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Hard and Soft equivariance priors via Steerable CNNs
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Agenda

From Group Convolution to Steerable Filters
Steerable Fields and Representation Theory
Steerable CNNs

Hard Priors: solving the exact kernel constraint

Soft Priors: learnable kernel constraint



Equivariance: CNN (rotation equivariance?)

feature map stabilized view

Source: e2cnn



Convolution: (R", +) - equivariance
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Group Convolution: (R, +) x C, - equivariance

Taco S. Cohen and Max Welling, Group Equivariant Convolutional Networks,
International Conference on Machine Learning (ICML), 2016



Group Convolution (lifting convolution): (R, +) x C, - equivariance

Taco S. Cohen and Max Welling, Group Equivariant Convolutional Networks,
International Conference on Machine Learning (ICML), 2016



Group Convolution
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Taco S. Cohen and Max Welling, Group Equivariant Convolutional Networks,
International Conference on Machine Learning (ICML), 2016



Group Convolution: Challenges h

% F1(0) = f k(o' %) FO)du()

eX
* — (ZZ) +) ~ C4

« Often some form of discretization is required (potential artifacts!)
- What if input or output are not in L*(R™) or L*(G) ?
e.g. vector fields?

* The group G might be infinite or too large to fully enumerate
G = SO(3) rotations of a point cloud

n! permutations of a set or nodes of a graph



Group Convolution [rc * -] L* (Zz) — LA ((ZZ; +) X Cy)
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Isotropic Filters [k * -]: L*(Z?) - L*(Z*)

* |sotropic filters: the response does not change when rotated

* Not very expressive

» Analogous to Graph Message Passing: no directional dependence!
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Steerable Filters

[RB' K] (T, ¢) = K(T, ¢ - 9)
w(r) cos(¢p + B — 6)
w(r) cos(¢p + B) cosO — w(r) sin(¢p + B) sin 6

cos B k(r,¢) —sin 6 k (r, ¢ — g)
= cos O k(r,p) — sin 0 Ru. k(r, Pp)
2

 Filter can be rotated via linear combination

k(r,¢) = w(r) cos(¢ + )
9
AE =cosf- wme —sinf- :

* e.g. filters used for edge-detection in classical Computer Vision

William T. Freeman and Edward H. Adelson. The design and use of steerable filters.
IEEE Transactions on Pattem Analysis & Machine Intelligence, 1991 2



Steerable Filters

 Filter can be rotated via linear combination

Thanks to /inearity of convolution operator:

Ryg.kx f = (cos@x—sinHRE.K)*f
2
=cos€(1c*f)—sin0(RE.K*f)
2

|
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Steerable Filters

 Filter can be rotated via linear combination

Rg.K*f=COSQ(K*f)—SiD@(R%.K*f)

p(6) = [

cos @
sin @

—sin @
cos 6



Steerable Filters

 Filter can be rotated via linear combination

__Jcos@ —sinf
plO) = [sinH cos 8]

Rg.;c*f=c059(;c*f)—sinH(RLZr.K*f)
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Steerable Filters: Other examples

 Filter can be rotated via linear combination

Circular harmonics Spherical harmonics

e +- O — (o]

. . on - - -
.:.:. :oo: ..0. :.: .-. :: ( ) -

= - | - j=4
Pl ‘o.‘ .~ s “n N _~ O )
.‘.'. Yoo .\l. N,/ ‘-' N/ ( ) -

]=4 ]:3 ]:2 ]=1 ]:O

©) = [COSjH — sin jO ' _ .
pjvvs = sin jO cos jO DJ(a,B,y) € R¥+1*2/+1 \Wigner D-matrix



Agenda

From Group Convolution to Steerable Filters
Steerable Fields and Representation Theory
Steerable CNNs

Hard Priors: solving the exact kernel constraint

Soft Priors: learnable kernel constraint
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Feature Fields

» Interpret features as a multi-channels signal f: R® - R4

« Signal transforms under (point) symmeiry group G according to a iransformation law
« symmetry group G : e.g. rotations or reflections
* N.B.: before we used ¢ to also indicate translations
» For now, we will implicitly consider equivariance to (R", +) X G



Feature Fields and Steerable CNNs

» Interpret features as a multi-channels signal f: R® - R4

« Signal transforms under (point) symmeiry group G according to a iransformation law
« symmetry group G : e.g. rotations or reflections

- Type of transformation identified by a representation of G p: ¢ — R* "¢

[9-f1(x) = p(g)f(g~'x)

Taco S. Cohen and Max Welling, Steerable CNNs,
International Conference on Learning Representations (ICLR), 2017



Feature Fields and Steerable CNNs

» Interpret features as a multi-channels signal f: R® - R4

« Signal transforms under (point) symmelry group G according to a fransformation law
« symmetry group G : e.g. rotations or reflections

- Type of transformation identified by a representation of G p: G — R**¢

[9-f1(x) = p(g)f(g~'x)

f=1 A% * R-R ST £ 3T
'\ 2 A
:og p(rg) = p(rg) = lg?ﬁg

00°

o O
g g
o) O
OOOO

Source: e2cnn > >
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Definition.: Representation of a Compact Group

A (real) of a compact group G is a map which
associates to each element g € G an /nvertible d X d matrix s.t.:

* Va,b p(a)p(b) = p(ab)
*Va p(a)' = p(a™)

* p(e) = ldgxg

21



Definition.: Representation of a Compact Group

A (real) of a compact group G is a map which
associates to each element g € G an /nvertible d X d matrix s.t.:

* Va,b p(a)p(b) = p(ab)
*Va p(a)' = p(a™)

* p(e) = ldgxg

Can assume w.l.o.g. representations, i.e. that p(g) ™1 = p(g)?

Describes the action of a group G on a vector spaceV = R4

E.g. representations of the rotation group SO (2)

» Tnivial representation

» Standard representation

22



Special Case: Group Convolution
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Special Case: Group Convolution
f(t,):50(2) > R
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Special Case: Group Convolution

f(t,):S0(2) - R 2
E fo(D N
= % AOY .
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Special Case: Group Convolution

Conv and F are associative f(t"): N->R

®) —_— fo(t) _3

O (@u)) !

: fZ(t) -1

> <f3(t)) i

* N fa(©) _:A
(fs(ﬂ) i:
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Direct Sum
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Formally: the Regular Representation

e [%(G)is the of square integrable functions on G

 [?(G) carries an orthogonal action of ¢
g:L*(G) - L*(G),  fwg.f
[9.f1(x) = f(g™" x)

* Thisis the of G

28



Formally: the Regular Representation

« L%(G) is the vector space of square integrable functions on G

 [?(G) carries an orthogonal action of ¢
g:L*(G) - L*(6),

frgf

[9.f1(x) = f(g™" x)

* This is the Regular Representation of G

« When G is a finite group it looks like permutation matrices (e.g. C,)

p(r®) =

co O R
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One Theorem To Rule Them All: Peter-Weyl theorem

 Let G be a compactgroup

 There is a set of /rreducible representations (irreps) denoted G
analogous to frequencies in classical Fourier Transform
e.g. circular harmonics or Wigner-D Matrices >

. - : . N T2
The matrix coefficients of the irreps form an orthogonal basis for L*(G) e
<.
@

] £(g) = ; \/@ ]Zdw HORION )

cos1l6 —sinl6 __[cos28 —sin26 __[cos368 —sin36
sin 16 cos 19] Y2(0) = [sin 20 cos 29] Y3(0) = [sin 30 cos 36]

30
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One Theorem To Rule Them All: Peter-Weyl theorem

 Let G be a compactgroup

 There is a set of /rreducible representations (irreps) denoted G
analogous to frequencies in classical Fourier Transform
e.g. circular harmonics or Wigner-D Matrices >

. . : . N T2
The matrix coefficients of the /rreps form an orthogonal basis for L*(G) e
(o
@

] £(g) = ; \/@ ]Zdw HORION )

fGp) € RWw*
Contains the weights
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One Theorem To Rule Them All: Peter-Weyl theorem

 Let G be a compactgroup

 There is a set of /rreducible representations (irreps) denoted G
analogous to frequencies in classical Fourier Transform
e.g. circular harmonics or Wigner-D Matrices >

. - : . N T2

The matrix coefficients of the irreps form an orthogonal basis for L*(G) e
(o

@

] £(g) = ; \/@ ]Zdw HORION )

Caveat: this is actually a basis only in C, but sometimes it has redundant
entries in R, e.g.

__[cos16 —sinl6
1(0) = [sin 16 cos 19]

32



One Theorem To Rule Them All: Peter-Weyl theorem (Pt. 2)

 Let G be a compactgroup

 There is a set of /rreducible representations (irreps) denoted G
analogous to frequencies in classical Fourier Transform
e.g. circular harmonics or Wigner-D Matrices

a A\

Any unitary representation p can be decomposed as a direct sum of
irreps up to a change of basis @,

[i(p)]

p(9) = Q; 69 69 Yi(9) | Qp

piEG T
\ )
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What did we find?

« Group convolution with steerable filters produces smaller steerable features

* No need to store redundant activations

« So far, only studied lifting convolution L2(R™) — L2((R", +) x G)
* Input is a scalar field

» Recover lifting convolution when using output regular representation

« What about other input fields? Intermediate layers?

— fo(t)
- <f1(t))
fz(t)
— (fs(ﬂ)
f4(t)

— <]f5(t)>
fo(1)

(9. f1C) = p(9) f (g™ %)



Agenda

From Group Convolution to Steerable Filters
Steerable Fields and Representation Theory
Steerable CNNs

Hard Priors: solving the exact kernel constraint

Soft Priors: learnable kernel constraint
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Feature Fields and Steerable CNNs

e Symmetry group G
- An intermediate feature is a multi-channels signal f;: R® -» R%
 Associated with its own transformation law p,

« Steerable CNN is equivariant when each layer ¥; commutes with its input and output
transformations

Po P1 P2 P3 P4

36



Problem

Given a choice of input and output steerable feature types, what convolution do we need to use?

» What kind of filters produce an output feature map with the desired transformation type?

fin: R* > R foutr: R? > R?

cosf@ —sind

Pout(Te) = [sinQ cos 6

pin(TQ) =1 ?

|
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Steerable CNNs

« Standard convolution with  -steerable filfer K guarantees also G equivariance

K:-R" - ]Rdout Xdin S

K(x) =0, (@K@ . x)p,. (@7 7%

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma and Taco Cohen,
3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data,
Conference on Neural Information Processing Systems (NIPS), 2018

Taco Cohen, Mario Geiger and Maurice Weiler,
A General Theory of Equivariant CNNs on Homogeneous Spaces,
Conference on Neural Information Processing Systems (NeurlPS), 2019

38



Steerable CNNs

« Standard convolution with  -steerable filfer K guarantees also G equivariance

K:R" - R%ut Xdin Sx,
Qe
Q, >

25 é//',

S~ 7

Kx) =pou (@K@ )p, (@7 7>

Q: How do we parameterize G-steerable filters?



Equivariant Non-Linearities

« Let the intermediate feature f: R"™ — R< transform under p: G —» 0(d)
« The quantity |f(x)|5 € R* is invariant
« norm non-linearity: f(x) = o(|f(x)|3) f(x) (Worrall et al., 2017)

- gated non-linearity: f(x), f;(x) - J(fg(x)) f(x) (Weiler et al., 2018)

. where f,(x) is another, invariant, feature field transforming under p(g) = 1

« (Can also use other quadratic invariants:

«  tensor-product: f(x) » f(x) ® f(x) € R* (Kondor et al., 2018)

xz yz z°

(xz xy xz)
(x,v,2) Q@ (x,y,2) =vec| xy y> yz
« output transforms under p,,; = p Q p

«  Fourier-based pointwise non-linearities (imitate GCNN)
« feature vector f(x) € RY represents a bandlimited signal in L2(G)

« Compose: (discrete) Fourier Transform o ¢ o (discrete) Inverse Fourier Transform

« Band-limit + sufficient samples to control reconstruction error

Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov, and Gabriel J. Brostow. Harmonic networks: Deep translation and rotation equivariance. Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco S. Cohen. 3D steerable CNNs: Leaming rotationally equivariant features in volumetric data. Conference on Neural Information Processing Systems (NeurlPS), 2018
Risi Kondor, Zhen Lin, and Shubhendu Trnvedi. Clebsch-gordan nets: a fully Founer space spherical convolutional neural network. Advances in Neural Information Processing Systems (NeurlPS), 2018.

Nadav Dym, and Haggai Maron. On the Universality of Rotation Equivariant Point Cloud Networks. Intemational Conference on Learning Representations (ICML). 2020.
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Agenda

From Group Convolution to Steerable Filters
Steerable Fields and Representation Theory

Steerable CNNs
Hard Priors: solving the exact kernel constraint

Soft Priors: learnable kernel constraint
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Solving the steerability constraint

« Standard convolution with (: -steerable filfer K guarantees also G equivariance

K:R" —» R%ut Xdin S,
Q.
6. 6,

S, %

Kx) =pou (@K@ )p, (@7 7>

Q: How do we parameterize G-steerable filters?



Solving the steerability constraint: Overall Strategy

1. Linear projection II: space of unconstrained kernels +— space of equivariant kernels
2. Pick a convenient basis for the domain of I1: space of unconstrained kernels

3. Project to find a basis for the image of I1: space of equivariant kernels

Kx) =00, (@K@ . x)p,(@)T

44



Solving the steerability constraint: Projection

« Linear projection I1: space of unconstrained kernels +— space of equivariant kernels

K': R" » R%out X din — K = H[K']: R" — R%ut X din

Kx) =00, (@K@ . x)p,(@)T

45



Solving the steerability constraint: Reynolds Operator

« Linear projection I1: space of unconstrained kernels +— space of equivariant kernels

K': R" » R%out X din — K = H[K']: R" — R%ut X din

Kx) =00, (@K@ . x)p,(@)T

K] Gx) = j Dot (DK (G150 pin ()T dg
G

46



Solving the steerability constraint: Kernel Vectorization

Identjy,
: : ecl4per
 Consider the vectorized kernel k(x) = vec(K (x)) =g e
C
« Column-wise vectorization of the matrix K (x) Kroneck ®)
©F Progyce

K: R*" - R

k(x) = [0 @ Pou)(@]r(g™ x)

MK’ (x) = f (Do ® pou) (@)K (g . %) dg
G

47



Solving the steerability constraint: Steerable Basis

- Assume a G-steerable basis B = {V/*: R" - R% | 1; € G, k} for L?(R™) (reeman & adelson, 1991)

g™t = (@)Y () annne
J J w]o]efo]olelo]c]o
ClEIOCo/CloCo

cosj@ —sinjo

x dj h;(0) = [sinje cosjo

* Expand wunconstrained kernel with parameter matrices W; , € R

1/11(9) — Dj(a;ﬁ;)/) € R2j+1><2j+1
Wigner D-matrix

48

William T. Freeman and Edward H. Adelson. The design and use of steerable filters. /EEE Transactions on Pattem Analysis & Machine Intelligence, 1991



Solving the steerability constraint: Expand Basis

* Expand wunconstrained kernel/ with parameter matrices W; , € R xd;

() = T[] (x) = f Do ® pon) (@K' (g1 %) dg
G

= [ 0 ® )@ Y Wi (g7 2 dg
G ik



Solving the steerability constraint: Expand Basis

* Expand wunconstrained kernel/ with parameter matrices W; , € R xd;

() = T[] (x) = f Do ® pon) (@K' (g1 %) dg
G

=J( ® )(Q)Z”/},kl/’j(g)T’Gk(x) ag
G ik



Solving the steerability constraint: Expand Basis

* Expand wunconstrained kernel/ with parameter matrices W; , € R xd;

() = T[] (x) = f Do ® pon) (@K' (g1 %) dg
G

f i ® Pon ) DW, e () dg
G 1

Y.

“(x)



Solving the steerability constraint: Expand Basis

* Expand wunconstrained kernel/ with parameter matrices W; , € R xd;

() = T[] (x) = f Do ® pon) (@K' (g1 %) dg
G

J .k

= Z unvec| ]\ij(x)

[ jG (0 ® pin ® P ) () dg] vec(W;



Solving the steerability constraint: Assume Irreps

* W.l.o.g. assume input and output representations are Jirreducible representations
* Thatis and

() = MK (x) = f (), ® 1)) (@)K (g~ . %) dg
G

J .k

= Z unvec| ]\ij(x)

[ [w®neu)w dg] vec(W, )



Solving the steerability constraint: Decompose Tensor Products

» Tensor products can be decomposed as a direct sum of irreps via Clebsh-Gordan transform

() = K] () f (), ® 1)) (@)K (g~ . %) dg
G

unvec| .| ij (x)
Jk

fG (), ® ) ® U,)(9) dg| vec(W ;)

Leon Lang and Maurice Weiler. A Wigner-Eckart theorem for group equivariant convolution kernels. /nternational Conference on Learning Representations, 2020
Gabriele Cesa, Leon Lang, and Maurice Weiler. A program to build E(N)-equivariant steerable CNNs. /nfernational Conference on Learning Representations. 2021
Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. /nternational Conference on Machine Learning. 2024
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Solving the steerability constraint: Decompose Tensor Products

» Tensor products can be decomposed as a direct sum of irreps via Clebsh-Gordan transform

ie(x) = ] (x)

unvec|
Jk

| an | €

] V(%)

1G]

Leon Lang and Maurice Weiler. A Wigner-Eckart theorem for group equivariant convolution kernels. /ntern

VD 0 )0 ds

r

ational Conference on Learning Representations, 2020

Gabriele Cesa, Leon Lang, and Maurice Weiler. A program to build E(N)-equivariant steerable CNNs. /nfernational Conference on Learning Representations. 2021
Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. /nternational Conference on Machine Learning. 2024

G(lpz ® )9k (g t.x) dg

vec(Wj,k)

55



Solving the steerability constraint: Decompose Tensor Products

» Tensor products can be decomposed as a direct sum of irreps via Clebsh-Gordan transform

() = K] () f (), ® 1)) (@)K (g~ . %) dg
G

unvec| .| ij (x)
Jk

G L]

Qjyy 69 69 UG (9) dg] Q1) vec(W; )

r

Leon Lang and Maurice Weiler. A Wigner-Eckart theorem for group equivariant convolution kernels. /nternational Conference on Learning Representations, 2020
Gabriele Cesa, Leon Lang, and Maurice Weiler. A program to build E(N)-equivariant steerable CNNs. /nfernational Conference on Learning Representations. 2021

56
Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. /nternational Conference on Machine Learning. 2024



Solving the steerability constraint: Recall Fourier Transform

» The matrix coefficients of the /rreducible representations form an orthogonal basis

() = K] () f (), ® 1)) (@)K (g~ . %) dg
G

Z unvec| .| ij (x)

J .k

G L]

Q7 69 69 UG (9)1/J‘_o'(;9,) dg] Qj; vec(W; )

r =1
Leon Lang and Maurice Weiler. A Wigner-Eckart theorem for group equivariant convolution kernels. /nternational Conference on Learning Representations, 2020

Gabriele Cesa, Leon Lang, and Maurice Weiler. A program to build E(N)-equivariant steerable CNNs. /nfernational Conference on Learning Representations. 2021
Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. /nternational Conference on Machine Learning. 2024
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Solving the steerability constraint: Recall Fourier Transform

» The matrix coefficients of the /rreducible representations form an orthogonal basis

ie(x) = ] (x)

G(lpz ® )9k (g t.x) dg

unvec| .| ij (x)
Jk

G L]

Q1) 69 69 8.0 | Qjiy vec(W )

r

Leon Lang and Maurice Weiler. A Wigner-Eckart theorem for group equivariant convolution kernels. /nternational Conference on Learning Representations, 2020
Gabriele Cesa, Leon Lang, and Maurice Weiler. A program to build E(N)-equivariant steerable CNNs. /nfernational Conference on Learning Representations. 2021
Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. /nternational Conference on Machine Learning. 2024
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Solving the steerability constraint: Sparse Subset of Weights

» The matrix coefficients of the /rreducible representations form an orthogonal basis

() = K] () f (), ® 1)) (@)K (g~ . %) dg
G

unvec| .| ij (x) 1
j'k H]l] Pﬂ] =

‘ QJTl]PJ'l]QﬂJ‘veC (W)

Leon Lang and Maurice Weiler. A Wigner-Eckart theorem for group equivariant convolution kernels. /nternational Conference on Learning Representations, 2020
Gabriele Cesa, Leon Lang, and Maurice Weiler. A program to build E(N)-equivariant steerable CNNs. /nfernational Conference on Learning Representations. 2021
Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. /nternational Conference on Machine Learning. 2024
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Result

« Complete theoretical description of the space of o — o
G-steerable filters |

* For and Pins Pout

« Algorithm to explicitly construct the steerable

convolution layers

« General implementation in the form of a

github.com/QUVA-Lab/escnn

= O QUVA-Lab |/ escnn Q, Type [/]to search

() Issues 26 i1 Pullrequests 12 L)) Discussions (*) Actions f{] Projects [0 Wiki () Security |~ Insights 33 Settings

escnn Public 52 Edit Pins ~ & Unwatch 17 ~ % Fork 42 - YW Starred 325 - 60




General Program to implement G-equivariance: 2D images

(R?,+) G <

Maurice Weiler* and Gabriele Cesa®.

General E(2)-Equivariant Steerable CNNs,
Neural Information Processing Systems (NeurlPS), 2019

2D rotational
symmetries

group  representation nonlinearity invariant map  citation MNISTO(2) MNISTrot MNIST 12k

{e}  (conventional CNN) ELU - - 5.53+£020 2.87x0090 091006

Cy [7,91 5.19+00s 248013 0.82x0.01

Co [7,9] 3.29+0.07 1.32+002 0.87+004

+ C3 = 2.87+004 1194006 0.80+0.03

Cy [6,1,7,9,10] 240+005 1022003 0.99+003

Cg regular Preg ELU G-pooling 8] 2.08+0.03 0.89+003 0.84+002

Cg 7,91 1.96+004 0.84+002 0.89+0.03

s Cpz 71 1.95+007 0.80+0.03 0.89+0.03

9 Cie [7,9] 1.93+004  0.82+002 0.95+0.04

10 Caq 71 1.95+005 0.83+005 0.94+0.06

noCy 5reg & 2Pquer * D30 [ 2434005 1.03+005 1.01+003

| Ch 5reg B2 e B 2pguns B 200 s 2.03+005 0.84+005 0.91+0.02

i+ Cia  quotient 5 reg B2 B2kt &2 - 204200s 081002 095002

14 Cue 51 ®2Pquel > D2l B30 - 2004000 0.86+001  0.98+0.01

15 Cop ﬁpmg”DQp;l,';/”02;):“‘(3/“‘041320 - 2.014005 0.83+003 0.96+0.04

regular/scalar 1o < prg 20 g ELU, G-pooling [6,25] 202002 090003 0.93%0.04

17 Cyg  regular/vector 1y Loy Preg M P vector field [13,26] 2.12+0.02 1.07+003 0.78+0.03

18 mixed vector  preg Gt B 2/;@%/)“691/71 ELU, vector field - 1.87+0.03 0.83+0.02 0.63+0.02

Dy - 3.40 +0.07 3.44+010 098 +0.03

)y Dy - 2.42+007  2.39+004 1.05+003

Dj - 2.17+0.06 2.15+005 0.94+002

2 Dy [6,1,27] 1.88+004 1.87+0.04 1.69+0.03

Dg regular Preg ELU G-pooling 8] 1.77+0.06  1.77+0.04 1.00+0.03

Dg - 1.68+006 1.73+003 1.64+0.02

Do 1.66+005 1.65+005 1.67+0.01

Dig - 1.62+004 1654002 1.68+0.04

Dag - 1.64+006 1.62x005 1.69+003

2 Dy regular/scalar g EES Preg m Yo,0 ELU, G-pooling - 1.92+003 1.88+0.07 1.74+0.04

irreps < 1 - 2.98 £0.04 1.38 4009 1.29+0.05

irreps < 3 - 3.02+0.18 1.38+0.09 1.27+0.03

irreps < 5 - 3.24+005 1.44+010 1.36+0.04

irreps < 7 ELU. norm-ReLU comv2triv - 3.30+£0.11 1514010 1.40+0.07

C-irreps < 1 [12] 3.39+010 147+006 1.42+004

4 C-irreps < 3 [12] 3.48+0.16 1.51+0.05 1.53+0.07

C-irreps < 5 - 3.59+008  1.59+005 1.55+0.06

36 $0(2) C-irreps < 7 - 3.64+012 1.61+006 1.62+0.03

3 ELU, squash - 3.10+000 1.41+001 1.46+0.05

ELU, norm-ReLU - 3.23+008 1.38+008 1.33+003

ELU, shared norm-ReLU norm - 2.88+011  1.15+006 1.18+0.03

10 . 3 shared norm-ReLU = 3.61+009 1.57+0.05 1.88+0.05

! frreps <3 Dicovi ELU, gate . - 2.37+006  1.09+003 1.10+0.02
conv2triv

2 ELU, shared gate - 2.33+006 1.11x003 1.12£0.04

5 ELU, gate norm - 2234009  1.04=004 1.05£0.06

4 ELU, shared gate - 2.20+006 1.01+003 1.03+0.03

i irreps = 0 X ELU - 546046 5.21+020 3.98+0.04

1 irreps < 1 0,0 B 1,0 B 2911 - 3.31+0a7  3.37+0a8  3.05+0.09

It %neps <3 o0 B qy""e;?*’ 29y, ELU, norm-ReLU 0(2)-comv2triv 3.42+003  3.4l+010 3.86+0.00

18 irreps < 5 V0,0 ® 1,0 B 201 B 3.59+013 3.78+031 4.17+015

" irreps < 7 Vo0 10D, Wi - 3.84+025 3.90+018 4.57+027

Ind-irreps < 1 Ind ¢5°® & Ind ¢} °® - 2724005 270+011  2.39%0.07

. ,S0(2) 3 50(2)

0(2) ?nd-frreps <3 Ind vy o @,5:] Ind wgom ELU. Ind norm-ReLU  Tnd-com2tiv 2.66+007  2.65+012  2.25+0.06

nd-irreps <5 Ind ¢y @;_; Ind ¢; - 2714011 2.84+010 2.39+009

Ind-irreps < 7_Ind 5% @7, Ind 470 - 280+012 285006 225008

. . 3 . O(2)-conv2triv - 2.39+005 2.38+007 2.28+007

imeps <3 Vo0 ® VL0 B, W ELU. gate no(m)x 221000 224x006 2.15+0.03

. 5 5 Tnd-conv2triv = 2.13+0.01  2.09+005 2.05+005

Ind-irreps <3 Ind wf’om 8913:‘ Ind U,;SO(I) ELU. Ind gate Ind-norm - 1.96+006 1.95+005 1.85+0.07

MNIST
Variations
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General Program to implement G-equivariance: 3D voxel data

Table 1: Rotated ModelNet10 (O(3) symmetry). * indicates wider models to fix the computational cost.

3D rotational

G Description Accuracy Sym metries T

{e} Conventional CNN 82.5+ 1.4

SO(2) Axial Symmetry 86.9 + 1.9 Inv

SO(2) x F 2 0(2) Dihedral Symmetry 87.5+ 0.7

SO(2) x M = O(2) Conical Symmetry 88.5+ 0.8

Inv x SO(2) Cylindrical Symmetry 86.8 + 0.7 F

Invx SO(2) x F Full Cylindrical Symmetry 87.0+ 1.0

0] Octahedral Symmetry (Winkels & Cohen, 2018) 89.7 + 0.6

I Icosahedral Symmetry 90.0 £ 0.6

1 Icosahedral Symmetry (finite orbits basis) 88.2+ 1.0

SO(3) Chiral (Tensor product) (Anderson et al., 2019) 86.3 + 1.0

SO(3) Chiral (Gated non-linearity)(Weiler et al., 2018b) 88.8+1.2 » > M

SO(3) Chiral (Regular, |G| = 96) 89.1 +1.2

SO(3) Chiral (Regular, |G| = 192)* 89.4+ 1.4

SO(3) Chiral (Quotient S* = SO(3)/S0(2), | X| = 30) 89.5+ 1.0

O(3) Achiral (Regular, |G| = 120) 89.2 4+ 0.6

O(3) Achiral (Regular, |G| = 144)* 89.4£0.7 Table 2: ModelNet10 (O(2) symmetry)

0(3) Achiral (Quotient Inv xS8* = O(3)/SO(2), | X| = 60) 88.6 + 0.9
G Description Accuracy
{e}  Conventional CNN 91.2+0.5
SO(2) Azimuthal Symmetry 91.9+0.8
SO(3) Chiral (Regular, |G| = 72) 89.8 + 0.6
O(2) Full Azimuthal Symmetry 92.3+04
O(3)  Achiral (Regular, |G| = 120) 89.9+1.0

Axial rotational C2 x F Klein Group (dihedral symmetry) 91.0 £0.6

symmetries in 3D
Gabriele Cesa, Leon Lang, Maurice Weiler, y VOXNet (Maturana & Scherer, 2015)  92.0
A Program to build E(n)-Equivariant Steerable CNNs, C2 x F Klein Group (Worrall & Brostow, 2018) 94.2
International Conference on Representation Learning, 2022
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Beyond fixed Steerable Basis

0.141

o
=
[\%]

Mean square error
e o

©c o ©
o o o
B

o
o
S

Maksim Zhdanov, Nico Hoffmann, Gabriele Cesa,

o
o o

(=]

hJ
L

—#— SO(2)-CNN-IK
~&— 0(3)-SEGNN

0 10° 100 102 10°
Stiffness of plane springs
N-body system
+ gravity

ModelNet40
Axial rotational symmetries in 3D

B Standard G-tailored solution
.. is not available
B Implicit +0.9 +3.6
+1.8 +1.1

M

Inv

G-tailored
solution
is available

S0(2) SO(2) SO(2) SO(2) SO(3) 0Of(3)

NIinv XF XM

/ Inv

Learn G-equivariant MLP to parameterize G-steerable kernel

Kg(g.x) = [(pi, @ pou)(g)]rg(x)

Implicit Convolutional Kemels for Steerable CNNs. Neural Information Processing Systems, 2023
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Local Symmetries: Symmetries vary between features and scales

 Reflection symmetry in the class

 Rotational symmetry in the /oca/patterns

source: MikeLynch, CC BY-SA 3.0

source: Tiffany Bailey, CCBY 2.0

Maurice Weiler® and Gabriele Cesa*.
General E(2)-Equivariant Steerable CNNs,
Neural Information Processing Systems (NeurlPS), 2019

64
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https://creativecommons.org/licenses/by/2.0/legalcode
https://commons.wikimedia.org/wiki/File:Sunflower_Field_near_Raichur,_India.jpg
https://creativecommons.org/licenses/by-sa/3.0/legalcode

Group Restriction

« Model the loss of symmetries at larger scales by relaxing the equivariance constraint
at different depths:

« exploit more symmetries in the first layers

* restrict later to the symmetries of your output

W/ //(/

G H<G

Image source:

Maurice Weiler® and Gabriele Cesa*.
General E(2)-Equivariant Steerable CNNs,
Neural Information Processing Systems (NeurlPS), 2019
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https://creativecommons.org/licenses/by/2.0/legalcode

Experiments on Natural Images

model CIFAR-10 CIFAR-100
wrn28/10 [30] 3.87 18.80
wrn28/10 Di1 D1 Dy 3.36 £0.08 17.97+0.11
wrn28/10* Dg D4 Dy 3.324+0.10 17.42+0.38
wrn28/10 Cg C4 C4q 3.20+0.04 16.47+0.22
wrn28/10 Dg D4 D4 3.13+0.17 16.76+0.40
wrn28/10 Dg D4 Dy 2.91+0.13 16.22+0.31
wrn28/10 [31] AA 2.6 +o.1 17.1 +o0.3
wrn28/10* Dg D4 D1 AA  2.394+0.12 15.554+0.13
2.05+0.03 14.30+0.09

wrn28/10 Dg D4 D1 AA

AA = Auto Augment

model group  #params test error (%)
wrnl6/8 [32] - 11M 12.74+0.23
wrnl6/8* D:D;D; 5M 11.05+0.45
wrnl6/8 D:D;D; 10M 11.17+0.60
wrnl6/8* DsD4s D1 4.2M 10.57+o0.70
wrnl6/8 DsD4sD;  12M 9.80+0.40
STL -10
60 1
— Wrnl6/8 D8D4D1
wrnle/8* D8D4D1
50 — Wrnl6/8
S
~ 40_
S
o
2 301
it
20 1
o4 : —
250 500 1000 2000 4000

training set size

66



Imperfect or Unknown symmetries

» Group Restriction : layer adapted to the symmetries manifested in the scale of its field of view
« Still requires knowledge about these symmetries

« Can we /earnthe level of equivariance from data?

w17/ /

|
Image source: L

L | ]
Tiftany Bailey, CC BY 2.0 ' !

G1? G,? G3?

Finzi, M., Benton, G., and Wilson, A. G. Residual pathway priors for soft equivariance constraints. Advances in Neural Information Processing Systems (NeurlPS) 2021.
van der Ouderaa, T., Romero, D. W., and van der Wilk, M. Relaxing equivariance constraints with non-stationary continuous filters. Advances in Neural Information Processing
Systems (NeurlPS), 2022

Wang, R., Walters, R., and Yu, R. Approximately equivarniant networks for imperfectly symmetric dynamics. Intemational Conference on Machine Learning (ICML), 2022
Romero, D. W. and Lohit, S. Learning partial equivariances from data. Advances in Neural Information Processing Systems (NeurlPS), 2022
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Agenda

From Group Convolution to Steerable Filters
Steerable Fields and Representation Theory
Steerable CNNs

Hard Priors: solving the exact kernel constraint

Soft Priors: learnable kernel constraint
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Learnable Soft Prior

Learn probability distribution /. over a large group G

 uniform: indicates equivariance over full group G
« Supported on subgroup H < G: indicates equivariance over full group G

* Low values outside subgroup H < G: indicates “soft / relaxed prior”

e | niform = O(2) e Rotation = SO(2) Mirroring

1.2

1 V D
0.8
0.6
0.4
0.2
0

Vs
0 n ™ 3z 0+ . Tt 3=+
2 2 mirroring 2 mirroring T2
mlrrorlng mirroring

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. /nternational Conference on Machine Learning. 2024
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Learnable steerability constraint: Reynolds Operator

« Linear projection I1: space of unconstrained kernels +— space of equivariant kernels

K': R" » R%out X din — K = H[K']: R" — R%ut X din

Kx) = 00, (@K@ . x)p,(@)T

K] Gx) = f Dot (DK (G150 pin ()T dg
G
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Learnable steerability constraint: Reynolds Operator

» Linear projection I1: space of unconstrained kernels +— space of equivariant kernels

[l

K': R" » R%out X din —> K =11 [K']: R" — R%out X din

e Uniform = O(2) e Rotation = SO(2) Mirroring

0.4
0.2

n 3 0+ Iy T+
2 mirroring 2 mirroring 2
mirroring mirroring

A

N

I, [K'] (x) = f Dot (DK@ %) i (TA(0) dg
G

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. /nternational Conference on Machine Learning. 2024
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Learnable steerability constraint: Repeat Previous Derivations

k() = T[] (%) = fG (), ® ) (@K' (g1 (0)dg

= z unvec| ., | ij (x)

7 (@[ @] s et

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024



Learnable steerability constraint. Recall Fourier Transform

» The matrix coefficients of the /rreducible representations form an orthogonal basis
k(x) =11 [k (x) = f (1/Jl R l/J])(g)K’(g_l.X) dg
G

= z unvec| ., | ij (x)

[1(GLD]

Qjyy 69 69 [ dg] Q1) vec(W; )

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024
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Learnable steerability constraint. Recall Fourier Transform

» The matrix coefficients of the /rreducible representations form an orthogonal basis
k(x) =11 [k (x) = f (1/Jl R l/J])(g)K’(g_l.X) dg
G
= z unvec| ., | ij (x)

1G]

Q;l] 6 9\/7 Qﬂ] veC(VVJ}k)

r
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Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024



Learnable steerability constraint. Recall Fourier Transform

» The matrix coefficients of the /rreducible representations form an orthogonal basis
k(x) =11 [k (x) = f (1/Jl R l/J])(g)K’(g_l.X) dg
G

= z unvec| ., | ij (x)
'k

! 1)

| QF Py Qjufvec(W,)

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024
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Side to Side comparison

K(x) = z unvec|Qf,, - Qj; vec(Wy) | V(%)
Tk

I1,
) Y

'GL)] Hen)

h= DD 2 =D B
- d
1 _Jd_ |

1
0
Py = 0 Pjjiy = e
1 Nen
1.

Ja, |
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Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024



Side to Side comparison: Simple MLP Setting

« Consider MLP or 1x1 conv with ¢ = S0O(2)

k = unvec|Q],

6(.
R Pl] 'y
¢ "o
.0(\ 6(\ 1
N (@
N ¢ !
QO 07 ¢ Yo Y1 w2 Y5 Yu Y5 Y Yy
P R 096
> M @
o o &
@ W
o <
s
o = s
s
s
e
s

Yo Y1 Y2 Y3 Yu Y5 Ye Yy

é(&)

Vs

€4y

Q,; vec(W) ]
P

Vi Yo Y1 Yo Y3 Yu Y5 Y Py

Yo Y1 Y2 Y3 Yu Ys Y Yy
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Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. /nternational Conference on Machine Learning. 2024



Learnable steerability constraint: Implementation Details

» Everything is differentiable : can directly backpropagate to

« Normalise / to a PDF;

= FT (softmax (IFT( )))

* |nitialize / to uniform distribution

1, =0
( )z{ded, %0

« Tunable band-limit L on / to regularise the likelihood and reduce parameters:

L=0 L=4 L=16

2.5 i 25 | 25

2.0 2.0 ‘ 2.0

15 15 15

10 | 1.0 1.0

031 0.5 0.5

*% i on ¥ 2:" ;ponm a2 00, 004 o 2§rr I 32
g € 0(2) g € 0(2)
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Learnable steerability constraint: Implementation Details

* Regularize subsequent layers with KL-divergence:
N-1

Liw = ) KLUpsalldetach(iy))
n

Layer 2 Layer 4 Layer 5
25 3 0.15
—— likelihood 0-03m —— likelihood o —— likelihood o
2.0 error difference Q error difference o error difference | 142
[ : 0.10w TP
215 0.02§ g g
i S | 5 | 5 e
l1.0—~—p——p— — /\/ — A\/\ =
With KL 0.018 \A\/ | /N 0055 | W | 10055
0.5 o @ @
0 T w o T 7o 0§ nowonf onwan® 0§ wowoen & o an?
3 2 > 2 2 2 3 2 2 2 2
heH heH heH
Layer 2 Layer 4 Layer 5
25 , 0.20 :
—— likelihood © —— likelihood 0.15 o —— likelihood ©
H 2.0 eriror difference {0.15 8 error difference ) eﬁror difference [0.15 9
Without ; & o : 3
—~1.5 | (9] 1090 : ]
KL S | 0.108 0108 /] 0.10&
< s 2 ) ° / o ) ©
LA 3 OO N A |oos | :
i e 0.05 2 ‘ e
} OOSL w / ! /005;
0.5 ; ] o] ] ]
0T mamoant rmad® 0f mamamf rma® 0 fomoan oo o
2 2 b ) Z 2 > 2 2 2 2 2
heH heH heH

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. /nfernational Conference on Machine Learning. 2024



Evaluation on Double-Digits MNIST

* Rectangular images containing 2 digits, independently transformed

37 Y V¢

(a) Original unaugmented number. (b) Local vs global horizontal reflection.

T~
N~ S4L LS

(c) Local vs global 90 degree rotation. (d) Local vs global 180 degree rotation.
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Evaluation on Double-Digits MNIST 2 Y

* Learnt Likelihood matches measured equivariance error

S5 Layer 4 0.15 Layer 5
—— likelihood © —— likelihood
2.0 error difference Q error difference | 1
0.109 '

=15 3]
£ E /\ A
~ ©

Lo\ N\ \//\v/ 0055 | N\ |00

0.5 o

O'00 g n 3" 2n g m 30 2000 0 g n 32_" 2n I nm 3n 2190

heH heH

(a) O(2) symmetries

Layer 4 Layer 5
2.5
—— likelihood 0.20 —— likelihood 0.1
2.0 error difference = error difference
0.15¢
1S5 2 J 0.1
< 0.10T I
1o N/ W \,//\\b//\ S — oo
0.5 ‘ 0.05%
00T 7 an & 7 = 0% o0 T w3 oon i w3 an?
2 > 2 > 2 2 2 2
heH heH

(b) C1 symmetries (i.e. no symmetries)



o) P~
Evaluation on Double-Digits MNIST 29 s v

* Rectangular images containing 2 digits, independently transformed

Network Partial Symmetries for individual digits
Group  Equivariance C4 Cy S0(2) D, Dy 0(2)
CNN N/A | 0.962 (0.002)  0.868 (0.011)  0.807 (0.007)  0.919 (0.006)  0.711 (0.009)  0.649 (0.019)
None 0.933 (0.002)  0.484 (0.008)  0.459 (0.007)  0.893 (0.005)  0.427 (0.008)  0.405 (0.008)
C Restriction 0.954 (0.003)  0.911 (0.006)  0.877 (0.009)  0.928 (0.006)  0.827 (0.013)  0.776 (0.018)
4 RPP 0.937 (0.006)  0.901 (0.012)  0.867 (0.025)  0.899 (0.014)  0.821 (0.023)  0.772 (0.009)
Ours 0.947 (0.006)  0.916 (0.005)  0.891 (0.006)  0.923 (0.007)  0.848 (0.007)  0.795 (0.011)
None 0.895 (0.005)  0.439 (0.010)  0.396 (0.009)  0.473 (0.010)  0.431 (0.010)  0.394 (0.008)
D Restriction 0.953 (0.004)  0.912 (0.007)  0.887 (0.003)  0.930 (0.007)  0.827 (0.007)  0.773 (0.009)
4 RPP 0.934 (0.007)  0.888 (0.014)  0.867 (0.014)  0.895 (0.007)  0.821 (0.020)  0.775 (0.013)
Ours 0.949 (0.005)  0.922 (0.007) 0.885 (0.012)  0.921 (0.008)  0.848 (0.011)  0.801 (0.009)
None 0.936 (0.005)  0.485 (0.010)  0.474 (0.016)  0.890 (0.006)  0.430 (0.010)  0.403 (0.021)
SO2) Restriction 0.949 (0.002)  0.911 (.o10)  0.893 (0.009)  0.928 (0.003)  0.841 (0.012)  0.796 (0.011)
RPP 0.935 (0.008)  0.890 (0.005)  0.870 (0.011)  0.899 (0.009)  0.821 (0.022)  0.779 (0.021)
Ours 0.953 (0.004)  0.922 (0.005) 0.901 (0.005) 0.932 (0.005) 0.863 (0.009) 0.823 (0.005)
None 0.881 (0.005)  0.415 (0.008)  0.391 (0.012)  0.461 (0.012)  0.424 (0.009)  0.399 (0.014)
002) Restriction 0.953 (0.005)  0.914 (0.005)  0.894 (0.005)  0.928 (0.005)  0.845 (0.011)  0.799 (0.008)
RPP 0.931 (0.005)  0.891 (0.003)  0.861 (0.013)  0.891 (0.004)  0.824 (0.009)  0.772 (0.019)
Ours 0.958 (0.003)  0.919 (0.006)  0.894 (0.004)  0.927 (0.004)  0.859 (0.011)  0.819 (0.010)

Maurice Weiler® and Gabriele Cesa*. General E(2)-Equivariant Steerable CNNs, Neural Information Processing Systems (NeurlPS), 20719

Finzi, M., Benton, G., and Wilson, A. G. Residual pathway priors for soft equivariance constraints. Advances in Neural Information Processing Systems (NeurlPS) 2021.
Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. /nfernational Conference on Machine Learning. 2024



Evaluation on MedMNIST3D dataset

* 3D voxel data

Network Partial
Group  Equivariance Nodule Synapse Organ

CNN N/A 0.873 (0.005) 0.716 (0.008)  0.920 (0.003)
None 0.873 (0.002) 0.738 (0.009) 7 (0.006)

SO(3) RPP 0.801 (0.003)  0.695 (0.037)  0.936 (0.002)
Ours 0.871 (0.001) 0.770 (0.030) 0 90 (0.006)
None 0.868 (0.009)  0.743 (0.004)  0.592 (0.008)

0(3) RPP 0.810 (0.013)  0.722 (0.023)  0.940 (0.006)
Ours 0.873 (0.008) 0.769 (0.005)  0.905 (0.004)

Maurice Weiler® and Gabriele Cesa*. General E(2)-Equivariant Steerable CNNs, Neural Information Processing Systems (NeurlPS), 20719
Finzi, M., Benton, G., and Wilson, A. G. Residual pathway priors for soft equivariance constraints. Advances in Neural Information Processing Systems (NeurlPS) 2021.
Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. /nfernational Conference on Machine Learning. 2024
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Evaluation on Smoke and JetFlow simulations

« 2D frames from simulation

Smoke JetFlow

Model Future Domain Params (M) Future Domain Params (k)
MLP 1.38 (0.06) 1.34 (0.03) 8.33% - - 510%
CNN 1.21 (0.01) 1.10 (0.05) 0.25% - - 10*
e2cnn 1.05 (0.06) 0.76 (0.02) 0.62% 0.21 (0.02) 0.27 (0.03) 21%
RPP 0.96 (0.10)  0.82 (0.01) 4.36* 0.16* (0.01)  0.19%* (0.01) 145%*
Combo 1.07 (0.00) 0.82 (0.02) 0.53% - - 19%
CLCNN | 0.96 (0.05) 0.84 (0.10) - - - -
Lift 0.82 (0.01) 0.73 (0.02) 3.32% 0.18 (0.02)  0.21 (0.04) 479%
RGroup | 0.82 (0.01) 0.73 (0.02) 1.88°* - - 63*
RSteer 0.80 (0.00) 0.67 (0.01) 5.60%* 0.17 (0.01)  0.16 (0.01) 185%*
Ours 0.77 (0.01) 0.57 (0.00) 3.12 0.15 (0.00)  0.17 (0.01) 105

Maurice Weiler* and Gabriele Cesa*. General E(2)-Equivariant Steerable CNNs, Neural Information Processing Systems (NeurlPS), 2019

Finzi, M., Benton, G., and Wilson, A. G. Residual pathway priors for soft equivariance constraints. Advances in Neural Information Processing Systems (NeurlPS) 2021.
Wang, R., Walters, R., and Yu, R. Approximately equivarnant networks for imperfectly symmetric dynamics. Intemational Conference on Machine Learning (ICML), 2022
Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. /nfernational Conference on Machine Learning. 2024
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Conclusion

» Complete theoretical description of the space of
G-steerable filters

feature fields stabilized view

» For any compact G and any transformation laws p;,,, pout

« Algorithm to explicitly construct the steerable

convolution layers github.com/QUVA-Lab/escnn

« Effective way to relax hard inductive bias / learn it
* Symmetries vary between features and scales.
» Overconstraining leads to performance reductions.

* CNN layers can be fine-tuned with group restrictions.

Maurice Weiler* and Gabriele Cesa*. General E(2)-Equivariant Steerable CNNs, Neural Information Processing Systems (NeurlPS), 2019

Gabriele Cesa, Leon Lang, Maurice Weiler, A Program to build E(n)-Equivariant Steerable CNNs, /nternational Conference on Representation Learning, 2022

Maksim Zhdanov, Nico Hoffmann, Gabriele Cesa, Implicit Convolutional Kernels for Steerable CNNs. Neural Information Processing Systems, 2023 85
Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. /nfernational Conference on Machine Learning. 2024
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Side to Side comparison: Simple MLP Setting

« Consider MLP or 1x1 conv with ¢ = S0O(2)

k = unvec|Q],
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Agenda

Other experiments
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o) P~
Evaluation on Double-Digits MNIST 2 Y

c v

« Rectangular images containing 2 digits, independently transformed

(a) CNN (b) O(2) SCNN  (c) Our O(2) PSCNN

Figure 2. Confusion matrices for DDMNIST with O(2) symme-
tries. Labelled 0-99 from top to bottom and left to right.
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Effect of Band-Limiting on Double-MNIST 3 7

* Rectangular images containing 2 digits, independently transformed
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Figure 4. Likelihoods and errors of the fifth O(2) PSCNN layer
trained on SO(2) DDMNIST under various bandlimits L.

Symmetries
Network
Group SO(2) 0(2)
None | 0.474 (0.016)  0.403 (0.021)
1 0.883 (0.007)  0.794 (0.011)
50(2) 2 0.901 (0.005) 0.823 (0.005)
3 0.908 (0.006)  0.821 (0.002)
A 0.904 (0.004)  0.820 (0.013)
None | 0.391 (0.012)  0.399 (0.014)
0 0.469 (0.010)  0.402 (0.003)
0(2) 1 0.894 (0.011)  0.780 (0.009)
2 0.894 (0.004)  0.819 (0.010)
3 0.889 (0.013)  0.817 (0.007)
4 0.891 (0.006)  0.819 (0.018)

Table 21. Double MNIST test accuracies using various levels
of bandlimiting for our SO(2) and O(2) P-SCNNs. For each
symmetry, the highest accuracy is bold, and the highest for

each network group within this type of symmetry is underlined.

Standard deviations over 5 runs are denoted in parentheses.

c v
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Effect of Bandlimiting on Smoke dataset

RMSE Params (M) using Hypothetical params (M)

Model L Future Domain  default 3 x 3 kernels using 5 x 5 kernels
RPP - | 0.81 (0.01) 0.70 (0.04) 6.43 17.24
RSteer - | 0.78 (0.01) 0.58 (0.00) 5.57 27.75
1 | 0.85(0.01) 0.63 (0.00) 2.80 5.05
Ours 2 | 0.78 (0.01) 0.58 (0.02) 4.30 7.84
4 | 0.79 (0.02) 0.61 (0.03) 5.95 10.83
6 | 0.78 (0.01) 0.59 (0.03) 6.36 11.65

Table 23. Smoke RMSE scores and parameter counts (in millions, M) comparing SO(2) equivariant RSteer with our SO(2)-PSCNN
using various levels of band-limiting. Note that a band-limit of L = 6 equates to performing no band-limiting at all. Standard deviations
over 5 runs are denoted in parentheses.
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Experiments with more effective architectures

Network Partial Double MNIST with
Group Equivariance OrganMNIST3D O(2) Symmetries
FourierELU Gated FourierELU Gated
CNN N/A N/A 0.921 (0.003) 0.649 (0.019)
None N/A | 0.879 (0.007) 0.607 (0.006) 0.842 (0.007)  0.403 (0.021)
RPP N/A | 0.930 (0.011) 0.936 (0.002) 0.617 (0.043) 0.779 (0.021)
SO(n) 2 0.935 (0.003)  0.902 (0.006)  0.852 (0.009) 0.823 (0.005)
Ours 3 0.932 (0.003) 0.902 (0.002) 0.853 (0.016)  0.821 (0.002)
4 0.941 (0.007) 0.896 (0.003)  0.855 (0.004)  0.820 (0.013)
None N/A | 0.821 (0.005) 0.592 (0.008) 0.860 (0.005)  0.399 (0.014)
RPP N/A | 0.936 (0.004) 0.940 (0.006) 0.677 (0.037)  0.772 (0.019)
O(n) 2 0.911 (0.007)  0.905 (0.004)  0.869 (0.005) 0.819 (0.010)
Ours 3 0.920 (0.008) - 0.885 (0.003) 0.817 (0.007)
4 0.911 (0.003) - 0.876 (0.006)  0.819 (0.018)

Table 24. Test accuracies on OrganMNIST3D and DoubleMNIST comparing the performance of our baseline configurations (Gated)
with the structurally non-invariant configurations using a Fourier based non-linearity. For each column, bold indicates the highest accuracy
and underline denotes the highest accuracy for the given network group. Standard deviations over 5 runs are denoted in parentheses.



Agenda

Groups

Group Conv

Non-Linearities
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Running examples

Discrete planar translations: (7%, +)

Discrete planar rotations: C,

Symmetries of squared grid: p4 = (Z%,+) x C,
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Running examples

Discrete planar translations: (7%, +)

Discrete planar rotations and mirroring : D,,

Symmetries of squared grid: p4m = (Z%,+) x D,

p4m = (Z* +) x D,
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Generalize Convolution
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Group Convolution
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Group Convolution
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Group Convolution
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Group Convolution
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Group Convolution
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Group Convolution
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Group Convolution




Equivariant Non-Linearities

- Intermediate feature f: R" —» R%

* Transforms under
* We

of G

[9.-f1(x) = p(9)f (g™ x)

point-wise non-linearities (e.g ReLU)

cosf@ —sinf

Z p(rg) = [
)

sin 8 cos @
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Equivariant Non-Linearities: Fourier Transform based

Imitate a GCNN

+ Choose a {pilier c G
- A feature vector f(x) € R% represents a in L%(G)
* Apply point-wise non-linearity o (e.g. ReLU) by: wo() 2
the signal f(x) on a finite subset § c G (Wl( )>
on each sample wo (1))
a band-limited signal from the samples (Ws( )> ’
g P wa()) -

| |
H O KR N = o = N =N




Equivariant Non-Linearities: Fourier Transform based

Imitate a GCNN

 Choose a {pitier G

A feature vector f(x) € R? represents a in L%(G)

Apply point-wise non-linearity o (e.g. ReLU) by:
the signal f(x) on a finite subset § c G (discrete Inverse Fourier Transform)
on each sample

a band-limited signal from the samples (discrete Fourier Transform)

Band-limit + sufficient samples to control reconstruction error
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Equivariant Non-Linearities: Fourier Transform based

* Imitate a GCNN
 Choose a {pitierc G
- A feature vector f(x) € R% represents a in L%(G)
* Apply point-wise non-linearity o (e.g. ReLU) by:
the signal f(x) on a finite subset § c G (discrete Inverse Fourier Transform)

on each sample

a band-limited signal from the samples (discrete Fourier Transform)

« (Can also consider functions on homogeneous space X rather than G for reduced complexity.

Recall Spherical CNNs
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Convolution and Message Passing
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Convolution and Message Passing
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Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley. Tensor field networks: Rotation-and translation-equivariant neural networks
for 3d point clouds. (2018)
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