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1. Introduction

¨ CGRA	(Coarse-Grained	Reconfigurable	Architecture)
¤ Consist	of	tens	to	hundreds	of	FUs
¤ vs FPGA

n Reduce	delay,	area,	power,	configuration	time
¤ Target	applications

n Telecommunications	and	multimedia
¨ System	consists	of	RISC	and	CGRA

¤ CGRA
n Execute	time-critical	code	segments
n Exploit	parallelism

¤ RISC
n Control	intensive	segments
n Complement	CGRA
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¨ Lacks	of	design	methodology	and	tools	for	CGRA
¤ Could	not	exploit		high	parallelism	and	deliver	a	software-like	design	experience

¨ Previous	work
¤ A	novel	modulo	scheduling	algorithm

n Mapping	a	kernel	to	a	family	of	reconfigurable	architecture
¤ ADRES

n Tightly	coupled		VLIW-CGRA	architecture	resulting	in	many	advantages	over	common	reconfigurable	systems	with	loosely	coupled	RISC/reconfigurable	matrix
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¨ In	this	paper
¤ C-based	design	flow	taking	full	advantage	of	the	scheduling	algorithm
¤ ADRES	features	using	an	MPEG-2	decoder	as	an	example

¨ The	methodology	can	design		an	application	with	efforts	comparable	with	software	development	while	still	achieving	the	high	performance	expected	from	reconfigurable	architectures.
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¨ VLIW	+	CGRA	Architecture
¤ Two	functional	view

n CGRA
n Kernel	code
n Exploit	high	parallelism

n VLIW
n Non-kernel	code
n ILP(Instruction	Level	Parallelism)

¤ Shared	register	file
¤ Shared	memory	access
¤ Shared	FU

n Connected	to	shared	register	file
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¨ Reconfigurable	cell
¤ FU(Functional	Unit)	+	RF(Register	File)
¤ Configuration	RAM

n Provide	configuration	for	a	RC	every	cycle
¤ Predicate	support
¤ Connected	to	other	RCs

n According	to	topology
n Able	to	read	data	from	other	RCs
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¨ ADRES	template
¤ Many	design	options

n Overall	topology,	supported	operation	set,	resource	allocation,	timing	and	even	the	internal	organization	of	each	RC
n Using	XML	for	configuration	of	architecture

¨ Advantage	of	tightly	coupled	integration	of	VLIW	and	CGRA
¤ VLIW	instead	of	RISC

n Can	accelerate	non-kernel	parts	with	ILP
¤ Shared	RF	and	memory	access

n Reduce	both	communication	overhead	and	programming		complexity
¤ Shared	resources

n Reduce	costs
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¨ Starts	from	C	description	
¨ Profiling/Partitioning

¤ Identifies	the	candidate	loops	for	mapping	on	the	reconfigurable	matrix
¤ Based	on	the	execution	time	and	possible	speed-up
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¨ Source-level	transformation
¤ Rewrite	the	kernel	in	order	to	make	it	pipelineable and	to	maximize	the	performance

¨ IMPACT	frontend
¤ A	compiler	framework	mainly	for	VLIW
¤ Parse	the	C	code
¤ Do	some	analysis	and	optimizations
¤ Emit	Lcode IR(Intermediate	Representation)
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¨ VLIW	code
¤ ILP	scheduling
¤ Register	allocation

¨ CGRA	code
¤ Data	flow	analysis	and	optimization
¤ Modulo	Scheduling

n XML-Architecture	description	and	program	as	input
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¨ Code	generation
¤ Integration	of	VLIW	code	and	CGRA	code
¤ Could	be	simulated	by	co-simulator

¨ Kernel	scheduling
¤ When	configuration	RAM	is	not	sufficient	to	contain	all	kernel	codes
¤ Divide	kernel	codes	and	schedule
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¨ Some	key	steps	need	efforts	of	designer
¤ Partitioning	and	Source-level	transformation
¤ Most	design	time	are	spent

¨ Partitioning
¤ Made	in	the	early	phase
¤ Highly	dependent	on	designer’s	experience	and	knowledge
¤ Profiler	only	provide	some	useful	information

¨ Source	level	parallelism
¤ In	order	to	map		more	loops	to	the	RA

n In	nature	C	code,	we	can	map	only	few	loops	to	RA
¤ Construct	pipelineable loops

n Using	many	techniques
n Function	inlining,	loop	unrolling,	…
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¨ Compilation	of	loops
¤ Focus	on	one	loop	at	a	time
¤ Source	level	transformation	for	mapping	on	RA
¤ Transformed	code	is	verified	on	VLIW
¤ Compile	the	code	for	RA	and	evaluate	II
¤ When	II	is	low,	design	parameters	are	annotated	in	setting	file	and	the	loop	is	mapped	to	RA
¤ Otherwise,	mapped	to	VLIW
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¨ Communication	between	kernel	and	non-kernel	code
¤ Handled	by	compiler	automatically	with	low	overhead
¤ Analyze	variable	life	and	assign	them	to	shared	register	file
¤ Advantage	of	tightly	coupled	architecture
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¨ MPEG-2	Decoder
¤ Representative	multimedia	application
¤ Requires	very	high	computation	power
¤ Most	execution	time	is	spent	on	several	kernels
¤ Good	candidate	for	reconfigurable	architectures	application



4.1 Mapping to the ADRES Architecture
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¨ 14	loops	from	the	original	applications	as	candidate	for	pipelining		on	the	RA	by	profiling	the	application
¤ form_comp_pred1	~	form_comp_pred8
¤ idct1	and	idct2
¤ add_block1	and	add_block2
¤ clear_block and	saturate

¨ 2	loops	from	VLD(Variable	Length	Decoding)
¤ Using	source-level	transformation	
¤ non_intra_dequant and	intra_dequant

¨ 16	loops	on	RA
¤ 84.6%	of	the	total	execution	time
¤ 3.3%	of	the	total	code	size
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¨ Source-level	transformation Extra	code	for	transformation

Pipelineable loops	that	can	be	mapped	to	RA
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¨ Source-level	transformation

When	the	condition	is	met,	the	function	is	ended	but	it	incurs	irregular	loop.

Function	inlining is	applied	and	shorcuts are	terminated.
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¨ Reducing	programming	complexity	and	communication	overhead
¤ Many	scalar	values	are	transferred	from	VLIW	to	RA	using	shared	register	file
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¨ Mapping	to	an	architecture	resembling	the	topology	of	MorphoSys
¤ 64	FUs	divided	into	four	tiles

¨ Entire	design	took	less	than	one	person-week	to	finish	starting	from	the	software	implementation
¤ Most	of	the	time	is	spent	on	partitioning	and	source-level	transformation
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There	is	some	ILP	for	the	non-kernel	code



5. Conclusion and Future Work
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¨ CGRA
¤ Have	advantages	over	traditional	FPGAs
¤ How	to	map	not	only	computation-intensive	kernels	but	also	an	entire	application
¤ Needs	for	powerful	design	tool	to	deliver	both	high	performance	and	SW-like	design	experience	

¨ ADRES
¤ VLIW+CGRA
¤ C	based	design	flow	and	automotive	tools

¨ Future	work
¤ Source-level	transformation

n Provide	some	criteria
¤ Kernel	scheduling

n On-going


