
DRAFT

PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013) 1

Hyperopt: A Python Library for Optimizing the
Hyperparameters of Machine Learning Algorithms

James Bergstra∗†, Dan Yamins‡, David D. Cox§

F

Abstract—Sequential model-based optimization (also known as Bayesian op-
timization) is one of the most efficient methods (per function evaluation) of
function minimization. This efficiency makes it appropriate for optimizing the
hyperparameters of machine learning algorithms that are slow to train. The
Hyperopt library provides algorithms and parallelization infrastructure for per-
forming hyperparameter optimization (model selection) in Python. This paper
presents an introductory tutorial on the usage of the Hyperopt library, including
the description of search spaces, minimization (in serial and parallel), and the
analysis of the results collected in the course of minimization. The paper closes
with some discussion of ongoing and future work.

Index Terms—Bayesian optimization, hyperparameter optimization, model se-
lection

Introduction

Sequential model-based optimization (SMBO, also known as
Bayesian optimization) is a general technique for function
optimization that includes some of the most call-efficient (in
terms of function evaluations) optimization methods currently
available. Originally developed for experiment design (and
oil exploration, [Mockus78]) SMBO methods are generally
applicable to scenarios in which a user wishes to minimize
some scalar-valued function f (x) that is costly to evaluate,
often in terms of time or money. Compared with standard
optimization strategies such as conjugate gradient descent
methods, model-based optimization algorithms invest more
time between function evaluations in order to reduce the
number of function evaluations overall.

The advantages of SMBO are that it:
• leverages smoothness without analytic gradient,
• handles real-valued, discrete, and conditional variables,
• handles parallel evaluations of f (x),
• copes with hundreds of variables, even with budget of

just a few hundred function evaluations.
Many widely-used machine learning algorithms take a sig-

nificant amount of time to train from data. At the same time,
these same algorithms must be configured prior to training.

* Corresponding author: james.bergstra@uwaterloo.ca
† University of Waterloo
‡ Massachusetts Institute of Technology
§ Harvard University

Copyright c○ 2013 James Bergstra et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

These configuration variables are called hyperparameters. For
example, Support Vector Machines (SVMs) have hyperparam-
eters that include the regularization strength (often C) the
scaling of input data (and more generally, the preprocessing of
input data), the choice of similarity kernel, and the various pa-
rameters that are specific to that kernel choice. Decision trees
are another machine learning algorithm with hyperparameters
related to the heuristic for creating internal nodes, and the
pruning strategy for the tree after (or during) training. Neural
networks are a classic type of machine learning algorithm
but they have so many hyperparameters that they have been
considered too troublesome for inclusion in the sklearn library.

Hyperparameters generally have a significant effect on the
success of machine learning algorithms. A poorly-configured
SVM may perform no better than chance, while a well-
configured one may achieve state-of-the-art prediction accu-
racy. To experts and non-experts alike, adjusting hyperparam-
eters to optimize end-to-end performance can be a tedious
and difficult task. Hyperparameters come in many varieties-
--continuous-valued ones with and without bounds, discrete
ones that are either ordered or not, and conditional ones that
do not even always apply (e.g., the parameters of an optional
pre-processing stage). Because of this variety, conventional
continuous and combinatorial optimization algorithms either
do not directly apply, or else operate without leveraging
valuable structure in the configuration space. Common practice
for the optimization of hyperparameters is (a) for algorithm
developers to tune them by hand on representative problems
to get good rules of thumb and default values, and (b) for
algorithm users to tune them manually for their particular
prediction problems, perhaps with the assistance of [multi-
resolution] grid search. However, when dealing with more
than a few hyperparameters (e.g. 5) this standard practice of
manual search with grid refinement is not guaranteed to work
well; in such cases even random search has been shown to be
competitive with domain experts [BB12].

Hyperopt [Hyperopt] provides algorithms and software in-
frastructure for carrying out hyperparameter optimization for
machine learning algorithms. Hyperopt provides an optimiza-
tion interface that distinguishes a configuration space and
an evaluation function that assigns real-valued loss values
to points within the configuration space. Unlike the standard
minimization interfaces provided by scientific programming
libraries, Hyperopt’s fmin interface requires users to specify

mailto:james.bergstra@uwaterloo.ca

DRAFT

2 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

the configuration space as a probability distribution. Speci-
fying a probability distribution rather than just bounds and
hard constraints allows domain experts to encode more of
their intuitions regarding which values are plausible for vari-
ous hyperparameters. Like SciPy’s optimize.minimize
interface, Hyperopt makes the SMBO algorithm itself an
interchangeable component so that any search algorithm can
be applied to any search problem. Currently two algorithms
are provided -- random search and Tree-of-Parzen-Estimators
(TPE) algorithm introduced in [BBBK11] -- and more algo-
rithms are planned (including simulated annealing, [SMAC],
and Gaussian-process-based [SLA13]).

We are motivated to make hyperparameter optimization
more reliable for four reasons:

Reproducibile research
Hyperopt formalizes the practice of model eval-
uation, so that benchmarking experiments can be
reproduced at later dates, and by different people.

Empowering users
Learning algorithm designers can deliver flexible
fully-configurable implementations to non-experts
(e.g. deep learning systems), so long as they also
provide a corresponding Hyperopt driver.

Designing better algorithms
As algorithm designers, we appreciate Hyperopt’s
capacity to find successful configurations that we
might not have considered.

Fuzz testing
As algorithm designers, we appreciate Hyperopt’s
capacity to find failure modes via configurations that
we had not considered.

This paper describes the usage and architecture of Hyperopt,
for both sequential and parallel optimization of expensive
functions. Hyperopt can in principle be used for any SMBO
problem, but our development and testing efforts have been
limited so far to the optimization of hyperparameters for deep
neural networks [hp-dbn] and convolutional neural networks
for object recognition [hp-convnet].

Getting Started with Hyperopt

This section introduces basic usage of the hyperopt.fmin
function, which is Hyperopt’s basic optimization driver. We
will look at how to write an objective function that fmin can
optimize, and how to describe a configuration space that fmin
can search.

Hyperopt shoulders the responsibility of finding the best
value of a scalar-valued, possibly-stochastic function over a
set of possible arguments to that function. Whereas most
optimization packages assume that these inputs are drawn
from a vector space, Hyperopt encourages you, the user, to
describe your configuration space in more detail. Hyperopt is
typically aimed at very difficult search settings, especially ones
with many hyperparameters and a small budget for function
evaluations. By providing more information about where your
function is defined, and where you think the best values are,
you allow algorithms in Hyperopt to search more efficiently.

The way to use Hyperopt is to describe:

• the objective function to minimize
• the space over which to search
• a trials database [optional]
• the search algorithm to use [optional]
This section will explain how to describe the objective func-

tion, configuration space, and optimization algorithm. Later,
Section Trial results: more than just the loss will explain how
to use the trials database to analyze the results of a search, and
Section Parallel Evaluation with a Cluster will explain how to
use parallel computation to search faster.

Step 1: define an objective function

Hyperopt provides a few levels of increasing flexibility /
complexity when it comes to specifying an objective function
to minimize. In the simplest case, an objective function is a
Python function that accepts a single argument that stands for
x (which can be an arbitrary object), and returns a single scalar
value that represents the loss (f (x)) incurred by that argument.

So for a trivial example, if we want to minimize a quadratic
function q(x,y) := x2 + y2 then we could define our objective
q as follows:
def q(args):

x, y = args
return x ** 2 + y ** 2

Although Hyperopt accepts objective functions that are more
complex in both the arguments they accept and their return
value, we will use this simple calling and return convention for
the next few sections that introduce configuration spaces, op-
timization algorithms, and basic usage of the fmin interface.
Later, as we explain how to use the Trials object to analyze
search results, and how to search in parallel with a cluster, we
will introduce different calling and return conventions.

Step 2: define a configuration space

A configuration space object describes the domain over which
Hyperopt is allowed to search. If we want to search q over
values of x ∈ [0,1], and values of y ∈ R , then we can write
our search space as:
from hyperopt import hp

space = [hp.uniform(’x’, 0, 1), hp.normal(’y’, 0, 1)]

Note that for both x and y we have specified not only the hard
bound constraints, but also we have given Hyperopt an idea
of what range of values for y to prioritize.

Step 3: choose a search algorithm

Choosing the search algorithm is currently as simple
as passing algo=hyperopt.tpe.suggest or
algo=hyperopt.rand.suggest as a keyword argument
to hyperopt.fmin. To use random search to our search
problem we can type:
from hyperopt import hp, fmin, rand, tpe, space_eval
best = fmin(q, space, algo=rand.suggest)
print best
=> XXX
print space_eval(space, best)
=> XXX

best = fmin(q, space, algo=tpe.suggest)
print best

DRAFT

HYPEROPT: A PYTHON LIBRARY FOR OPTIMIZING THE HYPERPARAMETERS OF MACHINE LEARNING ALGORITHMS 3

=> XXX
print space_eval(space, best)
=> XXX

The search algorithms are global functions which may gen-
erally have extra keyword arguments that control their op-
eration beyond the ones used by fmin (they represent
hyper-hyperparameters!). The intention is that these hyper-
hyperparameters are set to default that work for a range of
configuration problems, but if you wish to change them you
can do it like this:
from functools import partial
from hyperopt import hp, fmin, tpe
algo = partial(tpe.suggest, n_startup_jobs=10)
best = fmin(q, space, algo=algo)
print best
=> XXX

In a nutshell, these are the steps to using Hyperopt. Implement
an objective function that maps configuration points to a
real-valued loss value, define a configuration space of valid
configuration points, and then call fmin to search the space
to optimize the objective function. The remainder of the paper
describes (a) how to describe more elaborate configuration
spaces, especially ones that enable more efficient search by
expressing conditional variables, (b) how to analyze the results
of a search as stored in a Trials object, and (c) how to use
a cluster of computers to search in parallel.

Configuration Spaces

Part of what makes Hyperopt a good fit for optimizing machine
learning hyperparameters is that it can optimize over general
Python objects, not just e.g. vector spaces. Consider the simple
function w below, which optimizes over dictionaries with
’type’ and either ’x’ and ’y’ keys:
def w(pos):

if pos[’use_var’] == ’x’:
return pos[’x’] ** 2

else:
return math.exp(pos[’y’])

To be efficient about optimizing w we must be able to (a) de-
scribe the kinds of dictionaries that w requires and (b) correctly
associate w’s return value to the elements of pos that actually
contributed to that return value. Hyperopt’s configuration space
description objects address both of these requirements. This
section describes the nature of configuration space description
objects, and how the description language can be extended
with new expressions, and how the choice expression sup-
ports the creation of conditional variables that support efficient
evaluation of structured search spaces of the sort we need to
optimize w.

Configuration space primitives

A search space is a stochastic expression that always evaluates
to a valid input argument for your objective function. A search
space consists of nested function expressions. The stochastic
expressions are the hyperparameters. (Random search is im-
plemented by simply sampling these stochastic expressions.)

The stochastic expressions currently recognized by Hy-
peropt’s optimization algorithms are in the hyperopt.hp
module. The simplest kind of search spaces are ones that
are not nested at all. For example, to optimize the simple

function q (defined above) on the interval [0,1], we could
type fmin(q, space=hp.uniform(’a’, 0, 1)).

The first argument to hp.uniform here is the label. Each
of the hyperparameters in a configuration space must be la-
beled like this with a unique string. The other hyperparameter
distributions at our disposal as modelers are as follows:

hp.choice(label, options)
Returns one of the options, which should be a list
or tuple. The elements of options can themselves
be [nested] stochastic expressions. In this case, the
stochastic choices that only appear in some of the
options become conditional parameters.

hp.pchoice(label, p_options)
Return one of the option terms listed in
p_options, a list of pairs (prob, option) in
which the sum of all prob elements should sum to
1. The pchoice lets a user bias random search to
choose some options more often than others.

hp.uniform(label, low, high)
Draws uniformly between low and high. When
optimizing, this variable is constrained to a two-sided
interval.

hp.quniform(label, low, high, q)
Drawn by round(uniform(low, high) /
q) * q, Suitable for a discrete value with respect
to which the objective is still somewhat smooth.

hp.loguniform(label, low, high)
Drawn by exp(uniform(low, high)). When
optimizing, this variable is constrained to the interval
[elow,ehigh].

hp.qloguniform(label, low, high, q)
Drawn by round(exp(uniform(low,
high)) / q) * q. Suitable for a discrete
variable with respect to which the objective is
smooth and gets smoother with the increasing size
of the value.

hp.normal(label, mu, sigma)
Draws a normally-distributed real value. When opti-
mizing, this is an unconstrained variable.

hp.qnormal(label, mu, sigma, q)
Drawn by round(normal(mu, sigma) / q)

* q. Suitable for a discrete variable that probably
takes a value around mu, but is technically un-
bounded.

hp.lognormal(label, mu, sigma)
Drawn by exp(normal(mu, sigma)). When
optimizing, this variable is constrained to be positive.

hp.qlognormal(label, mu, sigma, q)
Drawn by round(exp(normal(mu, sigma))
/ q) * q. Suitable for a discrete variable with
respect to which the objective is smooth and gets
smoother with the size of the variable, which is non-
negative.

hp.randint(label, upper)
Returns a random integer in the range [0,upper).
In contrast to quniform optimization algorithms
should assume no additional correlation in the loss

DRAFT

4 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

function between nearby integer values, as compared
with more distant integer values (e.g. random seeds).

Structure in configuration spaces
Search spaces can also include lists, and dictionaries. Using
these containers make it possible for a search space to include
multiple variables (hyperparameters). The following code frag-
ment illustrates the syntax:
from hyperopt import hp

list_space = [
hp.uniform(’a’, 0, 1),
hp.loguniform(’b’, 0, 1)]

tuple_space = (
hp.uniform(’a’, 0, 1),
hp.loguniform(’b’, 0, 1))

dict_space = {
’a’: hp.uniform(’a’, 0, 1),
’b’: hp.loguniform(’b’, 0, 1)}

There should be no functional difference between using list
and tuple syntax to describe a sequence of elements in
a configuration space, but both syntaxes are supported for
everyone’s convenience.

Creating list, tuple, and dictionary spaces as illustrated
above is just one example of nesting. Each of these container
types can be nested to form deeper configuration structures:
nested_space = [

[{’case’: 1, ’a’: hp.uniform(’a’, 0, 1)},
{’case’: 2, ’b’: hp.loguniform(’b’, 0, 1)}],

’extra literal string’,
hp.randint(’r’, 10)]

There is no requirement that list elements have some kind
of similarity, each element can be any valid configuration
expression. Note that Python values (e.g. numbers, strings,
and objects) can be embedded in the configuration space.
These values will be treated as constants from the point of
view of the optimization algorithms, but they will be included
in the configuration argument objects passed to the objective
function.

Sampling from a configuration space
The previous few code fragments have defined various con-
figuration spaces. These spaces are not objective function
arguments yet, they are simply a description of how to
sample objective function arguments. You can use the routines
in hyperopt.pyll.stochastic to sample values from
these configuration spaces.
from hyperopt.pyll.stochastic import sample

print sample(list_space)
=> [0.13, .235]

print sample(nested_space)
=> [[{’case’: 1, ’a’, 0.12}, {’case’: 2, ’b’: 2.3}],
’extra_literal_string’,
3]

Note that the labels of the random configuration variables
have no bearing on the sampled values themselves, the labels
are only used internally by the optimization algorithms. Later
when we look at the trials parameter to fmin we will
see that the labels are used for analyzing search results too.
For now though, simply note that the labels are not for the
objective function.

Deterministic expressions in configuration spaces

It is also possible to include deterministic expressions within
the description of a configuration space. For example, we can
write
from hyperopt.pyll import scope

def foo(x):
return str(x) * 3

expr_space = {
’a’: 1 + hp.uniform(’a’, 0, 1),
’b’: scope.minimum(hp.loguniform(’b’, 0, 1), 10),
’c’: scope.call(foo, args=(hp.randint(’c’, 5),)),
}

The hyperopt.pyll submodule implements an expression
language that stores this logic in a symbolic representation.
Significant processing can be carried out by these intermediate
expressions. In fact, when you call fmin(f, space), your
arguments are quickly combined into a single objective-and-
configuration evaluation graph of the form: scope.call(f,
space). Feel free to move computations between these
intermediate functions and the final objective function as you
see fit in your application.

You can add new functions to the scope object with the
define decorator:
from hyperopt.pyll import scope

@scope.define
def foo(x):

return str(x) * 3

-- This will print "000"; foo is called as usual.
print foo(0)

expr_space = {
’a’: 1 + hp.uniform(’a’, 0, 1),
’b’: scope.minimum(hp.loguniform(’b’, 0, 1), 10),
’c’: scope.foo(hp.randint(’cbase’, 5)),
}

-- This will draw a sample by running foo(x)
on a random integer x.
print sample(expr_space)

Read through hyperopt.pyll.base and
hyperopt.pyll.stochastic to see the functions
that are available, and feel free to add your own. One
important caveat is that functions used in configuration space
descriptions must be serializable (with pickle module) in
order to be compatible with parallel search (discussed below).

Defining conditional variables with choice and pchoice

Having introduced nested configuration spaces, it is worth
coming back to the hp.choice and hp.pchoice hy-
perparameter types. An hp.choice(label, options)
hyperparameter chooses one of the options that you provide,
where the options must be a list. We can use choice to
define an appropriate configuration space for the w objective
function (introduced in Section Configuration Spaces).
w_space = hp.choice(’case’, [

{’use_var’: ’x’, ’x’: hp.normal(’x’, 0, 1)},
{’use_var’: ’y’, ’y’: hp.uniform(’y’, 1, 3)}])

print sample(w_space)
==> {’use_var’: ’x’, ’x’: -0.89}

DRAFT

HYPEROPT: A PYTHON LIBRARY FOR OPTIMIZING THE HYPERPARAMETERS OF MACHINE LEARNING ALGORITHMS 5

print sample(w_space)
==> {’use_var’: ’y’, ’y’: 2.63}

Recall that in w, the ’y’ key of the configuration is not used
when the ’use_var’ value is ’x’. Similarly, the ’x’ key
of the configuration is not used when the ’use_var’ value
is ’y’. The use of choice in the w_space search space
reflects the conditional usage of keys ’x’ and ’y’ in the w
function. We have used the choice variable to define a space
that never has more variables than is necessary.

The choice variable here plays more than a cosmetic role;
it can make optimization much more efficient. In terms of w
and w_space, the choice node prevents y for being blamed
(in terms of the logic of the search algorithm) for poor
performance when ’use_var’ is ’x’, or credited for good
performance when ’use_var’ is ’x’. The choice variable
creates a special node in the expression graph that prevents the
conditionally unnecessary part of the expression graph from
being evaluated at all. During optimization, similar special-
case logic prevents any association between the return value
of the objective function and irrelevant hyperparameters (ones
that were not chosen, and hence not involved in the creation
of the configuration passed to the objective function).

The hp.pchoice hyperparameter constructor is similar
to choice except that we can provide a list of probabilities
corresponding to the options, so that random sampling chooses
some of the options more often than others.
w_space_with_probs = hp.pchoice(’case’, [

(0.8, {’use_var’: ’x’,
’x’: hp.normal(’x’, 0, 1)}),

(0.2, {’use_var’: ’y’,
’y’: hp.uniform(’y’, 1, 3)})])

Using the w_space_with_probs configuration space ex-
presses to fmin that we believe the first case (using ’x’)
is five times as likely to yield an optimal configuration that
the second case. If your objective function only uses a subset
of the configuration space on any given evaluation, then you
should use choice or pchoice hyperparameter variables to
communicate that pattern of inter-dependencies to fmin.

Sharing a configuration variable across choice branches

When using choice variables to divide a configuration space
into many mutually exclusive possibilities, it can be natural
to re-use some configuration variables across a few of those
possible branches. Hyperopt’s configuration space supports
this in a natural way, by allowing the objects to appear in
multiple places within a nested configuration expression. For
example, if we wanted to add a randint choice to the
returned dictionary that did not depend on the ’use_var’
value, we could do it like this:
c = hp.randint(’c’, 10)

w_space_c = hp.choice(’case’, [
{’use_var’: ’x’,
’x’: hp.normal(’x’, 0, 1),
’c’: c},
{’use_var’: ’y’,
’y’: hp.uniform(’y’, 1, 3),
’c’: c}])

Optimization algorithms in Hyperopt would see that c is used
regardless of the outcome of the choice value, so they would

correctly associate c with all evaluations of the objective
function.

Configuration Example: sklearn classifiers

To see how we can use these mechanisms to describe a more
realistic configuration space, let’s look at how one might
describe a set of classification algorithms in [sklearn].
from hyperopt import hp
from hyperopt.pyll import scope
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier\

as DTree

scope.define(GaussianNB)
scope.define(SVC)
scope.define(DTree, name=’DTree’)

C = hp.lognormal(’svm_C’, 0, 1)
space = hp.pchoice(’estimator’, [

(0.1, scope.GaussianNB()),
(0.2, scope.SVC(C=C, kernel=’linear’)),
(0.3, scope.SVC(C=C, kernel=’rbf’,

width=hp.lognormal(’svm_rbf_width’, 0, 1),
)),

(0.4, scope.DTree(
criterion=hp.choice(’dtree_criterion’,

[’gini’, ’entropy’]),
max_depth=hp.choice(’dtree_max_depth’,

[None, hp.qlognormal(’dtree_max_depth_N’,
2, 2, 1)],

])

This example illustrates nesting, the use of custom expression
types, the use of pchoice to indicate independence among
configuration branches, several numeric hyperparameters, a
discrete hyperparameter (the Dtree criterion), and a specifica-
tion of our prior preference among the four possible classifiers.
At the top level we have a pchoice between four sklearn
algorithms: Naive Bayes (NB), a Support Vector Machine
(SVM) using a linear kernel, an SVM using a Radial Basis
Function (’rbf’) kernel, and a decision tree (Dtree). The
result of evaluating the configuration space is actually a sklearn
estimator corresponding to one of the three possible branches
of the top-level choice. Note that the example uses the same C
variable for both types of SVM kernel. This is a technique for
injecting domain knowledge to assist with search; if each of
the SVMs prefers roughly the same value of C then this will
buy us some search efficiency, but it may hurt search efficiency
if the two SVMs require very different values of C. Note also
that the hyperparameters all have unique names; it is tempting
to think they should be named automatically by their path
to the root of the configuration space, but the configuration
space is not a tree (consider the C above). These names are
also invaluable in analyzing the results of search after fmin
has been called, as we will see in the next section, on the
Trials object.

The Trials Object

The fmin function returns the best result found during search,
but can also be useful to analyze all of the trials evaluated
during search. Pass a trials argument to fmin to retain
access to all of the points accessed during search. In this case
the call to fmin proceeds as before, but by passing in a trials

DRAFT

6 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

object directly, we can inspect all of the return values that
were calculated during the experiment.
from hyperopt import (hp, fmin, space_eval,

Trials)
trials = Trials()
best = fmin(q, space, trials=trials)
print trials.trials

Information about all of the points evaluated during the search
can be accessed via attributes of the trials object. The
.trials attribute of a Trials object (trials.trials
here) is a list with an element for every function evaluation
made by fmin. Each element is a dictionary with at least
keys:
’tid’: value of type int

trial identifier of the trial within the search
’results’: value of type dict

dict with ’loss’, ’status’, and other informa-
tion returned by the objective function (see below for
details)

’misc’ value of dict with keys ’idxs’ and ’vals’
compressed representation of hyperparameter values

This trials object can be pickled, analyzed with your own
code, or passed to Hyperopt’s plotting routines (described
below).

Trial results: more than just the loss

Often when evaluating a long-running function, there is more
to save after it has run than a single floating point loss
value. For example there may be statistics of what happened
during the function evaluation, or it might be expedient to
pre-compute results to have them ready if the trial in question
turns out to be the best-performing one.

Hyperopt supports saving extra information alongside the
trial loss. To use this mechanism, an objective function must
return a dictionary instead of a float. The returned dictio-
nary must have keys ’loss’ and ’status’. The status
should be either STATUS_OK or STATUS_FAIL depending
on whether the loss was computed successfully or not. If the
status is STATUS_OK, then the loss must be the objective
function value for the trial. Writing a quadratic f(x) function
in this dictionary-returning style, it might look like:
import time
from hyperopt import fmin, Trials
from hyperopt import STATUS_OK, STATUS_FAIL

def f(x):
try:

return {’loss’: x ** 2,
’time’: time.time(),
’status’: STATUS_OK }

except Exception, e:
return {’status’: STATUS_FAIL,

’time’: time.time(),
’exception’: str(e)}

trials = Trials()
fmin(f, space=hp.uniform(’x’, -10, 10),

trials=trials)
print trials.trials[0][’results’]

An objective function can use just about any keys to store
auxiliary information, but there are a few special keys that are
interpreted by Hyperopt routines:
’loss_variance’: type float

variance in a stochastic objective function
’true_loss’: type float

if you pre-compute a test error for a validation error
loss, store it here so that Hyperopt plotting routines
can find it.

’true_loss_variance’: type float
variance in test error estimator

’attachments’: type dict
short (string) keys with potentially long (string)
values

The ’attachments’ mechanism is primarily useful for
reducing data transfer times when using the MongoTrials
trials object (discussed below) in the context of parallel
function evaluation. In that case, any strings longer than a
few megabytes actually have to be placed in the attachments
because of limitations in certain versions of the mongodb
database format. Another important consideration when using
MongoTrials is that the entire dictionary returned from the
objective function must be JSON-compatible. JSON allows
for only strings, numbers, dictionaries, lists, tuples, and date-
times.

HINT: To store NumPy arrays, serialize them to a string,
and consider storing them as attachments.

Parallel Evaluation with a Cluster

Hyperopt has been designed to make use of a cluster of
computers for faster search. Of course, parallel evaluation of
trials sits at odds with sequential model-based optimization.
Evaluating trials in parallel means that efficiency per function
evaluation will suffer (to an extent that is difficult to assess
a-priori), but the improvement in efficiency as a function of
wall time can make the sacrifice worthwhile.

Hyperopt supports parallel search via a special trials type
called MongoTrials. Setting up a parallel search is as
simple as using MongoTrials instead of Trials:
from hyperopt import fmin
from hyperopt.mongo import MongoTrials
trials = MongoTrials(’mongo://host:port/fmin_db/’)
best = fmin(q, space, trials=trials)

When we construct a MongoTrials object, we must specify
a running mongod database [mongodb] for inter-process com-
munication between the fmin producer-process and worker
processes, which act as the consumers in a producer-consumer
processing model. If you simply type the code fragment
above, you may find that it either crashes (if no mongod is
found) or hangs (if no worker processes are connected to the
same database). When used with MongoTrials the fmin
call simply enqueues configurations and waits until they are
evaluated. If no workers are running, fmin will block after
enqueing one trial. To run fmin with MongoTrials requires
that you:

1. Ensure that mongod is running on the specified
host and port,

2. Choose a database name to use for a particular
fmin call, and

3. Start one or more hyperopt-mongo-worker pro-
cesses.

DRAFT

HYPEROPT: A PYTHON LIBRARY FOR OPTIMIZING THE HYPERPARAMETERS OF MACHINE LEARNING ALGORITHMS 7

There is a generic hyperopt-mongo-worker script in Hyper-
opt’s scripts subdirectory that can be run from a command
line like this:
hyperopt-mongo-worker --mongo=host:port/db

To evaluate multiple trial points in parallel, simply start
multiple scripts in this way that all work on the same database.

Note that mongodb databases persist until they are deleted,
and fmin will never delete things from mongodb. If you call
fmin using a particular database one day, stop the search, and
start it again later, then fmin will continue where it left off.

The Ctrl Object for Realtime Communication with MongoDB

When running a search in parallel, you may wish to provide
your objective function with a handle to the mongodb database
used by the search. This mechanism makes it possible for
objective functions to:
• update the database with partial results,
• to communicate with concurrent processes, and
• even to enqueue new configuration points.
This is an advanced usage of Hyperopt, but it is supported

via syntax like the following:
from hyperopt import pyll

@hyperopt.fmin_pass_expr_memo_ctrl
def realtime_objective(expr, memo, ctrl):

config = pyll.rec_eval(expr, memo=memo)
.. config is a configuration point
.. ctrl can be used to interact with database
return {’loss’: f(config),

’status’: STATUS_OK, ...}

The fmin_pass_expr_memo_ctrl decorator tells fmin
to use a different calling convention for the objective function,
in which internal objects expr, memo and ctrl are exposed
to the objective function. The expr the configuration space,
the memo is a dictionary mapping nodes in the configuration
space description graph to values for those nodes (most
importantly, values for the hyperparameters). The recursive
evaluation function rec_eval computes the configuration
point from the values in the memo dictionary. The config
object produced by rec_eval is what would normally have
been passed as the argument to the objective function. The
ctrl object is an instance of hyperopt.Ctrl, and it
can be used to to communicate with the trials object being
used by fmin. It is possible to use a ctrl object with a
(sequential) Trials object, but it is most useful when used
with MongoTrials.

To summarize, Hyperopt can be used both purely sequen-
tially, as well as broadly sequentially with multiple current
candidates under evaluation at a time. In the parallel case,
mongodb is used for inter-process communication and dou-
bles as a persistent storage mechanism for post-hoc analysis.
Parallel search can be done with the same objective functions
as the ones used for sequential search, but users wishing to
take advantage of asynchronous evaluation in the parallel case
can do so by using a lower-level calling convention for their
objective function.

Ongoing and Future Work

Hyperopt is the subject of ongoing and planned future work
in the algorithms that it provides, the domains that it covers,

and the technology that it builds on.
Related Bayesian optimization software such as Frank Hut-

ter et al’s [SMAC], and Jasper Snoek’s [Spearmint] implement
state-of-the-art algorithms that are different from the TPE
algorithm currently implemented in Hyperopt. Questions about
which of these algorithms performs best in which circum-
stances, and over what search budgets remain topics of active
research. One of the first technical milestones on the road to
answering those research questions is to make each of those
algorithms applicable to common search problems.

Hyperopt was developed to support research into deep learn-
ing [BBBK11] and computer vision [BYC13]. Corresponding
projects [hp-dbn] and [hp-convnet] have been made public on
Github to illustrate how Hyperopt can be used to define and
optimize large-scale hyperparameter optimization problems.
Currently, Hristijan Bogoevski is investigating Hyperopt as a
tool for optimizing the suite of machine learning algorithms
provided by sklearn; that work is slated to appear in the
[hp-sklearn] project in the not-too-distant future.

With regards to implementation decisions in Hyperopt, sev-
eral people have asked about the possibility of using IPython
instead of mongodb to support parallelism. This would allow
us to build on IPython’s cluster management interface, and
relax the constraint that objective function results be JSON-
compatible. If anyone implements this functionality, a pull
request to Hyperopt’s master branch would be most welcome.

Summary and Further Reading

Hyperopt is a Python library for Sequential Model-Based
Optimization (SMBO) that has been designed to meet the
needs of machine learning researchers performing hyperpa-
rameter optimization. It provides a flexible and powerful
language for describing search spaces, and supports scheduling
asynchronous function evaluations for evaluation by multiple
processes and computers. It is BSD-licensed and available for
download from PyPI and Github. Further documentation is
available at [http://jaberg.github.com/hyperopt].

Acknowledgements

Thanks to Nicolas Pinto for some influential design advice,
Hristijan Bogoevski for ongoing work on an sklearn driver,
and to many users who have contributed feedback. This project
has been supported by the Rowland Institute of Harvard, the
National Science Foundation (IIS 0963668), and the NSERC
Banting Fellowship program.

REFERENCES

[BB12] J. Bergstra and Y. Bengio. Random Search for Hyperparameter
Optimization J. Machine Learning Research, 13:281--305, 2012.

[BBBK11] J. Bergstra, R. Bardenet, Y. Bengio and B. Kégl. Algorithms
for Hyper-parameter Optimization. Proc. Neural Information
Processing Systems 24 (NIPS2011), 2546–2554, 2011.

[BYC13] J. Bergstra, D. Yamins and D. D. Cox. Making a Science of
Model Search: Hyperparameter Optimization in Hundreds of
Dimensions for Vision Architectures. Proc. ICML, 2013.

[Brochu10] E. Brochu. Interactive Bayesian Optimization: Learning Param-
eters for Graphics and Animation, PhD thesis, University of
British Columbia, 2010.

[Hyperopt] http://jaberg.github.com/hyperopt

http://jaberg.github.com/hyperopt
http://jaberg.github.com/hyperopt

DRAFT

8 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

[hp-dbn] https://github.com/jaberg/hyperopt-dbn
[hp-sklearn] https://github.com/jaberg/hyperopt-sklearn
[hp-convnet] https://github.com/jaberg/hyperopt-convnet
[Mockus78] J. Mockus, V. Tiesis, and A. Zilinskas. The applicatoin of

Bayesian methods for seeking the extremum, Towards Global
Optimization, Elsevier, 1978.

[mongodb] www.mongodb.org
[ROAR] http://www.cs.ubc.ca/labs/beta/Projects/SMAC/#software
[sklearn] http://scikit-learn.org
[SLA13] J. Snoek, H. Larochelle and R. P. Adams. Practical Bayesian

Optimization of Machine Learning Algorithms, NIPS, 2012.
[Spearmint] http://www.cs.toronto.edu/~jasper/software.html
[SMAC] http://www.cs.ubc.ca/labs/beta/Projects/SMAC/#software

https://github.com/jaberg/hyperopt-dbn
https://github.com/jaberg/hyperopt-sklearn
https://github.com/jaberg/hyperopt-convnet
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/#software
http://scikit-learn.org
http://www.cs.toronto.edu/~jasper/software.html
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/#software

	Introduction
	Getting Started with Hyperopt
	Step 1: define an objective function
	Step 2: define a configuration space
	Step 3: choose a search algorithm

	Configuration Spaces
	Configuration space primitives
	Structure in configuration spaces
	Sampling from a configuration space
	Deterministic expressions in configuration spaces
	Defining conditional variables with choice and pchoice
	Sharing a configuration variable across choice branches
	Configuration Example: sklearn classifiers

	The Trials Object
	Trial results: more than just the loss

	Parallel Evaluation with a Cluster
	The Ctrl Object for Realtime Communication with MongoDB

	Ongoing and Future Work
	Summary and Further Reading
	Acknowledgements
	References

