
at least one test suite that detects the real fault and at least one test
suite that does not.

We determined the strength of the correlation between mutation
score and real fault detection. Since real fault detection is a dichoto-
mous variable, we computed the point-biserial and rank-biserial
correlation coefficients. In addition, we investigated whether the
correlation is significantly stronger than the correlation between
statement coverage and real fault detection.

While we cannot directly calculate the correlation between muta-
tion score and real fault detection independently of code coverage,
we can still determine whether there is a statistically significant
difference in the mutation score between T̃pass and T̃fail when cover-
age is fixed. Calculating the correlation coefficient independently
of code coverage would require fixed coverage over all test suites.
In contrast, testing whether the mutation score differs significantly
requires only fixed coverage between pairs of test suites.

For each real fault, we compared the mutation scores of T̃pass
and T̃fail. Since the differences in mutation score were not nor-
mally distributed (evaluated by the Kolmogorov-Smirnov test), a
non-parametric statistical test was required. Using the Wilcoxon
signed-rank test, we tested whether the mutation scores of T̃fail are
significantly higher than the mutation scores of T̃pass, independently
of code coverage. Additionally, we measured the Â12 effect sizes
for the mutation score differences. Section 3.3 discusses the results.

3. RESULTS
Section 2 described our methodology and analyses. This section

answers the posed research questions. Recall that we used 357 real
faults, 480 test suite pairs 〈Tpass,Tfail〉 made up of developer-written
tests, and 35,141 automatically-generated test suites which may
(T̃fail) or may not (T̃pass) detect a real fault.

3.1 Are Real Faults Coupled to Mutants Genera-
ted by Commonly Used Mutation Operators?

Considering all test suite pairs 〈Tpass,Tfail〉, the mutation score
of Tfail increased compared to Tpass for 362 out of 480 pairs (75%).
Statement coverage increased for only 222 out of 480 pairs (46%).

The mutation score of Tfail increased for 153 out of 258 pairs
(59%) for which statement coverage did not increase. The mutation
score of Tfail increased for 209 out of 222 pairs (94%) for which
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Figure 5: Effect of triggering tests on mutant detection.
The bars represent 480 triggering tests. 258 triggering tests did not increase
statement coverage (unchanged), and each one detects 2 new mutants on
average. 222 triggering tests increased statement coverage, and each one
detects 28 new mutants on average.

statement coverage increased. The Chi-square test showed a signifi-
cant association between mutation score increased and statement
coverage increased (χ2(1) = 78.13,N = 480, p < 0.001), hence
we considered the influence of statement coverage throughout our
analyses. In contrast, there was no significant association between
mutation score increased and test added.

In addition to determining whether the mutation score increased,
we also measured the sensitivity of the mutation score with respect
to the detection of a single real fault, i.e., the number of mutants
additionally detected by the triggering test. Figure 5 visualizes the
number of additionally detected mutants when coverage did not
increase (unchanged) and when it did. For triggering tests that did
not increase statement coverage (black bars), two characteristics can
be observed. First, 40% of these triggering tests did not detect any
additional mutants. Second, 45% of these triggering tests detected
only 1–3 additional mutants, suggesting that the number of mutants
that are coupled to a real fault is small when accounting for the
conflating effects of code coverage.

Figure 5 also illustrates these conflating effects of code coverage
on the mutation score: 35% of triggering tests that increased state-
ment coverage (gray bars) detected 10 or more additional mutants.
In contrast, this ratio was only 3% for triggering tests that did not
increase statement coverage.

We also investigated the underlying mutation operators of the mu-
tants that are coupled to real faults when statement coverage did not
increase. We found that real faults were more often coupled to mu-
tants generated by the conditional operator replacement, relational
operator replacement, and statement deletion mutation operators.
A possible explanation is that some of these mutants cannot be de-
tected by tests that only satisfy statement coverage. Conditional and
relational operator replacement mutants are frequently generated
within conditional statements, and numerous statement deletion mu-
tants only omit side effects — detecting those mutants requires more
thorough testing. None of these three mutation operators is known
to generate a disproportionate number of equivalent mutants [40],
hence they should always be employed during mutation analysis.

73% of real faults are coupled to the mutants generated by
commonly used mutation operators. When controlling for code
coverage, on average 2 mutants are coupled to a single real
fault, and the conditional operator replacement, relational
operator replacement, and statement deletion mutants are more
often coupled to real faults than other mutants.



Table 4: Number of real faults not coupled to mutants gener-
ated by commonly used mutation operators.
Numbers categorized by reason: weak implementation of a mutation opera-
tor, missing mutation operator, or no appropriate mutation operator exists.

Weak Missing No such Totaloperator operator operator

Chart 5 1 2 8
Closure 11 2 18 31
Math 4 4 30 38
Time 2 0 5 7
Lang 3 0 8 11

Total 25 7 63 95

3.2 What Types of Real Faults Are Not Coupled
to Mutants?

For 95 out of 357 real faults (27%), none of the triggering tests
detected any additional mutants. We manually reviewed each such
fault to investigate whether this indicates a general limitation of mu-
tation analysis. Table 4 summarizes the results, which fell into three
categories: cases where a mutation operator should be strengthened,
cases where a new mutation operator should be introduced, and
cases where no obvious mutation operator can generate mutants that
are coupled to the real fault. In the latter case, results derived from
mutation analysis do not generalize to those real faults.

Real faults requiring stronger mutation operators (25)
• Statement deletion (12): The statement deletion operator

is usually not implemented for statements that manipulate
the control flow. We surmise that this is due to technical
challenges in the context of Java — removing return or
break/continue statements changes the control flow and may
lead to uninitialized variables or unreachable code errors.
Figure 6a gives an example.
• Argument swapping (6): Arguments to a method call that

have the same type can be swapped without causing type-
checking errors. Argument swapping represents a special
case of swapping identifiers, which is not a commonly-used
mutation operator [29]. Figure 6b shows an example.
• Argument omission (5): Method overloading is error-prone

when two methods differ in one extra argument — a developer
might inadvertently call the method that requires fewer argu-
ments. Figure 6c gives an example. Generating mutants for
this type of fault requires a generalization of a suggested class-
based mutation operator, which addresses method overloading
to a certain extent [25].
• Similar library method called (2): Existing mutation operators

replace one method call by another only for calls to getter
and setter methods. It would be both unfeasible and largely
unproductive to replace every method call with every possible
alternative that type-checks. Nonetheless, the method call
replacement operator should be extended to substitute calls to
methods with related semantics — in particular library method
calls for string operations. Figure 6d shows an example in
which the fault is caused by using the wrong one of two
similar library methods (indexOf instead of lastIndexOf).

Real faults requiring new mutation operators (7)
• Omit chaining method call (4): A developer might forget to

call a method whose return type is equal to (or a subtype of)
its argument type. Figure 6e gives an example in which a
string needs to be escaped. A new mutation operator could

}
+ return false;

}
case 4: {

char ch = str.charAt(0);

(a) Lang-365 fix

- Partial newPartial = new Partial(iChronology ,
newTypes , newValues);

+ Partial newPartial = new Partial(newTypes ,
newValues , iChronology);

(b) Time-88 fix

- return solve(min, max);
+ return solve(f, min, max);

(c) Math-369 fix

- int indexOfDot = namespace.indexOf(’.’);
+ int indexOfDot = namespace.lastIndexOf(’.’);

(d) Closure-747 fix

- return ... + toolTipText + ...;
+ return ... + ImageMapUtilities.htmlEscape(

toolTipText) + ...;

(e) Chart-591 fix

- return chromosomes.iterator();
+ return getChromosomes().iterator();

(f) Math-779 fix

- FastMath.pow(2 * FastMath.PI, -dim / 2)
+ FastMath.pow(2 * FastMath.PI, -0.5 * dim)

(g) Math-929 fix

Figure 6: Snippets of real faults that require stronger or new
mutation operators.

replace such a method call with its argument, provided that
the mutated code type-checks.
• Direct access of field (2): When a class includes non-trivial

getter or setter methods for a field (e.g., further side effects
or post-processing), an object that accesses the field directly
might cause an error. Figure 6f shows an example in which
post-processing of the field chromosomes is required before
the method iterator() should be invoked. A new mutation
operator could replace calls to non-trivial getter and setter
methods with a direct access to the field.
• Type conversions (1): Wrong assumptions about implicit type

conversions and missing casts in arithmetic expressions can
cause unexpected behavior. Figure 6g shows an example
where the division should be performed on floating point
numbers rather than integers (the replacement of the divi-
sion by multiplication is unrelated to the real fault). A new
mutation operator could replace a floating-point constant by
an exact integer equivalent (e.g., replace 2.0 by 2), remove
explicit casts, or manipulate operator precedence.

Real faults not coupled to mutants (63)
• Algorithm modification or simplification (37): Most of the real

faults not coupled to mutants were due to incorrect algorithms.
The bug fix was to re-implement or modify the algorithm.
• Code deletion (7): Faults caused by extra code that has to

be deleted are not coupled to mutants. A bug fix that only
removes special handling code also falls into this category —
Figure 7a gives an example.



• Similar method called (5): Another common mistake is call-
ing a wrong but related method within the program, which
might either return wrong data or omit side-effects. Figure 7b
shows an example of calling a wrong method. Note that this
type of fault can be represented by mutants for well-known
library methods. However, without deeper knowledge about
the relation between methods in a program, replacing every
identifier and method call with all alternatives would result in
an unmanageable number of mutants.
• Context sensitivity (4): Mutation analysis is context insensi-

tive, while bugs can be context sensitive. Suppose the access
of a field that might be null is extracted to a utility method that
includes a null check. A developer might forget to replace an
instance of the field access with a call to this utility method.
This rather subtle fault cannot be represented with mutants
since it would require inlining the utility method (without
the null check) for every call. Figure 7c gives an example
of this type of fault. The fault is that this.startData might
be null — this condition is checked in getCategoryCount().
However, other tests directly or indirectly detect all mutants
in getCategoryCount(), hence a test that exposes the fault does
not detect any additional mutants.
• Violation of pre/post conditions or invariants (3): Some real

faults were caused by the misuse of libraries. For example, the
Java library makes assumptions about the hashCode and equals

methods of objects that are used as keys to a HashMap. Yet, a
violation of this assumption cannot be generally simulated
with mutants. Figure 7d gives an example of such a fault.
• Numerical analysis errors (4): Real faults caused by over-

flows, underflows, and improper handling of NaN values are
difficult to simulate with mutants, and hence also represent
a general limitation. Figure 7e shows an example of a non-
trivial case of this type of fault.
• Specific literal replacements (3): Literal replacement is a

commonly used mutation operator that replaces a literal with
a well-defined default (e.g., an integer with 0 or a string with
the empty string). However, the real fault might only be
exposed with a specific replacement. For example, a map
might contain a wrong value that is only accessible with a
specific key. The literal replacement operator cannot generally
simulate such a specific replacement. Figure 7f demonstrates
an example that involves Unicode characters.

27% of real faults are not coupled to the mutants generated by
commonly used mutation operators. The set of commonly used
mutation operators should be enhanced. However, 17% of real
faults, mostly involving algorithmic changes or code deletion,
are not coupled to any mutants.

3.3 Is Mutant Detection Correlated with Real
Fault Detection?

Section 3.1 provided evidence that mutants and real faults are
coupled, but the question remains whether a test suite’s mutation
score is correlated with its real fault detection rate and whether
mutation score is a good predictor of fault-finding effectiveness.

Figure 8 summarizes the point-biserial and rank-biserial correla-
tion coefficients between the mutation score and real fault detection
rate for each subject program. Both correlation coefficients lead to
the same conclusion: the correlation is positive, usually strong or
moderate, indicating that mutation score is indeed correlated with
real fault detection. Unsurprisingly, real faults that are not cou-
pled to mutants show a negligible or even negative correlation. For
reference Figure 8 also includes the results for statement coverage.

if (childType.isDict()) {
...

- } else if (n.getJSType != null &&
- parent.isAssign()) {
- return;

} ...

(a) Closure-810 fix

- return getPct((Comparable <?>) v);
+ return getCumPct((Comparable <?>) v);

(b) Math-337 fix

- if (categoryKeys.length != this.startData[0].
length)

+ if (categoryKeys.length != getCategoryCount())

(c) Chart-834 fix

- lookupMap = new HashMap <CharSequence ,
CharSequence >();

+ lookupMap = new HashMap <String ,CharSequence >();

(d) Lang-882 fixa

aThe result of comparing two CharSequence objects is undefined —
the bug fix uses String to alleviate this issue.

- if (u * v == 0)
+ if ((u == 0) || (v == 0))

(e) Math-238 fix

- {"\u00CB", "&Ecirc;"},
+ {"\u00CA", "&Ecirc;"},
+ {"\u00CB", "&Euml;"},

(f) Lang-658 fix
Figure 7: Snippets of real faults not coupled to mutants.
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(a) Point-biserial correlation coefficients.
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(b) Rank-biserial correlation coefficients.

Figure 8: Correlation coefficients for each subject program.
The differences between the correlation coefficients (of mutation score and
statement coverage) are significant (Wilcoxon signed-rank test) for all subject
programs (p < 0.05) except Time (p > 0.2).

The correlation between mutation score and real fault detection
rate is conflated with the influence of statement coverage, but the
Wilcoxon signed-rank test showed that the correlation coefficient
between mutation score and real fault detection rate is significantly
higher than the correlation coefficient between statement coverage
and real fault detection rate for all subject programs except Time.

Further investigating the influence of statement coverage, Table 5
summarizes the comparison of the mutation scores between all test



Table 5: Comparison of mutation scores between T̃pass and T̃fail.
Significant gives the number of real faults for which T̃fail has a significantly
higher mutation score (Wilcoxon signed-rank test, significance level 0.05).

Program Coverage controlled Coverage ignored
Significant Avg. Â12 Significant Avg. Â12

Chart 21/22 0.74 21/22 0.74
Closure 27/32 0.66 30/32 0.71
Math 76/80 0.79 80/80 0.81
Time 18/18 0.81 17/18 0.81
Lang 40/42 0.77 39/42 0.78
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Figure 9: Â12 effect sizes for mutation score differences be-
tween T̃pass and T̃fail for each subject program.

suites T̃pass and T̃fail for each real fault when coverage is controlled
or ignored (not controlled). In addition to the number of real faults
for which the mutation score of T̃fail is significantly higher, the table
shows the average Â12 effect size.

Figure 9 summarizes the Â12 effect sizes. In our scenario the
value of Â12 is an estimation of the probability that a test suite with
a higher real fault detection rate has a higher mutation score as well,
where a value Â12 = 1 means that the mutation score increased for all
observations. An effect size of Â12 ≥ 0.71 is typically interpreted as
large. As expected, the effect size is greater if statement coverage is
ignored (not controlled), but the average effect size remains large for
all subject programs except for Closure when coverage is controlled.

Mutant detection is positively correlated with real fault de-
tection, independently of code coverage. This correlation is
stronger than the correlation between statement coverage and
real fault detection.

3.4 Threats to validity
Our evaluation uses only 5 subject programs, all written in Java.

Other programs might have different characteristics. Moreover, all
5 subject programs are well-tested (see Figure 3). This may limit
the applicability of the results to programs that are not well-tested
(e.g., programs under development). However, we do not feel this
is a major threat, since mutation analysis is typically only used as
an advanced metric. For example, if a test suite covers only 20% of
the source code, developers are likely to focus on improving code
coverage before they focus on improving the mutation score.

Another threat to validity is the possibility of a bias in our fault
sample. We located the real faults by automatically linking bug iden-
tifiers from the bug tracking system to the version control revisions
that resolved them. Previous work suggests that this approach does
not produce an unbiased sample of real faults [2]. In particular, the
authors found that not all faults are mentioned in the bug tracking
system and that not all bug-fixing commits can be identified auto-
matically. In addition, they found that process metrics such as the
experience of the developer affect the likelihood that a link will be
created between the issue and the commit that fixes it. However, this

Table 6: Comparison of studies that explored the relationship
between mutants and real faults.
LOC gives the total number of lines of code of the studied programs that con-
tained real faults. Test suites gives the type of used test suites (gen=generated,
dev=developer-written). Mutation operators refers to: Rc=Replace constants,
Ri=Replace identifiers, Ro=Replace operators, Nbc=Negate branch condi-
tions, Ds=Delete statements, Mbc=Modify branch conditions (note that Mbc
subsumes Nbc [23]).

Real
faults LOC Tests

suites
Mutation
operators

Mutants
evaluated

Coverage
controlled

[8] 12 1,000 gen Rc,Ri,Ro 1% no
[1] 38 5,905 gen Rc,Ro,Nbc,Ds 10% no

[27] 38 5,905 gen Rc,Ri,Ro,Nbc,Ds 10% no

Our
study 357 321,000 gen

dev Rc,Ro,Mbc,Ds 100% yes

threat is unlikely to impact our results for the following two reasons.
First, while we may suffer false negatives (i.e., missed faults), our
dataset is unlikely to be skewed towards certain types of faults, such
as off-by-one errors. Bachmann et al. did not find a relationship
between the type of a fault and the likelihood that the fault is linked
to a commit [2]. Second, recent evidence suggests that the size
of bug datasets influences the accuracy of research studies more
than the bias of bug datasets [33]. The severity of the bias threat is
therefore reduced by the fact that we used a large number of real
faults in our study.

We focused on identifying faults that have an unquestionably
undesirable effect and that can be triggered with an automated test.
It is possible that our results — the correlation between the mutant
detection and real fault detection — do not generalize to faults that
do not match these criteria. However, we argue that reproducibility
of faults is desirable and characteristic of common practice.

A final threat is that we did not use class-level mutation operators,
such as those in Kim and Offutt’s studies [25, 30]. We did not con-
sider them in our study for two reasons. First, class-level mutation
operators are neither implemented in modern Java mutation tools
such as Major, Javalanche, and PIT, nor are they commonly used
in experiments involving mutants. We therefore argue that using
the set of traditional mutation operators improves comparability
and also generalizability — the set of traditional mutation operators
is applicable to many programming languages. In addition, our
qualitative study addresses this threat and shows whether and how
mutation analysis could benefit from adding improved or specialized
versions of class-level mutation operators.

4. RELATED WORK
This section discusses previous studies that explored the relation-

ship between mutants and real faults. It also discusses commonly
used artifacts that provide faulty program versions and research ar-
eas that rely on the existence of a correlation between the mutation
score and real fault detection rate.

4.1 Studies That Explored the Relationship
Between Mutants and Real Faults

We are only aware of three previous studies that investigated the
relationship between mutants and real faults, which are summarized
in Table 6.

Duran and Thévenod-Fosse [8] performed the first such study.
They found that, when their subject program was exercised with
generated test suites, the errors (incorrect internal state) and failures
(incorrect output) produced by mutants were similar to those pro-
duced by real faults. However, this study was limited in scope as it



considered a single 1,000 line C program and evaluated only 1% of
the generated mutants. Finally, this study only used generated test
suites and did not control for code coverage.

Andrews et al. [1] were the next to explore the relationship be-
tween mutants, hand-seeded faults, and real faults. They found
that hand-seeded faults are not a good substitute for real faults, but
that mutants are. In particular, they found that there is no practi-
cally significant difference between the mutation score and the real
fault detection rate. However, this study was also limited in scope
since only one of the eight studied programs (Space) contained
real faults. Space is written in C and contains 5,905 lines of code.
Additionally, the study considered only 10% of the generated mu-
tants, used automatically-generated test cases, and did not control
for code coverage.

Namin and Kakarla [27] later replicated the work of Andrews et
al. [1], used a different mutation testing tool (Proteum), and came
to a different conclusion: they found that the correlation between
the mutation score and the real fault detection rate for Space was
weak. They also extended the work to five Java classes from the
standard library, ranging from 197 to 895 lines of code. Faults were
hand-seeded by graduate students, and the authors found that the
correlation was considerably stronger.

To the best of our knowledge, our study is the first to undertake
experimental evaluation of the relationship between mutants and
real faults at such a scale in terms of number of real faults, number
of mutants, subject program size, subject program diversity, and the
use of developer-written and automatically-generated test suites. In
addition, our study is the first to consider the conflating effects of
code coverage on the mutation score and the first to explore real
faults in object-oriented programs.

4.2 Commonly Used Artifacts
Many research papers use programs from the Siemens bench-

mark suite [15] or the software-artifact infrastructure repository
(SIR) [10] in their evaluation. More precisely, Google Scholar lists
approximately 1,400 papers that used programs from the Siemens
benchmark suite, and SIR’s usage information website [36] lists
more than 500 papers that reference SIR.

The Siemens benchmark suite consists of 7 C programs varying
between 141 and 512 lines of code, and all faults were manually
seeded. The authors described their manually-seeded faults as fol-
lows [15]: “The faults are mostly changes to single lines of code,
but a few involve multiple changes. Many of the faults take the form
of simple mutations or missing code.” Thus, our results likely hold
for these faults, which are essentially mutants.

SIR provides 81 subjects written in Java, C, C++, and C#.
According to the SIR meta data, 36 of these subjects come with real
faults. The median size of those 36 subjects is 120 lines of code,
and 35 of them are written in Java. SIR was not suitable for our
study due to the small program sizes and the absence of compre-
hensive developer-written test suites. Therefore, we developed a
fault database that provides 357 real faults for 5 large open-source
programs, which feature comprehensive test suites [22].

4.3 Software Testing Research Using Mutants
The assumption that mutant detection is well correlated with real

fault detection underpins many studies and techniques in several
areas in software testing research.

Mutation analysis is an integral part of mutation-based test gen-
eration approaches, which automatically generate tests that can
distinguish mutant versions of a program from the original ver-
sion (e.g., [13, 14, 32, 41]). However, studies in this area have not
evaluated whether the generated test suites can detect real faults.

Test suite minimization and prioritization approaches are often
evaluated with mutants to ensure that they do not decrease (or they
minimally decrease) the mutation score of the test suite (e.g., [11,
34]). Prior studies, however, left open the question whether and how
well those approaches maintain real fault effectiveness.

To evaluate an algorithm for fault localization or automatic
program repair, one must know where the faults in the program
are. Mutants are valuable for this reason and commonly used
(e.g., [4, 19]). Yet, it is unclear whether those algorithms evalu-
ated on mutants perform equally well on real faults.

Our qualitative and quantitative studies show to what extent re-
search using mutants generalizes to real faults. Our studies also
reveal inherent limitations of mutation analysis that should be kept
in mind when drawing conclusions based on mutants.

5. CONCLUSION
Mutants are intended to be used as practical replacements for

real faults in software testing research. This is valid only if a test
suite’s mutation score is correlated with its real fault detection rate.
Our study empirically confirms that such a correlation generally
exists by examining 357 real faults on 5 large, open-source pro-
grams using developer-written and automatically-generated tests.
Furthermore, our study shows that the set of commonly used muta-
tion operators [18, 26, 29] should be enhanced, and it also reveals
some inherent limitations of mutation analysis.

Investigating the coupling effect between real faults and the mu-
tants generated by commonly used mutation operators, our results
show that the coupling effect exists for 73% of the real faults, but the
number of mutants coupled to a single real fault is small when code
coverage is controlled. Moreover, conditional operator replacement,
relational operator replacement, and statement deletion mutants are
more often coupled to real faults than other mutants.

By analyzing the 27% of real faults that were not coupled to the
generated mutants, we identified ways to improve mutation analysis
by strengthening or introducing new mutation operators. We also
discovered that 17% of faults are not coupled to any mutants, which
reveals a fundamental limitation of mutation analysis.

Furthermore, our experiments found a statistically significant cor-
relation between mutant detection and real fault detection. This
correlation exists even if code coverage is controlled, and this corre-
lation is stronger than the correlation between statement coverage
and real fault detection.

The results presented in this paper have practical implications for
several areas in software testing. First, the results show that test
suites that detect more mutants have a higher real fault detection
rate, independently of code coverage. This suggests that mutants
can be used as a substitute for real faults when comparing (gener-
ated) test suites. Second, the results also suggest that a test suite’s
mutation score is a better predictor of its real fault detection rate
than code coverage. Thus, the mutation-based approach to automati-
cally generating test suites is promising. Third, test suite selection,
minimization, and prioritization techniques evaluated on mutants
might lead to a reduced real fault detection rate of the test suite,
even if the mutation score does not decrease.
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