WO2024218300A1 - Method for degrading glycogen present in a biomass of galdieria - Google Patents

Method for degrading glycogen present in a biomass of galdieria Download PDF

Info

Publication number
WO2024218300A1
WO2024218300A1 PCT/EP2024/060721 EP2024060721W WO2024218300A1 WO 2024218300 A1 WO2024218300 A1 WO 2024218300A1 EP 2024060721 W EP2024060721 W EP 2024060721W WO 2024218300 A1 WO2024218300 A1 WO 2024218300A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
lysate
glycogen
resting
solubilizer
Prior art date
Application number
PCT/EP2024/060721
Other languages
French (fr)
Inventor
Olivier CAGNAC
Axel ATHANE
Matthieu COURBALAY
Original Assignee
Fermentalg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fermentalg filed Critical Fermentalg
Publication of WO2024218300A1 publication Critical patent/WO2024218300A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J1/00Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
    • A23J1/009Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from unicellular algae
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/20Proteins from microorganisms or unicellular algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor

Definitions

  • the present invention relates to a treatment method for the degradation of glycogen from a biomass of unicellular red algae (URA), particularly of the genus Galdieria, and the aqueous product thus obtained.
  • UUA unicellular red algae
  • Unicellular red algae or Rhodophytes, are characterized by the presence of pigments within their cells. In addition to chlorophyll and carotenoids, unicellular red algae produce phycobiliproteins. These natural pigments resulting from photosynthesis are divided into four types: allophycocyanins, C-phycocyanins, phycoerythrins and phycoerythrocyanins.
  • Phycocyanins have beneficial properties for human and animal health, and are now used in many fields such as the pharmaceutical, cosmetic and food industries.
  • Microalgae belonging to the class Cyanidiophyceae, and more precisely to the genera Cyanidioschyzon, Cyanidium and Galdieria, are particularly interesting for the production of phycocyanins.
  • the production of unicellular red algae biomass is well known to those skilled in the art, in particular for the production of molecules of interest, in particular the production of proteins such as phycocyanins. Methods for the production and extraction of said phycocyanins are described in the literature (WO2017/093345, WO2019/228947, WO2018/178334, WO2020/161280).
  • microalgae of this class are also known to have glycogen as a major reserve sugar.
  • This glycogen is a polymer of a(1 — > 4) glucoses branched by a-(1 — > 6) bonds.
  • the glycogen of microalgae of the genus Galdieria has the particularity of having a large proportion of these branches, namely approximately 7 to 18% of branched glucoses randomly distributed along the molecule. This molecular structure gives glycogen a globular conformation making it soluble in water (Martinez-Garcia et al., Int J Biol Macromol. (2016) 89:12-8).
  • microalgae of the genus Galdieria possess the enzymes for the synthesis of highly branched glycogen, they also possess the enzymes to degrade it (Martinez-Garcia et al., Int J Biol Macromol. (2016) 89:12-18). These enzymes are intracellular enzymes. However, the intracellular medium of microalgae of this class has a pH between 6.3 and 7.1 (Miyagishima et al., Plant Cell Physiol. 62(6): 926-941 (2021)). Thus, these enzymes are known to have activity in this precise pH range.
  • aqueous extracts of microalgae such as phycocyanin extracts of Galdieria sulphuraria
  • filtration steps may be necessary. Since glycogen is easily soluble in cold water, it is found in the aqueous fraction with the hydrophilic compounds of interest, such as phycocyanins.
  • the filters used for the purification of phycocyanins retain all or part of the glycogen, and thus increase the viscosity of the retentate. This creates technical constraints in the process, such as problems with pressure build-up, flow reduction and clogging, particularly with tangential filtration membranes.
  • the glycogen is not removed, the prepared extract contains a lot of glycogen, is then viscous and has a low concentration of phycocyanins.
  • Glycogen is known to be resistant to certain enzymes. However, a process involving the addition of exogenous enzymes suitable for its degradation has already been developed (W02020/144330).
  • an enzyme added for the preparation of a food product must be listed in its composition.
  • Such a non-eliminable substance corresponds to an additive or a technological aid which may pose marketing and/or formulation difficulties.
  • the inventors have developed a method for treating a biomass of unicellular red algae (URA) of the genus Galdieria, said method for treating URA biomass comprising the steps of: a) harvesting the biomass by separating the culture medium to obtain a crude URA biomass, b) cell lysis of the crude biomass from step (a) to obtain a lysate, c) optionally diluting the lysate from step (b) to obtain a solubilizer, and d) separating the insolubles suspended in the lysate from step (b) or the solubilizer from step (c) to obtain a clarifier, the method comprising a step of degrading the glycogen by keeping the crude biomass and/or the lysate and/or the solubilizer at rest for at least 3 hours, during which the liquid medium comprising the glycogen is at an acidic pH.
  • URA unicellular red algae
  • the degradation of glycogen by the endogenous enzymes of the microorganism is effective over a wide pH range not limited to the intracellular pH of said microorganism with an optimum for more acidic pHs, in particular between 2 and 5.
  • the enzymatic degradation works inside the cell in a treated biomass such as a raw biomass, a thawed raw biomass or a dried raw biomass but also in a lysate and a solubilize.
  • the present invention also relates to a product capable of being obtained by a method according to the invention.
  • the method according to the present invention makes it possible to reduce or even eliminate the addition of exogenous enzymes suitable for the degradation of ARU glycogen and therefore to reduce the addition of substances which must be qualified as additives and/or technological aids.
  • the method according to the invention applies with conditions of duration, temperature and pH from the mildest to the most drastic and can thus adapt to the stability of the molecules of interest to be extracted. DESCRIPTION OF FIGURES
  • Figure 1 shows free glucose concentrations in Galdieria sulphuraria biomass lysates over time at pH 3.75 and pH 6, at 37 °C without the addition of exogenous enzymes (SE: No Enzyme) and with 1% exogenous enzymes in the lysate (E: Enzyme).
  • Figure 2 shows free glucose concentrations in Galdieria sulphuraria biomass lysates at room temperature (“amb”, i.e. 20°C) in the absence of exogenous enzymes and at different pHs as a function of time.
  • Figure 3 shows free glucose concentrations in Galdieria sulphuraria biomass lysates at pH 3.75 at different temperatures, in the presence or absence of exogenous enzymes, as a function of time (SE: No Enzyme; E: Enzyme).
  • Figure 4 shows free glucose concentrations in Galdieria sulphuraria biomass lysates at pH 3.75 at different temperatures, in the absence of exogenous enzymes, as a function of time.
  • Figure 5 shows free glucose concentrations as a function of time in a lysate and solubilized Galdieria sulphuraria biomass at pH 3.75 at a temperature of 20°C in the absence of exogenous enzymes, and in a lysate of Galdieria sulphuraria biomass at pH 3.75 in the presence of exogenous enzymes (SE: Without Enzyme; E: Enzyme).
  • Figure 6 shows the percentage of glycogen digestion as a function of time in a clarified biomass of Galdieria sulphuraria at pH 4 at a temperature of 20°C in the absence or presence of exogenous enzymes.
  • Figure 7 shows the percentage of glycogen digestion as a function of time in a lysate, solubilizer and clarifier of Galdieria sulphuraria biomass at pH 4 at a temperature of 20°C in the absence of exogenous enzymes (SE: Without Enzyme).
  • biomass designates a set of microalgae cells, preferably produced by fermentation in a biological reactor. Said biomass can be seen as a mass of single-celled organisms.
  • Biomass can undergo different treatments and be raw biomass, lysed biomass, thawed raw biomass and/or dried raw biomass.
  • a lysed biomass is a biomass comprising at least 50% of lysed cells relative to the total number of cells and a raw biomass may comprise lysed cells due to the harvesting step without being considered as a lysed biomass as long as the number of lysed cells out of the number of non-lysed cells remains in the minority, i.e. less than 50%.
  • raw biomass designates a biomass obtained after harvesting, i.e. after recovery of the fermentation must then separation of the cells from at least part of the culture medium, possibly thawed and/or dried.
  • lysed biomass or “lysate” refers to a microalgae biomass in which at least 50% of the cells are lysed, preferably at least 70%, more preferably in which at least 80%, 85%, 90%, 95%, up to 100% of the cells are lysed.
  • thawed raw biomass refers to raw biomass that has been frozen, possibly for storage and/or transport reasons, then thawed to reach a temperature suitable for its treatment according to the invention, in particular a temperature suitable for the step of degradation of the glycogen of the biomass according to the invention.
  • the expression “dried raw biomass” designates a raw biomass of microalgae which has been dried according to methods known to those skilled in the art and whose water content relative to the total weight of the biomass is less than 10%, preferably less than 7%, more preferably between 5% and 1% of water.
  • known drying methods mention may be made of natural air drying, spray drying, fluidized air bed drying, drying using a roller dryer and freeze-drying.
  • biomass refers to a lysed biomass or lysate that has undergone a dilution step with an aqueous solution of neutral, acidic or basic pH.
  • clarifiate corresponds to an aqueous extract obtained after separation of insoluble substances suspended in a lysate or solubilizer.
  • rest refers to a stage during which there is no modification of the chemical properties of the preferably dried or frozen raw biomass, lysate and/or solubilized material, by addition or extraction of one or more components. Rest does not exclude the fact that the raw biomass, lysate, solubilized material and/or clarified material may be mixed, i.e. stirred, under non-destructive conditions which do not affect the chemical properties of the raw biomass, lysate and/or solubilized material.
  • liquid medium comprising glycogen describes the intracellular medium of the cells constituting the crude biomass and/or the liquid phase of the lysate, solubilize and/or clarified where appropriate.
  • biomass treatment refers to any process applied to biomass, in particular to modify its physicochemical properties, extract molecules of interest and/or purify them.
  • the method according to the invention is a method for treating a biomass of unicellular red algae (URA) of the genus Galdieria, said method for treating URA biomass comprising the steps of: a) harvesting the biomass by separating the culture medium to obtain a crude URA biomass, b) cell lysis of the crude biomass from step (a) to obtain a lysate, c) optionally, diluting the lysate from step (b) to obtain a solubilizer, and d) separating the insolubles suspended in the lysate from step (b) or the solubilizer from step (c) to obtain a clarifier, the method comprising a step of degrading the glycogen by keeping the crude biomass and/or the lysate and/or the solubilizer at rest for at least 3 hours, during which the liquid medium comprising the glycogen is at an acidic pH.
  • URA unicellular red algae
  • the conditions of temperature, duration and pH are particularly suitable for not degrading the compounds of interest in the aqueous extract, for example phycocyanins, while promoting the degradation of glycogen during the resting stage.
  • the glycogen degradation step is carried out on the raw biomass.
  • This embodiment then comprises, in order, the steps of: a) harvesting the biomass by separating the culture medium to obtain a raw ARU biomass, resting the raw biomass for at least 3 hours during which the liquid medium comprising the glycogen is at acidic pH, b) cell lysis of the raw biomass from step (a) to obtain a lysate, c) optionally, diluting the lysate from step (b) to obtain a solubilizer, d) separating the insolubles suspended in the lysate from step (b) or the solubilizer from step (c) to obtain a clarifier, and optionally, a step of adjusting the pH of the raw biomass.
  • the glycogen is in the intracellular medium of the cells constituting the biomass, which liquid medium is at an acidic pH, and the raw biomass is preferably a dried raw biomass or a thawed raw biomass.
  • the glycogen is found in the liquid phase of the lysate, then where appropriate of the solubilize.
  • the glycogen degradation step is carried out on the lysate.
  • This embodiment then comprises, in order, the steps of: a) harvesting the biomass by separating the culture medium to obtain a crude ARU biomass, b) cell lysis of the crude biomass from step (a) to obtain a lysate, resting the lysate for at least 3 hours during which the liquid medium comprising the glycogen is at an acidic pH, c) optionally, diluting the lysate from step (b) to obtain a solubilizer, d) separating the insolubles suspended in the lysate from step (b) or the solubilizer from step (c) to obtain a clarifier, and optionally, a step of adjusting the pH of the crude biomass or the lysate.
  • the glycogen degradation step is carried out on the solubilisate.
  • This embodiment then comprises in order the steps of: a) harvesting the biomass by separation of the culture medium to obtain a crude ARU biomass, b) cell lysis of the crude biomass from step (a) to obtain a lysate, c) dilution of the lysate from step (b) to obtain a solubilisate, resting for at least 3 hours of the solubilisate during which the liquid medium comprising the glycogen is at acidic pH, d) separation of the insolubles suspended in the solubilisate from step (c) to obtain a clarifier, and optionally, a step of adjusting the pH of the crude biomass, the lysate or the solubilisate.
  • the biomass according to the invention is a biomass of unicellular red algae (URA), more particularly a biomass of microalgae producing phycocyanins having a high glycogen content.
  • UUA unicellular red algae
  • microalgae belong to the class Cyanidiophyceae including the genera Galdieria, Cyanidium and Cyanidioschyzon.
  • the microalgae are of the genus Galdieria.
  • the biomass according to the invention is a biomass of Galdieria sulphuraria .
  • UAAs unicellular red algae
  • Galdieria genus Galdieria
  • the culture of microalgae can be carried out by any known culture technique, in containers adapted to the growth of microorganisms also called biological reactors, bioreactors or fermenters.
  • the biomass of unicellular red algae is obtained from microalgae cultivated industrially in a large capacity reactor, preferably to obtain fermentation musts comprising high densities of microorganisms.
  • high densities means an amount corresponding to more than 50 g of dry matter per liter of fermentation must, preferably more than 100 g per liter. Examples of single-cell red algae cultures are described in the patent applications (WO2017/050917, WO2017/050918, WO2017/093345 and WO2019/228947).
  • the method according to the invention comprises a step a) of harvesting the biomass.
  • unicellular red algae After culturing the microorganisms and obtaining a biomass, it is harvested to obtain a raw biomass.
  • the harvesting of unicellular red algae can be carried out by any technique known to those skilled in the art, in particular by filtration, possibly gravimetric or under reduced pressure, decantation, precipitation followed by gravimetric filtration or even centrifugation.
  • the method according to the invention comprises a step a) of harvesting the biomass corresponding therefore to the recovery of the fermentation must followed by the separation of the cells of the biomass from at least part of the culture medium.
  • This step allows the production of raw biomass.
  • the raw biomass thus harvested can also undergo a washing step, preferably with water, in order to eliminate certain soluble impurities.
  • the raw biomass obtained after harvesting and optionally after one or more washes comprises at least 70% water, and up to 90% water, preferably it comprises 75 to 88% water.
  • the raw biomass according to the invention has a dry matter content of 5 to 30% by weight relative to the total weight of the raw biomass, generally still preferentially from 10 to 25% by weight, more preferentially from 10 to 20% by weight.
  • the raw biomass according to the invention has a C-phycocyanin concentration of between 3 and 12%.
  • the method for treating a biomass of unicellular red algae according to the invention comprises a step b) of cell lysis of the raw biomass from step a) to obtain a lysate.
  • step b) of cell lysis is carried out on a raw biomass whose dry matter content is from 5 to 30% by weight relative to the total weight of the raw biomass, preferably from 10 to 25% by weight, more preferably from 10 to 20% by weight.
  • step b) of cell lysis is carried out on a raw biomass according to the invention with a C-phycocyanin concentration of between 3 and 12%.
  • Cell lysis can be carried out by any means of lysis known to those skilled in the art, in particular by enzymatic, mechanical and/or chemical means.
  • the raw biomass prior to this lysis step b), may have undergone a washing, freezing, thawing, drying and/or rehydration step.
  • the raw biomass may in particular be a thawed and/or dried biomass.
  • cell lysis is done by mechanical lysis, preferably by grinding and even more preferably with a ball mill.
  • the lysate obtained has a dry matter content of 5 to 30% by weight relative to the total weight of the lysate, preferably 10 to 25% by weight, more preferably 10 to 20% by weight.
  • the lysate obtained has a C-phycocyanin concentration of 3% to 12% relative to the total weight of the dry matter.
  • This lysis step b) can be carried out before or after the glycogen degradation step, i.e. before or after the resting step, preferably before.
  • the lysed biomass or lysate can optionally undergo a dilution step.
  • the dilution step refers to the addition of a solution to the lysed biomass or lysate to reduce its dry matter concentration.
  • the diluted lysed biomass is then defined as a “solubilisate”.
  • the dilution step is carried out via the addition of an aqueous solution.
  • the aqueous solution is water.
  • dilution step c) is carried out on the lysate whose dry matter content is 5 to 30% by weight relative to the total weight of the lysate, preferably 12 to 25% by weight.
  • dilution step c) is carried out on the lysate whose C-phycocyanin concentration is 3% to 12% relative to the total weight of the dry matter.
  • the aqueous solution may additionally comprise one or more pH adjusting compounds.
  • pH adjusting compounds means any organic or mineral compound that can modify the pH (acidity correcting agents, acids, bases, neutralizing agents or buffering agents). Examples of such compounds are sulfuric acid, acetic acid, citric acid, phosphoric acid, sodium citrate, potassium lactate, potassium malate, sodium chloride, disodium phosphate and potassium phosphate.
  • the aqueous solution has an acidic or basic pH depending on the pH adjusting compound(s) present in the solution.
  • step c) of dilution of the lysed biomass or lysate is carried out with an aqueous solution of pH less than or equal to 8, in particular between 0 and 6, preferably between 1 and 6, more preferably between 2 and 5.
  • the pH of the aqueous solution to be added to the lysed biomass or lysate may be approximately 2, approximately 3, approximately 4 or approximately 5.
  • acidic solutions that can be added to the lysed biomass are solutions comprising acids such as those described in the preceding paragraph.
  • the solubilized solution has a pH close to neutrality with a pH between 6 and 8, a pH between 1 and 6 or a pH between 8 and 14.
  • the solubilizer has a pH of less than 7, in particular between 1 and 6, more preferably between 2 and 5, even more preferably between 3 and 4.
  • the solubilized material obtained has a dry matter content of 1 to 15% by weight relative to the total weight of the solubilized material, preferably 3 to 12%. by weight, more preferably 4 to 8% by weight.
  • the solubilized obtained according to the invention has a C-phycocyanin concentration of 0.1 to 12%, preferably 0.5 to 8%, more preferably 1 to 7%.
  • This dilution step c) can be carried out before or after the glycogen degradation step, i.e. before or after the resting step.
  • dilution step c) is carried out after the resting step.
  • the method according to the invention thus comprises, according to this preferred embodiment, in order the successive steps of: a) harvesting the biomass by separation of the culture medium to obtain a crude ARU biomass, b) cell lysis of the crude biomass from step (a) to obtain a lysate, rest at acidic pH for at least 3 hours of the lysate, c) dilution of the lysate to obtain a solubilizer, and d) separation of the insolubles suspended in the solubilizer from step (c) to obtain a clarifier. d) Separation of the insolubles
  • the lysate or solubilized product undergoes a step d) of separation of the insoluble substances in suspension to obtain a clarified product.
  • This step d) of separation of insolubles is carried out after the glycogen degradation step, i.e. after the resting step.
  • the step of separating the insolubles d) from the lysate or solubilized can be carried out by any methods known to those skilled in the art. Particular mention will be made of frontal filtration methods and centrifugation.
  • step d) of separation of the insolubles is carried out on a lysate whose matter content is from 5 to 30% by weight relative to the total weight of the lysate, preferably from 10 to 25% by weight, more preferably 15 to 20% by weight; or more preferably on a solubilizer whose dry matter content is from 1 to 15% by weight relative to the total weight of the solubilizer, preferably from 3 to 12% by weight, more preferably from 4 to 8% by weight.
  • step d) of separation of the insolubles is carried out on a lysate or a solubilizer with a pH of less than 7, preferably between 1 and 6, still preferably between 2 and 5, still still preferably between 3 and 4.
  • the clarified material according to the invention preferably has a dry matter content of 0.1% to 5% by weight relative to the total weight of the clarified material, preferably of 0.5% to 4% by weight, more preferably of 1% to 3% by weight.
  • the clarified material according to the invention preferably has a C-phycocyanin concentration of 0.1 to 20 g/L.
  • the clarified material according to the invention more preferably has a C-phycocyanin concentration of 7 to 19 g/L, even more preferably 12 to 18 g/L.
  • the clarified material according to the invention has a C-phycocyanin concentration of 0.1 to 12 g/L, preferably 0.5 to 8 g/L, more preferably 1 to 7 g/L.
  • the method according to the invention is characterized by a step of degradation of the glycogen using the endogenous enzymes of the microorganism, by keeping the raw biomass and/or the lysate and/or the solubilisate at rest (resting step) for at least 3 hours, during which the liquid medium comprising the glycogen is at an acidic pH.
  • the endogenous enzymes of the microorganism In order for the degradation of glycogen by the endogenous enzymes of the microorganism to be effective during the resting stage, the endogenous enzymes must be active and must therefore not have been inactivated, for example, by a heating stage before said resting stage.
  • the resting for at least 3 hours is carried out at acidic pH, on the raw biomass, the lysate, the solubilized.
  • the resting can be carried out before or after step b) of cell lysis, in other words on the raw biomass, the lysate and/or solubilized.
  • the resting step can advantageously be carried out with stirring of the raw biomass and/or the lysate and/or the solubilized material.
  • the resting step is carried out only on the raw biomass which is preferably dried or thawed, the lysate or the solubilized.
  • the resting step is carried out if necessary after adjusting the pH to obtain the acidic pH sought for the resting step.
  • the resting is carried out after step b) of cell lysis, in other words, preferentially on the lysate and/or solubilized and even preferentially on the lysate.
  • the resting step is carried out on a medium comprising lysed cells, i.e. on the lysate from step b) and/or, where appropriate, on the solubilized from step c).
  • the resting step can be carried out on raw biomass, lysate and/or solubilized material immersed in darkness or exposed to natural or artificial light.
  • the resting step is carried out on raw biomass, lysate, solubilized material immersed in darkness.
  • the resting step is carried out on raw biomass, lysate, solubilized with or without aeration.
  • the “acid pH” of the medium comprising the glycogen during the resting stage is defined as a pH lower than 7, in particular between 1 and 6, preferably between 2 and 5, still preferably between 3 and 4.
  • glycogen is in the intracellular medium of the cells constituting the biomass, which liquid medium is at an acidic pH.
  • the method according to the invention further comprises a step of adjusting the pH of the raw biomass, the lysate and/or the solubilizer to the acidic pH of the resting step.
  • the pH of the raw biomass, the lysate and/or the solubilizer is adjusted to a pH lower than 7, in particular between 1 and 6, still preferably between 2 and 5, and always preferably between 3 and 4.
  • the reagents for adjusting the pH i.e. acidifying or basifying the raw biomass, the lysate, the solubilisate can be added in a solid form or in the form of a solution.
  • the pH of the raw biomass, the lysate, the solubilisate is adjusted by the addition of an acidic or basic solution, preferably in the form of an aqueous solution.
  • pH adjusting compounds examples include sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, acetic acid, sodium hydroxide, sodium carbonate or sodium bicarbonate.
  • this pH adjustment step is carried out upstream of the resting step, on the raw biomass preferably thawed and/or dried, on the lysate, on the solubilized.
  • this pH adjustment step is carried out on the lysate prior to the resting step and prior to dilution and separation steps c) and d).
  • the pH adjustment step may otherwise be concomitant with dilution step c) when it is present.
  • the pH adjustment step may be carried out on the lysate concomitantly with this dilution step c) prior to the resting step.
  • the solubilized product obtained has a pH of less than 7, in particular between 1 and 6, preferably between 2 and 5, and even more preferably between 3 and 4.
  • the resting stage can last up to a week or 7 days.
  • the resting stage lasts between 3 hours and a week, still preferably, from 3 hours to 48 hours, still preferably from 6 to 36 hours and always preferably from 10 to 24 hours.
  • the rest phase has a duration of several hours to several days, in particular approximately 3 hours, 6 hours, 8 hours, 10 hours, 12 hours, 24 hours, 36 hours, between 48 and 72 hours, between 2 and 7 days, between 3 and 7 days, 4 days, 5 days or even 6 days.
  • the temperature of the raw biomass and/or the lysate and/or the solubilizer during the rest phase is maintained at a temperature between 15°C and 70°C, in particular between 15 and 50°C, preferably between 15 and 40°C, still preferably between 15 and 30°C.
  • the temperature of the raw biomass and/or the lysate and/or the solubilizer during this rest phase is maintained at a constant temperature, in particular at a temperature between 15°C and 70°C, in particular between 15°C and 50°C, preferably between 15 and 40°C, still preferably between 15 and 30°C.
  • the temperature of the raw biomass and/or the lysate and/or the solubilizer during the rest phase is maintained at a temperature below 15°C, preferably between 4°C and 15°C.
  • the temperature of the raw biomass and/or the lysate and/or the solubilizer during this rest phase is maintained at a constant temperature, in particular at a temperature between 4°C and 15°C
  • a temperature between 4°C and 15°C the closer we get to the optimum temperature and pH pair, the shorter the time required for the degradation of glycogen will be.
  • the duration could be between 2 and 10 hours, whereas for a resting stage at a pH of around 6 and a temperature of around 10°C, the duration should be between at least 6 days and 7 days.
  • the resting step is carried out with a liquid medium comprising the glycogen free of significant microbiological contamination.
  • contamination can be avoided by adding preservatives to the liquid medium comprising the glycogen.
  • preservatives are well known to those skilled in the art and are in particular selected from sodium benzoate, potassium benzoate, calcium benzoate, benzoic acid, sodium diacetate, calcium propionate, sodium propionate, sodium nitrate, potassium sorbate, sodium sorbate, methyl gallate, propyl gallate, sodium ethylenediaminetetraacetate, methyl paraben, natamycin, propyl paraben and mixtures thereof.
  • the method may also comprise a step of adding exogenous enzymes in addition to the resting step.
  • This addition of exogenous enzymes makes it possible, as needed, to complete the degradation of the glycogen, in particular if the desired level of degradation is not reached. It is understood that this “supplement” means that the majority, i.e. at least 50%, of the degradation of the glycogen is the result of the implementation of the resting step independently of this possible addition.
  • Enzymes means proteins that enable the activation or acceleration of chemical or biological reactions.
  • exogenous enzymes refers to enzymes that are not naturally produced by the cells or microorganisms of the treated unicellular red algae (URA) biomass.
  • said exogenous enzymes are selected in particular from enzymes extracted from Aspergillus, Bacillus or Trichoderma.
  • the exogenous enzymes according to the invention have a glycogen degradation activity.
  • These enzymes are well known to those skilled in the art and are in particular chosen from enzymes having a glucuronidase a1-4 activity, an activity glucosidase a1-4, glucosidase a1-6 activity, amylase activity. Note that it is possible to use one of these enzymes or a mixture of these enzymes. It has been found that these enzymes reduce the size of the glucosidic chains of the glycogen present in the medium which can then be eliminated later as well as its degradation by-products.
  • pectinases known to degrade pectin, and in particular pectinases extracted from filamentous fungi such as Aspergillus, and more particularly pectinases extracted from Aspergillus aculeatus, such as the enzymes marketed under the name Pectinex® by the company Novozymes.
  • Examples of enzymes having a1-6 glucosidase activity are the pullulanases known to hydrolyze the a1-6 glucosidic bonds of pullulan, also known to remove starch branches. These are generally enzymes extracted from bacteria, in particular from the Bacillus genera. US patents 6,074,854 and US 5,817,498 and application WO2009/075682 describe such pullulanases extracted from Bacillus deramificans or Bacillus acidopullulyticus. Commercially available pullulanases are also known, in particular under the names Promozyme D2 and Novozym 26062 from Novozymes, or Optimax L1000 from DuPont-Genencor.
  • amylase AG XXL from Novozymes
  • Panzym® AG XXL from Eaton
  • the enzymes can be used in their pure or enriched form, and optionally as a mixture with one or more excipients.
  • the enzymes used in the process of the invention are in the form of powder or solution. In the latter case, the enzymes are preferably in solution in water.
  • the preferred conditions for implementing the exogenous enzymes are a pH of less than 7 and a reaction temperature of less than 60°C, preferably less than 50°C, and even less than 30°C.
  • the temperature of the solution at which the exogenous enzymes are added and at which the enzymatic reaction occurs is between 4 and 60°C, preferably between 20 and 42°C and the pH of the solution is less than or equal to 5, preferably about 4.5.
  • the exogenous enzymes can be added to the medium either in free form or immobilized on a support.
  • Exogenous enzymes can be added to the lysate in which case the enzymatic reaction by the exogenous enzymes takes place on the lysate and the resting step takes place previously on the raw biomass and/or previously on the lysate and/or concomitantly on the lysate.
  • the exogenous enzymes are added after the resting step.
  • the exogenous enzymes are added after the resting step.
  • exogenous enzymes can be added to the lysate and/or to the solubilizer and/or to the clarifier to complete the degradation of glycogen resulting from the resting of the raw biomass.
  • exogenous enzymes can be added to the lysate after the resting step, or to the solubilizer and/or to the clarifier to complete the degradation of glycogen resulting from the resting of the lysate;
  • exogenous enzymes can be added to the solubilizer after the resting step and/or to the clarifier, to complete the degradation of the glycogen resulting from the resting of the solubilizer;
  • the resting step is carried out on the lysate and preferably, the possible addition of exogenous enzymes is done on the clarified or solubilized material.
  • Exogenous enzymes are thus added in a content of less than 0.01% by weight relative to the total weight of the raw biomass or lysate or solubilized or clarified to be treated, for an enzyme with an enzymatic activity equivalent to that of the Pectinex Ultra SP-L enzyme with an activity declared by the manufacturer of 3300 PGNU/g.
  • the content of added exogenous enzymes is less than or equal to 0.005%, by weight, preferably less than or equal to 0.0025%, more preferably less than or equal to 0.0001% by weight.
  • concentration of exogenous enzymes is adjusted according to the activity of the exogenous enzyme selected to have an activity in the reaction medium. equivalent to that of a concentration according to the invention of Pectinex Ultra SP-L at 3300 PGNU/g.
  • glycogen degradation step with or without the addition of exogenous enzymes is considered sufficient, in particular to improve the subsequent filtration step(s), when at least 10%, preferably at least 50%, of the initial glycogen content in the raw biomass has been degraded, still preferably from 50% to 80% of the initial content. e) Concentration
  • the process according to the invention may further comprise a step e) of concentrating the clarified material using standard methods of removing water to obtain a concentrated aqueous extract.
  • the usual methods of removing water include in particular filtration as well as evaporation at atmospheric pressure or under vacuum, atomization, infrared drying, refraction window drying, freeze-drying.
  • step e) of the process according to the invention allows the concentration of the molecules of interest while preserving the essential constituents of the clarified material.
  • concentration step e) makes it possible to eliminate all or part of the impurities such as solid residues, residual glycogen, oligomers and sugars resulting from the degradation of glycogen, present in the clarified material, in particular concentration by filtration.
  • the biomass treatment process according to the invention comprises a step e) of concentration of the clarified material by filtration, in particular by tangential filtration such as ultrafiltration.
  • the biomass treatment process according to the invention comprises a concentration step e) during which the clarified material is concentrated between 2 and 1000 times, more preferably between 20 and 60 times.
  • concentration step e) is set to a pH lower than 7, preferably between 1 and 6, still preferably between 2 and 5, still still preferably between 3 and 4.
  • the method according to the invention may comprise consecutive steps of purification of the clarified material and/or of the concentrated aqueous extract, in particular to purify the proteins in solution.
  • the product according to the invention comprises different organic materials depending on the treatment method applied, including water-soluble proteins including phycocyanins, sugars including glycogen degradation by-products (glucose oligomers) and possibly undigested residual glycogen and insolubles.
  • water-soluble proteins including phycocyanins
  • sugars including glycogen degradation by-products (glucose oligomers) and possibly undigested residual glycogen and insolubles.
  • phycocyanins may include acidic pH-resistant phycocyanins.
  • Acidic pH-resistant phycocyanins are defined as phycocyanins that are stable at acidic pH, i.e. do not precipitate or lose their colour at acidic pH.
  • Acidic pH resistance or stability may be measured as a loss of colour of less than 10% after a minimum of 10 minutes of exposure to acidic pH, i.e. pH below 7, particularly pH between 2 and 5.
  • Acidic pH stability may also be measured by other methods such as monitoring the structure of the protein.
  • phycocyanins resistant to acidic pH comes from the implementation of steps d) and where appropriate e) at a pH lower than 7, in accordance with the extraction process described in WO2018/178334, preferably at a pH between 1 and 6, still preferably between 2 and 5 and even more preferably between 3 and 4.
  • the product according to the invention comprises phycocyanins resistant to an acidic pH.
  • a concentrated aqueous extract is obtained by the process according to the invention comprising a step e) of concentration of the clarified material as described above.
  • a clarified material is obtained by the process according to the invention not comprising a step e) of concentration of the clarified material as described above.
  • the product according to the invention does not comprise exogenous enzymes or comprises a concentration of exogenous enzymes undetectable by usual assay methods, in particular after precipitation of the proteins with acetonitrile, digestion with trypsin and then analysis by mass spectrometry (LC-MS-MS).
  • LC-MS-MS mass spectrometry
  • the product according to the invention does not comprise of exogenous enzymes selected from pectinases, amylases and pullulanases or comprises a concentration undetectable by standard assay methods, in particular by mass spectrometry.
  • the product according to the invention is prepared so as to eliminate any impurities which would make it unfit for consumption, in particular human consumption.
  • the product according to the invention can also be formulated by means known to those skilled in the art to avoid the degradation of its constituents during its storage or subsequent use.
  • the product according to the invention can be packaged for its conservation and use, either in large volume containers, or in smaller containers, for example with volumes corresponding to a single use, called single dose, for human consumption.
  • the container can be rigid, such as a glass ampoule, or flexible, such as a capsule suitable for consumption.
  • the sugar contents, in particular glucose, mannose and galactose (respectively called “hydrolyzed glucose”, “hydrolyzed galactose” and “hydrolyzed mannose”) of a product according to the invention are measured, after acid hydrolysis of the sample, by high-performance liquid chromatography via a Hi-Plex H+ column of the “ion exclusion/ligand exchange column” type and detection by refractometry (hereinafter “dosage of hydrolyzed sugars by HPLC-RID”). For this, 1.5 mL of the supernatant of a sample homogenized by vortexing are hydrolyzed with 1.5 mL of 2N sulfuric acid, at 110°C for 2 hours. The sample is then filtered (0.22 pm) and analyzed.
  • hydrolyzed glucose content thus measured includes both the glucose from undigested residual glycogen and the free glucose present in the product.
  • the free glucose content is determined by biochemical analysis, in particular using a YSI® biochemical analyzer following the manufacturer's recommendations.
  • the percentage of glycogen degradation is calculated as follows: (concentration of free glucose in the sample studied according to the invention / concentration maximum free glucose in an equivalent sample treated with 1% exogenous enzymes (volume of enzyme solution relative to total sample volume) x 100.
  • the protein content of a product according to the invention is determined by the DUMAS method.
  • the sample is subjected to high-temperature combustion in a flow of pure oxygen, the nitrogen oxides produced are reduced by copper.
  • the nitrogen is measured with a thermal conductivity detector, the result is expressed in quantity N (%).
  • This percentage of nitrogen is then reduced to a quantity of proteins by applying the formula: N*6.25 (%) (ISO/TS 16634-2:2009).
  • a degradation of glycogen of less than 10% by weight relative to the total glycogen is not considered to be sufficient degradation.
  • a degradation of less than 10% does not improve the filtration of the extract. It is then considered that the degradation of glycogen does not work.
  • the clarified obtained according to the invention has an estimated undigested residual glycogen (g/L) / C-phycocyanin (g/L) ratio of less than 6, advantageously less than 4, preferably less than 3, more preferably less than 2.5, or even more preferably less than 1.
  • the clarified according to the invention has a concentration of total sugars measured by assay of hydrolyzed sugars by HPLC-RID of less than or equal to 40 g/L, in particular between 0.1 and 40 g/L, preferably between 1 and 20 g/L, more preferably between 3 and 11 g/L, and/or a concentration of hydrolyzed glucose of less than or equal to 20 g/L, preferably between 0.1 and 20 g/L, preferably between 1 and 10 g/L, still preferably between 2 and 5 g/L and/or a concentration of hydrolyzed galactose of less than or equal to 10 g/L, in particular between 0.01 and 10 g/L, preferably between 0.1 and 5 g/L, more preferably between 0.5 and 3 g/L, and/or a concentration of hydrolyzed mannose less than or equal to 10 g/L, in particular between 0.01 and 10 g/L, preferably between 0.1 and 5 g/L, more preferably between
  • the C-phycocyanin contents of the clarified advantageously range from 0.1 to 12 g/L, preferably 0.5 to 8 g/L, more preferably 1 to 7 g/L.
  • the clarified material has a ratio (C-phycocyanins (g/L)/total sugars measured by assay of hydrolyzed sugars by HPLC-RID (g/L)) of at least 0.001, preferably from 0.005 to 120, more preferably 0.05 to 12, even more preferably 0.1 to 3.
  • the clarified product comprises C-phycocyanin and total sugars in a ratio (C-phycocyanin (g/L)/total sugars measured by assay of hydrolyzed sugars by HPLC-RID (g/L)) of 0.005 to 120, in particular of 0.05 to 12, more preferably of 0.1 to 3.
  • the ratio (C-phycocyanin (g/L) / total sugars (g/L)) is at least 90, and may exceed 120.
  • the clarified material has a ratio (C-phycocyanins (g/L) / hydrolyzed mannose (g/L)) of at least 0.01, preferably from 0.01 to 1200, more preferably 0.1 to 80, even more preferably 0.1 to 12.
  • the clarified material has a ratio (C-phycocyanins (g/L) /hydrolyzed galactose (g/L)) of at least 0.01, preferably from 0.01 to 1200, more preferably 0.1 to 80, even more preferably 0.1 to 12.
  • the ratio (C-phycocyanin (g/L) / hydrolyzed glucose (g/L)) of the clarified is preferably less than 120 and preferably ranges from 0.005 to 120. Preferably, this ratio is between 0.05 and 12, more preferably 0.1 and 10.
  • the concentrated aqueous extract according to the invention has a dry matter content of 2 to 1000 times higher than that of the clarified material from which it is derived, and even more preferably 20 to 60 times higher.
  • the C-phycocyanin contents of the concentrated aqueous extract advantageously range from 7 to 120 g/L, preferably 20 to 100 g/L, more preferably 40 to 80 g/L.
  • the concentrated aqueous extract according to the invention has a concentration of total sugars measured by assay of hydrolyzed sugars by HPLC-RID of less than or equal to 50 g/L, in particular between 1 and 50 g/L, preferably between 5 and 40 g/L, more preferably between 10 and 30 g/L, and/or a concentration of hydrolyzed glucose of less than or equal to 20 g/L, preferably between 0.1 and 20 g/L, preferably between 1 and 10 g/L, more preferably between 2 and 5 g/L and/or a concentration of hydrolyzed galactose of less than or equal to 15 g/L, in particular between 0.5 and 15 g/L, preferably between 1 and 13 g/L, more preferably between 3 and 8 g/L, and/or a concentration of hydrolyzed mannose of less than or equal to 15 g/L, in particular between 0.5 and 15 g/L, preferably between 1 and 13 g/L, more preferably
  • the weight ratio (C-phycocyanin (g/L) / hydrolyzed glucose (g/L)) of the concentrated aqueous extract ranges from 2 to 80. Preferably, this ratio is between 10 and 70, more preferably 15 and 60.
  • the concentrated aqueous extract has a ratio (C-phycocyanin (g/L) / hydrolyzed mannose (g/L)) of at least 0.01, preferably from 0.01 to 1200, more preferably 0.1 to 80, even more preferably 0.3 to 12.
  • the concentrated aqueous extract has a ratio (C-phycocyanin (g/L) /hydrolyzed galactose (g/L)) of at least 0.01, preferably from 0.01 to 1200, more preferably 0.1 to 80, even more preferably 0.3 to 12.
  • the concentrated aqueous extract has a ratio (proteins (%) / estimated undigested residual glycogen (g/L)) of 0.2 to 6.0, more preferably 0.5 to 5.0, even more preferably 1.0 to 4.5.
  • the concentrated aqueous extract has an estimated content of undigested residual glycogen (hydrolyzed glucose content (g/L) - free glucose content (g/L)) of 0.1 to 10 g/L, more preferably of 0.2 to 7 g/L, even more preferably 0.3 to 5 g/L.
  • the concentrated aqueous extract has a ratio (proteins (%) /total sugars measured by determination of hydrolyzed sugars by HPLC-RID (g/L)) less than 1%, preferably between 1 and 0.01%, more preferably between 0.8 and 0.05%, even more preferably between 0.6 and 0.1%.
  • the present invention finally relates to a process for preparing a concentrated aqueous extract of an ARU biomass of phycocyanin-producing microalgae having a high glycogen content, said process comprising a treatment process with a glycogen degradation step, and a concentration step as defined above.
  • the invention also relates to the use of all or part of a product obtained from a process according to the invention as a product for the preparation of pharmaceutical or food compositions, including foods or pharmaceutical, nutraceutical, food, cosmetic or industrial compositions.
  • a product obtained according to a process of the invention comprising phycocyanins for the preparation of pharmaceutical or food compositions.
  • a composition according to the invention comprises all or part of a product obtained with the method according to the invention and one or more excipients.
  • the composition according to the invention is an acidic composition whose pH is less than or equal to 6, preferably less than or equal to 5, or even less than or equal to 4 and in particular between 2 and 4.
  • the term “acid composition” means any composition comprising all or part of a product obtained with a process according to the invention as well as a mineral or organic acid.
  • Mineral or organic acids that may be used in the compositions according to the invention are known to those skilled in the art.
  • mineral acids mention will be made in particular of carbonic, phosphoric, hydrochloric, sulfuric, perchloric, sulfonic and nitric acids.
  • organic acids mention will be made in particular of citric, lactic, malic, tartaric and succinic acids.
  • compositions according to the invention may further comprise a vehicle which may comprise structural constituents associated with active compounds identified with regard to their nutritional contributions or for their properties beneficial to human or animal health.
  • compositions other than food compositions they may be pharmaceutical, veterinary or cosmetic and further include one or more additives and/or active ingredients known and used in this type of indication.
  • compositions according to the invention may be in any usual form known to those skilled in the art.
  • solid, liquid, fluid, pasty or viscous forms and more particularly creams, gels, mousses, pastes will be mentioned.
  • the compositions according to the invention may also be in the form of dry foods to be cooked, powders to be diluted, gelatinous compositions for food compositions.
  • all or part of the extract obtained according to the invention is preferably added in the form of powder.
  • the product obtained from a process according to the invention is previously dried to take the form of a powder.
  • liquid compositions are advantageously aqueous compositions in which all or part of the extract obtained according to the invention is dissolved.
  • the liquid composition may be a food composition and more specifically an acidic drink, whether carbonated or not.
  • sodas, juices, sports drinks, exercise drinks, recovery drinks, etc. will be mentioned.
  • the compositions of these drinks are well known to those skilled in the art and may comprise, in particular, sugars, mineral salts, food additives or dissolved gas.
  • An acidic drink according to the invention may be an acidic drink of the prior art in which the coloring usually used has been replaced in whole or in part by a product comprising phycocyanins resistant to acid pH according to the invention.
  • the phycocyanin content in the compositions according to the invention will be in accordance with the concentrations usually applied in the intended field of application.
  • Example 1 Study of glycogen degradation with and without addition of exogenous enzymes at different pHs
  • Acidification of the lysate is achieved by adding a sufficient quantity of citric acid to increase the pH from 6 to 3.75.
  • glucose release also occurs at pH 6 in the absence of addition of exogenous enzymes; the kinetics are only slower (lower slope).
  • Galdieria sulphuraria biomass lysates (20% dry matter (DM) weight relative to the total lysate weight) at pH between 3 and 7 without enzyme addition and at room temperature (20°C) was measured over time (YSI® 2950).
  • Acidification and basification of the lysate are achieved respectively by adding a sufficient quantity of citric acid or sodium hydroxide.
  • the amount of free glucose over time in Galdieria sulphuraria biomass lysates (20% dry matter (DM) weight relative to the total lysate weight) at pH 3.75 is studied for different temperatures (4 °C, 20 °C and 37 °C) without and with an enzyme (1% “Amylase AG XXL” from Novozymes) at pH 3.75 and at a temperature of 37°C (YSI® 2950).
  • the amount of free glucose over time in Galdieria sulphuraria biomass lysates (20% by weight of dry matter (DM) relative to the total weight of the lysate) at pH 4 is studied for different temperatures (4 °C, 15 °C, 20 °C, 30 °C, 40 °C and 50 °C) without addition of exogenous enzymes (YSI® 2950).
  • Example 5 Study of glycogen degradation at different stages of an extraction process
  • example 2 shows the degradation of the glycogen in a crude solution of phycocyanins in the presence and absence of exogenous enzymes.
  • a biomass of Galdieria sulphuraria is produced then recovered/harvested.
  • the cells are then lysed then diluted in order to obtain an aqueous extract, a solubilizer.
  • a clarifier is then obtained from this aqueous extract by separating the solids by filtration on a 0.22pm filter.
  • the amount of free glucose, at room temperature (20°C), in lysate (20% by weight of DM relative to the total weight of the lysate), solubilized and clarified of Galdieria sulphuraria biomass at (7.5% by weight of DM relative to the total weight of the solubilized or clarified) at pH 4 without the addition of exogenous enzymes is studied (YSI® 2950).
  • the clarified is obtained after filtration of the solubilized on a 0.22pm filter.
  • a Galdieria sulphuraria biomass lysate (20% by weight of DM relative to the total weight of lysate) is maintained at acidic pH of 3.7 for 12 hours, at 25 °C.
  • An extract is prepared from this lysate. To do this, the lysate is washed with a quantity of water representing in total less than 4 times the total volume of lysed biomass. This volume of water is split into 3 fractions to carry out 3 successive washes of the lysed biomass.
  • the wash water is recovered, in accordance with the teaching of patent application WO2020/161280.
  • the product obtained is then filtered on a hollow fiber membrane having a porosity of 70 kDa (clarifiate) with a final diafiltration step and the filtrate is recovered, in accordance with the teaching of patent application WO2020/144330 (concentrated aqueous extract).
  • the concentrated aqueous extract and the clarified thus obtained are analyzed to know the content of total sugars, hydrolyzed mannose, hydrolyzed galactose and hydrolyzed glucose by HPLC-RID, the content of free glucose at YSI® 2950, the content of phycocyanin as well as the content of proteins.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Nutrition Science (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a treatment method for the degradation of the glycogen present in a biomass of unicellular red algae (ARU), particularly of the genus Galdieria, and to the product thus obtained.

Description

PROCEDE DE DEGRADATION DU GLYCOGENE PRESENT DANS UNE BIOMASSE DE GALDIERIA PROCESS FOR DEGRADATION OF GLYCOGEN PRESENT IN GALDIERIA BIOMASS
DOMAINE DE L’INVENTION FIELD OF THE INVENTION
La présente invention concerne un procédé de traitement pour la dégradation du glycogène d’une biomasse d’algues rouges unicellulaires (ARU), particulièrement du genre Galdieria, et le produit aqueux ainsi obtenu. The present invention relates to a treatment method for the degradation of glycogen from a biomass of unicellular red algae (URA), particularly of the genus Galdieria, and the aqueous product thus obtained.
ETAT DE LA TECHNIQUE STATE OF THE ART
Les algues rouges unicellulaires (ARU), ou Rhodophytes, se caractérisent par la présence de pigments au sein de leurs cellules. En plus de la chlorophylle et des caroténoïdes, les algues rouges unicellulaires produisent des phycobiliprotéines. Ces pigments naturels issus de la photosynthèse sont divisés en quatre types : les allophycocyanines, les C-phycocyanines, les phycoérythrines et les phycoérythrocyanines. Unicellular red algae (URA), or Rhodophytes, are characterized by the presence of pigments within their cells. In addition to chlorophyll and carotenoids, unicellular red algae produce phycobiliproteins. These natural pigments resulting from photosynthesis are divided into four types: allophycocyanins, C-phycocyanins, phycoerythrins and phycoerythrocyanins.
Les phycocyanines présentent des propriétés bénéfiques pour la santé humaine et animale, et sont aujourd’hui utilisées dans de nombreux domaines comme l’industrie pharmaceutique, la cosmétique ou encore l’agroalimentaire. Phycocyanins have beneficial properties for human and animal health, and are now used in many fields such as the pharmaceutical, cosmetic and food industries.
Les microalgues appartenant à la classe des Cyanidiophyceae, et plus précisément aux genres Cyanidioschyzon, Cyanidium et Galdieria, sont particulièrement intéressantes pour la production de phycocyanines. La production des biomasses d’algues rouges unicellulaires est bien connue de l’homme du métier notamment pour la production de molécules d’intérêt, notamment la production de protéines comme les phycocyanines. Des procédés de production et d’extraction desdites phycocyanines sont décrits dans la littérature (WO2017/093345, WO2019/228947, WO2018/178334, W02020/161280). Microalgae belonging to the class Cyanidiophyceae, and more precisely to the genera Cyanidioschyzon, Cyanidium and Galdieria, are particularly interesting for the production of phycocyanins. The production of unicellular red algae biomass is well known to those skilled in the art, in particular for the production of molecules of interest, in particular the production of proteins such as phycocyanins. Methods for the production and extraction of said phycocyanins are described in the literature (WO2017/093345, WO2019/228947, WO2018/178334, WO2020/161280).
Cependant, les microalgues de cette classe, notamment du genre Galdieria, sont aussi connues pour avoir le glycogène comme sucre majeur de réserve. Ce glycogène est un polymère de glucoses a(1 — > 4) ramifié par des liaisons a-(1 — > 6). Le glycogène de microalgues du genre Galdieria a la particularité de posséder une grande proportion de ces ramifications, à savoir environ de 7 à 18% de glucoses ramifiés distribués aléatoirement le long de la molécule. Cette structure moléculaire confère au glycogène une conformation globulaire le rendant soluble dans l’eau (Martinez-Garcia et al., Int J Biol Macromol. (2016) 89:12-8). De surcroît, si les microalgues du genre Galdieria possèdent les enzymes pour la synthèse de glycogène hautement ramifiés, elles possèdent également les enzymes pour le dégrader (Martinez-Garcia et al., Int J Biol Macromol. (2016) 89:12-18). Ces enzymes sont des enzymes intracellulaires. Or, le milieu intracellulaire des microalgues de cette classe a un pH compris entre 6,3 et 7,1 (Miyagishima et al., Plant Cell Physiol. 62(6): 926-941 (2021 )). Ainsi, ces enzymes sont connues pour avoir une activité dans cette gamme de pH précise. However, microalgae of this class, especially of the genus Galdieria, are also known to have glycogen as a major reserve sugar. This glycogen is a polymer of a(1 — > 4) glucoses branched by a-(1 — > 6) bonds. The glycogen of microalgae of the genus Galdieria has the particularity of having a large proportion of these branches, namely approximately 7 to 18% of branched glucoses randomly distributed along the molecule. This molecular structure gives glycogen a globular conformation making it soluble in water (Martinez-Garcia et al., Int J Biol Macromol. (2016) 89:12-8). In addition, if microalgae of the genus Galdieria possess the enzymes for the synthesis of highly branched glycogen, they also possess the enzymes to degrade it (Martinez-Garcia et al., Int J Biol Macromol. (2016) 89:12-18). These enzymes are intracellular enzymes. However, the intracellular medium of microalgae of this class has a pH between 6.3 and 7.1 (Miyagishima et al., Plant Cell Physiol. 62(6): 926-941 (2021)). Thus, these enzymes are known to have activity in this precise pH range.
Pour la préparation d’extraits aqueux de microalgues, tels que d’extraits de phycocyanines de Galdieria sulphuraria, des étapes de filtration peuvent être nécessaires. Le glycogène étant facilement soluble dans l’eau froide, il se retrouve dans la fraction aqueuse avec les composés hydrophiles d’intérêt, comme les phycocyanines. Les filtres utilisés pour la purification des phycocyanines retiennent tout ou partie du glycogène, et augmentent alors la viscosité du rétentat. Cela engendre des contraintes techniques au niveau du procédé, comme des problèmes de montée en pression, de baisse de flux et de colmatage, en particulier avec des membranes de filtration tangentielle. Par ailleurs, si le glycogène n’est pas éliminé, l’extrait préparé comprend beaucoup de glycogène, il est alors visqueux et peu concentré en phycocyanines. For the preparation of aqueous extracts of microalgae, such as phycocyanin extracts of Galdieria sulphuraria, filtration steps may be necessary. Since glycogen is easily soluble in cold water, it is found in the aqueous fraction with the hydrophilic compounds of interest, such as phycocyanins. The filters used for the purification of phycocyanins retain all or part of the glycogen, and thus increase the viscosity of the retentate. This creates technical constraints in the process, such as problems with pressure build-up, flow reduction and clogging, particularly with tangential filtration membranes. Furthermore, if the glycogen is not removed, the prepared extract contains a lot of glycogen, is then viscous and has a low concentration of phycocyanins.
Le glycogène est connu pour être résistant à certaines enzymes. Malgré tout, un procédé impliquant l’ajout d’enzymes exogènes adaptées pour sa dégradation a déjà été mis au point (W02020/144330). Glycogen is known to be resistant to certain enzymes. However, a process involving the addition of exogenous enzymes suitable for its degradation has already been developed (W02020/144330).
Si elle ne peut pas être totalement éliminée et/ou inactivée, une enzyme ajoutée pour la préparation d’un produit alimentaire doit être listée dans sa composition. Une telle substance non éliminable correspond à un additif ou un auxiliaire technologique qui peut poser des difficultés de commercialisation et/ou de formulation. If it cannot be completely eliminated and/or inactivated, an enzyme added for the preparation of a food product must be listed in its composition. Such a non-eliminable substance corresponds to an additive or a technological aid which may pose marketing and/or formulation difficulties.
D’autres méthodes de préparation d’extrait aqueux de biomasses d’algues rouges unicellulaires notamment du genre Galdieria ont été décrites dans la littérature (Moon et al., Korean J. Chem. Engl. 2016, 31 , 3, pages 490-495). Cependant, ces méthodes restent difficilement applicables à l’échelle industrielle puisqu’elles requièrent soit l’ajout de grandes quantités de sulfate d’ammonium aboutissant à des effluents riches en polluants non souhaitables pour des raisons écologiques et économiques, soit l’utilisation d’instruments très coûteux comme des chromatographies, soit un enchainement d’étapes difficile à mettre en oeuvre à plus grande échelle que le laboratoire. En outre, aucune de ces méthodes ne permet d’éliminer sélectivement le glycogène présent dans la biomasse ou dans les extraits aqueux de microalgues. Other methods for preparing aqueous extracts of unicellular red algae biomass, particularly of the genus Galdieria, have been described in the literature (Moon et al., Korean J. Chem. Engl. 2016, 31, 3, pages 490-495). However, these methods remain difficult to apply on an industrial scale since they require either the addition of large quantities of ammonium sulfate resulting in effluents rich in pollutants that are undesirable for ecological and economic reasons, or the use of very expensive instruments such as chromatography, or a sequence of steps that is difficult to implement on a larger scale than the laboratory. In addition, none of these methods can selectively eliminate glycogen present in the biomass or in aqueous extracts of microalgae.
Il existe donc un besoin de fournir un procédé permettant de dégrader le glycogène présent dans une biomasse d’algues rouges unicellulaires dont le sucre de réserve principal est le glycogène, en particulier dans une biomasse de microalgues du genre Galdieria, tout en surmontant les problèmes de l’art antérieur, et notamment ceux énoncés précédemment. There is therefore a need to provide a process for degrading glycogen. present in a biomass of unicellular red algae whose main reserve sugar is glycogen, in particular in a biomass of microalgae of the genus Galdieria, while overcoming the problems of the prior art, and in particular those stated above.
EXPOSE DE L’INVENTION PRESENTATION OF THE INVENTION
Selon un premier aspect de l’invention, les inventeurs ont développé un procédé de traitement d’une biomasse d’algues rouges unicellulaires (ARU) du genre Galdieria, ledit procédé de traitement de biomasse d’ARU comprenant les étapes de : a) récolte de la biomasse par séparation du milieu de culture pour l’obtention d’une biomasse brute d’ARU, b) lyse cellulaire de la biomasse brute de l’étape (a) pour obtenir un lysat, c) optionnellement dilution du lysat de l’étape (b) pour obtenir un solubilisât, et d) séparation des insolubles en suspension dans le lysat de l’étape (b) ou le solubilisât de l’étape (c) pour obtenir un clarifiât, le procédé comprenant une étape de dégradation du glycogène par maintien au repos pendant au moins 3 heures de la biomasse brute et/ou du lysat et/ou du solubilisât durant laquelle le milieu liquide comprenant le glycogène est à pH acide. According to a first aspect of the invention, the inventors have developed a method for treating a biomass of unicellular red algae (URA) of the genus Galdieria, said method for treating URA biomass comprising the steps of: a) harvesting the biomass by separating the culture medium to obtain a crude URA biomass, b) cell lysis of the crude biomass from step (a) to obtain a lysate, c) optionally diluting the lysate from step (b) to obtain a solubilizer, and d) separating the insolubles suspended in the lysate from step (b) or the solubilizer from step (c) to obtain a clarifier, the method comprising a step of degrading the glycogen by keeping the crude biomass and/or the lysate and/or the solubilizer at rest for at least 3 hours, during which the liquid medium comprising the glycogen is at an acidic pH.
De façon surprenante, la dégradation du glycogène par les enzymes endogènes du microorganisme est effective sur une large gamme de pH non limitée au pH intracellulaire dudit microorganisme avec un optimum pour des pH plus acides notamment compris entre 2 et 5. Toujours étonnamment, la dégradation enzymatique fonctionne à l’intérieur de la cellule dans une biomasse traitée telle qu’une biomasse brute, une biomasse brute décongelée ou encore une biomasse brute séchée mais également dans un lysat et un solubilisât. La présente invention concerne aussi un produit susceptible d’être obtenu par un procédé selon l’invention. Surprisingly, the degradation of glycogen by the endogenous enzymes of the microorganism is effective over a wide pH range not limited to the intracellular pH of said microorganism with an optimum for more acidic pHs, in particular between 2 and 5. Still surprisingly, the enzymatic degradation works inside the cell in a treated biomass such as a raw biomass, a thawed raw biomass or a dried raw biomass but also in a lysate and a solubilize. The present invention also relates to a product capable of being obtained by a method according to the invention.
Avantageusement, le procédé selon la présente invention permet de diminuer voir même de supprimer l’ajout d’enzymes exogènes adaptées pour la dégradation du glycogène d’ARU donc de diminuer l’ajout de substances devant être qualifiées d’additifs et/ou d’auxiliaires technologiques. Advantageously, the method according to the present invention makes it possible to reduce or even eliminate the addition of exogenous enzymes suitable for the degradation of ARU glycogen and therefore to reduce the addition of substances which must be qualified as additives and/or technological aids.
Également, le procédé selon l’invention s’applique avec des conditions de durée, température et pH des plus douces au plus drastiques et peut ainsi s’adapter à la stabilité des molécules d’intérêt à extraire. DESCRIPTION DES FIGURES Also, the method according to the invention applies with conditions of duration, temperature and pH from the mildest to the most drastic and can thus adapt to the stability of the molecules of interest to be extracted. DESCRIPTION OF FIGURES
La figure 1 représente les concentrations en glucose libre dans des lysats de biomasse de Galdieria sulphuraria au cours du temps à pH 3,75 et à pH 6, à 37 °C sans ajout d’enzymes exogènes (SE : Sans Enzyme) et avec 1% d’enzymes exogènes dans le lysat (E : Enzyme). Figure 1 shows free glucose concentrations in Galdieria sulphuraria biomass lysates over time at pH 3.75 and pH 6, at 37 °C without the addition of exogenous enzymes (SE: No Enzyme) and with 1% exogenous enzymes in the lysate (E: Enzyme).
La figure 2 représente les concentrations en glucose libre dans des lysats de biomasse de Galdieria sulphuraria à température ambiante (« amb », i.e. 20°C) en absence d’enzymes exogènes et à différents pH en fonction du temps. Figure 2 shows free glucose concentrations in Galdieria sulphuraria biomass lysates at room temperature (“amb”, i.e. 20°C) in the absence of exogenous enzymes and at different pHs as a function of time.
La figure 3 représente les concentrations de glucose libre dans des lysats de biomasse de Galdieria sulphuraria à pH 3,75 à différentes températures, en présence ou en absence d’enzymes exogènes, en fonction du temps (SE : Sans Enzyme ; E : Enzyme). Figure 3 shows free glucose concentrations in Galdieria sulphuraria biomass lysates at pH 3.75 at different temperatures, in the presence or absence of exogenous enzymes, as a function of time (SE: No Enzyme; E: Enzyme).
La figure 4 représente les concentrations de glucose libre dans des lysats de biomasse de Galdieria sulphuraria à pH 3,75 à différentes températures, en absence d’enzymes exogènes, en fonction du temps. Figure 4 shows free glucose concentrations in Galdieria sulphuraria biomass lysates at pH 3.75 at different temperatures, in the absence of exogenous enzymes, as a function of time.
La figure 5 représente les concentrations de glucose libre en fonction du temps dans un lysat et un solubilisât de biomasse de Galdieria sulphuraria à pH 3,75 à une température de 20°C en l’absence d’enzymes exogènes, et dans un lysat de biomasse de Galdieria sulphuraria à pH 3,75 en présence d’enzymes exogènes (SE : Sans Enzyme ; E : Enzyme). Figure 5 shows free glucose concentrations as a function of time in a lysate and solubilized Galdieria sulphuraria biomass at pH 3.75 at a temperature of 20°C in the absence of exogenous enzymes, and in a lysate of Galdieria sulphuraria biomass at pH 3.75 in the presence of exogenous enzymes (SE: Without Enzyme; E: Enzyme).
La figure 6 représente le pourcentage de digestion du glycogène en fonction du temps dans un clarifiât de biomasse de Galdieria sulphuraria à pH 4 à une température de 20°C en l’absence ou en présence d’enzymes exogènes. Figure 6 shows the percentage of glycogen digestion as a function of time in a clarified biomass of Galdieria sulphuraria at pH 4 at a temperature of 20°C in the absence or presence of exogenous enzymes.
La figure 7 représente le pourcentage de digestion du glycogène en fonction du temps dans un lysat, un solubilisât et un clarifiât de biomasse de Galdieria sulphuraria à pH 4 à une température de 20°C en l’absence d’enzymes exogènes (SE : Sans Enzyme). Figure 7 shows the percentage of glycogen digestion as a function of time in a lysate, solubilizer and clarifier of Galdieria sulphuraria biomass at pH 4 at a temperature of 20°C in the absence of exogenous enzymes (SE: Without Enzyme).
DESCRIPTION DETAILLEE DE L’INVENTION DETAILED DESCRIPTION OF THE INVENTION
Définitions Definitions
Dans le cadre de la présente invention, le terme « biomasse » désigne un ensemble de cellules de microalgues, préférentiellement produites par fermentation dans un réacteur biologique. Ladite biomasse peut être vue comme une masse d’organismes unicellulaires. In the context of the present invention, the term "biomass" designates a set of microalgae cells, preferably produced by fermentation in a biological reactor. Said biomass can be seen as a mass of single-celled organisms.
La biomasse peut subir différents traitements et être une biomasse brute, une biomasse lysée, une biomasse brute décongelée et/ou une biomasse brute séchée. Biomass can undergo different treatments and be raw biomass, lysed biomass, thawed raw biomass and/or dried raw biomass.
Il est entendu dans le cadre de la présente demande que les propriétés de la biomasse correspondent à la moyenne des propriétés de l’ensemble des cellules constituant ladite biomasse, autrement dit, une biomasse lysée est une biomasse comprenant au moins 50% de cellules lysées par rapport au nombre total de cellules et une biomasse brute peut comprendre des cellules lysées en raison de l’étape de récolte sans être considérée comme une biomasse lysée tant que le nombre de cellules lysées sur le nombre de cellules non lysées reste minoritaire, i.e. inférieur à 50%. It is understood in the context of the present application that the properties of the biomass correspond to the average of the properties of all the cells constituting said biomass, in other words, a lysed biomass is a biomass comprising at least 50% of lysed cells relative to the total number of cells and a raw biomass may comprise lysed cells due to the harvesting step without being considered as a lysed biomass as long as the number of lysed cells out of the number of non-lysed cells remains in the minority, i.e. less than 50%.
L’expression « biomasse brute » désigne une biomasse obtenue après la récolte, i.e. après la récupération du moût de fermentation puis séparation des cellules d’au moins une partie du milieu de culture, éventuellement décongelée et/ou séchée. The expression “raw biomass” designates a biomass obtained after harvesting, i.e. after recovery of the fermentation must then separation of the cells from at least part of the culture medium, possibly thawed and/or dried.
L’expression « biomasse lysée » ou « lysat » fait référence à une biomasse de microalgues dans laquelle au moins 50% des cellules sont lysées, préférentiellement au moins 70%, plus préférentiellement dans laquelle au moins 80%, 85%, 90%, 95%, jusqu’à 100% des cellules sont lysées. The term “lysed biomass” or “lysate” refers to a microalgae biomass in which at least 50% of the cells are lysed, preferably at least 70%, more preferably in which at least 80%, 85%, 90%, 95%, up to 100% of the cells are lysed.
L’expression « biomasse brute décongelée » fait référence à une biomasse brute qui a été congelée, possiblement pour des questions de stockage et/ou de transport puis décongelée pour atteindre une température adéquate pour son traitement selon l’invention, notamment une température adaptée à l’étape de dégradation du glycogène de la biomasse selon l’invention. The expression “thawed raw biomass” refers to raw biomass that has been frozen, possibly for storage and/or transport reasons, then thawed to reach a temperature suitable for its treatment according to the invention, in particular a temperature suitable for the step of degradation of the glycogen of the biomass according to the invention.
Selon l’invention, l’expression « biomasse brute séchée » désigne une biomasse brute de microalgues qui a été séchée selon des méthodes connues de l’homme du métier et dont la teneur en eau par rapport au poids total de la biomasse est inférieure à 10%, préférentiellement inférieur à 7%, plus préférentiellement comprise entre 5% et 1% d’eau. Parmi les méthodes de séchage connues peuvent être citées le séchage naturel à l’air, le séchage par atomisation, le séchage par lit d’air fluidisé, le séchage à l’aide d’un sécheur à rouleaux et la lyophilisation. According to the invention, the expression “dried raw biomass” designates a raw biomass of microalgae which has been dried according to methods known to those skilled in the art and whose water content relative to the total weight of the biomass is less than 10%, preferably less than 7%, more preferably between 5% and 1% of water. Among the known drying methods, mention may be made of natural air drying, spray drying, fluidized air bed drying, drying using a roller dryer and freeze-drying.
Le terme « solubilisât » fait référence à une biomasse lysée ou lysat qui a subi une étape de dilution avec une solution aqueuse de pH neutre, acide ou basique. The term “solubilized” refers to a lysed biomass or lysate that has undergone a dilution step with an aqueous solution of neutral, acidic or basic pH.
Le terme « clarifiât » correspond à un extrait aqueux obtenu après séparation des insolubles en suspension dans un lysat ou un solubilisât. The term “clarifiate” corresponds to an aqueous extract obtained after separation of insoluble substances suspended in a lysate or solubilizer.
Le terme « repos » fait référence à une étape pendant laquelle il n’y a pas de modification des propriétés chimiques de la biomasse brute préférentiellement séchée ou congelée, du lysat et/ou du solubilisât, par ajout ou extraction d’un ou plusieurs composant(s). Le repos n’exclut pas le fait que la biomasse brute, le lysat, le solubilisât et/ou le clarifiât puissent être mélangé(s), i.e. brassé(s), dans des conditions non destructives qui n’affectent pas les propriétés chimiques de la biomasse brute, du lysat et/ou du solubilisât. The term "rest" refers to a stage during which there is no modification of the chemical properties of the preferably dried or frozen raw biomass, lysate and/or solubilized material, by addition or extraction of one or more components. Rest does not exclude the fact that the raw biomass, lysate, solubilized material and/or clarified material may be mixed, i.e. stirred, under non-destructive conditions which do not affect the chemical properties of the raw biomass, lysate and/or solubilized material.
L’expression « milieu liquide comprenant le glycogène » décrit le milieu intracellulaire des cellules constituant la biomasse brute et/ou la phase liquide du lysat, du solubilisât et/ou du clarifiât le cas échéant. The term “liquid medium comprising glycogen” describes the intracellular medium of the cells constituting the crude biomass and/or the liquid phase of the lysate, solubilize and/or clarified where appropriate.
L’expression « traitement d’une biomasse » fait référence à tout procédé appliqué à une biomasse notamment pour en modifier les propriétés physico-chimiques, en extraire des molécules d’intérêt et/ou les purifier. The expression “biomass treatment” refers to any process applied to biomass, in particular to modify its physicochemical properties, extract molecules of interest and/or purify them.
A noter que les intervalles numériques donnés visent à inclure tous les nombres intermédiaires (par exemple, un intervalle de 1 à 5 comprend notamment 1 , 1 ,5, 2, 2,75, 3, 3,80, 4, 4,32 et 5). Note that the numerical intervals given are intended to include all intermediate numbers (for example, an interval from 1 to 5 includes, among others, 1, 1.5, 2, 2.75, 3, 3.80, 4, 4.32, and 5).
A noter que toutes les valeurs numériques données se réfèrent à la valeur réelle donnée ainsi qu’aux approximations de cette valeur estimées à partir de la convention générale selon laquelle le dernier chiffre indiqué correspond à la précision de la mesure. En l'absence de limites d'erreur précises, l'erreur maximale pour le dernier chiffre spécifié doit être estimée selon la convention de l’arrondi. Note that all numerical values given refer to the actual value given as well as approximations of that value estimated from the general convention that the last digit given corresponds to the precision of the measurement. In the absence of precise error limits, the maximum error for the last digit specified must be estimated according to the rounding convention.
Procédé de traitement selon l’invention Treatment method according to the invention
Le procédé selon l’invention est un procédé de traitement d’une biomasse d’algues rouges unicellulaires (ARU) du genre Galdieria, ledit procédé de traitement de biomasse d’ARU comprenant les étapes de : a) récolte de la biomasse par séparation du milieu de culture pour l’obtention d’une biomasse brute d’ARU, b) lyse cellulaire de la biomasse brute de l’étape (a) pour obtenir un lysat, c) optionnellement, dilution du lysat de l’étape (b) pour obtenir un solubilisât, et d) séparation des insolubles en suspension dans le lysat de l’étape (b) ou le solubilisât de l’étape (c) pour obtenir un clarifiât, le procédé comprenant une étape de dégradation du glycogène par maintien au repos pendant au moins 3 heures de la biomasse brute et/ou du lysat et/ou du solubilisât, durant laquelle le milieu liquide comprenant le glycogène est à pH acide. The method according to the invention is a method for treating a biomass of unicellular red algae (URA) of the genus Galdieria, said method for treating URA biomass comprising the steps of: a) harvesting the biomass by separating the culture medium to obtain a crude URA biomass, b) cell lysis of the crude biomass from step (a) to obtain a lysate, c) optionally, diluting the lysate from step (b) to obtain a solubilizer, and d) separating the insolubles suspended in the lysate from step (b) or the solubilizer from step (c) to obtain a clarifier, the method comprising a step of degrading the glycogen by keeping the crude biomass and/or the lysate and/or the solubilizer at rest for at least 3 hours, during which the liquid medium comprising the glycogen is at an acidic pH.
Idéalement, tout au long du procédé, les conditions de température, durée et de pH sont particulièrement adaptées pour ne pas dégrader les composés d’intérêt dans l’extrait aqueux, par exemple les phycocyanines, tout en favorisant la dégradation du glycogène lors de l’étape de repos. Ideally, throughout the process, the conditions of temperature, duration and pH are particularly suitable for not degrading the compounds of interest in the aqueous extract, for example phycocyanins, while promoting the degradation of glycogen during the resting stage.
Selon un mode de réalisation, l'étape de dégradation du glycogène se fait sur la biomasse brute. Ce mode de réalisation comprend alors dans l’ordre les étapes de : a) récolte de la biomasse par séparation du milieu de culture pour l’obtention d’une biomasse brute d’ARU, repos pendant au moins 3 heures de la biomasse brute durant lequel le milieu liquide comprenant le glycogène est à pH acide, b) lyse cellulaire de la biomasse brute de l’étape (a) pour obtenir un lysat, c) optionnellement, dilution du lysat de l’étape (b) pour obtenir un solubilisât, d) séparation des insolubles en suspension dans le lysat de l’étape (b) ou le solubilisât de l’étape (c) pour obtenir un clarifiât, et optionnellement, une étape d’ajustement du pH de la biomasse brute. According to one embodiment, the glycogen degradation step is carried out on the raw biomass. This embodiment then comprises, in order, the steps of: a) harvesting the biomass by separating the culture medium to obtain a raw ARU biomass, resting the raw biomass for at least 3 hours during which the liquid medium comprising the glycogen is at acidic pH, b) cell lysis of the raw biomass from step (a) to obtain a lysate, c) optionally, diluting the lysate from step (b) to obtain a solubilizer, d) separating the insolubles suspended in the lysate from step (b) or the solubilizer from step (c) to obtain a clarifier, and optionally, a step of adjusting the pH of the raw biomass.
Dans ce mode de réalisation, le glycogène est dans le milieu intracellulaire des cellules constituant la biomasse, lequel milieu liquide est à un pH acide, et la biomasse brute est préférentiellement une biomasse brute séchée ou une biomasse brute décongelée.Dans les deux modes de réalisation suivants, après lyse cellulaire, le glycogène se retrouve dans la phase liquide du lysat, puis le cas échéant du solubilisât. In this embodiment, the glycogen is in the intracellular medium of the cells constituting the biomass, which liquid medium is at an acidic pH, and the raw biomass is preferably a dried raw biomass or a thawed raw biomass. In the following two embodiments, after cell lysis, the glycogen is found in the liquid phase of the lysate, then where appropriate of the solubilize.
Selon un mode de réalisation préféré, l'étape de dégradation du glycogène se fait sur le lysat. Ce mode de réalisation comprend alors dans l’ordre les étapes de : a) récolte de la biomasse par séparation du milieu de culture pour l’obtention d’une biomasse brute d’ARU, b) lyse cellulaire de la biomasse brute de l’étape (a) pour obtenir un lysat, repos pendant au moins 3 heures du lysat durant lequel le milieu liquide comprenant le glycogène est à pH acide, c) optionnellement, dilution du lysat de l’étape (b) pour obtenir un solubilisât, d) séparation des insolubles en suspension dans le lysat de l’étape (b) ou le solubilisât de l’étape (c) pour obtenir un clarifiât, et optionnellement, une étape d’ajustement du pH de la biomasse brute ou du lysat. According to a preferred embodiment, the glycogen degradation step is carried out on the lysate. This embodiment then comprises, in order, the steps of: a) harvesting the biomass by separating the culture medium to obtain a crude ARU biomass, b) cell lysis of the crude biomass from step (a) to obtain a lysate, resting the lysate for at least 3 hours during which the liquid medium comprising the glycogen is at an acidic pH, c) optionally, diluting the lysate from step (b) to obtain a solubilizer, d) separating the insolubles suspended in the lysate from step (b) or the solubilizer from step (c) to obtain a clarifier, and optionally, a step of adjusting the pH of the crude biomass or the lysate.
Il peut être nécessaire, en tant que besoin, d’ajuster le pH du milieu liquide de la biomasse brute et/ou du lysat pour obtenir le pH acide recherché pour l’étape de repos sur le lysat. Selon un autre mode de réalisation, l'étape de dégradation du glycogène se fait sur le solubilisât. Ce mode de réalisation comprend alors dans l’ordre les étapes de : a) récolte de la biomasse par séparation du milieu de culture pour l’obtention d’une biomasse brute d’ARU, b) lyse cellulaire de la biomasse brute de l’étape (a) pour obtenir un lysat, c) dilution du lysat de l’étape (b) pour obtenir un solubilisât, repos pendant au moins 3 heures du solubilisât durant lequel le milieu liquide comprenant le glycogène est à pH acide, d) séparation des insolubles en suspension dans le solubilisât de l’étape (c) pour obtenir un clarifiât, et optionnellement, une étape d’ajustement du pH de la biomasse brute, du lysat ou du solubilisât. It may be necessary, as needed, to adjust the pH of the liquid medium of the raw biomass and/or the lysate to obtain the desired acidic pH for the resting step on the lysate. According to another embodiment, the glycogen degradation step is carried out on the solubilisate. This embodiment then comprises in order the steps of: a) harvesting the biomass by separation of the culture medium to obtain a crude ARU biomass, b) cell lysis of the crude biomass from step (a) to obtain a lysate, c) dilution of the lysate from step (b) to obtain a solubilisate, resting for at least 3 hours of the solubilisate during which the liquid medium comprising the glycogen is at acidic pH, d) separation of the insolubles suspended in the solubilisate from step (c) to obtain a clarifier, and optionally, a step of adjusting the pH of the crude biomass, the lysate or the solubilisate.
Il peut être nécessaire, en tant que besoin, d’ajuster le pH du milieu liquide de la biomasse brute, du lysat et/ou du solubilisât pour obtenir le pH acide recherché pour l’étape de repos sur le solubilisât. a) Récolte de la biomasse It may be necessary, as needed, to adjust the pH of the liquid medium of the raw biomass, the lysate and/or the solubilisate to obtain the desired acidic pH for the resting step on the solubilisate. a) Harvesting the biomass
La biomasse selon l’invention est une biomasse d’algues rouges unicellulaires (ARU), plus particulièrement une biomasse de microalgues productrices de phycocyanines ayant une teneur élevée en glycogène. The biomass according to the invention is a biomass of unicellular red algae (URA), more particularly a biomass of microalgae producing phycocyanins having a high glycogen content.
Ces microalgues appartiennent à la classe des Cyanidiophyceae incluant les genres Galdieria, Cyanidium et Cyanidioschyzon. Préférentiellement, les microalgues sont du genre Galdieria. These microalgae belong to the class Cyanidiophyceae including the genera Galdieria, Cyanidium and Cyanidioschyzon. Preferably, the microalgae are of the genus Galdieria.
Parmi les microalgues du genre Galdieria, on peut notamment citer les espèces Galdieria daedala, Galdieria maxima, Galdieria partita, Galdieria sulphuraria, Galdieria phlegrea, Galdieria javensis, Galdieria yellowstonensis, Galdieria sp Préférentiellement, la biomasse selon l’invention est une biomasse de Galdieria sulphuraria. Among the microalgae of the Galdieria genus, mention may in particular be made of the species Galdieria daedala, Galdieria maxima, Galdieria partita, Galdieria sulphuraria, Galdieria phlegrea, Galdieria javensis, Galdieria yellowstonensis, Galdieria sp Preferably, the biomass according to the invention is a biomass of Galdieria sulphuraria .
Les procédés de production de biomasse d’algues rouges unicellulaires (ARUs), et en particulier du genre Galdieria, sont bien connus de l’homme du métier. Dans le cadre de la présente invention, la culture des microalgues peut être réalisée par toute technique de culture connue, dans des contenants adaptés à la croissance des microorganismes aussi appelés réacteurs biologiques, bioréacteurs ou fermenteurs. The methods for producing biomass from unicellular red algae (URAs), and in particular from the genus Galdieria, are well known to those skilled in the art. In the context of the present invention, the culture of microalgae can be carried out by any known culture technique, in containers adapted to the growth of microorganisms also called biological reactors, bioreactors or fermenters.
Selon l’invention, la biomasse d’algues rouges unicellulaires est obtenue à partir de microalgues cultivées de manière industrielle dans un réacteur de grande capacité, de préférence à obtenir des moûts de fermentation comprenant de grandes densités de microorganismes. Dans le cadre de la présente demande, on entend par « grandes densités » une quantité correspondant à plus de 50 g de matière sèche par litre de moût de fermentation, préférentiellement plus de 100 g par litre. Des exemples de cultures d’algues rouges unicellulaires sont décrits dans les demandes de brevet (WO2017/050917, WO2017/050918, WO2017/093345 et WO2019/228947). Il est entendu que l’homme du métier saura déterminer les paramètres et les conditions optimales pour la culture des microorganismes, telles que les conditions de température, éclairage, durée de culture ou encore nature et quantité des nutriments à apporter. Le procédé selon l’invention comprend une étape a) de récolte de la biomasse. According to the invention, the biomass of unicellular red algae is obtained from microalgae cultivated industrially in a large capacity reactor, preferably to obtain fermentation musts comprising high densities of microorganisms. In the context of the present application, "high densities" means an amount corresponding to more than 50 g of dry matter per liter of fermentation must, preferably more than 100 g per liter. Examples of single-cell red algae cultures are described in the patent applications (WO2017/050917, WO2017/050918, WO2017/093345 and WO2019/228947). It is understood that a person skilled in the art will be able to determine the optimal parameters and conditions for culturing the microorganisms, such as the temperature conditions, lighting, duration of culture or even the nature and quantity of nutrients to be provided. The method according to the invention comprises a step a) of harvesting the biomass.
Après culture des microorganismes et obtention d’une biomasse, celle-ci est récoltée pour obtenir une biomasse brute. La récolte des algues rouges unicellulaires peut être réalisée par toute technique connue de l’homme du métier, notamment par filtration, éventuellement gravimétrique ou sous pression réduite, décantation, précipitation suivie d’une filtration gravimétrique ou encore centrifugation. After culturing the microorganisms and obtaining a biomass, it is harvested to obtain a raw biomass. The harvesting of unicellular red algae can be carried out by any technique known to those skilled in the art, in particular by filtration, possibly gravimetric or under reduced pressure, decantation, precipitation followed by gravimetric filtration or even centrifugation.
Le procédé selon l’invention comprend une étape a) de récolte de la biomasse correspondant donc à la récupération du moût de fermentation suivie de la séparation des cellules de la biomasse d’au moins une partie du milieu de culture. The method according to the invention comprises a step a) of harvesting the biomass corresponding therefore to the recovery of the fermentation must followed by the separation of the cells of the biomass from at least part of the culture medium.
Cette étape permet l’obtention d’une biomasse brute. La biomasse brute ainsi récoltée peut en outre subir une étape de lavage, de préférence avec de l’eau, afin d’éliminer certaines impuretés solubles. This step allows the production of raw biomass. The raw biomass thus harvested can also undergo a washing step, preferably with water, in order to eliminate certain soluble impurities.
La biomasse brute obtenue après récolte et optionnellement après un ou plusieurs lavage(s) comprend au moins 70% d’eau, et jusqu’à 90% d’eau, préférentiellement elle comprend de 75 à 88% d’eau. The raw biomass obtained after harvesting and optionally after one or more washes comprises at least 70% water, and up to 90% water, preferably it comprises 75 to 88% water.
Préférentiellement, la biomasse brute selon l’invention présente une teneur en matière sèche de 5 à 30% en poids par rapport au poids total de la biomasse brute, généralement encore préférentiellement de 10 à 25% en poids, plus préférentiellement de 10 à 20% en poids. Preferably, the raw biomass according to the invention has a dry matter content of 5 to 30% by weight relative to the total weight of the raw biomass, generally still preferentially from 10 to 25% by weight, more preferentially from 10 to 20% by weight.
Aussi préférentiellement, la biomasse brute selon l’invention présente une concentration en C-phycocyanine comprise entre 3 et 12 %. b) Lyse cellulaire Also preferably, the raw biomass according to the invention has a C-phycocyanin concentration of between 3 and 12%. b) Cell lysis
Le procédé de traitement d’une biomasse d’algues rouge unicellulaires selon l’invention comprend une étape b) de lyse cellulaire de la biomasse brute de l’étape a) pour obtenir un lysat. Préférentiellement, l’étape b) de lyse cellulaire est mise en œuvre sur une biomasse brute dont la teneur en matière sèche est de 5 à 30% en poids par rapport au poids total de la biomasse brute, préférentiellement de 10 à 25% en poids, plus préférentiellement de 10 à 20% en poids The method for treating a biomass of unicellular red algae according to the invention comprises a step b) of cell lysis of the raw biomass from step a) to obtain a lysate. Preferably, step b) of cell lysis is carried out on a raw biomass whose dry matter content is from 5 to 30% by weight relative to the total weight of the raw biomass, preferably from 10 to 25% by weight, more preferably from 10 to 20% by weight.
Aussi préférentiellement, l’étape b) de lyse cellulaire est mise en œuvre sur une biomasse brute selon l’invention avec une concentration en C-phycocyanine comprise entre 3 et 12 %. Also preferably, step b) of cell lysis is carried out on a raw biomass according to the invention with a C-phycocyanin concentration of between 3 and 12%.
La lyse cellulaire peut se faire par tous moyens de lyse connus de l’homme du métier notamment par des moyens enzymatiques, mécaniques et/ou chimiques. Cell lysis can be carried out by any means of lysis known to those skilled in the art, in particular by enzymatic, mechanical and/or chemical means.
Dans le cadre de l’invention, préalablement à cette étape b) de lyse, la biomasse brute peut avoir subi une étape de lavage, de congélation, de décongélation, de séchage et/ou de réhydratation. Autrement dit, dans le cadre de la présente invention, la biomasse brute peut être notamment une biomasse décongelée et/ou séchée. In the context of the invention, prior to this lysis step b), the raw biomass may have undergone a washing, freezing, thawing, drying and/or rehydration step. In other words, in the context of the present invention, the raw biomass may in particular be a thawed and/or dried biomass.
Dans le cas préféré d’une lyse mécanique, parmi les moyens mécaniques pouvant être employés selon l’invention on citera notamment les broyeurs à billes, les mélangeurs-disperseurs les homogénéisateurs à haute pression, les broyeurs à poche, broyeurs à impact, les ultrasons, ou encore les champs électriques pulsés. Comme dispositifs pour la mise en œuvre de ces méthodes, on fera référence pour le broyeur à billes : Discus-100 de chez Netzsch ou ECM-AP60 de chez WAB, pour l’homogénéisateur à haute pression : Ariete de chez GEA, pour le mélangeur- disperseur : 700-X de chez Silverson, pour le broyeur à broche : Contraplex de chez Hosakawa et pour le broyeur à impact : Condux de chez Netzsch. In the preferred case of mechanical lysis, among the mechanical means that can be used according to the invention, mention will be made in particular of ball mills, mixer-dispersers, high-pressure homogenizers, bag mills, impact mills, ultrasound, or pulsed electric fields. As devices for implementing these methods, reference will be made for the ball mill: Discus-100 from Netzsch or ECM-AP60 from WAB, for the high-pressure homogenizer: Ariete from GEA, for the mixer-disperser: 700-X from Silverson, for the spindle mill: Contraplex from Hosakawa and for the impact mill: Condux from Netzsch.
Préférentiellement, la lyse cellulaire est faite par lyse mécanique, préférentiellement par broyage et encore préférentiellement avec un broyeur à billes. Preferably, cell lysis is done by mechanical lysis, preferably by grinding and even more preferably with a ball mill.
Préférentiellement, le lysat obtenu présente une teneur en matière sèche de 5 à 30% en poids par rapport au poids total du lysat, préférentiellement de 10 à 25% en poids, plus préférentiellement de 10 à 20% en poids Preferably, the lysate obtained has a dry matter content of 5 to 30% by weight relative to the total weight of the lysate, preferably 10 to 25% by weight, more preferably 10 to 20% by weight.
Aussi préférentiellement, le lysat obtenu présente une concentration en C- phycocyanine de 3% à 12% par rapport au poids total de la matière sèche. Also preferably, the lysate obtained has a C-phycocyanin concentration of 3% to 12% relative to the total weight of the dry matter.
Cette étape de lyse b) peut être réalisée avant ou après l’étape de dégradation du glycogène, i.e. avant ou après l’étape de repos, préférentiellement avant. c) Dilution optionnelle du lysat This lysis step b) can be carried out before or after the glycogen degradation step, i.e. before or after the resting step, preferably before. c) Optional dilution of the lysate
Selon l’invention, la biomasse lysée ou lysat peut optionnellement subir une étape de dilution. Dans le cadre de la présente invention, l’étape de dilution fait référence à l’ajout d’une solution à la biomasse lysée ou lysat pour en diminuer la concentration en matière sèche. According to the invention, the lysed biomass or lysate can optionally undergo a dilution step. In the context of the present invention, the dilution step refers to the addition of a solution to the lysed biomass or lysate to reduce its dry matter concentration.
La biomasse lysée diluée est alors définie comme un « solubilisât ». The diluted lysed biomass is then defined as a “solubilisate”.
Avantageusement, l’étape de dilution se fait via l’ajout d’une solution aqueuse.Advantageously, the dilution step is carried out via the addition of an aqueous solution.
Dans un mode de réalisation, la solution aqueuse est de l’eau. In one embodiment, the aqueous solution is water.
Préférentiellement, l’étape c) de dilution est mise en oeuvre sur le lysat dont la teneur en matière sèche est de 5 à 30% en poids par rapport au poids total du lysat, préférentiellement de 12 à 25% en poids. Preferably, dilution step c) is carried out on the lysate whose dry matter content is 5 to 30% by weight relative to the total weight of the lysate, preferably 12 to 25% by weight.
Aussi préférentiellement, l’étape c) de dilution est mise en oeuvre sur le lysat dont la concentration en C-phycocyanine est de 3% à 12% par rapport au poids total de la matière sèche. Also preferably, dilution step c) is carried out on the lysate whose C-phycocyanin concentration is 3% to 12% relative to the total weight of the dry matter.
La solution aqueuse peut comprendre en plus un ou plusieurs composés ajusteurs de pH. On entend par « composés ajusteurs de pH », tout composé organique ou minéral permettant de modifier le pH (agents correcteurs d’acidité, acides, bases, agents neutralisants ou agents tampons). Des exemples de tels composés sont l’acide sulfurique, l’acide acétique, l’acide citrique, l’acide phosphorique, le citrate de sodium, le lactate de potassium, le malate de potassium, le chlorure de sodium, le phosphate disodique et le phosphate potassique. La solution aqueuse présente un pH acide ou basique selon le ou les composés ajusteurs de pH présents dans la solution. The aqueous solution may additionally comprise one or more pH adjusting compounds. The term “pH adjusting compounds” means any organic or mineral compound that can modify the pH (acidity correcting agents, acids, bases, neutralizing agents or buffering agents). Examples of such compounds are sulfuric acid, acetic acid, citric acid, phosphoric acid, sodium citrate, potassium lactate, potassium malate, sodium chloride, disodium phosphate and potassium phosphate. The aqueous solution has an acidic or basic pH depending on the pH adjusting compound(s) present in the solution.
Préférentiellement, l’étape c) de dilution de la biomasse lysée ou lysat se fait avec une solution aqueuse de pH inférieur ou égal à 8, notamment compris entre 0 et 6, préférentiellement entre 1 et 6, plus préférentiellement entre 2 et 5. Le pH de la solution aqueuse à ajouter à la biomasse lysée ou lysat peut être d’environ 2, environ 3, environ 4 ou environ 5. Des exemples de solutions acides pouvant être ajoutées à la biomasse lysée sont des solutions comprenant des acides tels que ceux décrits au paragraphe précédent. Preferably, step c) of dilution of the lysed biomass or lysate is carried out with an aqueous solution of pH less than or equal to 8, in particular between 0 and 6, preferably between 1 and 6, more preferably between 2 and 5. The pH of the aqueous solution to be added to the lysed biomass or lysate may be approximately 2, approximately 3, approximately 4 or approximately 5. Examples of acidic solutions that can be added to the lysed biomass are solutions comprising acids such as those described in the preceding paragraph.
Selon le cas, le solubilisât présente un pH proche de la neutralité avec un pH compris entre 6 et 8, un pH compris entre 1 et 6 ou encore un pH compris entre 8 et 14. Depending on the case, the solubilized solution has a pH close to neutrality with a pH between 6 and 8, a pH between 1 and 6 or a pH between 8 and 14.
Préférentiellement, le solubilisât présente un pH inférieur à 7, notamment compris entre 1 et 6, plus préférentiellement compris entre 2 et 5, encore plus préférentiellement compris entre 3 et 4. Preferably, the solubilizer has a pH of less than 7, in particular between 1 and 6, more preferably between 2 and 5, even more preferably between 3 and 4.
Préférentiellement, le solubilisât obtenu présente une teneur en matière sèche de 1 à 15% en poids par rapport au poids total du solubilisât, préférentiellement de 3 à 12% en poids, plus préférentiellement de 4 à 8% en poids. Preferably, the solubilized material obtained has a dry matter content of 1 to 15% by weight relative to the total weight of the solubilized material, preferably 3 to 12%. by weight, more preferably 4 to 8% by weight.
Aussi préférentiellement, le solubilisât obtenue selon l’invention présente une concentration en C-phycocyanine de 0,1 à 12 %, préférentiellement 0,5 à 8 %, plus préférentiellement 1 à 7 %. Also preferably, the solubilized obtained according to the invention has a C-phycocyanin concentration of 0.1 to 12%, preferably 0.5 to 8%, more preferably 1 to 7%.
Cette étape c) de dilution peut être réalisée avant ou après l’étape de dégradation du glycogène, i.e. avant ou après l’étape de repos. This dilution step c) can be carried out before or after the glycogen degradation step, i.e. before or after the resting step.
Préférentiellement, l’étape c) de dilution est effectuée après l’étape de repos.Preferably, dilution step c) is carried out after the resting step.
Le procédé selon l’invention comprend ainsi, selon ce mode préféré, dans l’ordre les étapes successives de : a) récolte de la biomasse par séparation du milieu de culture pour l’obtention d’une biomasse brute d’ARU, b) lyse cellulaire de la biomasse brute de l’étape (a) pour obtenir un lysat, repos à pH acide pendant au moins3 heures du lysat, c) dilution du lysat pour obtenir un solubilisât, et d) séparation des insolubles en suspension dans le solubilisât de l’étape (c) pour obtenir un clarifiât. d) Séparation des insolubles The method according to the invention thus comprises, according to this preferred embodiment, in order the successive steps of: a) harvesting the biomass by separation of the culture medium to obtain a crude ARU biomass, b) cell lysis of the crude biomass from step (a) to obtain a lysate, rest at acidic pH for at least 3 hours of the lysate, c) dilution of the lysate to obtain a solubilizer, and d) separation of the insolubles suspended in the solubilizer from step (c) to obtain a clarifier. d) Separation of the insolubles
Dans le cadre du procédé selon l’invention, le lysat ou le solubilisât subit une étape d) de séparation des insolubles en suspension pour obtenir un clarifiât. In the context of the process according to the invention, the lysate or solubilized product undergoes a step d) of separation of the insoluble substances in suspension to obtain a clarified product.
Cette étape d) de séparation des insolubles est réalisée après l’étape de dégradation du glycogène, i.e. après l’étape de repos. This step d) of separation of insolubles is carried out after the glycogen degradation step, i.e. after the resting step.
L’étape de séparation des insolubles d) du lysat ou solubilisât peut-être réalisée par toutes les méthodes connues de l’homme du métier. On citera en particulier les méthodes de filtration frontale et la centrifugation. The step of separating the insolubles d) from the lysate or solubilized can be carried out by any methods known to those skilled in the art. Particular mention will be made of frontal filtration methods and centrifugation.
Selon l’invention, l’étape d) de séparation des insolubles est mise en oeuvre sur un lysat dont la teneur en matière de 5 à 30% en poids par rapport au poids total du lysat, préférentiellement de 10 à 25% en poids, plus préférentiellement 15 à 20% en poids ; ou plus préférentiellement sur un solubilisât dont la teneur en matière sèche est de 1 à 15% en poids par rapport au poids total du solubilisât, préférentiellement de 3 à 12% en poids, plus préférentiellement de 4 à 8% en poids. According to the invention, step d) of separation of the insolubles is carried out on a lysate whose matter content is from 5 to 30% by weight relative to the total weight of the lysate, preferably from 10 to 25% by weight, more preferably 15 to 20% by weight; or more preferably on a solubilizer whose dry matter content is from 1 to 15% by weight relative to the total weight of the solubilizer, preferably from 3 to 12% by weight, more preferably from 4 to 8% by weight.
Préférentiellement, selon l’invention, l’étape d) de séparation des insolubles est mise en oeuvre sur un lysat ou un solubilisât de pH inférieur à 7, préférentiellement compris entre 1 et 6, encore préférentiellement compris entre 2 et 5 toujours encore préférentiellement entre 3 et 4. Le clarifiât selon l’invention présente préférentiellement une teneur en matière sèche de 0,1% à 5% en poids par rapport au poids total du clarifiât, préférentiellement de 0,5% à 4% en poids, plus préférentiellement de 1 % à 3% en poids. Preferably, according to the invention, step d) of separation of the insolubles is carried out on a lysate or a solubilizer with a pH of less than 7, preferably between 1 and 6, still preferably between 2 and 5, still still preferably between 3 and 4. The clarified material according to the invention preferably has a dry matter content of 0.1% to 5% by weight relative to the total weight of the clarified material, preferably of 0.5% to 4% by weight, more preferably of 1% to 3% by weight.
Le clarifiât selon l’invention présente préférentiellement une concentration en C- phycocyanine de 0,1 à 20 g/L. Dans le cas particulier où le procédé selon l’invention ne comprend pas d’étape c), le clarifiât selon l’invention présente plus préférentiellement une concentration en C-phycocyanine de 7 à 19 g/L, encore plus préférentiellement 12 à 18 g/L. Dans le cas contraire, où le procédé selon l’invention comprend une étape c), le clarifiât selon l’invention présente une concentration en C-phycocyanine de 0,1 à 12 g/L, préférentiellement 0,5 à 8 g/L, plus préférentiellement 1 à 7 g/L. The clarified material according to the invention preferably has a C-phycocyanin concentration of 0.1 to 20 g/L. In the particular case where the process according to the invention does not include a step c), the clarified material according to the invention more preferably has a C-phycocyanin concentration of 7 to 19 g/L, even more preferably 12 to 18 g/L. In the opposite case, where the process according to the invention includes a step c), the clarified material according to the invention has a C-phycocyanin concentration of 0.1 to 12 g/L, preferably 0.5 to 8 g/L, more preferably 1 to 7 g/L.
Dégradation du glycogène Glycogen breakdown
Le procédé selon l’invention est caractérisé par une étape de dégradation du glycogène grâce aux enzymes endogènes du microorganisme, par un maintien au repos (étape de repos), pendant au moins 3 heures de la biomasse brute et/ou du lysat et/ou du solubilisât, , durant laquelle le milieu liquide comprenant le glycogène est à pH acide. The method according to the invention is characterized by a step of degradation of the glycogen using the endogenous enzymes of the microorganism, by keeping the raw biomass and/or the lysate and/or the solubilisate at rest (resting step) for at least 3 hours, during which the liquid medium comprising the glycogen is at an acidic pH.
Afin que la dégradation du glycogène par les enzymes endogènes du microorganisme soit effective lors de l’étape de maintien au repos, les enzymes endogènes doivent être actives et ne doivent donc pas avoir été inactivées par exemple par une étape de chauffage avant ladite étape de repos. In order for the degradation of glycogen by the endogenous enzymes of the microorganism to be effective during the resting stage, the endogenous enzymes must be active and must therefore not have been inactivated, for example, by a heating stage before said resting stage.
Moment de l’étape de repos Time of rest stage
Le maintien au repos pendant au moins 3 heures se fait à pH acide, sur la biomasse brute, le lysat, le solubilisât. En particulier, selon l’invention le maintien au repos peut s’effectuer avant ou après l’étape b) de lyse cellulaire, autrement dit sur la biomasse brute, le lysat et/ou solubilisât. The resting for at least 3 hours is carried out at acidic pH, on the raw biomass, the lysate, the solubilized. In particular, according to the invention, the resting can be carried out before or after step b) of cell lysis, in other words on the raw biomass, the lysate and/or solubilized.
Selon l’invention, l’étape de repos peut se faire avantageusement sous agitation de la biomasse brute et/ou du lysat et/ou du solubilisât. According to the invention, the resting step can advantageously be carried out with stirring of the raw biomass and/or the lysate and/or the solubilized material.
Préférentiellement, l’étape de repos se fait uniquement sur la biomasse brute qui est préférentiellement séchée ou décongelée, le lysat ou le solubilisât.Dans le cas du lysat et/ou du solubilisât, l’étape de repos est faite si nécessaire après ajustement du pH pour obtenir le pH acide recherché pour l’étape de repos. Preferably, the resting step is carried out only on the raw biomass which is preferably dried or thawed, the lysate or the solubilized. In the case of the lysate and/or the solubilized, the resting step is carried out if necessary after adjusting the pH to obtain the acidic pH sought for the resting step.
Préférentiellement, selon l’invention le maintien au repos s’effectue après l’étape b) de lyse cellulaire, autrement dit, préférentiellement sur le lysat et/ou solubilisât et encore préférentiellement sur le lysat. Préférentiellement, l’étape de repos s’effectue sur un milieu comprenant des cellules lysées, c’est-à-dire sur le lysat de l’étape b) et/ou, le cas échéant, sur le solubilisât de l’étape c). Preferably, according to the invention, the resting is carried out after step b) of cell lysis, in other words, preferentially on the lysate and/or solubilized and even preferentially on the lysate. Preferably, the resting step is carried out on a medium comprising lysed cells, i.e. on the lysate from step b) and/or, where appropriate, on the solubilized from step c).
Conditions de l’étape de repos Conditions of the rest stage
Selon l’invention, l’étape de repos peut se faire sur de la biomasse brute, du lysat et/ou du solubilisât plongé(e) dans l’obscurité ou exposé(e) à une lumière naturelle ou artificielle. Préférentiellement, l’étape de repos s’effectue sur de la biomasse brute, du lysat, du solubilisât plongé(e) dans l’obscurité. According to the invention, the resting step can be carried out on raw biomass, lysate and/or solubilized material immersed in darkness or exposed to natural or artificial light. Preferably, the resting step is carried out on raw biomass, lysate, solubilized material immersed in darkness.
Selon l’invention, l’étape de repos se fait sur de la biomasse brute, du lysat, du solubilisât avec ou sans aération. According to the invention, the resting step is carried out on raw biomass, lysate, solubilized with or without aeration.
Le « pH acide » du milieu comprenant le glycogène pendant l’étape de repos est défini comme un pH inférieur à 7, notamment compris entre 1 et 6, préférentiellement compris entre 2 et 5, encore préférentiellement compris entre 3 et 4. The “acid pH” of the medium comprising the glycogen during the resting stage is defined as a pH lower than 7, in particular between 1 and 6, preferably between 2 and 5, still preferably between 3 and 4.
Pour la biomasse brute, le glycogène est dans le milieu intracellulaire des cellules constituant la biomasse, lequel milieu liquide est à un pH acide. For raw biomass, glycogen is in the intracellular medium of the cells constituting the biomass, which liquid medium is at an acidic pH.
Optionnellement, le procédé selon l’invention comprend en outre une étape d’ajustement du pH de la biomasse brute, du lysat et/ou du solubilisât au pH acide de l’étape de repos. Optionally, the method according to the invention further comprises a step of adjusting the pH of the raw biomass, the lysate and/or the solubilizer to the acidic pH of the resting step.
Dans ce cas, le pH de la biomasse brute, du lysat et/ou du solubilisât est ajusté à un pH inférieur à 7, notamment compris entre 1 et 6, encore préférentiellement compris entre 2 et 5, et toujours préférentiellement entre 3 et 4. In this case, the pH of the raw biomass, the lysate and/or the solubilizer is adjusted to a pH lower than 7, in particular between 1 and 6, still preferably between 2 and 5, and always preferably between 3 and 4.
Les réactifs pour ajuster le pH, i.e. acidifier ou basifier la biomasse brute, le lysat, le solubilisât peuvent être ajoutés sous une forme solide ou sous la forme d’une solution. Avantageusement, le pH de la biomasse brute, du lysat, du solubilisât est ajusté par l’ajout d’une solution acide ou basique, de préférence sous la forme d’une solution aqueuse. The reagents for adjusting the pH, i.e. acidifying or basifying the raw biomass, the lysate, the solubilisate can be added in a solid form or in the form of a solution. Advantageously, the pH of the raw biomass, the lysate, the solubilisate is adjusted by the addition of an acidic or basic solution, preferably in the form of an aqueous solution.
Des exemples de composés ajusteurs de pH sont donnés ci-dessus dans la description de l’étape c) : l’acide sulfurique, l’acide chlorhydrique, l’acide nitrique, l’acide phosphorique, l’acide acétique, l’hydroxyde de sodium, le carbonate de sodium ou le bicarbonate de sodium. Examples of pH adjusting compounds are given above in the description of step c): sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, acetic acid, sodium hydroxide, sodium carbonate or sodium bicarbonate.
Il est entendu que l’homme du métier saura déterminer si un composé, ou une solution, acide ou basique, doit être ajouté à la biomasse brute, au lysat et/ou au solubilisât afin d’ajuster le pH à la valeur désirée. It is understood that a person skilled in the art will be able to determine whether a compound, or a solution, acidic or basic, must be added to the raw biomass, the lysate and/or the solubilizer in order to adjust the pH to the desired value.
Lorsqu’elle est présente, cette étape d’ajustement du pH s’effectue en amont de l’étape de repos, sur la biomasse brute préférentiellement décongelée et/ou séchée, sur le lysat, sur le solubilisât. When present, this pH adjustment step is carried out upstream of the resting step, on the raw biomass preferably thawed and/or dried, on the lysate, on the solubilized.
Avantageusement, lorsqu’elle est présente cette étape d’ajustement du pH s’effectue sur le lysat préalablement à l’étape de repos et préalablement aux étapes c) et d) de dilution et séparation. Advantageously, when present, this pH adjustment step is carried out on the lysate prior to the resting step and prior to dilution and separation steps c) and d).
L’étape d’ajustement du pH peut sinon être concomitante à l’étape c) de dilution lorsqu’elle est présente. En particulier, si cette étape c) est présente, l’étape d’ajustement du pH peut s’effectuer sur le lysat concomitamment à cette étape c) de dilution préalablement à l’étape de repos. Dans ce cas, après dilution du lysat, le solubilisât obtenu présente un pH inférieur à 7, notamment compris entre 1 et 6, préférentiellement compris entre 2 et 5, encore préférentiellement compris entre 3 et 4. The pH adjustment step may otherwise be concomitant with dilution step c) when it is present. In particular, if this step c) is present, the pH adjustment step may be carried out on the lysate concomitantly with this dilution step c) prior to the resting step. In this case, after dilution of the lysate, the solubilized product obtained has a pH of less than 7, in particular between 1 and 6, preferably between 2 and 5, and even more preferably between 3 and 4.
L’étape de repos peut durer jusqu’à une semaine ou 7 jours. Préférentiellement, l’étape de repos dure entre 3 heures et une semaine encore préférentiellement, de 3 heures à 48 heures, encore préférentiellement de 6 à 36 heures et toujours préférentiellement de 10 à 24 heures. The resting stage can last up to a week or 7 days. Preferably, the resting stage lasts between 3 hours and a week, still preferably, from 3 hours to 48 hours, still preferably from 6 to 36 hours and always preferably from 10 to 24 hours.
Selon le mode de réalisation, la phase de repos a une durée de plusieurs heures à plusieurs jours, notamment d’environ 3 heures, 6 heures, 8 heures, 10 heures, 12 heures, 24 heures, 36 heures, entre 48 et 72 heures, entre 2 et 7 jours, entre 3 et 7 jours, 4 jours, 5 jours ou encore 6 jours. Depending on the embodiment, the rest phase has a duration of several hours to several days, in particular approximately 3 hours, 6 hours, 8 hours, 10 hours, 12 hours, 24 hours, 36 hours, between 48 and 72 hours, between 2 and 7 days, between 3 and 7 days, 4 days, 5 days or even 6 days.
Selon un mode de réalisation, la température de la biomasse brute et/ou du lysat et/ou du solubilisât pendant la phase de repos est maintenue à une température comprise entre 15°C et 70°C en particulier entre 15 et 50°C, préférentiellement entre 15 et 40°C, encore préférentiellement entre 15 et 30°C. According to one embodiment, the temperature of the raw biomass and/or the lysate and/or the solubilizer during the rest phase is maintained at a temperature between 15°C and 70°C, in particular between 15 and 50°C, preferably between 15 and 40°C, still preferably between 15 and 30°C.
Avantageusement, la température de la biomasse brute et/ou du lysat et/ou du solubilisât pendant cette phase de repos est maintenue à une température constante, en particulier à une température comprise entre 15°C et 70°C, en particulier comprise entre 15°C et 50°C, préférentiellement entre 15 et 40°C, encore préférentiellement entre 15 et 30°C. Advantageously, the temperature of the raw biomass and/or the lysate and/or the solubilizer during this rest phase is maintained at a constant temperature, in particular at a temperature between 15°C and 70°C, in particular between 15°C and 50°C, preferably between 15 and 40°C, still preferably between 15 and 30°C.
Selon un autre mode de réalisation, la température de la biomasse brute et/ou du lysat et/ou du solubilisât pendant la phase de repos est maintenue à une température inférieure à 15°C, préférentiellement comprise entre 4°C et 15°C. According to another embodiment, the temperature of the raw biomass and/or the lysate and/or the solubilizer during the rest phase is maintained at a temperature below 15°C, preferably between 4°C and 15°C.
Avantageusement, selon cet autre mode de réalisation, la température de la biomasse brute et/ou du lysat et/ou du solubilisât pendant cette phase de repos est maintenue à une température constante, en particulier à une température comprise entre 4°C et 15°C.A noter que pour l’étape de repos, plus l’on se rapproche du couple température et pH optimum, plus le temps nécessaire pour la dégradation du glycogène sera court, à titre d’exemple, pour une étape de repos à un pH compris entre 3 et 4 et une température entre 15 et 30°C, la durée pourra être comprise entre 2 et 10h alors que pour une étape de repos à un pH d’environ 6 et une température d’environ 10°C, la durée devra être comprise entre au moins 6 jours et 7 jours. Advantageously, according to this other embodiment, the temperature of the raw biomass and/or the lysate and/or the solubilizer during this rest phase is maintained at a constant temperature, in particular at a temperature between 4°C and 15°C Note that for the resting stage, the closer we get to the optimum temperature and pH pair, the shorter the time required for the degradation of glycogen will be. For example, for a resting stage at a pH between 3 and 4 and a temperature between 15 and 30°C, the duration could be between 2 and 10 hours, whereas for a resting stage at a pH of around 6 and a temperature of around 10°C, the duration should be between at least 6 days and 7 days.
Dans le cadre de la présente invention, l’étape de maintien au repos s’effectue avec un milieu liquide comprenant le glycogène dépourvu de contamination microbiologique significative. Une telle contamination peut être évitée par l’ajout de conservateurs dans le milieu liquide comprenant le glycogène. Ces conservateurs sont bien connus de l’homme du métier et sont notamment sélectionné parmi le benzoate de sodium, le benzoate de potassium, le benzoate de calcium, l’acide benzoïque, le diacétate de sodium, le propionate de calcium, le propionate de sodium, le nitrate de sodium, le sorbate de potassium, le sorbate de sodium, le gallate de méthyle, le gallate de propyle, l’éthylènediamine-tétraacétate de sodium, le parabène de méthyle, la natamycine, le parabène de propyle et les mélanges de ceux-ci. In the context of the present invention, the resting step is carried out with a liquid medium comprising the glycogen free of significant microbiological contamination. Such contamination can be avoided by adding preservatives to the liquid medium comprising the glycogen. These preservatives are well known to those skilled in the art and are in particular selected from sodium benzoate, potassium benzoate, calcium benzoate, benzoic acid, sodium diacetate, calcium propionate, sodium propionate, sodium nitrate, potassium sorbate, sodium sorbate, methyl gallate, propyl gallate, sodium ethylenediaminetetraacetate, methyl paraben, natamycin, propyl paraben and mixtures thereof.
Ajout optionnel d’enzymes exogènes Optional addition of exogenous enzymes
Le procédé peut aussi comprendre une étape d’ajout d’enzymes exogènes en complément de l’étape de repos. Cet ajout d’enzymes exogènes permet, en tant que besoin, de compléter la dégradation du glycogène, notamment si le niveau de dégradation recherché n’est pas atteint. Il reste entendu que ce « complément » signifie que l’essentiel, i.e. au moins 50%, de la dégradation du glycogène est le résultat de la mise en oeuvre de l’étape de repos indépendamment de cet éventuel ajout. The method may also comprise a step of adding exogenous enzymes in addition to the resting step. This addition of exogenous enzymes makes it possible, as needed, to complete the degradation of the glycogen, in particular if the desired level of degradation is not reached. It is understood that this “supplement” means that the majority, i.e. at least 50%, of the degradation of the glycogen is the result of the implementation of the resting step independently of this possible addition.
On entend par « enzymes » des protéines permettant l’activation ou l’accélération de réactions chimiques ou biologiques. Dans le cadre de la présente des demande le terme « enzymes exogènes » fait référence à des enzymes qui ne sont pas produites naturellement par les cellules ou microorganismes de la biomasse d’algues rouges unicellulaires (ARU) traitée. En particulier, lesdites enzymes exogènes sont sélectionnées notamment parmi les enzymes extraites d’ Aspergillus, Bacillus ou encore Trichoderma. “Enzymes” means proteins that enable the activation or acceleration of chemical or biological reactions. In the context of the present application, the term “exogenous enzymes” refers to enzymes that are not naturally produced by the cells or microorganisms of the treated unicellular red algae (URA) biomass. In particular, said exogenous enzymes are selected in particular from enzymes extracted from Aspergillus, Bacillus or Trichoderma.
Les enzymes exogènes selon l’invention ont une activité de dégradation du glycogène. Ces enzymes sont bien connues de l’homme du métier et sont notamment choisies parmi les enzymes ayant une activité glucuronidase a1 -4, une activité glucosidase a1 -4, une activité glucosidase a1 -6, une activité amylase. A noter qu’il est possible d’utiliser l’une de ces enzymes ou un mélange de ces enzymes. Il a été constaté que ces enzymes diminuent la taille des chaines glucosidiques du glycogène présent dans le milieu qui peut alors être éliminés ultérieurement de même que ses sous-produits de dégradations. The exogenous enzymes according to the invention have a glycogen degradation activity. These enzymes are well known to those skilled in the art and are in particular chosen from enzymes having a glucuronidase a1-4 activity, an activity glucosidase a1-4, glucosidase a1-6 activity, amylase activity. Note that it is possible to use one of these enzymes or a mixture of these enzymes. It has been found that these enzymes reduce the size of the glucosidic chains of the glycogen present in the medium which can then be eliminated later as well as its degradation by-products.
Parmi les enzymes ayant une activité glucuronidase a1 -4 et/ou glucosidase a1 -4, on citera les pectinases connues pour dégrader la pectine, et en particulier les pectinases extraites de champignons filamenteux comme Aspergillus, et plus particulièrement les pectinases extraites d’ Aspergillus aculeatus, comme les enzymes commercialisées sous la dénomination Pectinex® par la société Novozymes. Among the enzymes having glucuronidase a1-4 and/or glucosidase a1-4 activity, mention will be made of pectinases known to degrade pectin, and in particular pectinases extracted from filamentous fungi such as Aspergillus, and more particularly pectinases extracted from Aspergillus aculeatus, such as the enzymes marketed under the name Pectinex® by the company Novozymes.
Des exemples d’enzymes ayant une activité glucosidase a1 -6 sont les pullulanases connues pour hydrolyser les liaisons glucosidiques a1 -6 de la pullulane, notamment connues aussi pour supprimer les ramifications de l’amidon. Il s’agit généralement d’enzymes extraites de bactéries, notamment des genres Bacillus. Les brevets US 6,074,854 et US 5,817,498 ainsi que la demande W02009/075682 décrivent de telles pullulanases extraites de Bacillus deramificans ou de Bacillus acidopullulyticus. On connait aussi des pullulanases disponibles dans le commerce, notamment sous les dénominations Promozyme D2 et Novozym 26062 de chez Novozymes, ou Optimax L1000 de chez DuPont-Genencor. Examples of enzymes having a1-6 glucosidase activity are the pullulanases known to hydrolyze the a1-6 glucosidic bonds of pullulan, also known to remove starch branches. These are generally enzymes extracted from bacteria, in particular from the Bacillus genera. US patents 6,074,854 and US 5,817,498 and application WO2009/075682 describe such pullulanases extracted from Bacillus deramificans or Bacillus acidopullulyticus. Commercially available pullulanases are also known, in particular under the names Promozyme D2 and Novozym 26062 from Novozymes, or Optimax L1000 from DuPont-Genencor.
Parmi les enzymes ayant une activité amylase connues pour dégrader l’amidon, de nombreuses sont connues de l’état de la technique et sont décrites dans la littérature et notamment des demandes de brevet comme WO 2019/036721. On connaît des amylases disponibles dans le commerce, notamment sous les dénominations « Amylase AG XXL » (de Novozymes) ou « Panzym® AG XXL » (d’Eaton). Among the enzymes with amylase activity known to degrade starch, many are known from the state of the art and are described in the literature and in particular in patent applications such as WO 2019/036721. Commercially available amylases are known, in particular under the names “Amylase AG XXL” (from Novozymes) or “Panzym® AG XXL” (from Eaton).
Les enzymes peuvent être utilisées sous leur forme pure ou enrichie, et éventuellement en tant que mélange avec un ou plusieurs excipients. Les enzymes employées dans le procédé de l’invention sont sous la forme de poudre ou de solution. Dans ce dernier cas, les enzymes sont préférentiellement en solution dans l’eau. The enzymes can be used in their pure or enriched form, and optionally as a mixture with one or more excipients. The enzymes used in the process of the invention are in the form of powder or solution. In the latter case, the enzymes are preferably in solution in water.
Les conditions préférées de mise en oeuvre des enzymes exogènes sont un pH inférieur à 7 et une température de réaction inférieure à 60 °C, de préférence inférieure à 50 °C, et même inférieure à 30 °C. En particulier, la température de la solution à laquelle les enzymes exogènes sont ajoutées et à laquelle la réaction enzymatique se produit est comprise entre 4 et 60 °C, préférentiellement entre 20 et 42°C et le pH de la solution est inférieur ou égal à 5, de préférence d’environ 4.5. Les enzymes exogènes peuvent être ajoutées dans le milieu soit sous forme libre soit immobilisées sur un support. The preferred conditions for implementing the exogenous enzymes are a pH of less than 7 and a reaction temperature of less than 60°C, preferably less than 50°C, and even less than 30°C. In particular, the temperature of the solution at which the exogenous enzymes are added and at which the enzymatic reaction occurs is between 4 and 60°C, preferably between 20 and 42°C and the pH of the solution is less than or equal to 5, preferably about 4.5. The exogenous enzymes can be added to the medium either in free form or immobilized on a support.
Les enzymes exogènes peuvent être ajoutées au lysat dans ce cas la réaction enzymatique par les enzymes exogènes se tient sur le lysat et l’étape de repos se tient quant à elle préalablement sur la biomasse brute et/ou préalablement sur le lysat et/ou concomitamment sur le lysat. Exogenous enzymes can be added to the lysate in which case the enzymatic reaction by the exogenous enzymes takes place on the lysate and the resting step takes place previously on the raw biomass and/or previously on the lysate and/or concomitantly on the lysate.
Selon un mode de réalisation préférentiel, les enzymes exogènes sont ajoutées après l’étape de repos. Dans ce cas : According to a preferred embodiment, the exogenous enzymes are added after the resting step. In this case:
Lorsque l’étape de repos est mise en oeuvre sur la biomasse brute, on peut ajouter des enzymes exogènes dans le lysat et/ou dans le solubilisât et/ou dans le clarifiât pour compléter la dégradation du glycogène résultant du repos de la biomasse brute. When the resting step is carried out on the raw biomass, exogenous enzymes can be added to the lysate and/or to the solubilizer and/or to the clarifier to complete the degradation of glycogen resulting from the resting of the raw biomass.
- lorsque l’étape de repos est mise en oeuvre sur le lysat, on peut ajouter des enzymes exogènes dans le lysat après l’étape de repos, ou dans le solubilisât et/ou dans le clarifiât pour compléter la dégradation du glycogène résultant du repos du lysat ; - when the resting step is carried out on the lysate, exogenous enzymes can be added to the lysate after the resting step, or to the solubilizer and/or to the clarifier to complete the degradation of glycogen resulting from the resting of the lysate;
- lorsque l’étape de de repos est mise en oeuvre sur le solubilisât, on peut ajouter des enzymes exogènes dans le solubilisât après l’étape de repos et/ou dans le clarifiât, pour compléter la dégradation du glycogène résultant du repos du solubilisât ; - when the resting step is carried out on the solubilizer, exogenous enzymes can be added to the solubilizer after the resting step and/or to the clarifier, to complete the degradation of the glycogen resulting from the resting of the solubilizer;
Selon un mode de réalisation encore plus préférentiel, l’étape de repos est mise en oeuvre sur le lysat et de préférence, l’ajout éventuel d’enzymes exogènes se fait sur le clarifiât ou le solubilisât. According to an even more preferred embodiment, the resting step is carried out on the lysate and preferably, the possible addition of exogenous enzymes is done on the clarified or solubilized material.
Cette combinaison de repos et d’ajout d’enzymes exogènes permet de diminuer les quantités d’enzymes exogènes employées par rapport aux méthodes de l’art antérieur. This combination of rest and addition of exogenous enzymes makes it possible to reduce the quantities of exogenous enzymes used compared to the methods of the prior art.
Les enzymes exogènes sont ainsi ajoutées dans une teneur inférieure à 0,01% en poids par rapport au poids total de la biomasse brute ou du lysat ou du solubilisât ou du clarifiât à traiter, pour une enzyme avec une activité enzymatique équivalente à celle de l’enzyme Pectinex Ultra SP-L d’activité déclarée par le fabricant de 3300 PGNU/g. Exogenous enzymes are thus added in a content of less than 0.01% by weight relative to the total weight of the raw biomass or lysate or solubilized or clarified to be treated, for an enzyme with an enzymatic activity equivalent to that of the Pectinex Ultra SP-L enzyme with an activity declared by the manufacturer of 3300 PGNU/g.
Selon un mode de réalisation, la teneur en enzymes exogènes ajoutée est inférieure ou égale à 0,005%, en poids, préférentiellement inférieure ou égale à 0,0025%, plus préférentiellement inférieure ou égale à 0,0001% en poids. A noter que, au besoin, la concentration en enzymes exogènes est ajustée en fonction de l’activité de l’enzyme exogène sélectionnée pour avoir une activité dans le milieu de réaction équivalente à celle d’une concentration selon l’invention de Pectinex Ultra SP-L à 3300 PGNU/g. According to one embodiment, the content of added exogenous enzymes is less than or equal to 0.005%, by weight, preferably less than or equal to 0.0025%, more preferably less than or equal to 0.0001% by weight. Note that, if necessary, the concentration of exogenous enzymes is adjusted according to the activity of the exogenous enzyme selected to have an activity in the reaction medium. equivalent to that of a concentration according to the invention of Pectinex Ultra SP-L at 3300 PGNU/g.
L’homme du métier saura aussi adapter les quantités d’enzymes à ajouter au cours du procédé afin d’augmenter la dégradation du glycogène présent dans le lysat, solubilisât et/ou clarifiât. The person skilled in the art will also know how to adapt the quantities of enzymes to be added during the process in order to increase the degradation of the glycogen present in the lysate, solubilized and/or clarified.
L’étape de dégradation du glycogène avec ou sans ajout d’enzymes exogènes est considérée comme suffisante, notamment pour améliorer la ou les étape(s) de filtration ultérieu re(s) , lorsque au moins 10% préférentiellement au moins 50% de la teneur initiale en glycogène dans la biomasse brute a été dégradée, encore préférentiellement de 50% à 80% de la teneur initiale. e) Concentration The glycogen degradation step with or without the addition of exogenous enzymes is considered sufficient, in particular to improve the subsequent filtration step(s), when at least 10%, preferably at least 50%, of the initial glycogen content in the raw biomass has been degraded, still preferably from 50% to 80% of the initial content. e) Concentration
Le procédé selon l’invention, peut comprendre en outre une étape e) de concentration du clarifiât selon des méthodes usuelles d’élimination de l’eau pour obtenir un extrait aqueux concentré. The process according to the invention may further comprise a step e) of concentrating the clarified material using standard methods of removing water to obtain a concentrated aqueous extract.
Les méthodes usuelles d’élimination de l’eau sont connues de l’homme du métier et incluent notamment la filtration ainsi que l’évaporation à pression atmosphérique ou sous vide, l’atomisation, le séchage par infrarouge, le séchage par fenêtre de réfraction, la lyophilisation. The usual methods of removing water are known to those skilled in the art and include in particular filtration as well as evaporation at atmospheric pressure or under vacuum, atomization, infrared drying, refraction window drying, freeze-drying.
Préférentiellement, l’étape e) du procédé selon l’invention permet la concentration des molécules d’intérêts tout en préservant les constituants essentiels du clarifiât. Preferably, step e) of the process according to the invention allows the concentration of the molecules of interest while preserving the essential constituents of the clarified material.
Selon le mode de concentration choisi, l’étape e) de concentration permet d’éliminer tout ou partie des impuretés comme les résidus solides, le glycogène résiduel, les oligomères et sucres résultant de la dégradation du glycogène, présentes dans le clarifiât, en particulier la concentration par filtration. Depending on the concentration method chosen, concentration step e) makes it possible to eliminate all or part of the impurities such as solid residues, residual glycogen, oligomers and sugars resulting from the degradation of glycogen, present in the clarified material, in particular concentration by filtration.
Encore préférentiellement, le procédé de traitement de biomasse selon l’invention comprend une étape e) de concentration du clarifiât par filtration, en particulier par filtration tangentielle comme l’ultrafiltration. Even more preferably, the biomass treatment process according to the invention comprises a step e) of concentration of the clarified material by filtration, in particular by tangential filtration such as ultrafiltration.
Préférentiellement, le procédé de traitement de biomasse selon l’invention comprend une étape e) de concentration pendant laquelle le clarifiât est concentré entre 2 et 1000 fois, encore préférentiellement entre 20 et 60 fois. Preferably, the biomass treatment process according to the invention comprises a concentration step e) during which the clarified material is concentrated between 2 and 1000 times, more preferably between 20 and 60 times.
Préférentiellement, l’étape e) de concentration est mise à un pH inférieur à 7, préférentiellement compris entre 1 et 6, encore préférentiellement compris entre 2 et 5 toujours encore préférentiellement entre 3 et 4. Outre le complément de dégradation par ajout d’enzyme et/ou la concentration du clarifiât, le procédé selon l’invention peut comprendre des étapes consécutives de purification du clarifiât et/ou de l’extrait aqueux concentré, notamment pour purifier les protéines en solution. Preferably, concentration step e) is set to a pH lower than 7, preferably between 1 and 6, still preferably between 2 and 5, still still preferably between 3 and 4. In addition to the degradation supplement by addition of enzyme and/or concentration of the clarified material, the method according to the invention may comprise consecutive steps of purification of the clarified material and/or of the concentrated aqueous extract, in particular to purify the proteins in solution.
Produit selon l’invention Product according to the invention
Le produit selon l’invention comprend différentes matières organiques selon le procédé de traitement appliqué, dont des protéines hydrosolubles parmi lesquelles se trouvent les phycocyanines, des sucres parmi lesquels se trouvent des sous-produits de dégradation du glycogène (oligomères de glucose) et éventuellement du glycogène résiduel non digéré et des insolubles. The product according to the invention comprises different organic materials depending on the treatment method applied, including water-soluble proteins including phycocyanins, sugars including glycogen degradation by-products (glucose oligomers) and possibly undigested residual glycogen and insolubles.
Lorsqu’elles sont présentes, les phycocyanines peuvent comprendre des phycocyanines résistantes aux pH acides. Par phycocyanines résistantes aux pH acides, on entend des phycocyanines stables aux pH acides, i.e. qui ne précipitent pas et qui ne perdent pas leur coloration à pH acide. La résistance ou stabilité aux pH acides peut être mesurée comme une perte de coloration inférieure à 10%, après un minimum de 10 minutes d’exposition à un pH acide, i.e. un pH inférieur à 7, en particulier un pH compris entre 2 et 5. La stabilité aux pH acides peut aussi être mesurée par d’autres méthodes tel que le suivi de la structure de la protéine. When present, phycocyanins may include acidic pH-resistant phycocyanins. Acidic pH-resistant phycocyanins are defined as phycocyanins that are stable at acidic pH, i.e. do not precipitate or lose their colour at acidic pH. Acidic pH resistance or stability may be measured as a loss of colour of less than 10% after a minimum of 10 minutes of exposure to acidic pH, i.e. pH below 7, particularly pH between 2 and 5. Acidic pH stability may also be measured by other methods such as monitoring the structure of the protein.
La présence des phycocyanines résistantes aux pH acides vient de la mise en oeuvre des étapes d) et le cas échéant e) à un pH inférieur à 7, conformément au procédé d’extraction décrit dans WO2018/178334, préférentiellement à un pH compris entre 1 et 6, encore préférentiellement entre 2 et 5 et encore plus préférentiellement entre 3 et 4. The presence of phycocyanins resistant to acidic pH comes from the implementation of steps d) and where appropriate e) at a pH lower than 7, in accordance with the extraction process described in WO2018/178334, preferably at a pH between 1 and 6, still preferably between 2 and 5 and even more preferably between 3 and 4.
Selon un mode préféré, le produit selon l’invention comprend des phycocyanines résistantes à un pH acide. According to a preferred embodiment, the product according to the invention comprises phycocyanins resistant to an acidic pH.
Un extrait aqueux concentré est obtenu par le procédé selon l’invention comprenant une étape e) de concentration du clarifiât telle que décrite ci-dessus. A l’inverse, un clarifiât est obtenu par le procédé selon l’invention ne comprenant pas une étape e) de concentration du clarifiât telle que décrite ci-dessus. A concentrated aqueous extract is obtained by the process according to the invention comprising a step e) of concentration of the clarified material as described above. Conversely, a clarified material is obtained by the process according to the invention not comprising a step e) of concentration of the clarified material as described above.
Préférentiellement, le produit selon l’invention ne comprend pas d’enzymes exogènes ou comprend une concentration en enzymes exogènes indétectable par des méthodes de dosage usuelles notamment après précipitation des protéines avec de l’acétonitrile, digestion à la trypsine puis analyse par spectrométrie de masse (LC-MS- MS). Preferably, the product according to the invention does not comprise exogenous enzymes or comprises a concentration of exogenous enzymes undetectable by usual assay methods, in particular after precipitation of the proteins with acetonitrile, digestion with trypsin and then analysis by mass spectrometry (LC-MS-MS).
En particulier, préférentiellement, le produit selon l’invention ne comprend pas d’enzymes exogènes choisies parmi les pectinases, les amylases et les pullulanases ou en comprend une concentration indétectable par des méthodes de dosage usuelles notamment par spectrométrie de masse. In particular, preferably, the product according to the invention does not comprise of exogenous enzymes selected from pectinases, amylases and pullulanases or comprises a concentration undetectable by standard assay methods, in particular by mass spectrometry.
Si besoin, le produit selon l’invention est préparé de façon à éliminer toutes impuretés qui le rendraient impropre à une consommation, en particulier une consommation humaine. If necessary, the product according to the invention is prepared so as to eliminate any impurities which would make it unfit for consumption, in particular human consumption.
Le produit selon l’invention peut également être formulé par des moyens connus de l’homme du métier pour éviter la dégradation de ses constituants lors de son stockage ou son utilisation ultérieure. The product according to the invention can also be formulated by means known to those skilled in the art to avoid the degradation of its constituents during its storage or subsequent use.
Enfin, le produit selon l’invention, éventuellement formulé, peut être conditionné pour sa conservation et son usage, soit dans des containers de grand volume, soit dans des récipients plus petits, par exemple avec des volumes correspondant à un usage unique, dit unidose, pour une consommation humaine. Dans ce cas, le contenant peut être rigide, comme une ampoule de verre, ou souple, comme une gélule propre à la consommation. Finally, the product according to the invention, possibly formulated, can be packaged for its conservation and use, either in large volume containers, or in smaller containers, for example with volumes corresponding to a single use, called single dose, for human consumption. In this case, the container can be rigid, such as a glass ampoule, or flexible, such as a capsule suitable for consumption.
Les teneurs en sucres, en particulier glucose, mannose et galactose (respectivement dits « glucose hydrolysé », « galactose hydrolysé » et « mannose hydrolysé ») d’un produit selon l’invention sont mesurées, après hydrolyse acide de l’échantillon, par chromatographie liquide à haute performance via une colonne Hi-Plex H+ type « ion exclusion / ligand exchange column » et une détection par réfractométrie (ci-après « dosage des sucres hydrolysés par HPLC-RID »). Pour cela, 1 ,5 mL du surnageant d’un échantillon homogénéisé au vortex sont hydrolysés avec 1 ,5mL d’acide sulfurique 2N, à 110°C pendant 2 heures. L’échantillon est ensuite filtré (0.22 pm) et analysé. The sugar contents, in particular glucose, mannose and galactose (respectively called “hydrolyzed glucose”, “hydrolyzed galactose” and “hydrolyzed mannose”) of a product according to the invention are measured, after acid hydrolysis of the sample, by high-performance liquid chromatography via a Hi-Plex H+ column of the “ion exclusion/ligand exchange column” type and detection by refractometry (hereinafter “dosage of hydrolyzed sugars by HPLC-RID”). For this, 1.5 mL of the supernatant of a sample homogenized by vortexing are hydrolyzed with 1.5 mL of 2N sulfuric acid, at 110°C for 2 hours. The sample is then filtered (0.22 pm) and analyzed.
A noter que la teneur en glucose hydrolysé ainsi mesurée comprend à la fois le glucose du glycogène résiduel non digéré et le glucose libre présents dans le produit. Note that the hydrolyzed glucose content thus measured includes both the glucose from undigested residual glycogen and the free glucose present in the product.
Selon l’invention, la teneur en glucose libre est déterminée par analyse biochimique, notamment à l’aide d’un analyseur biochimique YSI® en suivant les préconisations du fabricant. According to the invention, the free glucose content is determined by biochemical analysis, in particular using a YSI® biochemical analyzer following the manufacturer's recommendations.
Ainsi, pour estimer la teneur en glycogène résiduel non digéré dans un produit selon l’invention, il suffit de soustraire la teneur en glucose libre à la teneur en glucose hydrolysé. Thus, to estimate the content of undigested residual glycogen in a product according to the invention, it is sufficient to subtract the free glucose content from the hydrolyzed glucose content.
Le pourcentage de dégradation du glycogène est quant à lui calculé comme suit : (concentration de glucose libre de l’échantillon selon l’invention étudié / concentration maximale de glucose libre dans un échantillon équivalent traité avec 1% d’enzymes exogènes du volume de solution enzymatique par rapport au volume total de l’échantillon) x 100. The percentage of glycogen degradation is calculated as follows: (concentration of free glucose in the sample studied according to the invention / concentration maximum free glucose in an equivalent sample treated with 1% exogenous enzymes (volume of enzyme solution relative to total sample volume) x 100.
Selon l’invention, la teneur en protéines d’un produit selon l’invention est déterminée par la méthode DUMAS. L’échantillon est soumis à une combustion à haute température dans un flux d’oxygène pur, les oxydes d’azote produits sont réduits par le cuivre. Après séparation des sous-produits de la réaction, l’azote est dosé avec un détecteur à conductivité thermique, le résultat est exprimé en quantité N (%). Ce pourcentage d’azote est ensuite ramené à une quantité de protéines en appliquant la formule : N*6,25 (%) (ISO/TS 16634-2 :2009). According to the invention, the protein content of a product according to the invention is determined by the DUMAS method. The sample is subjected to high-temperature combustion in a flow of pure oxygen, the nitrogen oxides produced are reduced by copper. After separation of the reaction by-products, the nitrogen is measured with a thermal conductivity detector, the result is expressed in quantity N (%). This percentage of nitrogen is then reduced to a quantity of proteins by applying the formula: N*6.25 (%) (ISO/TS 16634-2:2009).
Enfin, pour déterminer la teneur en C-phycocyanine d’un échantillon selon l’invention, 500pl d’échantillon sont mélangés avec un tampon Tris-CI 100 mM pH 7,5 (1 ,5 ml) et les absorbances à 652 et 620 nm mesurées via un spectrophotomètre Metier Toledo. La concentration C-phycocyanine est alors calculée en appliquant la formule suivante : Finally, to determine the C-phycocyanin content of a sample according to the invention, 500 μl of sample are mixed with a 100 mM Tris-CI buffer pH 7.5 (1.5 ml) and the absorbances at 652 and 620 nm measured via a Metier Toledo spectrophotometer. The C-phycocyanin concentration is then calculated by applying the following formula:
[Phycocyanine] en mg/mL = (0,162 x AQ20nm - 0,098 x AQ52nm) x Dilution[Phycocyanin] in mg/mL = (0.162 x AQ20nm - 0.098 x AQ52nm) x Dilution
Selon l’invention, une dégradation du glycogène inférieure à 10% en poids par rapport au glycogène total n’est pas considérée comme une dégradation suffisante. De plus, une dégradation inférieure à 10% ne permet pas d’améliorer la filtration de l’extrait. Il est alors considéré que la dégradation du glycogène ne fonctionne pas. According to the invention, a degradation of glycogen of less than 10% by weight relative to the total glycogen is not considered to be sufficient degradation. In addition, a degradation of less than 10% does not improve the filtration of the extract. It is then considered that the degradation of glycogen does not work.
Selon un mode de réalisation, le clarifiât obtenu selon l’invention a un rapport glycogène résiduel non digéré estimé (g/L) / C-phycocyanine (g/L) inférieur à 6, avantageusement inférieur à 4, de préférence inférieur à 3, plus préférentiellement inférieur à 2,5, ou encore plus préférentiellement inférieur à 1 . According to one embodiment, the clarified obtained according to the invention has an estimated undigested residual glycogen (g/L) / C-phycocyanin (g/L) ratio of less than 6, advantageously less than 4, preferably less than 3, more preferably less than 2.5, or even more preferably less than 1.
Le clarifiât selon l’invention présente une concentration en sucre totaux mesurée par dosage des sucres hydrolysés par HPLC-RID inférieure ou égale à 40 g/L, notamment comprise entre 0,1 et 40 g/L, préférentiellement comprise entre 1 et 20 g/L, plus préférentiellement comprise entre 3 et 11 g/L, et/ou une concentration en glucose hydrolysé inférieure ou égale à 20 g/L, préférentiellement comprise entre 0,1 et 20 g/L, préférentiellement comprise entre 1 et 10 g/L, encore préférentiellement comprise entre 2 et 5 g/L et/ou une concentration en galactose hydrolysé inférieure ou égale à 10 g/L, notamment comprise entre 0,01 et 10 g/L, préférentiellement comprise entre 0,1 et 5 g/L, plus préférentiellement comprise entre 0,5 et 3 g/L, et/ou une concentration en mannose hydrolysé inférieure ou égale à 10 g/L, notamment comprise entre 0,01 et 10 g/L, préférentiellement comprise entre 0,1 et 5 g/L, plus préférentiellement comprise entre 0,5 et 3 g/L, et/ou une concentration en glucose libre inférieure ou égale à 10 g/L notamment comprise entre 0,01 et 10 g/L, préférentiellement comprise entre 0,1 et 5 g/L, encore préférentiellement comprise entre 0,2 et 2 g/L. The clarified according to the invention has a concentration of total sugars measured by assay of hydrolyzed sugars by HPLC-RID of less than or equal to 40 g/L, in particular between 0.1 and 40 g/L, preferably between 1 and 20 g/L, more preferably between 3 and 11 g/L, and/or a concentration of hydrolyzed glucose of less than or equal to 20 g/L, preferably between 0.1 and 20 g/L, preferably between 1 and 10 g/L, still preferably between 2 and 5 g/L and/or a concentration of hydrolyzed galactose of less than or equal to 10 g/L, in particular between 0.01 and 10 g/L, preferably between 0.1 and 5 g/L, more preferably between 0.5 and 3 g/L, and/or a concentration of hydrolyzed mannose less than or equal to 10 g/L, in particular between 0.01 and 10 g/L, preferably between 0.1 and 5 g/L, more preferably between 0.5 and 3 g/L, and/or a concentration of free glucose less than or equal to 10 g/L, in particular between 0.01 and 10 g/L, preferably between 0.1 and 5 g/L, more preferably between 0.2 and 2 g/L.
Les teneurs en C-phycocyanine de le clarifiât vont avantageusement de 0,1 à 12 g/L, préférentiellement 0,5 à 8 g/L, plus préférentiellement 1 à 7 g/L. The C-phycocyanin contents of the clarified advantageously range from 0.1 to 12 g/L, preferably 0.5 to 8 g/L, more preferably 1 to 7 g/L.
De préférence, le clarifiât présente un rapport (C-phycocyanines (g/L) /sucres totaux mesurés par dosage des sucres hydrolysés par HPLC-RID (g/L)) d’au moins 0,001 , préférentiellement de 0,005 à 120, plus préférentiellement 0,05 à 12, encore plus préférentiellement 0,1 à 3. Preferably, the clarified material has a ratio (C-phycocyanins (g/L)/total sugars measured by assay of hydrolyzed sugars by HPLC-RID (g/L)) of at least 0.001, preferably from 0.005 to 120, more preferably 0.05 to 12, even more preferably 0.1 to 3.
Selon un autre mode préféré de réalisation de l’invention, le clarifiât comprend de la C-phycocyanine et des sucres totaux dans un rapport (C-phycocyanine (g/L) / sucres totaux mesurés par dosage des sucres hydrolysés par HPLC-RID (g/L)) de 0,005 à 120, en particulier de 0,05 à 12, plus préférentiellement de 0,1 à 3. According to another preferred embodiment of the invention, the clarified product comprises C-phycocyanin and total sugars in a ratio (C-phycocyanin (g/L)/total sugars measured by assay of hydrolyzed sugars by HPLC-RID (g/L)) of 0.005 to 120, in particular of 0.05 to 12, more preferably of 0.1 to 3.
Dans un mode de réalisation particulier où l’extrait aqueux concentré a une grande concentration en C-phycocyanine, le rapport (C- phycocyanine (g/L) / sucres totaux (g/L)) est d’au moins 90, et peut dépasser 120. In a particular embodiment where the concentrated aqueous extract has a high concentration of C-phycocyanin, the ratio (C-phycocyanin (g/L) / total sugars (g/L)) is at least 90, and may exceed 120.
De préférence, le clarifiât présente un rapport (C-phycocyanines (g/L) / mannose hydrolysé (g/L)) d’au moins 0,01 , préférentiellement de 0,01 à 1200, plus préférentiellement 0,1 à 80, encore plus préférentiellement 0,1 à 12. Preferably, the clarified material has a ratio (C-phycocyanins (g/L) / hydrolyzed mannose (g/L)) of at least 0.01, preferably from 0.01 to 1200, more preferably 0.1 to 80, even more preferably 0.1 to 12.
De préférence, le clarifiât présente un rapport (C-phycocyanines (g/L) /galactose hydrolysé (g/L)) d’au moins 0,01 , préférentiellement de 0,01 à 1200, plus préférentiellement 0,1 à 80, encore plus préférentiellement 0,1 à 12. Preferably, the clarified material has a ratio (C-phycocyanins (g/L) /hydrolyzed galactose (g/L)) of at least 0.01, preferably from 0.01 to 1200, more preferably 0.1 to 80, even more preferably 0.1 to 12.
Le rapport (C-phycocyanine (g/L) / glucose hydrolysé (g/L)) de le clarifiât est préférentiellement inférieur à 120 et préférentiellement va de 0,005 à 120. Préférentiellement, ce ratio est compris entre 0,05 et 12, plus préférentiellement 0,1 et 10. The ratio (C-phycocyanin (g/L) / hydrolyzed glucose (g/L)) of the clarified is preferably less than 120 and preferably ranges from 0.005 to 120. Preferably, this ratio is between 0.05 and 12, more preferably 0.1 and 10.
Préférentiellement, l’extrait aqueux concentré selon l’invention présente une teneur en matière sèche de 2 à 1000 fois plus élevée que celle du clarifiât, dont il est issu, encore préférentiellement de 20 à 60 fois plus élevée. Preferably, the concentrated aqueous extract according to the invention has a dry matter content of 2 to 1000 times higher than that of the clarified material from which it is derived, and even more preferably 20 to 60 times higher.
Les teneurs en C-phycocyanine de l’extrait aqueux concentré vont avantageusement de 7 à 120 g/L, préférentiellement 20 à 100 g/L, plus préférentiellement 40 à 80 g/L. The C-phycocyanin contents of the concentrated aqueous extract advantageously range from 7 to 120 g/L, preferably 20 to 100 g/L, more preferably 40 to 80 g/L.
L’extrait aqueux concentré selon l’invention présente une concentration en sucre totaux mesurée par dosage des sucres hydrolysés par HPLC-RID inférieure ou égale à 50 g/L, notamment comprise entre 1 et 50 g/L, préférentiellement comprise entre 5 et 40 g/L, plus préférentiellement comprise entre 10 et 30 g/L, et/ou une concentration en glucose hydrolysé inférieure ou égale à 20 g/L, préférentiellement comprise entre 0,1 et 20 g/L, préférentiellement comprise entre 1 et 10 g/L, encore préférentiellement comprise entre 2 et 5 g/L et/ou une concentration en galactose hydrolysé inférieure ou égale à 15 g/L, notamment comprise entre 0,5 et 15 g/L, préférentiellement comprise entre 1 et 13 g/L, plus préférentiellement comprise entre 3 et 8 g/L, et/ou une concentration en mannose hydrolysé inférieure ou égale à 15 g/L, notamment comprise entre 0,5 et 15 g/L, préférentiellement comprise entre 1 et 13 g/L, plus préférentiellement comprise entre 3 et 8 g/L, et/ou une concentration en glucose libre inférieure ou égale à 15 g/L notamment comprise entre 0,01 et 15 g/L, préférentiellement comprise entre 0,5 et 8 g/L, encore préférentiellement comprise entre 1 et 4 g/L. The concentrated aqueous extract according to the invention has a concentration of total sugars measured by assay of hydrolyzed sugars by HPLC-RID of less than or equal to 50 g/L, in particular between 1 and 50 g/L, preferably between 5 and 40 g/L, more preferably between 10 and 30 g/L, and/or a concentration of hydrolyzed glucose of less than or equal to 20 g/L, preferably between 0.1 and 20 g/L, preferably between 1 and 10 g/L, more preferably between 2 and 5 g/L and/or a concentration of hydrolyzed galactose of less than or equal to 15 g/L, in particular between 0.5 and 15 g/L, preferably between 1 and 13 g/L, more preferably between 3 and 8 g/L, and/or a concentration of hydrolyzed mannose of less than or equal to 15 g/L, in particular between 0.5 and 15 g/L, preferably between 1 and 13 g/L, more preferably between 3 and 8 g/L, and/or a free glucose concentration less than or equal to 15 g/L in particular between 0.01 and 15 g/L, preferably between 0.5 and 8 g/L, more preferably still between 1 and 4 g/L.
Le ratio en poids (C-phycocyanine (g/L) / glucose hydrolysé (g/L)) de l’extrait aqueux concentré va de 2 à 80. Préférentiellement, ce ratio est compris entre 10 et 70, plus préférentiellement 15 et 60. The weight ratio (C-phycocyanin (g/L) / hydrolyzed glucose (g/L)) of the concentrated aqueous extract ranges from 2 to 80. Preferably, this ratio is between 10 and 70, more preferably 15 and 60.
De préférence, l’extrait aqueux concentré présente un rapport (C-phycocyanine (g/L) / mannose hydrolysé (g/L)) d’au moins 0,01 , préférentiellement de 0,01 à 1200, plus préférentiellement 0,1 à 80, encore plus préférentiellement 0,3 à 12. Preferably, the concentrated aqueous extract has a ratio (C-phycocyanin (g/L) / hydrolyzed mannose (g/L)) of at least 0.01, preferably from 0.01 to 1200, more preferably 0.1 to 80, even more preferably 0.3 to 12.
De préférence, l’extrait aqueux concentré présente un rapport (C-phycocyanine (g/L) /galactose hydrolysé (g/L)) d’au moins 0,01 , préférentiellement de 0,01 à 1200, plus préférentiellement 0,1 à 80, encore plus préférentiellement 0,3 à 12. Preferably, the concentrated aqueous extract has a ratio (C-phycocyanin (g/L) /hydrolyzed galactose (g/L)) of at least 0.01, preferably from 0.01 to 1200, more preferably 0.1 to 80, even more preferably 0.3 to 12.
De préférence, l’extrait aqueux concentré présente un rapport (protéines (%) / glycogène résiduel non digéré estimé (g/L)) de 0,2 à 6,0, plus préférentiellement 0,5 à 5,0, encore plus préférentiellement 1 ,0 à 4,5. Preferably, the concentrated aqueous extract has a ratio (proteins (%) / estimated undigested residual glycogen (g/L)) of 0.2 to 6.0, more preferably 0.5 to 5.0, even more preferably 1.0 to 4.5.
De préférence, l’extrait aqueux concentré présente une teneur estimée en glycogène résiduel non digéré (teneur en glucose hydrolysé (g/L) - teneur en glucose libre (g/L)) de 0,1 à 10 g/L, plus préférentiellement de 0,2 à 7 g/L, encore plus préférentiellement 0,3 à 5 g/L. Preferably, the concentrated aqueous extract has an estimated content of undigested residual glycogen (hydrolyzed glucose content (g/L) - free glucose content (g/L)) of 0.1 to 10 g/L, more preferably of 0.2 to 7 g/L, even more preferably 0.3 to 5 g/L.
De préférence, l’extrait aqueux concentré présente un rapport (protéines (%) /sucres totaux mesurés par dosage des sucres hydrolysés par HPLC-RID (g/L)) inférieur à 1 %, préférentiellement compris entre 1 et 0,01%, plus préférentiellement entre 0,8 et 0,05%, encore plus préférentiellement entre 0,6 et 0,1%. Preferably, the concentrated aqueous extract has a ratio (proteins (%) /total sugars measured by determination of hydrolyzed sugars by HPLC-RID (g/L)) less than 1%, preferably between 1 and 0.01%, more preferably between 0.8 and 0.05%, even more preferably between 0.6 and 0.1%.
La présente invention concerne enfin un procédé de préparation d’un extrait aqueux concentré d’une biomasse d’ARU de microalgues productrices de phycocyanines ayant une teneur élevée en glycogène, ledit procédé comprenant un procédé de traitement avec une étape de dégradation du glycogène, et une étape de concentration comme défini précédemment. The present invention finally relates to a process for preparing a concentrated aqueous extract of an ARU biomass of phycocyanin-producing microalgae having a high glycogen content, said process comprising a treatment process with a glycogen degradation step, and a concentration step as defined above.
Utilisation Use
L’invention concerne également l’utilisation de tout ou partie d’un produit obtenu à partir d’un procédé selon l’invention en tant que produit pour la préparation de compositions pharmaceutiques ou alimentaires, y compris des aliments ou des compositions pharmaceutiques, nutraceutiques, alimentaires, cosmétiques ou industrielles. Il s’agit notamment de l’utilisation d’un produit obtenu selon un procédé de l’invention comprenant des phycocyanines pour la préparation de compositions pharmaceutiques ou alimentaires. The invention also relates to the use of all or part of a product obtained from a process according to the invention as a product for the preparation of pharmaceutical or food compositions, including foods or pharmaceutical, nutraceutical, food, cosmetic or industrial compositions. This includes in particular the use of a product obtained according to a process of the invention comprising phycocyanins for the preparation of pharmaceutical or food compositions.
Selon un mode de réalisation, une composition selon l’invention comprend tout ou partie d’un produit obtenu avec le procédé selon l’invention et un ou plusieurs excipients. According to one embodiment, a composition according to the invention comprises all or part of a product obtained with the method according to the invention and one or more excipients.
Selon un mode de réalisation préféré, la composition selon l’invention est une composition acide dont le pH est inférieur ou égal à 6, préférentiellement inférieur ou égal à 5, voire inférieur ou égal à 4 et en particulier compris entre 2 et 4. According to a preferred embodiment, the composition according to the invention is an acidic composition whose pH is less than or equal to 6, preferably less than or equal to 5, or even less than or equal to 4 and in particular between 2 and 4.
Selon l’invention, on entend par composition acide toute composition comprenant tout ou partie d’un produit obtenu avec un procédé selon l’invention ainsi qu’un acide minéral ou organique. According to the invention, the term “acid composition” means any composition comprising all or part of a product obtained with a process according to the invention as well as a mineral or organic acid.
Des acides minéraux ou organiques susceptibles d’être employés dans les compositions selon l’invention sont connus de l’homme du métier. Parmi les acides minéraux, on citera en particulier les acides carboniques, phosphorique, chlorhydrique, sulfurique, perchlorique, sulfonique et nitrique. Parmi les acides organiques, on citera en particulier les acides citrique, lactique, malique, tartrique et succinique. Mineral or organic acids that may be used in the compositions according to the invention are known to those skilled in the art. Among the mineral acids, mention will be made in particular of carbonic, phosphoric, hydrochloric, sulfuric, perchloric, sulfonic and nitric acids. Among the organic acids, mention will be made in particular of citric, lactic, malic, tartaric and succinic acids.
Les compositions acides selon l’invention peuvent en outre comprendre un véhicule pouvant comprendre des constituants structurels associés à des composés actifs identifiés au regard de leurs apports nutritifs ou encore pour leurs propriétés bénéfiques à la santé de l’homme ou de l’animal. The acid compositions according to the invention may further comprise a vehicle which may comprise structural constituents associated with active compounds identified with regard to their nutritional contributions or for their properties beneficial to human or animal health.
Concernant les compositions autres que les compositions alimentaires, elles peuvent être pharmaceutiques, vétérinaires ou cosmétiques et comprendre en outre un ou plusieurs additifs et/ou actifs connus et utilisés dans ce type d’indication. Concerning compositions other than food compositions, they may be pharmaceutical, veterinary or cosmetic and further include one or more additives and/or active ingredients known and used in this type of indication.
Les compositions selon l’invention peuvent se présenter sous toute forme usuelle connues de l’homme du métier. On citera notamment les formes solides, liquides, fluides, pâteuses ou visqueuses et plus particulièrement les crèmes, les gels, les mousses, les pâtes. Les compositions selon l’invention peuvent aussi se présenter sous la forme d’aliments secs à cuire, de poudres à diluer, des compositions gélatineuses pour les compositions alimentaires. The compositions according to the invention may be in any usual form known to those skilled in the art. In particular, solid, liquid, fluid, pasty or viscous forms and more particularly creams, gels, mousses, pastes will be mentioned. The compositions according to the invention may also be in the form of dry foods to be cooked, powders to be diluted, gelatinous compositions for food compositions.
Dans ces compositions solides, tout ou partie de l’extrait obtenu selon l’invention est préférentiellement ajouté sous la forme de poudre. Auquel cas, le produit obtenu à partir d’un procédé selon l’invention est préalablement séchée pour prendre la forme d’une poudre. In these solid compositions, all or part of the extract obtained according to the invention is preferably added in the form of powder. In which case, the product obtained from a process according to the invention is previously dried to take the form of a powder.
Les compositions liquides sont avantageusement des compositions aqueuses dans lesquelles tout ou partie de l’extrait obtenu selon l’invention est dissout. The liquid compositions are advantageously aqueous compositions in which all or part of the extract obtained according to the invention is dissolved.
Selon un mode particulier de réalisation de l’invention, la composition liquide peut être une composition alimentaire et plus spécifiquement une boisson acide, gazeuse ou non. On citera en particulier les sodas, les jus, les boissons pour sportifs, boissons d’effort, boissons de récupération, etc. Les compositions de ces boissons sont bien connues de l’homme du métier et peuvent comprendre, notamment, des sucres, des sels minéraux, des additifs alimentaires ou du gaz dissout. Une boisson acide selon l’invention peut être une boisson acide de l’art antérieur dans laquelle le colorant habituellement employé a été remplacé en totalité ou en partie par un produit comprenant des phycocyanines résistantes à pH acide selon l’invention. According to a particular embodiment of the invention, the liquid composition may be a food composition and more specifically an acidic drink, whether carbonated or not. In particular, sodas, juices, sports drinks, exercise drinks, recovery drinks, etc. will be mentioned. The compositions of these drinks are well known to those skilled in the art and may comprise, in particular, sugars, mineral salts, food additives or dissolved gas. An acidic drink according to the invention may be an acidic drink of the prior art in which the coloring usually used has been replaced in whole or in part by a product comprising phycocyanins resistant to acid pH according to the invention.
La teneur en phycocyanines dans les compositions selon l’invention sera conforme aux concentrations usuellement appliquées dans le domaine d’application visé. The phycocyanin content in the compositions according to the invention will be in accordance with the concentrations usually applied in the intended field of application.
EXEMPLES EXAMPLES
Exemple 1 : Étude de la dégradation du glycogène avec et sans ajout d’enzymes exogènes à différents pH Example 1: Study of glycogen degradation with and without addition of exogenous enzymes at different pHs
La quantité de glucose libre dans le temps dans des lysats de biomasse de Galdieria sulphuraria à pH 3.75, sans ajout d’enzyme, à pH 6 sans ajout d’enzyme et à pH 6 avec ajout d’enzymes (1% du volume de solution enzymatique par rapport au volume total de lysat, « Amylase AG XXL » de Novozymes), à 37 °C, a été mesurée en fonction du temps (YSI® 2950). The amount of free glucose over time in Galdieria sulphuraria biomass lysates at pH 3.75 without enzyme addition, at pH 6 without enzyme addition and at pH 6 with enzyme addition (1% of the volume of enzyme solution relative to the total volume of lysate, “Amylase AG XXL” from Novozymes), at 37 °C, was measured in time function (YSI® 2950).
Cette cinétique est présentée en Figure 1 . These kinetics are presented in Figure 1.
L’acidification du lysat est réalisée par l’ajout d’une quantité suffisante d’acide citrique, pour passer d’un pH 6 à 3.75. Acidification of the lysate is achieved by adding a sufficient quantity of citric acid to increase the pH from 6 to 3.75.
Les résultats montrent qu’à pH acide, 3.75, une quantité de glucose plus importante qu’à pH 6 est libérée. Après 24 heures d’incubation à pH 3.75 sans ajout d’enzyme, le glucose libre dans l’échantillon atteint même un niveau identique que dans l’échantillon dans lequel une quantité d’enzymes exogènes a été ajoutée. The results show that at acidic pH 3.75, a greater amount of glucose is released than at pH 6. After 24 hours of incubation at pH 3.75 without the addition of enzyme, the free glucose in the sample even reaches a level identical to that in the sample in which an amount of exogenous enzyme was added.
Il est à noter que la libération de glucose se fait également à pH 6 en l’absence d’ajout d’enzymes exogènes ; la cinétique est seulement plus lente (pente plus faible). It should be noted that glucose release also occurs at pH 6 in the absence of addition of exogenous enzymes; the kinetics are only slower (lower slope).
Exemple 2 : Étude de la dégradation du glycogène sans ajout d’enzymes exogènes à différents pH Example 2: Study of glycogen degradation without addition of exogenous enzymes at different pHs
La quantité de glucose libre dans le temps dans des lysats de biomasse de Galdieria sulphuraria (20% en poids de matière sèche (MS) par rapport au poids total du lysat) à des pH compris entre 3 et 7 sans ajout d’enzyme et à température ambiante (20°C) a été mesurée au cours du temps (YSI® 2950). The amount of free glucose over time in Galdieria sulphuraria biomass lysates (20% dry matter (DM) weight relative to the total lysate weight) at pH between 3 and 7 without enzyme addition and at room temperature (20°C) was measured over time (YSI® 2950).
Cette cinétique est présentée en Figure 2. These kinetics are presented in Figure 2.
L’acidification et la basification du lysat sont réalisées respectivement par l’ajout d’une quantité suffisante d’acide citrique ou de soude. Acidification and basification of the lysate are achieved respectively by adding a sufficient quantity of citric acid or sodium hydroxide.
Les résultats montrent que dans un temps donné, plus le pH augmente, moins le glycogène est dégradé. La réalisation de digestion du glycogène sans ajout d’enzymes exogènes sur du lysat montre une activité principalement dans les conditions les plus acides. Il est observé ici que cette activité est importante à pH 3 mais légèrement plus faible à pH 4. L'activité pour les pH de 5 à 7 est identique mais plus lente que pour des pH inférieurs. The results show that in a given time, the higher the pH, the less glycogen is degraded. Performing glycogen digestion without adding exogenous enzymes on lysate shows activity mainly in the most acidic conditions. It is observed here that this activity is significant at pH 3 but slightly lower at pH 4. The activity for pH 5 to 7 is identical but slower than for lower pHs.
Exemple 3 : Étude de la dégradation du glycogène à différentes températures avec et sans ajout d’enzymes exogènes Example 3: Study of glycogen degradation at different temperatures with and without addition of exogenous enzymes
La quantité de glucose libre dans le temps dans des lysats de biomasse de Galdieria sulphuraria (20% en poids de matière sèche (MS) par rapport au poids total du lysat) à pH 3.75 est étudiée pour différentes températures (4 °C, 20 °C et 37 °C) sans et avec une enzyme (1% « Amylase AG XXL » de Novozymes) à pH 3.75 et à une température de 37°C (YSI® 2950). The amount of free glucose over time in Galdieria sulphuraria biomass lysates (20% dry matter (DM) weight relative to the total lysate weight) at pH 3.75 is studied for different temperatures (4 °C, 20 °C and 37 °C) without and with an enzyme (1% “Amylase AG XXL” from Novozymes) at pH 3.75 and at a temperature of 37°C (YSI® 2950).
Les résultats sont présentés en Figure 3. Ils montrent une digestion du glycogène en glucose libre y compris en l’absence d’ajout d’enzyme. Notamment, après 24 heures à 37 °C, la quantité de glucose libre est la même avec et sans ajout d’enzyme. The results are shown in Figure 3. They show glycogen digestion in free glucose even in the absence of enzyme addition. Notably, after 24 hours at 37°C, the amount of free glucose is the same with and without enzyme addition.
Exemple 4 : Étude de la dégradation du glycogène à différentes températures sans ajout d’enzymes exogènes Example 4: Study of glycogen degradation at different temperatures without addition of exogenous enzymes
La quantité de glucose libre dans le temps dans des lysats de biomasse de Galdieria sulphuraria (20% en poids de matière sèche (MS) par rapport au poids total du lysat) à pH 4 est étudiée pour différentes températures (4 °C, 15 °C, 20 °C, 30 °C, 40 °C et 50 °C) sans ajout d’enzymes exogènes (YSI® 2950). The amount of free glucose over time in Galdieria sulphuraria biomass lysates (20% by weight of dry matter (DM) relative to the total weight of the lysate) at pH 4 is studied for different temperatures (4 °C, 15 °C, 20 °C, 30 °C, 40 °C and 50 °C) without addition of exogenous enzymes (YSI® 2950).
Les résultats sont présentés en Figure 4. Ils montrent que, dans un temps donné, plus la température augmente, plus une quantité importante de glycogène est digérée lors d’une étape de repos selon l’invention. The results are presented in Figure 4. They show that, in a given time, the higher the temperature, the greater the quantity of glycogen is digested during a resting stage according to the invention.
Exemple 5 : Étude de la dégradation du glycogène à différents stades d’un procédé d’extraction Example 5: Study of glycogen degradation at different stages of an extraction process
La quantité de glucose libre, à température ambiante (20°C), dans du lysat (20% en poids de matière sèche (MS) par rapport au poids total du lysat) et du solubilisât de biomasse de Galdieria sulphuraria à (7,5 % de MS par rapport au poids total du solubilisât) à pH 3.75, sans ajout d’enzymes exogènes est étudiée (YSI® 2950). Dans ce contexte, la cinétique de libération de glucose à température ambiante (20°C), dans du lysat de biomasse de Galdieria sulphuraria à pH 3.75 avec ajout d’enzymes exogènes (1 % du volume de solution enzymatique par rapport au volume total de lysat « Amylase AG XXL », Novozymes) est prise comme témoin. The amount of free glucose, at room temperature (20°C), in lysate (20% by weight of dry matter (DM) relative to the total weight of the lysate) and in the solubilized biomass of Galdieria sulphuraria at (7.5% DM relative to the total weight of the solubilized) at pH 3.75, without the addition of exogenous enzymes is studied (YSI® 2950). In this context, the kinetics of glucose release at room temperature (20°C), in lysate of biomass of Galdieria sulphuraria at pH 3.75 with the addition of exogenous enzymes (1% of the volume of enzyme solution relative to the total volume of lysate “Amylase AG XXL”, Novozymes) is taken as a control.
Ces cinétiques sont présentées en Figure 5. These kinetics are presented in Figure 5.
D’après les résultats obtenus et par extrapolation, il est possible de conclure que, y compris sans ajout d’enzyme, dans le cas du lysat, après 24 heures, tout le glycogène digestible sera dégradé et libéré sous forme de glucose libre. En revanche, pour le solubilisât, la réaction semble plus lente et n’est toujours pas complète au bout de 24 heures. From the results obtained and by extrapolation, it is possible to conclude that, even without the addition of enzyme, in the case of the lysate, after 24 hours, all the digestible glycogen will be degraded and released in the form of free glucose. On the other hand, for the solubilized, the reaction seems slower and is still not complete after 24 hours.
A noter que les échantillons étudiés présentent tous une dégradation du glycogène de plus de 10% et ainsi une bonne filtrabilité après digestion du glycogène qu’ils aient été préparés avec ou sans ajout d’enzymes exogènes. It should be noted that the samples studied all show a glycogen degradation of more than 10% and thus good filterability after glycogen digestion whether they were prepared with or without the addition of exogenous enzymes.
Exemple 6 : Etude de la dégradation du glycogène dans l’art antérieurExample 6: Study of glycogen degradation in the prior art
Dans le brevet W02020/144330, l’exemple 2 présente la dégradation du glycogène dans une solution brute de phycocyanines en présence et en absence d’enzymes exogènes. In patent WO2020/144330, example 2 shows the degradation of the glycogen in a crude solution of phycocyanins in the presence and absence of exogenous enzymes.
Pour cela, une biomasse de Galdieria sulphuraria est produite puis récupérée/récoltée. Les cellules sont ensuite lysées puis diluées afin d’obtenir un extrait aqueux, un solubilisât. Un clarifiât est ensuite obtenu à partir de cet extrait aqueux en séparant les solides par filtration sur filtre 0.22pm. For this, a biomass of Galdieria sulphuraria is produced then recovered/harvested. The cells are then lysed then diluted in order to obtain an aqueous extract, a solubilizer. A clarifier is then obtained from this aqueous extract by separating the solids by filtration on a 0.22pm filter.
La quantité de glucose libre, à température ambiante (20°C), dans du clarifiât de biomasse de Galdieria sulphuraria (7,5% en poids de MS par rapport au poids total du clarifiât) à pH 4, sans et avec une étape d’ajout d’enzymes exogènes (0.1% du volume de solution enzymatique par rapport au volume total de clarifiât « Amylase AG XXL » de Novozymes, « Pectinex Ultra SP-L » de Novozymes ou « BAN 480 L » de Novozymes) est étudiée (YSI 2700 Biochemestry Analyzer). The amount of free glucose, at room temperature (20°C), in Galdieria sulphuraria biomass clarified (7.5% by weight of DM relative to the total weight of the clarified) at pH 4, without and with a step of addition of exogenous enzymes (0.1% of the volume of enzymatic solution relative to the total volume of clarified “Amylase AG XXL” from Novozymes, “Pectinex Ultra SP-L” from Novozymes or “BAN 480 L” from Novozymes) is studied (YSI 2700 Biochemestry Analyzer).
Les résultats sont présentés en Figure 6. The results are presented in Figure 6.
D’après les résultats obtenus, il est possible de conclure que sans ajout d’enzymes exogènes, avec un maintien au repos du clarifiât de 95 heures, le glycogène n’est toujours pas assez digéré (moins de 10% de dégradation). En revanche, avec l’ajout d’une enzyme, après 95h, la totalité du glycogène est digérée. From the results obtained, it is possible to conclude that without the addition of exogenous enzymes, with the clarified material left to rest for 95 hours, the glycogen is still not digested enough (less than 10% degradation). On the other hand, with the addition of an enzyme, after 95 hours, all of the glycogen is digested.
Exemple 7 : Étude de la dégradation du glycogène à tous les stades d’un procédé d’extraction Example 7: Study of glycogen degradation at all stages of an extraction process
La quantité de glucose libre, à température ambiante (20°C), dans du lysat (20% en poids de MS par rapport au poids total du lysat), du solubilisât et du clarifiât de biomasse de Galdieria sulphuraria à (7,5 % en poids de MS par rapport au poids total du solubilisât ou du clarifiât) à pH 4 sans ajout d’enzymes exogènes est étudiée (YSI® 2950). Le clarifiât est obtenu après filtration du solubilisât sur filtre 0.22pm. The amount of free glucose, at room temperature (20°C), in lysate (20% by weight of DM relative to the total weight of the lysate), solubilized and clarified of Galdieria sulphuraria biomass at (7.5% by weight of DM relative to the total weight of the solubilized or clarified) at pH 4 without the addition of exogenous enzymes is studied (YSI® 2950). The clarified is obtained after filtration of the solubilized on a 0.22pm filter.
Dans ce contexte, les cinétiques de libération de glucose à température ambiante (20°C), dans du lysat, du solubilisât et clarifiât de biomasse de Galdieria sulphuraria à pH 4 avec ajout d’enzymes exogènes (1 % du volume de solution enzymatique par rapport au volume total de lysat « Amylase AG XXL », Novozymes) sont utilisées pour connaitre la concentration maximale de glucose libre de l’échantillon. In this context, the kinetics of glucose release at room temperature (20°C), in lysate, solubilized and clarified biomass of Galdieria sulphuraria at pH 4 with addition of exogenous enzymes (1% of the volume of enzymatic solution relative to the total volume of lysate “Amylase AG XXL”, Novozymes) are used to know the maximum concentration of free glucose in the sample.
Ces données ont permi de calculer les pourcentages de dégradation (digestion) du glycogène qui sont présentés en Figure 7. These data made it possible to calculate the percentages of degradation (digestion) of glycogen which are presented in Figure 7.
D’après les résultats obtenus, nous voyons que, sans ajout d’enzymes exogènes, après 48 heures, plus de 10% du glycogène est digéré lors d’un maintien au repos du lysat et du solubilisât mais pas du clarifiât. Exemple 8 : Caractérisation d’un extrait préparé selon l’invention From the results obtained, we see that, without the addition of exogenous enzymes, after 48 hours, more than 10% of the glycogen is digested when the lysate and the solubilized are kept at rest but not the clarified. Example 8: Characterization of an extract prepared according to the invention
Un lysat de biomasse de Galdieria sulphuraria (20% en poids de MS par rapport au poids total de lysat) est maintenu à pH acide de 3,7 pendant 12 heures, à 25 °C. A Galdieria sulphuraria biomass lysate (20% by weight of DM relative to the total weight of lysate) is maintained at acidic pH of 3.7 for 12 hours, at 25 °C.
Un extrait est préparé à partir de ce lysat. Pour cela, le lysat est lavé avec une quantité d’eau représentant au total moins de 4 fois le volume total de biomasse lysée. Ce volume d’eau est scindé en 3 fractions pour réaliser 3 lavages successifs de la biomasse lysée. Les eaux de lavage sont récupérées, conformément à l’enseignement de la demande de brevet W02020/161280. Le produit obtenu est ensuite filtré sur une membrane fibre creuse ayant une porosité de 70kDa (clarifiât) avec une étape finale de diafiltration et le filtrat est récupéré, conformément à l’enseignement de la demande de brevet W02020/144330 (extrait aqueux concentré). An extract is prepared from this lysate. To do this, the lysate is washed with a quantity of water representing in total less than 4 times the total volume of lysed biomass. This volume of water is split into 3 fractions to carry out 3 successive washes of the lysed biomass. The wash water is recovered, in accordance with the teaching of patent application WO2020/161280. The product obtained is then filtered on a hollow fiber membrane having a porosity of 70 kDa (clarifiate) with a final diafiltration step and the filtrate is recovered, in accordance with the teaching of patent application WO2020/144330 (concentrated aqueous extract).
L’extrait aqueux concentré et le clarifiât ainsi obtenus sont analysés pour connaitre la teneur en sucres totaux, mannose hydrolysé, galactose hydrolysé et glucose hydrolysé par HPLC-RID, la teneur en glucose libre à l’YSI® 2950, la teneur en phycocyanine ainsi que la teneur en protéines. The concentrated aqueous extract and the clarified thus obtained are analyzed to know the content of total sugars, hydrolyzed mannose, hydrolyzed galactose and hydrolyzed glucose by HPLC-RID, the content of free glucose at YSI® 2950, the content of phycocyanin as well as the content of proteins.
Les résultats obtenus sont présentés dans le tableau 1 ci-dessous. The results obtained are presented in Table 1 below.
Tableau 1
Figure imgf000031_0001
Table 1
Figure imgf000031_0001

Claims

REVENDICATIONS
1. Procédé de traitement d’une biomasse d’algues rouges unicellulaires (ARU) du genre Galdieria, ledit procédé de traitement de biomasse d’ARU comprenant les étapes de : a) récolte de la biomasse par séparation du milieu de culture pour l’obtention d’une biomasse brute d’ARU, b) lyse cellulaire de la biomasse brute de l’étape (a) pour obtenir un lysat, c) optionnellement dilution du lysat de l’étape (b) pour obtenir un solubilisât, et d) séparation des insolubles en suspension dans le lysat de l’étape (b) ou le solubilisât de l’étape (c) pour obtenir un clarifiât, caractérisé en ce qu’il comprend une étape de dégradation du glycogène par maintien au repos (étape de repos) pendant au moins 3 heures de la biomasse brute et/ou du lysat et/ou le cas échéant du solubilisât, durant laquelle le milieu liquide comprenant le glycogène est à pH acide. 1. A method for treating a biomass of unicellular red algae (URA) of the genus Galdieria, said method for treating URA biomass comprising the steps of: a) harvesting the biomass by separating the culture medium to obtain a crude URA biomass, b) cell lysis of the crude biomass from step (a) to obtain a lysate, c) optionally diluting the lysate from step (b) to obtain a solubilizer, and d) separating the insolubles suspended in the lysate from step (b) or the solubilizer from step (c) to obtain a clarifier, characterized in that it comprises a step of degrading the glycogen by keeping the crude biomass and/or the lysate and/or, where appropriate, the solubilizer at rest for at least 3 hours (resting step), during which the liquid medium comprising the glycogen is at an acidic pH.
2. Procédé selon la revendication 1 , caractérisé en ce que l’étape de repos dure entre 3 heures et une semaine. 2. Method according to claim 1, characterized in that the resting step lasts between 3 hours and one week.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l’étape de repos se fait à une température comprise entre 15°C et 70 °C. 3. Method according to claim 1 or 2, characterized in that the resting step is carried out at a temperature between 15°C and 70°C.
4. Procédé selon l’une des revendications 1 à 3, caractérisé en ce que l’étape de repos est mise en oeuvre sur le lysat et/ou le solubilisât le cas échéant, préférentiellement sur le lysat. 4. Method according to one of claims 1 to 3, characterized in that the resting step is carried out on the lysate and/or the solubilized product where appropriate, preferably on the lysate.
5. Procédé selon l’une des revendications 1 à 4, caractérisé en ce qu’il comprend, préalablement à l’étape de repos, une étape d’ajustement du pH de la biomasse brute, du lysat et/ou le cas échéant du solubilisât à un pH inférieur à 7, en particulier entre 1 et 6, préférentiellement entre 2 et 5, plus préférentiellement entre 3 et 4. 5. Method according to one of claims 1 to 4, characterized in that it comprises, prior to the resting step, a step of adjusting the pH of the raw biomass, the lysate and/or where appropriate the solubilizer to a pH lower than 7, in particular between 1 and 6, preferably between 2 and 5, more preferably between 3 and 4.
6. Procédé selon l’une des revendications 1 à 5, caractérisé en ce que le procédé comprend en outre une étape e) concentration du clarifiât pour obtenir un extrait aqueux concentré. 6. Method according to one of claims 1 to 5, characterized in that the method further comprises a step e) concentration of the clarified material to obtain an extract concentrated aqueous.
7. Produit susceptible d’être obtenu par le procédé selon l’une des revendications 1 à 6. 7. Product capable of being obtained by the process according to one of claims 1 to 6.
8. Produit selon la revendication 7, caractérisé en ce qu’il comprend une teneur estimée en glycogène résiduel non digéré de 0,1 à 10 g/L, plus préférentiellement de 0,2 à 7 g/L, encore plus préférentiellement 0,3 à 5 g/L. 8. Product according to claim 7, characterized in that it comprises an estimated content of undigested residual glycogen of 0.1 to 10 g/L, more preferably of 0.2 to 7 g/L, even more preferably 0.3 to 5 g/L.
9. Produit selon la revendication 7 ou 8, caractérisé en ce qu’il comprend une concentration en mannose hydrolysé inférieure ou égale à 15 g/L. 9. Product according to claim 7 or 8, characterized in that it comprises a concentration of hydrolyzed mannose less than or equal to 15 g/L.
10. Produit selon l’une des revendications 7 à 9, caractérisé en ce qu’il comprend une concentration en galactose hydrolysé inférieure ou égale à 15 g/L. 10. Product according to one of claims 7 to 9, characterized in that it comprises a concentration of hydrolyzed galactose less than or equal to 15 g/L.
1 1. Produit selon l’une des revendications 7 à 10, caractérisé en ce qu’il comprend un rapport protéines (%) / glycogène résiduel non digéré estimé mesuré par dosage des sucres hydrolysés par HPLC-RID (g/L) de 0,2 à 6,0, plus préférentiellement 0,5 à 5,0, encore plus préférentiellement 1 ,0 à 4,5. 1 1. Product according to one of claims 7 to 10, characterized in that it comprises a protein (%) / estimated undigested residual glycogen ratio measured by assay of hydrolyzed sugars by HPLC-RID (g/L) of 0.2 to 6.0, more preferably 0.5 to 5.0, even more preferably 1.0 to 4.5.
12. Produit selon l’une des revendications 7 à 11 , caractérisé en ce qu’il comprend un rapport protéines (%) / sucres totaux mesurés par dosage des sucres hydrolysés par HPLC-RID (g/L) inférieur à 1%, préférentiellement compris entre 1 et 0,01 %, plus préférentiellement entre 0,8 et 0,05%, encore plus préférentiellement entre 0,6 et 0,1 %. 12. Product according to one of claims 7 to 11, characterized in that it comprises a protein (%) / total sugars ratio measured by assay of hydrolyzed sugars by HPLC-RID (g/L) of less than 1%, preferably between 1 and 0.01%, more preferably between 0.8 and 0.05%, even more preferably between 0.6 and 0.1%.
13. Produit selon l’une des revendications 7 à 12, caractérisé en ce qu’il comprend une teneur en C-phycocyanine comprise entre 0,1 et 20 g/L. 13. Product according to one of claims 7 to 12, characterized in that it comprises a C-phycocyanin content of between 0.1 and 20 g/L.
14. Composition nutraceutique, alimentaire ou cosmétique comprenant d’un produit selon l’une des revendications 7 à 13. 14. Nutraceutical, food or cosmetic composition comprising a product according to one of claims 7 to 13.
15. Composition selon la revendication 14 caractérisée en ce qu’elle comprend un acide minéral ou organique. 15. Composition according to claim 14 characterized in that it comprises a mineral or organic acid.
PCT/EP2024/060721 2023-04-19 2024-04-19 Method for degrading glycogen present in a biomass of galdieria WO2024218300A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2303894 2023-04-19
FR2303894A FR3147934A1 (en) 2023-04-19 2023-04-19 PROCESS FOR DEGRADATION OF GLYCOGEN PRESENT IN GALDIERIA BIOMASS

Publications (1)

Publication Number Publication Date
WO2024218300A1 true WO2024218300A1 (en) 2024-10-24

Family

ID=87974417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2024/060721 WO2024218300A1 (en) 2023-04-19 2024-04-19 Method for degrading glycogen present in a biomass of galdieria

Country Status (2)

Country Link
FR (1) FR3147934A1 (en)
WO (1) WO2024218300A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817498A (en) 1992-12-28 1998-10-06 Genencor International, Inc. Pullulanase producing microrganisms
WO2009075682A1 (en) 2007-12-12 2009-06-18 Novozymes A/S Mashing process
WO2017050917A1 (en) 2015-09-25 2017-03-30 Fermentalg Novel method for the culture of unicellular red algae
WO2017093345A1 (en) 2015-12-04 2017-06-08 Fermentalg Method for culturing unicellular red algae (ura) with milk permeate
WO2018178334A2 (en) 2017-03-30 2018-10-04 Fermentalg Purification of phycobiliproteins
WO2019036721A2 (en) 2017-08-18 2019-02-21 Danisco Us Inc Alpha-amylase variants
WO2019228947A1 (en) 2018-05-31 2019-12-05 Fermentalg Method for cultivating unicellular red algae (ura) on a mixture of substrates
WO2020144330A1 (en) 2019-01-11 2020-07-16 Fermentalg Process for purifying phycocyanins
WO2020161280A1 (en) 2019-02-08 2020-08-13 Fermentalg Optimized method for industrial exploitation of unicellular red algae
US20210340490A1 (en) * 2018-09-05 2021-11-04 Fermentalg Method for enriching a biomass with proteins

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817498A (en) 1992-12-28 1998-10-06 Genencor International, Inc. Pullulanase producing microrganisms
US6074854A (en) 1992-12-28 2000-06-13 Genencor International, Inc. Pullulanase, microorganisms which produce it, processes for the preparation of this pullulanese and the uses thereof
WO2009075682A1 (en) 2007-12-12 2009-06-18 Novozymes A/S Mashing process
WO2017050917A1 (en) 2015-09-25 2017-03-30 Fermentalg Novel method for the culture of unicellular red algae
WO2017050918A1 (en) 2015-09-25 2017-03-30 Fermentalg Acid composition comprising a phycocyanin
WO2017093345A1 (en) 2015-12-04 2017-06-08 Fermentalg Method for culturing unicellular red algae (ura) with milk permeate
WO2018178334A2 (en) 2017-03-30 2018-10-04 Fermentalg Purification of phycobiliproteins
WO2019036721A2 (en) 2017-08-18 2019-02-21 Danisco Us Inc Alpha-amylase variants
WO2019228947A1 (en) 2018-05-31 2019-12-05 Fermentalg Method for cultivating unicellular red algae (ura) on a mixture of substrates
US20210340490A1 (en) * 2018-09-05 2021-11-04 Fermentalg Method for enriching a biomass with proteins
WO2020144330A1 (en) 2019-01-11 2020-07-16 Fermentalg Process for purifying phycocyanins
US20220112235A1 (en) * 2019-01-11 2022-04-14 Fermentalg Process for purifying phycocyanins
WO2020161280A1 (en) 2019-02-08 2020-08-13 Fermentalg Optimized method for industrial exploitation of unicellular red algae
US20220145237A1 (en) * 2019-02-08 2022-05-12 Fermentalg Optimized method for industrial exploitation of unicellular red algae

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MARTINEZ-GARCIA ET AL., INT J BIOL MACROMOL., vol. 89, 2016, pages 12 - 18
MIYAGISHIMA ET AL., PLANT CELL PHYSIOL., vol. 62, no. 6, 2021, pages 926 - 941
MOON ET AL., KOREAN J. CHEM. ENGL., vol. 31, no. 3, 2016, pages 490 - 495

Also Published As

Publication number Publication date
FR3147934A1 (en) 2024-10-25

Similar Documents

Publication Publication Date Title
EP0819702B1 (en) Nutritive composition from corn steeping and process for obtaining the same
BE1019158A5 (en) PROCESS FOR PRODUCING A COMPOSITION, COMPOSITION AND USE THEREOF AS A FOOD ADDITIVE
EP3353282A1 (en) Acid composition comprising a phycocyanin
EP3784047B1 (en) Yeast proteins
EP3384000B1 (en) Method for culturing unicellular red algae (ura) with milk permeate
WO2018178334A2 (en) Purification of phycobiliproteins
EP1074262A1 (en) Laminaria algae extract, method of preparation and cosmetic or pharmaceutical compositions containing the same
WO2020144330A1 (en) Process for purifying phycocyanins
CA2168164A1 (en) Nutritive composition resulting from corn soaking and process
CA3128866A1 (en) Optimized method for industrial exploitation of unicellular red algae
FR2555602A1 (en) ENZYME AND COMPOSITION OF ENZYMES DEGRADING PENTOSANES, METHODS OF OBTAINING AND APPLYING SAME
EP0871717A1 (en) beta-GLUCOSIDASE FROM FILAMENTOUS FUNGI, AND USES THEREOF
EP2850213B1 (en) Strain producing turanose and uses thereof
WO2024218300A1 (en) Method for degrading glycogen present in a biomass of galdieria
EP3164140B1 (en) Microalga enriched with silicon in a water-soluble form
FR2490677A1 (en) PROCESS FOR THE PREPARATION OF SUGAR JUICES AND PRODUCTS DERIVED FROM CELLULOSIC VEGETABLE SUBSTRATES
EP0297944B1 (en) Production of beta-glucuronidase type enzyme, hydrolysis of glycyrrhizine and of beta-glycyrrhetinic acid
CA3162354A1 (en) Fermented pea solubles
CN114921510B (en) Application of paecilomyces coral in extraction of polysaccharide from radix cynanchi bungei
RU2813893C1 (en) Method of producing highly acylated gellan gum
RU2810761C2 (en) Method of phycocyanins purification
CA1280988C (en) Enzymatic process for xanthan gums to upgrade the filtrability of their aqueous solutions
Bentahar Utilisation et valorisation du perméat de lactosérum acide par la microalgue Scenedesmus obliquus pour la production d'enzyme de type β-galactosidase
CA2990614A1 (en) Process for saponin enhanced autoloysis of yeast
BE511675A (en)