Chen et al., 2019 - Google Patents

Improving the prediction of therapist behaviors in addiction counseling by exploiting class confusions

Chen et al., 2019

View HTML
Document ID
18393916451324744574
Author
Chen Z
Singla K
Gibson J
Can D
Imel Z
Atkins D
Georgiou P
Narayanan S
Publication year
Publication venue
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

External Links

Snippet

In this work we address the problem of joint prosodic and lexical behavioral annotation for addiction counseling. We expand on past work that employed Recurrent Neural Networks (RNNs) on multimodal features by grouping and classifying subsets of classes. We propose …
Continue reading at www.ncbi.nlm.nih.gov (HTML) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6261Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation partitioning the feature space
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6279Classification techniques relating to the number of classes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/3061Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/08Learning methods
    • G06N3/082Learning methods modifying the architecture, e.g. adding or deleting nodes or connections, pruning
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/20Handling natural language data
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L15/18Speech classification or search using natural language modelling
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/06Creation of reference templates; Training of speech recognition systems, e.g. adaptation to the characteristics of the speaker's voice
    • G10L15/065Adaptation
    • G10L15/07Adaptation to the speaker
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/18Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L17/00Speaker identification or verification
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computer systems based on specific mathematical models
    • G06N7/005Probabilistic networks

Similar Documents

Publication Publication Date Title
Qu et al. Question answering over freebase via attentive RNN with similarity matrix based CNN
US10380236B1 (en) Machine learning system for annotating unstructured text
Zazo et al. Language identification in short utterances using long short-term memory (LSTM) recurrent neural networks
Zhou et al. Answer sequence learning with neural networks for answer selection in community question answering
Sundermeyer et al. Lstm neural networks for language modeling.
Tur et al. Combining active and semi-supervised learning for spoken language understanding
US20150095017A1 (en) System and method for learning word embeddings using neural language models
Jacob Modelling speech emotion recognition using logistic regression and decision trees
CN110532353A (en) Text entities matching process, system, device based on deep learning
Rendel et al. Using continuous lexical embeddings to improve symbolic-prosody prediction in a text-to-speech front-end
CN111159405B (en) Irony detection method based on background knowledge
Chen et al. Improving the prediction of therapist behaviors in addiction counseling by exploiting class confusions
CN114528835A (en) Semi-supervised specialized term extraction method, medium and equipment based on interval discrimination
Zapotoczny et al. Lattice Generation in Attention-Based Speech Recognition Models.
Li et al. Representation learning for question classification via topic sparse autoencoder and entity embedding
Dang et al. A method to reveal speaker identity in distributed asr training, and how to counter it
Shi A study on neural network language modeling
Aina et al. What do entity-centric models learn? insights from entity linking in multi-party dialogue
Parker et al. Named entity recognition through deep representation learning and weak supervision
Tan et al. Towards implicit complexity control using variable-depth deep neural networks for automatic speech recognition
Fan et al. Large margin nearest neighbor embedding for knowledge representation
Romanova Semantics graph mining for topic discovery and word associations
CN110598846B (en) Hierarchical recurrent neural network decoder and decoding method
Banerjee et al. A new unsupervised method for boundary perception and word-like segmentation of sequence
Rakocevic Synthesizing controversial sentences for testing the brain-predictivity of language models