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From Group Convolution to Steerable Filters

Steerable Fields and Representation Theory

Steerable CNNs

Hard Priors: solving the exact kernel constraint

Soft Priors: learnable kernel constraint
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Equivariance: CNN (rotation equivariance?)

Source: e2cnn
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⋆

Convolution: ℝ𝑛, +  - equivariance
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⋆

Group Convolution: ℝ𝑛, + ⋊ 𝐶4 - equivariance

Taco S. Cohen and Max Welling, Group Equivariant Convolutional Networks,

International Conference on Machine Learning (ICML), 2016 
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Group Convolution (lifting convolution): ℝ𝑛, + ⋊ 𝐶4 - equivariance

⋆

Taco S. Cohen and Max Welling, Group Equivariant Convolutional Networks,

International Conference on Machine Learning (ICML), 2016 
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Group Convolution

κ

⋆

κ
⋆

𝐿2 ℤ2 𝐿2 𝐺 𝐿2 𝐺

Input image (1 channel)

Taco S. Cohen and Max Welling, Group Equivariant Convolutional Networks,

International Conference on Machine Learning (ICML), 2016 
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Group Convolution: Challenges

𝐺 = ℤ2, +  ⋊ 𝐶4

𝜅 ⋆ 𝑓 𝑔 = න
𝑥∈𝑋

𝜅 𝑔−1 𝒙 𝑓 𝒙 𝑑𝜇(𝑥)

• Often some form of discretization is required (potential artifacts!)

• What if input or output are not in 𝐿2(ℝ𝑛) or 𝐿2(𝐺) ?

• e.g. vector fields?

• The group 𝐺 might be infinite or too large to fully enumerate

• 𝐺 = 𝑆𝑂(3) rotations of a point cloud

• 𝑛! permutations of a set or nodes of a graph
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⋆

Group Convolution 𝜅 ⋆ ⋅ : 𝐿2 ℤ2 → 𝐿2( ℤ2, +  ⋊ 𝐶4)
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Isotropic Filters

• Isotropic filters: the response does not change when rotated

• Not very expressive

• Analogous to Graph Message Passing: no directional dependence!

⋆ =

𝜅 ⋆ ⋅ : 𝐿2 ℤ2 → 𝐿2(ℤ2)
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Steerable Filters

• Filter can be rotated via linear combination

• e.g. filters used for edge-detection in classical Computer Vision

= cos 𝜃 ⋅ − sin 𝜃 ⋅

𝜅 𝑟, 𝜙 = 𝑤 𝑟  cos(𝜙 + 𝛽) 

𝜃

William T. Freeman and Edward H. Adelson. The design and use of steerable filters.

IEEE Transactions on Pattern Analysis & Machine Intelligence, 1991 

𝑟 𝜙

𝑅𝜃. 𝜅 𝑟, 𝜙 = 𝜅 𝑟, 𝜙 − 𝜃

= 𝑤 𝑟  cos 𝜙 + 𝛽 − 𝜃  
= 𝑤 𝑟  cos 𝜙 + 𝛽 cos 𝜃 − 𝑤 𝑟 sin 𝜙 + 𝛽 sin 𝜃

= cos 𝜃 𝜅 𝑟, 𝜙 − sin 𝜃 𝜅 𝑟, 𝜙 −
𝜋

2
= cos 𝜃 𝜅 𝑟, 𝜙 − sin 𝜃 𝑅𝜋

2
. 𝜅 𝑟, 𝜙
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Steerable Filters

• Filter can be rotated via linear combination

⋆
…

…
…

𝑅𝜃. 𝜅 ⋆ 𝑓 = cos 𝜃 𝜅 − sin 𝜃 𝑅𝜋
2

. 𝜅 ⋆ 𝑓

= cos 𝜃 𝜅 ⋆ 𝑓 − sin 𝜃 𝑅𝜋
2

. 𝜅 ⋆ 𝑓

Thanks to linearity of convolution operator:

𝑅𝜋
2

. 𝜅

𝜅
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Steerable Filters

• Filter can be rotated via linear combination

⋆ =

𝜌 𝜃 =
cos 𝜃 − sin 𝜃
sin 𝜃  cos 𝜃

𝜃

𝑅𝜃. 𝜅 ⋆ 𝑓 = cos 𝜃 𝜅 ⋆ 𝑓 − sin 𝜃 𝑅𝜋
2

. 𝜅 ⋆ 𝑓



15

Steerable Filters

• Filter can be rotated via linear combination

⋆ =

𝜌 𝜃 =
cos 𝜃 − sin 𝜃
sin 𝜃  cos 𝜃

𝜃

𝑅𝜃. 𝜅 ⋆ 𝑓 = cos 𝜃 𝜅 ⋆ 𝑓 − sin 𝜃 𝑅𝜋
2

. 𝜅 ⋆ 𝑓
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Steerable Filters: Other examples

• Filter can be rotated via linear combination

Circular harmonics Spherical harmonics

𝜌𝑗 𝜃 =
cos 𝑗𝜃 − sin 𝑗𝜃
sin 𝑗𝜃  cos 𝑗𝜃 𝐷𝑗 𝛼, 𝛽, 𝛾 ∈ ℝ2𝑗+1 × 2𝑗+1 Wigner D-matrix 

𝑗 = 0𝑗 = 1𝑗 = 2𝑗 = 3𝑗 = 4

𝑗 = 0
𝑗 = 1

𝑗 = 2

𝑗 = 3

𝑗 = 4
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From Group Convolution to Steerable Filters

Steerable Fields and Representation Theory

Steerable CNNs

Hard Priors: solving the exact kernel constraint

Soft Priors: learnable kernel constraint



18

Feature Fields

• Interpret features as a multi-channels signal 𝑓: ℝ𝑛 → ℝ𝑑

• Signal transforms under (point) symmetry group 𝐺 according to a transformation law

• symmetry group 𝐺 : e.g. rotations or reflections

• N.B.: before we used 𝐺 to also indicate translations

• For now, we will implicitly consider equivariance to ℝ𝑛 , + ⋊ 𝐺

⋆ ⋆[ ]: ℝ2 → ℝ1 [ ]: ℝ2 → ℝ2
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Feature Fields and Steerable CNNs

• Interpret features as a multi-channels signal 𝑓: ℝ𝑛 → ℝ𝑑

• Signal transforms under (point) symmetry group 𝐺 according to a transformation law

• symmetry group 𝐺 : e.g. rotations or reflections

• Type of transformation identified by a representation of 𝐺    𝜌: 𝐺 → ℝ𝑑 ×𝑑

𝑔. 𝑓 𝑥 = 𝜌 𝑔 𝑓(𝑔−1𝑥)

Taco S. Cohen and Max Welling, Steerable CNNs,

International Conference on Learning Representations (ICLR), 2017

⋆[ ]: ℝ2 → ℝ1 ⋆[ ]: ℝ2 → ℝ2
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Feature Fields and Steerable CNNs

• Interpret features as a multi-channels signal 𝑓: ℝ𝑛 → ℝ𝑑

• Signal transforms under (point) symmetry group 𝐺 according to a transformation law

• symmetry group 𝐺 : e.g. rotations or reflections

• Type of transformation identified by a representation of 𝐺    𝜌: 𝐺 → ℝ𝑑 ×𝑑

𝑔. 𝑓 𝑥 = 𝜌 𝑔 𝑓(𝑔−1𝑥)

𝜌 𝑟𝜃 = 1 𝜌 𝑟𝜃 =
cos 𝜃 − sin 𝜃
sin 𝜃  cos 𝜃

⋆𝑓 = [ ]: ℝ2 → ℝ1 ⋆𝑓 = [ ]: ℝ2 → ℝ2
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A (real) representation   𝜌: 𝐺 → 𝐺𝐿(ℝ𝑑)   of a compact group 𝐺 is a map which 
associates to each element 𝑔 ∈ 𝐺 an invertible 𝑑 × 𝑑 matrix s.t.:

• ∀𝑎, 𝑏 𝜌 𝑎 𝜌 𝑏 = 𝜌(𝑎𝑏)

• ∀𝑎 𝜌 𝑎 −1 = 𝜌(𝑎−1)

• 𝜌 𝑒 = Id𝑑×𝑑

Definition: Representation of a Compact Group
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A (real) representation   𝜌: 𝐺 → 𝐺𝐿(ℝ𝑑)   of a compact group 𝐺 is a map which 
associates to each element 𝑔 ∈ 𝐺 an invertible 𝑑 × 𝑑 matrix s.t.:

• ∀𝑎, 𝑏 𝜌 𝑎 𝜌 𝑏 = 𝜌(𝑎𝑏)

• ∀𝑎 𝜌 𝑎 −1 = 𝜌(𝑎−1)

• 𝜌 𝑒 = Id𝑑×𝑑

Can assume w.l.o.g. orthogonal representations, i.e. that 𝜌 𝑔 −1 = 𝜌 𝑔 𝑇

Describes the action of a group 𝐺 on a vector space 𝑉 = ℝ𝑑

E.g. representations of the rotation group 𝑆𝑂(2)

• Trivial representation

• Standard representation

𝜌 𝑟𝜃 = 1

𝜌 𝑟𝜃 =
cos 𝜃 − sin 𝜃
sin 𝜃  cos 𝜃

Definition: Representation of a Compact Group
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Special Case: Group Convolution

𝜌 𝑟0 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

𝜌 𝑟1 =

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

𝜌 𝑟2 =

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

𝜌 𝑟3 =

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

𝜌 𝑟𝑖

𝑓 𝑡,⋅ : 𝐶4 → ℝ

⋆

𝑓 𝑡,⋅
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Special Case: Group Convolution

𝑓 𝑡,⋅ : 𝑆𝑂(2) → ℝ

…
…

⋆

𝑓 𝑡, 𝜃

𝜃

…
…
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Special Case: Group Convolution

መ𝑓1 𝑡
መ𝑓2 𝑡

መ𝑓3 𝑡
መ𝑓4 𝑡

መ𝑓5 𝑡
መ𝑓6 𝑡

መ𝑓0 𝑡

𝑓 𝑡,⋅ : 𝑆𝑂(2) → ℝ

Fourier 
Transform 

ℱ

…
…

⋆

𝑓 𝑡, 𝜃

𝜃

…
…
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Special Case: Group Convolution

መ𝑓 𝑡,⋅ : ℕ → ℝ

⋆

𝑓 𝑡, 𝜃

𝜃

…

መ𝑓1 𝑡
መ𝑓2 𝑡

መ𝑓3 𝑡
መ𝑓4 𝑡

መ𝑓5 𝑡
መ𝑓6 𝑡

መ𝑓0 𝑡

Conv and ℱ are associative



27

Direct Sum

1

cos 1𝜃 − sin 1𝜃
sin 1𝜃  cos 1𝜃

cos 2𝜃 − sin 2𝜃
sin 2𝜃  cos 2𝜃

cos 3𝜃 − sin 3𝜃
sin 3𝜃  cos 3𝜃

𝜌 𝜃 =

𝜌 𝜃 = ໄ

𝑘

𝜌𝑘(𝜃)

𝑓 𝑡, 𝜃

𝜃

መ𝑓1 𝑡
መ𝑓2 𝑡

መ𝑓3 𝑡
መ𝑓4 𝑡

መ𝑓5 𝑡
መ𝑓6 𝑡

መ𝑓0 𝑡

ໄ

𝑘

መ𝑓2𝑘 𝑡
መ𝑓2𝑘+1 𝑡
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Formally: the Regular Representation

• 𝐿2 𝐺  is the vector space of square integrable functions on 𝐺

• 𝐿2 𝐺  carries an orthogonal action of 𝐺

• This is the Regular Representation of 𝐺

𝑔. 𝑓 𝒙 ≔ 𝑓 𝑔−1 𝒙

𝑔: 𝐿2 𝐺 → 𝐿2 𝐺 ,  𝑓 ↦ 𝑔. 𝑓
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Formally: the Regular Representation

• 𝐿2 𝐺  is the vector space of square integrable functions on 𝐺

• 𝐿2 𝐺  carries an orthogonal action of 𝐺

• This is the Regular Representation of 𝐺

• When 𝐺 is a finite group it looks like permutation matrices (e.g. 𝐶4)

𝑔. 𝑓 𝒙 ≔ 𝑓 𝑔−1 𝒙

𝑔: 𝐿2 𝐺 → 𝐿2 𝐺 ,  𝑓 ↦ 𝑔. 𝑓

𝜌 𝑟0 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

𝜌 𝑟1 =

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

𝜌 𝑟2 =

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

𝜌 𝑟3 =

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
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One Theorem To Rule Them All: Peter-Weyl theorem

• Let 𝐺 be a compact group

• There is a set of irreducible representations (irreps) denoted ෠𝐺
• analogous to frequencies in classical Fourier Transform
• e.g. circular harmonics or Wigner-D Matrices

𝜓0 𝜃 = 1 𝜓1 𝜃 =
cos 1𝜃 − sin 1𝜃
sin 1𝜃  cos 1𝜃

𝜓2 𝜃 =
cos 2𝜃 − sin 2𝜃
sin 2𝜃  cos 2𝜃

𝜓3 𝜃 =
cos 3𝜃 − sin 3𝜃
sin 3𝜃  cos 3𝜃

𝑓 𝑔 = ෍

𝜓∈ ෠𝐺

𝑑𝜓 ෍

1≤ 𝑖𝑗≤𝑑𝜓

መ𝑓 𝜓 𝑖𝑗𝜓 𝑔 𝑖𝑗

The matrix coefficients of the irreps form an orthogonal basis for 𝐿2 𝐺
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One Theorem To Rule Them All: Peter-Weyl theorem

መ𝑓 𝜓 ∈ ℝ𝑑𝜓×𝑑𝜓

Contains the weights

• Let 𝐺 be a compact group

• There is a set of irreducible representations (irreps) denoted ෠𝐺
• analogous to frequencies in classical Fourier Transform
• e.g. circular harmonics or Wigner-D Matrices

𝑓 𝑔 = ෍

𝜓∈ ෠𝐺

𝑑𝜓 ෍

1≤ 𝑖𝑗≤𝑑𝜓

መ𝑓 𝜓 𝑖𝑗𝜓 𝑔 𝑖𝑗

The matrix coefficients of the irreps form an orthogonal basis for 𝐿2 𝐺
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One Theorem To Rule Them All: Peter-Weyl theorem

• Let 𝐺 be a compact group

• There is a set of irreducible representations (irreps) denoted ෠𝐺
• analogous to frequencies in classical Fourier Transform
• e.g. circular harmonics or Wigner-D Matrices

Caveat: this is actually a basis only in ℂ, but sometimes it has redundant 
entries in ℝ, e.g.

𝜓1 𝜃 =
cos 1𝜃 − sin 1𝜃
sin 1𝜃  cos 1𝜃

𝑓 𝑔 = ෍

𝜓∈ ෠𝐺

𝑑𝜓 ෍

1≤ 𝑖𝑗≤𝑑𝜓

መ𝑓 𝜓 𝑖𝑗𝜓 𝑔 𝑖𝑗

The matrix coefficients of the irreps form an orthogonal basis for 𝐿2 𝐺
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One Theorem To Rule Them All: Peter-Weyl theorem (Pt. 2)

• Let 𝐺 be a compact group

• There is a set of irreducible representations (irreps) denoted ෠𝐺
• analogous to frequencies in classical Fourier Transform
• e.g. circular harmonics or Wigner-D Matrices

Any unitary representation 𝜌 can be decomposed as a direct sum of 
irreps up to a change of basis 𝑄𝜌

𝜌 𝑔 = 𝑄𝜌
𝑇 ໄ

𝜓𝑖∈ ෠𝐺

ໄ

𝑟

𝑖 𝜌

𝜓𝑖(𝑔) 𝑄𝜌

1
cos 1𝜃 − sin 1𝜃
sin 1𝜃  cos 1𝜃

cos 2𝜃 − sin 2𝜃
sin 2𝜃  cos 2𝜃

𝜌 𝜃 =
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What did we find?

• Group convolution with steerable filters produces smaller steerable features

• No need to store redundant activations

• So far, only studied lifting convolution 𝐿2 ℝ𝑛 → 𝐿2 ℝ𝑛, +  ⋊ 𝐺

• Input is a scalar field

• Recover lifting convolution when using output regular representation

• What about other input fields? Intermediate layers? ⋆

መ𝑓1 𝑡
መ𝑓2 𝑡

መ𝑓3 𝑡
መ𝑓4 𝑡

መ𝑓5 𝑡
መ𝑓6 𝑡

መ𝑓0 𝑡

𝑔. 𝑓 𝑥 = 𝜌 𝑔 𝑓(𝑔−1𝑥)
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From Group Convolution to Steerable Filters

Steerable Fields and Representation Theory

Steerable CNNs

Hard Priors: solving the exact kernel constraint

Soft Priors: learnable kernel constraint
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Feature Fields and Steerable CNNs

• Symmetry group 𝐺

• An intermediate feature is a multi-channels signal 𝑓𝑙: ℝ𝑛 → ℝ𝑑

• Associated with its own transformation law 𝜌𝑙

• Steerable CNN is equivariant when each layer Ψ𝑙 commutes with its input and output 
transformations 

Ψ1 Ψ2 Ψ3 Ψ4

𝑓0 𝑓1 𝑓2 𝑓3 𝑓4

𝜌0 𝜌1 𝜌2 𝜌3 𝜌4
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Problem

Given a choice of input and output steerable feature types, what convolution do we need to use?

• What kind of filters produce an output feature map with the desired transformation type?

𝜌𝑖𝑛 𝑟𝜃 = 1 𝜌𝑜𝑢𝑡 𝑟𝜃 =
cos 𝜃 − sin 𝜃
sin 𝜃  cos 𝜃

𝑓𝑖𝑛: ℝ2 → ℝ1 𝑓𝑜𝑢𝑡: ℝ2 → ℝ2

⋆

?
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Steerable CNNs

• Standard convolution with 𝐺-steerable filter  𝐾 guarantees also 𝐺 equivariance

𝐾: ℝ𝑛 → ℝ𝑑𝑜𝑢𝑡 ×𝑑𝑖𝑛

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma and Taco Cohen, 

3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data,

Conference on Neural  Information Processing Systems (NIPS), 2018

Taco Cohen, Mario Geiger and Maurice Weiler, 

A General Theory of Equivariant CNNs on Homogeneous Spaces,

Conference on Neural  Information Processing Systems (NeurIPS), 2019

𝐾 𝑥 = 𝜌𝑜𝑢𝑡 𝑔 𝐾 𝑔−1. 𝑥 𝜌𝑖𝑛 𝑔 𝑇
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Steerable CNNs

• Standard convolution with 𝐺-steerable filter  𝐾 guarantees also 𝐺 equivariance

𝐾: ℝ𝑛 → ℝ𝑑𝑜𝑢𝑡 ×𝑑𝑖𝑛

Q: How do we parameterize 𝐺-steerable filters?

𝐾 𝑥 = 𝜌𝑜𝑢𝑡 𝑔 𝐾 𝑔−1. 𝑥 𝜌𝑖𝑛 𝑔 𝑇
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Equivariant Non-Linearities

• Let the intermediate feature 𝑓: ℝ𝑛 → ℝ𝑑 transform under 𝜌: 𝐺 → 𝑂(𝑑)

• The quantity 𝑓 𝑥 2
2 ∈ ℝ+ is invariant

• norm non-linearity: 𝑓 𝑥 ↦ 𝜎 𝑓 𝑥 2
2  𝑓(𝑥) (Worrall et al., 2017)

• gated non-linearity: 𝑓 𝑥 , 𝑓𝑔 𝑥 ↦ 𝜎 𝑓𝑔 𝑥 𝑓(𝑥) (Weiler et al., 2018)

• where 𝑓𝑔 𝑥  is another, invariant, feature field transforming under 𝜌 𝑔 = 1

• Can also use other quadratic invariants:

• tensor-product: 𝑓 𝑥 ↦ 𝑓 𝑥 ⊗ 𝑓 𝑥 ∈ ℝ𝑑2
 (Kondor et al., 2018)

• output transforms under 𝜌𝑜𝑢𝑡 = 𝜌 ⊗ 𝜌

• Fourier-based pointwise non-linearities (imitate GCNN)

• feature vector 𝑓 𝑥 ∈ ℝ𝑑 represents a bandlimited signal in 𝐿2(𝐺)

• Compose:   (discrete) Fourier Transform   ∘  𝜎 ∘   (discrete) Inverse Fourier Transform 

• Band-limit + sufficient samples to control reconstruction error

Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov, and Gabriel J. Brostow. Harmonic networks: Deep translation and rotation equivariance. Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco S. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. Conference on Neural Information Processing Systems (NeurIPS), 2018

Risi Kondor, Zhen Lin, and Shubhendu Trivedi. Clebsch–gordan nets: a fully Fourier space spherical convolutional neural network. Advances in Neural Information Processing Systems (NeurIPS), 2018.

Nadav Dym, and Haggai Maron. On the Universality of Rotation Equivariant Point Cloud Networks. International Conference on Learning Representations (ICML). 2020.

𝑥, 𝑦, 𝑧 ⊗ 𝑥, 𝑦, 𝑧 = 𝑣𝑒𝑐

𝑥2 𝑥𝑦 𝑥𝑧

𝑥𝑦 𝑦2 𝑦𝑧

𝑥𝑧 𝑦𝑧 𝑧2
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Outcome: equivariance to continuous rotations

Source: e2cnn
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From Group Convolution to Steerable Filters

Steerable Fields and Representation Theory

Steerable CNNs

Hard Priors: solving the exact kernel constraint

Soft Priors: learnable kernel constraint



43

Solving the steerability constraint

• Standard convolution with 𝐺-steerable filter  𝐾 guarantees also 𝐺 equivariance

𝐾: ℝ𝑛 → ℝ𝑑𝑜𝑢𝑡 ×𝑑𝑖𝑛

Q: How do we parameterize 𝐺-steerable filters?

𝐾 𝑥 = 𝜌𝑜𝑢𝑡 𝑔 𝐾 𝑔−1. 𝑥 𝜌𝑖𝑛 𝑔 𝑇
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Solving the steerability constraint: Overall Strategy

1. Linear projection Π: space of unconstrained kernels    ⟼   space of equivariant kernels

2. Pick a convenient basis for the domain of Π: space of unconstrained kernels 

3. Project to find a basis for the image of Π: space of equivariant kernels

𝐾 𝑥 = 𝜌𝑜𝑢𝑡 𝑔 𝐾 𝑔−1. 𝑥 𝜌𝑖𝑛 𝑔 𝑇
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Solving the steerability constraint: Projection

• Linear projection Π: space of unconstrained kernels    ⟼   space of equivariant kernels

𝐾′: ℝ𝑛 → ℝ𝑑𝑜𝑢𝑡 × 𝑑𝑖𝑛  𝐾 = Π 𝐾′ : ℝ𝑛 → ℝ𝑑𝑜𝑢𝑡 × 𝑑𝑖𝑛  
Π
⟼

𝐾 𝑥 = 𝜌𝑜𝑢𝑡 𝑔 𝐾 𝑔−1. 𝑥 𝜌𝑖𝑛 𝑔 𝑇
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Solving the steerability constraint: Reynolds Operator

• Linear projection Π: space of unconstrained kernels    ⟼   space of equivariant kernels

𝐾′: ℝ𝑛 → ℝ𝑑𝑜𝑢𝑡 × 𝑑𝑖𝑛  

Π[𝐾′] 𝑥 = න
𝐺

𝜌𝑜𝑢𝑡 𝑔 𝐾′ 𝑔−1. 𝑥 𝜌𝑖𝑛 𝑔 T 𝑑𝑔

𝐾 = Π 𝐾′ : ℝ𝑛 → ℝ𝑑𝑜𝑢𝑡 × 𝑑𝑖𝑛  
Π
⟼

𝐾 𝑥 = 𝜌𝑜𝑢𝑡 𝑔 𝐾 𝑔−1. 𝑥 𝜌𝑖𝑛 𝑔 𝑇
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Solving the steerability constraint: Kernel Vectorization

• Consider the vectorized kernel 𝜅 𝑥 = 𝑣𝑒𝑐 𝐾(𝑥)
• Column-wise vectorization of the matrix 𝐾(𝑥)

Π[𝜅′] 𝑥 = න
𝐺

𝜌𝑖𝑛 ⊗ 𝜌𝑜𝑢𝑡 𝑔 𝜅′ 𝑔−1. 𝑥 𝑑𝑔

𝜅: ℝ𝑛 → ℝ𝑑𝑜𝑢𝑡⋅𝑑𝑖𝑛

𝜅 𝑥 = 𝜌𝑖𝑛 ⊗ 𝜌𝑜𝑢𝑡 𝑔 𝜅 𝑔−1. 𝑥
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Solving the steerability constraint: Steerable Basis

• Assume a 𝐺-steerable basis ℬ = 𝑌𝑗
𝑘: ℝ𝑛 → ℝ𝑑𝑗  | 𝜓𝑗 ∈ ෠𝐺, 𝑘  for 𝐿2(ℝ𝑛) (Freeman & Adelson, 1991)

• Expand unconstrained kernel with parameter matrices 𝑊𝑗,𝑘 ∈ ℝ𝑑𝑜𝑢𝑡⋅𝑑𝑖𝑛 × 𝑑𝑗

William T. Freeman and Edward H. Adelson. The design and use of steerable filters. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1991

𝜅′ 𝑥 = ෍

𝑗,𝑘

𝑊𝑗,𝑘𝑌𝑗
𝑘 𝑥

𝑌𝑗
𝑘 𝑔−1. 𝑥 = 𝜓𝑗 𝑔 𝑇𝑌𝑗

𝑘 𝑥

𝜓𝑗 𝜃 =
cos 𝑗𝜃 − sin 𝑗𝜃
sin 𝑗𝜃  cos 𝑗𝜃

𝜓𝑗 𝑔 = 𝐷𝑗 𝛼, 𝛽, 𝛾 ∈ ℝ2𝑗+1 × 2𝑗+1 

Wigner D-matrix 
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Solving the steerability constraint: Expand Basis

• Expand unconstrained kernel with parameter matrices 𝑊𝑗,𝑘 ∈ ℝ𝑑𝑜𝑢𝑡⋅𝑑𝑖𝑛 × 𝑑𝑗

𝜅 𝑥 = Π[𝜅′] 𝑥 = න
𝐺

𝜌𝑖𝑛 ⊗ 𝜌𝑜𝑢𝑡 𝑔 𝜅′ 𝑔−1. 𝑥 𝑑𝑔

= න
𝐺

𝜌𝑖𝑛 ⊗ 𝜌𝑜𝑢𝑡 𝑔 ෍

𝑗,𝑘

𝑊𝑗,𝑘𝑌𝑗
𝑘 𝑔−1. 𝑥 𝑑𝑔
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Solving the steerability constraint: Expand Basis

• Expand unconstrained kernel with parameter matrices 𝑊𝑗,𝑘 ∈ ℝ𝑑𝑜𝑢𝑡⋅𝑑𝑖𝑛 × 𝑑𝑗

𝜅 𝑥 = Π[𝜅′] 𝑥 = න
𝐺

𝜌𝑖𝑛 ⊗ 𝜌𝑜𝑢𝑡 𝑔 𝜅′ 𝑔−1. 𝑥 𝑑𝑔

= න
𝐺

𝜌𝑖𝑛 ⊗ 𝜌𝑜𝑢𝑡 𝑔 ෍

𝑗,𝑘

𝑊𝑗,𝑘𝜓𝑗 𝑔 𝑇𝑌𝑗
𝑘 𝑥 𝑑𝑔
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Solving the steerability constraint: Expand Basis

• Expand unconstrained kernel with parameter matrices 𝑊𝑗,𝑘 ∈ ℝ𝑑𝑜𝑢𝑡⋅𝑑𝑖𝑛 × 𝑑𝑗

𝜅 𝑥 = Π[𝜅′] 𝑥 = න
𝐺

𝜌𝑖𝑛 ⊗ 𝜌𝑜𝑢𝑡 𝑔 𝜅′ 𝑔−1. 𝑥 𝑑𝑔

= ෍

𝑗,𝑘

න
𝐺

𝜌𝑖𝑛 ⊗ 𝜌𝑜𝑢𝑡 𝑔 𝑊𝑗,𝑘 𝜓𝑗 𝑔 𝑇𝑑𝑔 𝑌𝑗
𝑘 𝑥
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Solving the steerability constraint: Expand Basis

• Expand unconstrained kernel with parameter matrices 𝑊𝑗,𝑘 ∈ ℝ𝑑𝑜𝑢𝑡⋅𝑑𝑖𝑛 × 𝑑𝑗

𝜅 𝑥 = Π[𝜅′] 𝑥 = න
𝐺

𝜌𝑖𝑛 ⊗ 𝜌𝑜𝑢𝑡 𝑔 𝜅′ 𝑔−1. 𝑥 𝑑𝑔

= ෍

𝑗,𝑘

𝑢𝑛𝑣𝑒𝑐 𝑌𝑗
𝑘 𝑥

න
𝐺

𝜓𝑗 ⊗ 𝜌𝑖𝑛 ⊗ 𝜌𝑜𝑢𝑡 𝑔 𝑑𝑔 𝑣𝑒𝑐 𝑊𝑗,𝑘
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Solving the steerability constraint: Assume Irreps

• W.l.o.g. assume input and output representations are irreducible representations
• That is 𝜌𝑜𝑢𝑡 = 𝜓𝐽 and 𝜌𝑖𝑛 = 𝜓𝑙

𝜅 𝑥 = Π[𝜅′] 𝑥 = න
𝐺

𝜓𝑙 ⊗ 𝜓𝐽 𝑔 𝜅′ 𝑔−1. 𝑥 𝑑𝑔

= ෍

𝑗,𝑘

𝑢𝑛𝑣𝑒𝑐 𝑌𝑗
𝑘 𝑥

න
𝐺

𝜓𝑗 ⊗ 𝜓𝑙 ⊗ 𝜓𝐽 𝑔 𝑑𝑔 𝑣𝑒𝑐 𝑊𝑗,𝑘
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Solving the steerability constraint: Decompose Tensor Products

• Tensor products can be decomposed as a direct sum of irreps via Clebsh-Gordan transform

𝜅 𝑥 = Π[𝜅′] 𝑥 = න
𝐺

𝜓𝑙 ⊗ 𝜓𝐽 𝑔 𝜅′ 𝑔−1. 𝑥 𝑑𝑔

= ෍

𝑗,𝑘

𝑢𝑛𝑣𝑒𝑐 𝑌𝑗
𝑘 𝑥

න
𝐺

𝜓𝑗 ⊗ 𝜓𝑙 ⊗ 𝜓𝐽 𝑔 𝑑𝑔 𝑣𝑒𝑐 𝑊𝑗,𝑘

Leon Lang and Maurice Weiler. A Wigner-Eckart theorem for group equivariant convolution kernels. International Conference on Learning Representations, 2020 

Gabriele Cesa, Leon Lang, and Maurice Weiler.  A program to build 𝐸(𝑁)-equivariant steerable CNNs. International Conference on Learning Representations. 2021

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024
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Solving the steerability constraint: Decompose Tensor Products

• Tensor products can be decomposed as a direct sum of irreps via Clebsh-Gordan transform

𝜅 𝑥 = Π[𝜅′] 𝑥 = න
𝐺

𝜓𝑙 ⊗ 𝜓𝐽 𝑔 𝜅′ 𝑔−1. 𝑥 𝑑𝑔

= ෍

𝑗,𝑘

𝑢𝑛𝑣𝑒𝑐 𝑌𝑗
𝑘 𝑥

න
𝐺

𝑄𝑗𝑙𝐽
𝑇 ໄ

𝑖

ໄ

𝑟

𝑖 𝑗𝑙𝐽

𝜓𝑖 𝑔 𝑄𝑗𝑙𝐽 𝑑𝑔 𝑣𝑒𝑐 𝑊𝑗,𝑘

Leon Lang and Maurice Weiler. A Wigner-Eckart theorem for group equivariant convolution kernels. International Conference on Learning Representations, 2020 

Gabriele Cesa, Leon Lang, and Maurice Weiler.  A program to build 𝐸(𝑁)-equivariant steerable CNNs. International Conference on Learning Representations. 2021

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024
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Solving the steerability constraint: Decompose Tensor Products

• Tensor products can be decomposed as a direct sum of irreps via Clebsh-Gordan transform

𝜅 𝑥 = Π[𝜅′] 𝑥 = න
𝐺

𝜓𝑙 ⊗ 𝜓𝐽 𝑔 𝜅′ 𝑔−1. 𝑥 𝑑𝑔

= ෍

𝑗,𝑘

𝑢𝑛𝑣𝑒𝑐 𝑌𝑗
𝑘 𝑥

𝑄𝑗𝑙𝐽
𝑇 ໄ

𝑖

ໄ

𝑟

𝑖 𝑗𝑙𝐽

න
𝐺

𝜓𝑖 𝑔 𝑑𝑔 𝑄𝑗𝑙𝐽 𝑣𝑒𝑐 𝑊𝑗,𝑘

Leon Lang and Maurice Weiler. A Wigner-Eckart theorem for group equivariant convolution kernels. International Conference on Learning Representations, 2020 

Gabriele Cesa, Leon Lang, and Maurice Weiler.  A program to build 𝐸(𝑁)-equivariant steerable CNNs. International Conference on Learning Representations. 2021

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024
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Solving the steerability constraint: Recall Fourier Transform

• The matrix coefficients of the irreducible representations form an orthogonal basis

𝜅 𝑥 = Π[𝜅′] 𝑥 = න
𝐺

𝜓𝑙 ⊗ 𝜓𝐽 𝑔 𝜅′ 𝑔−1. 𝑥 𝑑𝑔

= ෍

𝑗,𝑘

𝑢𝑛𝑣𝑒𝑐 𝑌𝑗
𝑘 𝑥

𝑄𝑗𝑙𝐽
𝑇 ໄ

𝑖

ໄ

𝑟

𝑖 𝑗𝑙𝐽

න
𝐺

𝜓𝑖 𝑔 𝜓0 𝑔 𝑑𝑔 𝑄𝑗𝑙𝐽 𝑣𝑒𝑐 𝑊𝑗,𝑘

Leon Lang and Maurice Weiler. A Wigner-Eckart theorem for group equivariant convolution kernels. International Conference on Learning Representations, 2020 

Gabriele Cesa, Leon Lang, and Maurice Weiler.  A program to build 𝐸(𝑁)-equivariant steerable CNNs. International Conference on Learning Representations. 2021

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024

= 1
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Solving the steerability constraint: Recall Fourier Transform

• The matrix coefficients of the irreducible representations form an orthogonal basis

𝜅 𝑥 = Π[𝜅′] 𝑥 = න
𝐺

𝜓𝑙 ⊗ 𝜓𝐽 𝑔 𝜅′ 𝑔−1. 𝑥 𝑑𝑔

= ෍

𝑗,𝑘

𝑢𝑛𝑣𝑒𝑐 𝑌𝑗
𝑘 𝑥

𝑄𝑗𝑙𝐽
𝑇 ໄ

𝑖

ໄ

𝑟

𝑖 𝑗𝑙𝐽

𝛿𝑖=0 𝑄𝑗𝑙𝐽 𝑣𝑒𝑐 𝑊𝑗,𝑘

Leon Lang and Maurice Weiler. A Wigner-Eckart theorem for group equivariant convolution kernels. International Conference on Learning Representations, 2020 

Gabriele Cesa, Leon Lang, and Maurice Weiler.  A program to build 𝐸(𝑁)-equivariant steerable CNNs. International Conference on Learning Representations. 2021

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024
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Solving the steerability constraint: Sparse Subset of Weights

• The matrix coefficients of the irreducible representations form an orthogonal basis

𝜅 𝑥 = Π[𝜅′] 𝑥 = න
𝐺

𝜓𝑙 ⊗ 𝜓𝐽 𝑔 𝜅′ 𝑔−1. 𝑥 𝑑𝑔

= ෍

𝑗,𝑘

𝑢𝑛𝑣𝑒𝑐 𝑌𝑗
𝑘 𝑥

𝑄𝑗𝑙𝐽
𝑇 𝑃𝑗𝑙𝐽𝑄𝑗𝑙𝐽  𝑣𝑒𝑐 𝑊𝑗,𝑘

Π𝑗𝑙𝐽

Leon Lang and Maurice Weiler. A Wigner-Eckart theorem for group equivariant convolution kernels. International Conference on Learning Representations, 2020 

Gabriele Cesa, Leon Lang, and Maurice Weiler.  A program to build 𝐸(𝑁)-equivariant steerable CNNs. International Conference on Learning Representations. 2021

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024

𝑃𝑗𝑙𝐽 =

𝟏
𝟏

𝟎
𝟎

𝟏
⋱

𝟏
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Result

• Complete theoretical description of the space of 

𝐺-steerable filters

• For any compact 𝐺 and any transformation laws 𝜌𝑖𝑛, 𝜌𝑜𝑢𝑡

• Algorithm to explicitly construct the steerable 

convolution layers

• General implementation in the form of a PyTorch library: 

github.com/QUVA-Lab/escnn



61

General Program to implement 𝐺-equivariance: 2D images

2D rotational 
symmetries

Maurice Weiler* and Gabriele Cesa*. 

General E(2)-Equivariant Steerable CNNs,

Neural Information Processing Systems (NeurIPS), 2019

MNIST 
Variations

ℝ2, +  ⋊ 𝐺 < 𝐸(2)
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General Program to implement 𝐺-equivariance: 3D voxel data

Axial rotational 
symmetries in 3D

Gabriele Cesa, Leon Lang, Maurice Weiler,

A Program to build E(n)-Equivariant Steerable CNNs,

International Conference on Representation Learning, 2022

𝑂

𝑂

𝐼

𝐼

𝑇

𝑆𝑂 2

𝐹

𝑀

𝐼𝑛𝑣

3D rotational 
symmetries
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Beyond fixed Steerable Basis

Maksim Zhdanov, Nico Hoffmann, Gabriele Cesa,

Implicit Convolutional Kernels for Steerable CNNs. Neural Information Processing Systems, 2023

𝑆𝑂 2

𝐹

𝑀

𝐼𝑛𝑣

N-body system 
+ gravity

ModelNet40 
Axial rotational symmetries in 3D

Learn 𝐺-equivariant MLP to parameterize 𝐺-steerable kernel

𝜅𝜃 𝑔. 𝑥 = 𝜌𝑖𝑛 ⊗ 𝜌𝑜𝑢𝑡 𝑔 𝜅𝜃 𝑥
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Local Symmetries: Symmetries vary between features and scales

Maurice Weiler* and Gabriele Cesa*. 

General E(2)-Equivariant Steerable CNNs,

Neural Information Processing Systems (NeurIPS), 2019

source: Tiffany Bailey, CC BY 2.0

• Reflection symmetry in the class

• Rotational symmetry in the local patterns

source: MikeLynch, CC BY-SA 3.0 

https://commons.wikimedia.org/wiki/File:Gendo_the_Hedgehog_(6111053153).jpg
https://creativecommons.org/licenses/by/2.0/legalcode
https://commons.wikimedia.org/wiki/File:Sunflower_Field_near_Raichur,_India.jpg
https://creativecommons.org/licenses/by-sa/3.0/legalcode
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Group Restriction

𝑮 𝑯 < 𝑮
Image source:

 Tiffany Bailey, CC BY 2.0

• Model the loss of symmetries at larger scales by relaxing the equivariance constraint 

at different depths: 

• exploit more symmetries in the first layers 

• restrict later to the symmetries of your output

Maurice Weiler* and Gabriele Cesa*. 

General E(2)-Equivariant Steerable CNNs,

Neural Information Processing Systems (NeurIPS), 2019

https://commons.wikimedia.org/wiki/File:Gendo_the_Hedgehog_(6111053153).jpg
https://creativecommons.org/licenses/by/2.0/legalcode
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Experiments on Natural Images

STL -10

AA = Auto Augment

Maurice Weiler* and Gabriele Cesa*. 

General E(2)-Equivariant Steerable CNNs,

Neural Information Processing Systems (NeurIPS), 2019
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Imperfect or Unknown symmetries

Finzi, M., Benton, G., and Wilson, A. G. Residual pathway priors for soft equivariance constraints. Advances in Neural Information Processing Systems (NeurIPS) 2021.

van der Ouderaa, T., Romero, D. W., and van der Wilk, M. Relaxing equivariance constraints with non-stationary continuous filters. Advances in Neural Information Processing 
Systems (NeurIPS), 2022

Wang, R., Walters, R., and Yu, R. Approximately equivariant networks for imperfectly symmetric dynamics. International Conference on Machine Learning (ICML), 2022
Romero, D. W. and Lohit, S. Learning partial equivariances from data. Advances in Neural Information Processing Systems (NeurIPS), 2022

• Group Restriction : layer adapted to the symmetries manifested in the scale of its field of view

• Still requires knowledge about these symmetries

• Can we learn the level of equivariance from data?

𝑮𝟏? 𝑮𝟐?
Image source:

 Tiffany Bailey, CC BY 2.0

𝑮𝟑?

https://commons.wikimedia.org/wiki/File:Gendo_the_Hedgehog_(6111053153).jpg
https://creativecommons.org/licenses/by/2.0/legalcode


Agenda

68

From Group Convolution to Steerable Filters

Steerable Fields and Representation Theory

Steerable CNNs

Hard Priors: solving the exact kernel constraint

Soft Priors: learnable kernel constraint
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Learnable Soft Prior

Learn probability distribution 𝜆 over a large group 𝐺

• uniform: indicates equivariance over full group 𝐺

• Supported on subgroup 𝐻 ⊂ 𝐺: indicates equivariance over full group 𝐺

• Low values outside subgroup 𝐻 ⊂ 𝐺: indicates “soft / relaxed prior”

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024

0 𝜋

2
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𝜋

2
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Learnable steerability constraint: Reynolds Operator

• Linear projection Π: space of unconstrained kernels    ⟼   space of equivariant kernels

𝐾′: ℝ𝑛 → ℝ𝑑𝑜𝑢𝑡 × 𝑑𝑖𝑛  

Π[𝐾′] 𝑥 = න
𝐺

𝜌𝑜𝑢𝑡 𝑔 𝐾′ 𝑔−1. 𝑥 𝜌𝑖𝑛 𝑔 T 𝑑𝑔

𝐾 = Π 𝐾′ : ℝ𝑛 → ℝ𝑑𝑜𝑢𝑡 × 𝑑𝑖𝑛  
Π
⟼

𝐾 𝑥 = 𝜌𝑜𝑢𝑡 𝑔 𝐾 𝑔−1. 𝑥 𝜌𝑖𝑛 𝑔 𝑇
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Learnable steerability constraint: Reynolds Operator

• Linear projection Π: space of unconstrained kernels    ⟼   space of equivariant kernels

𝐾′: ℝ𝑛 → ℝ𝑑𝑜𝑢𝑡 × 𝑑𝑖𝑛  

Π𝜆[𝐾′] 𝑥 = න
𝐺

𝜌𝑜𝑢𝑡 𝑔 𝐾′ 𝑔−1. 𝑥 𝜌𝑖𝑛 𝑔 T𝜆(𝑔) 𝑑𝑔

𝐾 = Π𝜆 𝐾′ : ℝ𝑛 → ℝ𝑑𝑜𝑢𝑡 × 𝑑𝑖𝑛  
Π𝜆
⟼

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024
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+

mirroring
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0.4

0.6

0.8

1

1.2

 Uniform = O(2)  Rotation = SO(2)  Mirroring

𝜆(𝑔)

𝑔
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Learnable steerability constraint: Repeat Previous Derivations

𝜅 𝑥 = Π𝜆[𝜅′] 𝑥 = න
𝐺

𝜓𝑙 ⊗ 𝜓𝐽 𝑔 𝜅′ 𝑔−1. 𝑥 𝜆(𝑔)𝑑𝑔

= ෍

𝑗,𝑘

𝑢𝑛𝑣𝑒𝑐 𝑌𝑗
𝑘 𝑥

𝑄𝑗𝑙𝐽
𝑇 ໄ

𝑖

ໄ

𝑟

𝑖 𝑗𝑙𝐽

න
𝐺

𝜓𝑖 𝑔 𝜆(𝑔) 𝑑𝑔 𝑄𝑗𝑙𝐽 𝑣𝑒𝑐 𝑊𝑗,𝑘

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024
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Learnable steerability constraint: Recall Fourier Transform

• The matrix coefficients of the irreducible representations form an orthogonal basis

𝑄𝑗𝑙𝐽
𝑇 ໄ

𝑖

ໄ

𝑟

𝑖 𝑗𝑙𝐽

න
𝐺

𝜓𝑖 𝑔 𝜆(𝑔) 𝑑𝑔 𝑄𝑗𝑙𝐽 𝑣𝑒𝑐 𝑊𝑗,𝑘

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024

𝜅 𝑥 = Π𝜆[𝜅′] 𝑥 = න
𝐺

𝜓𝑙 ⊗ 𝜓𝐽 𝑔 𝜅′ 𝑔−1. 𝑥 𝜆(𝑔)𝑑𝑔

= ෍

𝑗,𝑘

𝑢𝑛𝑣𝑒𝑐 𝑌𝑗
𝑘 𝑥
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Learnable steerability constraint: Recall Fourier Transform

• The matrix coefficients of the irreducible representations form an orthogonal basis

𝑄𝑗𝑙𝐽
𝑇 ໄ

𝑖

ໄ

𝑟

𝑖 𝑗𝑙𝐽
መ𝜆 𝜓𝑖

𝑑𝑖

𝑄𝑗𝑙𝐽 𝑣𝑒𝑐 𝑊𝑗,𝑘

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024

𝜅 𝑥 = Π𝜆[𝜅′] 𝑥 = න
𝐺

𝜓𝑙 ⊗ 𝜓𝐽 𝑔 𝜅′ 𝑔−1. 𝑥 𝜆(𝑔)𝑑𝑔

= ෍

𝑗,𝑘

𝑢𝑛𝑣𝑒𝑐 𝑌𝑗
𝑘 𝑥
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Learnable steerability constraint: Recall Fourier Transform

• The matrix coefficients of the irreducible representations form an orthogonal basis

𝑄𝑗𝑙𝐽
𝑇 𝑃𝜆𝑗𝑙𝐽𝑄𝑗𝑙𝐽  𝑣𝑒𝑐 𝑊𝑗,𝑘

Π𝜆𝑗𝑙𝐽

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024

𝑃𝜆𝑗𝑙𝐽 =

෡𝜆 𝜓1

𝑑1

0
෡𝜆 𝜓2

𝑑2

෡𝜆 𝜓0

𝑑0

⋱
෡𝜆 𝜓4

𝑑4

𝜅 𝑥 = Π𝜆[𝜅′] 𝑥 = න
𝐺

𝜓𝑙 ⊗ 𝜓𝐽 𝑔 𝜅′ 𝑔−1. 𝑥 𝜆(𝑔)𝑑𝑔

= ෍

𝑗,𝑘

𝑢𝑛𝑣𝑒𝑐 𝑌𝑗
𝑘 𝑥
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Side to Side comparison

𝜅 𝑥 = ෍

𝑗,𝑘

𝑢𝑛𝑣𝑒𝑐 𝑄𝑗𝑙𝐽
𝑇 ⋅ 𝑄𝑗𝑙𝐽 𝑣𝑒𝑐 𝑊𝑗,𝑘 𝑌𝑗

𝑘 𝑥

Π𝜆𝑗𝑙𝐽

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024

𝑃𝜆𝑗𝑙𝐽 = ໄ

𝑖

ໄ

𝑟

𝑖 𝑗𝑙𝐽
መ𝜆 𝜓𝑖

𝑑𝑖

𝑃𝑗𝑙𝐽 = ໄ

𝑖

ໄ

𝑟

𝑖 𝑗𝑙𝐽

𝛿𝑖=0

Π𝑗𝑙𝐽

𝑃𝑗𝑙𝐽 =

𝟏
𝟏

𝟎
𝟎

𝟏
⋱

𝟏

𝑃𝜆𝑗𝑙𝐽 =

෡𝜆 𝜓1

𝑑1

0
෡𝜆 𝜓2

𝑑2

෡𝜆 𝜓0

𝑑0

⋱
෡𝜆 𝜓4

𝑑4
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Side to Side comparison: Simple MLP Setting

• Consider MLP or 1x1 conv with 𝐺 = 𝑆𝑂(2)

𝜅 = 𝑢𝑛𝑣𝑒𝑐 𝑄𝑙𝐽
𝑇  ⋅  𝑄𝑙𝐽  𝑣𝑒𝑐 𝑊  

𝑃𝜆𝑙𝐽

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024

𝑃𝑙𝐽 𝟏  
𝟏  

𝟎  
𝟎  

𝟏  
⋱  

𝟏

መ𝜆 𝜓1

𝑑1

 

0  
መ𝜆 𝜓2

𝑑2

 

መ𝜆 𝜓0

𝑑0

 

⋱  
መ𝜆 𝜓4

𝑑4

𝜓0 𝜓1 𝜓2 𝜓3 𝜓4 𝜓5 𝜓6 𝜓7

መ𝜆=

𝜓0 𝜓1 𝜓2 𝜓3 𝜓4 𝜓5 𝜓6 𝜓7

መ𝜆=

𝜅 = 𝜅 =

𝜓0 𝜓1 𝜓2 𝜓3 𝜓4 𝜓5 𝜓6 𝜓7 𝜓0 𝜓1 𝜓2 𝜓3 𝜓4 𝜓5 𝜓6 𝜓7

𝜓0

𝜓1

𝜓2

𝜓3

𝜓4

𝜓5

𝜓6

𝜓7

𝜓0

𝜓1

𝜓2

𝜓3

𝜓4

𝜓5

𝜓6

𝜓7
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Learnable steerability constraint: Implementation Details

• Everything is differentiable : can directly backpropagate to መ𝜆 𝜓𝑖

• Normalise 𝜆 to a PDF:

መ𝜆 = 𝐹𝑇 softmax 𝐼𝐹𝑇 ෡𝜆′

• Initialize 𝜆 to uniform distribution

መ𝜆 𝜓𝑖 = ቊ
1,  𝑖 = 0
𝟎𝑑𝑖×𝑑𝑖

,  𝑖 ≠ 0

• Tunable band-limit 𝐿 on መ𝜆 to regularise the likelihood and reduce parameters: 

𝐿 = 4 𝐿 = 16𝐿 = 0

𝜆(𝑔)

𝑔 ∈ 𝑂 2𝑔 ∈ 𝑂 2 𝑔 ∈ 𝑂 2
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Learnable steerability constraint: Implementation Details

• Regularize subsequent layers with KL-divergence:

𝐿𝐾𝐿 = ෍

𝑛

𝑁−1

𝐾𝐿 𝜆𝑛+1 |detach(𝜆𝑛))

With KL

Without 

KL

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024
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Evaluation on Double-Digits MNIST 

• Rectangular images containing 2 digits, independently transformed

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024
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Evaluation on Double-Digits MNIST 

• Learnt Likelihood matches measured equivariance error

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024
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Evaluation on Double-Digits MNIST 

• Rectangular images containing 2 digits, independently transformed

Maurice Weiler* and Gabriele Cesa*. General E(2)-Equivariant Steerable CNNs, Neural Information Processing Systems (NeurIPS), 2019

Finzi, M., Benton, G., and Wilson, A. G. Residual pathway priors for soft equivariance constraints. Advances in Neural Information Processing Systems (NeurIPS) 2021.

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024
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Evaluation on MedMNIST3D dataset

• 3D voxel data

Maurice Weiler* and Gabriele Cesa*. General E(2)-Equivariant Steerable CNNs, Neural Information Processing Systems (NeurIPS), 2019

Finzi, M., Benton, G., and Wilson, A. G. Residual pathway priors for soft equivariance constraints. Advances in Neural Information Processing Systems (NeurIPS) 2021.

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024
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Evaluation on Smoke and JetFlow simulations

• 2D frames from simulation

Maurice Weiler* and Gabriele Cesa*. General E(2)-Equivariant Steerable CNNs, Neural Information Processing Systems (NeurIPS), 2019

Finzi, M., Benton, G., and Wilson, A. G. Residual pathway priors for soft equivariance constraints. Advances in Neural Information Processing Systems (NeurIPS) 2021.

Wang, R., Walters, R., and Yu, R. Approximately equivariant networks for imperfectly symmetric dynamics. International Conference on Machine Learning (ICML), 2022

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024
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Conclusion

Maurice Weiler* and Gabriele Cesa*. General E(2)-Equivariant Steerable CNNs, Neural Information Processing Systems (NeurIPS), 2019

Gabriele Cesa, Leon Lang, Maurice Weiler, A Program to build E(n)-Equivariant Steerable CNNs, International Conference on Representation Learning, 2022

Maksim Zhdanov, Nico Hoffmann, Gabriele Cesa, Implicit Convolutional Kernels for Steerable CNNs. Neural Information Processing Systems, 2023

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024

• Complete theoretical description of the space of 

𝐺-steerable filters

• For any compact 𝐺 and any transformation laws 𝜌𝑖𝑛, 𝜌𝑜𝑢𝑡

• Algorithm to explicitly construct the steerable 

convolution layers github.com/QUVA-Lab/escnn

• Effective way to relax hard inductive bias / learn it

• Symmetries vary between features and scales.

• Overconstraining leads to performance reductions.

• CNN layers can be fine-tuned with group restrictions. 
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Side to Side comparison: Simple MLP Setting

𝜅 = 𝑢𝑛𝑣𝑒𝑐 𝑄𝑙𝐽
𝑇  ⋅  𝑄𝑙𝐽  𝑣𝑒𝑐 𝑊  

𝑃𝜆𝑙𝐽

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024

𝑃𝑙𝐽 𝟏  
𝟏  

𝟎  
𝟎  

𝟏  
⋱  

𝟏

መ𝜆 𝜓1

𝑑1

 

0  
መ𝜆 𝜓2

𝑑2

 

መ𝜆 𝜓0

𝑑0

 

⋱  
መ𝜆 𝜓4

𝑑4

𝜓0 𝜓1 𝜓2 𝜓3 𝜓4 𝜓5 𝜓6 𝜓7

መ𝜆=

𝜓0 𝜓1 𝜓2 𝜓3 𝜓4 𝜓5 𝜓6 𝜓7

መ𝜆=

𝜅 = 𝜅 =

𝜓0 𝜓1 𝜓2 𝜓3 𝜓4 𝜓5 𝜓6 𝜓7 𝜓0 𝜓1 𝜓2 𝜓3 𝜓4 𝜓5 𝜓6 𝜓7

𝜓0

𝜓1

𝜓2

𝜓3

𝜓4

𝜓5

𝜓6

𝜓7

𝜓0

𝜓1

𝜓2

𝜓3

𝜓4

𝜓5

𝜓6

𝜓7

• Consider MLP or 1x1 conv with 𝐺 = 𝑆𝑂(2)
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Other experiments
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Evaluation on Double-Digits MNIST 

• Rectangular images containing 2 digits, independently transformed

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024
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Effect of Band-Limiting on Double-MNIST

• Rectangular images containing 2 digits, independently transformed

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024
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Effect of Bandlimiting on Smoke dataset

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024
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Experiments with more effective architectures

Lars Veefkind and Gabriele Cesa. A Probabilistic Approach to Learning the Degree of Equivariance in Steerable CNNs. International Conference on Machine Learning. 2024



Agenda

93

Groups

Group Conv

Non-Linearities
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Running examples 

Discrete planar translations: (ℤ2, +)

Discrete planar rotations: 𝐶𝑛

Symmetries of squared grid: p4 = ℤ2, +  ⋊ 𝐶4

𝐶6

p4 = ℤ2, +  ⋊ 𝐶4



95

Running examples 

Discrete planar translations: (ℤ2, +)

Discrete planar rotations and mirroring : 𝐷𝑛

Symmetries of squared grid: p4m = ℤ2, +  ⋊ 𝐷4

𝐷6

p4m = ℤ2, +  ⋊ 𝐷4
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Generalize Convolution

Group cross-correlation:

…

…

translations

rotations

[𝜅 ⋆ 𝑓]: 𝐺 → ℝ𝑐𝑜𝑢𝑡 𝑓: 𝑋 → ℝ𝑐𝑖𝑛𝜅: 𝑋 → ℝ𝑐𝑜𝑢𝑡×𝑐𝑖𝑛

𝜅 ⋆ 𝑓 𝑔 = ෍

x∈𝑋

𝜅 𝑔−1 x 𝑓(x)

Taco S. Cohen and Max Welling, Group Equivariant Convolutional Networks,

International Conference on Machine Learning (ICML), 2016 
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⋆

Group Convolution
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⋆

Group Convolution
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⋆

Group Convolution



100

⋆

Group Convolution
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⋆

Group Convolution
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⋆

Group Convolution
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⋆

Group Convolution
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Equivariant Non-Linearities

• Intermediate feature 𝑓: ℝ𝑛 → ℝ𝑑

• Transforms under representation of 𝐺   𝜌: 𝐺 → ℝ𝑑 ×𝑑

• We can NOT always use point-wise non-linearities (e.g ReLU)

𝑔. 𝑓 𝑥 = 𝜌 𝑔 𝑓(𝑔−1𝑥)

𝜌 𝑟𝜃 =
cos 𝜃 − sin 𝜃
sin 𝜃  cos 𝜃

𝜌 𝑟𝜃 =
cos 𝜃 − sin 𝜃
sin 𝜃  cos 𝜃

ReLU ReLU
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Equivariant Non-Linearities: Fourier Transform based

• Imitate a GCNN 

• Choose a band-limited subset of irreps 𝜌𝑖 𝑖∈I ⊂ ෠𝐺 

• A feature vector 𝑓 𝑥 ∈ ℝ𝑑 represents a bandlimited signal in 𝐿2(𝐺)

• Apply point-wise non-linearity 𝜎 (e.g. ReLU) by:

• Sampling the signal 𝑓(𝑥) on a finite subset 𝒢 ⊂ 𝐺              

• Applying 𝜎 on each sample

• Reconstruct a band-limited signal from the samples

𝑤1 𝑡

𝑤2 𝑡

𝑤3 𝑡

𝑤4 𝑡

𝑤5 𝑡

𝑤6 𝑡

𝑤0 𝑡
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Equivariant Non-Linearities: Fourier Transform based

• Imitate a GCNN 

• Choose a band-limited subset of irreps 𝜌𝑖 𝑖∈I ⊂ ෠𝐺 

• A feature vector 𝑓 𝑥 ∈ ℝ𝑑 represents a bandlimited signal in 𝐿2(𝐺)

• Apply point-wise non-linearity 𝜎 (e.g. ReLU) by:

• Sampling the signal 𝑓(𝑥) on a finite subset 𝒢 ⊂ 𝐺              (discrete Inverse Fourier Transform)

• Applying 𝜎 on each sample

• Reconstruct a band-limited signal from the samples          (discrete Fourier Transform)

• Band-limit + sufficient samples to control reconstruction error



107

Equivariant Non-Linearities: Fourier Transform based

• Imitate a GCNN 

• Choose a band-limited subset of irreps 𝜌𝑖 𝑖∈I ⊂ ෠𝐺 

• A feature vector 𝑓 𝑥 ∈ ℝ𝑑 represents a bandlimited signal in 𝐿2(𝐺)

• Apply point-wise non-linearity 𝜎 (e.g. ReLU) by:

• Sampling the signal 𝑓(𝑥) on a finite subset 𝒢 ⊂ 𝐺              (discrete Inverse Fourier Transform)

• Applying 𝜎 on each sample

• Reconstruct a band-limited signal from the samples          (discrete Fourier Transform)

• Can also consider functions on homogeneous space 𝑋 rather than 𝐺 for reduced complexity. 

Recall Spherical CNNs
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Convolution and Message Passing

⋆ =

𝜅 ⋆ 𝑓 𝑦 = ෍

𝑥∈ℤ𝑛

𝜅 𝑥 − 𝑦  𝑓 𝑥



Convolution and Message Passing

⋆ = ⋆ =

𝜅 ⋆ 𝑓 𝑦 = ෍

𝑥∈ℤ𝑛

𝜅 𝑥 − 𝑦  𝑓 𝑥 𝜅 ⋆ 𝑓 𝑖 = ෍

𝑗∈𝑁𝑖

𝜅 𝑥𝑖 − 𝑥𝑗  𝑓𝑗

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley. Tensor field networks: Rotation-and translation-equivariant neural networks 
for 3d point clouds. (2018)
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