WO2024154353A1 - Outdoor unit for air conditioner - Google Patents

Outdoor unit for air conditioner Download PDF

Info

Publication number
WO2024154353A1
WO2024154353A1 PCT/JP2023/001768 JP2023001768W WO2024154353A1 WO 2024154353 A1 WO2024154353 A1 WO 2024154353A1 JP 2023001768 W JP2023001768 W JP 2023001768W WO 2024154353 A1 WO2024154353 A1 WO 2024154353A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
box
outdoor unit
partition plate
blower
Prior art date
Application number
PCT/JP2023/001768
Other languages
French (fr)
Japanese (ja)
Inventor
将寛 黒田
崇仁 大西
和志 壬生
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2023/001768 priority Critical patent/WO2024154353A1/en
Publication of WO2024154353A1 publication Critical patent/WO2024154353A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/22Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/56Casing or covers of separate outdoor units, e.g. fan guards

Definitions

  • This disclosure relates to an outdoor unit of an air conditioner equipped with a reactor.
  • Conventional outdoor units for air conditioners generally have a structure in which the inside of the housing is divided into a blower chamber and a machine chamber by a partition plate, with the blower, heat exchanger, etc. located in the blower chamber, and the compressor, reactor, electrical component unit, etc. located in the machine chamber.
  • the electrical component unit has electrical components that control the operation of the blower and compressor.
  • outside air is drawn into the blower room by driving the blower, and either the heat from the heat exchanger is discharged to the atmosphere by the drawn-in outside air, or the cool air in the blower room is discharged to the atmosphere.
  • the blower room is a space exposed to outside air, so it is a space into which dust, water, etc. can easily enter.
  • the machine room is a space that houses the compressor, reactor, and electrical parts of the electrical component unit, which are vulnerable to dust and water, so it is separated from the blower room by a partition plate, making it an enclosed space that is less susceptible to the entry of dust, water, etc.
  • the present disclosure has been made in consideration of the above, and aims to provide an outdoor unit for an air conditioner that can improve the cooling performance for the reactor.
  • the outdoor unit of the air conditioner disclosed herein comprises a box-shaped housing, a partition plate that divides the inside of the housing into a blower chamber and a machine chamber, a reactor box that is attached to the partition plate while protruding from the partition plate into the blower chamber and communicates with the machine chamber, and a reactor housed inside the reactor box.
  • the outdoor unit of the air conditioner disclosed herein has the effect of improving the cooling performance of the reactor.
  • FIG. 1 is a front view showing the appearance of an outdoor unit of an air conditioner according to a first embodiment
  • FIG. 1 is a front view showing an internal structure of an outdoor unit of an air conditioner according to a first embodiment
  • 3 is a cross-sectional view taken along line III-III shown in FIG. 2
  • FIG. 3 is a cross-sectional view showing an outdoor unit of an air conditioner according to a second embodiment, which corresponds to the cross-sectional view taken along line III-III shown in FIG.
  • FIG. 5 is a view taken from the direction of the arrow B in FIG. 4 .
  • FIG. 11 is a cross-sectional view showing an outdoor unit of an air conditioner according to a modified example of the second embodiment.
  • FIG. 1 is a front view showing the appearance of an outdoor unit of an air conditioner according to a first embodiment
  • FIG. 1 is a front view showing an internal structure of an outdoor unit of an air conditioner according to a first embodiment
  • 3 is a cross-sectional view taken along line III-III shown in FIG
  • FIG. 11 is a cross-sectional view showing an outdoor unit of an air conditioner according to a third embodiment, which corresponds to the cross-sectional view taken along line III-III shown in FIG.
  • FIG. 11 is a cross-sectional view showing an outdoor unit of an air conditioner according to a fourth embodiment, which corresponds to the cross-sectional view taken along line III-III shown in FIG.
  • Fig. 1 is a front view showing the appearance of an outdoor unit 1 of an air conditioner according to the first embodiment.
  • Fig. 2 is a front view showing the internal structure of the outdoor unit 1 of an air conditioner according to the first embodiment.
  • the outdoor unit 1 of the air conditioner includes a housing 2 and a wire grill 3.
  • the outdoor unit 1 of the air conditioner includes a partition plate 4, a blower 5, a heat exchanger 6, a compressor 7, an electric component unit 8, and a reactor unit 9.
  • the outdoor unit 1 of the air conditioner may be simply referred to as the outdoor unit 1.
  • the depth direction of the outdoor unit 1 is defined as the X-axis direction, the height direction of the outdoor unit 1 as the Y-axis direction, and the width direction of the outdoor unit 1 as the Z-axis direction.
  • the + direction in the X-axis direction is defined as the front
  • the - direction in the X-axis direction is defined as the rear.
  • the + direction in the X-axis direction is the direction from the - side to the + side of the X-axis
  • the - direction in the X-axis direction is the direction from the + side to the - side of the X-axis.
  • the + direction in the Y-axis direction is defined as the upward direction
  • the - direction in the Y-axis direction is defined as the downward direction.
  • the + direction in the Y-axis direction is the direction from the - side to the + side of the Y-axis
  • the - direction in the Y-axis direction is the direction from the + side to the - side of the Y-axis.
  • the + direction in the Z-axis direction is defined as the right
  • the - direction in the Z-axis direction is defined as the left.
  • the + direction in the Z-axis direction is the direction from the - side to the + side of the Z-axis
  • the - direction in the Z-axis direction is the direction from the + side to the - side of the Z-axis.
  • the positive direction of the X-axis along which the airflow generated by the blower 5 of the outdoor unit 1 is discharged to the outside is the front, and the side opposite the front is the back.
  • the housing 2 is a box-shaped member that serves as the outer shell of the outdoor unit 1.
  • the housing 2 is made of metal.
  • an air intake port 2a is provided on the rear surface of the housing 2.
  • the air intake port 2a is an opening for allowing air outside the housing 2 to flow into the blower chamber 12, which will be described later.
  • an exhaust port 2b is provided on the front surface of the housing 2.
  • the exhaust port 2b is an opening for discharging the airflow generated by the blower 5 to the outside of the blower chamber 12.
  • the heat of the heat exchanger 6 or the cold air of the blower chamber 12 is discharged to the outside of the blower chamber 12 through the exhaust port 2b together with the airflow generated by the blower 5.
  • the wire grill 3 is a member that covers the air intake vent 2a to allow ventilation.
  • the wire grill 3 is made of metal.
  • the partition plate 4 is a member that divides the interior of the housing 2 into a blower chamber 12 and a machine chamber 13.
  • the partition plate 4 is made of metal.
  • the blower chamber 12 and the machine chamber 13 are formed side by side in the Z-axis direction.
  • the partition plate 4 extends in the Y-axis direction from the floor surface to the ceiling surface of the housing 2.
  • the partition plate 4 extends in the X-axis direction from the front to the back of the housing 2.
  • the partition plate 4 has an opening 4a that connects the blower chamber 12 and the machine chamber 13.
  • the blower 5 is a device disposed in the blower chamber 12 and generates an air flow.
  • the blower 5 is electrically connected to a mounting board 8b of the electrical component unit 8, which will be described later, via an electric wire (not shown).
  • the blower chamber 12 becomes negative pressure, and air outside the housing 2 flows into the blower chamber 12 from the air intake port 2a.
  • the air that flows into the blower chamber 12 passes through the heat exchanger 6, becomes an air flow by the blower 5, and is exhausted to the outside of the blower chamber 12 from the exhaust port 2b shown in FIG. 1.
  • the heat exchanger 6 is disposed in the blower chamber 12 and is a component for exchanging heat between the refrigerant and the outdoor air. Outdoor air to be taken in by the blower 5 passes through the heat exchanger 6.
  • the heat exchanger 6 is made of metal.
  • the compressor 7 is disposed in the machine room 13 and is a device that compresses the refrigerant flowing through the heat exchanger 6.
  • the compressor 7 is disposed in the lower space of the machine room 13.
  • the compressor 7 is electrically connected to a mounting board 8b (described below) of the electrical component unit 8 via an electric wire (not shown).
  • a mounting board 8b described below
  • multiple refrigerant pipes through which the refrigerant flows are disposed in the machine room 13.
  • the refrigerant pipes are connected to an indoor unit (not shown), the compressor 7, the heat exchanger 6, etc.
  • the electrical component unit 8 is disposed in the machine room 13.
  • the electrical component unit 8 is disposed above and away from the compressor 7.
  • the electrical component unit 8 has a storage box 8a.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2.
  • Arrow A in FIG. 3 indicates the direction of the airflow generated by the blower 5. Wavy arrows in FIG. 3 indicate the flow of heat.
  • a dashed line in FIG. 3 indicates the boundary C between the blower chamber 12 and the machine chamber 13.
  • the electrical component unit 8 has a mounting board 8b that controls the operation of the outdoor unit 1.
  • the mounting board 8b is housed inside the housing box 8a shown in FIG. 2.
  • the mounting board 8b is disposed in the machine room 13.
  • the mounting board 8b has a mounting surface 8c facing the blower room 12 and a board surface 8d facing the opposite side to the mounting surface 8c.
  • a first electrical component 8e and a second electrical component 8f are mounted on the mounting board 8b.
  • the first electrical component 8e and the second electrical component 8f are fixed to the mounting board 8b by soldering.
  • the first electrical component 8e is attached to the mounting surface 8c.
  • the first electrical component 8e is, for example, a power semiconductor.
  • the power semiconductor is, for example, an IGBT (Insulated Gate Bipolar Transistor), a diode, or an IPM (Intelligent Power Module).
  • the second electrical component 8f is attached to the board surface 8d.
  • the second electrical component 8f is, for example, a common mode coil.
  • a heat sink 10 is attached to a portion of the first electrical component 8e facing the blower chamber 12.
  • the heat sink 10 serves to cool the first electrical component 8e.
  • the heat sink 10 has a number of fins 10a extending toward the blower chamber 12.
  • An opening 4a that connects the blower chamber 12 and the machine chamber 13 is formed in the portion of the partition plate 4 where the heat sink 10 and a reactor box 90 (described later) are arranged.
  • the fins 10a of the heat sink 10 are arranged in the blower chamber 12 through the opening 4a of the partition plate 4.
  • the fins 10a of the heat sink 10 are adapted to be exposed to the airflow generated by the blower 5.
  • the heat sink 10 is cooled by the airflow generated by the blower 5.
  • the multiple fins 10a are arranged at intervals from one another in the X-axis direction.
  • the fins 10a are plate-shaped members.
  • the fins 10a are made of metal.
  • the rear end, which is one end of the heat sink 10 in the X-axis direction, is fixed to the partition plate 4 with screws 11.
  • the front end, which is the other end of the heat sink 10 in the X-axis direction, is fixed to the reactor base 92, which will be described later, with screws 11.
  • the reactor unit 9 is attached to the partition plate 4 while being placed in the blower chamber 12 through the opening 4a of the partition plate 4.
  • the reactor unit 9 has a reactor box 90, a reactor 91, and a reactor stand 92.
  • the reactor box 90 is a box-shaped member with a hole 90a that opens toward the machine room 13. The inside of the reactor box 90 is in communication with the machine room 13 through the hole 90a.
  • the reactor box 90 is made of metal.
  • the reactor box 90 is attached to the partition plate 4 in a state where it protrudes from the partition plate 4 into the blower room 12.
  • the reactor box 90 is arranged in a state where it protrudes into the blower room 12 through the opening 4a of the partition plate 4.
  • the reactor box 90 is adapted to be exposed to the airflow generated by the blower 5.
  • the reactor box 90 is cooled by the airflow generated by the blower 5.
  • the reactor box 90 is attached to the partition plate 4 so as to cover a portion of the opening 4a.
  • the reactor box 90 and the heat sink 10 may cover the entire opening 4a. In this way, it is possible to prevent dust, water, etc. from entering the machine room 13 from the blower room 12 through the opening 4a.
  • the reactor box 90 has a bottom surface 90b and a top surface 90c. As shown in FIG. 3, the reactor box 90 has a first surface 90d, a second surface 90e, and a third surface 90f.
  • the bottom surface 90b extends horizontally as it moves away from the machine room 13 along the Z-axis direction, and then extends at an angle to be positioned upward.
  • the top surface 90c is positioned above and away from the bottom surface 90b.
  • the top surface 90c extends horizontally in the Z-axis direction.
  • the first surface 90d shown in FIG. 3 connects the rear end of the bottom surface 90b and the rear end of the top surface 90c shown in FIG. 2.
  • the first surface 90d extends vertically in the Y-axis direction.
  • the first surface 90d faces the rear surface of the housing 2.
  • a first flange portion 90g is formed on the right end of the first surface 90d, extending rearward in the X-axis direction.
  • the second surface 90e connects the front end of the bottom surface 90b to the front end of the top surface 90c.
  • the second surface 90e extends vertically in the Y-axis direction.
  • the second surface 90e faces the front of the housing 2.
  • a second flange portion 90h is formed on the right end of the second surface 90e, extending forward in the X-axis direction.
  • the second flange portion 90h is fixed to the partition plate 4 by the screw 11.
  • the second flange portion 90h is fixed to the edge of the opening 4a of the partition plate 4.
  • the third surface 90f connects the left end of the bottom surface 90b to the left end of the top surface 90c, and also connects the left end of the first surface 90d to the left end of the second surface 90e.
  • the third surface 90f extends vertically in the Y-axis direction.
  • the third surface 90f is located on the opposite side of the hole 90a across the reactor 91.
  • the reactor 91 is housed inside the reactor box 90.
  • the reactor 91 is an electrical component that is part of the inverter that controls the speed of the compressor 7.
  • the reactor stand 92 is a fixing sheet metal that fixes the reactor box 90 and the reactor 91.
  • the reactor stand 92 fixes the reactor box 90 and the heat sink 10.
  • the reactor stand 92 is made of metal.
  • the reactor stand 92 has an L-shape in plan view.
  • the reactor stand 92 has a first fixing portion 92a and a second fixing portion 92b.
  • the first fixing portion 92a extends in the Z-axis direction inside the reactor box 90.
  • the reactor 91 is fixed to the first fixing portion 92a by a screw 11.
  • the reactor 91 is fixed to the surface of the first fixing portion 92a facing forward.
  • the second fixing portion 92b extends in the X-axis direction from the right end of the first fixing portion 92a toward the rear.
  • the first flange portion 90g of the reactor box 90 and the front end of the heat sink 10 are fixed to the second fixing portion 92b by a screw 11.
  • the first flange portion 90g of the reactor box 90 and the front end of the heat sink 10 are fixed to the surface of the second fixing portion 92b facing the blower chamber 12.
  • the first flange portion 90g of the reactor box 90 and the heat sink 10 are arranged side by side in the X-axis direction.
  • the reactor box 90 is fixed to the partition plate 4 via the reactor stand 92 and the heat sink 10.
  • the blower chamber 12 becomes negative pressure, and air outside the housing 2 flows into the blower chamber 12 through the air intake 2a.
  • the air that flows into the blower chamber 12 passes through the heat exchanger 6, becomes an air flow by the blower 5, and is exhausted to the outside of the blower chamber 12 through the exhaust 2b shown in FIG. 1.
  • the first electrical component 8e, the second electrical component 8f, and the reactor 91 shown in FIG. 3 generate heat.
  • the heat generated from the first electrical component 8e is transferred to the heat sink 10 and dissipated from the heat sink 10 into the air in the blower chamber 12, so that the first electrical component 8e can be cooled by natural air cooling.
  • the airflow generated by the blower 5 hits the heat sink 10, so that the heat sink 10 can be cooled by forced air cooling. In this way, the heat generated from the first electrical component 8e can be efficiently dissipated by natural air cooling and forced air cooling.
  • the heat generated from the second electrical component 8f is dissipated into the air in the machine room 13, so that the second electrical component 8f can be cooled by natural air cooling.
  • a heat conductive insulating member (not shown) may be sandwiched and disposed between the mounting surface 8c of the mounting board 8b and the second fixing portion 92b of the reactor stand 92, and may be attached to the mounting board 8b near the second electrical component 8f. In this way, the heat generated from the second electrical component 8f is transmitted in the order of the mounting board 8b, the heat conductive insulating member, and the reactor stand 92, and then from the reactor stand 92 to the heat sink 10 and the reactor box 90.
  • the airflow generated by the blower 5 hits the heat sink 10 and the reactor box 90, so that the heat sink 10 and the reactor box 90 can be cooled by forced air cooling.
  • the heat generated from the second electrical component 8f can be efficiently dissipated by natural air cooling and forced air cooling.
  • the heat generated from the reactor 91 is transferred to the reactor box 90 through the reactor stand 92, or into the air inside the reactor box 90.
  • the reactor box 90 is attached to the partition plate 4 in a state where it protrudes from the partition plate 4 into the blower room 12, so that the airflow generated by the blower 5 hits the reactor box 90, and the reactor box 90 can be cooled by forced air cooling.
  • the heat generated from the reactor 91 can be efficiently dissipated by forced air cooling, so the cooling performance for the reactor 91 can be improved compared to when the heat generated from the reactor 91 is dissipated only by natural air cooling. Therefore, the temperature rise in the machine room 13 can be suppressed, and the thermal effects on elements such as resistors and capacitors can be mitigated.
  • the outdoor unit 1 is provided with a reactor stand 92 that fixes the reactor box 90 and the reactor 91, making it easier for heat generated from the reactor 91 to be transferred to the reactor box 90.
  • an opening 4a that connects the blower chamber 12 and the machine chamber 13 is formed in the portion of the partition plate 4 where the reactor box 90 is arranged, and heat generated in the machine chamber 13 is dissipated into the air in the blower chamber 12 through the opening 4a. This makes it possible to suppress the rise in temperature in the machine chamber 13 and mitigate the thermal effects on elements such as resistors and capacitors. It is not necessary to provide the opening 4a in the partition plate 4.
  • FIG. 4 is a cross-sectional view showing an outdoor unit 1A of an air conditioner according to a second embodiment, and corresponds to the cross-sectional view taken along line III-III shown in Figure 2.
  • Figure 5 is a view seen from the direction of arrow B shown in Figure 4. This embodiment differs from the first embodiment in that a slit 90i is provided in the reactor box 90.
  • parts that overlap with those in the first embodiment are given the same reference numerals and will not be described.
  • the reactor box 90 is provided with slits 90i that connect the inside and outside of the reactor box 90.
  • the slits 90i are located in the blower chamber 12.
  • the number of slits 90i is six in this embodiment, but at least one slit is sufficient.
  • the slits 90i are provided on both the first surface 90d and the second surface 90e in this embodiment, but they may be provided on at least one of the first surface 90d and the second surface 90e. In this embodiment, three slits 90i are provided on each of the first surface 90d and the second surface 90e.
  • the three slits 90i provided on the second surface 90e are arranged at intervals from each other in the Z-axis direction.
  • the shape of the slits 90i when viewed along the penetrating direction of the slits 90i is approximately triangular.
  • the shape of the slits 90i when viewed along the penetrating direction of the slits 90i is not particularly limited as long as it is a shape that allows the air flow generated by the blower 5 to pass through.
  • the extension direction of the slits 90i is the vertical direction along the Y-axis direction in this embodiment, but it may be the horizontal direction along the Z-axis direction or a direction oblique to the vertical and horizontal directions.
  • the arrangement, shape, and extension direction of the slits 90i provided on the first surface 90d may be the same as or different from the arrangement, shape, and extension direction of the slits 90i provided on the second surface 90e.
  • the reactor box 90 is provided with at least one slit 90i that connects the inside and outside of the reactor box 90, so that the airflow generated by the blower 5 flows inside the reactor box 90.
  • the airflow hits the reactor 91, so that the reactor 91 can be cooled by forced air cooling.
  • the forced air cooling can dissipate the heat generated by the reactor 91 more efficiently, so that the cooling performance for the reactor 91 can be further improved. Therefore, the temperature rise of the machine room 13 can be suppressed, and the thermal effects on elements such as resistors and capacitors can be further mitigated.
  • the reactor box 90 has a first surface 90d facing the rear surface of the housing 2 and a second surface 90e facing the front surface of the housing 2, and the slits 90i are provided on both the first surface 90d and the second surface 90e.
  • the air flow flows into the inside of the reactor box 90 from the slits 90i provided on the first surface 90d and is discharged to the outside of the reactor box 90 from the slits 90i provided on the second surface 90e. Therefore, the heat generated from the reactor 91 is discharged to the outside of the reactor box 90 from the slits 90i provided on the second surface 90e together with the air flow.
  • the slits 90i may be provided in one or more of the bottom surface 90b, the top surface 90c, the first surface 90d, the second surface 90e, and the third surface 90f, or the slits 90i may not be provided in the reactor box 90.
  • FIG. 6 is a cross-sectional view showing an outdoor unit 1A of an air conditioner according to a modified example of the second embodiment.
  • the reactor 91 is not hatched for ease of understanding.
  • the reactor box 90 may be provided with a shielding portion 90j that extends downward from the upper edge of the slit 90i and is positioned in front of the slit 90i.
  • the shielding portion 90j serves to prevent water from entering the inside of the reactor box 90 while ensuring ventilation between the blower chamber 12 and the inside of the reactor box 90.
  • the shielding portion 90j is a plate-shaped portion.
  • the shielding portion 90j is made of metal.
  • the shielding portion 90j is disposed in front of the slit 90i with a gap therebetween.
  • the side shape of the shielding portion 90j is a curved shape that extends downward from the upper edge of the slit 90i, away from the slit 90i, and then extends toward the slit 90i, but is not particularly limited.
  • the shielding portion 90j may be formed separately from the reactor box 90, or may be formed integrally with the reactor box 90.
  • the shielding portion 90j is provided only at a position corresponding to the slit 90i on the second surface 90e, but the shielding portion 90j may be provided at a position corresponding to the slit 90i on the first surface 90d.
  • the reactor box 90 is provided with a shielding portion 90j that extends downward from the upper edge of the slit 90i and is positioned in front of the slit 90i. This makes it possible to prevent water from entering the inside of the reactor box 90 through the slit 90i when water adhering to the outer surface of the reactor box 90 flows down.
  • FIG. 7 is a cross-sectional view showing an outdoor unit 1B of an air conditioner according to a third embodiment, and corresponds to the cross-sectional view taken along line III-III shown in Fig. 2.
  • This embodiment differs from the first embodiment in that the reactor base 92 has a plurality of fins 92c.
  • parts that overlap with those in the first embodiment are given the same reference numerals and will not be described.
  • the reactor stand 92 has a plurality of fins 92c.
  • the plurality of fins 92c are provided on the surface of the first fixing part 92a opposite to the surface to which the reactor 91 is fixed.
  • the plurality of fins 92c are provided on the surface of the first fixing part 92a facing rearward.
  • the plurality of fins 92c are arranged facing the first surface 90d.
  • the plurality of fins 92c are arranged at intervals from one another in the Z-axis direction.
  • the fins 92c are plate-shaped members.
  • the fins 92c are made of metal.
  • the reactor stand 92 has multiple fins 92c, so that heat transferred from the reactor 91 to the reactor stand 92 is dissipated from the fins 92c of the reactor stand 92 into the air inside the reactor box 90, allowing the reactor 91 to be cooled by natural air cooling.
  • natural air cooling using the fins 92c allows the heat generated by the reactor 91 to be efficiently dissipated, further improving the cooling performance for the reactor 91. This suppresses the rise in temperature of the machine room 13, and further mitigates the thermal effects on elements such as resistors and capacitors.
  • FIG. 8 is a cross-sectional view showing an outdoor unit 1C of an air conditioner according to a fourth embodiment, and corresponds to the cross-sectional view taken along line III-III shown in Fig. 2.
  • This embodiment differs from the first embodiment in that the partition plate 4 does not have an opening 4a.
  • parts that overlap with those in the first embodiment are given the same reference numerals and descriptions thereof will be omitted.
  • the partition plate 4 does not have an opening 4a between the blower chamber 12 and the machine chamber 13. No opening 4a is formed in the portion of the partition plate 4 where the reactor box 90 is arranged.
  • the reactor box 90 is fixed to the surface of the partition plate 4 facing the blower chamber 12, and is arranged in a state where it protrudes into the blower chamber 12.
  • the front and rear ends of the heat sink 10 are fixed to the partition plate 4 by screws 11.
  • the heat sink 10 is fixed to the partition plate 4 by fastening the front and rear ends of the heat sink 10 to the partition plate 4 with screws 11.
  • the front and rear ends of the heat sink 10 are fixed to the partition plate 4 by fastening the front and rear ends of the heat sink 10 to the partition plate 4 by screws 11.
  • the front and rear ends of the heat sink 10 are fixed to the surface of the partition plate 4 facing the blower chamber 12.
  • the first flange portion 90g and the second flange portion 90h of the reactor box 90 are fixed to the partition plate 4 by screws 11.
  • the reactor box 90 is fixed to the partition plate 4 by fastening the first flange portion 90g and the second flange portion 90h to the partition plate 4 with screws 11.
  • the first flange portion 90g and the second flange portion 90h are fixed to the surface of the partition plate 4 facing the blower chamber 12.
  • the reactor stand 92 fixes the reactor 91 to the partition plate 4.
  • the second fixing portion 92d of the reactor stand 92 extends forward in the X-axis direction from the right end of the first fixing portion 92a.
  • the second fixing portion 92b is fixed to the partition plate 4 with screws 11.
  • the reactor stand 92 is fixed to the partition plate 4 by fastening the second fixing portion 92b to the partition plate 4 with screws 11.
  • the second fixing portion 92b is fixed to the partition plate 4.
  • the second fixing portion 92b is fixed to the surface of the partition plate 4 facing the blower chamber 12.
  • the partition plate 4 since the partition plate 4 does not have an opening 4a between the blower chamber 12 and the machine chamber 13, the heat transferred from the reactor 91 to the reactor stand 92 is not dissipated to the machine chamber 13, so that the temperature rise of the machine chamber 13 can be suppressed.
  • the intrusion of dust, water, etc. from the blower chamber 12 to the machine chamber 13 can be prevented, and the compressor 7, the first electrical component 8e of the electrical component unit 8, the second electrical component 8f, etc. can be protected. Therefore, while suppressing the rise in temperature of the machine chamber 13, elements such as resistors and capacitors can be protected from failure.
  • This effect can be achieved even if the opening 4a is formed in the part of the partition plate 4 where the heat sink 10 is arranged, as long as the opening 4a is not formed in the part of the partition plate 4 where the reactor box 90 is arranged. Furthermore, even if an opening 4a is formed in the portion of the partition plate 4 where the heat sink 10 is placed, if the entire opening 4a is covered by the heat sink 10, it is possible to further prevent dust, water, etc. from entering the machine room 13 from the blower room 12, and to further protect elements such as resistors and capacitors from failure.
  • 1, 1A, 1B, 1C outdoor unit of air conditioner, 2: housing, 2a: air intake, 2b: exhaust, 3: wire grill, 4: partition plate, 4a: opening, 5: blower, 6: heat exchanger, 7: compressor, 8: electrical component unit, 8a: storage box, 8b: mounting board, 8c: mounting surface, 8d: board surface, 8e: first electrical component, 8f: second electrical component, 9: reactor unit, 10: heat sink, 10a , 92c fin, 11 screw, 12 blower room, 13 machine room, 90 reactor box, 90a hole, 90b bottom surface, 90c top surface, 90d first surface, 90e second surface, 90f third surface, 90g first flange portion, 90h second flange portion, 90i slit, 90j shielding portion, 91 reactor, 92 reactor stand, 92a first fixing portion, 92b second fixing portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

An outdoor unit (1) for an air conditioner comprises: a box-shaped housing; a divider (4) which divides the inside of the housing into a fan chamber (12) and a machinery chamber (13); a reactor box (90) which is mounted on the divider (4) so as to protrude from the divider (4) into the fan chamber (12) and which is in communication with the machinery chamber (13); and a reactor (91) which is accommodated inside the reactor box (90).

Description

空気調和機の室外機Air conditioner outdoor unit
 本開示は、リアクタを備える空気調和機の室外機に関する。 This disclosure relates to an outdoor unit of an air conditioner equipped with a reactor.
 従来の空気調和機の室外機として、仕切り板により筐体の内部を送風機室と機械室とに区画して、送風機、熱交換器などを送風機室に配置し、圧縮機、リアクタ、電気部品ユニットなどを機械室に配置する構造が一般的である。電気部品ユニットは、送風機および圧縮機の駆動を制御する電気部品を有している。  Conventional outdoor units for air conditioners generally have a structure in which the inside of the housing is divided into a blower chamber and a machine chamber by a partition plate, with the blower, heat exchanger, etc. located in the blower chamber, and the compressor, reactor, electrical component unit, etc. located in the machine chamber. The electrical component unit has electrical components that control the operation of the blower and compressor.
 従来の空気調和機の室外機では、送風機を駆動させることにより送風機室に外気が取り込まれて、取り込まれた外気により熱交換器の熱が大気に排出されるか、または、送風機室の冷気が大気に排出される。送風機室は、外気に曝される空間であるため、粉塵、水などが侵入しやすい空間である。一方、機械室は、粉塵、水などに弱い圧縮機、リアクタ、電気部品ユニットの電気部品などを収容する空間であるため、送風機室と仕切り板で隔てられて粉塵、水などが侵入しにくい密閉空間になっている。 In the outdoor unit of a conventional air conditioner, outside air is drawn into the blower room by driving the blower, and either the heat from the heat exchanger is discharged to the atmosphere by the drawn-in outside air, or the cool air in the blower room is discharged to the atmosphere. The blower room is a space exposed to outside air, so it is a space into which dust, water, etc. can easily enter. On the other hand, the machine room is a space that houses the compressor, reactor, and electrical parts of the electrical component unit, which are vulnerable to dust and water, so it is separated from the blower room by a partition plate, making it an enclosed space that is less susceptible to the entry of dust, water, etc.
 空気調和機の運転時には、圧縮機、リアクタおよび電気部品ユニットの電気部品から熱が発生して、機械室の温度が上昇する。機械室の温度が上昇すると、抵抗、コンデンサといった素子が熱的影響を受けて劣化するという問題が生じる。特に、リアクタの発熱量が多いため、リアクタを冷却する必要がある。リアクタを冷却する方法としては、特許文献1のように自然空冷のみによりリアクタを冷却する方法がある。 When the air conditioner is operating, heat is generated from the compressor, reactor, and electrical components of the electrical component unit, causing the temperature in the machine room to rise. When the temperature in the machine room rises, problems arise in that elements such as resistors and capacitors are thermally affected and deteriorate. In particular, the reactor generates a large amount of heat, so it is necessary to cool the reactor. One method of cooling the reactor is to cool it using only natural air cooling, as described in Patent Document 1.
特開2016-50726号公報JP 2016-50726 A
 しかしながら、近年のリアクタの大電流化が進んだことにより、特許文献1のように自然空冷だけでは、リアクタの冷却が不十分になるという問題がある。 However, as reactors have become larger in current in recent years, there is a problem that cooling the reactor by natural air cooling alone, as in Patent Document 1, is insufficient.
 本開示は、上記に鑑みてなされたものであって、リアクタに対する冷却性能を向上させることができる空気調和機の室外機を得ることを目的とする。 The present disclosure has been made in consideration of the above, and aims to provide an outdoor unit for an air conditioner that can improve the cooling performance for the reactor.
 上述した課題を解決し、目的を達成するために、本開示にかかる空気調和機の室外機は、箱状の筐体と、筐体の内部を送風機室と機械室とに区画する仕切り板と、仕切り板から送風機室に突出した状態で仕切り板に取り付けられ、機械室と連通するリアクタボックスと、リアクタボックスの内部に収容されるリアクタと、を備えている。 In order to solve the above problems and achieve the objectives, the outdoor unit of the air conditioner disclosed herein comprises a box-shaped housing, a partition plate that divides the inside of the housing into a blower chamber and a machine chamber, a reactor box that is attached to the partition plate while protruding from the partition plate into the blower chamber and communicates with the machine chamber, and a reactor housed inside the reactor box.
 本開示にかかる空気調和機の室外機は、リアクタに対する冷却性能を向上させることができるという効果を奏する。 The outdoor unit of the air conditioner disclosed herein has the effect of improving the cooling performance of the reactor.
実施の形態1にかかる空気調和機の室外機の外観を示した正面図FIG. 1 is a front view showing the appearance of an outdoor unit of an air conditioner according to a first embodiment; 実施の形態1にかかる空気調和機の室外機の内部構造を示した正面図FIG. 1 is a front view showing an internal structure of an outdoor unit of an air conditioner according to a first embodiment; 図2に示されたIII-III線に沿った断面図3 is a cross-sectional view taken along line III-III shown in FIG. 2 . 実施の形態2にかかる空気調和機の室外機を示した断面図であって、図2に示されたIII-III線に沿った断面図に相当する図FIG. 3 is a cross-sectional view showing an outdoor unit of an air conditioner according to a second embodiment, which corresponds to the cross-sectional view taken along line III-III shown in FIG. 図4に示された矢印B方向から見た図FIG. 5 is a view taken from the direction of the arrow B in FIG. 4 . 実施の形態2の変形例にかかる空気調和機の室外機を示した断面図FIG. 11 is a cross-sectional view showing an outdoor unit of an air conditioner according to a modified example of the second embodiment. 実施の形態3にかかる空気調和機の室外機を示した断面図であって、図2に示されたIII-III線に沿った断面図に相当する図FIG. 11 is a cross-sectional view showing an outdoor unit of an air conditioner according to a third embodiment, which corresponds to the cross-sectional view taken along line III-III shown in FIG. 実施の形態4にかかる空気調和機の室外機を示した断面図であって、図2に示されたIII-III線に沿った断面図に相当する図FIG. 11 is a cross-sectional view showing an outdoor unit of an air conditioner according to a fourth embodiment, which corresponds to the cross-sectional view taken along line III-III shown in FIG.
 以下に、実施の形態にかかる空気調和機の室外機を図面に基づいて詳細に説明する。 The outdoor unit of the air conditioner according to the embodiment will be described in detail below with reference to the drawings.
実施の形態1.
 図1は、実施の形態1にかかる空気調和機の室外機1の外観を示した正面図である。図2は、実施の形態1にかかる空気調和機の室外機1の内部構造を示した正面図である。図1に示すように、空気調和機の室外機1は、筐体2と、ワイヤーグリル3とを備えている。また、図2に示すように、空気調和機の室外機1は、仕切り板4と、送風機5と、熱交換器6と、圧縮機7と、電気部品ユニット8と、リアクタユニット9とを備えている。以下、空気調和機の室外機1を単に室外機1と称する場合もある。
Embodiment 1.
Fig. 1 is a front view showing the appearance of an outdoor unit 1 of an air conditioner according to the first embodiment. Fig. 2 is a front view showing the internal structure of the outdoor unit 1 of an air conditioner according to the first embodiment. As shown in Fig. 1, the outdoor unit 1 of the air conditioner includes a housing 2 and a wire grill 3. As shown in Fig. 2, the outdoor unit 1 of the air conditioner includes a partition plate 4, a blower 5, a heat exchanger 6, a compressor 7, an electric component unit 8, and a reactor unit 9. Hereinafter, the outdoor unit 1 of the air conditioner may be simply referred to as the outdoor unit 1.
 以下、室外機1の各構成要素について方向を説明するときには、室外機1の奥行方向をX軸方向、室外機1の高さ方向をY軸方向、室外機1の幅方向をZ軸方向とする。また、X軸方向の+向きを前方、X軸方向の-向きを後方とする。X軸方向の+向きは、X軸の-側から+側への向きであり、X軸方向の-向きは、X軸の+側から-側への向きである。また、Y軸方向の+向きを上方、Y軸方向の-向きを下方とする。Y軸方向の+向きは、Y軸の-側から+側への向きであり、Y軸方向の-向きは、Y軸の+側から-側への向きである。また、Z軸方向の+向きを右方、Z軸方向の-向きを左方とする。Z軸方向の+向きは、Z軸の-側から+側への向きであり、Z軸方向の-向きは、Z軸の+側から-側への向きである。本実施の形態では、室外機1のうち送風機5により生成された空気流が外部へ排出されるX軸方向の+向きを正面とし、正面の反対側を背面とする。 When explaining the directions of each component of the outdoor unit 1 below, the depth direction of the outdoor unit 1 is defined as the X-axis direction, the height direction of the outdoor unit 1 as the Y-axis direction, and the width direction of the outdoor unit 1 as the Z-axis direction. Furthermore, the + direction in the X-axis direction is defined as the front, and the - direction in the X-axis direction is defined as the rear. The + direction in the X-axis direction is the direction from the - side to the + side of the X-axis, and the - direction in the X-axis direction is the direction from the + side to the - side of the X-axis. Furthermore, the + direction in the Y-axis direction is defined as the upward direction, and the - direction in the Y-axis direction is defined as the downward direction. The + direction in the Y-axis direction is the direction from the - side to the + side of the Y-axis, and the - direction in the Y-axis direction is the direction from the + side to the - side of the Y-axis. Furthermore, the + direction in the Z-axis direction is defined as the right, and the - direction in the Z-axis direction is defined as the left. The + direction in the Z-axis direction is the direction from the - side to the + side of the Z-axis, and the - direction in the Z-axis direction is the direction from the + side to the - side of the Z-axis. In this embodiment, the positive direction of the X-axis along which the airflow generated by the blower 5 of the outdoor unit 1 is discharged to the outside is the front, and the side opposite the front is the back.
 図1および図2に示すように、筐体2は、室外機1の外殻となる箱状の部材である。筐体2は、金属により形成されている。図2に示すように、筐体2の背面には、給気口2aが設けられている。給気口2aは、筐体2の外部の空気を後記する送風機室12に流入させるための開口である。図1に示すように、筐体2の正面には、排気口2bが設けられている。排気口2bは、送風機5により生成された空気流を送風機室12の外部へ排出するための開口である。熱交換器6の熱、または、送風機室12の冷気は、送風機5により生成された空気流と共に、排気口2bを通じて送風機室12の外部へ排出される。 As shown in Figures 1 and 2, the housing 2 is a box-shaped member that serves as the outer shell of the outdoor unit 1. The housing 2 is made of metal. As shown in Figure 2, an air intake port 2a is provided on the rear surface of the housing 2. The air intake port 2a is an opening for allowing air outside the housing 2 to flow into the blower chamber 12, which will be described later. As shown in Figure 1, an exhaust port 2b is provided on the front surface of the housing 2. The exhaust port 2b is an opening for discharging the airflow generated by the blower 5 to the outside of the blower chamber 12. The heat of the heat exchanger 6 or the cold air of the blower chamber 12 is discharged to the outside of the blower chamber 12 through the exhaust port 2b together with the airflow generated by the blower 5.
 ワイヤーグリル3は、給気口2aを通風可能に覆う部材である。ワイヤーグリル3は、金属より形成されている。 The wire grill 3 is a member that covers the air intake vent 2a to allow ventilation. The wire grill 3 is made of metal.
 図2に示すように、仕切り板4は、筐体2の内部を送風機室12と機械室13とに区画する部材である。仕切り板4は、金属により形成されている。送風機室12と機械室13とは、Z軸方向に並んで形成されている。仕切り板4は、筐体2の床面から天井面に亘ってY軸方向に延びている。仕切り板4は、筐体2の正面から背面に亘ってX軸方向に延びている。仕切り板4には、送風機室12と機械室13とを連通する開口部4aが形成されている。 As shown in FIG. 2, the partition plate 4 is a member that divides the interior of the housing 2 into a blower chamber 12 and a machine chamber 13. The partition plate 4 is made of metal. The blower chamber 12 and the machine chamber 13 are formed side by side in the Z-axis direction. The partition plate 4 extends in the Y-axis direction from the floor surface to the ceiling surface of the housing 2. The partition plate 4 extends in the X-axis direction from the front to the back of the housing 2. The partition plate 4 has an opening 4a that connects the blower chamber 12 and the machine chamber 13.
 送風機5は、送風機室12に配置されて、空気流を生成する機器である。送風機5は、図示しない電線を介して電気部品ユニット8の後記する実装基板8bと電気的に接続されている。送風機5が駆動すると、送風機室12が負圧になるため、筐体2の外部の空気は、給気口2aから送風機室12に流入する。送風機室12に流入した空気は、熱交換器6を通過して、送風機5により空気流となり、図1に示される排気口2bから送風機室12の外部へ排出される。 The blower 5 is a device disposed in the blower chamber 12 and generates an air flow. The blower 5 is electrically connected to a mounting board 8b of the electrical component unit 8, which will be described later, via an electric wire (not shown). When the blower 5 is driven, the blower chamber 12 becomes negative pressure, and air outside the housing 2 flows into the blower chamber 12 from the air intake port 2a. The air that flows into the blower chamber 12 passes through the heat exchanger 6, becomes an air flow by the blower 5, and is exhausted to the outside of the blower chamber 12 from the exhaust port 2b shown in FIG. 1.
 熱交換器6は、送風機室12に配置されて、冷媒と室外の空気との熱交換を行うための部材である。熱交換器6には、送風機5に取り込むための室外の空気が通過する。熱交換器6は、金属により形成されている。 The heat exchanger 6 is disposed in the blower chamber 12 and is a component for exchanging heat between the refrigerant and the outdoor air. Outdoor air to be taken in by the blower 5 passes through the heat exchanger 6. The heat exchanger 6 is made of metal.
 圧縮機7は、機械室13に配置されて、熱交換器6内を流れる冷媒を圧縮する機器である。圧縮機7は、機械室13のうち下方空間に配置されている。圧縮機7は、図示しない電線を介して電気部品ユニット8の後記する実装基板8bと電気的に接続されている。図示は省略するが、機械室13には、冷媒が流れる複数本の冷媒配管が配置される。冷媒配管は、図示しない室内機ユニット、圧縮機7、熱交換器6などに接続される。 The compressor 7 is disposed in the machine room 13 and is a device that compresses the refrigerant flowing through the heat exchanger 6. The compressor 7 is disposed in the lower space of the machine room 13. The compressor 7 is electrically connected to a mounting board 8b (described below) of the electrical component unit 8 via an electric wire (not shown). Although not shown, multiple refrigerant pipes through which the refrigerant flows are disposed in the machine room 13. The refrigerant pipes are connected to an indoor unit (not shown), the compressor 7, the heat exchanger 6, etc.
 電気部品ユニット8は、機械室13に配置されている。電気部品ユニット8は、圧縮機7の上方に圧縮機7から離れて配置されている。電気部品ユニット8は、収容箱8aを有している。 The electrical component unit 8 is disposed in the machine room 13. The electrical component unit 8 is disposed above and away from the compressor 7. The electrical component unit 8 has a storage box 8a.
 図3は、図2に示されたIII-III線に沿った断面図である。図3に示される矢印Aは、送風機5により生成された空気流の送風方向を表している。図3に示される波線矢印は、熱の流れを表している。図3に示される鎖線は、送風機室12と機械室13との境界線Cを示している。図3では、理解の容易化のために、第1の電気部品8e、第2の電気部品8f、フィン10aおよびリアクタ91にハッチングを付していない。図3に示すように、電気部品ユニット8は、室外機1の運転を制御する実装基板8bを有している。実装基板8bは、図2に示される収容箱8aの内部に収容される。 FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. Arrow A in FIG. 3 indicates the direction of the airflow generated by the blower 5. Wavy arrows in FIG. 3 indicate the flow of heat. A dashed line in FIG. 3 indicates the boundary C between the blower chamber 12 and the machine chamber 13. In FIG. 3, the first electrical component 8e, the second electrical component 8f, the fins 10a, and the reactor 91 are not hatched for ease of understanding. As shown in FIG. 3, the electrical component unit 8 has a mounting board 8b that controls the operation of the outdoor unit 1. The mounting board 8b is housed inside the housing box 8a shown in FIG. 2.
 実装基板8bは、機械室13に配置されている。実装基板8bは、送風機室12の方を向く実装面8cと、実装面8cとは反対側を向く基板面8dとを有している。実装基板8bには、第1の電気部品8eおよび第2の電気部品8fが実装されている。第1の電気部品8eおよび第2の電気部品8fは、はんだ付けにより実装基板8bに固定されている。第1の電気部品8eは、実装面8cに取り付けられている。第1の電気部品8eは、例えば、パワー半導体である。パワー半導体は、例えば、IGBT(Insulated Gate Bipolar Transistor)、ダイオード、IPM(Intelligent Power Module)である。第2の電気部品8fは、基板面8dに取り付けられている。第2の電気部品8fは、例えば、コモンモードコイルである。 The mounting board 8b is disposed in the machine room 13. The mounting board 8b has a mounting surface 8c facing the blower room 12 and a board surface 8d facing the opposite side to the mounting surface 8c. A first electrical component 8e and a second electrical component 8f are mounted on the mounting board 8b. The first electrical component 8e and the second electrical component 8f are fixed to the mounting board 8b by soldering. The first electrical component 8e is attached to the mounting surface 8c. The first electrical component 8e is, for example, a power semiconductor. The power semiconductor is, for example, an IGBT (Insulated Gate Bipolar Transistor), a diode, or an IPM (Intelligent Power Module). The second electrical component 8f is attached to the board surface 8d. The second electrical component 8f is, for example, a common mode coil.
 第1の電気部品8eのうち送風機室12の方を向く部分には、ヒートシンク10が取り付けられている。ヒートシンク10は、第1の電気部品8eを冷却する役割を果たしている。ヒートシンク10は、送風機室12に向かって延びる複数のフィン10aを有している。仕切り板4のうちヒートシンク10および後記するリアクタボックス90が配置される部分には、送風機室12と機械室13とを連通する開口部4aが形成されている。ヒートシンク10のフィン10aは、仕切り板4の開口部4aを通じて送風機室12に配置されている。ヒートシンク10のフィン10aには、送風機5により生成された空気流が当たるようになっている。ヒートシンク10は、送風機5が生成した空気流により冷却される。 A heat sink 10 is attached to a portion of the first electrical component 8e facing the blower chamber 12. The heat sink 10 serves to cool the first electrical component 8e. The heat sink 10 has a number of fins 10a extending toward the blower chamber 12. An opening 4a that connects the blower chamber 12 and the machine chamber 13 is formed in the portion of the partition plate 4 where the heat sink 10 and a reactor box 90 (described later) are arranged. The fins 10a of the heat sink 10 are arranged in the blower chamber 12 through the opening 4a of the partition plate 4. The fins 10a of the heat sink 10 are adapted to be exposed to the airflow generated by the blower 5. The heat sink 10 is cooled by the airflow generated by the blower 5.
 複数のフィン10aは、X軸方向に互いに間隔を空けて配置されている。フィン10aは、板状の部材である。フィン10aは、金属により形成されている。ヒートシンク10のうちX軸方向の一端部である後端部は、ネジ11により仕切り板4に固定されている。ヒートシンク10のうちX軸方向の他端部である前端部は、ネジ11により後記するリアクタ台92に固定されている。 The multiple fins 10a are arranged at intervals from one another in the X-axis direction. The fins 10a are plate-shaped members. The fins 10a are made of metal. The rear end, which is one end of the heat sink 10 in the X-axis direction, is fixed to the partition plate 4 with screws 11. The front end, which is the other end of the heat sink 10 in the X-axis direction, is fixed to the reactor base 92, which will be described later, with screws 11.
 リアクタユニット9は、仕切り板4の開口部4aを通じて送風機室12に配置された状態で仕切り板4に取り付けられている。リアクタユニット9は、リアクタボックス90と、リアクタ91と、リアクタ台92とを有している。 The reactor unit 9 is attached to the partition plate 4 while being placed in the blower chamber 12 through the opening 4a of the partition plate 4. The reactor unit 9 has a reactor box 90, a reactor 91, and a reactor stand 92.
 リアクタボックス90は、機械室13に向かって開口する孔90aが形成された箱状の部材である。リアクタボックス90の内部は、孔90aを通じて機械室13と連通する。リアクタボックス90は、金属により形成されている。リアクタボックス90は、仕切り板4から送風機室12に突出した状態で仕切り板4に取り付けられている。リアクタボックス90は、仕切り板4の開口部4aを通じて送風機室12に突出した状態で配置されている。リアクタボックス90には、送風機5により生成された空気流が当たるようになっている。リアクタボックス90は、送風機5が生成した空気流により冷却される。 The reactor box 90 is a box-shaped member with a hole 90a that opens toward the machine room 13. The inside of the reactor box 90 is in communication with the machine room 13 through the hole 90a. The reactor box 90 is made of metal. The reactor box 90 is attached to the partition plate 4 in a state where it protrudes from the partition plate 4 into the blower room 12. The reactor box 90 is arranged in a state where it protrudes into the blower room 12 through the opening 4a of the partition plate 4. The reactor box 90 is adapted to be exposed to the airflow generated by the blower 5. The reactor box 90 is cooled by the airflow generated by the blower 5.
 リアクタボックス90は、開口部4aの一部を覆うように仕切り板4に取り付けられている。なお、リアクタボックス90とヒートシンク10とによって開口部4aの全体が覆われていてもよい。このようにすると、粉塵、水などが送風機室12から開口部4aを通じて機械室13に侵入することを抑制できる。 The reactor box 90 is attached to the partition plate 4 so as to cover a portion of the opening 4a. The reactor box 90 and the heat sink 10 may cover the entire opening 4a. In this way, it is possible to prevent dust, water, etc. from entering the machine room 13 from the blower room 12 through the opening 4a.
 図2に示すように、リアクタボックス90は、底面90bと、天面90cとを有している。また、図3に示すように、リアクタボックス90は、第1の面90dと、第2の面90eと、第3の面90fとを有している。 As shown in FIG. 2, the reactor box 90 has a bottom surface 90b and a top surface 90c. As shown in FIG. 3, the reactor box 90 has a first surface 90d, a second surface 90e, and a third surface 90f.
 図2に示すように、底面90bは、機械室13からZ軸方向に沿って離れるにつれて水平状に延びた後、上方に位置するように傾斜状に延びている。天面90cは、底面90bの上方に底面90bから離れて配置されている。天面90cは、Z軸方向に水平状に延びている。 As shown in FIG. 2, the bottom surface 90b extends horizontally as it moves away from the machine room 13 along the Z-axis direction, and then extends at an angle to be positioned upward. The top surface 90c is positioned above and away from the bottom surface 90b. The top surface 90c extends horizontally in the Z-axis direction.
 図3に示される第1の面90dは、図2に示される底面90bの後端部と天面90cの後端部とを連結している。第1の面90dは、Y軸方向に鉛直状に延びている。第1の面90dは、筐体2の背面の方を向く面である。第1の面90dの右端部には、後方に向かってX軸方向に延びる第1のフランジ部90gが形成されている。 The first surface 90d shown in FIG. 3 connects the rear end of the bottom surface 90b and the rear end of the top surface 90c shown in FIG. 2. The first surface 90d extends vertically in the Y-axis direction. The first surface 90d faces the rear surface of the housing 2. A first flange portion 90g is formed on the right end of the first surface 90d, extending rearward in the X-axis direction.
 第2の面90eは、底面90bの前端部と天面90cの前端部とを連結している。第2の面90eは、Y軸方向に鉛直状に延びている。第2の面90eは、筐体2の正面の方を向く面である。第2の面90eの右端部には、前方に向かってX軸方向に延びる第2のフランジ部90hが形成されている。第2のフランジ部90hは、ネジ11により仕切り板4に固定されている。第2のフランジ部90hは、仕切り板4の開口部4aの開口縁に固定されている。 The second surface 90e connects the front end of the bottom surface 90b to the front end of the top surface 90c. The second surface 90e extends vertically in the Y-axis direction. The second surface 90e faces the front of the housing 2. A second flange portion 90h is formed on the right end of the second surface 90e, extending forward in the X-axis direction. The second flange portion 90h is fixed to the partition plate 4 by the screw 11. The second flange portion 90h is fixed to the edge of the opening 4a of the partition plate 4.
 第3の面90fは、底面90bの左端部と天面90cの左端部とを連結しているとともに、第1の面90dの左端部と第2の面90eの左端部とを連結している。第3の面90fは、Y軸方向に鉛直状に延びている。第3の面90fは、リアクタ91を挟んで孔90aと反対側に位置している。 The third surface 90f connects the left end of the bottom surface 90b to the left end of the top surface 90c, and also connects the left end of the first surface 90d to the left end of the second surface 90e. The third surface 90f extends vertically in the Y-axis direction. The third surface 90f is located on the opposite side of the hole 90a across the reactor 91.
 リアクタ91は、リアクタボックス90の内部に収容されている。リアクタ91は、圧縮機7の速度を制御するインバータの一部となる電気部品である。 The reactor 91 is housed inside the reactor box 90. The reactor 91 is an electrical component that is part of the inverter that controls the speed of the compressor 7.
 リアクタ台92は、リアクタボックス90とリアクタ91とを固定する固定用板金となる。リアクタ台92は、リアクタボックス90とヒートシンク10とを固定する。リアクタ台92は、金属により形成されている。リアクタ台92の平面視形状は、L字状である。リアクタ台92は、第1の固定部92aと、第2の固定部92bとを有している。 The reactor stand 92 is a fixing sheet metal that fixes the reactor box 90 and the reactor 91. The reactor stand 92 fixes the reactor box 90 and the heat sink 10. The reactor stand 92 is made of metal. The reactor stand 92 has an L-shape in plan view. The reactor stand 92 has a first fixing portion 92a and a second fixing portion 92b.
 第1の固定部92aは、リアクタボックス90の内部においてZ軸方向に延びている。第1の固定部92aには、ネジ11によりリアクタ91が固定されている。リアクタ91は、第1の固定部92aのうち前方を向く面に固定されている。第2の固定部92bは、第1の固定部92aの右端部から後方に向かってX軸方向に延びている。第2の固定部92bには、リアクタボックス90の第1のフランジ部90gとヒートシンク10の前端部とがネジ11により固定されている。リアクタボックス90の第1のフランジ部90gとヒートシンク10の前端部とは、第2の固定部92bのうち送風機室12の方を向く面に固定されている。リアクタボックス90の第1のフランジ部90gとヒートシンク10とは、X軸方向に並んで配置されている。リアクタボックス90は、リアクタ台92およびヒートシンク10を介して、仕切り板4に固定されている。 The first fixing portion 92a extends in the Z-axis direction inside the reactor box 90. The reactor 91 is fixed to the first fixing portion 92a by a screw 11. The reactor 91 is fixed to the surface of the first fixing portion 92a facing forward. The second fixing portion 92b extends in the X-axis direction from the right end of the first fixing portion 92a toward the rear. The first flange portion 90g of the reactor box 90 and the front end of the heat sink 10 are fixed to the second fixing portion 92b by a screw 11. The first flange portion 90g of the reactor box 90 and the front end of the heat sink 10 are fixed to the surface of the second fixing portion 92b facing the blower chamber 12. The first flange portion 90g of the reactor box 90 and the heat sink 10 are arranged side by side in the X-axis direction. The reactor box 90 is fixed to the partition plate 4 via the reactor stand 92 and the heat sink 10.
 次に、実施の形態1にかかる室外機1の効果について説明する。 Next, the effects of the outdoor unit 1 according to the first embodiment will be explained.
 図2に示すように、送風機5が駆動すると、送風機室12が負圧になるため、筐体2の外部の空気は、給気口2aから送風機室12に流入する。送風機室12に流入した空気は、熱交換器6を通過して、送風機5によって空気流となり、図1に示される排気口2bから送風機室12の外部へ排出される。 As shown in FIG. 2, when the blower 5 is driven, the blower chamber 12 becomes negative pressure, and air outside the housing 2 flows into the blower chamber 12 through the air intake 2a. The air that flows into the blower chamber 12 passes through the heat exchanger 6, becomes an air flow by the blower 5, and is exhausted to the outside of the blower chamber 12 through the exhaust 2b shown in FIG. 1.
 送風機5が駆動すると、図3に示される第1の電気部品8eと第2の電気部品8fとリアクタ91とが発熱する。第1の電気部品8eから発生した熱は、ヒートシンク10に伝わり、ヒートシンク10から送風機室12の空気中に放熱されるため、自然空冷により第1の電気部品8eを冷却することができる。また、送風機5により生成された空気流がヒートシンク10に当たるため、強制空冷によりヒートシンク10を冷却することができる。このように自然空冷と強制空冷とにより、第1の電気部品8eから発生した熱を効率的に放熱させることができる。 When the blower 5 is driven, the first electrical component 8e, the second electrical component 8f, and the reactor 91 shown in FIG. 3 generate heat. The heat generated from the first electrical component 8e is transferred to the heat sink 10 and dissipated from the heat sink 10 into the air in the blower chamber 12, so that the first electrical component 8e can be cooled by natural air cooling. In addition, the airflow generated by the blower 5 hits the heat sink 10, so that the heat sink 10 can be cooled by forced air cooling. In this way, the heat generated from the first electrical component 8e can be efficiently dissipated by natural air cooling and forced air cooling.
 第2の電気部品8fから発生した熱は、機械室13の空気中に放熱されるため、自然空冷により第2の電気部品8fを冷却することができる。なお、図示しない熱伝導絶縁部材が実装基板8bの実装面8cとリアクタ台92の第2の固定部92bとの間に挟み込まれて配置されるとともに実装基板8bのうち第2の電気部品8fの近くに取り付けられていてもよい。このようにすると、第2の電気部品8fから発生した熱は、実装基板8b、熱伝導絶縁部材、リアクタ台92の順に伝わり、リアクタ台92からヒートシンク10およびリアクタボックス90に伝わる。そして、送風機5により生成された空気流がヒートシンク10およびリアクタボックス90に当たるため、強制空冷によりヒートシンク10およびリアクタボックス90を冷却することができる。このようにすれば自然空冷と強制空冷とにより、第2の電気部品8fから発生した熱を効率的に放熱させることができる。 The heat generated from the second electrical component 8f is dissipated into the air in the machine room 13, so that the second electrical component 8f can be cooled by natural air cooling. A heat conductive insulating member (not shown) may be sandwiched and disposed between the mounting surface 8c of the mounting board 8b and the second fixing portion 92b of the reactor stand 92, and may be attached to the mounting board 8b near the second electrical component 8f. In this way, the heat generated from the second electrical component 8f is transmitted in the order of the mounting board 8b, the heat conductive insulating member, and the reactor stand 92, and then from the reactor stand 92 to the heat sink 10 and the reactor box 90. Then, the airflow generated by the blower 5 hits the heat sink 10 and the reactor box 90, so that the heat sink 10 and the reactor box 90 can be cooled by forced air cooling. In this way, the heat generated from the second electrical component 8f can be efficiently dissipated by natural air cooling and forced air cooling.
 リアクタ91から発生した熱は、リアクタ台92を通じてリアクタボックス90に伝わったり、リアクタボックス90の内部の空気中に伝わったりする。本実施の形態では、リアクタボックス90が仕切り板4から送風機室12に突出した状態で仕切り板4に取り付けられることにより、送風機5により生成された空気流がリアクタボックス90に当たるため、強制空冷によりリアクタボックス90を冷却することができる。このように強制空冷により、リアクタ91から発生した熱を効率的に放熱させることができるため、自然空冷のみによってリアクタ91から発生した熱を放熱させる場合に比べて、リアクタ91に対する冷却性能を向上させることができる。したがって、機械室13の温度の上昇を抑制して、抵抗、コンデンサといった素子に対する熱的影響を緩和することができる。 The heat generated from the reactor 91 is transferred to the reactor box 90 through the reactor stand 92, or into the air inside the reactor box 90. In this embodiment, the reactor box 90 is attached to the partition plate 4 in a state where it protrudes from the partition plate 4 into the blower room 12, so that the airflow generated by the blower 5 hits the reactor box 90, and the reactor box 90 can be cooled by forced air cooling. In this way, the heat generated from the reactor 91 can be efficiently dissipated by forced air cooling, so the cooling performance for the reactor 91 can be improved compared to when the heat generated from the reactor 91 is dissipated only by natural air cooling. Therefore, the temperature rise in the machine room 13 can be suppressed, and the thermal effects on elements such as resistors and capacitors can be mitigated.
 本実施の形態では、室外機1は、リアクタボックス90とリアクタ91とを固定するリアクタ台92を備えていることにより、リアクタ91から発生した熱がリアクタボックス90に伝わりやすくなる。 In this embodiment, the outdoor unit 1 is provided with a reactor stand 92 that fixes the reactor box 90 and the reactor 91, making it easier for heat generated from the reactor 91 to be transferred to the reactor box 90.
 本実施の形態では、仕切り板4のうちリアクタボックス90が配置される部分には、送風機室12と機械室13とを連通する開口部4aが形成されていることにより、機械室13から発生した熱が開口部4aを通じて送風機室12の空気中に放熱される。したがって、機械室13の温度の上昇を抑制して、抵抗、コンデンサといった素子に対する熱的影響を緩和することができる。なお、仕切り板4に開口部4aを設けなくてもよい。 In this embodiment, an opening 4a that connects the blower chamber 12 and the machine chamber 13 is formed in the portion of the partition plate 4 where the reactor box 90 is arranged, and heat generated in the machine chamber 13 is dissipated into the air in the blower chamber 12 through the opening 4a. This makes it possible to suppress the rise in temperature in the machine chamber 13 and mitigate the thermal effects on elements such as resistors and capacitors. It is not necessary to provide the opening 4a in the partition plate 4.
実施の形態2.
 次に、図4および図5を参照して、実施の形態2にかかる空調調和機の室外機1Aについて説明する。図4は、実施の形態2にかかる空気調和機の室外機1Aを示した断面図であって、図2に示されたIII-III線に沿った断面図に相当する図である。図5は、図4に示された矢印B方向から見た図である。本実施の形態では、リアクタボックス90にスリット90iを設けた点が、前記した実施の形態1と相違する。なお、実施の形態2では、前記した実施の形態1と重複する部分については、同一符号を付して説明を省略する。
Embodiment 2.
Next, an outdoor unit 1A of an air conditioner according to a second embodiment will be described with reference to Figures 4 and 5. Figure 4 is a cross-sectional view showing an outdoor unit 1A of an air conditioner according to a second embodiment, and corresponds to the cross-sectional view taken along line III-III shown in Figure 2. Figure 5 is a view seen from the direction of arrow B shown in Figure 4. This embodiment differs from the first embodiment in that a slit 90i is provided in the reactor box 90. In the second embodiment, parts that overlap with those in the first embodiment are given the same reference numerals and will not be described.
 図4に示すように、リアクタボックス90には、リアクタボックス90の内部と外部とを連通するスリット90iが設けられている。スリット90iは、送風機室12に位置している。スリット90iの数は、本実施の形態では6つであるが、少なくとも1つあればよい。スリット90iは、本実施の形態では第1の面90dおよび第2の面90eの両方に設けられているが、第1の面90dおよび第2の面90eのうち少なくとも一方に設けられていてもよい。スリット90iは、本実施の形態では第1の面90dおよび第2の面90eに3つずつ設けられている。 As shown in FIG. 4, the reactor box 90 is provided with slits 90i that connect the inside and outside of the reactor box 90. The slits 90i are located in the blower chamber 12. The number of slits 90i is six in this embodiment, but at least one slit is sufficient. The slits 90i are provided on both the first surface 90d and the second surface 90e in this embodiment, but they may be provided on at least one of the first surface 90d and the second surface 90e. In this embodiment, three slits 90i are provided on each of the first surface 90d and the second surface 90e.
 図5に示すように、第2の面90eに設けられた3つのスリット90iは、Z軸方向に互いに間隔を空けて配置されている。スリット90iの貫通方向に沿ってスリット90iを見たときの形状は、本実施の形態では概ね三角形である。スリット90iの貫通方向に沿ってスリット90iを見たときの形状は、送風機5により生成された空気流が通過可能な形状であれば、特に制限されない。スリット90iの延伸方向は、本実施の形態ではY軸方向に沿った鉛直方向であるが、Z軸方向に沿った水平方向でもよいし、鉛直方向および水平方向に対して斜交する方向でもよい。図示は省略するが、第1の面90dに設けられたスリット90iの配置、形状および延伸方向は、第2の面90eに設けられたスリット90iの配置、形状および延伸方向と同一であってもよいし、異なっていてもよい。 As shown in FIG. 5, the three slits 90i provided on the second surface 90e are arranged at intervals from each other in the Z-axis direction. In this embodiment, the shape of the slits 90i when viewed along the penetrating direction of the slits 90i is approximately triangular. The shape of the slits 90i when viewed along the penetrating direction of the slits 90i is not particularly limited as long as it is a shape that allows the air flow generated by the blower 5 to pass through. The extension direction of the slits 90i is the vertical direction along the Y-axis direction in this embodiment, but it may be the horizontal direction along the Z-axis direction or a direction oblique to the vertical and horizontal directions. Although not shown, the arrangement, shape, and extension direction of the slits 90i provided on the first surface 90d may be the same as or different from the arrangement, shape, and extension direction of the slits 90i provided on the second surface 90e.
 本実施の形態では、図4および図5に示すように、リアクタボックス90には、リアクタボックス90の内部と外部とを連通する少なくとも1つのスリット90iが設けられていることにより、送風機5により生成された空気流がリアクタボックス90の内部を流れる。これにより、空気流がリアクタ91に当たるため、強制空冷によりリアクタ91を冷却することができる。このように強制空冷により、リアクタ91から発生した熱をより一層効率的に放熱させることができるため、リアクタ91に対する冷却性能をより一層向上させることができる。したがって、機械室13の温度の上昇を抑制して、抵抗、コンデンサといった素子に対する熱的影響をより一層緩和することができる。 In this embodiment, as shown in Figures 4 and 5, the reactor box 90 is provided with at least one slit 90i that connects the inside and outside of the reactor box 90, so that the airflow generated by the blower 5 flows inside the reactor box 90. As a result, the airflow hits the reactor 91, so that the reactor 91 can be cooled by forced air cooling. In this way, the forced air cooling can dissipate the heat generated by the reactor 91 more efficiently, so that the cooling performance for the reactor 91 can be further improved. Therefore, the temperature rise of the machine room 13 can be suppressed, and the thermal effects on elements such as resistors and capacitors can be further mitigated.
 本実施の形態では、図4に示すように、リアクタボックス90は、筐体2の背面の方を向く第1の面90dと、筐体2の正面の方を向く第2の面90eとを有し、スリット90iは、第1の面90dおよび第2の面90eの両方に設けられている。この構成により、空気流が、第1の面90dに設けられたスリット90iからリアクタボックス90の内部に流入して、第2の面90eに設けられたスリット90iからリアクタボックス90の外部へ排出される。そのため、リアクタ91から発生した熱が空気流と共に第2の面90eに設けられたスリット90iからリアクタボックス90の外部へ排出される。このようにリアクタ91から発生した熱をリアクタボックス90の外部へ排出することにより、リアクタ91から発生した熱をより一層効率的に放熱させることができるため、リアクタ91に対する冷却性能をより一層向上させることができる。したがって、機械室13の温度の上昇を抑制して、抵抗、コンデンサといった素子に対する熱的影響をより一層緩和することができる。なお、底面90b、天面90c、第1の面90d、第2の面90eおよび第3の面90fのいずれか1つ以上にスリット90iを設けてもよいし、リアクタボックス90にスリット90iを設けなくてもよい。 In this embodiment, as shown in FIG. 4, the reactor box 90 has a first surface 90d facing the rear surface of the housing 2 and a second surface 90e facing the front surface of the housing 2, and the slits 90i are provided on both the first surface 90d and the second surface 90e. With this configuration, the air flow flows into the inside of the reactor box 90 from the slits 90i provided on the first surface 90d and is discharged to the outside of the reactor box 90 from the slits 90i provided on the second surface 90e. Therefore, the heat generated from the reactor 91 is discharged to the outside of the reactor box 90 from the slits 90i provided on the second surface 90e together with the air flow. By discharging the heat generated from the reactor 91 to the outside of the reactor box 90 in this way, the heat generated from the reactor 91 can be dissipated more efficiently, and the cooling performance for the reactor 91 can be further improved. Therefore, the temperature rise in the machine room 13 can be suppressed, and the thermal effects on elements such as resistors and capacitors can be further mitigated. The slits 90i may be provided in one or more of the bottom surface 90b, the top surface 90c, the first surface 90d, the second surface 90e, and the third surface 90f, or the slits 90i may not be provided in the reactor box 90.
 図6は、実施の形態2の変形例にかかる空気調和機の室外機1Aを示した断面図である。図6では、理解の容易化のために、リアクタ91にハッチングを付していない。図6に示すように、リアクタボックス90には、スリット90iの上縁から下方に向かって延びて、スリット90iの正面に配置される遮蔽部90jが設けられていてもよい。遮蔽部90jは、送風機室12とリアクタボックス90の内部との通風性を確保しながら、リアクタボックス90の内部への水の浸入を防ぐ役割を果たしている。 FIG. 6 is a cross-sectional view showing an outdoor unit 1A of an air conditioner according to a modified example of the second embodiment. In FIG. 6, the reactor 91 is not hatched for ease of understanding. As shown in FIG. 6, the reactor box 90 may be provided with a shielding portion 90j that extends downward from the upper edge of the slit 90i and is positioned in front of the slit 90i. The shielding portion 90j serves to prevent water from entering the inside of the reactor box 90 while ensuring ventilation between the blower chamber 12 and the inside of the reactor box 90.
 遮蔽部90jは、板状の部分である。遮蔽部90jは、金属により形成されている。遮蔽部90jは、スリット90iの正面にスリット90iと隙間を空けて配置されている。遮蔽部90jの側面形状は、本実施の形態ではスリット90iの上縁から下方に向かうにつれてスリット90iから離れるように延びた後、スリット90iに近付くように延びる曲線形状であるが、特に制限されない。遮蔽部90jは、リアクタボックス90と別体に形成されていてもよいし、リアクタボックス90と一体に形成されていてもよい。本変形例では、第2の面90eのスリット90iに対応する位置のみに遮蔽部90jを設けたが、第1の面90dのスリット90iに対応する位置に遮蔽部90jを設けてもよい。 The shielding portion 90j is a plate-shaped portion. The shielding portion 90j is made of metal. The shielding portion 90j is disposed in front of the slit 90i with a gap therebetween. In this embodiment, the side shape of the shielding portion 90j is a curved shape that extends downward from the upper edge of the slit 90i, away from the slit 90i, and then extends toward the slit 90i, but is not particularly limited. The shielding portion 90j may be formed separately from the reactor box 90, or may be formed integrally with the reactor box 90. In this modified example, the shielding portion 90j is provided only at a position corresponding to the slit 90i on the second surface 90e, but the shielding portion 90j may be provided at a position corresponding to the slit 90i on the first surface 90d.
 本変形例では、リアクタボックス90には、スリット90iの上縁から下方に向かって延びて、スリット90iの正面に配置される遮蔽部90jが設けられている。これにより、リアクタボックス90の外面に付着した水が流下したときに、スリット90iを通じたリアクタボックス90の内部への水の浸入を抑制することができる。 In this modified example, the reactor box 90 is provided with a shielding portion 90j that extends downward from the upper edge of the slit 90i and is positioned in front of the slit 90i. This makes it possible to prevent water from entering the inside of the reactor box 90 through the slit 90i when water adhering to the outer surface of the reactor box 90 flows down.
実施の形態3.
 次に、図7を参照して、実施の形態3にかかる空調調和機の室外機1Bについて説明する。図7は、実施の形態3にかかる空気調和機の室外機1Bを示した断面図であって、図2に示されたIII-III線に沿った断面図に相当する図である。本実施の形態では、リアクタ台92が複数のフィン92cを有している点が、前記した実施の形態1と相違する。なお、実施の形態3では、前記した実施の形態1と重複する部分については、同一符号を付して説明を省略する。
Embodiment 3.
Next, an outdoor unit 1B of an air conditioner according to a third embodiment will be described with reference to Fig. 7. Fig. 7 is a cross-sectional view showing an outdoor unit 1B of an air conditioner according to a third embodiment, and corresponds to the cross-sectional view taken along line III-III shown in Fig. 2. This embodiment differs from the first embodiment in that the reactor base 92 has a plurality of fins 92c. In the third embodiment, parts that overlap with those in the first embodiment are given the same reference numerals and will not be described.
 リアクタ台92は、複数のフィン92cを有している。複数のフィン92cは、第1の固定部92aのうちリアクタ91が固定された面とは反対側の面に設けられている。複数のフィン92cは、第1の固定部92aのうち後方を向く面に設けられている。複数のフィン92cは、第1の面90dに臨んで配置されている。複数のフィン92cは、Z軸方向に互いに間隔を空けて配置されている。フィン92cは、板状の部材である。フィン92cは、金属により形成されている。 The reactor stand 92 has a plurality of fins 92c. The plurality of fins 92c are provided on the surface of the first fixing part 92a opposite to the surface to which the reactor 91 is fixed. The plurality of fins 92c are provided on the surface of the first fixing part 92a facing rearward. The plurality of fins 92c are arranged facing the first surface 90d. The plurality of fins 92c are arranged at intervals from one another in the Z-axis direction. The fins 92c are plate-shaped members. The fins 92c are made of metal.
 本実施の形態では、リアクタ台92が複数のフィン92cを有していることにより、リアクタ91からリアクタ台92に伝わった熱がリアクタ台92のフィン92cからリアクタボックス90の内部の空気中に放熱されるため、自然空冷によりリアクタ91を冷却することができる。このようにフィン92cを用いた自然空冷により、リアクタ91から発生した熱を効率的に放熱させることができるため、リアクタ91に対する冷却性能をより一層向上させることができる。したがって、機械室13の温度の上昇を抑制して、抵抗、コンデンサといった素子に対する熱的影響をより一層緩和することができる。 In this embodiment, the reactor stand 92 has multiple fins 92c, so that heat transferred from the reactor 91 to the reactor stand 92 is dissipated from the fins 92c of the reactor stand 92 into the air inside the reactor box 90, allowing the reactor 91 to be cooled by natural air cooling. In this way, natural air cooling using the fins 92c allows the heat generated by the reactor 91 to be efficiently dissipated, further improving the cooling performance for the reactor 91. This suppresses the rise in temperature of the machine room 13, and further mitigates the thermal effects on elements such as resistors and capacitors.
実施の形態4.
 次に、図8を参照して、実施の形態4にかかる空調調和機の室外機1Cについて説明する。図8は、実施の形態4にかかる空気調和機の室外機1Cを示した断面図であって、図2に示されたIII-III線に沿った断面図に相当する図である。本実施の形態では、仕切り板4が開口部4aを有していない点が、前記した実施の形態1と相違する。なお、実施の形態4では、前記した実施の形態1と重複する部分については、同一符号を付して説明を省略する。
Embodiment 4.
Next, an outdoor unit 1C of an air conditioner according to a fourth embodiment will be described with reference to Fig. 8. Fig. 8 is a cross-sectional view showing an outdoor unit 1C of an air conditioner according to a fourth embodiment, and corresponds to the cross-sectional view taken along line III-III shown in Fig. 2. This embodiment differs from the first embodiment in that the partition plate 4 does not have an opening 4a. In the fourth embodiment, parts that overlap with those in the first embodiment are given the same reference numerals and descriptions thereof will be omitted.
 仕切り板4は、送風機室12と機械室13との間に開口部4aを有していない。仕切り板4のうちリアクタボックス90が配置される部分には、開口部4aが形成されていない。リアクタボックス90は、仕切り板4のうち送風機室12の方を向く面に固定されていて、送風機室12に突出した状態で配置されている。ヒートシンク10の前端部および後端部は、ネジ11により仕切り板4に固定されている。ヒートシンク10の前端部および後端部と仕切り板4とをネジ11で止めることで、ヒートシンク10が仕切り板4に固定されている。ヒートシンク10の前端部および後端部は、仕切り板4のうち送風機室12の方を向く面に固定されている。リアクタボックス90の第1のフランジ部90gおよび第2のフランジ部90hは、ネジ11により仕切り板4に固定されている。第1のフランジ部90gおよび第2のフランジ部90hと仕切り板4とをネジ11で止めることで、リアクタボックス90が仕切り板4に固定されている。第1のフランジ部90gおよび第2のフランジ部90hは、仕切り板4のうち送風機室12の方を向く面に固定されている。リアクタ台92は、リアクタ91と仕切り板4とを固定する。リアクタ台92の第2の固定部92dは、第1の固定部92aの右端部から前方に向かってX軸方向に延びている。第2の固定部92bは、ネジ11により仕切り板4に固定されている。第2の固定部92bと仕切り板4とをネジ11で止めることで、リアクタ台92が仕切り板4に固定されている。第2の固定部92bは、仕切り板4のうち送風機室12の方を向く面に固定されている。 The partition plate 4 does not have an opening 4a between the blower chamber 12 and the machine chamber 13. No opening 4a is formed in the portion of the partition plate 4 where the reactor box 90 is arranged. The reactor box 90 is fixed to the surface of the partition plate 4 facing the blower chamber 12, and is arranged in a state where it protrudes into the blower chamber 12. The front and rear ends of the heat sink 10 are fixed to the partition plate 4 by screws 11. The heat sink 10 is fixed to the partition plate 4 by fastening the front and rear ends of the heat sink 10 to the partition plate 4 with screws 11. The front and rear ends of the heat sink 10 are fixed to the partition plate 4 by fastening the front and rear ends of the heat sink 10 to the partition plate 4 by screws 11. The front and rear ends of the heat sink 10 are fixed to the surface of the partition plate 4 facing the blower chamber 12. The first flange portion 90g and the second flange portion 90h of the reactor box 90 are fixed to the partition plate 4 by screws 11. The reactor box 90 is fixed to the partition plate 4 by fastening the first flange portion 90g and the second flange portion 90h to the partition plate 4 with screws 11. The first flange portion 90g and the second flange portion 90h are fixed to the surface of the partition plate 4 facing the blower chamber 12. The reactor stand 92 fixes the reactor 91 to the partition plate 4. The second fixing portion 92d of the reactor stand 92 extends forward in the X-axis direction from the right end of the first fixing portion 92a. The second fixing portion 92b is fixed to the partition plate 4 with screws 11. The reactor stand 92 is fixed to the partition plate 4 by fastening the second fixing portion 92b to the partition plate 4 with screws 11. The second fixing portion 92b is fixed to the partition plate 4. The second fixing portion 92b is fixed to the surface of the partition plate 4 facing the blower chamber 12.
 本実施の形態では、仕切り板4が送風機室12と機械室13との間に開口部4aを有していないことにより、リアクタ91からリアクタ台92に伝わった熱が機械室13に放熱されないため、機械室13の温度の上昇を抑制することができる。また、送風機室12から機械室13への粉塵、水などの侵入を防ぎ、圧縮機7、電気部品ユニット8の第1の電気部品8e、第2の電気部品8fなどを守ることができる。したがって、機械室13の温度の上昇を抑制しつつ、抵抗、コンデンサといった素子を故障から守ることができる。なお、当該効果は、仕切り板4のうちヒートシンク10が配置される部分に開口部4aを形成した場合であっても、仕切り板4のうちリアクタボックス90が配置される部分に開口部4aが形成されていなければ実現できる。また、仕切り板4のうちヒートシンク10が配置される部分に開口部4aを形成した場合であっても、ヒートシンク10によって開口部4aの全体が覆われていれば、送風機室12から機械室13への粉塵、水などの侵入をより一層防ぎ、抵抗、コンデンサといった素子を故障からより一層守ることができる。 In this embodiment, since the partition plate 4 does not have an opening 4a between the blower chamber 12 and the machine chamber 13, the heat transferred from the reactor 91 to the reactor stand 92 is not dissipated to the machine chamber 13, so that the temperature rise of the machine chamber 13 can be suppressed. In addition, the intrusion of dust, water, etc. from the blower chamber 12 to the machine chamber 13 can be prevented, and the compressor 7, the first electrical component 8e of the electrical component unit 8, the second electrical component 8f, etc. can be protected. Therefore, while suppressing the rise in temperature of the machine chamber 13, elements such as resistors and capacitors can be protected from failure. This effect can be achieved even if the opening 4a is formed in the part of the partition plate 4 where the heat sink 10 is arranged, as long as the opening 4a is not formed in the part of the partition plate 4 where the reactor box 90 is arranged. Furthermore, even if an opening 4a is formed in the portion of the partition plate 4 where the heat sink 10 is placed, if the entire opening 4a is covered by the heat sink 10, it is possible to further prevent dust, water, etc. from entering the machine room 13 from the blower room 12, and to further protect elements such as resistors and capacitors from failure.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the above embodiments are merely examples, and may be combined with other known technologies, or the embodiments may be combined with each other. In addition, parts of the configurations may be omitted or modified without departing from the spirit of the invention.
 1,1A,1B,1C 空気調和機の室外機、2 筐体、2a 給気口、2b 排気口、3 ワイヤーグリル、4 仕切り板、4a 開口部、5 送風機、6 熱交換器、7 圧縮機、8 電気部品ユニット、8a 収容箱、8b 実装基板、8c 実装面、8d 基板面、8e 第1の電気部品、8f 第2の電気部品、9 リアクタユニット、10 ヒートシンク、10a,92c フィン、11 ネジ、12 送風機室、13 機械室、90 リアクタボックス、90a 孔、90b 底面、90c 天面、90d 第1の面、90e 第2の面、90f 第3の面、90g 第1のフランジ部、90h 第2のフランジ部、90i スリット、90j 遮蔽部、91 リアクタ、92 リアクタ台、92a 第1の固定部、92b 第2の固定部。 1, 1A, 1B, 1C: outdoor unit of air conditioner, 2: housing, 2a: air intake, 2b: exhaust, 3: wire grill, 4: partition plate, 4a: opening, 5: blower, 6: heat exchanger, 7: compressor, 8: electrical component unit, 8a: storage box, 8b: mounting board, 8c: mounting surface, 8d: board surface, 8e: first electrical component, 8f: second electrical component, 9: reactor unit, 10: heat sink, 10a , 92c fin, 11 screw, 12 blower room, 13 machine room, 90 reactor box, 90a hole, 90b bottom surface, 90c top surface, 90d first surface, 90e second surface, 90f third surface, 90g first flange portion, 90h second flange portion, 90i slit, 90j shielding portion, 91 reactor, 92 reactor stand, 92a first fixing portion, 92b second fixing portion.

Claims (7)

  1.  箱状の筐体と、
     前記筐体の内部を送風機室と機械室とに区画する仕切り板と、
     前記仕切り板から前記送風機室に突出した状態で前記仕切り板に取り付けられ、前記機械室と連通するリアクタボックスと、
     前記リアクタボックスの内部に収容されるリアクタと、
     を備えている空気調和機の室外機。
    A box-shaped housing;
    A partition plate that divides the inside of the housing into a blower chamber and a machine chamber;
    a reactor box attached to the partition plate in a state where the reactor box protrudes from the partition plate into the blower chamber and communicates with the machine chamber;
    a reactor housed inside the reactor box;
    An outdoor unit of an air conditioner equipped with the above.
  2.  前記リアクタボックスには、前記リアクタボックスの内部と外部とを連通する少なくとも1つのスリットが設けられている請求項1に記載の空気調和機の室外機。 The outdoor unit of an air conditioner according to claim 1, wherein the reactor box has at least one slit that connects the inside and outside of the reactor box.
  3.  前記リアクタボックスは、前記筐体の背面の方を向く第1の面と、前記筐体の正面の方を向く第2の面と、を有し、
     前記スリットは、前記第1の面および前記第2の面のうち少なくとも一方に設けられている請求項2に記載の空気調和機の室外機。
    the reactor box has a first surface facing toward a rear surface of the housing and a second surface facing toward a front surface of the housing;
    The outdoor unit for an air conditioner according to claim 2 , wherein the slit is provided in at least one of the first surface and the second surface.
  4.  前記リアクタボックスには、前記スリットの上縁から下方に向かって延びて前記スリットの正面に配置される遮蔽部が設けられている請求項2または3に記載の空気調和機の室外機。 The outdoor unit of an air conditioner according to claim 2 or 3, wherein the reactor box is provided with a shielding portion that extends downward from the upper edge of the slit and is positioned in front of the slit.
  5.  前記リアクタボックスと前記リアクタとを固定する固定用板金を備えている請求項1から4のいずれか1項に記載の空気調和機の室外機。 An outdoor unit for an air conditioner according to any one of claims 1 to 4, comprising a fixing metal plate for fixing the reactor box and the reactor.
  6.  前記固定用板金は、複数のフィンを有している請求項5に記載の空気調和機の室外機。 The outdoor unit of an air conditioner according to claim 5, wherein the fixing metal plate has a plurality of fins.
  7.  前記仕切り板のうち前記リアクタボックスが配置される部分には、前記送風機室と前記機械室とを連通する開口部が形成され、
     前記リアクタボックスは、前記開口部を通じて前記送風機室に突出した状態で配置されている請求項1から6のいずれか1項に記載の空気調和機の室外機。
    an opening portion that communicates between the blower chamber and the machine chamber is formed in a portion of the partition plate where the reactor box is disposed;
    The outdoor unit for an air conditioner according to any one of claims 1 to 6, wherein the reactor box is arranged in a state of protruding into the blower chamber through the opening.
PCT/JP2023/001768 2023-01-20 2023-01-20 Outdoor unit for air conditioner WO2024154353A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/001768 WO2024154353A1 (en) 2023-01-20 2023-01-20 Outdoor unit for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/001768 WO2024154353A1 (en) 2023-01-20 2023-01-20 Outdoor unit for air conditioner

Publications (1)

Publication Number Publication Date
WO2024154353A1 true WO2024154353A1 (en) 2024-07-25

Family

ID=91955764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001768 WO2024154353A1 (en) 2023-01-20 2023-01-20 Outdoor unit for air conditioner

Country Status (1)

Country Link
WO (1) WO2024154353A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867291U (en) * 1981-10-31 1983-05-07 株式会社東芝 Air conditioner outdoor unit
JPH08219496A (en) * 1995-02-08 1996-08-30 Fujitsu General Ltd Outdoor device of air conditioner
JP2011202887A (en) * 2010-03-25 2011-10-13 Toshiba Carrier Corp Outdoor unit of air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867291U (en) * 1981-10-31 1983-05-07 株式会社東芝 Air conditioner outdoor unit
JPH08219496A (en) * 1995-02-08 1996-08-30 Fujitsu General Ltd Outdoor device of air conditioner
JP2011202887A (en) * 2010-03-25 2011-10-13 Toshiba Carrier Corp Outdoor unit of air conditioner

Similar Documents

Publication Publication Date Title
JP4923106B2 (en) Air conditioner outdoor unit
JP4859777B2 (en) Outdoor unit
JP2010169393A (en) Outdoor unit of air conditioner
JP6594428B2 (en) Air conditioner outdoor unit and air conditioner
JP2004156814A (en) Electrical equipment box for outdoor unit
JP3039360B2 (en) Outdoor unit for air conditioner
JP3665450B2 (en) Air conditioner outdoor unit
JP7012874B2 (en) Outdoor unit of air conditioner
CN106716022B (en) The outdoor unit of refrigerating circulatory device
JP2000018646A (en) Outdoor unit of air conditioner
JP4859776B2 (en) Outdoor unit
JP4748144B2 (en) Air conditioner outdoor unit
JP6632733B2 (en) Outdoor unit of air conditioner
WO2024154353A1 (en) Outdoor unit for air conditioner
JP2580507Y2 (en) Electronic equipment cooling device
WO2024041055A1 (en) Air conditioning outdoor unit and air conditioning device
JP3088596B2 (en) control panel
CN216844927U (en) Automatically controlled box, control assembly and air condensing units
JP2003139352A (en) Electric device unit for outdoor machine and outdoor machine for air conditioner
JP3172289B2 (en) Heat exchange unit
JP5259271B2 (en) Cooling unit
JP7292490B2 (en) outdoor unit of air conditioner
JP7483336B2 (en) Duct and electrical unit equipped with same
JP2006032697A (en) Fan-mounting structure for electronic apparatus
JP3079989B2 (en) Outdoor unit for air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23917566

Country of ref document: EP

Kind code of ref document: A1