Pan et al., 2016 - Google Patents

A deep learning based fast image saliency detection algorithm

Pan et al., 2016

View PDF
Document ID
2300074826320865979
Author
Pan H
Jiang H
Publication year
Publication venue
arXiv preprint arXiv:1602.00577

External Links

Snippet

In this paper, we propose a fast deep learning method for object saliency detection using convolutional neural networks. In our approach, we use a gradient descent method to iteratively modify the input images based on the pixel-wise gradients to reduce a pre-defined …
Continue reading at arxiv.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6256Obtaining sets of training patterns; Bootstrap methods, e.g. bagging, boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6279Classification techniques relating to the number of classes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/68Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6296Graphical models, e.g. Bayesian networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6201Matching; Proximity measures
    • G06K9/6202Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00221Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING

Similar Documents

Publication Publication Date Title
Kong et al. Recurrent pixel embedding for instance grouping
Csurka et al. An efficient approach to semantic segmentation
Tsai et al. Image co-saliency detection and co-segmentation via progressive joint optimization
CN109448015B (en) Image collaborative segmentation method based on saliency map fusion
Yang et al. Object-aware dense semantic correspondence
CN112150493A (en) Semantic guidance-based screen area detection method in natural scene
Zhou et al. Embedding topological features into convolutional neural network salient object detection
CN109509191A (en) A kind of saliency object detection method and system
Pan et al. Deep learning for object saliency detection and image segmentation
CN113705579A (en) Automatic image annotation method driven by visual saliency
Pan et al. A deep learning based fast image saliency detection algorithm
Zhuang et al. RelationNet: Learning deep-aligned representation for semantic image segmentation
Liu et al. Weakly supervised nuclei segmentation via instance learning
Pan et al. Supervised adversarial networks for image saliency detection
Kim et al. A shape preserving approach for salient object detection using convolutional neural networks
JP2023029236A (en) Method for training object detection model and object detection method
Katircioglu et al. Self-supervised segmentation via background inpainting
Zhong et al. Robust image segmentation against complex color distribution
JP6606849B2 (en) Discriminator generation device, discriminator generation method, estimation device, estimation method, and program
Pan et al. A fast method for saliency detection by back-propagating a convolutional neural network and clamping its partial outputs
Wang et al. Weakly-supervised salient object detection through object segmentation guided by scribble annotations
Mumuni et al. Robust appearance modeling for object detection and tracking: a survey of deep learning approaches
Li et al. SSOCBT: A robust semisupervised online covboost tracker that uses samples differently
Hassan et al. Salient object detection based on CNN fusion of two types of saliency models
Singh et al. A hybrid approach using color spatial variance and novel object position prior for salient object detection