Carlson, 2007 - Google Patents

Mechanism of Increase in SRAM $ V_ {\min} $ Due to Negative-Bias Temperature Instability

Carlson, 2007

Document ID
539310457845571906
Author
Carlson A
Publication year
Publication venue
IEEE Transactions on Device and Materials Reliability

External Links

Snippet

Negative-bias temperature instability (NBTI) has been identified as a problem for static random-access-memory (SRAM) reliability since variations in the PMOS threshold voltages have been shown to correlate with rising V min over time. The effect is greater than what …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing, power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing, power reduction for memory cells of the field-effect type
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Complementary MIS field-effect transistors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • H01L27/11Static random access memory structures
    • H01L27/1104Static random access memory structures the load element being a MOSFET transistor
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design

Similar Documents

Publication Publication Date Title
Kang et al. Estimation of statistical variation in temporal NBTI degradation and its impact on lifetime circuit performance
Pal et al. Variation tolerant differential 8T SRAM cell for ultralow power applications
Calhoun et al. Static noise margin variation for sub-threshold SRAM in 65-nm CMOS
Kang et al. Impact of negative-bias temperature instability in nanoscale SRAM array: Modeling and analysis
Qazi et al. A 512kb 8T SRAM macro operating down to 0.57 V with an AC-coupled sense amplifier and embedded data-retention-voltage sensor in 45 nm SOI CMOS
Islam et al. Variability aware low leakage reliable SRAM cell design technique
Yang et al. Robust 6T Si tunneling transistor SRAM design
US8612907B2 (en) High-speed SRAM
Carlson Mechanism of Increase in SRAM $ V_ {\min} $ Due to Negative-Bias Temperature Instability
Kim et al. An 8T subthreshold SRAM cell utilizing reverse short channel effect for write margin and read performance improvement
Raychowdhury et al. A feasibility study of subthreshold SRAM across technology generations
Ishikura et al. A 45 nm 2-port 8T-SRAM using hierarchical replica bitline technique with immunity from simultaneous R/W access issues
Peng et al. A radiation harden enhanced Quatro (RHEQ) SRAM cell
Mukhopadhyay et al. Reduction of parametric failures in sub-100-nm SRAM array using body bias
Khan et al. A comparative performance analysis of 6T & 9T SRAM integrated circuits: SOI vs. bulk
Picardo et al. Integral impact of PVT variation with NBTI degradation on dynamic and static SRAM performance metrics
Royer et al. Using pMOS pass-gates to boost SRAM performance by exploiting strain effects in sub-20-nm FinFET technologies
Abu-Rahma et al. Variability in nanometer technologies and impact on SRAM
Ebrahimi et al. A FinFET SRAM cell design with BTI robustness at high supply voltages and high yield at low supply voltages
Ryan et al. Analyzing and modeling process balance for sub-threshold circuit design
Clark et al. SRAM cell optimization for low AV T transistors
Cheng et al. Impact of intrinsic parameter fluctuations on SRAM cell design
Cheng et al. The scalability of 8T-SRAM cells under the influence of intrinsic parameter fluctuations
Mukhopadhyay et al. Optimal UTB FD/SOI device structure using thin BOX for sub-50-nm SRAM design
Sankranti et al. Designing power‐efficient SRAM cells with SGFinFETs using LECTOR technique