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In early 1974, I was visiting the Watson Research Center and I got the idea 
of calling GSdel on the phone. I picked up the phone and called and GSdel 
answered the phone. I said, "Professor GSdel, I 'm fascinated by your incom- 
pleteness theorem. I have a new proof based on the Berry paradox that  I 'd  like 
to tell you about." GSdel said, "It doesn't mat ter  which paradox you use." He 
had used a paradox called the liar paradox. I said, "Yes, but  this suggests to 
me an information-theoretic view of incompleteness that  I would very much like 
to tell you about  and get your reaction." So GSdel said, "Send me one of your 
papers. I'll take a look at it. Call me again in a few weeks and I'll see if I give 
you an appointment." 

I had had this idea in 1970, and it was 1974. So far I had only published brief 
abstracts. Fortunately I had just gotten the galley proofs of my first substantial 
paper on this subject. I put  these in an envelope and mailed them to GSdel. 

I called GSdel again and he gave me an appointment! As you can imagine I 
was delighted. I figured out how to go to Princeton by train. The day arrived 
and it had snowed and there were a few inches of snow everywhere. This was 
certainly not going to stop me from visiting GSdel! I was about  to leave for the 
train when the phone rang. It was GSdel's secretary, who said that  Giidel was 
very careful about  his health and because of the snow he wasn't  coming to the 
Institute that  day. Therefore, my appointment was canceled. 

And that 's  how I had two phone conversations with GSdel bu t  never met  
him. I never tried again. 

I 'd like to tell you what I would have told GSdel. What  I wanted to tell GSdel 
is the difference between what you get when you study the limits of mathematics  
the way G6del did, using the paradox of the liar, and what I get using the Berry  
paradox instead. 

What  is the paradox of the liar? Well, the paradox of the liar is 

"This statement is false!" 

Why is this a paradox? What  does "false" mean? Well, "false" means "does 
not correspond to reality." This statement says that  it is false. If tha t  doesn' t  
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correspond to reality, it must mean that  the statement is true, right? On the 
other hand, if the statement is true it means that  what it says corresponds to 
reality. But what it says is that  it is false. Therefore the statement must be false. 
So whether you assume that  it's true or false, you must conclude the opposite! 
So this is the paradox of the liar. 

Now let's look at the Berry paradox. First of all, why "Berry"? Well it has 
nothing to do with fruit! This paradox was published at  the beginning of this 
century by Bertrand Russell. Now there's a famous paradox which is called 
Russell's paradox and this is not it! This is another paradox that  he published. 
I guess people felt that  if you just said the Russell paradox and there were 
two of them it would be confusing. And Bertrand Russell when he published 
this paradox had a footnote saying that  it was suggested to him by an Oxford 
University librarian, a Mr G. G. Berry. So it ended up being called the Berry 
paradox even though it was published by Russell. 

Here is a version of the Berry paradox: 

"the first positive integer that  cannot 
be specified in less than a billion words". 

This is a phrase in English that  specifies a particular positive integer. Which 
positive integer? Well, there are an infinity of positive integers, but at any given 
time there are only a finite number of words in English. Therefore, if you have a 
billion words, there's only going to be a finite number of expressions of any given 
finite length. But there's an infinite number of positive integers. Therefore most 
positive integers require more than a billion words to describe. So let's just take 
the first one. But wait a second. By definition this integer is supposed to take 
a billion words to specify, but I just specified it using much less than a billion 
words! That 's  the Berry paradox. 

What  does one do with these paradoxes? Let's take a look again at the liar 
paradox: 

"This statement is false!" 

The first thing that  GSdel does is to change it from "This statement is false" to 
"This statement is unprovable": 

"This statement is unprovable!" 

What  do we mean by "unprovable"? 
In order to be able to show that  mathematical reasoning has limits you've 

got to say very precisely what the axioms and methods of reasoning are that  
you have in mind. In other words, you have to specify how mathematics is done 
with mathematical precision so that  it becomes a clear-cut question. Hilbert put 
it this way: The rules should be so clear, that  if somebody gives you what they 
claim is a proof, there is a mechanical procedure that  will check whether the 
proof is correct or not, whether it obeys the rules or not. This proof-checking 
algorithm is the heart of this notion of a completely formal axiomatic system. 
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So "This statement is unprovable" doesn't  mean unprovable in a vague way. 
It  means unprovable when you have in mind a specific formal axiomatic system 
FAS with its mechanical proof-checking algorithm. So there is a subscript: 

"This statement is unprovableFAS!" 

And the particular formal axiomatic system that  G6del was interested in 
dealt with the positive integers and addition and multiplication, that  was what it 
was about.  Now what happens with "This statement is unprovable" ? Remember 
the liar paradox: 

"This statement is false!" 

But here 
"This statement is unprovableFAs!" 

the paradox disappears and we get a theorem. We get incompleteness, in fact. 
Why? 

Consider "This statement is unprovable". There are two possibilities: either 
it's provable or it 's unprovable. 

If "This statement is unprovable" turns out to be unprovable within the 
formal axiomatic system, that  means that  the formal axiomatic system is in- 
complete. Because if "This s tatement is unprovable" is unprovable, then it 's a 
true statement.  Then there's something true that 's  unprovable which means that  
the system is incomplete. So that  would be bad. 

What  about the other possibility? What  if 

"This s tatement is unprovablepAs!" 

is provable? That ' s  even worse. Because if 

"This statement is unprovableFAs!" 

is provable and it says of itself that  it 's unprovable, then we're proving something 
that 's  false. 

So GSdel's incompleteness result is tha t  if you assume that  only true theorems 
are provable, then this 

"This s tatement is unprovableFAs!" 

is an example of a statement that  is true but  unprovable. 
But  wait a second, how can a statement deny that  it is provable? In what 

branch of mathematics does one encounter such statements? GSdel cleverly con- 
verts this 

"This s tatement is unprovableFAs!" 

into an arithmetical statement,  a statement that  only involves positive integers 
and addition and multiplication. How does he do this? 

The idea is called g6del numbering. We all know that  a string of characters 
can also be thought of as a number. Characters are either 8 or 16 bits in binary. 
Therefore, a string of N characters is either 8N or 16N bits, and it is also 
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the base-two notation for a large positive integer. Thus every mathematical  
statement in a formal axiomatic system is also a number. And a proof, which 
is a sequence of steps, is also a long character string, and therefore is also a 
number. Then you can define this very funny numerical relationship between 
two numbers X and Y, which is that  X is the gSdel number of a proof of the 
statement whose gSdel number is Y. Thus 

"This statement is unprovableFAs!" 

ends up looking like a very complicated numerical statement.  
There is another serious difficulty. How can this statement refer to itself? Well 

you can't  directly put  the gSdel number of this s tatement inside this statement;  
it's too big to fit! But  you can do it indirectly. This is how G6del does it: The  
statement doesn't  refer to itself directly. It says that  if you perform a certain 
procedure to calculate a number, this is the gSdel number of a statement which 
cannot be proved. And it turns out that  the number you calculate is precisely 
the gSdel number of the entire statement 

"This s tatement is unprovableFAs!" 

That  is how GSdel proves his incompleteness theorem. 
What  happens if you start  with this 

"the first positive integer that  cannot 
be specified in less than a billion words" 

instead? Everything has a rather  different flavor. Let 's see why. 
The first problem we've got here is what does it mean to specify a number 

using words in English? This is very vague. So instead let's use a computer.  Pick 
a standard general-purpose computer,  in other words, pick a universal Turing 
machine (UTM). Now the way you specify a number is with a computer program. 
When you run this computer program on your UTM it prints out this number 
and halts. So a program is said to specify a number, a positive integer, if you 
start  the program running on your standard UTM, and after a finite amount  of 
time it prints out one and only one great big positive integer and it says "I 'm 
finished" and halts. 

Now it's not English text measured in words, it 's computer programs mea- 
sured in bits. This is what we get. It 's 

"the first positive integer that  cannot 
be specified U T M  by a computer program 
with less than a billion bits". 

By the way the computer program must be self-contained. If it has any data,  
the data  is included in the program as a constant. 
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Next we have to do what GSdel did when he changed "This statement is 
false" into "This statement is unprovable." So now it's 

"the first positive integer that can be provedFAs 
to have the property that it cannot 
be specifieduTM by a computer program 
with less than a billion bits". 

And to make things clearer let's replace "a billion bits" by "N bits". So we get: 

"the first positive integer that can be provedFAs 
to have the property that it cannot 
be specifieduTM by a computer program 
with less than N bits". 

The interesting fact is that there is a computer program of length 

log 2 N + CFAS 

bits for calculating this number that supposedly cannot be calculated by any 
program that is less than N bits long. And 

log 2 N + CFAS 

is much much smaller than N for sufficiently large N. Thus for such N our FAS 
cannot enable us to exhibit any numbers that require programs more than N 
bits long. This is my information-theoretic incompleteness result that I wanted 
to discuss with G6del. 

Why does there have to exist a program that is 

log 2 N + CFAS 

bits long for calculating 

"the first positive integer that can be provedFAs 
to have the property that it cannot 
be specifiedvTM by a computer program 
with less than N bits" ? 

Well here is how you show it. 
You start r,,nning through all possible proofs in the formal axiomatic system 

in size order. You apply the proof-checking algorithm to each proof. And after 
filtering out all the invalid proofs, you search for the first proof that a particular 
positive integer requires at least an N-bit program. 

The algorithm that I've just described is very slow but it is very simple. 
It's basically just the proof-checking algorithm, which is CFAS bits long, and the 
number N, which is log 2 N bits long. So the total number of bits is just 

log 2 N + CFAS, 
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as was claimed. That concludes the proof of my incompleteness result that I 
wanted to discuss with G6del. 

Over the years, I've continued to do research on my information-theoretic 
approach to incompleteness. Here are the three most dramatic results that I've 
obtained thus far: 

1) Call a program "elegant" if no smaller program produces the same output. 
You can't prove that a program is elegant. More precisely, N bits of axioms 
are needed to be able to prove that an N-bit program is elegant. 

2) Consider the binary representation of the halting probability Y), which is the 
probability that a program chosen at random halts. You can't prove what 
one of the bits of Y) is. More precisely, N bits of axioms are needed to be 
able to determine N bits of ~. 

3) I have constructed a perverse algebraic equation 

P(K,X,Y,Z,...) = 0 .  

Vary the parameter K and ask whether this equation has finitely or in~nltely 
many whole-number solutions. In each case, this turns out to be equivalent 
to determining one of the bits of 1"2. Therefore N bits of axioms are needed 
to be able to settle N cases. 

These striking examples show that  sometimes you have to put more into a 
set of axioms in order to get more out. Results (2) and (3) are extreme cases. 
They are accidental mathematical assertions that  are true for no reason at all. In 
other words, the questions considered in (2) and (3) are irreducible; essentially 
the only way to prove them is to assume them as new axioms. So in this extreme 
case, what you get out of a set of axioms is only what you put  in. 

How do I prove these incompleteness results (1), (2) and (3)? As before, the 
basic idea is the paradox of "the first positive integer that  cannot be specified 
in less than a billion words." For (1) the connection with the Berry paradox 
is obvious. For (2) and (3) it was obvious to me only in the case where one is 
talking about determining the f irst  N bits of ~.  In the case where the N bits 
of ~ are scattered about, my original proof of (2) and (3) (the one given in my 
Cambridge University Press monograph) is decidedly not along the lines of the 
Berry paradox. But a few years later I was happy to discover a new and more 
straightforward proof of (2) and (3) that  is along the lines of the Berry paradox! 

In addition to working on incompleteness, I have also devoted a great deal of 
thought to the central idea that  can be extracted from my version of the Berry 
paradox, which is to define the program-size complexity of something to be the 
size in bits of the smallest program that  calculates it. I have developed a general 
theory dealing with program-size complexity that  I call algorithmic information 
theory (A/T). 

A /T  is an elegant theory of complexity, perhaps the most developed of all such 
theories. But as von Neumann said, pure mathematics is easy compared to the 
real world! AIT provides the correct complexity concept for metamathematics,  
but not necessarily for other more practical fields. 
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Program-size complexity in AIT is analogous to entropy in statistical me- 
chanics. Just as thermodynamics gives limits on heat engines, AIT gives limits 
on formal axiomatic systems. 

I have recently reformulated AIT. Up to now, the best version of AIT studied 
the size of programs in a computer programming language that was not actually 
usable. Now I have obtained the correct program-size complexity measure from 
a powerful and easy to use programming language. This language is a version of 
LISP, and I have written an interpreter for it in C. I have written a book employ- 
ing this new approach that is entitled The Limits of Mathematics. To automat- 
ically obtain this book in BTEX , send e-mail to "chao-dyn Q xyz. lanl. gov" 
with "Subject:  get  9407003" or with "Subject:  get  9407009". For an ex- 
tended abstract of the book, request "9407010". 

So this is what I would like to discuss with GSdel, if I could speak with him 
now. Of course this is impossible! But thank you very much for giving me the 
opportunity to tell you about these ideas! 

Q u e s t i o n s  f o r  F u t u r e  R e s e a r c h  

- Find questions in algebra, topology and geometry that are equivalent to 
determining bits of ~2. 

- What is an interesting or natural mathematical question? 
- How often is such a question independent of the usual axioms? (I suspect 

the answer is "Quite often!") 
- Show that a classical open question in number theory, such as the Riemann 

hypothesis, is independent of the usual axioms. (I suspect that this is often 
the case, but that it cannot be proven.) 

- When doing mathematics, should we take incompleteness seriously or is it 
a red herring? (I believe that we should take incompleteness very seriously 
indeed.) 

- Is mathematics quasi-empirical? In other words, should mathematics be done 
more like physics is done? (I believe the answer to both questions is "Yes.") 
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