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Abstract

In this paper we consider the problem of evaluating one digi-
tal marketing policy (or more generally, a policy for an MDP
with unknown transition and reward functions) using data
collected from the execution of a different policy. We call
this problem off-policy policy evaluation. Existing methods
for off-policy policy evaluation assume that the transition and
reward functions of the MDP are stationary—an assumption
that is typically false, particularly for digital marketing appli-
cations. This means that existing off-policy policy evaluation
methods are reactive to nonstationarity, in that they slowly
correct for changes after they occur. We argue that off-policy
policy evaluation for nonstationary MDPs can be phrased as
a time series prediction problem, which results in predictive
methods that can anticipate changes before they happen. We
therefore propose a synthesis of existing off-policy policy
evaluation methods with existing time series prediction meth-
ods, which we show results in a drastic reduction of mean
squared error when evaluating policies using real digital mar-
keting data set.

Introduction
We assume that the reader is familiar with reinforcement
learning (Sutton and Barto, 1998). In this paper we study the
problem of evaluating a policy for a Markov decision pro-
cess (MDP) with unknown transition and reward functions
using historical data collected from another (usually differ-
ent) policy. We call this problem off-policy policy evaluation
(OPE). Methods for OPE are important because they can tell
a practitioner what to expect if a new policy produced by a
reinforcement learning algorithm were used, without requir-
ing the new policy to actually be used. This is particularly
valuable for high-risk applications where the use of a bad
policy could be costly or dangerous. For example, we fo-
cus on the application of OPE methods to digital marketing
policies, where significant over or under-predictions of per-
formance can be costly.

Several powerful OPE algorithms have been developed
both within the reinforcement learning and bandit commu-
nities (Precup et al., 2000; Dudı́k et al., 2011; Bottou et al.,
2013; Jiang and Li, 2016; Thomas and Brunskill, 2016).
However, these methods assume that the environment is
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stationary—that the transition and reward functions of the
MDP do not change between episodes. There has been in-
creasing concern among practitioners in industry that the
predictions of these OPE methods are invalid because the
environment is really nonstationary.

In this paper we study methods for OPE when the envi-
ronment is nonstationary—when the transition and reward
functions of the MDP can change between episodes. After
providing background and the problem setting, we further
motivate the necessity for such methods using data from a
real problem. We then propose a new approach to off-policy
policy evaluation—phrasing it as a time series prediction
problem. This results in methods that are predictive rather
than reactive. We evaluate one such predictive method us-
ing real data from a digital marketing application and find
that it drastically reduces the mean squared error of predic-
tions relative to existing methods. Moreover, we find that
the primary source of error when using current standard ap-
proaches to evaluate digital marketing policies appears to be
nonstationarity, which highlights the importance of applying
methods that directly mitigate nonstationarity.

Nonstationary Markov Decision Processes
We use the notational standard MDPNv1 (Thomas, 2015)
for MDPs. We consider only finite-horizon MDPs, i.e., we
assume that L is finite. We define a nonstationary MDP to
be an MDP where the transition function, P , and the reward
function, R, change over time. Changes to P and R within
an episode can be modeled by including the time step as
part of the state. However, the standard definition of an MDP
does not allow P and R to change across episodes. To allow
this, we replace the transition function, P , and the reward
function, R, in the definition of an MDP with sequences of
transition and reward functions: (P ι)∞ι=0 and (Rι)∞ι=0. The
transition and reward functions for the ιth episode are then
P ι and Rι. Throughout this paper, we reserve the symbol ι
to denote episode numbers.

The way that the environment changes might depend on
the actions chosen by the agent. For example, if the MDP
models an automobile, then the amount that the tires wear
over time may be impacted by the policy that is used (a pol-
icy that uses the brakes more may wear down the brake pads
faster). So, P ι may depend on actions that are chosen dur-
ing episode ι̂ if ι̂ < ι. To model this, we make each P ι and



Rι a random variable that may depend on events from past
episodes.

So, a nonstationary MDP is a tuple
(S,A,R, (P ι)∞ι=0, (R

ι)∞ι=0, d0, γ), where S,A,R, d0,
and γ are as defined by MDPNv1 for stationary MDPs, and
P ι and Rι are random variables that denote the transition
and reward functions for the ιth episode of the nonstationary
MDP. We write Sιt , A

ι
t, and Rιt to denote the state, action,

and reward at time t during the ιth episode.1 Let

J(π, ι) := E

[
L−1∑
t=0

γtRιt

∣∣∣∣∣π, P ι, Rι
]

be the expected return during the ιth episode if the policy
π is used.2 If the MDP is stationary, then we suppress the
dependencies on ι and write, for example, J(π). Lastly, let
Hι := (Sι0, A

ι
0, R

ι
0, S

ι
1, . . . ) denote the ιth trajectory, or the

history of the ιth episode for alliteration.

Off-Policy Policy Evaluation (OPE)
For conventional OPE, we assume that the environment is
a stationary MDP. Let πe be a policy called the evaluation
policy. We are given historical data, D, which consists of
n ∈ N≥1 trajectories and the policies that generated them:
D := (Hι, πι)n−1ι=0 , where Hι was generated by running the
behavior policy, πι, on the ιth episode. Our goal is to esti-
mate the performance of πe, J(πe), using the historical data,
D.

One popular method for OPE is importance sampling
(Kahn, 1955; Precup, 2000). The importance sampling
estimator of J(πe) produced from a trajectory, H :=
(S0, A0, R0, S1, . . . ), that was generated by the policy πb
is given by:

IS(πe|H,πb) :=
L−1∏
t=0

πe(At|St)
πb(At|St)

L−1∑
t=0

γtRt.

The IS estimator is an unbiased estimator of J(πe). That is,
E[IS(πe|H,πb)|H ∼ πb] = J(πb), where H ∼ πb denotes
that the trajectory H was generated using the behavior pol-
icy πb.

More advanced methods exist for OPE, including
weighted and per-decision importance sampling (Precup,
2000), as well as variants that use control variates (Jiang and
Li, 2016). The question of which method of OPE to use as
a subroutine for the methods that we propose is tangent to
the message of this work. We therefore write OPE(πe, ι|D)
to denote any estimate of J(πe, ι) created from D, and we
make no assumptions about the veracity of this estimate. For

1Although the reward function, Rι, is denoted by symbols sim-
ilar to the reward Rιt, it should be clear from context which is in-
tended. Furthermore, rewards always have subscripts, and the re-
ward function never has a subscript.

2To avoid overly-complex notation, we suppress the depen-
dency of J (and later other terms) on the particular nonstationary
MDP that we are considering. Furthermore, notice that J(π, ι) is a
random variable until P ι and Rι are sampled.

example, one might select OPE(πe, ι|D) := IS(πe|Hι, πι)
in order to use ordinary importance sampling, or

OPE(πe, ι|D) :=
IS(πe|Hι, πι)

1
n

∑n−1
ι̂=0

∏L−1
t=0

πe(Aι̂t|Sι̂t)
πb(Aι̂t|Sι̂t)

,

to use weighted importance sampling (Precup, 2000). Notice
that the weighted importance sampling estimate of J(πe, ι)
depends on all trajectories inD, not justHι, and so we make
OPE take as input D rather than just a single trajectory, H .

Despite the fact that nearly all real-world problems are
nonstationary, the current standard method used for off-
policy evaluation assumes that the environment is station-
ary. The standard approach is simple: the estimate, Ĵ(π, n)
of J(π, n), the performance during the next episode, is the
(sometimes weighted) average the OPE estimates from each
trajectory:

Ĵ(π, n) :=
1

n

n−1∑
ι=0

OPE(πe, ι|D). (1)

Variants of this scheme have recently been proposed for dig-
ital marketing applications (Thomas et al., 2015; Jiang and
Li, 2016), and have been used in a wide variety of appli-
cation areas including state-space models (finance, signal-
tracking), evolutionary models (molecular physics and biol-
ogy, genetics) and others (Liu, 2001, Section 3).

The problem with this standard scheme is that it produces
reactive behavior. That is, consider what happens in a par-
ticularly simple example: if J(πe, ι) is a linear function of
ι. For example, let J(πe, ι) have a negative slope, so that
the performance of πe decreases as more episodes pass. The
simple scheme in (1) will estimate J(πe, ι) using the mean
estimate from previous episodes, which will tend to be too
large, as depicted in Figure 1. In the next section we show
how we can formalize the problem of off-policy policy eval-
uation for nonstationary Markov decision problems before
proposing our new predictive approach.

Nonstationary Off-Policy Policy Evaluation
Nonstationary Off-Policy Policy Evaluation (NOPE) is sim-
ply OPE for nonstationary MDPs. In this setting, the goal is
to use D to estimate J(πe, n)—the performance of πe dur-
ing the next episode.

Notice that we have not made assumptions about how the
transition and reward functions of the nonstationary MDP
change. For some applications, they may drift slowly, mak-
ing J(πe, ι) change slowly with ι. For example, this sort
of drift may occur due to mechanical wear in a robot. For
other applications, J(πe, ι) may be fixed for some number
of episodes, and then make a large jump. For example, this
sort of jump may occur in digital marketing applications
(Theocharous et al., 2015) due to media coverage of a rel-
evant topic rapidly changing public opinion of a product.
In yet other applications, the environment may include both
large jumps and smooth drift.

Notice that NOPE can range from trivial to completely
intractable. If the MDP has few states and actions, changes



Episode number, 

Figure 1: This illustration depicts an example of how the
existing standard OPE methods produce reactive behavior,
and is hand-drawn to provide intuition (often the variance
of the black points will be much higher). Here the dotted
blue line depicts J(πe, ι) for various ι. The black dots denote
OPE(πe, ι|D) for various ι. Notice that each OPE(πe, ι|D)
is a decent estimate of J(πe, ι), which changes with ι. Our
goal is to estimate J(πe, n)—the performance of the policy
during the next episode. That is, our goal is to predict the ver-
tical position of the green circle. However, by averaging the
OPE estimates, we get the red circle, which is a reasonable
prediction of performance in the past. As more data arrives
(n increases) the predictions will decrease, but will always
remain behind the target value of J(πe, n).

slowly between episodes, and the evaluation policy is sim-
ilar to the behavior policy, then we should be able to get
accurate off-policy estimates. On the other extreme, if for
each episode the MDP’s transition and reward functions are
drawn randomly (or adversarially) from a wide distribution,
then producing accurate estimates of J(πe, n) may be in-
tractable.

Motivating Example
Digital marketing is a major use of reinforcement learning
algorithms in industry. When a person visits the website of
a company, she is often shown a list of current promotions.
In order for the display of these promotions to be effective,
it must be properly targeted based on the known information
about the person (e.g., her interests, past travel behavior, or
income). The problem of automatically deciding which pro-
motion (sometimes called a campaign) to show to the visitor
of a website is typically treated as a bandit problem (Li et al.,
2010) or a reinforcement learning problem (Theocharous
et al., 2015).

Each visitor of the website corresponds to an episode, the
known information about the visitor is the state or obser-
vation, and the decision of which promotions to show is an
action. If the visitor clicks on a promotion, then the system
is provided with a reward of +1, and if the visitor does not
click, then the system is provided with a reward of 0. Each
trajectory corresponds to one visit by one user in the ban-
dit setting, and each trajectory corresponds to one user’s se-
quence of interactions with the website in the reinforcement
learning setting.

The system’s goal is to determine how to select actions
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Figure 2: Moving average plot of OPE(πe, ι|D) for various
ι, on the real-world digital marketing data. This data spans
three years. Notice that the performance of the policy climbs
significantly over time, so naı̈ve predictions will tend to be
too low.

(select promotions to display) based on the available obser-
vations (the known information of the visitor) such that the
reward is maximized (the number of clicks is maximized). In
the bandit setting J(πe, ι) is the expected number of clicks
per visit, called the click through rate (CTR), while in the
reinforcement learning setting it is the expected number of
clicks per user, called the life-time value (LTV). We con-
sider a setup that differs slightly from the standard problem
formulation: we measure performance in terms of the num-
ber of actual orders, rather than clicks, since a click that does
not result in an order (sale) is not inherently beneficial. We
refer to this metric as the orders per visit (OPV) metric.

In order to determine how much of a problem nonstation-
arity really is, we collected three years of data from the web-
site of one of Adobe’s digital marketing solutions customers.
For simplicity here, we selected the evaluation policy to be
equal to the behavior policy, so that all of the importance
weights are one. Figure 2 summarizes the resulting data.

In this data it is evident that there is significant
nonstationarity—the OPV varied drastically over the span
of the plot. This is also not just an artifact of high variance:
using Student’s t-test we can conclude that the expected re-
turn during the first 500 and second 500 days was different
with p < 0.005. This is compelling evidence that we cannot
ignore nonstationarity in our customers’ data when provid-
ing predictions of the expected future performance of our
digital marketing algorithms, and is compelling real-world
motivation for developing NOPE algorithms.

Predictive Off-Policy Evaluation using Time
Series Methods

The primary contribution of this paper is an observation that,
in retrospect, is obvious: NOPE is a time series prediction
problem, and is particularly important for digital marketing.
Let xι = ι and Yι = OPE(πe, ι|D) for ι ∈ {1, . . . , n− 1}.
This makes x an array of n times (each episode corresponds
to one unit of time) and y an array of the corresponding n
observations. Our goal is to predict the expected value of the



next point in this time series, which will occur at xn = n.
Pseudocode for this time series prediction (TSP) approach
is given in Algorithm 1.

Algorithm 1 Time Series Prediction (TSP)

1: Input: Evaluation policy, πe, historical data, D :=
(Hι, πι)n−1ι=0 , and a time-series prediction algorithm
(and its hyper-parameters).

2: Create arrays x and y, both of length n.
3: for ι = 0 to n− 1 do
4: xι ← ι
5: yι ← OPE(πe, ι|D)
6: end for
7: Train a time-series prediction algorithm on x, y.
8: return the time-series prediction algorithm’s prediction

for time n.

When considering using time-series prediction methods
for off-policy policy evaluation, it is important that we es-
tablish that the underlying process is actually nonstationary.
One popular method for determining whether a process is
stationary or nonstationary is to report the sample autocor-
relation function (ACF):

ACFh :=
E[(Xt+h − µ)(Xt − µ)]

E[(Xt − µ)2]
,

where h is a parameter called the lag (which is selected by
the researcher),Xt is the time series, and µ is the mean of the
time series. For a stationary time series, the ACF will drop to
zero relatively quickly, while the ACF of nonstationary data
decreases slowly.

ARIMA models are models of time series data that can
capture many different sources of nonstationarity. The time
series prediction algorithm that we use in our experiments
is the R forecast package for fitting ARIMA models, as de-
scribed by Hyndman and Khandakar (2008).

Empirical Studies
In this section we show that, despite the lack of theoretical
results about using TSP for NOPE, it performs remarkably
well on real data. Because our experiments use real-world
data, we do not know ground truth—we have OPE(πe, ι|D)
for a series of ι, but we do not know J(πe, ι) for any ι. This
makes evaluating our methods challenging—we cannot, for
example, compute the true error or mean squared error of
estimates. We therefore estimate the mean squared error di-
rectly from the data as follows.

For each ι ∈ {1, . . . , n − 1} we compute each method’s
output, ŷι, given all of the previous data, Dι−1 :=
(H ι̂, πι̂)ι−1ι̂=0. That is, Dι−1 denotes the data set D, but trun-
cated so that it only includes the first ι episodes of data—
episodes 0 through ι − 1. We then compute the observed
next value, yι = OPE(πe, ι|Dι) and the TSP prediction, ŷ,
computed using Dι−1. From these, we compute the squared
error, (ŷι−yι)2, and we report the (root) mean squared error
over all ι. We perform this experiment using both the current
standard approach defined in (1) and Algorithm 1, TSP.

Notice that this scheme is not perfect. Even if an estima-
tor perfectly predicts J(πe, ι) for every ι, it will be reported
as having non-zero mean squared error. This is due to the
high variance of OPE (which is used to compute the target
values, y), which gets conflated with the variance of ŷ in our
estimate of mean squared error. Although this means that the
mean squared errors that we report are not good estimates of
the mean squared error of the estimators, ŷ, the variance-
conflation problem impacts all methods nearly equally. So,
in the absence of ground truth knowledge, the reported mean
squared error values are a reasonable measure of how accu-
rate the methods are relative to each other.

Nonstationary Mountain Car
For this domain we modified the canonical mountain car
domain (Sutton and Barto, 1998) to include nonstationar-
ity. Specifically, we simulated mechanical wear (e.g., on the
tire treads) by decreasing the car’s acceleration with each
episode. Even more specifically, in the update equation for
mountain car, we multiplied the acceleration caused by the
agent’s action by a decay term:

δ = 1.0−
( ι

1.8m

)2
,

where m is the maximum number of episodes, 20,000. We
used a near-random behavior policy and a mediocre evalua-
tion policy (an optimal policy for the ordinary mountain car
domain has an expected return around −150). A moving-
average plot of the resulting data is provided in Figure 3.
Notice that a moving average with k = 1 is just a direct plot
of OPE(πe, ι|D) for all ι, which has high variance. For this
domain, and all others, we used ordinary importance sam-
pling for OPE.

Figure 3: Moving average plot of the importance weighted
returns (the OPE estimates) for the nonstationary mountain
car domain, where k denotes the number of points used by
the moving average.

Real-World Data
The next domain that we consider is digital marketing, as
described previously, using data from the websites of three
large companies. We refer to these three data sets as DM1,
DM2, and DM3, which use a mixture of on and off-policy



data. As we will see, DM1 has large amounts of nonstation-
arity, DM2 has mild nonstationarity, and DM3 has little non-
stationarity. Still, across all three domains, we find that TSP
produces lower (root) mean squared errors.

Results
We applied our TSP algorithm for NOPE, described in Algo-
rithm 1, to the nonstationary mountain car and digital mar-
keting data sets. The following plots all take the same form:
the first plots for each domain are autocorrelation plots that
show whether or not there appears to be nonstationarity in
the data. As a rule of thumb, if the ACF values are within
the dotted blue lines, then there is not sufficient evidence to
conclude that there is nonstationarity. However, if the ACF
values lie outside the dotted blue lines, it suggests that there
is nonstationarity.

The subsequent plots for each domain depict the expected
return (which is the expected OPV for the digital market-
ing data sets) as predicted by several different methods.
The black curves are the target values—the moving aver-
age of the OPE estimates over a small time interval. For
each episode number, our goal is to compute the value of
the black curve given all of the previous values of the black
curve. The blue curve does this using the standard method,
which simply averages the previous black points. The red
curve is our newly proposed method, which uses ARIMA to
predict the next point on the black curve—to predict the per-
formance of the evaluation policy during the next episode.
Above some of the plots we report the sample root mean
squared error (RMSE) for our method, tsp, and the standard
method, standard.

First consider the results on the mountain car domain,
which are provided in Figure 4. Notice that the autocorre-
lation plot suggests that there is nonstationarity—decaying
the acceleration of the car does impact the performance of
the evaluation policy. Notice that the black curve (the per-
formance of the behavior policy) decreases over time from
around −400 to around −650. The predictions of the stan-
dard method (blue curve) lag behind the true values due to
their reactive nature, while our approach (red curve) accu-
rately tracks the target values. This is further verified by
the sample RMSE values: our method achieves a RMSE of
17.201 while the standard only achieves a RMSE of 68.152.
This is compelling evidence that treating the problem as
a time series prediction problem yields significantly better
predictions than the standard approach.

Next consider the results on the digital marketing data
sets. As shown in Figure 5, DM1 shows significant non-
stationarity, which TSP handles much better than the stan-
dard method. The sample RMSE for TSP on DM1 is
0.00334 while the sample RMSE for the standard approach
is 0.006811. As shown in 6, DM2 shows mild nonstationar-
ity, which TSP is still able to leverage to get an RMSE of
0.000248, which is much lower than the RMSE of the stan-
dard approach, 0.00029. Finally, as shown in Figure 7, in
DM3, there is little nonstationarity, and both approaches per-
form similarly. This shows that using TSP methods does not
tend to be detrimental when nonstationarity is not present.

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

Lag

A
C

F

Series: ns.mc

5 10 15 20

Episode number

R
ev

en
ue

0 50 100 150 200

−
65

0
−

60
0

−
55

0
−

50
0

−
45

0
−

40
0

ns−mc RMSE: tsp= 17.201, standard=68.152

tsp

standard

Figure 4: Results on the nonstationary mountain car domain.
The left plot shows the autocorellation for the time series,
where it is obvious the signal is nonstationary. The right plot
compares the TSP approach with the standard. TSP outper-
forms the standard approach, since the series is nonstation-
ary. The time series was aggregated at every 100 observa-
tions.

Conclusion
In summary, we have proposed a new approach to off-policy
policy evaluation for applications where the environment
may be nonstationary. Our entire contribution can be sum-
marized by the following statement: off-policy policy eval-
uation for nonstationary MDPs, and particularly for dig-
ital marketing applications, should be treated as a time
series prediction problem. We showed empirically, using
real and synthetic data, that an off-the-shelf time series pre-
diction algorithm (ARIMA) can produce more accurate es-
timates of the performance of an evaluation policy from his-
torical data than the existing standard approach.

It is our hope that this simple observation will encourage
other practitioners to apply time series methods to off-policy
policy evaluation problems, and theoreticians to develop ad-
ditional theory that brings together these two previously dis-
parate fields to produce new and more reliable methods.
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Figure 5: Results using the DM1 data set. The third plot is
the same as the second, but zoomed in on approximately the
last 200 days.
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Figure 6: Results using the DM2 data set. The third plot is
the same as the second, but zoomed in on the first 200 days.
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