Design Methodology for a Tightly Coupled
VLIW/Reconfigurable Matrix Architecture : A
Case Study

(ADRES, DATE '04)

B.Mei, SVernalde, D.Verkest, R.Lauwereins
Katholieke Universiteit Leuven, Vrije
Universiteit

2011-06-01 Presenter : Ingoo Heo

mE_ it gl F=t
RZIANEHG A
National Research Lab

1. Introduction

2. ADRES Architecture Overview

3. C-Based Design Flow

4. Mapping an MPEG-2 Decoder Application
5. Conclusion and Future Work

SoC Optimizations and Restructuring

1. Introduction

£

mmmmmmmm
[TNYIR A
National Research Lab

0 CGRA (Coarse-Grained Reconfigurable Architecture)
Consist of tens to hundreds of FUs
vs FPGA
m Reduce delay, area, power, configuration time
Target applications
m Telecommunications and multimedia

o0 System consists of RISC and CGRA
CGRA
m Execute time-critical code segments
m Exploit parallelism
RISC

m Control intensive segments
m Complement CGRA

SoC Optimizations and Restructuring
0AR

1. Introduction

£

mmmmmmmm
NPT

0 Lacks of design methodology and tools for CGRA
Could not exploit high parallelism and deliver a software-like design
experience

o0 Previous work
A novel modulo scheduling algorithm
m Mapping a kernel to a family of reconfigurable architecture
ADRES

m Tightly coupled VLIW-CGRA architecture resulting in many
advantages over common reconfigurable systems with loosely
coupled RISC/reconfigurable matrix

SoC Optimizations and Restructuring
OAR

1. Introduction

mmmmmmmm
NPT

0 In this paper
C-based design flow taking full advantage of the scheduling algorithm
ADRES features using an MPEG-2 decoder as an example

o The methodology can design an application with efforts
comparable with software development while still achieving
the high performance expected from reconfigurable
architectures.

SoC Optimizations and Restructuring
OAR

2. ADRES Architecture Overview

P —

Program Fetch

Instruction Dispatch

|
Instruction Decode]

Reconfigurable Matrix View

Figure 1. ADRES core

|/ =R
e k0= |
National Research Lab

o VLIW + CGRA Architecture

Two functional view

m CGRA
= Kernel code
= Exploit high parallelism

m VLIW

= Non-kernel code

» ILP(Instruction Level
Parallelism)

Shared register file
Shared memory access
Shared FU

m Connected to shared register
file

SoC Optimizations and Restructuring @

2. ADRES Architecture Overview

|| | o Reconfigurable cell
FU(Functional Unit) +
RF(Register File)
srcl

mmmmmmmm
e k0= |
Autional Research Lab

OuthF ou Configuration RAM
dstl pred ds[2 dst in m Provide configuration for a RC
l v every cycle
Predicate support
Oonmﬂon Connected to other RCs
v m According to topology
m Able to read data from other
Figure 3. Reconfigurable RCs
Cell

SoC Optimizations and Restructuring
JOAR

2. ADRES Architecture Overview

o ADRES template

Many design options

m Overall topology, supported operation set, resource allocation,
timing and even the internal organization of each RC

m Using XML for configuration of architecture

0 Advantage of tightly coupled integration of VLIW and CGRA
VLIW instead of RISC
m Can accelerate non-kernel parts with ILP
Shared RF and memory access

m Reduce both communication overhead and programming
complexity

Shared resources
m Reduce costs

SoC Optimizations and Restructuring
0AR

3. C-Based Design Flow

Imol. architecture
shed ey 60
1 profiling/partitioning architecture parser
1 r- -
: source-level e
transformation H
' .
IMPACT frontend :
Y 1
:
! architecture
. abstraction
. dataflow analysis & | -
ILP scheduling optimization i
L] Y i
register allocation modulo scheduling |,
\/ N 1
code generation
Y y
kernel scheduling > co-simulator

D external tool

aaaaaaaa
¥7lﬂﬁﬁ;‘q
National Research Lab

o Starts from C description

o Profiling/Partitioning

Identifies the candidate loops
for mapping on the
reconfigurable matrix

Based on the execution time
and possible speed-up

D under deverlopment

Figure 4. Design flow for ADRES

SoC Optimizations and Restructuring

3. C-Based Design Flow

aaaaaaaa
o Source-level transformation
| profiingparttioning e Rewrite the kernel in order to
i - cg T E make it pipelineable and to
L — i maximize the performance
i o IMPACT frontend
= e A compiler framework mainly
. abstraction
ILP scheduling "a’z“"‘:i"'"‘.‘:;ﬁiss‘ , for VLIW
! ! : Parse the C code
register allocation modulo scheduling |, D external tool
o : [} undor dovercpment Do some analysis and
code generation optimizations
: ‘ : .
— K s Emit Lcode IR(Intermediate
Representation)

Figure 4. Design flow for ADRES

SoC Optimizations and Restructuring

3. C-Based Design Flow

IMPACT frontend
Y

architecture
description

architecture parser

Y

architecture
abstraction

ILP scheduling

dataflow analysis &
optimization

L]

Y

register allocation

modulo scheduling

code generation

v

kernel scheduling

D external tool

D under deverlopment

Figure 4. Design flow for ADRES

SoC Optimizations and Restructuring

ARUe ER
;a"ﬂzlﬁﬁ—'-‘q
National Research Lab

o VLIW code
ILP scheduling

Register allocation

0 CGRA code

Data flow analysis and
optimization
Modulo Scheduling

m XML-Architecture
description and program as
input

@

3. C-Based Design Flow

escription
somtome o3
i profiling/partitioning architecture parser
. r. -
1 source-level :
; transformation |
' :
IMPACT frontend .
! i
! architecture
: abstraction
: dataflow analysis & | -
ILP scheduling optimization .
v Y T
register allocation modulo scheduling |,
i

\/x

code generation

v

kernel scheduling

D external tool

aaaaaaaa
e k0= |
National Research Lab

0 Code generation

Integration of VLIW code and
CGRA code

Could be simulated by co-
simulator

o0 Kernel scheduling

When configuration RAM is
not sufficient to contain all
kernel codes

D under deverlopment

Figure 4. Design flow for ADRES

SoC Optimizations and Restructuring

Divide kernel codes and
schedule

3. C-Based Design Flow

mmmmmmmm
[TNYIR A
National Research Lab

o Some key steps need efforts of designer
Partitioning and Source-level transformation
Most design time are spent

o Partitioning
Made in the early phase
Highly dependent on designer’s experience and knowledge
Profiler only provide some useful information

o Source level parallelism
In order to map more loops to the RA
m In nature C code, we can map only few loops to RA
Construct pipelineable loops
m Using many techniques
m Function inlining, loop unrolling, ...

SoC Optimizations and Restructuring
0AR

3. C-Based Design Flow

FEFESIES
e k0= |
National Research Lab

o Compilation of loops
Focus on one loop at a time

src-level transformation modulo sched.
D

annotate Source level transformation

— sched. param .
[ioopz | for mapping on RA
—— Transformed code is
R L o o read verified on VLIW
src-levelo}rlsormation modulo sched. annotate : | sched. param
~ Compile the code for RA
and evaluate II
— ——i I R RER = . =
When Il is low, design
parameters are annotated
verified on VLIW loop2” runs on matrix final integration ln Settlng flle and the loop
_ _ is mapped to RA
Figure 5. Focus on one loop at a time pp.
Otherwise, mapped to
VLIW

SoC Optimizations and Restructuring
OHR

3. C-Based Design Flow

aaaaaaaa
E’ﬂ’iﬁﬁ—?q
National Research Lab

0 Communication between kernel and non-kernel code
Handled by compiler automatically with low overhead
Analyze variable life and assign them to shared register file

Advantage of tightly coupled architecture

@ [ive-in vars

O live-out vars

Fig. 5. Interfacing between the VLIW processor and the Reconfigurable matrix

SoC Optimizations and Restructuring
OAR

4. Mapping an MPEG-2 Decoder Application

mmmmmmmm
e k0= |
Autional Research Lab

0o MPEG-2 Decoder

Representative multimedia application
Requires very high computation power
Most execution time is spent on several kernels

Good candidate for reconfigurable architectures application

SoC Optimizations and Restructuring

4.1 Mapping to the ADRES Architecture

mmmmmmmm
[TNYIR A
National Research Lab

0 14 loops from the original applications as candidate for
pipelining on the RA by profiling the application
form_comp_pred1 ~ form_comp_pred8
idctl and idct2
add_block1 and add_block2

clear block and saturate

0 2 loops from VLD(Variable Length Decoding)
Using source-level transformation
non_intra_dequant and intra_dequant

o 16 loops on RA

84.6% of the total execution time
3.3% of the total code size

SoC Optimizations and Restructuring
0AR

4.1 Mapping to the ADRES Architecture

0 Source-level transformation

for(i=0; ; i++){
/* VLD, highly ctrl intensive */
if (code>=16384)

for(i=0; ; i+4){ DXtra code fc.)r
/*VLD*/ transformation

/* dequantize replaced */
run_val[nc] = val;
run_pos[nc] = i,

if (i==0) ...
else ...

}
else if (code>=1024) ...
else if (code>=512) ...

!

for(i = 0; i < nc; i++){ /* dequantize */
val = run_vall[i];
pos = run_posli];
j = scan[ld1->alternate_scan][pos];
tmp = (val * Id1->quantizer_scale
* gmat[j]) >> 4,
bp[j] = run_signl[i] ? -tmp : tmp;

/* dequantize */

j = scan[ld1->alternate_scan][i];

val = (val * Id1->quantizer_scale
* gmat(j]) >> 4;

bplj] = sign ? -val : val;

}

Pipelineable loops that can be mapped to RA

Figure 6. Extract intra_dequant loop
SoC Optimizations and Restructuring @

RESEARCH GROUP

4.1 Mapping to the ADRES Architecture

Function inlining is applied

0 Source-level transformation and shorcuts are
terminated.
for (i=0; i< 8; i++)
idctrow(block + 8%i); short block[12][64];
Jbid idctrow(short *blk) f.c;r (i=0; i<8 * block_count; i++){

n=i/8; /" nis block no.*/
M=1%8; /“misrowno.*/

if (1((x1 = blk[4]<<11) | (x2 = bIK[6]) |...)

we)
{ /*shorcut*/ }

blk = block[n] + 8 * m;

X0 = (blk[0]<<11) + 128 X0 = (bIk[0] << 11) + 128;
X8 = W7*(x4+x5);)>>8; X1 = blk[4] << 11;
bIK[6] = (X3-X2)>>8; bIK[6] = (X3-X2)>>8:
blk[7] = (x7-x1)>>8; blk[7] = (X7-x1)>>8;

}

When the co
the function is ended but it
incurs irregular loop.

Figure 7. Transformation for idct1 loop

SoC Optimizations and Restructuring
OHAR

4.1 Mapping to the ADRES Architecture

| | =P
2RI
National Research Lab

0 Reducing programming complexity and communication
overhead

Many scalar values are transferred from VLIW to RA using shared
register file

if ((macroblock_type & MACROBLOCK_MOTION_FORWARD)
|| (picture_coding_type==P_TYPE))
{

if (picture_structure==FRAME_PICTURE)
{
if ((motion_type==MC_FRAME)
|| '{macroblock type & MACROBLOCK MOTION_ FORWARD))
{
if (stwtop<2)
form prediction(forward_reference_ frame,0,current_frame,O,
Coded_Picture_Width,Coded_ Picture Width<=<1,16,8,bx,by,
PMV[0][0][0],PMVI[O][O][1],stwtop);

Figure 8. A'pi&ce 6f Tofifi'predictions @

4.2 Mapping Results

T Sl

kernel no. | II | IPC | stages | sched. O Mapplng to an arChlteCture
of time .
ol (seush resembling the topology of
clear_block 8 1 8 3 0.05
form_comp_pred]l | 41 | 2 | 20.5 6 81 M 0 rp h 0 SyS
form_comp_pred2 | 13 | 1| 13 6 4.6 - . .
form_comp_pred3 | 57 | 2 | 28.5 10 586 64 FUs divided into four tiles
form_comp_pred4d | 33 | 2 | 16.5 5 30 . .
ormcomppreds | 54 |2 27 | s | 25 | O Entire design took less than one
form_comp_pred6 | 30 | 2 15 5 42 _ . .
form_comp_pred7 | 67 | 3 | 22.3 6 167 person Week to flnlSh Startlng
form_comp_pred8 | 43 | 2 | 21.5 6 132
saturate 78 | 3| 26 10 1720 from the SOftware
idct] 83 [3[277 7 363 implementation
idct2 1321 4| 33 7 459
= L LI NI B Most of the time is spent on
add_block2 4 (2| 22 4 27 .. .
non_intra_dequant | 20 [I | 20 12 53 partitioning and source-level
intra_dequant 18 | 1 18 W 18 transformation

Table 1. Scheduling results for kernels

SoC Optimizations and Restructuring
JOAR

4.3 Comparison with VLIW Architecture

mmmmmmmm
2RI
National Research Lab

VLIW(IMPACT) | ADRES
total ops 2.92 x 10" 5.31 x 10
total cycles 1.28 x 10 4.20 x 10®
frames/sec 3.2 107.1
speed-up/kernels 4.84
speed-up/overall 3.05
[PC(excl. kernels) 2.7]

Table 2. Comparison with VLIW architecture

SoC Optimizations and Restructuring @

4.3 Comparison with VLIW Architecture

mmmmmmmm
2RI
National Research Lab

VLIW(IMPACT) ADRES
total ops 2.92 x 10" 5.31 x 10
total cycles 1.28 x 10 4.20 x 10®
frames/sec 35.2 107.1
speed-up/kernels 4.84
Qpppd-nln/n\/famll 3 ()5
‘ [PC(excl. kernels) 2.71 ‘

Table 2. Comparison with VLIW architecture

There is some ILP for the non-kernel code

SoC Optimizations and Restructuring
OHAR

5. Conclusion and Future Work

mmmmmmmm
e k0= |
National Reseanch Lab

o CGRA

Have advantages over traditional FPGAs

How to map not only computation-intensive kernels but also an entire
application

Needs for powerful design tool to deliver both high performance and SW-
like design experience

o ADRES

VLIW+CGRA
C based design flow and automotive tools

o Future work

Oonn

Source-level transformation
m Provide some criteria
Kernel scheduling

m On-going

SoC Optimizations and Restructuring

