SGX-Step: A Practical Attack Framework for Precise
Enclave Execution Control

Jo Van Bulck
imec-DistriNet, KU Leuven
jo.vanbulck@cs.kuleuven.be

Abstract

Protected module architectures such as Intel SGX hold the
promise of protecting sensitive computations from a poten-
tially compromised operating system. Recent research con-
vincingly demonstrated, however, that SGX’s strengthened
adversary model also gives rise to to a new class of powerful,
low-noise side-channel attacks leveraging first-rate control
over hardware. These attacks commonly rely on frequent
enclave preemptions to obtain fine-grained side-channel ob-
servations. A maximal temporal resolution is achieved when
the victim state is measured after every instruction. Current
state-of-the-art enclave execution control schemes, however,
do not generally achieve such instruction-level granularity.

This paper presents SGX-Step, an open-source Linux ker-
nel framework that allows an untrusted host process to
configure APIC timer interrupts and track page table en-
tries directly from user space. We contribute and evaluate
an improved approach to single-step enclaved execution at
instruction-level granularity, and we show how SGX-Step en-
ables several new or improved attacks. Finally, we discuss its
implications for the design of effective defense mechanisms.

CCS Concepts - Security and privacy — Side-channel
analysis and countermeasures;

Keywords Intel SGX, Controlled-Channel, Interrupt

1 Introduction

Today’s computing platforms rely on privileged system soft-
ware to separate applications, and to govern the interac-
tions between them. Commodity monolithic Operating Sys-
tem (OS) kernels, however, consist of millions of lines of code
written in unsafe languages, exposed to both logical bugs
and low-level software vulnerabilities. In response to these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SysTEX’17, October 2017, Shanghai, China

© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.

ACM ISBN 978-1-4503-5097-6/17/10...$15.00
https://doi.org/10.1145/3152701.3152706

Frank Piessens
imec-DistriNet, KU Leuven
frank.piessens@cs.kuleuven.be

Raoul Strackx
imec-DistriNet, KU Leuven
raoul.strackx@cs.kuleuven.be

concerns, the past years have seen a significant research ef-
fort 3, 6, 9] on Protected Module Architectures (PMAs) that
support isolated execution of security-sensitive application
components or enclaves with a minimal Trusted Computing
Base (TCB). These proposals have in common that they en-
force security primitives directly in hardware, or in a small
hypervisor, so as to prevent the untrusted OS from access-
ing enclaved code or data directly, while still leaving it in
charge of shared platform resources such as system memory
or CPU time. With the arrival of Intel’s Software Guard eX-
tensions (SGX) [6, 7], such strong hardware-enforced trusted
computing guarantees are now available on mainstream con-
sumer devices.

Recent research demonstrated, however, that the increased
capabilities of a privileged PMA attacker allow her to con-
struct high-resolution, low-noise channels to spy on enclaved
execution. Specifically, the past months have seen a steady
stream of kernel-level SGX attacks exploiting information
leakage from page tables [13, 15], CPU caches [4, 10], or
branch prediction units [8]. These attacks commonly exploit
the OS’s control over timer devices to gain fine-grained side-
channel observations from frequent enclave preemptions.
As such, the precision at which one can interrupt a victim
enclave, determines the temporal resolution of the attack.

This paper shows that enclaved execution can be reliably
monitored at a maximal temporal resolution (i.e., instruction
per instruction). Specifically, we present and evaluate SGX-
Step, which is the first framework of its kind to achieve true
single-stepping for arbitrary enclave programs. We further-
more lower the bar for enclave preemption attacks consider-
ably by exporting user space memory mappings for the local
APIC timer device and enclave page tables. As part of our
evaluation, we defeat a recently proposed branch prediction
defense [8], demonstrating SGX-Step’s enhanced precision
over previous proposals. Summarized, we make the follow-
ing contributions:

e We show that enclaved execution can be precisely
single-stepped using a novel APIC timer manipulation.

e We implement SGX-Step as an open-source! Linux
kernel driver and runtime library, and explain how it
improves the temporal resolution of existing attacks.

e We evaluate our approach on two different SGX pro-
cessors, and provide evidence that SGX-Step enables
new attacks that were previously deemed infeasible.

Uhttps://github.com/jovanbulck/sgx-step

https://doi.org/10.1145/3152701.3152706
https://github.com/jovanbulck/sgx-step

SysTEX’17, October 2017, Shanghai, China

2 Background and Related Work
2.1 Attacker Model and Intel SGX

Ongoing concerns on protecting sensitive data from soft-
ware running at higher privilege levels have led to the Soft-
ware Guard eXtensions (SGX) [6, 7] included in recent Intel
x86 processors. SGX enables hardware-enforced isolation
and attestation of security-critical code in enclaves, embed-
ded in the virtual address space of a conventional OS pro-
cess. Legacy page tables are left under explicit control of
the untrusted OS, but the processor’s Memory Management
Unit (MMU) enforces that enclave-private memory can never
be directly accessed from outside. Hardware-level cryptog-
raphy furthermore allows the untrusted OS to initialize en-
claves, and swap in/out protected pages to untrusted storage.

Enclave code is restricted to user mode, and has access
to all its protected pages, as well as to the unprotected part
of the application’s address space. Dedicated CPU instruc-
tions switch the processor in or out of enclave mode. EENTER
transfers control from the unprotected application context
to a predetermined location inside the enclave, and the EEXIT
instruction can be used to exit an enclave programmatically.
Alternatively, in case of a fault or external interrupt, the
processor executes an Asynchronous Enclave Exit (AEX)
procedure that saves the execution context securely in a
preallocated State Save Area (SSA) inside the enclave, and
replaces the CPU registers with a synthetic state to avoid
direct information leakage to the untrusted Interrupt Service
Routine (ISR). The AEX procedure also takes care of pushing
a predetermined Asynchronous Exit Pointer (AEP) on the
unprotected call stack, so as to allow the OS interrupt han-
dler to return transparently to unprotected trampoline code
outside the enclave. From this point, an interrupted enclave
can be continued by means of the ERESUME instruction.

To aid enclave development, SGX differentiates between
debug and production enclaves, where private memory of
the former is accessible from outside via special ring-0 EDB-
GRD/EDBGWR instructions. Debug operations are ignored for
production enclaves, however, such that they are provided
with strong isolation of code and data memory. SGX further-
more includes measures against obvious interference with
production enclaves. Specifically, in enclave mode, the pro-
cessor ignores performance counters, hardware breakpoints,
and the single-step trap flag (RFLAGS.TF).

2.2 Enclave Preemption Attacks

Given SGX’s strong adversary model, several recent studies
have looked into its side-channel attack surface. Given the
scope of this paper, we focus exclusively on attacks that
preempt the enclaved execution, but it is worth noting that
some recent L1 cache attacks [1, 11] can be mounted from a
co-resident logical processor, without interrupting the victim
enclave. Enclave preemption attacks on the other hand either
leverage page faults or interrupts to inspect enclave behavior.

Jo Van Bulck, Frank Piessens, and Raoul Strackx

Fault-Driven Attacks. Seminal work by Xu et al. [15] first
showed how carefully revoking access rights on enclave
pages and observing the associated page faults, allows an
adversarial OS to extract large amounts of sensitive data (full
text, and images) from SGX enclaves. Subsequent work [14]
has leveraged page faults as an enclave execution control
technique to more easily exploit thread synchronization bugs
in enclaves. Since page faults are triggered deterministically
by the hardware, fault-driven attacks generally suffer from
very little to no noise. A fundamental limitation of this chan-
nel, however, concerns the relatively coarse-grained (4 KB)
granularity at which page faults reveal memory accesses.
Moreover, in order for the enclaved execution to continue,
access rights on the faulting pages should be restored.

Interrupt-Driven Attacks. More recent SGX attacks im-
prove over the spatial resolution of the page fault channel
by exploiting information leakage at a cache line granularity.
Not all, but a significant fraction of these attacks suspend
the victim enclave to obtain precise side-channel observa-
tions. Earlier proposals such as CacheZoom [10] rely on a
rather coarse-grained kernel patch to interrupt the victim
enclave more frequently. More recent work by Hahnel et
al. [4] significantly improves the temporal resolution of en-
clave cache attacks by directly configuring the local APIC
timer in kernel space. While their approach approximately
interrupts enclaved execution every three instructions, true
single-stepping is not achieved, since (i) they focus on in-
structions with memory operands only, and (ii) the approach
was implemented and evaluated in a software simulator, leav-
ing intricate microarchitectural interactions with real SGX
hardware fundamentally unclear.

Recent research [8] on branch shadowing attacks demon-
strated that enclave-private control flow can be inferred by
abusing cache collisions in the CPU-internal Branch Target
Buffer (BTB). Such attacks critically rely on the periodic inter-
leaved execution of the victim enclave with carefully aligned
spy shadow code. Lee et al. [8] employ a kernel patch to
achieve a relatively coarse-grained enclave interrupt granu-
larity of about 50 instructions, which can be further improved
to about 5 instructions by disabling the CPU cache hierarchy
entirely (cro.cp). Note however that disabling caching of
course also invalidates aforementioned CPU cache attacks.

Finally, our own previous work [13] on stealthy page table-
based attacks relies on frequent enclave preemptions to mea-
sure page table access patterns. This work also introduced a
highly accurate PTE FLusH+FLUSH technique, where a con-
current spy thread running on another logical core contin-
uously monitors a specific page table entry, and sends an
inter-processor interrupt upon detecting an access. Note
that this approach is distinct from single-stepping in that
the enclaved execution is only preempted when a specific
trigger page was accessed, whereas SGX-Step interrupts each
instruction sequentially.

SGX-Step: A Practical Attack Framework for Precise Enclave Execution Control SysTEX’17, October 2017, Shanghai, China

Enclave

(@ ra

while true do
INST
INST
INST

() AEx

INST
endwh

Kernel

apic_timer_interrupt

(@ ReT

\

> /dev/sgx-step

Figure 1. Framework for single-stepping SGX enclaves.

3 Design and Implementation

Our single-stepping objective is to execute an enclave one
instruction at a time. Note that advanced x86 hardware
debug assistance features such as the single-step trap flag
(RFLAGS.TF) or hardware breakpoints are explicitly suppressed
in enclave mode [6]. Our implementation therefore leverages
the OS’s control over hardware timer devices to emulate this
behavior with frequent enclave interrupts.

APIC Timer Configuration. Every Intel processor comes
with a local Advanced Programmable Interrupt Controller
(APIC) [6] to configure and deliver interrupts destined for
that core. The APIC also contains a timer that can be oper-
ated in one of three modes. In one-shot or periodic mode, the
timer is configured through memory-mapped I/O registers.
Specifically, by writing into an initial-count register, an inter-
nal current-count register can be initialized. The local APIC
decrements the current-count at the CPU’s bus frequency,
divided by the value specified in the divide-configuration
register, and generates an interrupt whenever the current-
count reaches zero. In one-shot mode a single interrupt is
generated, whereas in periodic mode the initial-count is
automatically copied back into the current-count register.
Alternatively, in TSC-deadline mode, an interrupt is gener-
ated when the CPU’s internal timestamp counter reaches
the absolute value specified in a dedicated model-specific
register. This mode is substantially more precise, since the
timestamp counter operates at the processor’s nominal fre-
quency, instead of the much slower external bus frequency.
The Skylake CPUs used in the evaluation for instance run at
a base frequency of 2.5 GHz and 3.4 GHz, whereas the fixed
external bus frequency is only 100 MHz (25/34 times slower).

To facilitate APIC configuration, SGX-Step comes with
a runtime library that creates user space virtual memory
mappings for the physical APIC memory I/O configuration
registers. By writing into the exported memory locations, the
untrusted host process can easily configure the APIC timer
one-shot/periodic interrupt source or trigger inter-processor
interrupts directly from user space. Figure 1 summarizes

the sequence of hardware and software steps when inter-
rupting and resuming an SGX enclave through our frame-
work. @ The local APIC timer interrupt arrives within an
enclaved instruction. 2) The processor executes the AEX pro-
cedure that securely stores execution context in the enclave’s
SSA frame, initializes CPU registers, and vectors to the ker-
nel-level interrupt handler. @ Our /dev/sgx-step loadable
kernel module registered itself in the APIC event call back
list to make sure it is called on every timer interrupt. At this
point, any attack-specific, kernel-level spy code can easily be
plugged in. Furthermore, to enable precise evaluation of our
approach on attacker-controlled debug enclaves, SGX-Step
can optionally be instrumented to retrieve the stored instruc-
tion pointer from the interrupted enclave’s SSA frame using
the EDBGRD instruction. @ The kernel returns to the user
space AEP trampoline. We modified the untrusted runtime of
the official SGX SDK to allow easy registration of a custom
AEP stub. ® At this point, any attack-specific user mode
spy code can again easily be run, before the single-stepping
adversary configures the APIC timer for the next interrupt,
just before executing (6 ERESUME.

Timer Interval Prediction. With our framework in place,
the only remaining challenge is to establish a suitable, plat-
form specific timer interval so as to interrupt the first in-
struction executed by the enclave after ERESUME. The timer
interrupt should not systematically arrive too soon, within
the monolithic ERESUME instruction, as then no progress
would be made (i.e., zero-step). Alternatively, should the in-
terrupt arrive too late after completion of ERESUME, more
than one instruction would be executed (i.e., multi-step). The
single-stepping adversary is therefore required to accurately
predict the duration between the moment the timer is config-
ured and completion of ERESUME. Naturally, due to modern
processor optimizations, execution time prediction becomes
increasingly difficult the more code is actually executed in
the timer interval. In this respect, previous enclave preemp-
tion attempts [4, 8, 10] all configure the APIC timer in kernel
space, whereas enclaves have to be resumed in user mode.
Consequently, these approaches suffer from significant timer
jitter stemming from the considerable amount of code and a
privilege level switch in the interrupt return path.

An important contribution of our framework therefore
is that we drastically cut the amount of code in the timer
interval path by directly configuring the APIC timer from
user space. As a result, SGX-Step reduces the timer config-
uration challenge to prediction of ERESUME execution time,
which we found to be relatively deterministic on our evalua-
tion platforms. Our user-space APIC timer trick only works
for the aforementioned single-shot or periodic timer modes,
however, since TSC deadline configuration requires the priv-
ileged wRMSR instruction. We thus improve timer interval
predictability at the cost of a lower timer frequency. Note that
this inconvenience can be overcome, however, for instance

SysTEX’17, October 2017, Shanghai, China

by executing a deterministic amount of NoOP instructions
between timer configuration and ERESUME.

In our experimental setup, we operate the APIC timer in
one-shot mode with division 2. As explained above, timer
configuration depends on CPU frequency, and hence remains
inherently platform-specific. We established suitable timer
intervals for both our evaluation platforms through an empir-
ical approach that leverages SGX-Step to retrieve the inter-
rupted instruction pointer from an attacker-controlled debug
calibration enclave. We leave exploration of fully automated
timer configuration approaches as future work.

Monitoring Page Table Entries. Single-stepping enclaved
execution incurs a substantial slowdown, and is often only de-
sired for some specific functions of interest. SGX-Step there-
fore allows an adversary to initiate single-stepping mode
after a specific code or data page has been accessed, using en-
clave preemption from either page faults [15] or a dedicated
spy thread [13]. Specifically, analogous to the APIC configu-
ration trick above, SGX-Step establishes user space virtual
memory mappings for the unprotected physical memory con-
taining the victim enclave’s Page Table Entries (PTEs). By
manipulating PTEs directly from user space, an adversary
can provoke page faults (“present” bit), or gain insight in
enclave memory usage (“accessed” and “dirty” attributes).

4 Evaluation

We evaluate the effectiveness of SGX-Step on both a mid-end
laptop and a higher-end desktop CPU. We first provide mi-
crobenchmarks, and afterwards demonstrate the enhanced
attack potential of SGX-Step in two scenarios that are not
exploitable with current, state-of-the-art techniques.

All experiments were conducted on real, off-the-shelf SGX
hardware. Our first evaluation platform is a commodity Dell
Inspiron 13 7359 laptop running a generic Linux 4.2.0 ker-
nel on a Skylake dual-core Intel i7-6500U CPU with a base
frequency of 2.5 GHz. Our Dell Optiplex 7040 desktop, on
the other hand, features a generic Linux 4.4.0 kernel and
a Skylake quad-core i7-6700 processor running at 3.4 GHz.
Like previous SGX preemption attacks [4, 8, 10, 13] and con-
formant to our attacker model, we disabled TurboBoost plus
dynamic frequency scaling (C-States, SpeedStep), and affini-
tized the victim enclave thread to a specific logical core to
increase predictability on both machines.

4.1 Single-Stepping Microbenchmark

Our objective is to reliably single-step arbitrary enclave pro-
grams, including inexpensive instructions without memory
operands. To evaluate how accurately SGX-Step realizes
such true single-stepping, we constructed a challenging mi-
crobenchmark experiment featuring a test enclave with a
long slide of successive NOP instructions. At the microar-
chitectural level, a 1-byte Nop is the lowest cost instruction,

Jo Van Bulck, Frank Piessens, and Raoul Strackx

Table 1. Interrupts categorized according to the number of
instructions executed in the victim enclave (i.e., zero-step,
single-step, or multi-step). When laptop/desktop experimen-
tal results differ, we present the laptop measurements first.

Experiment 0-Step 1-Step >1 1-Step Ratio
NOP 2,083/1,617 100,000 0 97.96/98.41%
strlen 8,829/4,982 460,000 0 98.12/98.93%
Zigzagger 5,739/2,872 210,000 0 97.34/98.65%

consuming only a single micro-op without memory or regis-
ter dependencies [5]. As such, many NoPs can be executed in
a limited time window, and even a relatively small amount
of jitter on timer interrupt arrivals can lead to the execution
of multiple NoPs in the benchmark enclave. Hence, we argue
that an approach that reliably single-steps a NoP instruction
slide, can easily single-step arbitrary instructions as well.

Our benchmark enclave executes a slide of 100,000 suc-
cessive NOP instructions. As part of the experiment, we
instructed the SGX-Step driver to retrieve the instruction
pointer from the state save area of the interrupted debug
enclave using the EDBGRD instruction, so as to infer the exact
number of instructions executed in between two successive
enclave interrupts.? In the evaluation on our laptop/desktop
platforms, we measured a total of respectively 102,083 and
101,617 interrupts for the instruction slide. We confirmed that
exactly 2,083/1,617 out of these did not change the enclave
instruction pointer (i.e., zero-step), whereas the remaining
100,000 interrupts caused a single increment of the enclave
instruction pointer. We thus conclude that SGX-Step was
able to reliably single-step all 100,000 NoPs, without ever
executing more than one NoOP at a time. A small fraction of
interrupts (2.04% on the laptop and 1.59% for the desktop)
actually arrived too early, within the ERESUME instruction.
These interrupts are superfluous, but rather harmless as they
do not result in enclaved code being executed.

4.2 Precise Enclave Execution Control Attacks

Determining String Length. Previous work [4] explored
the temporal resolution limits of the page fault channel, dis-
cussed in Section 2.2. That is, since an attacker needs to
restore access rights on faulting pages in order to guarantee
progress, fault-driven attacks cannot infer information from
enclaved functions that access a single code and data page.
As an example of such a function, consider the elementary
strlen implementation in Fig. 2. Assuming the compiler
uses a CPU register for the loop counter, the entire loop eas-
ily fits within a single code page, and every iteration accesses
only one data page (containing the string). As such, progress

2 Note that EDBGRD only serves evaluation purposes, to establish the number
of instructions executed in the benchmark enclave, and would not be used
in real attacks against production enclaves.

1
2
3
!

5

6

SGX-Step: A Practical Attack Framework for Precise Enclave Execution Control SysTEX’17, October 2017, Shanghai, China

size_t strlen (char *str) 1 mov %rdi,%rax
{ 2 1: cmpb $0x0,(%rax)
char x*s; 3 je 2f
4 inc %rax
for (s = str; *s; ++s); 5 jmp 1b
return (s - str); 6 2: sub %rdi,%rax
} 7 retq

Figure 2. Example of secret-dependent data accesses in a
tight loop (source code and compiled assembly form).

can only be made if both the strlen code page and secret
string data page are accessible. That is, the length of the
secret string cannot be inferred from page fault sequences.
Previous research [13] has shown, however, that page ac-
cesses can be observed without page faults, for instance by
querying the PTE “accessed” bit after interrupting the en-
clave. We thus leverage SGX-Step to single-step the tight
strlen execution loop, each time recording/clearing the “ac-
cessed” bit of the PTE referencing the string being processed.
Note that accurate single-stepping results themselves also
allow the string length to be inferred from the number of
interrupts (i.e., instructions executed by the victim enclave).

The right hand side of Fig. 2 provides the assembly version
of the strlen C source code on the left. We explicitly com-
piled the code with optimizations set for size (-0s) to ensure
a very compact loop with only 4 assembly instructions and a
single memory operand. Note that precisely single-stepping
this loop is considerably more challenging than the case
without optimizations (totalling 5 instructions and 3 memory
operands). In our experimental setup, we single-stepped a
benchmark enclave that processed the string "SysTEX 2017"
(11 characters) 10,000 successive times. On every interrupt,
just before resuming the enclave, we queried the PTE “ac-
cessed” bit from the user space AEP trampoline handler. We
correctly recognized the string length for all 10,000 strlen
invocations. Additionally, we analyzed the full enclave in-
struction pointer trace, retrieved with EDBGRD, to categorize
interrupts according to the amount of instructions executed
in the victim enclave. The results are in Table 1. A first impor-
tant finding, in line with our microbenchmark observations,
is that SGX-Step reliably single-stepped all 460,000 instruc-
tions on both the laptop and desktop processors, and without
ever executing more than one instruction per interrupt. Only
a relatively small fraction of the total number of interrupts
(< 1.88%) arrived within ERESUME and did not result in an
enclaved instruction being executed. These zero-step obser-
vations can be easily filtered out, as we confirmed that they
never falsely triggered the “accessed” bit of the string PTE.

Defeating Zigzagger. Section 2.2 introduced branch shad-
owing attacks that rely on frequent enclave preemptions to
execute shadow probing code for inferring enclave-private
control flow via targeted BTB cache collisions. This recent

b0: lea bl, %rl5
lea b2, %rl4d
e 00 ‘;‘4 wr1s Zigzagger
Original code e trampoline
b0.j: jmp zzl
bl: nop #<codel> ssss.., A .
if (a!=0){ lea b5, %rl5 : Jmp bl.j
<codel> bl.j: jmp zz2
} b2: lea b3, %rl5 .|))
else if (b!=0) { lea b4, %rild 222: jmp b2.J
<code2>
} — cmp $0, b
cmove %rl4, %rl5 . .
else{ b2.3j: jmp zz3 zz3: jmp b3.J
<code3> b3: nop #<code2>
3 lea b5, %rl5 A
<coded> b3.j: jmp zz4 : Jmpg *%rls
b4: nop 1
b5: nop

Figure 3. Example code snippet protected by Zigzagger. The
final target address in r15 is obfuscated with cmov and a
tight trampoline sequence of jmp instructions (from [8]).

work [8] also includes a compile-time defense scheme called
Zigzagger. The key idea, illustrated in Fig. 3, is to obfus-
cate the target address of a conditional jump via a cMmov
instruction, followed by a tight trampoline sequence of un-
conditional jumps that ends with a single indirect branch
instruction. By rapidly jumping back and forth between the
instrumented code and the trampoline, Zigzagger makes rec-
ognizing the current branch instruction considerably more
challenging. Its security argument states that “since all of the
unconditional branches are executed almost simultaneously
in sequence, recognizing the current instruction pointer is
difficult” [8]. Moreover, the branch shadowing attack in itself
cannot directly infer the secret target address of the indi-
rect branch at zz4. We show, however, that even Zigzagger-
instrumented code can be reliably single-stepped. Specifi-
cally, an attacker leveraging SGX-Step can reliably probe
each intermediate unconditional trampoline jump (i.e., zz1
to zz3). Observe that after branching to the secret target ad-
dress, execution continues at one of only two possible target
addresses, and eventually lands on the Zigzagger trampoline
at either zz2 or zz3. As such, a single-stepping adversary
can infer the secret if condition, after detecting execution
of the indirect branch at zz4, by probing the unconditional
zz2 jump — which is only executed for the first code block.

We evaluate a proof-of-concept Zigzagger attack by re-
peatedly single-stepping the hardened assembly code® from
Fig. 3. Specifically, we single-stepped a benchmark enclave
that executes the 21-instruction code snippet 10,000 succes-
sive times, and afterwards analyzed the EDBGRD instruction
pointer trace to establish the number of instructions executed
on every interrupt. In line with our previous findings, Table 1
shows that SGX-Step never executes more than one instruc-
tion in the victim enclave per interrupt, allowing precise
execution of the shadow code on both evaluation platforms.

3 Since Zigzagger and the attack code from [8] were not made public, we
repeat the example assembly code snippet from that paper here. For the
same reason, we could not launch the actual branch shadowing attack, only
showing its feasibility with our single-stepping results.

SysTEX’17, October 2017, Shanghai, China

Hence, these benchmarks can be considered clear evidence
that SGX-Step enables new attacks, previously deemed infea-
sible. The superfluous zero-step interrupt fractions (2.66% for
the laptop and only 1.35% on the desktop) also keep on par
with previous observations, and do not impede a real attack
since the BTB cache remains unaffected by the victim.

5 Discussion

Attack Resolution and Implications. We showed that en-
claves can be reliably interrupted one instruction at a time.
In this, SGX-Step improves significantly over related state-of-
the-art enclave preemption schemes that only approximate
such instruction-level granularity after either disabling the
CPU cache [8], or focussing exclusively on instructions with
memory operands in a simulator [4]. From a practical per-
spective, SGX-Step furthermore lowers the bar for precise
enclave preemption attacks from user space.

These findings have profound consequences for the de-
sign of effective defenses. Specifically, compiler-based tech-
niques are fundamentally insufficient when they rely on
(partial) atomic behavior of the instruction stream, as effec-
tively demonstrated for the Zigzagger [8] branch obfusca-
tion technique above. Our precise strlen attack furthermore
highlights the inadequacy of defenses that focus on “aligning
specific code and data blocks to exist entirely within a single
page”, as still officially recommended by Intel [7].

Detecting Suspicious Interrupts. Heuristic compiler de-
fenses, on the other hand, could focus on detecting high in-
terrupt rates as an artefact of an ongoing attack. Importantly,
in contrast to enhanced PMA designs such as Sanctum [3],
SGX enclaves are explicitly left interrupt-unaware, since they
ought to be resumed through a dedicated ERESUME instruc-
tion. However, a contemporary line of research [2, 12] lever-
ages x86 Transactional Synchronization eXtensions (TSX)
to detect page faults or interrupts in enclave mode.

T-SGX [12] protects against page fault-based attacks by
wrapping each basic block in a TSX transaction, and aborting
the enclave after counting too many consecutive transaction
aborts. Déja Vu [2] instruments an enclave program to detect
frequent preemptions through a reliable in-enclave reference
clock thread that uses TSX to ensure it cannot be silently
stopped by an untrusted OS. Both solutions would recognize
the frequent interrupt rates generated by SGX-Step, but also
suffer from several important limitations, however. First, an
SGX-enabled processor (e.g., the laptop we used in our exper-
iments) is not always shipped with TSX extensions, ruling
out this defense for critical infrastructural software such as
Intel’s Launch and Quoting Enclaves. Second, TSX defenses
incur a significant run-time performance overhead [2, 12].
Third, these defenses cannot offer full protection as they rely
on heuristics to recognize suspicious interrupt rates, which
could also be caused by repeated cache conflicts or benign
interrupts under heavy system load.

Jo Van Bulck, Frank Piessens, and Raoul Strackx

6 Conclusion

Our work shows that enclaved execution can be accurately
single-stepped one instruction at a time. We demonstrated
SGX-Step’s improved temporal resolution over state-of-the-
art preemption schemes in two challenging attack scenarios,
highlighting the need for adequate defense mechanisms.

Acknowledgements. This work was partially supported by
the Research Fund KU Leuven and the TearLess research
project. Jo Van Bulck and Raoul Strackx are supported by a
grant of the Research Foundation - Flanders (FWO).

References

[1] Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. 2017. Software grand ex-
posure: SGX cache attacks are practical. In 11th USENIX Workshop on
Offensive Technologies (WOOT ’17). USENIX Association.

Sanchuan Chen, Xiaokuan Zhang, Michael K Reiter, and Yingian
Zhang. 2017. Detecting privileged side-channel attacks in shielded
execution with Déja Vu. In Proceedings of the 2017 Asia Conference on
Computer and Communications Security (Asia CCS °17). ACM, 7-18.
Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Min-

[2

—

3

—_

imal hardware extensions for strong software isolation. In Proceedings

of the 25th USENIX Security Symposium. USENIX Association.

Marcus Héhnel, Weidong Cui, and Marcus Peinado. 2017. High-

resolution side channels for untrusted operating systems. In 2017

USENIX Annual Technical Conference (ATC ’17). USENIX Association.

Intel Corporation. 2016. Intel 64 and IA-32 architectures optimization

reference manual. Reference no. 248966-033.

[6] Intel Corporation. 2017. Intel 64 and IA-32 architectures software devel-
oper’s manual. Reference no. 325462-062US.

[7] Intel Corporation. 2017. Intel software guard extensions developer guide.
software.intel.com/en-us/documentation/sgx-developer-guide.

[8] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim,
and Marcus Peinado. 2017. Inferring fine-grained control flow in-
side SGX enclaves with branch shadowing. In Proceedings of the 26th
USENIX Security Symposium. USENIX Association.

[9] P. Maene, J. Gotzfried, R. de Clercq, T. Miiller, F. Freiling, and I. Ver-
bauwhede. 2017. Hardware-based trusted computing architectures for
isolation and attestation. IEEE Trans. Comput. 99 (2017).

[10] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017.
CacheZoom: How SGX amplifies the power of cache attacks. In Con-
ference on Cryptographic Hardware and Embedded Systems (CHES ’17).

[11] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice,
and Stefan Mangard. 2017. Malware guard extension: Using SGX to
conceal cache attacks. In Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA ’17).

[12] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. 2017. T-
SGX: Eradicating controlled-channel attacks against enclave programs.
In Proceedings of the 2017 Annual Network and Distributed System
Security Symposium (NDSS). San Diego, CA.

[13] Jo Van Bulck, Nico Weichbrodt, Rudiger Kapitza, Frank Piessens, and
Raoul Strackx. 2017. Telling your secrets without page faults: Stealthy
page table-based attacks on enclaved execution. In Proceedings of the
26th USENIX Security Symposium. USENIX Association.

[14] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Ridiger Kapitza.
2016. AsyncShock: exploiting synchronisation bugs in Intel SGX
enclaves. In European Symposium on Research in Computer Security
(ESORICS ’16). Springer.

[15] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-
channel attacks: Deterministic side channels for untrusted operating
systems. In IEEE Symposium on Security and Privacy. IEEE, 640-656.

[4

—

[5

[

software.intel.com/en-us/documentation/sgx-developer-guide

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Attacker Model and Intel SGX
	2.2 Enclave Preemption Attacks

	3 Design and Implementation
	4 Evaluation
	4.1 Single-Stepping Microbenchmark
	4.2 Precise Enclave Execution Control Attacks

	5 Discussion
	6 Conclusion
	References

