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0 CGRA (Coarse-Grained Reconfigurable Architecture)
Consist of tens to hundreds of FUs
vs FPGA
m Reduce delay, area, power, configuration time
Target applications
m Telecommunications and multimedia

o0 System consists of RISC and CGRA
CGRA
m Execute time-critical code segments
m Exploit parallelism
RISC

m Control intensive segments
m Complement CGRA
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1. Introduction
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0 Lacks of design methodology and tools for CGRA
Could not exploit high parallelism and deliver a software-like design
experience

o0 Previous work
A novel modulo scheduling algorithm
m Mapping a kernel to a family of reconfigurable architecture
ADRES

m Tightly coupled VLIW-CGRA architecture resulting in many
advantages over common reconfigurable systems with loosely
coupled RISC/reconfigurable matrix
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1. Introduction
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0 In this paper
C-based design flow taking full advantage of the scheduling algorithm
ADRES features using an MPEG-2 decoder as an example

o The methodology can design an application with efforts
comparable with software development while still achieving
the high performance expected from reconfigurable
architectures.
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2. ADRES Architecture Overview

P —

Program Fetch

Instruction Dispatch

|
Instruction Decode ]

Reconfigurable Matrix View

Figure 1. ADRES core
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o VLIW + CGRA Architecture

Two functional view

m CGRA
= Kernel code
= Exploit high parallelism

m VLIW

= Non-kernel code

» ILP(Instruction Level
Parallelism)

Shared register file
Shared memory access
Shared FU

m Connected to shared register
file
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2. ADRES Architecture Overview

|| | o Reconfigurable cell
FU(Functional Unit) +
RF(Register File)
srcl
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OuthF ou Configuration RAM
dstl pred ds[2 dst in m Provide configuration for a RC
l v every cycle
Predicate support
Oonmﬂon Connected to other RCs
v m According to topology
m Able to read data from other
Figure 3. Reconfigurable RCs
Cell
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2. ADRES Architecture Overview

o ADRES template

Many design options

m Overall topology, supported operation set, resource allocation,
timing and even the internal organization of each RC

m Using XML for configuration of architecture

0 Advantage of tightly coupled integration of VLIW and CGRA
VLIW instead of RISC
m Can accelerate non-kernel parts with ILP
Shared RF and memory access

m Reduce both communication overhead and programming
complexity

Shared resources
m Reduce costs
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3. C-Based Design Flow
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o Starts from C description

o Profiling/Partitioning

Identifies the candidate loops
for mapping on the
reconfigurable matrix

Based on the execution time
and possible speed-up

D under deverlopment

Figure 4. Design flow for ADRES
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3. C-Based Design Flow
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o Source-level transformation
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i o IMPACT frontend
= e A compiler framework mainly
. abstraction
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code generation optimizations
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Figure 4. Design flow for ADRES
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3. C-Based Design Flow
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Figure 4. Design flow for ADRES
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o VLIW code
ILP scheduling

Register allocation

0 CGRA code

Data flow analysis and
optimization
Modulo Scheduling

m XML-Architecture
description and program as
input

@



3. C-Based Design Flow
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0 Code generation

Integration of VLIW code and
CGRA code

Could be simulated by co-
simulator

o0 Kernel scheduling

When configuration RAM is
not sufficient to contain all
kernel codes

D under deverlopment

Figure 4. Design flow for ADRES
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3. C-Based Design Flow
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o Some key steps need efforts of designer
Partitioning and Source-level transformation
Most design time are spent

o Partitioning
Made in the early phase
Highly dependent on designer’s experience and knowledge
Profiler only provide some useful information

o Source level parallelism
In order to map more loops to the RA
m In nature C code, we can map only few loops to RA
Construct pipelineable loops
m Using many techniques
m Function inlining, loop unrolling, ...
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3. C-Based Design Flow
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o Compilation of loops
Focus on one loop at a time

src-level transformation  modulo sched.
D

annotate Source level transformation

— sched. param .
[ioopz | for mapping on RA
—— Transformed code is
R L o o read verified on VLIW
src-levelo}rlsormation modulo sched. annotate : | sched. param
~ Compile the code for RA
and evaluate II
— ——i I R RER = . =
When Il is low, design
parameters are annotated
verified on VLIW loop2” runs on matrix final integration ln Settlng flle and the loop
_ _ is mapped to RA
Figure 5. Focus on one loop at a time pp.
Otherwise, mapped to
VLIW
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3. C-Based Design Flow
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0 Communication between kernel and non-kernel code
Handled by compiler automatically with low overhead
Analyze variable life and assign them to shared register file

Advantage of tightly coupled architecture

@ [ive-in vars

O live-out vars

Fig. 5. Interfacing between the VLIW processor and the Reconfigurable matrix
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4. Mapping an MPEG-2 Decoder Application
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0o MPEG-2 Decoder

Representative multimedia application
Requires very high computation power
Most execution time is spent on several kernels

Good candidate for reconfigurable architectures application
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4.1 Mapping to the ADRES Architecture
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0 14 loops from the original applications as candidate for
pipelining on the RA by profiling the application
form_comp_pred1 ~ form_comp_pred8
idctl and idct2
add_block1 and add_block2

clear block and saturate

0 2 loops from VLD(Variable Length Decoding)
Using source-level transformation
non_intra_dequant and intra_dequant

o 16 loops on RA

84.6% of the total execution time
3.3% of the total code size
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4.1 Mapping to the ADRES Architecture

0 Source-level transformation

for(i=0; ; i++){
/* VLD, highly ctrl intensive */
if (code>=16384)

for(i=0; ; i+4){ DXtra code fc.)r
/*VLD*/ transformation

/* dequantize replaced */
run_val[nc] = val;
run_pos[nc] = i,

if (i==0) ...
else ...

}
else if (code>=1024) ...
else if (code>=512) ...

!

for(i = 0; i < nc; i++){ /* dequantize */
val = run_vall[i];
pos = run_posli];
j = scan[ld1->alternate_scan][pos];
tmp = (val * Id1->quantizer_scale
* gmat[j]) >> 4,
bp[j] = run_signl[i] ? -tmp : tmp;

/* dequantize */

j = scan[ld1->alternate_scan][i];

val = (val * Id1->quantizer_scale
* gmat(j]) >> 4;

bplj] = sign ? -val : val;

}

Pipelineable loops that can be mapped to RA

Figure 6. Extract intra_dequant loop
SoC Optimizations and Restructuring @
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4.1 Mapping to the ADRES Architecture

Function inlining is applied

0 Source-level transformation and shorcuts are
terminated.
for (i=0; i< 8; i++)
idctrow(block + 8%i); short block[12][64];
Jbid idctrow(short *blk) f.c;r (i=0; i<8 * block_count; i++){

n=i/8; /" nis block no.*/
M=1%8; /“misrowno.*/

if (1((x1 = blk[4]<<11) | (x2 = bIK[6]) |...)

we)
{ /*shorcut*/ }

blk = block[n] + 8 * m;

X0 = (blk[0]<<11) + 128 X0 = (bIk[0] << 11) + 128;
X8 = W7*(x4+x5);)>>8; X1 = blk[4] << 11;
bIK[6] = (X3-X2)>>8; bIK[6] = (X3-X2)>>8:
blk[7] = (x7-x1)>>8; blk[7] = (X7-x1)>>8;

}

When the co
the function is ended but it
incurs irregular loop.

Figure 7. Transformation for idct1 loop
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4.1 Mapping to the ADRES Architecture
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0 Reducing programming complexity and communication
overhead

Many scalar values are transferred from VLIW to RA using shared
register file

if ((macroblock_type & MACROBLOCK_MOTION_FORWARD)
|| (picture_coding_type==P_TYPE))
{

if (picture_structure==FRAME_PICTURE)
{
if ((motion_type==MC_FRAME)
|| '{macroblock type & MACROBLOCK MOTION_ FORWARD))
{
if (stwtop<2)
form prediction(forward_reference_ frame,0,current_frame,O,
Coded_Picture_Width,Coded_ Picture Width<=<1,16,8,bx,by,
PMV[0][0][0],PMVI[O][O][1],stwtop);

Figure 8. A'pi&ce 6f Tofifi'predictions @



4.2 Mapping Results

T Sl

kernel no. | II | IPC | stages | sched. O Mapplng to an arChlteCture
of time .
ol (seush resembling the topology of
clear_block 8 1 8 3 0.05
form_comp_pred]l | 41 | 2 | 20.5 6 81 M 0 rp h 0 SyS
form_comp_pred2 | 13 | 1| 13 6 4.6 - . .
form_comp_pred3 | 57 | 2 | 28.5 10 586 64 FUs divided into four tiles
form_comp_pred4d | 33 | 2 | 16.5 5 30 . .
ormcomppreds | 54 |2 27 | s | 25 | O Entire design took less than one
form_comp_pred6 | 30 | 2 15 5 42 _ . .
form_comp_pred7 | 67 | 3 | 22.3 6 167 person Week to flnlSh Startlng
form_comp_pred8 | 43 | 2 | 21.5 6 132
saturate 78 | 3| 26 10 1720 from the SOftware
idct] 83 [3[277 7 363 implementation
idct2 1321 4| 33 7 459
= L LI NI B Most of the time is spent on
add_block2 4 (2| 22 4 27 .. .
non_intra_dequant | 20 [ I | 20 12 53 partitioning and source-level
intra_dequant 18 | 1 18 W 18 transformation

Table 1. Scheduling results for kernels
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4.3 Comparison with VLIW Architecture
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VLIW(IMPACT) | ADRES
total ops 2.92 x 10" 5.31 x 10
total cycles 1.28 x 10 4.20 x 10®
frames/sec 3.2 107.1
speed-up/kernels 4.84
speed-up/overall 3.05
[PC(excl. kernels) 2.7]

Table 2. Comparison with VLIW architecture
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4.3 Comparison with VLIW Architecture
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VLIW(IMPACT) ADRES
total ops 2.92 x 10" 5.31 x 10
total cycles 1.28 x 10 4.20 x 10®
frames/sec 35.2 107.1
speed-up/kernels 4.84
Qpppd-nln/n\/famll 3 ()5
‘ [PC(excl. kernels) 2.71 ‘

Table 2. Comparison with VLIW architecture

There is some ILP for the non-kernel code
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5. Conclusion and Future Work
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o CGRA

Have advantages over traditional FPGAs

How to map not only computation-intensive kernels but also an entire
application

Needs for powerful design tool to deliver both high performance and SW-
like design experience

o ADRES

VLIW+CGRA
C based design flow and automotive tools

o Future work

Oonn

Source-level transformation
m Provide some criteria
Kernel scheduling

m On-going
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