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The Hubness Phenomenon 

[Radovanović et al. ICML’09, Radovanović et al. JMLR’10] 
 

 Nk(x), the number of k-occurrences of point x  Rd, is the number 
of times x occurs among k nearest neighbors of all other points in a 
data set. In other words: 
 Nk(x) is the reverse k-nearest neighbor count of x 

 Nk(x) is the in-degree of node x in the kNN digraph 
 

 Observed that the distribution of Nk can become skewed, and have 
high variance, resulting in hubs – points with high Nk values, and 
anti-hubs – points with low Nk 
 Music retrieval [Aucouturier & Pachet PR’07] 

 Speaker verification (“Doddington zoo”) [Doddington et al. ICSLP’98] 

 Fingerprint identification [Hicklin et al. NIST’05] 
 

 Cause remained unknown, attributed to the specifics of data or 
algorithms 
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Causes of Hubness 

  
Std = √Var 

E 

  

 Related phenomenon: concentration of distance / similarity 
 High-dimensional data points approximately lie on a sphere centered at 

any fixed point [Beyer et al. ICDT’99, Aggarwal & Yu SIGMOD’01] 

 The distribution of distances to a fixed point always has non-negligible 
variance [François et al. TKDE’07] 

 As the fixed point we observe the data set center 

 

 

 

 

 

 

 

 

 Centrality: points closer to the data set center tend to be closer to 
all other points (regardless of dimensionality) 

Centrality is amplified by high dimensionality 
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Important to Emphasize 

 Generally speaking, concentration does not CAUSE hubness 

 

 “Causation” might be possible to derive under certain assumptions. 
My preferred view: they are both manifestations of underlying 
mechanisms triggered by high dimensionality 

 

 Example settings with(out) concentration and with(out) hubness: 
 C+, H+: iid uniform data, Euclidean dist. 

 C–, H+: iid uniform data, squared Euclidean dist. 

 C+, H–: iid normal data (centered at 0), cosine sim. 

 C–, H–: spatial Poisson process data, Euclidean dist. 

 

 Two “ingredients” needed for hubness: 
1)    High dimensionality 

2)    Centrality (existence of centers / borders) 
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Hubness in Real Data 

 Important factors for real data 
1)    Dependent attributes 

2)    Grouping (clustering) 

 

 50 data sets 
 From well known repositories (UCI, Kent Ridge) 

 Euclidean and cosine, as appropriate 

 

 Conclusions [Radovanović et al. JMLR’10]: 
1)    Hubness depends on intrinsic dimensionality 

2)    Hubs are in proximity of cluster centers 
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Anti-Hubs in Outlier Detection 

[Radovanović et al. JMLR’10] 

 In high dimensions, points with low Nk – the anti-hubs 
can be considered distance-based outliers 
 They are far away from other points in the data set / their cluster 

 High dimensionality contributes to their existence 
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Anti-Hubs in Outlier Detection 

[Aggarwal and Yu SIGMOD’01] 

 In high-dimensional space unsupervised methods detect every point as 

an almost equally good outlier, since distances become indiscernible 

as dimensionality increases 

 

[Zimek et al. SADM’12] 

 The above view was challenged by showing that the exact opposite 

may take place 

 As dimensionality increases, outliers generated by a different 

mechanism from the data tend to be detected as more prominent by 

unsupervised methods 

 Assuming all dimensions carry useful information 
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Anti-Hubs in Outlier Detection 

 We show that the opposite can take place even when no true outliers 

exist, in the sense of originating from a different distribution 

 This suggests that  high dimensionality affects outlier scores and 

(anti-)hubness in similar ways 
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Hubness and Large Neighborhoods 
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Hubness and Large Neighborhoods 
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Hubness and Large Neighborhoods 
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 p = percentage of points with lowest Nk scores 

 High dimensionality (d): Nk strong indicator of centrality overall (p = 100%), but 
weaker for anti-hubs (p = 5%) 

 Low d: the opposite, especially w.r.t low k values 

 Raising k strengthens correlation, but not when cluster boundary is crossed 
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The AntiHub Method 
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[Hautamäki et al. ICPR’04] 

 Proposed method ODIN (Outlier Detection using Indegree 
Number), which selects as outliers points with Nk below or 
equal to a user-specified threshold 

 Experiments on 5 data sets showed it can work better than 
various kNN distance methods 

 Not aware of the hubness phenomenon, little insight into 
reasons why ODIN should work, its strengths, 
weaknesses… 

 In method AntiHub, we use Nk(x) as the outlier score of x 
(same as ODIN, without the threshold) 
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The AntiHub Method 
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The AntiHub Method 

 We experimentally identified strengths and weaknesses 

of AntiHub with respect to different properties (factors): 
 

1. Hubness 

2. Locality vs. globality 

3. Discreteness of scores 

4. Varying density 

5. Computational complexity 
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The AntiHub Method 

Property 1: Hubness 
 

 High (intrinsic) dimensionality, k << n: 

 Good overall correlation between Nk and distance to a center, but 

 Many Nk values of 0 – problem with discrimination 

 

 Low dimensionality, k << n 

 Low correlation between Nk and distance to a center, but 

 For a small number of points with low Nk, this correlation is better, 

so AntiHub/ODIN can be meaningful 
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The AntiHub Method 
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The AntiHub Method 

Property 2: Locality vs. globality 

 For AntiHub and other methods based on kNN: 

 k << n: notion of outlierness is local 

 k ~ n: notion of outlierness is global 

 AntiHub in “local mode” may have problems with discrimination 

 Raising k can address this, but the notion of outlierness goes global 

 This can be problematic if we are interested in local outliers, but k crosses 

cluster boundaries 

 

Property 3: Discreteness of scores 

 Regardless of all of the above, Nk scores are integers, hence 

inherently discrete, which can also cause discrimination problems 
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The AntiHub Method 

Property 4: Varying density 

 AntiHub is not sensitive to the scale of distances in the data 

 Can effectively detect (local) outliers in clusters of different 

densities without explicitly modeling density 

 

Property 5: Computational complexity 

 Using high k values can be useful 

 However, approximate kNN search/indexing methods typically assume 

k = O(1) 
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The AntiHub2 Method 

 Notable weakness of AntiHub, discrimination of scores, 

contributed to by two factors: 

 Hubness 

 Discreteness of scores 

 

 Therefore, we proposed method AntiHub2, which 

combines the Nk score of a point with Nk scores of it’s k 

nearest neighbors, in order to maximize discrimination 
 

 AntiHub2 improves discrimination of scores compared to 

the AntiHub method 
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The AntiHub2 Method 
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The AntiHub2 Method 

NII, Tokyo March 23, 2015 



 

 
 
 

24 

Discrimination Improvement 
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discScore values for real data (p = 10%, step = 0.01) 
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Performance Evaluation 
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Methods for comparison: 
 

 kNN: distance to the kth nearest neighbor 

[Ramaswamy et al. SIGMOD Rec’00] 
 

 ABOD: Angle Based Outlier Detection 

[Kriegel et al. KDD’08] 
 

 LOF: Local Outlier Factor 

[Breunig et al. SIGMOD Rec’00] 
 

 INFLO: INFLuenced Outlierness 

[Jin et al. PAKDD’06] 
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Performance Evaluation 
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 Synthetic data: two well-separated Gaussian clusters of the same 

size, std of one 10 times larger than other, outliers 5% of points from 

each cluster projected 20% farther from respective cluster center 
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Performance Evaluation 
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 Real data: mostly natural labeled outliers from various domains 
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Performance Evaluation 
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 Two types of data sets: mostly local and mostly global outliers 

 

 With respect to different k values, AUC of AntiHub and AntiHub2 

behaves similarly to density-based methods (LOF, INFLO) 

 

 Very high k values can be useful for all methods, especially LOF, 

INFLO, AntiHub and AntiHub2, suggesting there may be a relationship 

between “global” density-based and distance-based outliers 

 

 AntiHub2 can improve AUC of AntiHub, but not always, thus 

discrimination is not the only factor that should be addressed 
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Conclusions 

 We provided a unifying view of the role of reverse nearest neighbor 

counts in unsupervised outlier detection: 

 Effects of high dimensionality on unsupervised outlier-detection methods 

and hubness 

 Extension of previous examinations of (anti-)hubness to large values of k 

 The article also explores the relationship between hubness and data 

sparsity 

 We formulated the AntiHub method, discussed its properties, and 

improved it in AntiHub2 by focusing on discrimination of scores 

 Our main hope: clearing the picture of the interplay between types of 

outliers and properties of data, filling a gap in understanding which 

may have so far hindered the widespread use of reverse neighbor 

methods in unsupervised outlier detection 
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Future Possibilities 

 High values of k can be useful, but: 

 Cluster boundaries can be crossed, producing meaningless 

results of local outlier detection. How to determine optimal 

neighborhood size(s)? 

 Computational complexity is raised; approximate NN 

search/indexing methods do not work any more. Is it possible to 

solve this for large k? 

 AntiHub and AntiHub2 are no “rock star” methods 

 Can Nk scores be applied to outlier detection in a better way? 

Through outlier ensembles? 

 Extend to (semi-)supervised outlier detection methods 
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Future Possibilities 

 Explore relationships between intrinsic dimensionality, 

distance concentration, (anti-)hubness, and their impact 

on subspace methods for outlier detection 

 

 Investigate secondary measures of distance/similarity, 

such as shared-neighbor distances 
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