WO2024157322A1 - Phase shifter and optical switch - Google Patents

Phase shifter and optical switch Download PDF

Info

Publication number
WO2024157322A1
WO2024157322A1 PCT/JP2023/001914 JP2023001914W WO2024157322A1 WO 2024157322 A1 WO2024157322 A1 WO 2024157322A1 JP 2023001914 W JP2023001914 W JP 2023001914W WO 2024157322 A1 WO2024157322 A1 WO 2024157322A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase shifter
core
optical
optical switch
lower arm
Prior art date
Application number
PCT/JP2023/001914
Other languages
French (fr)
Japanese (ja)
Inventor
慶太 山口
祥江 森本
賢哉 鈴木
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2023/001914 priority Critical patent/WO2024157322A1/en
Publication of WO2024157322A1 publication Critical patent/WO2024157322A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 

Definitions

  • This disclosure relates to a phase shifter and an optical switch.
  • Waveguide-type optical switches are key devices in optical communication systems, and are widely used within optical communication networks due to their ability to realize flexible optical communication networks.
  • a typical configuration of a waveguide-type optical switch is one that combines a Mach-Zehnder interferometer (hereinafter referred to as MZI) with a phase shifter, and waveguide-type optical switches with this configuration are being put to practical use in optical communication networks.
  • MZI Mach-Zehnder interferometer
  • the waveguide-type optical switch 100 includes input waveguides 101a, b, output waveguides 102a, b, a coupler 103a connected to the input waveguides 101a, b, a coupler 103b connected to the output waveguides 102a, b, an upper arm 104 and a lower arm 105 connected to the couplers 103a, b, and a phase shifter 106 connected to the lower arm 105 and modulating the phase of the propagating optical signal.
  • the waveguide-type optical switch 100 also includes a substrate and a cladding formed on the substrate, and the core region through which the optical signal propagates (input side waveguides 101a, b, output side waveguides 102a, b, upper arm 104, and lower arm 105) has a structure embedded in the cladding.
  • the waveguide-type optical switch 100 having such a configuration can switch the output waveguide by controlling the phase difference of the optical signals passing through the upper arm 104 and the lower arm 105, which determines the interference condition in the MZI, with the phase shifter 106 (see, for example, Non-Patent Document 1). For example, when the optical path lengths of the upper arm 104 and the lower arm 105 are the same and the phase modulation amount in the phase shifter 106 is 0, the optical signal input from the input side waveguide 101a is output from the output side waveguide 102b (cross state). On the other hand, when the phase of the optical signal changes by ⁇ in the phase shifter 106, the interference state changes and the optical signal input from the input side waveguide 101a is output from the output side waveguide 102a (through state).
  • materials used for optical waveguides can be silicon oxide (SiOx) or silicon (Si).
  • SiOx silicon oxide
  • SiOx silicon oxide
  • SiOx silicon oxide
  • SiOx silicon oxide
  • SiOx silicon oxide
  • Thermo-optic phase shifters are widely used as phase shifters for optical waveguides using SiOx or Si.
  • Thermo-optic phase shifters use a heating mechanism such as a heater to locally heat part of the core, changing the refractive index of the heated area to change the optical path length and thus the phase of the optical signal propagating through the core.
  • This phenomenon in which the refractive index of a material changes depending on the temperature is generally called the thermo-optic effect (in other words, a thermo-optic phase shifter is an element that uses the thermo-optic effect to change the phase of an optical signal).
  • thermo-optic phase shifters use the change in refractive index caused by temperature, so in order to maintain the modulation state of the phase shifter, it is necessary to keep the area to be heated at a specified temperature by controlling a heater or other device. This means that the heater or other device needs to be constantly powered, which poses the problem of increased power consumption.
  • the present disclosure has been made in consideration of the above-mentioned problems, and its purpose is to provide a phase shifter and an optical switch including the phase shifter that can maintain the modulation state while achieving reduced power consumption compared to conventional techniques.
  • the present disclosure provides a phase shifter that is a waveguide type phase shifter including a core, a cladding that covers the core, an electrode that extends parallel to the optical axis direction of the core and is arranged near one side of the core, and electrical wiring that is approximately perpendicular to the optical axis direction of the core and is arranged on each of the side of the core and the side of the electrode, and an optical switch that includes the phase shifter in at least one of the upper arm and the lower arm.
  • FIG. 1 is a top view conceptually showing the structure of a waveguide-type optical switch 100 in which an MZI and a phase shifter are combined according to a conventional technique.
  • 2A and 2B are diagrams conceptually illustrating a structure of a phase shifter 200 according to a first embodiment of the present disclosure, in which FIG. 2A is a top view and FIG. 2B is a cross-sectional view taken along line IIb-IIb.
  • 2 is a diagram conceptually illustrating how a core 201 and an electrode 203 function as a parallel plate capacitor in the phase shifter 200 according to the first embodiment of the present disclosure.
  • FIG. 1 is a top view conceptually showing the structure of a waveguide-type optical switch 100 in which an MZI and a phase shifter are combined according to a conventional technique.
  • 2A and 2B are diagrams conceptually illustrating a structure of a phase shifter 200 according to a first embodiment of the present disclosure, in which FIG. 2A is a top view and FIG. 2
  • FIGS. 4A and 4B are diagrams conceptually illustrating a structure of another form of the phase shifter 200 according to the first embodiment of the present disclosure, in which (a) is a top view and (b) is a cross-sectional view taken along the line IVb-IVb.
  • FIG. 2 is a top view conceptually illustrating a structure of an optical switch 500 using the phase shifter 200 according to the first embodiment of the present disclosure.
  • FIG. 13 is a diagram showing an etching region required when disposing a phase shifter 200 on the optical switch 500 according to the first embodiment of the present disclosure.
  • FIGS. 7A and 7B are diagrams conceptually illustrating a structure of a phase shifter 700 according to a second embodiment of the present disclosure, in which (a) is a top view and (b) is a cross-sectional view taken along the line VIIb-VIIb.
  • 8A and 8B are diagrams conceptually illustrating the structure of an optical switch 800 according to a second embodiment of the present disclosure, in which (a) is a top view showing the overall structure, (b) is an enlarged view of the connection between an SSC structure 701 of a phase shifter 700 and a lower arm 105, and (c) is a cross-sectional view along the VIIIc-VIIIc cross-sectional line.
  • FIGS. 9A and 9B are conceptual diagrams showing another structure of the optical switch 800 according to the second embodiment of the present disclosure, in which (a) shows an enlarged view of the connection between the SSC structure 701 of the phase shifter 700 and the lower arm 105, and (b) shows a cross-sectional view along the IXb-IXb cross-sectional line.
  • 10A and 10B are diagrams conceptually illustrating the structure of the connection portion between the phase shifter 700 and the lower arm 105 in another form of the optical switch 800 according to the second embodiment of the present disclosure, where (a) is a top view and (b) is a cross-sectional view along the Xb-Xb cross-sectional line.
  • 10A and 10B are diagrams conceptually illustrating the structure of the connection portion between the phase shifter 700 and the lower arm 105 in another form of the optical switch 800 according to the second embodiment of the present disclosure, where (a) is a top view and (b) is a cross-sectional view along the XIb-XIb cross-sectional line.
  • 10A and 10B are diagrams conceptually illustrating the structure of the connection portion between the phase shifter 700 and the lower arm 105 in another form of the optical switch 800 according to the second embodiment of the present disclosure, where (a) is a top view and (b) is a cross-sectional view along the XIIb-XIIb cross-sectional line.
  • FIG. 13 is a top view conceptually illustrating a structure of a phase shifter 1300 according to a third embodiment of the present disclosure.
  • FIG. 14 is a top view conceptually illustrating a structure of a phase shifter device 1400 according to a third embodiment of the present disclosure.
  • the phase shifter according to the present disclosure is a waveguide-type phase shifter having a core and a cladding, and includes an electrode extending parallel to the optical axis direction of the core and disposed near one side of the core, and electrical wiring disposed approximately perpendicular to the optical axis direction of the core and near the other side of the core and near the side of the electrode not adjacent to the core.
  • phase shifter configured in this manner, when a potential difference is generated between the core and the electrode via electrical wiring, the core and the electrode function as parallel plate capacitors, and charge is injected and accumulated in each. This injection of charge causes a plasma carrier effect, which changes the refractive index of the core. By utilizing this phenomenon, the phase shifter according to the present disclosure is able to control the phase of an optical signal.
  • a phase shifter in this embodiment is a phase shifter disposed in a waveguide-type optical switch, and a semiconductor such as Si is used for a core other than the phase shifter of the optical switch.
  • (Configuration of Phase Shifter) 2 is a diagram conceptually illustrating the structure of a phase shifter 200 according to the first embodiment of the present disclosure, in which (a) is a top view and (b) is a cross-sectional view taken along the line IIb-IIb.
  • the phase shifter 200 includes a core 201, a cladding 202 surrounding the core 201, an electrode 203 extending parallel to the optical axis direction of the core 201 and disposed near one side of the core 201, and electrical wiring 204a, b disposed approximately perpendicular to the optical axis direction of the core 201 and on the side of the core 201 and the side of the electrode 203.
  • the electrical wiring 204a, b is connected to an external power source and configured to be able to apply a voltage.
  • the cladding 202 is configured to be included between the core 201 and the electrode 203.
  • the core 201 and the electrode 203 function as parallel plate capacitors, and thus, as shown in FIG. 3, electric charges are injected and accumulated in each of them (in FIG. 3, "e - " represents electrons).
  • the electric field applied between the core 201 and the electrode 203 is set to 0 (constant potential)
  • the electric charges accumulated in the core 201 return to their original state. In this way, the carrier plasma effect occurs due to the change in electron density, and the refractive index of the core 201 changes.
  • the phase shifter functions as a phase shifter that changes the phase of the optical signal.
  • the core 201 needs to have a higher refractive index than the clad 202.
  • the clad 102 is a material with high insulating properties so that the charge accumulated between the core 201 and the electrode 203 does not pass. Therefore, in the phase shifter 200, for example, if the core 201 is made of Si, the above-mentioned configuration can be realized by using a material (e.g., SiOx) that has a lower refractive index than Si and has high insulating properties for the clad 202.
  • the same material as the core 201 can be applied to the electrode 203 and the electrical wiring 204a, b.
  • the same material is used for the electrode 203, the electrical wiring 204a, b, and the core 201
  • Si for the core 201, and Si for the electrode 203 and the electrical wiring 204a, b it is possible to simultaneously form the core 201, the electrode 203, and the electrical wiring 204a, b during manufacturing.
  • the electrical wiring 204a, b it is desirable for the electrical wiring 204a, b to have high conductivity from the viewpoint of charge injection, so the conductivity of the Si used for the electrical wiring 204a, b may be further improved by doping it with boron (B) or phosphorus (P).
  • the cladding 202 may be made of a material with a high dielectric constant (e.g., silicon nitride (SiN)).
  • the electrode 203 is depicted as being adjacent to the core 201 in a direction parallel to the main surface of the wafer and embedded in the clad 202, but as shown in FIG. 4, it may be adjacent to the main surface of the wafer in a direction perpendicular to the main surface of the wafer and disposed on the surface of the clad 202.
  • the electrode 203 and the electrical wiring 204a, b may be made of a metal with low electrical resistance, etc., because of problems such as increased power consumption during charge transfer with high resistance.
  • the electrical wiring 204a, b is embedded in the clad 202 as in the core 201, it is necessary to form the clad 202 after forming the pattern of the electrical wiring 204a, b.
  • the metal of the electrical wiring 204a, b may diffuse into the clad 202 or the core 201, which may cause loss of optical signals.
  • the electrode 203 and the electrical wiring 204a, b connected to the electrode 203 can be formed after the cladding 202 is formed, which has the effect of suppressing the loss of optical signals due to such metal diffusion.
  • FIG. 5 is a top view conceptually illustrating a structure of an optical switch 500 using the phase shifter 200 according to the first embodiment of the present disclosure.
  • the optical switch 500 has a configuration in which the phase shifter of the waveguide-type optical switch 100 according to the conventional technology shown in Fig. 1 is the above-mentioned phase shifter 200.
  • the couplers 103a and 103b can be, for example, directional couplers (DC).
  • an optical signal input from either one of the input waveguides 101a, b is distributed by the coupler 103a to both the upper arm 104 and the lower arm 105 and propagates through each.
  • the optical signal is then rejoined by the coupler 103b and output from the two output waveguides 102a, b. If there is a difference in the optical path length of each of the upper arm 104 and the lower arm 105, the interference state when the signals are joined at the coupler 103b changes, and the intensity ratio of the output light changes.
  • the above-mentioned phase shifter 200 is disposed in at least one of the upper arm 104 or the lower arm 105.
  • This phase shifter 200 performs phase modulation of the optical signal using the carrier plasma effect, making it possible to control the output intensity and output ratio of the optical signal output from the output side waveguides 102a, b.
  • the phase modulation amount in the phase shifter 200 is 0, it becomes a cross state, and if the phase modulation amount in the phase shifter 200 is ⁇ , it changes to a through state.
  • the optical switch 500 can also function as a coupler/splitter that changes the branching ratio of the output optical signal and a variable optical attenuator (VOA) that controls the output intensity.
  • VOA variable optical attenuator
  • the phase shifter 200 is depicted as being disposed in the lower arm 105, but this is for illustrative purposes only, and the phase shifter 200 may be disposed in the upper arm 104, or in both the upper arm 104 and the lower arm 105. From the viewpoint of controlling the interference state of the optical signal, it is sufficient to dispose the phase shifter 200 in either the upper arm 104 or the lower arm 105, or to control only one of the phase shifters 200 installed in both the upper arm 104 and the lower arm 105. On the other hand, in order to achieve an effect such as suppressing the polarization characteristics so that each path has different characteristics, it is necessary to control both the upper arm 104 and the lower arm 105.
  • the arrangement of the phase shifter 200 with respect to the optical switch 500 includes exposing the electrical wiring 204a, b in the same plane as the core by etching the regions 601a, b where the electrical wiring 204a, b exists and where the core (e.g., the upper arm 104 and the lower arm 105, etc.) does not exist, as shown in FIG. 6.
  • the core e.g., the upper arm 104 and the lower arm 105, etc.
  • an example of a region near the phase shifter 200 and without a core is region 601a located at the center of the upper arm 104 and the lower arm 105.
  • electrical wiring 204a By forming electrical wiring 204a up to this region 601a and etching region 601a, it is possible to expose electrical wiring 204a. If region 601a is then filled with, for example, a metal, it becomes possible to electrically connect to an external power source.
  • the area corresponding to region 601a may be narrow and etching may not be possible.
  • the electrical wiring 204a may be formed across the side where the phase shifter 200 is not arranged (the upper arm 104 side in FIG. 6(b)), and the etching area may be made in region 601b located outside the upper arm 104, with the same effect being obtained. In such a case, it is desirable to minimize the effect that the electrical wiring 204a has on the optical signal propagating through the upper arm 104.
  • phase shifter 200 is configured as shown in FIG. 4, the electrical connection of the electrode 203 can be made on the clad 202.
  • a phase shifter in this embodiment is a phase shifter disposed in a waveguide-type optical switch, and SiOx is used for a core other than the phase shifter of the optical switch.
  • phase shifter configuration In general, an optical waveguide using SiOx as a core has a characteristic that the loss in propagation and the connection loss with an optical fiber are small.
  • SiOx has a high band gap energy, and in a waveguide using SiOx as a core, SiOx is often used for the cladding as well. For this reason, when SiOx is used for the core of the above-mentioned phase shifter 200, it is difficult to keep electrons in the core 201 and confine the charge.
  • the optical switch 500 even if SiOx is used for the core other than the phase shifter 200 of the optical switch 500 (for example, the upper arm 104 and the lower arm 105, etc.), it is desirable to use a material with a low band gap energy such as Si or SiN for the core 201 in the phase shifter 200.
  • the phase shifter in addition to the configuration of the phase shifter 200, the phase shifter according to this embodiment further includes a spot-size converter structure (hereinafter referred to as SSC) in the part where the core 201 becomes the transition region.
  • SSC spot-size converter structure
  • FIG. 7 is a conceptual diagram showing the structure of a phase shifter 700 according to a second embodiment of the present disclosure, where (a) shows a top view and (b) shows a cross-sectional view along the VIIb-VIIb cross-sectional line.
  • the tip of the core 201 in the configuration of the phase shifter 200 further includes an SSC structure 701.
  • the region in which this SSC structure 701 is formed corresponds to the transition region described above.
  • the coupling efficiency of the propagating optical signal is determined by the overlap integral of the mode fields of both.
  • MFD Mode Field Diameter
  • the SSC structure 701 having a tapered structure is formed, so that the mode changes adiabatically. More specifically, it is configured so that the confinement efficiency changes with the change in diameter, and the MFD changes accordingly. Therefore, the mismatch of MFD at the connection point with the core using SiOx is eliminated, making it possible to suppress loss due to mode coupling.
  • the SSC structure 701 is depicted as a tapered structure in which the diameter of the core 201 changes continuously, but this is for illustrative purposes only, and the structure of the SSC structure 701 may be of any shape as long as it is a structure that changes the mode adiabatically.
  • (Configuration of optical switch) 8 is a diagram conceptually illustrating the structure of an optical switch 800 according to a second embodiment of the present disclosure, in which (a) is a top view showing the entire structure, (b) is an enlarged view of a connection between an SSC structure 701 of a phase shifter 700 and a lower arm 105, and (c) is a cross-sectional view taken along the line VIIIc-VIIIc.
  • the optical switch 800 has a configuration in which the phase shifter of the conventional waveguide-type optical switch 100 shown in Fig. 1 is the above-mentioned phase shifter 700.
  • Si can be applied to the core 201 of the phase shifter 700
  • SiOx can be applied to the lower arm 105.
  • the SSC structure 701 has a tapered structure in which the tip of the core 201 is tapered, and the SSC structure 701 and the tip of the lower arm 105 made of SiOx are depicted as being arranged to butt against each other.
  • the core 201 and the lower arm 105 are covered with an undercladding layer 801 and an overcladding layer 802, and the relative refractive index difference between the lower arm 105 and each cladding layer is set to be smaller than the relative refractive index difference between the core 201 and the SSC structure 701 of the phase shifter 700 and each cladding layer.
  • the lower arm 105 is configured so that the core 201 has a larger core cross-sectional area and MFD than Si.
  • the optical signal propagating through the core 201 is weakly confined as it approaches the tip in the SSC structure 701, and therefore the MFD becomes larger. This eliminates the mismatch in MFD with the lower arm 105, and reduces the coupling loss.
  • the tips of the SSC structure 701 and the lower arm 105 are depicted as being butted together, but as shown in FIG. 9, the SSC 701 structure may be covered by the lower arm 105.
  • the optical signal that is no longer able to be contained as it approaches the tip of the SSC structure 701 leaks out to the surrounding lower arm 105.
  • the leaked optical signal adiabatically transitions to the lower arm 105, making this optical transition process adiabatic and making it possible to more efficiently suppress the loss of optical energy.
  • the thickness of the core 201 and the thickness of the lower arm 105 are depicted as being different, and therefore the respective height centers are depicted as not coinciding. However, as shown in Figure 10, by aligning these height centers, it is possible to further suppress the coupling loss at the connection between the two.
  • FIG. 10 is a conceptual diagram showing the structure of the connection between the phase shifter 700 and the lower arm 105 in another form of the optical switch 800 according to the second embodiment of the present disclosure, where (a) shows a top view and (b) shows a cross-sectional view along the Xb-Xb cross-sectional line.
  • the core 201 of the phase shifter 700 is configured to be covered with an undercladding layer 1001 and an overcladding layer 1002.
  • the same material as that of the lower arm 105 is applied to each of the undercladding layer 1001 and the overcladding layer.
  • the core 201 and the lower arm 105 are butted together with their height centers aligned, and further, the undercladding layer 1001, the overcladding layer 1002, and the lower arm 105 are configured to be covered with the undercladding layer 801 and the overcladding layer 802.
  • the phase shifter 700 and the lower arm 105 have a configuration in which the waveguides having a "dual structure" are butt-connected.
  • the overcladding layer 1002 is depicted as covering parts of the core 201 other than the SSC structure 701, but as shown in FIG. 11, the overcladding layer 1002 may cover only the area corresponding to the SSC structure 701.
  • the process of forming or patterning a SiOx layer on the SSC structure 701 during manufacturing is not required, which has the advantage of reducing factors that deteriorate the circuit on the phase shifter 700 side.
  • the overcladding layer 1002 not only the overcladding layer 1002 but also the overcladding layer 802 may be formed only in the region corresponding to the SSC structure 701.
  • air plays the role of a cladding, so that the optical signal is confined within the core 201.
  • the thickness of the undercladding layer 801 and the overcladding layer 802 need only be such that the mode field of the optical signal is sufficiently contained therein.
  • the thickness of each layer may be approximately several tens of ⁇ m.
  • phase shifter and optical switch there is no upper limit to the cross-sectional size of each core, and it is also possible to make it a multi-mode optical waveguide that propagates multiple modes of light for the wavelength of the optical signal used. Also, by reducing the cross-sectional size of the core, it is possible to make it a single-mode optical waveguide that propagates only the lowest mode. Note that when the optical signal is single-mode, there are generally two methods for connecting cores together: adiabatic coupling and butt coupling. In the above explanation, the connection between the phase shifter and the optical switch has been described as being in the form of butt coupling, but this is not limited to this, and it may be adiabatic coupling or a combination of both.
  • phase shifter and optical switch according to the present disclosure can be manufactured by techniques used in existing optical circuit manufacturing methods.
  • a deposition method such as the flame volume deposition method can be used to form the SiOx layer
  • a deposition method such as the sputtering method can be used to form the Si layer.
  • Integration methods for optical circuits combining elements with different MFDs generally include hybrid integration, which combines separate substrates, and monolithic integration, which uses a single common substrate.
  • hybrid integration a process for accurately aligning the SSC structure 701 and the lower arm 105 (also called an alignment process) is required, which can increase manufacturing costs.
  • Si used for the core 201, as described above, the core is very thin, measuring several hundred nm, so there is a high requirement for alignment accuracy, and there is a problem that a high-precision alignment process requires very high costs.
  • monolithic integration is a manufacturing method in which different materials are integrated on the same substrate, and therefore the problems caused by such alignment processes are eliminated. From this perspective, it is desirable that the optical switch 800 according to this embodiment is formed by monolithic integration.
  • An optical switch according to this embodiment has a configuration in which a phase shifter is controlled by optical power supply.
  • phase shifters 200, 700 are described as being configured to control the injection and removal of charge into the core 201 by an external power source, but the phase shifters 200, 700 may also be controlled by optical power supply.
  • FIG. 13 is a top view conceptually illustrating the structure of a phase shifter 1300 according to a third embodiment of the present disclosure.
  • the phase shifter 1300 in this embodiment further includes an optical power supply device 1301 connected to electrical wiring 204a, b in addition to the configuration of the phase shifters 200, 700 described above (FIG. 13 illustrates the configuration of the phase shifter 200 as an example).
  • the optical power supply device 1301 includes a photodiode 1302 that receives a control signal light and converts it into an electrical signal, a boost circuit 1303 that boosts the electrical signal converted by the photodiode 1302, and a capacitor 1304 connected between the anode and cathode of the photodiode 1302, and the phase shifter 1300 is configured such that the electrical wiring 204a, b of the phase shifter 200 is connected between the boost circuit 1303 and the ground line GND.
  • the voltage Vc generated by storing charge in the capacitor 1304 is transmitted to the boost circuit 1003 as an electrical signal converted by the photodiode 1302.
  • the connection point between the anode of the photodiode 1302 and the capacitor 1304 is grounded.
  • a voltage (charging voltage) is generated by storing charge in the core 201 and electrode 203 of the phase shifter 200.
  • the phase shifter 1300 that operates on this principle can set and maintain the phase setting in the core 201 of the phase shifter 200 using only optical power supply, eliminating the need for an external power supply.
  • Optical waveguides have excellent integration properties, making it possible to integrate multiple phase shifters on a single chip.
  • a wavelength demultiplexer 1401 can be further disposed, as in the phase shifter device 1400 shown in FIG. 14, and the control signal light can be configured to be first input to the wavelength demultiplexer.
  • the phase shifter device 1400 having such a configuration can demultiplex multiple control signal lights having different wavelengths using the wavelength demultiplexer 1401, and input each of the demultiplexed control signal lights to a photodiode 1302 determined for each wavelength. This makes it possible to select a phase shifter according to the wavelength of the control signal light.
  • FIG. 14 illustrates a case where the phase shifter and the control signal light each have two wavelengths, this is not limited thereto, and three or more sets of phase shifters and control signal light wavelengths can be controlled in the same way. Also, by connecting multiple phase shifters in parallel, it is possible to control multiple phase shifters with one control signal light wavelength. In addition, it is also possible to assign multiple wavelengths of control signal light to one phase shifter by designing a wavelength demultiplexer, etc.
  • the wavelength demultiplexer 1401 can also be formed using a waveguide.
  • AWG Arrayed Waveguide Grating
  • the wavelength demultiplexer 1401 can also be formed using a waveguide.
  • phase shifter and optical switch disclosed herein are characterized by using the carrier plasma effect to control the refractive index by injecting and removing electric charges.
  • Phase shifters and optical switches with such characteristics do not require constant power supply, unlike conventional techniques for controlling the refractive index using heaters or the like. Therefore, they are expected to be applied to optical communication systems as phase shifters and optical switches that can reduce power consumption compared to conventional techniques.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

The present invention provides a phase shifter and an optical switch including the phase shifter, which are capable of maintaining a modulation state while achieving reduction in power consumption compared to the prior art. A phase shifter (200) according to the present disclosure is a waveguide phase shifter (200) comprising a core (201), a clad (202) covering the core (201), an electrode (203) extending in parallel to the optical axis direction of the core (201) and disposed in proximity to one side surface of the core (201), and electrical wirings (204a, 204b) disposed on respective side surfaces of the core (201) and the electrode (203) substantially in perpendicular to the optical axis direction of the core (201). Furthermore, the optical switch (100) according to the present disclosure includes the phase shifter (200) in at least one of an upper arm (104) and a lower arm (105).

Description

位相シフタ及び光スイッチPhase shifter and optical switch
 本開示は、位相シフタ及び光スイッチに関する。 This disclosure relates to a phase shifter and an optical switch.
 導波路型光スイッチは光通信システムのキーデバイスであり、柔軟な光通信ネットワークを実現できるという特徴を有することから、光通信ネットワーク内で広く採用されている。代表的な導波路型光スイッチの構成としては、マッハツェンダー干渉計(Mach-Zehnder Interferometer:以下、MZIという)と位相シフタを組み合わせた構成が挙げられ、このような構成を有する導波路型光スイッチは、光通信ネットワークにおいて実用化が進んでいる。 Waveguide-type optical switches are key devices in optical communication systems, and are widely used within optical communication networks due to their ability to realize flexible optical communication networks. A typical configuration of a waveguide-type optical switch is one that combines a Mach-Zehnder interferometer (hereinafter referred to as MZI) with a phase shifter, and waveguide-type optical switches with this configuration are being put to practical use in optical communication networks.
 図1は、従来技術による、MZIと位相シフタを組み合わせた導波路型光スイッチ100の構造を概念的に示す上面図である。図1に示される通り、導波路型光スイッチ100は、入力側導波路101a、bと、出力側導波路102a、bと、入力側導波路101a、bに接続されるカプラ103aと、出力側導波路102a、bに接続されるカプラ103bと、カプラ103a、bと接続される、上部アーム104及び下部アーム105と、下部アーム105に接続され、伝搬する光信号の位相を変調させる位相シフタ106と、を含む。尚、ここでは図示されていないが、導波路型光スイッチ100は、基板と当該基板上に形成されたクラッドも含み、光信号が伝搬するコアとなる領域(入力側導波路101a、b、出力側導波路102a、b、上部アーム104、及び、下部アーム105)は、当該クラッドに埋め込まれた構造を有している。 1 is a top view conceptually showing the structure of a waveguide-type optical switch 100 that combines an MZI and a phase shifter according to the prior art. As shown in Fig. 1, the waveguide-type optical switch 100 includes input waveguides 101a, b, output waveguides 102a, b, a coupler 103a connected to the input waveguides 101a, b, a coupler 103b connected to the output waveguides 102a, b, an upper arm 104 and a lower arm 105 connected to the couplers 103a, b, and a phase shifter 106 connected to the lower arm 105 and modulating the phase of the propagating optical signal. Although not shown here, the waveguide-type optical switch 100 also includes a substrate and a cladding formed on the substrate, and the core region through which the optical signal propagates (input side waveguides 101a, b, output side waveguides 102a, b, upper arm 104, and lower arm 105) has a structure embedded in the cladding.
 このような構成を有する導波路型光スイッチ100は、MZIでの干渉条件を決定する上部アーム104と下部アーム105のそれぞれを通過した光信号の位相差を、位相シフタ106で制御することにより、出力導波路を切り替えることが可能である(例えば、非特許文献1参照)。例えば、上部アーム104と下部アーム105の光路長が同一であり、位相シフタ106における位相変調量が0である場合、入力側導波路101aから入力された光信号は、出力側導波路102bから出力される(クロス状態)。一方、位相シフタ106において光信号の位相がπ変化した場合は、干渉状態が変化し、入力側導波路101aから入力された光信号は、出力側導波路102aから出力される(スルー状態)。 The waveguide-type optical switch 100 having such a configuration can switch the output waveguide by controlling the phase difference of the optical signals passing through the upper arm 104 and the lower arm 105, which determines the interference condition in the MZI, with the phase shifter 106 (see, for example, Non-Patent Document 1). For example, when the optical path lengths of the upper arm 104 and the lower arm 105 are the same and the phase modulation amount in the phase shifter 106 is 0, the optical signal input from the input side waveguide 101a is output from the output side waveguide 102b (cross state). On the other hand, when the phase of the optical signal changes by π in the phase shifter 106, the interference state changes and the optical signal input from the input side waveguide 101a is output from the output side waveguide 102a (through state).
 一般に、光導波路に用いられる材料は、シリコン酸化物(SiOx)やシリコン(Si)であり得る。コア及びクラッドの両方にSiOxが用いられる場合は、通常、コアに用いられるSiOxにドーパントを添加することでコアの屈折率を高くすることにより、光信号をコアに閉じ込めるよう構成される。一方、コアにSiを用いる場合、クラッドには、Siよりも屈折率が低いSiOxを用いることが一般的である。 In general, materials used for optical waveguides can be silicon oxide (SiOx) or silicon (Si). When SiOx is used for both the core and cladding, a dopant is usually added to the SiOx used for the core to increase the refractive index of the core, thereby confining the optical signal to the core. On the other hand, when Si is used for the core, SiOx, which has a lower refractive index than Si, is generally used for the cladding.
 このような、SiOxやSiを用いた光導波路用の位相シフタとして広く採用されているのが、熱光学位相シフタである。熱光学位相シフタでは、ヒータ等の加熱機構によりコアの一部を局所的に加熱し、加熱された領域の屈折率を変化させることで光路長を変化させ、コアを伝搬する光信号の位相を変化させる位相シフタである。このように、物質の屈折率が温度に依存して変化する現象は、一般に、熱光学効果と呼ばれる(換言すれば、熱光学位相シフタは、熱光学効果を利用して光信号の位相を変化させる素子である)。 Thermo-optic phase shifters are widely used as phase shifters for optical waveguides using SiOx or Si. Thermo-optic phase shifters use a heating mechanism such as a heater to locally heat part of the core, changing the refractive index of the heated area to change the optical path length and thus the phase of the optical signal propagating through the core. This phenomenon in which the refractive index of a material changes depending on the temperature is generally called the thermo-optic effect (in other words, a thermo-optic phase shifter is an element that uses the thermo-optic effect to change the phase of an optical signal).
 熱光学位相シフタは、上述の通り、温度による屈折率変化を利用しているため、位相シフタの変調状態を維持するために、ヒータ等の制御により、加熱対象となる領域を所定の温度で保持する必要がある。このため、ヒータ等は常時通電される必要があり、それに伴って消費電力が大きくなるという課題がある。 As mentioned above, thermo-optic phase shifters use the change in refractive index caused by temperature, so in order to maintain the modulation state of the phase shifter, it is necessary to keep the area to be heated at a specified temperature by controlling a heater or other device. This means that the heater or other device needs to be constantly powered, which poses the problem of increased power consumption.
特開2017-9803号公報JP 2017-9803 A 特開2018-6915号公報JP 2018-6915 A 特開2018-10064号公報JP 2018-10064 A 国際公開第2022/044101号International Publication No. 2022/044101
 本開示は、上記のような課題に対して鑑みてなされたものであり、その目的とするところは、従来技術に比べ、消費電力の低減を実現しながらも、変調状態を維持することが可能な位相シフタ及び当該位相シフタを含む光スイッチを提供することにある。 The present disclosure has been made in consideration of the above-mentioned problems, and its purpose is to provide a phase shifter and an optical switch including the phase shifter that can maintain the modulation state while achieving reduced power consumption compared to conventional techniques.
 上記のような課題に対し、本開示では、導波路型の位相シフタであって、コアと、コアを覆うクラッドと、コアの光軸方向に対して平行方向に延在し、且つコアの一方の側面近傍に配置される電極と、コアの光軸方向に対して略垂直に、且つコアの側面及び電極の側面の各々に配置される電気配線と、を含む位相シフタ、及び当該位相シフタを上部アーム及び下部アームの少なくとも一方に含む光スイッチを提供する。 In response to the above-mentioned problems, the present disclosure provides a phase shifter that is a waveguide type phase shifter including a core, a cladding that covers the core, an electrode that extends parallel to the optical axis direction of the core and is arranged near one side of the core, and electrical wiring that is approximately perpendicular to the optical axis direction of the core and is arranged on each of the side of the core and the side of the electrode, and an optical switch that includes the phase shifter in at least one of the upper arm and the lower arm.
従来技術による、MZIと位相シフタを組み合わせた導波路型光スイッチ100の構造を概念的に示す上面図である。FIG. 1 is a top view conceptually showing the structure of a waveguide-type optical switch 100 in which an MZI and a phase shifter are combined according to a conventional technique. 本開示の第1の実施形態による位相シフタ200の構造を概念的に示す図であり、(a)は上面図を、(b)はIIb-IIb断面線における断面図を、それぞれ示している。2A and 2B are diagrams conceptually illustrating a structure of a phase shifter 200 according to a first embodiment of the present disclosure, in which FIG. 2A is a top view and FIG. 2B is a cross-sectional view taken along line IIb-IIb. 本開示の第1の実施形態による位相シフタ200において、コア201と電極203が並行平板コンデンサとして機能する様相を概念的に示す図である。2 is a diagram conceptually illustrating how a core 201 and an electrode 203 function as a parallel plate capacitor in the phase shifter 200 according to the first embodiment of the present disclosure. FIG. 本開示の第1の実施形態による位相シフタ200の別の形態の構造を概念的に示す図であり、(a)は上面図を、(b)はIVb-IVb断面線における断面図を、それぞれ示している。4A and 4B are diagrams conceptually illustrating a structure of another form of the phase shifter 200 according to the first embodiment of the present disclosure, in which (a) is a top view and (b) is a cross-sectional view taken along the line IVb-IVb. 本開示の第1の実施形態による位相シフタ200を用いた光スイッチ500の構造を概念的に示す上面図である。FIG. 2 is a top view conceptually illustrating a structure of an optical switch 500 using the phase shifter 200 according to the first embodiment of the present disclosure. 本開示の第1の実施形態による光スイッチ500に対し、位相シフタ200を配置する際に必要となるエッチングの領域を示した図である。FIG. 13 is a diagram showing an etching region required when disposing a phase shifter 200 on the optical switch 500 according to the first embodiment of the present disclosure. 本開示の第2の実施形態による位相シフタ700の構造を概念的に示す図であり、(a)は上面図を、(b)はVIIb-VIIb断面線における断面図を、それぞれ示している。7A and 7B are diagrams conceptually illustrating a structure of a phase shifter 700 according to a second embodiment of the present disclosure, in which (a) is a top view and (b) is a cross-sectional view taken along the line VIIb-VIIb. 本開示の第2の実施形態による光スイッチ800の構造を概念的に示す図であり(a)は、全体構造を示す上面図を、(b)は位相シフタ700のSSC構造701と、下部アーム105との接続部の拡大図を、(c)はVIIIc-VIIIc断面線における断面図を、それぞれ示している。8A and 8B are diagrams conceptually illustrating the structure of an optical switch 800 according to a second embodiment of the present disclosure, in which (a) is a top view showing the overall structure, (b) is an enlarged view of the connection between an SSC structure 701 of a phase shifter 700 and a lower arm 105, and (c) is a cross-sectional view along the VIIIc-VIIIc cross-sectional line. 本開示の第2の実施形態による光スイッチ800の別形態の構造を概念的に示す図であり、(a)は位相シフタ700のSSC構造701と、下部アーム105との接続部の拡大図を、(b)はIXb-IXb断面線における断面図を、それぞれ示している。9A and 9B are conceptual diagrams showing another structure of the optical switch 800 according to the second embodiment of the present disclosure, in which (a) shows an enlarged view of the connection between the SSC structure 701 of the phase shifter 700 and the lower arm 105, and (b) shows a cross-sectional view along the IXb-IXb cross-sectional line. 本開示の第2の実施形態による光スイッチ800の別の形態における、位相シフタ700と下部アーム105との接続部の構造を概念的に示す図であり、(a)は上面図を、(b)はXb-Xb断面線における断面図をそれぞれ示している。10A and 10B are diagrams conceptually illustrating the structure of the connection portion between the phase shifter 700 and the lower arm 105 in another form of the optical switch 800 according to the second embodiment of the present disclosure, where (a) is a top view and (b) is a cross-sectional view along the Xb-Xb cross-sectional line. 本開示の第2の実施形態による光スイッチ800の別の形態における、位相シフタ700と下部アーム105との接続部の構造を概念的に示す図であり、(a)は上面図を、(b)はXIb-XIb断面線における断面図をそれぞれ示している。10A and 10B are diagrams conceptually illustrating the structure of the connection portion between the phase shifter 700 and the lower arm 105 in another form of the optical switch 800 according to the second embodiment of the present disclosure, where (a) is a top view and (b) is a cross-sectional view along the XIb-XIb cross-sectional line. 本開示の第2の実施形態による光スイッチ800の別の形態における、位相シフタ700と下部アーム105との接続部の構造を概念的に示す図であり、(a)は上面図を、(b)はXIIb-XIIb断面線における断面図をそれぞれ示している。10A and 10B are diagrams conceptually illustrating the structure of the connection portion between the phase shifter 700 and the lower arm 105 in another form of the optical switch 800 according to the second embodiment of the present disclosure, where (a) is a top view and (b) is a cross-sectional view along the XIIb-XIIb cross-sectional line. 本開示の第3の実施形態による位相シフタ1300の構造を概念的に示す上面図である。FIG. 13 is a top view conceptually illustrating a structure of a phase shifter 1300 according to a third embodiment of the present disclosure. 本開示の第3の実施形態による位相シフタ装置1400の構造を概念的に示す上面図である。FIG. 14 is a top view conceptually illustrating a structure of a phase shifter device 1400 according to a third embodiment of the present disclosure.
 以下に、図面を参照しながら本開示の種々の実施形態について詳細に説明する。同一又は類似の参照符号は同一又は類似の要素を示し重複する説明を省略する場合がある。材料及び数値は例示を目的としており本開示の技術的範囲の限定を意図していない。以下の説明は、一例であって本開示の一実施形態の要旨を逸脱しない限り、一部の構成を省略若しくは変形し、又は追加の構成とともに実施することができる。 Various embodiments of the present disclosure will be described in detail below with reference to the drawings. The same or similar reference symbols indicate the same or similar elements, and duplicate descriptions may be omitted. Materials and numerical values are for illustrative purposes and are not intended to limit the technical scope of the present disclosure. The following description is an example, and some configurations may be omitted or modified, or additional configurations may be added, as long as they do not deviate from the gist of an embodiment of the present disclosure.
 本開示による位相シフタは、コアとクラッドを有する導波路型の位相シフタであって、コアの光軸方向に対して平行方向に延在し、且つコアの片側の側面近傍に配置される電極と、コアの光軸方向に対して略垂直に、且つコアのもう一方側の側面近傍及び電極のコアと隣接していない側の側面近傍に配置される電気配線と、を含む。 The phase shifter according to the present disclosure is a waveguide-type phase shifter having a core and a cladding, and includes an electrode extending parallel to the optical axis direction of the core and disposed near one side of the core, and electrical wiring disposed approximately perpendicular to the optical axis direction of the core and near the other side of the core and near the side of the electrode not adjacent to the core.
 このように構成された本開示による位相シフタにおいて、電気配線を介してコアと電極との間に電位差を発生させると、当該コアと当該電極は並行平板コンデンサとして機能するため、各々に電荷が注入、蓄積される。この電荷の注入により、プラズマキャリア効果が発生することでコアの屈折率が変化する。本開示による位相シフタは、このような現象を利用することで、光信号の位相を制御することが可能となる。 In the phase shifter according to the present disclosure configured in this manner, when a potential difference is generated between the core and the electrode via electrical wiring, the core and the electrode function as parallel plate capacitors, and charge is injected and accumulated in each. This injection of charge causes a plasma carrier effect, which changes the refractive index of the core. By utilizing this phenomenon, the phase shifter according to the present disclosure is able to control the phase of an optical signal.
(第1の実施形態)
 以下に、本開示の第1の実施形態について、図面を参照して詳細に説明する。本実施形態における位相シフタは、導波路型光スイッチに配置される位相シフタであって、当該光スイッチの位相シフタ以外のコアには、Si等の半導体が用いられる。
(First embodiment)
Hereinafter, a first embodiment of the present disclosure will be described in detail with reference to the drawings. A phase shifter in this embodiment is a phase shifter disposed in a waveguide-type optical switch, and a semiconductor such as Si is used for a core other than the phase shifter of the optical switch.
(位相シフタの構成)
 図2は、本開示の第1の実施形態による位相シフタ200の構造を概念的に示す図であり、(a)は上面図を、(b)はIIb-IIb断面線における断面図を、それぞれ示している。図2に示される通り、位相シフタ200は、コア201と、コア201の周囲を覆うクラッド202と、コア201の光軸方向に対して平行方向に延在し、且つコア201の一方の側面近傍に配置される電極203と、コア201の光軸方向に対して略垂直に、且つコア201の側面及び電極203の側面に配置された電気配線204a、bと、を含む。電気配線204a、bは、外部電源に接続されており、電圧が印加できるように構成されている。また、コア201と電極203との間は、クラッド202が含まれるように構成されている。
(Configuration of Phase Shifter)
2 is a diagram conceptually illustrating the structure of a phase shifter 200 according to the first embodiment of the present disclosure, in which (a) is a top view and (b) is a cross-sectional view taken along the line IIb-IIb. As shown in FIG. 2, the phase shifter 200 includes a core 201, a cladding 202 surrounding the core 201, an electrode 203 extending parallel to the optical axis direction of the core 201 and disposed near one side of the core 201, and electrical wiring 204a, b disposed approximately perpendicular to the optical axis direction of the core 201 and on the side of the core 201 and the side of the electrode 203. The electrical wiring 204a, b is connected to an external power source and configured to be able to apply a voltage. Also, the cladding 202 is configured to be included between the core 201 and the electrode 203.
 このように構成された本実施形態による位相シフタ200において、電気配線204a、bを介してコア201と電極203との間に電位差を発生させると、当該コア201と当該電極203は並行平板コンデンサとして機能するため、図3に示されるように、各々に電荷が注入、蓄積される(図3において、「e-」は電子を表している)。一方、位相シフタ200において、コア201と電極203との間に印加される電場を0(定電位)とすれば、コア201内に蓄積された電荷は元に戻る。この様にして、電子密度の変化によりキャリアプラズマ効果が発生し、コア201の屈折率が変化する。そして、これに伴い、コア201を伝搬する光信号の光路長が変化するため、結果として、光信号の位相が変化する位相シフタとして機能する。このとき、電荷が移動している時間以外は、位相シフタ200には電流が流れないため、位相シフト状態を維持するのに必要な電力を大幅に削減することが可能となる。 In the phase shifter 200 according to the present embodiment configured as described above, when a potential difference is generated between the core 201 and the electrode 203 via the electric wiring 204a, b, the core 201 and the electrode 203 function as parallel plate capacitors, and thus, as shown in FIG. 3, electric charges are injected and accumulated in each of them (in FIG. 3, "e - " represents electrons). On the other hand, in the phase shifter 200, if the electric field applied between the core 201 and the electrode 203 is set to 0 (constant potential), the electric charges accumulated in the core 201 return to their original state. In this way, the carrier plasma effect occurs due to the change in electron density, and the refractive index of the core 201 changes. Then, the optical path length of the optical signal propagating through the core 201 changes accordingly, and as a result, the phase shifter functions as a phase shifter that changes the phase of the optical signal. At this time, no current flows in the phase shifter 200 except during the time when the electric charges are moving, so that it is possible to significantly reduce the power required to maintain the phase shift state.
 導波路の動作原理を考慮すると、コア201はクラッド202よりも高い屈折率を有する必要がある。また、コア201と電極203の間に蓄積された電荷が通過しないよう、クラッド102は高い絶縁性を有する材料であることが望ましい。したがって、位相シフタ200では、例えばコア201にSiを用いたとすると、クラッド202にはSiより低い屈折率を有し、且つ高い絶縁性を有する材料(例えば、SiOx)を用いることで、上記の様な構成を実現することができる。また、コア201にSiのような半導体が用いられる場合には、電極203及び電気配線204a、bにもコア201と同じ材料を適用することが可能である。このような電極203及び電気配線204a、bとコア201に同一の材料を用いる構成では、製造上で異なる材料の成膜等のプロセスを省略することが可能である。例えば、コア201がSi、電極203も、電気配線204a、bもSiとすることで、製造の際、コア201、電極203及び電気配線204a、bを同時に形成することが可能となる。加えて、上述の通り、電荷注入の観点から電気配線204a、bは高い導電性を有することが望ましいため、電気配線204a、bに用いられるSiは、ボロン(B)やリン(P)などがドープされることによって、導電率がさらに向上されてもよい。 Considering the operating principle of the waveguide, the core 201 needs to have a higher refractive index than the clad 202. In addition, it is desirable that the clad 102 is a material with high insulating properties so that the charge accumulated between the core 201 and the electrode 203 does not pass. Therefore, in the phase shifter 200, for example, if the core 201 is made of Si, the above-mentioned configuration can be realized by using a material (e.g., SiOx) that has a lower refractive index than Si and has high insulating properties for the clad 202. In addition, when a semiconductor such as Si is used for the core 201, the same material as the core 201 can be applied to the electrode 203 and the electrical wiring 204a, b. In such a configuration in which the same material is used for the electrode 203, the electrical wiring 204a, b, and the core 201, it is possible to omit processes such as film formation of different materials during manufacturing. For example, by using Si for the core 201, and Si for the electrode 203 and the electrical wiring 204a, b, it is possible to simultaneously form the core 201, the electrode 203, and the electrical wiring 204a, b during manufacturing. In addition, as mentioned above, it is desirable for the electrical wiring 204a, b to have high conductivity from the viewpoint of charge injection, so the conductivity of the Si used for the electrical wiring 204a, b may be further improved by doping it with boron (B) or phosphorus (P).
 また、コンデンサとしてのキャパシタンスを大きくすることにより、小さい電位差でも大きな電荷密度変動を生むことが可能となる。このため、クラッド202は高い誘電率を有する材料(例えば、窒化ケイ素(SiN))が適用されてもよい。 In addition, by increasing the capacitance of the capacitor, it is possible to generate large variations in charge density even with a small potential difference. For this reason, the cladding 202 may be made of a material with a high dielectric constant (e.g., silicon nitride (SiN)).
 尚、図2では、電極203は、コア201とウエハの主面に対して平行方向に隣接し、クラッド202内に埋め込まれるように配置されるように描写されているが、図4に示されるように、ウエハの主面に対して垂直方向に隣接させ、クラッド202の表面上に配置されてもよい。電極203及び電気配線204a、bは、抵抗の高い電荷移動時の消費電力向上などの問題がありことから、電気抵抗の低い金属等で構成され得る。しかしながら、コア201と同様にクラッド202に電気配線204a、bを埋め込む場合、電気配線204a、bのパタン形成後にクラッド202を形成する必要がある。このような方法で位相シフタ200を作製すると、電気配線204a、bの金属がクラッド202やコア201内に拡散する可能性があり、光信号の損失要因になり得る。図4に示される構成では、電極203および電極203に接続される電気配線204a、bは、クラッド202形成後に形成することが可能なため、このような金属の拡散による光信号の損失を抑制できる効果を奏する。 2, the electrode 203 is depicted as being adjacent to the core 201 in a direction parallel to the main surface of the wafer and embedded in the clad 202, but as shown in FIG. 4, it may be adjacent to the main surface of the wafer in a direction perpendicular to the main surface of the wafer and disposed on the surface of the clad 202. The electrode 203 and the electrical wiring 204a, b may be made of a metal with low electrical resistance, etc., because of problems such as increased power consumption during charge transfer with high resistance. However, when the electrical wiring 204a, b is embedded in the clad 202 as in the core 201, it is necessary to form the clad 202 after forming the pattern of the electrical wiring 204a, b. When the phase shifter 200 is manufactured in this manner, the metal of the electrical wiring 204a, b may diffuse into the clad 202 or the core 201, which may cause loss of optical signals. In the configuration shown in FIG. 4, the electrode 203 and the electrical wiring 204a, b connected to the electrode 203 can be formed after the cladding 202 is formed, which has the effect of suppressing the loss of optical signals due to such metal diffusion.
(光スイッチの構成)
 図5は、本開示の第1の実施形態による位相シフタ200を用いた光スイッチ500の構造を概念的に示す上面図である。図5に示される通り、光スイッチ500は、図1に示される従来技術による導波路型光スイッチ100の位相シフタが、上述した位相シフタ200であるような構成を有する。ここで、カプラ103a、bは、例えば方向性結合器(DC)であり得る。
(Configuration of optical switch)
Fig. 5 is a top view conceptually illustrating a structure of an optical switch 500 using the phase shifter 200 according to the first embodiment of the present disclosure. As shown in Fig. 5, the optical switch 500 has a configuration in which the phase shifter of the waveguide-type optical switch 100 according to the conventional technology shown in Fig. 1 is the above-mentioned phase shifter 200. Here, the couplers 103a and 103b can be, for example, directional couplers (DC).
 このような構成を有する光スイッチ500において、入力側導波路101a、bのいずれか一方から入力された光信号は、カプラ103aにより上部アーム104及び下部アーム105の両方に分配されてそれぞれを伝搬する。その後、当該光信号は、カプラ103bで再度合流し、2つの出力側導波路102a、bから出力される。上部アーム104と下部アーム105の各々の光路長に差が設けられていれば、カプラ103bで合流した際の干渉状態が変化し、出力される光の強度比が変化する。 In the optical switch 500 having such a configuration, an optical signal input from either one of the input waveguides 101a, b is distributed by the coupler 103a to both the upper arm 104 and the lower arm 105 and propagates through each. The optical signal is then rejoined by the coupler 103b and output from the two output waveguides 102a, b. If there is a difference in the optical path length of each of the upper arm 104 and the lower arm 105, the interference state when the signals are joined at the coupler 103b changes, and the intensity ratio of the output light changes.
 本実施形態による光スイッチ500では、上部アーム104又は下部アーム105の少なくとも一方に、上述した位相シフタ200が配置されている。この位相シフタ200が、キャリアプラズマ効果を利用した光信号の位相変調をすることにより、出力側導波路102a、bから出力される光信号の出力強度及び出力比率を制御することが可能となる。例えば、上部アーム104と下部アーム105の光路長が同じである場合、位相シフタ200における位相変調量が0であればクロス状態となり、位相シフタ200における位相変調量がπであればスルー状態に変化する。それ以外の場合には、位相シフタ200における位相変調量に合わせてスルー状態とクロス状態の中間状態をとり、出力側導波路102a、bの両方から位相変調量に対応した比率に分配されて出力される。即ち、光スイッチ500は、出力される光信号の分岐比を可変とするカプラ/スプリッタや出力強度を制御する可変光アテネータ(VOA)としても機能することが可能である。 In the optical switch 500 according to this embodiment, the above-mentioned phase shifter 200 is disposed in at least one of the upper arm 104 or the lower arm 105. This phase shifter 200 performs phase modulation of the optical signal using the carrier plasma effect, making it possible to control the output intensity and output ratio of the optical signal output from the output side waveguides 102a, b. For example, when the optical path lengths of the upper arm 104 and the lower arm 105 are the same, if the phase modulation amount in the phase shifter 200 is 0, it becomes a cross state, and if the phase modulation amount in the phase shifter 200 is π, it changes to a through state. In other cases, it takes an intermediate state between the through state and the cross state according to the phase modulation amount in the phase shifter 200, and is distributed and output from both the output side waveguides 102a, b at a ratio corresponding to the phase modulation amount. In other words, the optical switch 500 can also function as a coupler/splitter that changes the branching ratio of the output optical signal and a variable optical attenuator (VOA) that controls the output intensity.
 図5では、位相シフタ200は、下部アーム105に配置されている形態が描写されているが、これは例示を目的としており、上部アーム104に配置されても、上部アーム104及び下部アーム105の両方に配置されても構わない。光信号の干渉状態を制御するという観点では、上部アーム104又は下部アーム105の一方に位相シフタ200を配置する、或いは、上部アーム104及び下部アーム105の両方に設置された位相シフタ200のどちらか一方を制御するのみでよい。一方、経路毎に異なる偏波特性を持つように抑制するなどの効果を持たせるためには、上部アーム104及び下部アーム105の両方を制御する必要がある。 In FIG. 5, the phase shifter 200 is depicted as being disposed in the lower arm 105, but this is for illustrative purposes only, and the phase shifter 200 may be disposed in the upper arm 104, or in both the upper arm 104 and the lower arm 105. From the viewpoint of controlling the interference state of the optical signal, it is sufficient to dispose the phase shifter 200 in either the upper arm 104 or the lower arm 105, or to control only one of the phase shifters 200 installed in both the upper arm 104 and the lower arm 105. On the other hand, in order to achieve an effect such as suppressing the polarization characteristics so that each path has different characteristics, it is necessary to control both the upper arm 104 and the lower arm 105.
(位相シフタの配置方法)
 光導波波路をウエハ上に成膜した誘電体膜に埋め込むように光スイッチ500を形成する場合、ウエハ面に対して垂直方向に電気接続(電気配線204a、bとウエハ外部にある外部電源との接続)を行うためには、多層構造でパタンを形成する必要がある。しかしながら、多層構造でパタンを形成する場合、加工が困難になるとともに、エッチング等によるパタン形成とそのパタン上への成膜、さらに平坦化加工が必要になる等、工数の増加が生じ得る。このような工数の増加は、製造コストの増加や製造LTの長期化の原因となるため、当該電気接続は、ウエハ面に対して平行な同一平面上に形成することが望ましい。
(Phase shifter arrangement method)
When forming the optical switch 500 so as to embed the optical waveguide in a dielectric film formed on a wafer, it is necessary to form a pattern in a multi-layer structure in order to make an electrical connection (connection between the electrical wiring 204a, b and an external power source outside the wafer) in a direction perpendicular to the wafer surface. However, when forming a pattern in a multi-layer structure, processing becomes difficult and the number of steps may increase, such as the need to form a pattern by etching or the like, form a film on the pattern, and further flatten the pattern. Such an increase in the number of steps leads to an increase in manufacturing costs and a longer manufacturing lead time, so it is desirable to form the electrical connection on the same plane parallel to the wafer surface.
 一方、電気配線204a、bにも抵抗があるため、電流が流れると電圧降下が発生する。このような観点から、上述したトンネル効果の効率を向上させるため、外部電源と電気配線204a、bとの電気的な接続は、可能な限り位相シフタ200に近い位置で行うことが望ましい。このような観点から、本実施形態による光スイッチ500に対する位相シフタ200の配置においては、図6に示されるように、電気配線204a、bが存在し、かつコア(例えば、上部アーム104や下部アーム105等)が存在しない領域601a、bをエッチングすることにより、コアと同一平面内にある電気配線204a、bを露出することを含む。このような配置方法とすることにより、製造コストの増加や製造LTの長期化を抑制しながらも、高効率で電荷の注入及び除去が可能な光スイッチ500を作製することができる。 On the other hand, since the electrical wiring 204a, b also has resistance, a voltage drop occurs when a current flows. From this perspective, in order to improve the efficiency of the above-mentioned tunnel effect, it is desirable to electrically connect the external power source and the electrical wiring 204a, b as close to the phase shifter 200 as possible. From this perspective, the arrangement of the phase shifter 200 with respect to the optical switch 500 according to this embodiment includes exposing the electrical wiring 204a, b in the same plane as the core by etching the regions 601a, b where the electrical wiring 204a, b exists and where the core (e.g., the upper arm 104 and the lower arm 105, etc.) does not exist, as shown in FIG. 6. By using such an arrangement method, it is possible to manufacture an optical switch 500 that can inject and remove charges with high efficiency while suppressing increases in manufacturing costs and prolonged manufacturing LT.
 例えば、図6(a)に示される通り、位相シフタ200の近傍であり、且つコアのない領域として、上部アーム104と下部アーム105の中央に位置する領域601aが挙げられる。この領域601aに至るまで電気配線204aを形成し、領域601aをエッチングすることで、電気配線204aを露出することができる。その後、当該領域601aに、例えば金属などを充填すれば、外部電源との電気接続が可能となる。 For example, as shown in FIG. 6(a), an example of a region near the phase shifter 200 and without a core is region 601a located at the center of the upper arm 104 and the lower arm 105. By forming electrical wiring 204a up to this region 601a and etching region 601a, it is possible to expose electrical wiring 204a. If region 601a is then filled with, for example, a metal, it becomes possible to electrically connect to an external power source.
 設計に応じては、領域601aに相当する範囲が狭く、エッチングが施工できない場合もある。そのような場合には、図6(b)に示される通り、位相シフタ200が配置されていない側(図6(b)における、上部アーム104側)を跨いで電気配線204aを形成し、上部アーム104の外側に位置する領域601bをエッチング領域としても、同様の効果が得られる。このような場合、電気配線204aが上部アーム104を伝搬する光信号に与える影響を最小限にすることが望ましい。 Depending on the design, the area corresponding to region 601a may be narrow and etching may not be possible. In such a case, as shown in FIG. 6(b), the electrical wiring 204a may be formed across the side where the phase shifter 200 is not arranged (the upper arm 104 side in FIG. 6(b)), and the etching area may be made in region 601b located outside the upper arm 104, with the same effect being obtained. In such a case, it is desirable to minimize the effect that the electrical wiring 204a has on the optical signal propagating through the upper arm 104.
 また、位相シフタ200が、図4に示されるような構成とすれば、電極203の電気的な接続は、クラッド202上で実施することが可能となる。 Furthermore, if the phase shifter 200 is configured as shown in FIG. 4, the electrical connection of the electrode 203 can be made on the clad 202.
(第2の実施形態)
 以下に、本開示の第1の実施形態について、図面を参照して詳細に説明する。本実施形態における位相シフタは、導波路型光スイッチに配置される位相シフタであって、当該光スイッチの位相シフタ以外のコアには、SiOxが用いられる形態を有する。
Second Embodiment
Hereinafter, a first embodiment of the present disclosure will be described in detail with reference to the drawings. A phase shifter in this embodiment is a phase shifter disposed in a waveguide-type optical switch, and SiOx is used for a core other than the phase shifter of the optical switch.
(位相シフタの構成)
 一般に、SiOxをコアに用いた光導波路は、伝搬における損失および光ファイバとの接続損失が小さいという特徴を有する。しかしながら、SiOxはバンドギャップエネルギーが高く、また、SiOxをコアに用いた導波路では、クラッドにもSiOxを用いることが多い。このため、上述した位相シフタ200のコアにSiOxを用いた場合、当該コア201に電子を留め、電荷を閉じ込めることは困難である。したがって、本開示による光スイッチ500では、光スイッチ500の位相シフタ200以外のコア(例えば、上部アーム104や下部アーム105等)にSiOxが適用された場合であったとしても、位相シフタ200におけるコア201は、SiやSiNのようなバンドギャップエネルギーが低い材料が適用されることが望ましい。
(Phase shifter configuration)
In general, an optical waveguide using SiOx as a core has a characteristic that the loss in propagation and the connection loss with an optical fiber are small. However, SiOx has a high band gap energy, and in a waveguide using SiOx as a core, SiOx is often used for the cladding as well. For this reason, when SiOx is used for the core of the above-mentioned phase shifter 200, it is difficult to keep electrons in the core 201 and confine the charge. Therefore, in the optical switch 500 according to the present disclosure, even if SiOx is used for the core other than the phase shifter 200 of the optical switch 500 (for example, the upper arm 104 and the lower arm 105, etc.), it is desirable to use a material with a low band gap energy such as Si or SiN for the core 201 in the phase shifter 200.
 しかしながら、光導波路回路では、一般に、部分的にコアの屈折率を変化させると、屈折率が変化する境界(遷移領域)において、モード結合による損失が発生する。そのため、上記の様な位相シフタ200のコア201のみに異なる材料を用いる場合、コア201とSiOxが用いられるコアとの境界が、屈折率変化を伴う遷移領域となる。したがって、当該遷移領域では、モードが断熱的に変化させるように構成されていることが望ましい。本実施形態による位相シフタは、このような観点から、位相シフタ200の構成に加え、コア201が遷移領域となる部分にスポットサイズ変換構造(Spot-Size Converter:以下、SSCという)をさらに含む。 However, in optical waveguide circuits, when the refractive index of the core is partially changed, loss due to mode coupling occurs at the boundary (transition region) where the refractive index changes. Therefore, when a different material is used only for the core 201 of the phase shifter 200 described above, the boundary between the core 201 and the core in which SiOx is used becomes a transition region accompanied by a change in refractive index. Therefore, it is desirable to configure the transition region so that the mode changes adiabatically. From this perspective, in addition to the configuration of the phase shifter 200, the phase shifter according to this embodiment further includes a spot-size converter structure (hereinafter referred to as SSC) in the part where the core 201 becomes the transition region.
 図7は、本開示の第2の実施形態による位相シフタ700の構造を概念的に示す図であり、(a)は上面図を、(b)はVIIb-VIIb断面線における断面図を、それぞれ示している。上述の通り、また図7に示される通り、位相シフタ700は、位相シフタ200の構成において、コア201の先端が、SSC構造701をさらに含む。このSSC構造701が形成される領域が、上述の遷移領域に対応する。 FIG. 7 is a conceptual diagram showing the structure of a phase shifter 700 according to a second embodiment of the present disclosure, where (a) shows a top view and (b) shows a cross-sectional view along the VIIb-VIIb cross-sectional line. As described above and as shown in FIG. 7, in the phase shifter 700, the tip of the core 201 in the configuration of the phase shifter 200 further includes an SSC structure 701. The region in which this SSC structure 701 is formed corresponds to the transition region described above.
 一般に、光素子同士を接続する場合、接続点における損失を低減する上では、光素子内を伝搬する光のモードフィールドを合わせることが重要である。二つの光素子を突合わせて接続させた場合、伝搬する光信号の結合効率は両者のモードフィールドの重なり積分によって決定される。コアがSiである場合のモードフィールド径(Mode Field Diameter:以下、MFDという)は300nm程度、一方、SiOxの場合は数μmであるため、このMFDの不整合よって大きな結合損失が生じる。しかしながら、本実施形態による位相シフタ700では、テーパ構造を有するSSC構造701が形成されていることにより、モードが断熱的に変化するように構成されている。より詳細には、径の変化に伴い、閉じ込め効率が変化し、それに伴ってMFDが変化するように構成されている。このため、SiOxが用いられるコアとの接続点におけるMFDの不整合が解消され、モード結合による損失を抑制することが可能となる。 In general, when optical elements are connected to each other, it is important to match the mode fields of the light propagating in the optical elements in order to reduce loss at the connection point. When two optical elements are butt-connected, the coupling efficiency of the propagating optical signal is determined by the overlap integral of the mode fields of both. When the core is Si, the mode field diameter (Mode Field Diameter: hereinafter referred to as MFD) is about 300 nm, while in the case of SiOx, it is several μm, so that a large coupling loss occurs due to the mismatch of this MFD. However, in the phase shifter 700 according to this embodiment, the SSC structure 701 having a tapered structure is formed, so that the mode changes adiabatically. More specifically, it is configured so that the confinement efficiency changes with the change in diameter, and the MFD changes accordingly. Therefore, the mismatch of MFD at the connection point with the core using SiOx is eliminated, making it possible to suppress loss due to mode coupling.
 尚、図7では、SSC構造701は、連続的にコア201の径が変化するテーパ構造であるものとして描写されているが、これは例示を目的としており、SSC構造701の構造は断熱的にモードを変化させる構造であれば、任意の形状であってよい。 In addition, in FIG. 7, the SSC structure 701 is depicted as a tapered structure in which the diameter of the core 201 changes continuously, but this is for illustrative purposes only, and the structure of the SSC structure 701 may be of any shape as long as it is a structure that changes the mode adiabatically.
(光スイッチの構成)
 図8は、本開示の第2の実施形態による光スイッチ800の構造を概念的に示す図であり(a)は、全体構造を示す上面図を、(b)は位相シフタ700のSSC構造701と、下部アーム105との接続部の拡大図を、(c)はVIIIc-VIIIc断面線における断面図を、それぞれ示している。図8に示される通り、光スイッチ800は、図1に示される従来技術による導波路型光スイッチ100の位相シフタが、上述した位相シフタ700であるような構成を有する。ここで、位相シフタ700のコア201には、例えばSiが、下部アーム105には、SiOxが、それぞれ適用され得る。
(Configuration of optical switch)
8 is a diagram conceptually illustrating the structure of an optical switch 800 according to a second embodiment of the present disclosure, in which (a) is a top view showing the entire structure, (b) is an enlarged view of a connection between an SSC structure 701 of a phase shifter 700 and a lower arm 105, and (c) is a cross-sectional view taken along the line VIIIc-VIIIc. As shown in Fig. 8, the optical switch 800 has a configuration in which the phase shifter of the conventional waveguide-type optical switch 100 shown in Fig. 1 is the above-mentioned phase shifter 700. Here, for example, Si can be applied to the core 201 of the phase shifter 700, and SiOx can be applied to the lower arm 105.
 図8では、SSC構造701は、コア201の先端を先細りさせたようなテーパ構造を有しており、当該SSC構造701とSiOxである下部アーム105の先端が突き合わせで配置された形態として描写されている。コア201及び下部アーム105は、アンダークラッド層801およびオーバークラッド層802に覆われており、下部アーム105と各クラッド層の比屈折率差は、位相シフタ700のコア201及びSSC構造701と各クラッド層の比屈折率差よりも小さく設定されている。また、本実施形態では、下部アーム105は、コア201はSiよりもコア断面積およびMFDが大きくなるように構成されている。このような場合、コア201を伝搬する光信号は、SSC構造701において先端に近づくにつれ、光信号の閉じ込めが弱くなるため、MFDが大きくなる。このため、下部アーム105とのMFDの不整合が解消され、結合損失が低減されるという効果が得られる。 In FIG. 8, the SSC structure 701 has a tapered structure in which the tip of the core 201 is tapered, and the SSC structure 701 and the tip of the lower arm 105 made of SiOx are depicted as being arranged to butt against each other. The core 201 and the lower arm 105 are covered with an undercladding layer 801 and an overcladding layer 802, and the relative refractive index difference between the lower arm 105 and each cladding layer is set to be smaller than the relative refractive index difference between the core 201 and the SSC structure 701 of the phase shifter 700 and each cladding layer. In this embodiment, the lower arm 105 is configured so that the core 201 has a larger core cross-sectional area and MFD than Si. In such a case, the optical signal propagating through the core 201 is weakly confined as it approaches the tip in the SSC structure 701, and therefore the MFD becomes larger. This eliminates the mismatch in MFD with the lower arm 105, and reduces the coupling loss.
 尚、図8では、SSC構造701と下部アーム105の先端は、突き合わせで配置された形態として描写されているが、図9に示されるように、SSC701構造の部分が下部アーム105で覆われた構造であってもよい。このような構造の場合、SSC構造701の先端に近づくにつれて閉じ込めきれなくなった光信号は、周囲を覆う下部アーム105側に漏洩する。当該漏洩した光信号は、下部アーム105へと断熱的に遷移するため、この光の遷移過程は断熱的となり、光エネルギーの損失をより効率的に抑制することが可能となる。 In addition, in FIG. 8, the tips of the SSC structure 701 and the lower arm 105 are depicted as being butted together, but as shown in FIG. 9, the SSC 701 structure may be covered by the lower arm 105. In such a structure, the optical signal that is no longer able to be contained as it approaches the tip of the SSC structure 701 leaks out to the surrounding lower arm 105. The leaked optical signal adiabatically transitions to the lower arm 105, making this optical transition process adiabatic and making it possible to more efficiently suppress the loss of optical energy.
 さらに、図8及び図9に示される例では、コア201の厚さと下部アーム105の厚さが異なるように描写されており、それに伴って、各々の高さ中心が一致しないような形態として描写されているが、図10に示される通り、これらの高さ中心を一致させることにより、両者の接続部における結合損失をさらに抑制することも可能である。 Furthermore, in the examples shown in Figures 8 and 9, the thickness of the core 201 and the thickness of the lower arm 105 are depicted as being different, and therefore the respective height centers are depicted as not coinciding. However, as shown in Figure 10, by aligning these height centers, it is possible to further suppress the coupling loss at the connection between the two.
 図10は、本開示の第2の実施形態による光スイッチ800の別の形態における、位相シフタ700と下部アーム105との接続部の構造を概念的に示す図であり、(a)は上面図を、(b)はXb-Xb断面線における断面図をそれぞれ示している。図10に示される例では、位相シフタ700のコア201は、アンダークラッド層1001とオーバークラッド層1002に覆わるように構成される。ここで、アンダークラッド層1001及びオーバークラッド層の各々には、下部アーム105と同一の材料が適用される。そして、コア201と下部アーム105は高さ中心が一致した状態で突合さっており、さらにアンダークラッド層1001及びオーバークラッド層1002並びに下部アーム105は、アンダークラッド層801とオーバークラッド層802に覆われるように構成される。このように、図10に示される例では、位相シフタ700と下部アーム105は、「二重構造」を有する導波路が突合せで接続された形態を有する。 10 is a conceptual diagram showing the structure of the connection between the phase shifter 700 and the lower arm 105 in another form of the optical switch 800 according to the second embodiment of the present disclosure, where (a) shows a top view and (b) shows a cross-sectional view along the Xb-Xb cross-sectional line. In the example shown in FIG. 10, the core 201 of the phase shifter 700 is configured to be covered with an undercladding layer 1001 and an overcladding layer 1002. Here, the same material as that of the lower arm 105 is applied to each of the undercladding layer 1001 and the overcladding layer. The core 201 and the lower arm 105 are butted together with their height centers aligned, and further, the undercladding layer 1001, the overcladding layer 1002, and the lower arm 105 are configured to be covered with the undercladding layer 801 and the overcladding layer 802. Thus, in the example shown in FIG. 10, the phase shifter 700 and the lower arm 105 have a configuration in which the waveguides having a "dual structure" are butt-connected.
 なお、図10では、オーバークラッド層1002は、コア201のSSC構造701以外の部分も覆うように描写されているが、図11に示されるように、オーバークラッド層1002が覆う領域はSSC構造701に相当する領域のみであってもよい。図11に示される例では、製造時において、SSC構造701の上で、SiOx層を形成する、或いはパターニングするという工程が不要となるため、位相シフタ700側の回路を劣化させる要因を削減できるという利点を有する。 In FIG. 10, the overcladding layer 1002 is depicted as covering parts of the core 201 other than the SSC structure 701, but as shown in FIG. 11, the overcladding layer 1002 may cover only the area corresponding to the SSC structure 701. In the example shown in FIG. 11, the process of forming or patterning a SiOx layer on the SSC structure 701 during manufacturing is not required, which has the advantage of reducing factors that deteriorate the circuit on the phase shifter 700 side.
 また、図12に示されるように、オーバークラッド層1002だけでなくオーバークラッド層802が形成される領域もSSC構造701に相当する領域のみであってもよい。図12に示される例では、オーバークラッド層1002及びオーバークラッド層802で覆われていないコア201の部分は、空気がクラッドの役割を果たすことで、光信号がコア201内に閉じ込められる。 Also, as shown in FIG. 12, not only the overcladding layer 1002 but also the overcladding layer 802 may be formed only in the region corresponding to the SSC structure 701. In the example shown in FIG. 12, in the portion of the core 201 that is not covered by the overcladding layer 1002 and the overcladding layer 802, air plays the role of a cladding, so that the optical signal is confined within the core 201.
 尚、アンダークラッド層801及びオーバークラッド層802の厚さは、光信号のモードフィールドが十分収まる厚さであればよい。例えば、アンダークラッド層801及びオーバークラッド層802がSiOxである場合、各々の厚さは数十μm程度であり得る。 The thickness of the undercladding layer 801 and the overcladding layer 802 need only be such that the mode field of the optical signal is sufficiently contained therein. For example, when the undercladding layer 801 and the overcladding layer 802 are made of SiOx, the thickness of each layer may be approximately several tens of μm.
 本開示による位相シフタ及び光スイッチにおいて、各コアの断面サイズに上限はなく、使用する光信号の波長に対して、複数のモードの光を伝搬させるマルチモードの光導波路とすることもできる。また、コア断面サイズを小さくすることで、最低次のモードのみを伝搬させるシングルモードの光導波路とすることもできる。尚、光信号がシングルモードである場合、一般に、コア同士を接続させる方式は、断熱結合と突合せ結合の2種類が挙げられる。上述の説明では、位相シフタと光スイッチの接続は、突合せ結合の形態であるとして述べられてきたが、これに限定はされず、断熱結合であってもよく、両者の組み合わせであってもよい。 In the phase shifter and optical switch disclosed herein, there is no upper limit to the cross-sectional size of each core, and it is also possible to make it a multi-mode optical waveguide that propagates multiple modes of light for the wavelength of the optical signal used. Also, by reducing the cross-sectional size of the core, it is possible to make it a single-mode optical waveguide that propagates only the lowest mode. Note that when the optical signal is single-mode, there are generally two methods for connecting cores together: adiabatic coupling and butt coupling. In the above explanation, the connection between the phase shifter and the optical switch has been described as being in the form of butt coupling, but this is not limited to this, and it may be adiabatic coupling or a combination of both.
 また、本開示による位相シフタ及び光スイッチは、既存の光回路の製造方法で用いられる技術により製造することできる。例えば、SiOx層の形成方法としては火炎体積法などの成膜方法が適用され得、Si層の形成方法としてはスパッタリング法などの成膜方法が適用され得る。 Furthermore, the phase shifter and optical switch according to the present disclosure can be manufactured by techniques used in existing optical circuit manufacturing methods. For example, a deposition method such as the flame volume deposition method can be used to form the SiOx layer, and a deposition method such as the sputtering method can be used to form the Si layer.
 MFDが異なる素子を組み合わせた光回路の集積方法には、一般に、別々の基板を組み合わせるハイブリッド集積と、単一の共通基板を用いるモノリシック集積とがある。ハイブリッド集積の場合、SSC構造701と下部アーム105とを正確に位置合わせする工程(調心工程とも言う)が必要となるため、製造コストが増加し得る。とりわけ、コア201にSiが用いられる場合、上述のように、数百nmという非常に細いコアとなるため、調心精度への要求が高く、高精度な調心プロセスには非常に高いコストを要するという問題がある。一方、モノリシック集積は、異種材料を同一基板上に集積する作製方法であるため、このような調心工程に起因する問題が解消される。このような観点から、本実施形態による光スイッチ800は、モノリシック集積により形成されることが望ましい。 Integration methods for optical circuits combining elements with different MFDs generally include hybrid integration, which combines separate substrates, and monolithic integration, which uses a single common substrate. In the case of hybrid integration, a process for accurately aligning the SSC structure 701 and the lower arm 105 (also called an alignment process) is required, which can increase manufacturing costs. In particular, when Si is used for the core 201, as described above, the core is very thin, measuring several hundred nm, so there is a high requirement for alignment accuracy, and there is a problem that a high-precision alignment process requires very high costs. On the other hand, monolithic integration is a manufacturing method in which different materials are integrated on the same substrate, and therefore the problems caused by such alignment processes are eliminated. From this perspective, it is desirable that the optical switch 800 according to this embodiment is formed by monolithic integration.
(第3の実施形態)
 以下に、本開示の第3の実施形態について、図面を参照して詳細に説明する。本実施形態による光スイッチは、光給電により、位相シフタが制御される形態を有する。
Third Embodiment
A third embodiment of the present disclosure will be described in detail below with reference to the drawings. An optical switch according to this embodiment has a configuration in which a phase shifter is controlled by optical power supply.
 上述してきた例では、本開示による位相シフタ200、700は、外部電源によってコア201への電荷の注入及び除去を制御する形態として述べられているが、光給電によって当該位相シフタ200、700が制御されてもよい。 In the above examples, the phase shifters 200, 700 according to the present disclosure are described as being configured to control the injection and removal of charge into the core 201 by an external power source, but the phase shifters 200, 700 may also be controlled by optical power supply.
 図13は、本開示の第3の実施形態による位相シフタ1300の構造を概念的に示す上面図である。図13に示される通り、本実施形態における位相シフタ1300は、上述した位相シフタ200、700の構成に加え、電気配線204a、bに接続された、光給電装置1301をさらに含む(図13では、位相シフタ200の構成が例として描写されている)。 FIG. 13 is a top view conceptually illustrating the structure of a phase shifter 1300 according to a third embodiment of the present disclosure. As shown in FIG. 13, the phase shifter 1300 in this embodiment further includes an optical power supply device 1301 connected to electrical wiring 204a, b in addition to the configuration of the phase shifters 200, 700 described above (FIG. 13 illustrates the configuration of the phase shifter 200 as an example).
 光給電装置1301は、制御信号光を受光して電気信号に変換するフォトダイオード1302と、フォトダイオード1302によって変換された電気信号を昇圧する昇圧回路1303と、フォトダイオード1302のアノードとカソードとの間に接続されるコンデンサ1304と、を含み、位相シフタ1300は、当該昇圧回路1303と接地ラインGNDとの間に位相シフタ200の電気配線204a、bが接続されるように構成される。 The optical power supply device 1301 includes a photodiode 1302 that receives a control signal light and converts it into an electrical signal, a boost circuit 1303 that boosts the electrical signal converted by the photodiode 1302, and a capacitor 1304 connected between the anode and cathode of the photodiode 1302, and the phase shifter 1300 is configured such that the electrical wiring 204a, b of the phase shifter 200 is connected between the boost circuit 1303 and the ground line GND.
 このように構成された本実施形態による位相シフタ1300では、コンデンサ1304に電荷が蓄えられることによって発生した電圧Vcが、フォトダイオード1302によって変換された電気信号として昇圧回路1003に送信される。尚、フォトダイオード1302のアノードとコンデンサ1304との接続点は接地されている。そして、位相シフタ200のコア201及び電極203に電荷が蓄えられることによって電圧(充電電圧)が生じる。このような原理で動作する位相シフタ1300は、位相シフタ200のコア201における位相設定を光給電のみで設定及び保持することが可能であるため、外部電源が不要となる。 In the phase shifter 1300 according to this embodiment configured in this manner, the voltage Vc generated by storing charge in the capacitor 1304 is transmitted to the boost circuit 1003 as an electrical signal converted by the photodiode 1302. The connection point between the anode of the photodiode 1302 and the capacitor 1304 is grounded. A voltage (charging voltage) is generated by storing charge in the core 201 and electrode 203 of the phase shifter 200. The phase shifter 1300 that operates on this principle can set and maintain the phase setting in the core 201 of the phase shifter 200 using only optical power supply, eliminating the need for an external power supply.
 光導波路は集積性に優れ、1つのチップ内に複数の位相シフタを集積することが可能である。本実施形態による位相シフタ1300を1つのチップ内に複数集積する場合、図14に示される位相シフタ装置1400ように、波長分波器1401をさらに配置し、制御信号光を先ず当該波長分波器に入力させるように構成させることができる。このような構成を有する位相シフタ装置1400は、異なる波長を有する複数の制御信号光を当該波長分波器1401によって分波し、分波された各々の制御信号光を波長毎に決まったフォトダイオード1302に入力することができる。そのため、制御信号光の波長に応じて、位相シフタを選択することが可能となる。 Optical waveguides have excellent integration properties, making it possible to integrate multiple phase shifters on a single chip. When integrating multiple phase shifters 1300 according to this embodiment on a single chip, a wavelength demultiplexer 1401 can be further disposed, as in the phase shifter device 1400 shown in FIG. 14, and the control signal light can be configured to be first input to the wavelength demultiplexer. The phase shifter device 1400 having such a configuration can demultiplex multiple control signal lights having different wavelengths using the wavelength demultiplexer 1401, and input each of the demultiplexed control signal lights to a photodiode 1302 determined for each wavelength. This makes it possible to select a phase shifter according to the wavelength of the control signal light.
 尚、図14は、位相シフタと制御信号光の波長がそれぞれ2つである場合として描写されているが、これに限定されず、位相シフタや制御信号光の波長は、3組以上であっても同様に制御可能である。また位相シフタを並列に複数接続することで、ひとつの制御信号光の波長で複数の位相シフタを制御することも可能である。加えて、波長分波器の設計等により、制御信号光の複数の波長を1つの位相シフタに割り当てることも可能である。 Note that while FIG. 14 illustrates a case where the phase shifter and the control signal light each have two wavelengths, this is not limited thereto, and three or more sets of phase shifters and control signal light wavelengths can be controlled in the same way. Also, by connecting multiple phase shifters in parallel, it is possible to control multiple phase shifters with one control signal light wavelength. In addition, it is also possible to assign multiple wavelengths of control signal light to one phase shifter by designing a wavelength demultiplexer, etc.
 さらに、AWG(Arrayed Waveguide Grating)等を適用することにより、波長分波器1401も導波路により形成することができる。集積形態として、図14の破線で囲まれた領域の一部又は全てを1つのチップ上に形成することで、製造コストやデバイス間の電気又は光接続を省略することも可能である。 Furthermore, by applying an AWG (Arrayed Waveguide Grating) or the like, the wavelength demultiplexer 1401 can also be formed using a waveguide. As an integrated form, it is also possible to eliminate manufacturing costs and electrical or optical connections between devices by forming part or all of the area surrounded by the dashed line in FIG. 14 on a single chip.
 以上述べた通り、本開示による位相シフタ及び光スイッチは、キャリアプラズマ効果を利用し、電荷の注入及び除去によって屈折率を制御することを特徴としている。このような特徴を有する位相シフタ及び光スイッチは、従来技術によるヒータ等を用いた屈折率制御とは異なり、常時通電することが不要である。そのため、従来技術よりも消費電力を削減することが可能な位相シフタ及び光スイッチとして、光通信システムへの適用が見込まれる。 As described above, the phase shifter and optical switch disclosed herein are characterized by using the carrier plasma effect to control the refractive index by injecting and removing electric charges. Phase shifters and optical switches with such characteristics do not require constant power supply, unlike conventional techniques for controlling the refractive index using heaters or the like. Therefore, they are expected to be applied to optical communication systems as phase shifters and optical switches that can reduce power consumption compared to conventional techniques.

Claims (6)

  1.  導波路型の位相シフタであって、
     コアと、
     前記コアを覆うクラッドと、
     前記コアの光軸方向に対して平行方向に延在し、且つ前記コアの一方の側面近傍に配置される電極と、
     前記コアの光軸方向に対して略垂直に、且つ前記コアの側面及び前記電極の側面の各々に配置される電気配線と、
    を備える、位相シフタ。
    A waveguide type phase shifter,
    A core,
    A cladding covering the core;
    an electrode extending in a direction parallel to the optical axis direction of the core and disposed near one side surface of the core;
    Electric wiring arranged substantially perpendicular to the optical axis direction of the core and on each of a side surface of the core and a side surface of the electrode;
    A phase shifter comprising:
  2.  前記コアは、先端にスポットサイズ変換構造をさらに備える、請求項1に記載の位相シフタ。 The phase shifter of claim 1, wherein the core further comprises a spot size conversion structure at its tip.
  3.  前記コア及び前記電気配線が半導体であり、同一の材料で構成される、請求項1に記載の位相シフタ。 The phase shifter of claim 1, wherein the core and the electrical wiring are semiconductors and made of the same material.
  4.  前記電気配線に接続される光給電装置をさらに備え、
     前記光給電装置は、
      制御信号光を受光して電気信号に変換するフォトダイオードと、
      前記フォトダイオードによって変換された電気信号を昇圧する昇圧回路と、
      前記フォトダイオードのアノードとカソードとの間に接続されるコンデンサと、
    を備える、請求項1に記載の位相シフタ。
    Further comprising an optical power supply device connected to the electrical wiring,
    The optical power supply device includes:
    a photodiode that receives the control signal light and converts it into an electrical signal;
    a boosting circuit that boosts the electrical signal converted by the photodiode;
    a capacitor connected between the anode and cathode of the photodiode;
    The phase shifter of claim 1 , comprising:
  5.  チップに配置された複数の請求項4に記載の位相シフタを備えた位相シフタ装置であって、
     前記制御信号光が複数の波長を有し、
     前記複数の波長を有する前記制御信号光を波長毎に分波し、前記分波された前記制御信号光を、波長毎に対応する前記フォトダイオードに送信する波長分波器をさらに備える、位相シフタ装置。
    A phase shifter device comprising a plurality of phase shifters according to claim 4 arranged on a chip,
    the control signal light has a plurality of wavelengths,
    The phase shifter device further includes a wavelength demultiplexer that demultiplexes the control signal light having the plurality of wavelengths according to wavelength, and transmits the demultiplexed control signal light to the photodiode corresponding to each wavelength.
  6.  マッハツェンダー干渉型の光スイッチであって、上部アーム及び下部アームの少なくとも一方に、請求項1から5の位相シフタを備える、光スイッチ。 A Mach-Zehnder interference type optical switch, comprising a phase shifter according to claims 1 to 5 on at least one of an upper arm and a lower arm.
PCT/JP2023/001914 2023-01-23 2023-01-23 Phase shifter and optical switch WO2024157322A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/001914 WO2024157322A1 (en) 2023-01-23 2023-01-23 Phase shifter and optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/001914 WO2024157322A1 (en) 2023-01-23 2023-01-23 Phase shifter and optical switch

Publications (1)

Publication Number Publication Date
WO2024157322A1 true WO2024157322A1 (en) 2024-08-02

Family

ID=91970242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001914 WO2024157322A1 (en) 2023-01-23 2023-01-23 Phase shifter and optical switch

Country Status (1)

Country Link
WO (1) WO2024157322A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242487A (en) * 2010-05-17 2011-12-01 Fujitsu Ltd Waveguide type optical device
US20120321240A1 (en) * 2011-04-29 2012-12-20 Luca Alloatti Electro-optical device and method for processing an optical signal
WO2013146620A1 (en) * 2012-03-30 2013-10-03 日本電気株式会社 Optically functional element, and method for manufacturing same
JP2016213579A (en) * 2015-04-30 2016-12-15 古河電気工業株式会社 Optical receiver
JP2019219619A (en) * 2018-06-22 2019-12-26 ルネサスエレクトロニクス株式会社 Semiconductor device and method for manufacturing the same
JP2020194092A (en) * 2019-05-28 2020-12-03 富士通株式会社 Wavelength multiplex/demultiplexer, optical transmitter, and optical receiver
US10908440B1 (en) * 2015-10-12 2021-02-02 National Technology & Engineering Solutions Of Sandia, Llc Methods of epsilon-near-zero optical modulation
US20210157177A1 (en) * 2019-11-27 2021-05-27 HyperLight Corporation Electro-optic devices having engineered electrodes
US20210336050A1 (en) * 2020-04-24 2021-10-28 GenXComm, Inc. Solid-State Device with Optical Waveguide as Floating Gate Electrode

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242487A (en) * 2010-05-17 2011-12-01 Fujitsu Ltd Waveguide type optical device
US20120321240A1 (en) * 2011-04-29 2012-12-20 Luca Alloatti Electro-optical device and method for processing an optical signal
WO2013146620A1 (en) * 2012-03-30 2013-10-03 日本電気株式会社 Optically functional element, and method for manufacturing same
JP2016213579A (en) * 2015-04-30 2016-12-15 古河電気工業株式会社 Optical receiver
US10908440B1 (en) * 2015-10-12 2021-02-02 National Technology & Engineering Solutions Of Sandia, Llc Methods of epsilon-near-zero optical modulation
JP2019219619A (en) * 2018-06-22 2019-12-26 ルネサスエレクトロニクス株式会社 Semiconductor device and method for manufacturing the same
JP2020194092A (en) * 2019-05-28 2020-12-03 富士通株式会社 Wavelength multiplex/demultiplexer, optical transmitter, and optical receiver
US20210157177A1 (en) * 2019-11-27 2021-05-27 HyperLight Corporation Electro-optic devices having engineered electrodes
US20210336050A1 (en) * 2020-04-24 2021-10-28 GenXComm, Inc. Solid-State Device with Optical Waveguide as Floating Gate Electrode

Similar Documents

Publication Publication Date Title
US5862276A (en) Planar microphotonic circuits
Liu et al. Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform
Chong et al. Tuning of photonic crystal waveguide microcavity by thermooptic effect
KR100686920B1 (en) Photonic devices comprising thermo-optic polymer
US7565038B2 (en) Thermo-optic waveguide apparatus
US5623566A (en) Network with thermally induced waveguide
US6701033B2 (en) Optical switch element and wavelength router
US7356218B2 (en) Variable demultiplexer
US5892863A (en) Silica optical circuit switch and method
WO2024157322A1 (en) Phase shifter and optical switch
US7184631B2 (en) Optical device
US20030118279A1 (en) High-tolerance broadband-optical switch in planar lightwave circuits
JP2012042849A (en) Optical waveguide device
JP2003228031A (en) Optical circuit component
JP3719644B2 (en) Waveguide type optical circuit
JP4934614B2 (en) Thermo-optic phase shifter
Gao et al. Thermo-optic mode switch based on an asymmetric Mach–Zehnder interferometer
JP4085638B2 (en) Planar waveguide type optical circuit and manufacturing method thereof
CN107111169A (en) Stress tunes flat illumination circuit and its method
WO2024157313A1 (en) Phase shifter and optical switch
JP2008281639A (en) Optical deflection element, optical deflection module, optical switch module and optical deflecting method
JP2004055717A (en) Variable light gain control device
JP3534385B2 (en) Thermo-optic switch
Pandit et al. A wide-angle X-junction in polymer using truncated-structural branches (TSB)
WO2021106158A1 (en) Optical phase modulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23918295

Country of ref document: EP

Kind code of ref document: A1