Graetz et al., 2005 - Google Patents

Decomposition kinetics of the AlH3 polymorphs

Graetz et al., 2005

Document ID
18240661547997741574
Author
Graetz J
Reilly J
Publication year
Publication venue
The Journal of Physical Chemistry B

External Links

Snippet

Aluminum hydride polymorphs (α-AlH3, β-AlH3, and γ-AlH3) were prepared by organometallic synthesis. Hydrogen capacities approaching 10 wt% at desorption temperatures less than 100° C have been demonstrated with freshly prepared AlH3. The …
Continue reading at pubs.acs.org (other versions)

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • C01B3/0052Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof also containing titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • Y02E60/324Reversible uptake of hydrogen by an appropriate medium
    • Y02E60/327Reversible uptake of hydrogen by an appropriate medium the medium being a metal or rare earth metal, an intermetallic compound or a metal alloy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • C01B6/24Hydrides containing at least two metals; Addition complexes thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • C01B6/06Hydrides of aluminium, gallium, indium, thallium, germanium, tin, lead, arsenic, antimony, bismuth or polonium; Monoborane; Diborane; Addition complexes thereof
    • C01B6/10Monoborane; Diborane; Addition complexes thereof
    • C01B6/13Addition complexes of monoborane or diborane, e.g. with phosphine, arsine or hydrazine
    • C01B6/15Metal borohydrides; Addition complexes thereof
    • C01B6/19Preparation from other compounds of boron
    • C01B6/21Preparation of borohydrides of alkali metals, alkaline earth metals, magnesium or beryllium; Addition complexes thereof, e.g. LiBH4.2N2H4, NaB2H7
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources
    • Y02E60/364Hydrogen production from non-carbon containing sources by decomposition of inorganic compounds, e.g. splitting of water other than electrolysis, ammonia borane, ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram

Similar Documents

Publication Publication Date Title
Graetz et al. Decomposition kinetics of the AlH3 polymorphs
Mao et al. Enhanced hydrogen storage performance of LiAlH4–MgH2–TiF3 composite
Yao et al. Remarkable synergistic effects of Mg2NiH4 and transition metal carbides (TiC, ZrC, WC) on enhancing the hydrogen storage properties of MgH2
Chen et al. Reversible hydrogen storage via titanium-catalyzed LiAlH4 and Li3AlH6
US6471935B2 (en) Hydrogen storage materials and method of making by dry homogenation
Zhai et al. Significantly improved dehydrogenation of LiAlH4 destabilized by MnFe2O4 nanoparticles
Qiu et al. Light metal borohydrides/amides combined hydrogen storage systems: composition, structure and properties
Fichtner et al. Nanocrystalline aluminium hydrides for hydrogen storage
Liu et al. Hydrogen desorption properties of the MgH2–AlH3 composites
Ma et al. Hydrogen sorption kinetics of MgH2 catalyzed with titanium compounds
Mustafa et al. Enhanced hydrogen storage properties of 4MgH2+ LiAlH4 composite system by doping with Fe2O3 nanopowder
Xuanhui et al. Superior catalytic effects of Nb2O5, TiO2, and Cr2O3 nanoparticles in improving the hydrogen sorption properties of NaAlH4
Ismail et al. Desorption behaviours of lithium alanate with metal oxide nanopowder additives
Cao et al. Reversible hydrogen storage in yttrium aluminum hydride
Mao et al. Improved hydrogen sorption performance of NbF5-catalysed NaAlH4
Kumar et al. Morphological effects of Nb2O5 on Mg–MgH2 system for thermal energy storage application
Hu et al. Catalytic influence of various cerium precursors on the hydrogen sorption properties of NaAlH4
Pukazhselvan et al. Studies on metal oxide nanoparticles catalyzed sodium aluminum hydride
US6793909B2 (en) Direct synthesis of catalyzed hydride compounds
Yuan et al. Improved hydrogen storage performances of nanocrystalline RE5Mg41-type alloy synthesized by ball milling
Liu et al. Mechanisms for the enhanced hydrogen desorption performance of the TiF 4-catalyzed Na 2 LiAlH 6 used for hydrogen storage
Zhang et al. Light-weight solid-state hydrogen storage materials characterized by neutron scattering
Kim et al. Catalytic effect of titanium nitride nanopowder on hydrogen desorption properties of NaAlH4 and its stability in NaAlH4
Liu et al. Hydrogen storage properties of destabilized MgH2–Li3AlH6 system
Congwen et al. Mechanochemical synthesis of the α-AlH3/LiCl nano-composites by reaction of LiH and AlCl3: Kinetics modeling and reaction mechanism