Markas et al., 1992 - Google Patents
Voltammetric and amperometric behaviour of uric acid at bare and surface-modified screen-printed electrodes: studies towards a disposable uric acid sensorMarkas et al., 1992
- Document ID
- 986286657868188342
- Author
- Markas A
- et al.
- Publication year
- Publication venue
- Analyst
External Links
Snippet
Systematic voltammetric and amperometric studies have been undertaken to examine the electrochemical behaviour of uric acid at bare and surface-modified screen-printed electrodes. The precision of the electrode manufacture was determined by cyclic …
- LEHOTFFKMJEONL-UHFFFAOYSA-N Trioxopurine   N1C(=O)NC(=O)C2=C1NC(=O)N2 0 title abstract description 70
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES OR MICRO-ORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or micro-organisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/001—Enzyme electrodes
- C12Q1/005—Enzyme electrodes involving specific analytes or enzymes
- C12Q1/006—Enzyme electrodes involving specific analytes or enzymes for glucose
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES OR MICRO-ORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or micro-organisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/001—Enzyme electrodes
- C12Q1/002—Electrode membranes
- C12Q1/003—Functionalisation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES OR MICRO-ORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or micro-organisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/001—Enzyme electrodes
- C12Q1/004—Enzyme electrodes mediator-assisted
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes electrical and mechanical details of in vitro measurements
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES OR MICRO-ORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or micro-organisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/26—Measuring or testing processes involving enzymes, nucleic acids or micro-organisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N11/00—Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
- C12N11/02—Enzymes or microbial cells being immobilised on or in an organic carrier
- C12N11/04—Enzymes or microbial cells being immobilised on or in an organic carrier entrapped within the carrier, e.g. gel, hollow fibre
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/42—Measuring disposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte
- G01N27/423—Coulometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N11/00—Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
- C12N11/14—Enzymes or microbial cells being immobilised on or in an inorganic carrier
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES OR MICRO-ORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or micro-organisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/60—Measuring or testing processes involving enzymes, nucleic acids or micro-organisms; Compositions therefor; Processes of preparing such compositions involving cholesterol
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Mixed ferrocene-glucose oxidase-carbon-paste electrode for amperometric determination of glucose | |
Xue et al. | In situ immobilization of glucose oxidase in chitosan–gold nanoparticle hybrid film on Prussian Blue modified electrode for high-sensitivity glucose detection | |
Liu et al. | Renewable reagentless hydrogen peroxide sensor based on direct electron transfer of horseradish peroxidase immobilized on colloidal gold-modified electrode | |
Dicks et al. | Mediated amperometric biosensors for D-galactose, glycolate and L-amino acids based on a ferrocene-modified carbon paste electrode | |
Motonaka et al. | Determination of cholesterol and cholesterol ester with novel enzyme microsensors | |
US8758591B2 (en) | Electrochemical nanocomposite biosensor system | |
US5665222A (en) | Soybean peroxidase electrochemical sensor | |
Ohara et al. | Bienzyme sensors based on “electrically wired” peroxidase | |
Mousty et al. | Trienzymatic biosensor for the determination of inorganic phosphate | |
Haghighi et al. | Prussian blue modified glassy carbon electrodes—study on operational stability and its application as a sucrose biosensor | |
Vidal et al. | A chronoamperometric sensor for hydrogen peroxide based on electron transfer between immobilized horseradish peroxidase on a glassy carbon electrode and a diffusing ferrocene mediator | |
Mizutani et al. | Amperometric determination of pyruvate, phosphate and urea using enzyme electrodes based on pyruvate oxidase-containing poly (vinyl alcohol)/polyion complex-bilayer membrane | |
Razola et al. | Reagentless enzyme electrode based on phenothiazine mediation of horseradish peroxidase for subnanomolar hydrogen peroxide determinationPresented at SAC 99, Dublin, Ireland, July 25–30, 1999. | |
Amine et al. | Cyanide determination using an amperometric biosensor based on cytochrome oxidase inhibition | |
KR960001501B1 (en) | Amperometric method for the quantitative determination of | |
Motta et al. | Activated carbon paste electrodes for biosensors | |
Stonehuerner et al. | Comparison of colloidal gold electrode fabrication methods: the preparation of a horseradish peroxidase enzyme electrode | |
Wang et al. | Carbon felt-based bioelectrocatalytic flow-through detectors: Highly sensitive amperometric determination of H2O2 based on a direct electrochemistry of covalently modified horseradish peroxidase using cyanuric chloride as a linking agent | |
Park et al. | Development of a sol‐gel enzyme inhibition‐based amperometric biosensor for cyanide | |
Situmorang et al. | The development of a pyruvate biosensor using electrodeposited polytyramine | |
Casero et al. | Peroxidase enzyme electrodes as nitric oxide biosensors | |
Stredansky et al. | Determination of D-fructose in foodstuffs by an improved amperometric biosensor based on a solid binding matrix | |
Sun | Immobilization of horseradish peroxidase on a self-assembled monolayer modified gold electrode for the detection of hydrogen peroxide | |
Cooper et al. | Biomolecular sensors for neurotransmitter determination: electrochemical immobilization of glutamate oxidase at microelectrodes in a poly (o-phenylenediamine) film | |
Laurinavicius et al. | Amperometric glyceride biosensor |