
Design Methodology for a Tightly Coupled 
VLIW/Reconfigurable Matrix Architecture : A 
Case Study
(ADRES, DATE ’04)

B.Mei, S.Vernalde, D.Verkest, R.Lauwereins
Katholieke Universiteit Leuven, Vrije
UniversiteitPresenter	:	Ingoo Heo2011-06-01



1. Introduction2. ADRES	Architecture	Overview3. C-Based	Design	Flow4. Mapping	an	MPEG-2	Decoder	Application5. Conclusion	and	Future	Work

Contents

SoC	Optimizations	and	Restructuring



1. Introduction

¨ CGRA	(Coarse-Grained	Reconfigurable	Architecture)
¤ Consist	of	tens	to	hundreds	of	FUs
¤ vs FPGA

n Reduce	delay,	area,	power,	configuration	time
¤ Target	applications

n Telecommunications	and	multimedia
¨ System	consists	of	RISC	and	CGRA

¤ CGRA
n Execute	time-critical	code	segments
n Exploit	parallelism

¤ RISC
n Control	intensive	segments
n Complement	CGRA

3

SoC	Optimizations	and	Restructuring



1. Introduction

SoC	Optimizations	and	Restructuring

4

¨ Lacks	of	design	methodology	and	tools	for	CGRA
¤ Could	not	exploit		high	parallelism	and	deliver	a	software-like	design	experience

¨ Previous	work
¤ A	novel	modulo	scheduling	algorithm

n Mapping	a	kernel	to	a	family	of	reconfigurable	architecture
¤ ADRES

n Tightly	coupled		VLIW-CGRA	architecture	resulting	in	many	advantages	over	common	reconfigurable	systems	with	loosely	coupled	RISC/reconfigurable	matrix



1. Introduction

SoC	Optimizations	and	Restructuring

5

¨ In	this	paper
¤ C-based	design	flow	taking	full	advantage	of	the	scheduling	algorithm
¤ ADRES	features	using	an	MPEG-2	decoder	as	an	example

¨ The	methodology	can	design		an	application	with	efforts	comparable	with	software	development	while	still	achieving	the	high	performance	expected	from	reconfigurable	architectures.



2. ADRES Architecture Overview

SoC	Optimizations	and	Restructuring

6

¨ VLIW	+	CGRA	Architecture
¤ Two	functional	view

n CGRA
n Kernel	code
n Exploit	high	parallelism

n VLIW
n Non-kernel	code
n ILP(Instruction	Level	Parallelism)

¤ Shared	register	file
¤ Shared	memory	access
¤ Shared	FU

n Connected	to	shared	register	file



2. ADRES Architecture Overview

SoC Optimizations	and	Restructuring

7

¨ Reconfigurable	cell
¤ FU(Functional	Unit)	+	RF(Register	File)
¤ Configuration	RAM

n Provide	configuration	for	a	RC	every	cycle
¤ Predicate	support
¤ Connected	to	other	RCs

n According	to	topology
n Able	to	read	data	from	other	RCs



2. ADRES Architecture Overview

SoC	Optimizations	and	Restructuring

8

¨ ADRES	template
¤ Many	design	options

n Overall	topology,	supported	operation	set,	resource	allocation,	timing	and	even	the	internal	organization	of	each	RC
n Using	XML	for	configuration	of	architecture

¨ Advantage	of	tightly	coupled	integration	of	VLIW	and	CGRA
¤ VLIW	instead	of	RISC

n Can	accelerate	non-kernel	parts	with	ILP
¤ Shared	RF	and	memory	access

n Reduce	both	communication	overhead	and	programming		complexity
¤ Shared	resources

n Reduce	costs



3. C-Based Design Flow

SoC	Optimizations	and	Restructuring

9

¨ Starts	from	C	description	
¨ Profiling/Partitioning

¤ Identifies	the	candidate	loops	for	mapping	on	the	reconfigurable	matrix
¤ Based	on	the	execution	time	and	possible	speed-up



3. C-Based Design Flow

SoC	Optimizations	and	Restructuring

10

¨ Source-level	transformation
¤ Rewrite	the	kernel	in	order	to	make	it	pipelineable and	to	maximize	the	performance

¨ IMPACT	frontend
¤ A	compiler	framework	mainly	for	VLIW
¤ Parse	the	C	code
¤ Do	some	analysis	and	optimizations
¤ Emit	Lcode IR(Intermediate	Representation)



3. C-Based Design Flow

SoC	Optimizations	and	Restructuring

11

¨ VLIW	code
¤ ILP	scheduling
¤ Register	allocation

¨ CGRA	code
¤ Data	flow	analysis	and	optimization
¤ Modulo	Scheduling

n XML-Architecture	description	and	program	as	input



3. C-Based Design Flow

SoC	Optimizations	and	Restructuring

12

¨ Code	generation
¤ Integration	of	VLIW	code	and	CGRA	code
¤ Could	be	simulated	by	co-simulator

¨ Kernel	scheduling
¤ When	configuration	RAM	is	not	sufficient	to	contain	all	kernel	codes
¤ Divide	kernel	codes	and	schedule



3. C-Based Design Flow

SoC	Optimizations	and	Restructuring

13

¨ Some	key	steps	need	efforts	of	designer
¤ Partitioning	and	Source-level	transformation
¤ Most	design	time	are	spent

¨ Partitioning
¤ Made	in	the	early	phase
¤ Highly	dependent	on	designer’s	experience	and	knowledge
¤ Profiler	only	provide	some	useful	information

¨ Source	level	parallelism
¤ In	order	to	map		more	loops	to	the	RA

n In	nature	C	code,	we	can	map	only	few	loops	to	RA
¤ Construct	pipelineable loops

n Using	many	techniques
n Function	inlining,	loop	unrolling,	…



3. C-Based Design Flow

SoC Optimizations	and	Restructuring

14

¨ Compilation	of	loops
¤ Focus	on	one	loop	at	a	time
¤ Source	level	transformation	for	mapping	on	RA
¤ Transformed	code	is	verified	on	VLIW
¤ Compile	the	code	for	RA	and	evaluate	II
¤ When	II	is	low,	design	parameters	are	annotated	in	setting	file	and	the	loop	is	mapped	to	RA
¤ Otherwise,	mapped	to	VLIW



3. C-Based Design Flow

SoC	Optimizations	and	Restructuring

15

¨ Communication	between	kernel	and	non-kernel	code
¤ Handled	by	compiler	automatically	with	low	overhead
¤ Analyze	variable	life	and	assign	them	to	shared	register	file
¤ Advantage	of	tightly	coupled	architecture



4. Mapping an MPEG-2 Decoder Application

SoC	Optimizations	and	Restructuring

16

¨ MPEG-2	Decoder
¤ Representative	multimedia	application
¤ Requires	very	high	computation	power
¤ Most	execution	time	is	spent	on	several	kernels
¤ Good	candidate	for	reconfigurable	architectures	application



4.1 Mapping to the ADRES Architecture

SoC	Optimizations	and	Restructuring

17

¨ 14	loops	from	the	original	applications	as	candidate	for	pipelining		on	the	RA	by	profiling	the	application
¤ form_comp_pred1	~	form_comp_pred8
¤ idct1	and	idct2
¤ add_block1	and	add_block2
¤ clear_block and	saturate

¨ 2	loops	from	VLD(Variable	Length	Decoding)
¤ Using	source-level	transformation	
¤ non_intra_dequant and	intra_dequant

¨ 16	loops	on	RA
¤ 84.6%	of	the	total	execution	time
¤ 3.3%	of	the	total	code	size



4.1 Mapping to the ADRES Architecture

SoC	Optimizations	and	Restructuring

18

¨ Source-level	transformation Extra	code	for	transformation

Pipelineable loops	that	can	be	mapped	to	RA



4.1 Mapping to the ADRES Architecture

SoC	Optimizations	and	Restructuring

19

¨ Source-level	transformation

When	the	condition	is	met,	the	function	is	ended	but	it	incurs	irregular	loop.

Function	inlining is	applied	and	shorcuts are	terminated.



4.1 Mapping to the ADRES Architecture

SoC	Optimizations	and	Restructuring

20

¨ Reducing	programming	complexity	and	communication	overhead
¤ Many	scalar	values	are	transferred	from	VLIW	to	RA	using	shared	register	file



4.2 Mapping Results

SoC Optimizations	and	Restructuring

21

¨ Mapping	to	an	architecture	resembling	the	topology	of	MorphoSys
¤ 64	FUs	divided	into	four	tiles

¨ Entire	design	took	less	than	one	person-week	to	finish	starting	from	the	software	implementation
¤ Most	of	the	time	is	spent	on	partitioning	and	source-level	transformation



4.3 Comparison with VLIW Architecture

SoC	Optimizations	and	Restructuring

22



4.3 Comparison with VLIW Architecture

SoC	Optimizations	and	Restructuring

23

There	is	some	ILP	for	the	non-kernel	code



5. Conclusion and Future Work

SoC	Optimizations	and	Restructuring

24

¨ CGRA
¤ Have	advantages	over	traditional	FPGAs
¤ How	to	map	not	only	computation-intensive	kernels	but	also	an	entire	application
¤ Needs	for	powerful	design	tool	to	deliver	both	high	performance	and	SW-like	design	experience	

¨ ADRES
¤ VLIW+CGRA
¤ C	based	design	flow	and	automotive	tools

¨ Future	work
¤ Source-level	transformation

n Provide	some	criteria
¤ Kernel	scheduling

n On-going


