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Top-N Recommender Systems

4 Top-N recommendation

o E-commerce: huge amounts of products

- Recommend a short ranked list of items for users
1 Top-N recommender systems

) Neighborhood-based Collaborative Filtering (CF)

0 Item based [2]: fast to generate recommendations, low
recommendation quality

 Model-based methods [1, 3, 5]

1 Matrix Factorization (MF) models: slow to learn the models,
high recommendation quality

) SLIM: Sparse LInear Methods
0 Fast and high recommendation quality
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Definitions and Notations

Table 1: Definitions and Notations

Def Descriptions

user

item

all users (|U| = n)

all items (|77 = m)

user-item purchase/rating matrix, size n x m

item-item similarity matrix/coefficient matrix

The i-th row of A, the purchase/rating history of u; on 7
The j-th column of A, the purchase/rating history of ¢/ on #;

BB >392 8

) Row vectors are represented by having the transpose
supscript”, otherwise by default they are column vectors.

2 Use matrix/vector notations instead of user/item
purchase/rating profiles

Xia Ning and George Karypis e SLIM: Sparse Linear Methodsfor Top-N Recommender Systems



.M.. UNIVERSITY OF MINNESOTA Intrgguocélon Methods Materials Experimental Results Conclusions  6/25

The State-of-the-Art Methods

Item-based Collaborative Filtering (1)
- ltem-based k-nearest-neighbor (itemkNN) CF
O Identify a set of similar items
U Item-item similarity:
0 Calculated from A
0 Cosine similarity measure
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The State-of-the-Art Methods

Item-based Collaborative Filtering (2)
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) itemkNN recommendation
0 Recommend similar items to what the user has purchased
al =al xw

[ Fast: sparse item neighborhood
U Low quality: no knowledge is learned
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The State-of-the-Art Methods

Matrix Factorization (1)

1 Latent factor models
) Factorize A into low-rank user factors (U) and item factors
(v
0 U and VT represent user and item characteristics in a
common latent space
0 Formulated as an optimization problem

N B 1
minimize =||A — UV'|Z + 2| UI% + Z|IVT|1?
F F F
A% 2 2 2
1 1) 1300 tj""‘m—l tm ll 12"'lk
uj 1 urlu|ululu
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The State-of-the-Art Methods

Matrix Factorization (2)
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) MF recommendation
1 Prediction: dot product in the latent space

ay =0,
1) Slow: dense U and VT
U High quality: user tastes and item properties are learned
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SLIM for top-N Recommendation

4 Motivations:
) recommendations generated fast
- high-quality recommendations
J “have my cake and eat it too”

- Key ideas:

2 retain the nature of itemkNN: sparse W
2 optimize the recommendation performance: learn W from A

O sparsity structures
0 coefficient values
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Learning W for SLIM

-1 The optimization problem:

B

2

subjectto W >0 (1)
diag(W) =0,

L 1
minimize 5||A—AW||§+ W2 + AW,
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Learning W for SLIM

-1 The optimization problem:

B

2

subjectto W >0 (1)
diag(W) =0,

L 1
minimize 5||A—AW||§+ W2 + AW,

- Computing W:
) The columns of W are independent: easy to parallelize
) The decoupled problems:

. 1 B
minimize  =|la; — Awj|3 + Z[lw;ll3 + Alw;ll;
w; 2 2

subjectto  w; >0

wjj =0,
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Reducing model learning time

I 1 » B 2
minimize —|la; — Aw;ll; + = |lw;ll; + Allw;ll;
w; 2 2

) f£sSLIM: SLIM with feature selection

U Prescribe the potential non-zero structure of w;
L Select a subset of columns from A
U itemkNN item-item similarity matrix

aj
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Datasets, Evaluation Methodology and Metrics

Table 2: The Datasets Used in Evaluation

dataset #users  #items #trns  rsize  csize  density ratings
ccard 42,067 18,004 308,420 7.33 17.13 0.04%
ctig2 22,505 17,096 1,814,072 80.61 106.11 0.47%
ctig3 58,565 37,841 453219 774 1198 0.02%
ecmrc 6,594 3,972 50,372 7.64 12.68 0.19%
BX 3,586 7,602 84981 2370 11.18 0.31%

1-1
ML1OM 69,878 10,677 10,000,054 143.11 936.60 1.34% 141
Netflix 39,884 8,478 1,256,115 31.49 148.16 0.37%
Yahoo 85,325 55,371 3,973,104 46.56 71.75 0.08%

0 Datasets: 8 real datasets of 2 categories

-1 Evaluation methodology: Leave-One-Out cross validation
1 Evaluation metrics

2 Hit Rate: = féhits
#users
) Average Reciprocal Hit-Rank (ARHR) [2]:
#hits
1 1

ARHR =

#users I p;
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SLIM on Binary Data

Top-N recommendation performance

Figure 1: HR comparison Figure 3: learning time comparison
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Figure 2: ARHR comparison Figure 4: testing time comparison
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itemkNN = PureSVD == BPRKNN =
itemprob = WRMF = SLIM m=m
userkNN = BPRMF mm fsSLIM m=m
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SLIM on Binary Data

SLIM for Long-Tail Distribution

Figure 5: Rating Distribution in ML10M
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) SLIM outperforms the rest
methods on the “long tail”.

Figure 6: HR in ML10M tall
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Figure 7: ARHR in ML10M tail
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_itemkNN = PureSVD = BPRKNN =
itemprob ™= WRMF = SLIM ==
userkNN = BPRMF mm fsSLIM mm
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SLIM Recommendations for Different top-N

Figure 8: BX
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Figure 9: Netflix

WRMF =3
BPRMF mm

i L L

BPRKNN =
SLIM mm

) The performance difference between SLIM and the best of
the other methods are higher for smaller values of N.

) SLIM tends to rank most relevant items higher than the

other methods.



.M.. UNIVERSITY OF MINNESOTA Introduction Methods Materials Ié)époe.nmental Results Conclusions 20/25

SLIM on Binary Data

SLIM Regularization Effects

Figure 10: SLIM Regularization Effects on BX
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) As greater £;-norm regularization (i.e., larger 1) is applied, lower
recommendation time is achieved, indicating that the learned W is sparser.

) The best recommendation quality is achieved when both of the regularization
parameters 3 and A are non-zero.

1 The recommendation quality changes smoothly as the regularization parameters
B and A change.

N 1
minimize - [lA — AWIZ + SIWIE + AW,
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SLIM on Rating Data

Top-N recommendation performance

Figure 11: SLIM on Netflix
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PureSVD-r = WRMEF-r = BPRKNN-7 = SLIM-r ==
PureSVD-b = WRMF-b == BPRKNN-b == SLIM-H wm

) Evaluation metics:

) per-rating Hit Rate: rHR
4 All the -r methods produce higher hit rates on items with higher ratings.
1 The -r methods outperform -b methods on high-rated items.

0 SLIM-r consistently outperforms the other methods on items with higher
ratings.
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Conclusions

) SLIM: Sparse Llnear Method for top-N recommendations

- The recommendation score for a new item can be
calculated as an aggregation of other items

1 A sparse aggregation coefficient matrix W is learned for
SLIM to make the aggregation very fast

2 W is learned by solving an ¢;-norm and ¢,-norm regularized

optimization problem such that sparsity is introduced into W
2 Fast and efficient
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Thank You!

Xia Ning and George Karypis e SLIM: Sparse Linear Methodsfor Top-N Recommender Systems



	Introduction
	Top-N Recommender Systems
	Definitions and Notations
	The State-of-the-Art methods

	Methods
	Sparse LInear Methods for top-N Recommendation
	Learning W for SLIM
	SLIM with Feature Selection

	Materials
	Experimental Results
	SLIM on Binary Data
	SLIM on Rating Data

	Conclusions

