WO2024154293A1 - Air conditioner - Google Patents
Air conditioner Download PDFInfo
- Publication number
- WO2024154293A1 WO2024154293A1 PCT/JP2023/001505 JP2023001505W WO2024154293A1 WO 2024154293 A1 WO2024154293 A1 WO 2024154293A1 JP 2023001505 W JP2023001505 W JP 2023001505W WO 2024154293 A1 WO2024154293 A1 WO 2024154293A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power supply
- outdoor unit
- supply voltage
- air conditioner
- power
- Prior art date
Links
- 238000004891 communication Methods 0.000 claims abstract description 14
- 230000004044 response Effects 0.000 claims description 13
- 238000007599 discharging Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 19
- 238000010248 power generation Methods 0.000 description 11
- 230000015654 memory Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000001172 regenerating effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000009429 electrical wiring Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000002618 waking effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/88—Electrical aspects, e.g. circuits
Definitions
- This disclosure relates to a separate-type air conditioner in which the indoor unit and the outdoor unit are separate.
- Patent Document 1 discloses technology for using the battery to compensate for power capacity shortages when a large current is required, such as during startup, in an outdoor unit that houses a heat exchanger, a blower, a compressor, and a rechargeable battery that serves as the power source for the compressor.
- Patent Document 1 aims to use a battery to supplement power when a large current is required, such as during startup, and does not require a large-capacity battery because the power supply only needs to be assisted for a short period of time. For this reason, it is not envisaged that it will be able to operate in response to the unstable power generated by renewable energy sources, which have been increasing in recent years.
- Patent Document 1 Conventional technologies such as that described in Patent Document 1 do not anticipate operation in response to a demand response request from the power generation side. Therefore, conventional technologies are unable to reduce power consumption even when the power supply from the power generation side is poor. For this reason, the greater the reliance on renewable energy, the greater the impact of unstable generated power, which disrupts the balance between generated power and demanded power, and in the worst case scenario, can lead to a power outage.
- the present disclosure has been made in consideration of the above, and aims to provide an air conditioner that can address the problem of unstable power supply caused by renewable energy, which has been increasing in recent years.
- the air conditioner according to the present disclosure includes an indoor unit to which an AC power supply voltage is applied from an AC power supply, an outdoor unit electrically connected to the indoor unit by a communication line and at least one power supply line, an AC switch for applying the AC power supply voltage from the indoor unit to the outdoor unit, and a DC power supply capable of charge/discharge and step-up/step-down control configured to be connectable to the outdoor unit.
- the outdoor unit includes an outdoor unit load that operates by receiving both or either one of a first DC power supply voltage obtained by rectifying the AC power supply voltage and a second DC power supply voltage applied from the DC power supply.
- the air conditioner disclosed herein has the effect of addressing the problem of unstable power supply caused by renewable energy sources, which have been increasing in recent years.
- FIG. 1 is a diagram showing a basic configuration example of an air conditioner according to a first embodiment.
- FIG. 2 is a diagram showing an example of the internal configuration of an indoor unit and an outdoor unit in an air conditioner according to the first embodiment;
- FIG. 1 is a first diagram illustrating the operation of an air conditioner according to a first embodiment of the present invention;
- FIG. 2 is a second diagram illustrating the operation of the air conditioner according to the first embodiment.
- FIG. 3 is a third diagram illustrating the operation of the air conditioner according to the first embodiment.
- FIG. 1 is a block diagram showing an example of a hardware configuration for implementing the functions of an indoor unit control unit and an outdoor unit control unit included in an air conditioner according to a first embodiment.
- FIG. 1 is a block diagram showing an example of a hardware configuration for implementing the functions of an indoor unit control unit and an outdoor unit control unit included in an air conditioner according to a first embodiment.
- FIG. 13 is a diagram showing an example of the internal configuration of an indoor unit and an outdoor unit in an air conditioner according to a second embodiment.
- FIG. 13 is a diagram showing a basic configuration example of an air conditioner according to a third embodiment.
- FIG. 13 is a diagram showing an example of the internal configuration of an indoor unit and an outdoor unit in an air conditioner according to a third embodiment.
- FIG. 10 is a diagram showing an example of an internal configuration of an indoor unit and an outdoor unit in an air conditioner according to a third embodiment, which is different from that shown in FIG.
- FIG. 13 is a diagram showing an example of the internal configuration of an indoor unit and an outdoor unit in an air conditioner according to a fourth embodiment.
- FIG. 1 is a diagram showing a basic configuration example of an air conditioner 100 according to embodiment 1.
- the air conditioner 100 according to embodiment 1 is a separate type air conditioner in which an indoor unit 20 and an outdoor unit 40 are configured as separate units.
- the outdoor unit 40 is electrically connected to the indoor unit 20 by a communication line 30 and at least one or more power lines 31.
- An AC power supply voltage is applied to the indoor unit 20 from an AC power supply 10.
- the outdoor unit 40 includes an outdoor unit board 50, a compressor 60, an outdoor unit fan 70, a battery 80, and an outdoor unit actuator 90.
- the battery 80 is a DC power supply capable of charge/discharge and step-up/step-down control.
- the compressor 60, the outdoor unit fan 70, and the outdoor unit actuator 90 are examples of outdoor unit loads.
- Demand information is input to the indoor unit 20.
- the demand information here includes a demand response request instructed or requested from the power generation side.
- FIG. 2 is a diagram showing an example of the internal configuration of the indoor unit 20 and the outdoor unit 40 in the air conditioner 100 according to embodiment 1.
- the main components of the indoor unit 20 are shown on the left side of FIG. 2, and the main components of the outdoor unit 40 are shown on the right side of FIG. 2.
- the outdoor unit board 50 is equipped with a rectifier 51 that rectifies the AC power supply voltage, inverters 52 and 53, and an outdoor unit control unit 54 that controls the operation of the outdoor unit 40.
- the compressor 60 is connected to the inverter 52, and a compressor motor (not shown) provided in the compressor 60 is driven by a drive voltage applied from the inverter 52.
- the outdoor unit fan 70 is connected to the inverter 53, and a fan motor (not shown) provided in the outdoor unit fan 70 is driven by a drive voltage applied from the inverter 53.
- Battery 80 is connected to DC bus 56, which is arranged between the DC output side of rectifier 51 and the DC input side of inverters 52, 53.
- Examples of battery 80 include lithium ion batteries, potassium ion batteries, NaS batteries, redox flow batteries, and lead acid batteries, but any battery that can store power can be used.
- the output of the rectifier 51 is approximately 140V, and when the AC power supply voltage is 200V, the output of the rectifier 51 is approximately 280V. For this reason, the number of battery cells in the battery 80 is selected according to these AC power supply voltages. Note that when the AC power supply voltage is 100V, the rectifier 51 can be configured as a voltage doubler rectifier, so that the output can be approximately 280V, which is the same as when the AC power supply voltage is 200V.
- FIG. 2 illustrates the battery 80 as an external component of the outdoor unit 40
- the battery 80 may be built into the outdoor unit 40.
- the battery 80 only needs to be configured to be connectable to the DC bus 56 that electrically connects the rectifier 51 and the inverters 52 and 53, and may be located either inside or outside the outdoor unit 40.
- the outdoor unit actuator 90 is an actuator that operates by receiving both or either of the first DC power supply voltage applied via the rectifier 51 and the second DC power supply voltage applied from the battery 80.
- the first DC power supply voltage is a DC power supply voltage obtained by rectifying the AC power supply voltage.
- Examples of the outdoor unit actuator 90 include a four-way valve, an electronic expansion valve, and a heater.
- the inverters 52, 53 and the outdoor unit control unit 54 also operate by receiving both or either of the first DC power supply voltage and the second DC power supply voltage.
- the indoor unit 20 comprises an indoor unit board 21, an indoor unit actuator 24, and an AC switch 25.
- the indoor unit board 21 is equipped with a rectifier 22 and an indoor unit control unit 23.
- the AC switch 25 is a switch for applying an AC power supply voltage from the indoor unit 20 to the outdoor unit 40.
- the indoor unit actuator 24 is an actuator that operates with a third DC power supply voltage applied via the rectifier 22.
- the third DC power supply voltage is also a DC power supply voltage obtained by rectifying the AC power supply voltage.
- the indoor unit actuator 24 is an example of an indoor unit load, and examples of this include airflow direction changing blades, automatic cleaning filters, and various sensors.
- the indoor unit control unit 23 also operates by receiving the third DC power supply voltage.
- the battery 80 also includes a DC/DC converter 82 that performs bidirectional DC (Direct Current) conversion between the battery 80 and the DC bus 56.
- the outdoor unit control unit 54 controls the DC/DC converter 82 to control the output voltage of the DC/DC converter 82 that is applied to the DC bus 56.
- the second DC power supply voltage described above is the output voltage of the battery 80 that has been stepped up or down by the DC/DC converter 82.
- Figs. 3 to 5 are the first to third figures used to explain the operation of the air conditioner 100 according to the first embodiment.
- the AC power supply voltage output by the AC power supply 10 is constantly applied to the indoor unit 20.
- the AC power supply voltage is applied to the outdoor unit 40 by closing the AC switch 25.
- the indoor unit control unit 23 controls the operation of the indoor unit actuator 24 and the AC switch 25.
- the indoor unit control unit 23 receives an operation start command from a remote control (not shown), it closes the AC switch 25. By controlling in this way, it is expected that the standby power consumption can be reduced.
- the outdoor unit control unit 54 controls the operation of the inverters 52, 53, the DC/DC converter 82, and the outdoor unit actuator 90.
- the inverters 52, 53 drive a compressor motor (not shown) provided in the compressor 60 and a fan motor (not shown) provided in the outdoor unit fan 70 based on control signals output from the outdoor unit control unit 54. Note that the control signals are not shown in Figures 3 and 4.
- the outdoor unit 40 When there is no problem with receiving the AC power supply voltage, the outdoor unit 40 generates a first DC power supply voltage via the rectifier 51, and further charges the battery 80 via the DC/DC converter 82.
- the AC switch 25 in the indoor unit 20 When charging the battery 80, the AC switch 25 in the indoor unit 20 must be closed.
- the outdoor unit control unit 54 When the AC switch 25 is open, the outdoor unit control unit 54 is not operating, making it difficult to grasp the charge level of the battery 80. Therefore, when the outdoor unit 40 finishes operating, information on the remaining charge of the battery 80 is transmitted to the indoor unit control unit 23.
- the indoor unit control unit 23 monitors the decrease in the battery 80, taking into account the natural discharge time, etc. When the charge level of the battery 80 decreases, the indoor unit 20 appropriately closes the AC switch 25 to charge the battery 80.
- the battery 80 is charged by utilizing the rotation of the outdoor unit fan 70.
- fan motors using permanent magnets have been widely used to drive the outdoor unit fan 70.
- This generated voltage is rectified by the inverter 53 to become a DC voltage, which can be used to charge the battery 80.
- the battery 80 can be charged by regenerating energy from the compressor motor.
- the air conditioner 100 is configured to operate by receiving a demand signal.
- the demand signal includes a demand response request instructed or requested by the power generation side.
- the indoor unit control unit 23 controls the air conditioner 100 to reduce the power supplied from the AC power source 10.
- the indoor unit control unit 23 instructs the outdoor unit control unit 54 via the communication line 30 to make a demand response request, such as reducing the rotation speed to reduce the power consumption of the compressor 60, which consumes a lot of power.
- the operating capacity of the cooling or heating function is reduced, resulting in problems such as a longer time to reach the target set temperature or failure to reach the target set temperature.
- power for driving the compressor 60 is supplied from a battery 80 connected to the outdoor unit 40.
- the indoor unit control unit 23 charges the battery 80 via the outdoor unit control unit 54 when a demand signal is not being received.
- the outdoor unit 40 is operated using the power of the AC power source 10 and the battery 80 in combination, or only the power of the battery 80.
- the step-up ratio of the DC/DC converter 82 may be controlled so that the second DC power source voltage output from the battery 80 is higher than the first DC power source voltage output from the rectifier 51.
- the step-up ratio of the DC/DC converter 82 may be controlled so that the first DC power source voltage output from the rectifier 51 and the second DC power source voltage output from the battery 80 are equivalent.
- Figure 5 shows an example of an operation that can contribute to leveling out the energy usage of a power system.
- Photovoltaic power generation a typical renewable energy source, generates more power during the day when solar energy is easily obtained.
- power generation decreases during times when it is difficult to obtain energy from the sun, such as in the morning or at night.
- air conditioners and other devices may operate simultaneously during this time, making it easy for power peaks to occur.
- the air conditioner 100 therefore charges the battery 80 during the daytime hours when there is a large amount of surplus power.
- the battery 80 is charged using regenerative power from the outdoor unit fan 70 and the compressor 60.
- the air conditioner 100 receives a demand signal, it operates the outdoor unit 40 using the energy stored in the battery 80. This makes it possible to shift the morning power peak and distribute it to other times of the day. Furthermore, by using the stored energy in the battery 80, there is a surplus in the power generated by the power grid, making it possible to avoid power outages and the like that are caused by power peaks.
- the above-mentioned power peak shifting and distributed control has limited effectiveness when performed on only one household, so it is desirable to perform it on multiple households.
- multiple households can be divided into groups, and operation on battery 80 can be performed at different times for each group. Implemented in this way, it is possible to suppress peak power without concentrating the burden on one household.
- the number of groups and operation time on battery 80 can be set taking into account the amount of surplus power generation in the power grid.
- the storage capacity of the battery 80 can be determined based on the target value of the peak power to be reduced, the time for power peak shift and distributed control, and the like.
- the renewable energy is solar power generation
- the battery 80 is charged during the day when the power generated by solar power generation is high, and peak shift operation is performed at night when the supply is likely to be insufficient.
- the power consumption of the air conditioner 100 when the temperature is stable is 500 W
- the nighttime time is 12 h (hours)
- six households are using the air conditioner 100.
- each household is operated so that they use the battery 80 for two different hours out of the 12 hours.
- the number of households using the air conditioner 100 at the same time is reduced from 6 to 5, so the total power of the six households is reduced to 5/6. This allows the peak power to be reduced to 5/6.
- This amount of power is the minimum storage capacity of the battery 80.
- the storage capacity of the battery 80 can be determined by the target value of the peak power to be reduced, the power peak shift, and the time for which distributed control is performed.
- the air conditioner 100 As described above, by using the air conditioner 100 according to the first embodiment, it is possible to address the problem of unstable power supply caused by renewable energy sources, which has been increasing in recent years.
- FIG. 6 is a diagram showing an example of a hardware configuration that realizes each function of the indoor unit control unit 23 and outdoor unit control unit 54 provided in the air conditioner 100 according to embodiment 1.
- Each function of the indoor unit control unit 23 and outdoor unit control unit 54 is realized by the processor 200 and memory 202.
- the processor 200 is a CPU (also called a Central Processing Unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, or DSP (Digital Signal Processor)) or a system LSI (Large Scale Integration).
- Examples of the memory 202 include non-volatile or volatile semiconductor memories such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory).
- the memory 202 is not limited to these, and may be a magnetic disk, optical disk, compact disk, mini disk, or DVD (Digital Versatile Disc).
- the air conditioner according to the first embodiment includes an indoor unit to which an AC power supply voltage is applied from an AC power supply, an outdoor unit electrically connected to the indoor unit by a communication line and at least one power supply line, an AC switch for applying the AC power supply voltage from the indoor unit to the outdoor unit, and a DC power supply capable of charge/discharge and step-up/down control configured to be connectable to the outdoor unit.
- the outdoor unit includes an outdoor unit load that receives both or either of a first DC power supply voltage obtained by rectifying the AC power supply voltage and a second DC power supply voltage applied from the DC power supply.
- the air conditioner configured in this way, when the air conditioner is in an AC non-receiving operation in which the air conditioner operates without receiving the AC power supply voltage, the power supply to the outdoor unit load can be switched from the AC power supply to the DC power supply. This makes it possible to address the problem of power instability caused by renewable energy, which has been increasing in recent years.
- non-AC power receiving operation in which the air conditioner operates without receiving AC power voltage, includes times when there is a power outage in the AC power supply and when a demand response request is issued to the air conditioner from outside.
- the air conditioner can adjust the amount of power supplied from the DC power supply based on the demand response request. Control in this way makes it possible to appropriately adjust the amount of power consumed by the air conditioner, which reduces the burden on the power grid and contributes to maintaining a stable power supply.
- the DC power supply may be charged when the outdoor unit fan is rotated by an external force. In this way, the power generated by the outdoor unit fan can be used effectively. If many air conditioners perform this operation, it can greatly contribute to maintaining a stable power supply.
- the outdoor unit control unit may be configured so that the second DC power supply voltage output from the DC power supply is constantly applied to it. If configured in this way, the outdoor unit control unit that controls the operation of the outdoor unit is constantly maintained in a controllable state. Therefore, when the DC power supply is a battery, there is no need for control to transmit information about the remaining charge of the battery to the indoor unit control unit when the outdoor unit has finished operating. This makes it possible to easily grasp the charge level of the battery without complicating the control.
- the outdoor unit control unit may be configured to be started when the voltage of the DC bus to which the DC power source is connected reaches a specified voltage.
- the DC power source is a battery
- battery power is not consumed when the air conditioner is not operating, and the battery power can be used effectively.
- the information about the remaining battery charge can be promptly received from the indoor unit control unit after the outdoor unit control unit is started, making it possible to reliably grasp the amount of charge in the battery.
- Embodiment 2 In the first embodiment, a configuration in which an AC power supply voltage is applied from the indoor unit 20 to the outdoor unit 40 has been described, but in the second embodiment, a configuration in which an AC power supply voltage is applied from the outdoor unit 40 to the indoor unit 20 will be described.
- Fig. 7 is a diagram showing an example of the internal configuration of the indoor unit 20 and the outdoor unit 40 in an air conditioner 100 according to the second embodiment.
- an AC switch 91 is provided on the outdoor unit 40 side, and an AC power source 10 is connected between the AC switch 91 and the rectifier 51.
- An AC power source voltage is applied to the indoor unit 20 by closing the AC switch 91.
- the other configuration is the same as the configuration of the first embodiment shown in FIG. 2, and the same components are given the same reference numerals and duplicated explanations are omitted.
- the AC power supply voltage is constantly applied to the outdoor unit 40, so the demand signal is received by the outdoor unit control unit 54.
- a communication environment such as a wireless router is constructed indoors, and communication via the Internet is assumed to be performed indoors.
- the demand signal may be received by the indoor unit control unit 23.
- the AC power supply voltage is not applied to the indoor unit 20 unless the AC switch 91 is closed.
- the air conditioner 100 since it is common to send an operation start command to the indoor unit 20 using an infrared remote control or the like, the operation start command cannot be received unless power is supplied to the indoor unit 20.
- the air conditioner 100 according to the second embodiment may be configured so that the AC power supply voltage is constantly applied to the indoor unit 20 and the outdoor unit 40 without providing the AC switch 91.
- the air conditioner 100 is configured as described above, so when a demand signal is received, it can use power from the battery 80 to drive the compressor 60, the outdoor unit fan 70, and the outdoor unit actuator 90. This makes it possible to address the problem of power instability caused by the increasing use of renewable energy in recent years.
- the air conditioner according to the second embodiment includes an outdoor unit to which an AC power supply voltage is applied from an AC power supply, an indoor unit electrically connected to the outdoor unit by a communication line and at least one power supply line, an AC switch for applying the AC power supply voltage from the outdoor unit to the indoor unit, and a DC power supply capable of charge/discharge and step-up/down control configured to be connectable to the outdoor unit.
- the outdoor unit includes an outdoor unit load that receives both or either of a first DC power supply voltage obtained by rectifying the AC power supply voltage and a second DC power supply voltage applied from the DC power supply.
- the air conditioner configured in this way, when the air conditioner is set to an AC non-receiving operation in which the air conditioner operates without receiving the AC power supply voltage, the power supply to the outdoor unit load can be switched from the AC power supply to the DC power supply. This allows for the same effects as those of the first embodiment to be obtained.
- FIG. 8 is a diagram showing an example of a basic configuration of an air conditioner 100 according to embodiment 3. Comparing the configuration of Fig. 8 with the configuration of Fig. 1, a DC power supply line 32 is added between the indoor unit 20 and the outdoor unit 40.
- the other configurations are the same or equivalent to those of embodiment 1 shown in Fig. 1, and the same or equivalent components are designated by the same reference numerals and redundant explanations will be omitted.
- FIG. 9 is a diagram showing an example of the internal configuration of the indoor unit 20 and outdoor unit 40 in an air conditioner 100 according to embodiment 3.
- FIG. 10 is a diagram showing an example of the internal configuration of the indoor unit 20 and outdoor unit 40 in an air conditioner 100 according to embodiment 3, which is different from that shown in FIG. 9.
- FIG. 9 shows a form in which an AC power supply voltage is applied from the indoor unit 20 to the outdoor unit 40.
- FIG. 10 shows a form in which an AC power supply voltage is applied from the outdoor unit 40 to the indoor unit 20.
- one end of the DC power supply line 32 is connected to the DC bus 56, and the other end of the DC power supply line 32 is connected to the DC output side of the rectifier 22.
- the DC power supply line 32 is also provided with a DC switch 92 for applying the second DC power supply voltage to the indoor unit 20.
- the other configurations are the same or equivalent to those of the first embodiment shown in FIG. 2, and the same or equivalent components are designated by the same reference numerals, and duplicated explanations will be omitted.
- one end of the DC power supply line 32 is connected to the DC bus 56, and the other end of the DC power supply line 32 is connected to the DC output side of the rectifier 22.
- the DC power supply line 32 is also provided with a DC switch 92 for applying the second DC power supply voltage to the indoor unit 20.
- the other configurations are the same or equivalent to those of the second embodiment shown in FIG. 7, and the same or equivalent components are designated by the same reference numerals, and duplicated explanations will be omitted.
- the rectifier unit 51 it is conceivable to configure the rectifier unit 51 as a regenerative converter and supply power from the battery 80, but when the AC switch 25 and the AC switch 91 are open, it is difficult to supply power to the indoor unit 20. Furthermore, if the AC switch 25 and the AC switch 91 are closed, power is regenerated to the power grid during a power outage, and workers performing power recovery work may be electrocuted. For this reason, configuring the rectifier unit 51 as a regenerative converter poses a high hurdle to system construction. Therefore, in the third embodiment, the DC section of the outdoor unit 40 and the DC section of the indoor unit 20 are configured to be connected by the DC power line 32 via the DC switch 92.
- the outdoor unit 40 and the indoor unit 20 can be operated using the power of the battery 80 during a power outage of the AC power source 10.
- the outdoor unit 40 and the indoor unit 20 can be operated using the power of the battery 80.
- the demand response request is received by either the indoor unit control unit 23 or the outdoor unit control unit 54, and the compressor 60 and the outdoor unit fan 70 can be driven using the power of the battery 80 even during a power outage of the AC power source 10.
- the air conditioner according to embodiment 3 in the configurations of embodiments 1 and 2, further includes a DC switch for applying a second DC power supply voltage to the indoor unit.
- the DC switch is closed to apply the second DC power supply voltage to the indoor unit.
- Embodiment 4 In the air conditioner 100 according to the third embodiment, in addition to the communication line 30, it was necessary to wire a power line 31 for applying an AC power supply voltage to the indoor unit 20 or the outdoor unit 40 and a DC power supply line 32 for applying a second DC power supply voltage to the indoor unit 20 between the indoor unit 20 and the outdoor unit 40.
- a power line 31 for applying an AC power supply voltage to the indoor unit 20 or the outdoor unit 40 and a DC power supply line 32 for applying a second DC power supply voltage to the indoor unit 20 between the indoor unit 20 and the outdoor unit 40 This resulted in problems such as an increase in wiring between the indoor unit 20 and the outdoor unit 40, a problem that electrical wiring work is time-consuming at the stage of installing the air conditioner 100, and a need to make a large hole in the wall to pass refrigerant piping and connection lines between the indoor unit 20 and the outdoor unit 40.
- the fourth embodiment proposes a configuration shown in FIG. 11.
- FIG. 11 is a diagram showing an example of the internal configuration of the indoor unit 20
- the rectifier 22 is not necessary, so it is possible to reduce the manufacturing costs of the indoor unit 20. Since the power line 31 between the indoor unit 20 and the outdoor unit 40 is not necessary, it is possible to reduce the labor required for electrical wiring work.
- the air conditioner according to the fourth embodiment includes an outdoor unit to which an AC power supply voltage is applied from an AC power supply, an indoor unit electrically connected to the outdoor unit by at least a communication line, and a DC power supply capable of charge/discharge and step-up/down control configured to be connectable to the outdoor unit.
- the outdoor unit includes an outdoor unit load that operates by receiving both or either of a first DC power supply voltage obtained by rectifying the AC power supply voltage and a second DC power supply voltage applied from the DC power supply, a DC power supply line electrically connecting the indoor unit and a DC busbar of the outdoor unit to which the DC power supply is connected, and a DC switch for applying the first DC power supply voltage and the second DC power supply voltage to the indoor unit.
- a rectifier is not required, so the manufacturing costs of the indoor unit can be reduced, and since an AC power line between the indoor unit and the outdoor unit is not required, the labor required for electrical wiring work can be reduced.
- a DC power line can be arranged instead of an AC power line, so it is possible to enjoy the advantage of being able to increase the length of the power line.
- the DC power supply may be charged when the outdoor unit fan is rotated by an external force. In this way, the power generated by the outdoor unit fan can be used effectively. If many air conditioners perform this operation, it can greatly contribute to maintaining a stable power supply.
- the outdoor unit control unit may be configured so that the second DC power supply voltage output from the DC power supply is constantly applied to it. If configured in this way, the outdoor unit control unit that controls the operation of the outdoor unit is constantly maintained in a controllable state. Therefore, when the DC power supply is a battery, there is no need for control to transmit information about the remaining battery charge to the indoor unit control unit when the outdoor unit has finished operating. This makes it possible to easily grasp the charge level of the battery without complicating the control.
- the outdoor unit control unit may be configured to be started when the voltage of the DC bus to which the DC power source is connected reaches a specified voltage.
- the DC power source is a battery
- battery power is not consumed when the air conditioner is not operating, and the battery power can be used effectively.
- the indoor unit control unit when the outdoor unit ends operation, the information about the remaining battery charge can be promptly received from the indoor unit control unit after the outdoor unit control unit is started, making it possible to reliably grasp the amount of charge in the battery.
- an air conditioner has been described as an example, but the invention can also be applied to heat pump water heaters, refrigerators, freezers, and other refrigeration cycle devices similar to air conditioners.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
An air conditioner (100) comprises: an indoor machine (20) to which an AC power supply voltage is applied from an AC power supply (10); an outdoor machine (40) which is electrically connected to the indoor machine (20) by a communication line (30) and a power supply line (31); an AC switch (25) for applying the AC power supply voltage from the indoor machine (20) to the outdoor machine (40); and a battery (80) which is configured to be connectable to the outdoor machine (40), and for which charging/discharging and step-up/step-down can be controlled. The outdoor machine (40) comprises: a compressor (60) that operates by receiving both or either of a first DC power supply voltage obtained by rectifying the AC power supply voltage, and a second DC power supply voltage applied from the battery (80); an outdoor machine fan (70); and an outdoor machine actuator (90).
Description
本開示は、室内機と室外機とが別体で構成されたセパレート型の空気調和機に関する。
This disclosure relates to a separate-type air conditioner in which the indoor unit and the outdoor unit are separate.
下記特許文献1に記載の冷凍サイクル装置では、熱交換器、送風機、コンプレッサ、このコンプレッサの電源となる充放電可能なバッテリを収納してなる室外機において、起動時などの大電流が必要な場合に電力容量の不足をバッテリで補う技術が開示されている。
The refrigeration cycle device described in Patent Document 1 below discloses technology for using the battery to compensate for power capacity shortages when a large current is required, such as during startup, in an outdoor unit that houses a heat exchanger, a blower, a compressor, and a rechargeable battery that serves as the power source for the compressor.
特許文献1は、起動時などの大電流が必要な場合の電力をバッテリで補うことを目的としており、電力供給のアシストは短時間でよいので大容量のバッテリは不要である。このため、近年増加する再生可能エネルギーによる不安定な発電電力に対応して動作することは想定されていない。
Patent Document 1 aims to use a battery to supplement power when a large current is required, such as during startup, and does not require a large-capacity battery because the power supply only needs to be assisted for a short period of time. For this reason, it is not envisaged that it will be able to operate in response to the unstable power generated by renewable energy sources, which have been increasing in recent years.
また、特許文献1に代表される従来技術では、発電側からのデマンドレスポンス要求に対しての動作は想定されていない。従って、従来技術では、発電側の電力供給が乏しい場合でも消費電力を低下させることは不可能である。このため、再生可能エネルギーの依存度が大きくなればなるほど、不安定な発電電力の影響が大きくなり、発電電力と需要電力とのバランスが崩れ、最悪の場合には停電に至るおそれがあるという問題がある。
Furthermore, conventional technologies such as that described in Patent Document 1 do not anticipate operation in response to a demand response request from the power generation side. Therefore, conventional technologies are unable to reduce power consumption even when the power supply from the power generation side is poor. For this reason, the greater the reliance on renewable energy, the greater the impact of unstable generated power, which disrupts the balance between generated power and demanded power, and in the worst case scenario, can lead to a power outage.
本開示は、上記に鑑みてなされたものであって、近年増加する再生可能エネルギーによる不安定な電力供給の問題に対応できる空気調和機を得ることを目的とする。
The present disclosure has been made in consideration of the above, and aims to provide an air conditioner that can address the problem of unstable power supply caused by renewable energy, which has been increasing in recent years.
上述した課題を解決し、目的を達成するため、本開示に係る空気調和機は、交流電源から交流電源電圧が印加される室内機と、通信線及び少なくとも1つ以上の電源線によって室内機と電気的に接続される室外機と、室内機から室外機へ交流電源電圧を印加するための交流開閉器と、室外機に接続可能に構成される充放電及び昇降圧制御可能な直流電源とを備える。室外機は、交流電源電圧を整流することで得られる第1の直流電源電圧及び直流電源から印加される第2の直流電源電圧の双方、又は何れか一方を受電して動作する室外機負荷を備える。
In order to solve the above-mentioned problems and achieve the object, the air conditioner according to the present disclosure includes an indoor unit to which an AC power supply voltage is applied from an AC power supply, an outdoor unit electrically connected to the indoor unit by a communication line and at least one power supply line, an AC switch for applying the AC power supply voltage from the indoor unit to the outdoor unit, and a DC power supply capable of charge/discharge and step-up/step-down control configured to be connectable to the outdoor unit. The outdoor unit includes an outdoor unit load that operates by receiving both or either one of a first DC power supply voltage obtained by rectifying the AC power supply voltage and a second DC power supply voltage applied from the DC power supply.
本開示に係る空気調和機によれば、近年増加する再生可能エネルギーによる不安定な電力供給の問題に対応できるという効果を奏する。
The air conditioner disclosed herein has the effect of addressing the problem of unstable power supply caused by renewable energy sources, which have been increasing in recent years.
以下に添付図面を参照し、本開示の実施の形態に係る空気調和機について詳細に説明する。
The air conditioner according to the embodiment of the present disclosure will be described in detail below with reference to the attached drawings.
実施の形態1.
図1は、実施の形態1に係る空気調和機100の基本的な構成例を示す図である。実施の形態1に係る空気調和機100は、図1に示すように、室内機20と室外機40とが別体で構成されたセパレート型の空気調和機である。室外機40は、通信線30及び少なくとも1つ以上の電源線31によって室内機20と電気的に接続される。室内機20には、交流電源10から交流電源電圧が印加される。室外機40は、室外機基板50と、圧縮機60と、室外機ファン70と、バッテリ80と、室外機アクチュエータ90とを備える。バッテリ80は、充放電及び昇降圧制御可能な直流電源である。圧縮機60、室外機ファン70及び室外機アクチュエータ90は、室外機負荷の例示である。室内機20には、デマンド情報が入力される。ここで言うデマンド情報には、発電側から指示又は依頼されるデマンドレスポンス要求が含まれる。 Embodiment 1.
FIG. 1 is a diagram showing a basic configuration example of anair conditioner 100 according to embodiment 1. As shown in FIG. 1, the air conditioner 100 according to embodiment 1 is a separate type air conditioner in which an indoor unit 20 and an outdoor unit 40 are configured as separate units. The outdoor unit 40 is electrically connected to the indoor unit 20 by a communication line 30 and at least one or more power lines 31. An AC power supply voltage is applied to the indoor unit 20 from an AC power supply 10. The outdoor unit 40 includes an outdoor unit board 50, a compressor 60, an outdoor unit fan 70, a battery 80, and an outdoor unit actuator 90. The battery 80 is a DC power supply capable of charge/discharge and step-up/step-down control. The compressor 60, the outdoor unit fan 70, and the outdoor unit actuator 90 are examples of outdoor unit loads. Demand information is input to the indoor unit 20. The demand information here includes a demand response request instructed or requested from the power generation side.
図1は、実施の形態1に係る空気調和機100の基本的な構成例を示す図である。実施の形態1に係る空気調和機100は、図1に示すように、室内機20と室外機40とが別体で構成されたセパレート型の空気調和機である。室外機40は、通信線30及び少なくとも1つ以上の電源線31によって室内機20と電気的に接続される。室内機20には、交流電源10から交流電源電圧が印加される。室外機40は、室外機基板50と、圧縮機60と、室外機ファン70と、バッテリ80と、室外機アクチュエータ90とを備える。バッテリ80は、充放電及び昇降圧制御可能な直流電源である。圧縮機60、室外機ファン70及び室外機アクチュエータ90は、室外機負荷の例示である。室内機20には、デマンド情報が入力される。ここで言うデマンド情報には、発電側から指示又は依頼されるデマンドレスポンス要求が含まれる。 Embodiment 1.
FIG. 1 is a diagram showing a basic configuration example of an
図2は、実施の形態1に係る空気調和機100における室内機20及び室外機40の内部の構成例を示す図である。図2の左側には、室内機20の主要な構成部が示され、図2の右側には、室外機40の主要な構成部が示されている。
FIG. 2 is a diagram showing an example of the internal configuration of the indoor unit 20 and the outdoor unit 40 in the air conditioner 100 according to embodiment 1. The main components of the indoor unit 20 are shown on the left side of FIG. 2, and the main components of the outdoor unit 40 are shown on the right side of FIG. 2.
室外機基板50には、交流電源電圧を整流する整流部51と、インバータ52,53と、室外機40の動作を制御する室外機制御部54とが搭載されている。圧縮機60はインバータ52に接続され、圧縮機60に具備される図示しない圧縮機モータはインバータ52から印加される駆動電圧によって駆動される。また、室外機ファン70はインバータ53に接続され、室外機ファン70に具備される図示しないファンモータはインバータ53から印加される駆動電圧によって駆動される。
The outdoor unit board 50 is equipped with a rectifier 51 that rectifies the AC power supply voltage, inverters 52 and 53, and an outdoor unit control unit 54 that controls the operation of the outdoor unit 40. The compressor 60 is connected to the inverter 52, and a compressor motor (not shown) provided in the compressor 60 is driven by a drive voltage applied from the inverter 52. The outdoor unit fan 70 is connected to the inverter 53, and a fan motor (not shown) provided in the outdoor unit fan 70 is driven by a drive voltage applied from the inverter 53.
バッテリ80は、整流部51の直流出力側とインバータ52,53の直流入力側との間に配される直流母線56に接続される。バッテリ80としては、リチウムイオン電池、カリウムイオン電池、NaS電池、レドックスフロー電池、鉛蓄電池などが例示されるが、電力を蓄積できるものであれば、どのようなものでもよい。
Battery 80 is connected to DC bus 56, which is arranged between the DC output side of rectifier 51 and the DC input side of inverters 52, 53. Examples of battery 80 include lithium ion batteries, potassium ion batteries, NaS batteries, redox flow batteries, and lead acid batteries, but any battery that can store power can be used.
交流電源電圧が100Vの場合、整流部51の出力は140V程度となり、交流電源電圧が200Vの場合、整流部51の出力は280V程度となる。このため、バッテリ80における電池セルの数は、これらの交流電源電圧に合わせて選定される。なお、交流電源電圧が100Vの場合、整流部51を倍電圧整流の構成にすることで、出力を交流電源電圧が200Vの場合と同等の280V程度にすることもある。
When the AC power supply voltage is 100V, the output of the rectifier 51 is approximately 140V, and when the AC power supply voltage is 200V, the output of the rectifier 51 is approximately 280V. For this reason, the number of battery cells in the battery 80 is selected according to these AC power supply voltages. Note that when the AC power supply voltage is 100V, the rectifier 51 can be configured as a voltage doubler rectifier, so that the output can be approximately 280V, which is the same as when the AC power supply voltage is 200V.
なお、図2では、バッテリ80を室外機40の外部の構成要素として図示しているが、バッテリ80が小容量であれば、バッテリ80を室外機40に内蔵してもよい。即ち、バッテリ80は、整流部51とインバータ52,53とを電気的に接続する直流母線56に接続可能に構成されるものであればよく、室外機40の内部又は外部の何れに存在していてもよい。
Note that while FIG. 2 illustrates the battery 80 as an external component of the outdoor unit 40, if the battery 80 has a small capacity, the battery 80 may be built into the outdoor unit 40. In other words, the battery 80 only needs to be configured to be connectable to the DC bus 56 that electrically connects the rectifier 51 and the inverters 52 and 53, and may be located either inside or outside the outdoor unit 40.
室外機アクチュエータ90は、整流部51を介して印加される第1の直流電源電圧及びバッテリ80から印加される第2の直流電源電圧のうちの双方、又は何れか一方を受電して動作するアクチュエータである。第1の直流電源電圧は、交流電源電圧を整流することで得られる直流電源電圧である。室外機アクチュエータ90としては、四方弁、電子膨張弁、ヒータなどが例示される。インバータ52,53及び室外機制御部54も、第1の直流電源電圧及び第2の直流電源電圧のうちの双方、又は何れか一方を受電して動作する。
The outdoor unit actuator 90 is an actuator that operates by receiving both or either of the first DC power supply voltage applied via the rectifier 51 and the second DC power supply voltage applied from the battery 80. The first DC power supply voltage is a DC power supply voltage obtained by rectifying the AC power supply voltage. Examples of the outdoor unit actuator 90 include a four-way valve, an electronic expansion valve, and a heater. The inverters 52, 53 and the outdoor unit control unit 54 also operate by receiving both or either of the first DC power supply voltage and the second DC power supply voltage.
室内機20は、室内機基板21と、室内機アクチュエータ24と、交流開閉器25とを備える。室内機基板21には、整流部22と、室内機制御部23とが搭載されている。交流開閉器25は、室内機20から室外機40へ交流電源電圧を印加するための開閉器である。室内機アクチュエータ24は、整流部22を介して印加される第3の直流電源電圧で動作するアクチュエータである。第3の直流電源電圧も、交流電源電圧を整流することで得られる直流電源電圧である。室内機アクチュエータ24は、室内機負荷の例示であり、気流方向を変更する風向変更羽根、自動掃除用のフィルタ、各種のセンサなどがその一例である。室内機制御部23も、第3の直流電源電圧を受電して動作する。
The indoor unit 20 comprises an indoor unit board 21, an indoor unit actuator 24, and an AC switch 25. The indoor unit board 21 is equipped with a rectifier 22 and an indoor unit control unit 23. The AC switch 25 is a switch for applying an AC power supply voltage from the indoor unit 20 to the outdoor unit 40. The indoor unit actuator 24 is an actuator that operates with a third DC power supply voltage applied via the rectifier 22. The third DC power supply voltage is also a DC power supply voltage obtained by rectifying the AC power supply voltage. The indoor unit actuator 24 is an example of an indoor unit load, and examples of this include airflow direction changing blades, automatic cleaning filters, and various sensors. The indoor unit control unit 23 also operates by receiving the third DC power supply voltage.
また、バッテリ80は、バッテリ80と直流母線56との間で、双方向で直流(Direct Current:DC)直流変換を行うDC/DC変換器82を備える。室外機制御部54は、DC/DC変換器82を制御して直流母線56に印加するDC/DC変換器82の出力電圧を制御する。前述した第2の直流電源電圧は、DC/DC変換器82によって昇圧又は降圧されたバッテリ80の出力電圧である。
The battery 80 also includes a DC/DC converter 82 that performs bidirectional DC (Direct Current) conversion between the battery 80 and the DC bus 56. The outdoor unit control unit 54 controls the DC/DC converter 82 to control the output voltage of the DC/DC converter 82 that is applied to the DC bus 56. The second DC power supply voltage described above is the output voltage of the battery 80 that has been stepped up or down by the DC/DC converter 82.
次に、実施の形態1に係る空気調和機100の動作の要点について、図3から図5を参照して説明する。図3から図5は、実施の形態1に係る空気調和機100の動作説明に供する第1から第3の図である。
Next, the main points of the operation of the air conditioner 100 according to the first embodiment will be explained with reference to Figs. 3 to 5. Figs. 3 to 5 are the first to third figures used to explain the operation of the air conditioner 100 according to the first embodiment.
図3及び図4に示されるように、室内機20には、交流電源10が出力する交流電源電圧が常時印加される。一方、室外機40においては、交流開閉器25を閉状態とすることで、室外機40へ交流電源電圧を印加する。
As shown in Figs. 3 and 4, the AC power supply voltage output by the AC power supply 10 is constantly applied to the indoor unit 20. On the other hand, in the outdoor unit 40, the AC power supply voltage is applied to the outdoor unit 40 by closing the AC switch 25.
室内機制御部23は、室内機アクチュエータ24及び交流開閉器25の動作を制御する。室内機制御部23は、図示しないリモコンによる運転開始命令を受信した場合に交流開閉器25を閉状態とする。このように制御すれば、待機電力の削減効果が見込める。
The indoor unit control unit 23 controls the operation of the indoor unit actuator 24 and the AC switch 25. When the indoor unit control unit 23 receives an operation start command from a remote control (not shown), it closes the AC switch 25. By controlling in this way, it is expected that the standby power consumption can be reduced.
室外機制御部54は、インバータ52,53、DC/DC変換器82及び室外機アクチュエータ90の動作を制御する。インバータ52,53は、室外機制御部54から出力される制御信号に基づいて、圧縮機60に具備される図示しない圧縮機モータ、及び室外機ファン70に具備される図示しないファンモータを駆動する。なお、図3及び図4では、制御信号の図示を省略している。
The outdoor unit control unit 54 controls the operation of the inverters 52, 53, the DC/DC converter 82, and the outdoor unit actuator 90. The inverters 52, 53 drive a compressor motor (not shown) provided in the compressor 60 and a fan motor (not shown) provided in the outdoor unit fan 70 based on control signals output from the outdoor unit control unit 54. Note that the control signals are not shown in Figures 3 and 4.
交流電源電圧の受電に支障がない場合、室外機40は、整流部51を介して第1の直流電源電圧を生成し、更にDC/DC変換器82を介してバッテリ80への充電を行う。バッテリ80へ充電を行う際には、室内機20にある交流開閉器25を閉状態とする必要がある。交流開閉器25が開状態の場合、室外機制御部54が動作していないため、バッテリ80の充電量を把握することが困難である。そのため、室外機40の運転終了時にバッテリ80の残量の情報を室内機制御部23に伝えておく。室内機制御部23は、自然放電時間などを考慮し、バッテリ80の低下具合を監視する。バッテリ80の充電量が低下した場合、室内機20は、適宜、交流開閉器25を閉状態とすることでバッテリ80への充電を行う。
When there is no problem with receiving the AC power supply voltage, the outdoor unit 40 generates a first DC power supply voltage via the rectifier 51, and further charges the battery 80 via the DC/DC converter 82. When charging the battery 80, the AC switch 25 in the indoor unit 20 must be closed. When the AC switch 25 is open, the outdoor unit control unit 54 is not operating, making it difficult to grasp the charge level of the battery 80. Therefore, when the outdoor unit 40 finishes operating, information on the remaining charge of the battery 80 is transmitted to the indoor unit control unit 23. The indoor unit control unit 23 monitors the decrease in the battery 80, taking into account the natural discharge time, etc. When the charge level of the battery 80 decreases, the indoor unit 20 appropriately closes the AC switch 25 to charge the battery 80.
また、実施の形態1に係る空気調和機100においては、図4に示すように、室外機ファン70の回転を利用してバッテリ80を充電する。近年、室外機ファン70を駆動するためのファンモータには永久磁石を用いたものが広く用いられている。室外機ファン70が強風などの外力により回転させられると、発電電圧が生じる。この発電電圧は、インバータ53により整流されて直流電圧となり、バッテリ80を充電することが可能である。また、圧縮機60も運転を停止する際に、圧縮機モータのエネルギーを回生することでバッテリ80を充電することが可能である。
Furthermore, in the air conditioner 100 according to embodiment 1, as shown in FIG. 4, the battery 80 is charged by utilizing the rotation of the outdoor unit fan 70. In recent years, fan motors using permanent magnets have been widely used to drive the outdoor unit fan 70. When the outdoor unit fan 70 is rotated by an external force such as a strong wind, a generated voltage is generated. This generated voltage is rectified by the inverter 53 to become a DC voltage, which can be used to charge the battery 80. Furthermore, when the compressor 60 stops operating, the battery 80 can be charged by regenerating energy from the compressor motor.
また、実施の形態1に係る空気調和機100は、デマンド信号を受信して動作するように構成されている。デマンド信号には、発電側から指示又は依頼されるデマンドレスポンス要求が含まれている。室内機制御部23はデマンド信号を受信すると、交流電源10から供給される電力を抑制するように空気調和機100の制御を行う。一般的に、デマンド信号を受信した室内機制御部23は、室外機制御部54に対し通信線30を通じて消費電力の高い圧縮機60の消費電力を抑制すべく回転数を低下させるなどのデマンドレスポンス要求のための指示を行う。このとき、冷房又は暖房などの運転能力が低下するため、目標設定温度までの到達時間が長くなったり、目標設定温度に到達しなかったりするなどの課題が生じる。
The air conditioner 100 according to the first embodiment is configured to operate by receiving a demand signal. The demand signal includes a demand response request instructed or requested by the power generation side. When the indoor unit control unit 23 receives the demand signal, it controls the air conditioner 100 to reduce the power supplied from the AC power source 10. In general, upon receiving the demand signal, the indoor unit control unit 23 instructs the outdoor unit control unit 54 via the communication line 30 to make a demand response request, such as reducing the rotation speed to reduce the power consumption of the compressor 60, which consumes a lot of power. At this time, the operating capacity of the cooling or heating function is reduced, resulting in problems such as a longer time to reach the target set temperature or failure to reach the target set temperature.
そこで、実施の形態1に係る空気調和機100では、図3に示すように、室外機40に接続されるバッテリ80から圧縮機60を駆動するための電力を供給する。この動作を可能とするため、室内機制御部23は、室外機制御部54を通じて、デマンド信号を受信していないときにバッテリ80に対する充電を行っておく。
In the air conditioner 100 according to the first embodiment, as shown in FIG. 3, power for driving the compressor 60 is supplied from a battery 80 connected to the outdoor unit 40. To enable this operation, the indoor unit control unit 23 charges the battery 80 via the outdoor unit control unit 54 when a demand signal is not being received.
実施の形態1に係る空気調和機100は、デマンド信号によって交流電源10からのエネルギー供給を制限する場合には、交流電源10及びバッテリ80の電力を併用し、又はバッテリ80のみの電力で室外機40を動作させる。バッテリ80のみの電力で室外機40を動作させる場合には、バッテリ80から出力される第2の直流電源電圧が整流部51から出力される第1の直流電源電圧よりも高くなるようにDC/DC変換器82の昇圧比を制御すればよい。また、交流電源10及びバッテリ80の電力を併用するには、整流部51から出力される第1の直流電源電圧と、バッテリ80から出力される第2の直流電源電圧とが同等になるようにDC/DC変換器82の昇圧比を制御すればよい。このように動作させることで、電力系統の使用エネルギーの平準化に寄与することができる。
When the air conditioner 100 according to the first embodiment limits the energy supply from the AC power source 10 by a demand signal, the outdoor unit 40 is operated using the power of the AC power source 10 and the battery 80 in combination, or only the power of the battery 80. When the outdoor unit 40 is operated using the power of the battery 80 only, the step-up ratio of the DC/DC converter 82 may be controlled so that the second DC power source voltage output from the battery 80 is higher than the first DC power source voltage output from the rectifier 51. To use the power of the AC power source 10 and the battery 80 in combination, the step-up ratio of the DC/DC converter 82 may be controlled so that the first DC power source voltage output from the rectifier 51 and the second DC power source voltage output from the battery 80 are equivalent. By operating in this manner, it is possible to contribute to the leveling out of the energy used in the power system.
図5には、電力系統の使用エネルギーの平準化に寄与できる動作の例が示されている。再生可能エネルギーとして代表的な太陽光発電は、太陽のエネルギーを得やすい昼間に発電電力が増加する。それに対して朝や夜などの太陽からのエネルギーが得にくい時間帯には発電電力が低下する。使用電力についてみると、朝の時間帯は、太陽光発電によるエネルギーが得られにくい時間帯である一方で、起床後の活動、通勤、通学に伴う人の移動が集中する時間帯である。このため、この時間帯は、空気調和機などが一斉に動作することもあり、電力ピークが発生し易くなる。電力ピークが発生すると、図5の上段部に示されるように、発電電力よりも使用電力が高い状態が発生し、最悪の場合には、停電などに陥る可能性がある。
Figure 5 shows an example of an operation that can contribute to leveling out the energy usage of a power system. Photovoltaic power generation, a typical renewable energy source, generates more power during the day when solar energy is easily obtained. In contrast, power generation decreases during times when it is difficult to obtain energy from the sun, such as in the morning or at night. In terms of power usage, while the morning is a time when it is difficult to obtain energy from solar power generation, it is also a time when people are busy with their activities after waking up and commuting to work or school. For this reason, air conditioners and other devices may operate simultaneously during this time, making it easy for power peaks to occur. When a power peak occurs, as shown in the upper part of Figure 5, a situation occurs in which power usage is higher than power generation, and in the worst case scenario, this could lead to a power outage.
そこで、実施の形態1に係る空気調和機100は、余剰電力の大きい昼の時間帯にバッテリ80への充電を行っておく。また、前述したように、室外機ファン70及び圧縮機60の回生電力を利用して、バッテリ80への充電を行っておく。空気調和機100は、デマンド信号を受信した場合、バッテリ80に充電したエネルギーを用いて室外機40を動作させる。これにより、朝の時間帯の電力ピークをシフトして、他の時間帯に分散させることが可能となる。また、バッテリ80の充電エネルギーを利用することにより、電力系統の発電電力に余裕が生まれるので、電力ピークに起因する停電などを回避することが可能となる。
The air conditioner 100 according to the first embodiment therefore charges the battery 80 during the daytime hours when there is a large amount of surplus power. As described above, the battery 80 is charged using regenerative power from the outdoor unit fan 70 and the compressor 60. When the air conditioner 100 receives a demand signal, it operates the outdoor unit 40 using the energy stored in the battery 80. This makes it possible to shift the morning power peak and distribute it to other times of the day. Furthermore, by using the stored energy in the battery 80, there is a surplus in the power generated by the power grid, making it possible to avoid power outages and the like that are caused by power peaks.
なお、上述した電力ピークシフト及び分散制御は、1つの世帯だけで行っても効果は限定的であるので、複数の世帯で行うことが望ましい。例えば複数の世帯をグループ分けし、バッテリ80による運転をグループごとに時間をずらして実施するようにする。このように実施すれば、1つの世帯に負担が集中することなくピーク電力を抑制することが可能となる。なお、グループ分けの数、バッテリ80による運転時間については、電力系統の発電電力にどの程度の余裕があるのかなどを考慮して設定してもよい。
The above-mentioned power peak shifting and distributed control has limited effectiveness when performed on only one household, so it is desirable to perform it on multiple households. For example, multiple households can be divided into groups, and operation on battery 80 can be performed at different times for each group. Implemented in this way, it is possible to suppress peak power without concentrating the burden on one household. The number of groups and operation time on battery 80 can be set taking into account the amount of surplus power generation in the power grid.
また、バッテリ80の蓄電容量については、削減するピーク電力の目標値、電力ピークシフト及び分散制御を行う時間などによって決めることができる。ここでは、再生可能エネルギーを太陽光発電とし、太陽光発電による発電電力が高い日中にバッテリ80の充電を行い、供給が不足しやすい夜間にピークシフト動作を行う場合を例に説明する。また、空気調和機100の温度安定時の消費電力を500Wとし、夜間の時間を12h(時間)とし、空気調和機100を6世帯が使用しているとする。このとき、各世帯のピーク電力を5/6にするために、各世帯が12時間のうちの互いに異なる2時間だけバッテリ80を使用するように動作させる。この動作の場合、空気調和機100を同時に使用する世帯数が6から5に減るので、6世帯合計の電力が5/6に減少する。これにより、ピーク電力を5/6に削減することができる。
The storage capacity of the battery 80 can be determined based on the target value of the peak power to be reduced, the time for power peak shift and distributed control, and the like. Here, an example will be described in which the renewable energy is solar power generation, the battery 80 is charged during the day when the power generated by solar power generation is high, and peak shift operation is performed at night when the supply is likely to be insufficient. Also, assume that the power consumption of the air conditioner 100 when the temperature is stable is 500 W, the nighttime time is 12 h (hours), and six households are using the air conditioner 100. In this case, in order to reduce the peak power of each household to 5/6, each household is operated so that they use the battery 80 for two different hours out of the 12 hours. In this operation, the number of households using the air conditioner 100 at the same time is reduced from 6 to 5, so the total power of the six households is reduced to 5/6. This allows the peak power to be reduced to 5/6.
また、1世帯のバッテリ80が動作する2時間分の電力量は、500W×2h=1kWhと計算することができる。この電力量がバッテリ80におけるミニマムの蓄電容量となる。即ち、バッテリ80の蓄電容量は、削減するピーク電力の目標値、電力ピークシフト及び分散制御を行う時間によって決定することができる。
Furthermore, the amount of power that one household's battery 80 requires for two hours of operation can be calculated as 500W x 2h = 1 kWh. This amount of power is the minimum storage capacity of the battery 80. In other words, the storage capacity of the battery 80 can be determined by the target value of the peak power to be reduced, the power peak shift, and the time for which distributed control is performed.
以上のように、実施の形態1に係る空気調和機100を用いれば、近年増加する再生可能エネルギーによる不安定な電力供給の問題に対応することが可能となる。
As described above, by using the air conditioner 100 according to the first embodiment, it is possible to address the problem of unstable power supply caused by renewable energy sources, which has been increasing in recent years.
次に、空気調和機100が備える室内機制御部23及び室外機制御部54のハードウェア構成について説明する。図6は、実施の形態1に係る空気調和機100が備える室内機制御部23及び室外機制御部54の各機能を実現するハードウェア構成の一例を示す図である。室内機制御部23及び室外機制御部54の各機能は、プロセッサ200及びメモリ202により実現される。
Next, the hardware configuration of the indoor unit control unit 23 and outdoor unit control unit 54 provided in the air conditioner 100 will be described. FIG. 6 is a diagram showing an example of a hardware configuration that realizes each function of the indoor unit control unit 23 and outdoor unit control unit 54 provided in the air conditioner 100 according to embodiment 1. Each function of the indoor unit control unit 23 and outdoor unit control unit 54 is realized by the processor 200 and memory 202.
プロセッサ200は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)、又はシステムLSI(Large Scale Integration)である。メモリ202は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)といった不揮発性又は揮発性の半導体メモリを例示できる。また、メモリ202は、これらに限定されず、磁気ディスク、光ディスク、コンパクトディスク、ミニディスク、又はDVD(Digital Versatile Disc)でもよい。
The processor 200 is a CPU (also called a Central Processing Unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, or DSP (Digital Signal Processor)) or a system LSI (Large Scale Integration). Examples of the memory 202 include non-volatile or volatile semiconductor memories such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory). Furthermore, the memory 202 is not limited to these, and may be a magnetic disk, optical disk, compact disk, mini disk, or DVD (Digital Versatile Disc).
以上説明したように、実施の形態1に係る空気調和機は、交流電源から交流電源電圧が印加される室内機と、通信線及び少なくとも1つ以上の電源線によって室内機と電気的に接続される室外機と、室内機から室外機へ交流電源電圧を印加するための交流開閉器と、室外機に接続可能に構成される充放電及び昇降圧制御可能な直流電源とを備える。室外機は、交流電源電圧を整流することで得られる第1の直流電源電圧及び直流電源から印加される第2の直流電源電圧の双方、又は何れか一方を受電して動作する室外機負荷を備える。このように構成された空気調和機によれば、交流電力の供給状態に応じて、室外機負荷に対する電力供給を交流電源と直流電源との間で自在に切り替えることができる。また、このように構成された空気調和機によれば、交流電源電圧を受電せずに動作する交流非受電動作とするときには、室外機負荷に対する電力供給を交流電源から直流電源に切り替えることができる。これにより、近年増加する再生可能エネルギーによる電力不安定の問題に対応することが可能となる。
As described above, the air conditioner according to the first embodiment includes an indoor unit to which an AC power supply voltage is applied from an AC power supply, an outdoor unit electrically connected to the indoor unit by a communication line and at least one power supply line, an AC switch for applying the AC power supply voltage from the indoor unit to the outdoor unit, and a DC power supply capable of charge/discharge and step-up/down control configured to be connectable to the outdoor unit. The outdoor unit includes an outdoor unit load that receives both or either of a first DC power supply voltage obtained by rectifying the AC power supply voltage and a second DC power supply voltage applied from the DC power supply. With the air conditioner configured in this way, the power supply to the outdoor unit load can be freely switched between the AC power supply and the DC power supply depending on the supply state of the AC power. Furthermore, with the air conditioner configured in this way, when the air conditioner is in an AC non-receiving operation in which the air conditioner operates without receiving the AC power supply voltage, the power supply to the outdoor unit load can be switched from the AC power supply to the DC power supply. This makes it possible to address the problem of power instability caused by renewable energy, which has been increasing in recent years.
なお、交流電源電圧を受電せずに動作する交流非受電動作には、交流電源の停電時、及び空気調和機に対して外部からデマンドレスポンス要求が指示されているときが含まれる。空気調和機は、デマンドレスポンス要求が指示されているときは、当該デマンドレスポンス要求に基づいて直流電源から供給される電力量を調整することができる。このように制御すれば、空気調和機の消費電力量を適切に調整することができるので、電力系統に対する負担の軽減に繋がり、安定した電力供給の維持に貢献することが可能となる。
Note that non-AC power receiving operation, in which the air conditioner operates without receiving AC power voltage, includes times when there is a power outage in the AC power supply and when a demand response request is issued to the air conditioner from outside. When a demand response request is issued, the air conditioner can adjust the amount of power supplied from the DC power supply based on the demand response request. Control in this way makes it possible to appropriately adjust the amount of power consumed by the air conditioner, which reduces the burden on the power grid and contributes to maintaining a stable power supply.
また、実施の形態1に係る空気調和機において、室外機ファンが外力によって回転した際には直流電源を充電するようにしてもよい。このようにすれば、室外機ファンに発生した電力を有効利用することができる。多数の空気調和機がこのような動作を行えば、安定した電力供給の維持に大きく貢献することが可能となる。
Furthermore, in the air conditioner according to embodiment 1, the DC power supply may be charged when the outdoor unit fan is rotated by an external force. In this way, the power generated by the outdoor unit fan can be used effectively. If many air conditioners perform this operation, it can greatly contribute to maintaining a stable power supply.
また、実施の形態1に係る空気調和機において、室外機制御部は、直流電源から出力される第2の直流電源電圧が常時印加されるように構成されていてもよい。このように構成されていれば、室外機の動作を制御する室外機制御部は、制御可能な状態が常時維持される。従って、直流電源がバッテリである場合において、室外機の運転終了時にバッテリの残量の情報を室内機制御部に伝えておく制御は不要になる。これにより、制御を複雑化することなく、バッテリの充電量を容易に把握することが可能となる。
Furthermore, in the air conditioner according to embodiment 1, the outdoor unit control unit may be configured so that the second DC power supply voltage output from the DC power supply is constantly applied to it. If configured in this way, the outdoor unit control unit that controls the operation of the outdoor unit is constantly maintained in a controllable state. Therefore, when the DC power supply is a battery, there is no need for control to transmit information about the remaining charge of the battery to the indoor unit control unit when the outdoor unit has finished operating. This makes it possible to easily grasp the charge level of the battery without complicating the control.
また、実施の形態1に係る空気調和機において、室外機制御部は、直流電源が接続される直流母線の電圧が規定電圧に達したときに起動されるように構成されていてもよい。この構成の場合、直流電源がバッテリである場合において、空気調和機が動作していないときには、バッテリの電力が消費されないので、バッテリの電力の有効利用を図ることができる。また、この構成であっても、室外機の運転終了時にバッテリの残量の情報を室内機制御部に伝えておくようにすれば、室外機制御部の起動後には、速やかにバッテリの残量の情報を室内機制御部から受領できるので、バッテリの充電量を確実に把握することが可能となる。
In the air conditioner according to embodiment 1, the outdoor unit control unit may be configured to be started when the voltage of the DC bus to which the DC power source is connected reaches a specified voltage. In this configuration, if the DC power source is a battery, battery power is not consumed when the air conditioner is not operating, and the battery power can be used effectively. Even with this configuration, if information about the remaining battery charge is transmitted to the indoor unit control unit when the outdoor unit ends operation, the information about the remaining battery charge can be promptly received from the indoor unit control unit after the outdoor unit control unit is started, making it possible to reliably grasp the amount of charge in the battery.
実施の形態2.
実施の形態1は、室内機20から室外機40へ交流電源電圧を印加する形態について説明したが、実施の形態2では、室外機40から室内機20へ交流電源電圧を印加する形態について説明する。図7は、実施の形態2に係る空気調和機100における室内機20及び室外機40の内部の構成例を示す図である。 Embodiment 2.
In the first embodiment, a configuration in which an AC power supply voltage is applied from theindoor unit 20 to the outdoor unit 40 has been described, but in the second embodiment, a configuration in which an AC power supply voltage is applied from the outdoor unit 40 to the indoor unit 20 will be described. Fig. 7 is a diagram showing an example of the internal configuration of the indoor unit 20 and the outdoor unit 40 in an air conditioner 100 according to the second embodiment.
実施の形態1は、室内機20から室外機40へ交流電源電圧を印加する形態について説明したが、実施の形態2では、室外機40から室内機20へ交流電源電圧を印加する形態について説明する。図7は、実施の形態2に係る空気調和機100における室内機20及び室外機40の内部の構成例を示す図である。 Embodiment 2.
In the first embodiment, a configuration in which an AC power supply voltage is applied from the
実施の形態2の構成では、室外機40側に交流開閉器91が設けられ、交流開閉器91と整流部51との間に交流電源10が接続される。室内機20には、交流開閉器91を閉状態とすることで交流電源電圧が印加される。その他の構成は、図2に示される実施の形態1の構成と同等であり、同等の構成部には同一の符号を付して重複する説明は割愛する。
In the configuration of the second embodiment, an AC switch 91 is provided on the outdoor unit 40 side, and an AC power source 10 is connected between the AC switch 91 and the rectifier 51. An AC power source voltage is applied to the indoor unit 20 by closing the AC switch 91. The other configuration is the same as the configuration of the first embodiment shown in FIG. 2, and the same components are given the same reference numerals and duplicated explanations are omitted.
実施の形態2の場合、交流電源電圧は常時、室外機40側に印加される構成であるため、デマンド信号は室外機制御部54で受信する構成としている。なお、一般的に無線ルータなどの通信環境は屋内に構築され、インターネット経由の通信は屋内で実施することが前提である。このため、実施の形態1のように、デマンド信号は、室内機制御部23で受信する構成としてもよい。但し、図7の構成の場合、室内機20には、交流開閉器91が閉とならないと交流電源電圧が印加されない。また、空気調和機100においては、室内機20に向かって赤外線リモコンなどで運転開始指令を送信することが一般的であることから、室内機20に電源供給がされていないと運転開始指令を受信することができない。このため、実施の形態2に係る空気調和機100においては、交流開閉器91を設けずに、室内機20と室外機40とに交流電源電圧が常時印加されるように構成されていてもよい。
In the case of the second embodiment, the AC power supply voltage is constantly applied to the outdoor unit 40, so the demand signal is received by the outdoor unit control unit 54. Generally, a communication environment such as a wireless router is constructed indoors, and communication via the Internet is assumed to be performed indoors. For this reason, as in the first embodiment, the demand signal may be received by the indoor unit control unit 23. However, in the case of the configuration of FIG. 7, the AC power supply voltage is not applied to the indoor unit 20 unless the AC switch 91 is closed. In addition, in the air conditioner 100, since it is common to send an operation start command to the indoor unit 20 using an infrared remote control or the like, the operation start command cannot be received unless power is supplied to the indoor unit 20. For this reason, the air conditioner 100 according to the second embodiment may be configured so that the AC power supply voltage is constantly applied to the indoor unit 20 and the outdoor unit 40 without providing the AC switch 91.
実施の形態2に係る空気調和機100は、上記のように構成されているので、デマンド信号を受信した場合には、バッテリ80による電力を利用して圧縮機60、室外機ファン70及び室外機アクチュエータ90を駆動することができる。これにより、近年増加する再生可能エネルギーによる電力不安定の問題に対応することが可能となる。
The air conditioner 100 according to the second embodiment is configured as described above, so when a demand signal is received, it can use power from the battery 80 to drive the compressor 60, the outdoor unit fan 70, and the outdoor unit actuator 90. This makes it possible to address the problem of power instability caused by the increasing use of renewable energy in recent years.
以上説明したように、実施の形態2に係る空気調和機は、交流電源から交流電源電圧が印加される室外機と、通信線及び少なくとも1つ以上の電源線によって室外機と電気的に接続される室内機と、室外機から室内機へ交流電源電圧を印加するための交流開閉器と、室外機に接続可能に構成される充放電及び昇降圧制御可能な直流電源とを備える。室外機は、交流電源電圧を整流することで得られる第1の直流電源電圧及び直流電源から印加される第2の直流電源電圧の双方、又は何れか一方を受電して動作する室外機負荷を備える。このように構成された空気調和機によれば、交流電力の供給状態に応じて、室外機負荷に対する電力供給を交流電源と直流電源との間で自在に切り替えることができる。また、このように構成された空気調和機によれば、交流電源電圧を受電せずに動作する交流非受電動作とするときには、室外機負荷に対する電力供給を交流電源から直流電源に切り替えることができる。これにより、実施の形態1と同様の効果を得ることができる。
As described above, the air conditioner according to the second embodiment includes an outdoor unit to which an AC power supply voltage is applied from an AC power supply, an indoor unit electrically connected to the outdoor unit by a communication line and at least one power supply line, an AC switch for applying the AC power supply voltage from the outdoor unit to the indoor unit, and a DC power supply capable of charge/discharge and step-up/down control configured to be connectable to the outdoor unit. The outdoor unit includes an outdoor unit load that receives both or either of a first DC power supply voltage obtained by rectifying the AC power supply voltage and a second DC power supply voltage applied from the DC power supply. With the air conditioner configured in this way, the power supply to the outdoor unit load can be freely switched between the AC power supply and the DC power supply depending on the supply state of the AC power. Furthermore, with the air conditioner configured in this way, when the air conditioner is set to an AC non-receiving operation in which the air conditioner operates without receiving the AC power supply voltage, the power supply to the outdoor unit load can be switched from the AC power supply to the DC power supply. This allows for the same effects as those of the first embodiment to be obtained.
実施の形態3.
図8は、実施の形態3に係る空気調和機100の基本的な構成例を示す図である。図8の構成を図1の構成と比較すると、室内機20と室外機40との間に直流電源線32が追加されている。その他の構成は、図1に示す実施の形態1と同一又は同等であり、同一又は同等の構成部には同一の符号を付して重複する説明は割愛する。 Embodiment 3.
Fig. 8 is a diagram showing an example of a basic configuration of anair conditioner 100 according to embodiment 3. Comparing the configuration of Fig. 8 with the configuration of Fig. 1, a DC power supply line 32 is added between the indoor unit 20 and the outdoor unit 40. The other configurations are the same or equivalent to those of embodiment 1 shown in Fig. 1, and the same or equivalent components are designated by the same reference numerals and redundant explanations will be omitted.
図8は、実施の形態3に係る空気調和機100の基本的な構成例を示す図である。図8の構成を図1の構成と比較すると、室内機20と室外機40との間に直流電源線32が追加されている。その他の構成は、図1に示す実施の形態1と同一又は同等であり、同一又は同等の構成部には同一の符号を付して重複する説明は割愛する。 Embodiment 3.
Fig. 8 is a diagram showing an example of a basic configuration of an
図9は、実施の形態3に係る空気調和機100における室内機20及び室外機40の内部の構成例を示す図である。また、図10は、実施の形態3に係る空気調和機100における室内機20及び室外機40の図9とは異なる内部の構成例を示す図である。図9は、室内機20から室外機40へ交流電源電圧を印加する形態である。また、図10は、室外機40から室内機20へ交流電源電圧を印加する形態である。
FIG. 9 is a diagram showing an example of the internal configuration of the indoor unit 20 and outdoor unit 40 in an air conditioner 100 according to embodiment 3. Also, FIG. 10 is a diagram showing an example of the internal configuration of the indoor unit 20 and outdoor unit 40 in an air conditioner 100 according to embodiment 3, which is different from that shown in FIG. 9. FIG. 9 shows a form in which an AC power supply voltage is applied from the indoor unit 20 to the outdoor unit 40. Also, FIG. 10 shows a form in which an AC power supply voltage is applied from the outdoor unit 40 to the indoor unit 20.
図9の構成を図2の構成と比較すると、直流電源線32の一端側は直流母線56に接続され、直流電源線32の他端側は整流部22の直流出力側に接続されている。また、直流電源線32には、第2の直流電源電圧を室内機20に印加するための直流開閉器92が設けられている。その他の構成は、図2に示す実施の形態1と同一又は同等であり、同一又は同等の構成部には同一の符号を付して重複する説明は割愛する。
Comparing the configuration of FIG. 9 with the configuration of FIG. 2, one end of the DC power supply line 32 is connected to the DC bus 56, and the other end of the DC power supply line 32 is connected to the DC output side of the rectifier 22. The DC power supply line 32 is also provided with a DC switch 92 for applying the second DC power supply voltage to the indoor unit 20. The other configurations are the same or equivalent to those of the first embodiment shown in FIG. 2, and the same or equivalent components are designated by the same reference numerals, and duplicated explanations will be omitted.
また、図10の構成を図7の構成と比較すると、直流電源線32の一端側は直流母線56に接続され、直流電源線32の他端側は整流部22の直流出力側に接続されている。また、直流電源線32には、第2の直流電源電圧を室内機20に印加するための直流開閉器92が設けられている。その他の構成は、図7に示す実施の形態2と同一又は同等であり、同一又は同等の構成部には同一の符号を付して重複する説明は割愛する。
Furthermore, comparing the configuration of FIG. 10 with the configuration of FIG. 7, one end of the DC power supply line 32 is connected to the DC bus 56, and the other end of the DC power supply line 32 is connected to the DC output side of the rectifier 22. The DC power supply line 32 is also provided with a DC switch 92 for applying the second DC power supply voltage to the indoor unit 20. The other configurations are the same or equivalent to those of the second embodiment shown in FIG. 7, and the same or equivalent components are designated by the same reference numerals, and duplicated explanations will be omitted.
次に、実施の形態3に係る空気調和機100の動作の要点について、図9及び図10を参照して説明する。まず、図2及び図7の構成では、交流電源10からの電力供給が無くなった場合、バッテリ80から室内機20に電力供給する経路が存在しない。従って、室外機40を動作させることはできても、室内機20を動作させる手段が無いので、空気調和機100を運転させることはできない。
Next, the main points of the operation of the air conditioner 100 according to the third embodiment will be described with reference to Figures 9 and 10. First, in the configurations of Figures 2 and 7, when the power supply from the AC power source 10 is cut off, there is no path for supplying power from the battery 80 to the indoor unit 20. Therefore, although the outdoor unit 40 can be operated, there is no means for operating the indoor unit 20, and therefore the air conditioner 100 cannot be operated.
整流部51を回生型のコンバータで構成し、バッテリ80から電力を供給することも考えられるが、交流開閉器25及び交流開閉器91が開状態の場合、室内機20への電力供給が困難である。また、交流開閉器25及び交流開閉器91を閉状態にすると、停電時において電力系統側へ電力回生が行われ、停電の復旧作業を行っている作業員が感電するおそれがある。このため、整流部51を回生型のコンバータとする構成は、システム構築に対するハードルが高い。そこで、実施の形態3では、室外機40の直流部と室内機20の直流部とを直流開閉器92を介して直流電源線32で接続する構成としている。
It is conceivable to configure the rectifier unit 51 as a regenerative converter and supply power from the battery 80, but when the AC switch 25 and the AC switch 91 are open, it is difficult to supply power to the indoor unit 20. Furthermore, if the AC switch 25 and the AC switch 91 are closed, power is regenerated to the power grid during a power outage, and workers performing power recovery work may be electrocuted. For this reason, configuring the rectifier unit 51 as a regenerative converter poses a high hurdle to system construction. Therefore, in the third embodiment, the DC section of the outdoor unit 40 and the DC section of the indoor unit 20 are configured to be connected by the DC power line 32 via the DC switch 92.
実施の形態3に係る空気調和機100によれば、図9に示すように、室内機20が受電する構成であっても、交流電源10の停電時において、バッテリ80の電力を利用して室外機40及び室内機20を動作させることができる。
According to the air conditioner 100 of embodiment 3, as shown in FIG. 9, even if the indoor unit 20 is configured to receive power, the outdoor unit 40 and the indoor unit 20 can be operated using the power of the battery 80 during a power outage of the AC power source 10.
また、実施の形態3に係る空気調和機100によれば、図10に示すように、室外機40が受電する構成であっても、交流電源10の停電時において、バッテリ80の電力を利用して室外機40及び室内機20を動作させることができる。
Furthermore, according to the air conditioner 100 of embodiment 3, even if the outdoor unit 40 is configured to receive power as shown in FIG. 10, during a power outage of the AC power source 10, the outdoor unit 40 and the indoor unit 20 can be operated using the power of the battery 80.
また、実施の形態3に係る空気調和機100によれば、図9及び図10に示すように、デマンドレスポンス要求を受信するのが室内機制御部23及び室外機制御部54の何れかであり、且つ交流電源10の停電時であってもバッテリ80の電力を利用して圧縮機60及び室外機ファン70を駆動することができる。
Furthermore, according to the air conditioner 100 of embodiment 3, as shown in Figs. 9 and 10, the demand response request is received by either the indoor unit control unit 23 or the outdoor unit control unit 54, and the compressor 60 and the outdoor unit fan 70 can be driven using the power of the battery 80 even during a power outage of the AC power source 10.
以上説明したように、実施の形態3に係る空気調和機は、実施の形態1及び実施の形態2の構成において、第2の直流電源電圧を室内機に印加するための直流開閉器を更に備える。この構成により、交流電源電圧を受電せずに動作する交流非受電動作とするときには、直流開閉器を閉状態とすることで室内機に第2の直流電源電圧を印加する。これにより、デマンドレスポンス要求の受信部が室内機制御部及び室外機制御部の何れにあっても、また、交流電源の停電時であってもバッテリの電力を利用して圧縮機及び室外機を駆動することができる空気調和機を得ることが可能となる。
As described above, the air conditioner according to embodiment 3, in the configurations of embodiments 1 and 2, further includes a DC switch for applying a second DC power supply voltage to the indoor unit. With this configuration, when the air conditioner is to operate in an AC non-receiving mode in which the air conditioner operates without receiving AC power supply voltage, the DC switch is closed to apply the second DC power supply voltage to the indoor unit. This makes it possible to obtain an air conditioner that can drive the compressor and outdoor unit using battery power, regardless of whether the receiver for the demand-response request is in the indoor unit control unit or the outdoor unit control unit, and even during a power outage of the AC power supply.
実施の形態4.
実施の形態3に係る空気調和機100では、通信線30に加え、室内機20又は室外機40に交流電源電圧を印加するための電源線31及び第2の直流電源電圧を室内機20に印加するための直流電源線32を室内機20と室外機40との間で配線する必要があった。そのため、室内機20と室外機40との間の配線が増えてしまうという課題、空気調和機100を設置する段階で電気配線工事の手間がかかるという課題、室内機20と室外機40との間で冷媒配管や接続線を通すために壁の穴を大きく開ける必要があるなどの課題があった。これらの課題を解決するため、実施の形態4では、図11に示す構成を提案する。図11は、実施の形態4に係る空気調和機100における室内機20及び室外機40の内部の構成例を示す図である。 Embodiment 4.
In theair conditioner 100 according to the third embodiment, in addition to the communication line 30, it was necessary to wire a power line 31 for applying an AC power supply voltage to the indoor unit 20 or the outdoor unit 40 and a DC power supply line 32 for applying a second DC power supply voltage to the indoor unit 20 between the indoor unit 20 and the outdoor unit 40. This resulted in problems such as an increase in wiring between the indoor unit 20 and the outdoor unit 40, a problem that electrical wiring work is time-consuming at the stage of installing the air conditioner 100, and a need to make a large hole in the wall to pass refrigerant piping and connection lines between the indoor unit 20 and the outdoor unit 40. In order to solve these problems, the fourth embodiment proposes a configuration shown in FIG. 11. FIG. 11 is a diagram showing an example of the internal configuration of the indoor unit 20 and the outdoor unit 40 in the air conditioner 100 according to the fourth embodiment.
実施の形態3に係る空気調和機100では、通信線30に加え、室内機20又は室外機40に交流電源電圧を印加するための電源線31及び第2の直流電源電圧を室内機20に印加するための直流電源線32を室内機20と室外機40との間で配線する必要があった。そのため、室内機20と室外機40との間の配線が増えてしまうという課題、空気調和機100を設置する段階で電気配線工事の手間がかかるという課題、室内機20と室外機40との間で冷媒配管や接続線を通すために壁の穴を大きく開ける必要があるなどの課題があった。これらの課題を解決するため、実施の形態4では、図11に示す構成を提案する。図11は、実施の形態4に係る空気調和機100における室内機20及び室外機40の内部の構成例を示す図である。 Embodiment 4.
In the
図11の構成を図10の構成と比較すると、室内機20と室外機40との間に配されていた交流開閉器91が削除されている。また、室外機40のみに電源線31が配され、交流電源電圧は室外機40のみに印加される。これにより、室内機20では、第3の直流電源電圧を生成していた整流部22が削除されている。その他の構成は、図10に示す実施の形態3と同一又は同等であり、同一又は同等の構成部には同一の符号を付して重複する説明は割愛する。
Comparing the configuration of FIG. 11 with the configuration of FIG. 10, the AC switch 91 arranged between the indoor unit 20 and the outdoor unit 40 has been deleted. Also, the power line 31 is arranged only in the outdoor unit 40, and the AC power supply voltage is applied only to the outdoor unit 40. As a result, the rectifier unit 22 that generated the third DC power supply voltage has been deleted from the indoor unit 20. The other configurations are the same or equivalent to those of the third embodiment shown in FIG. 10, and the same or equivalent components are designated by the same reference numerals, and duplicate explanations will be omitted.
実施の形態4に係る空気調和機100においては、整流部22が不要になるので、室内機20の製造コストを削減することが可能となる。室内機20と室外機40との間に配される電源線31が不要となるので電気配線工事の手間を省力化することが可能となる。
In the air conditioner 100 according to the fourth embodiment, the rectifier 22 is not necessary, so it is possible to reduce the manufacturing costs of the indoor unit 20. Since the power line 31 between the indoor unit 20 and the outdoor unit 40 is not necessary, it is possible to reduce the labor required for electrical wiring work.
また、室内機20と室外機40との間に配される交流電源線である電源線31は数メートルから十数メートルの長さになることがある。電源線31の配線長が長くなると配線インダクタンスが増加するため、損失が増加し、電圧降下の影響も大きくなる。一方、直流電源線32の場合、配線インダクタンスの影響を受けないため、電源線31に比べて直流電源線32の配線長を長くできるという利点を享受することができる。
Furthermore, the power line 31, which is an AC power line arranged between the indoor unit 20 and the outdoor unit 40, can be several meters to several tens of meters long. As the wiring length of the power line 31 becomes longer, the wiring inductance increases, so losses increase and the effects of voltage drop become greater. On the other hand, the DC power line 32 is not affected by the wiring inductance, so it is possible to enjoy the advantage that the wiring length of the DC power line 32 can be made longer than that of the power line 31.
以上説明したように、実施の形態4に係る空気調和機は、交流電源から交流電源電圧が印加される室外機と、少なくとも通信線によって室外機と電気的に接続される室内機と、室外機に接続可能に構成される充放電及び昇降圧制御可能な直流電源とを備える。室外機は、交流電源電圧を整流することで得られる第1の直流電源電圧及び直流電源から印加される第2の直流電源電圧の双方、又は何れか一方を受電して動作する室外機負荷と、直流電源が接続される室外機の直流母線と室内機とを電気的に接続する直流電源線と、第1の直流電源電圧及び第2の直流電源電圧を室内機に印加するための直流開閉器とを備える。このように構成された空気調和機によれば、交流電力の供給状態に応じて、室外機負荷に対する電力供給を交流電源と直流電源との間で自在に切り替えることができる。また、このように構成された空気調和機によれば、交流電源電圧を受電せずに動作する交流非受電動作とするときには、室外機負荷に対する電力供給を交流電源から直流電源に切り替えることができる。
As described above, the air conditioner according to the fourth embodiment includes an outdoor unit to which an AC power supply voltage is applied from an AC power supply, an indoor unit electrically connected to the outdoor unit by at least a communication line, and a DC power supply capable of charge/discharge and step-up/down control configured to be connectable to the outdoor unit. The outdoor unit includes an outdoor unit load that operates by receiving both or either of a first DC power supply voltage obtained by rectifying the AC power supply voltage and a second DC power supply voltage applied from the DC power supply, a DC power supply line electrically connecting the indoor unit and a DC busbar of the outdoor unit to which the DC power supply is connected, and a DC switch for applying the first DC power supply voltage and the second DC power supply voltage to the indoor unit. With the air conditioner configured in this manner, the power supply to the outdoor unit load can be freely switched between the AC power supply and the DC power supply depending on the supply state of the AC power. Furthermore, with an air conditioner configured in this manner, when the air conditioner is in AC non-receiving mode, in which the air conditioner operates without receiving AC power voltage, the power supply to the outdoor unit load can be switched from the AC power source to the DC power source.
また、実施の形態4に係る空気調和機によれば、整流部が不要になるので室内機の製造コストを削減することができ、室内機と室外機との間に配される交流電源線が不要となるので電気配線工事の手間を省力化することができる。また、実施の形態4に係る空気調和機によれば、交流電源線に代えて直流電源線を配することができるので、電源線の長さを長くできるという利点を享受することが可能なる。
Furthermore, with the air conditioner according to embodiment 4, a rectifier is not required, so the manufacturing costs of the indoor unit can be reduced, and since an AC power line between the indoor unit and the outdoor unit is not required, the labor required for electrical wiring work can be reduced. Furthermore, with the air conditioner according to embodiment 4, a DC power line can be arranged instead of an AC power line, so it is possible to enjoy the advantage of being able to increase the length of the power line.
また、実施の形態4に係る空気調和機において、室外機ファンが外力によって回転した際には直流電源を充電するようにしてもよい。このようにすれば、室外機ファンに発生した電力を有効利用することができる。多数の空気調和機がこのような動作を行えば、安定した電力供給の維持に大きく貢献することが可能となる。
Furthermore, in the air conditioner according to embodiment 4, the DC power supply may be charged when the outdoor unit fan is rotated by an external force. In this way, the power generated by the outdoor unit fan can be used effectively. If many air conditioners perform this operation, it can greatly contribute to maintaining a stable power supply.
また、実施の形態4に係る空気調和機において、室外機制御部は、直流電源から出力される第2の直流電源電圧が常時印加されるように構成されていてもよい。このように構成されていれば、室外機の動作を制御する室外機制御部は、制御可能な状態が常時維持される。従って、直流電源がバッテリである場合において、室外機の運転終了時にバッテリの残量の情報を室内機制御部に伝えておく制御は不要になる。これにより、制御を複雑化することなく、バッテリの充電量を容易に把握することが可能となる。
Furthermore, in the air conditioner according to embodiment 4, the outdoor unit control unit may be configured so that the second DC power supply voltage output from the DC power supply is constantly applied to it. If configured in this way, the outdoor unit control unit that controls the operation of the outdoor unit is constantly maintained in a controllable state. Therefore, when the DC power supply is a battery, there is no need for control to transmit information about the remaining battery charge to the indoor unit control unit when the outdoor unit has finished operating. This makes it possible to easily grasp the charge level of the battery without complicating the control.
また、実施の形態4に係る空気調和機において、室外機制御部は、直流電源が接続される直流母線の電圧が規定電圧に達したときに起動されるように構成されていてもよい。この構成の場合、直流電源がバッテリである場合において、空気調和機が動作していないときには、バッテリの電力が消費されないので、バッテリの電力の有効利用を図ることができる。また、この構成であっても、室外機の運転終了時にバッテリの残量の情報を室内機制御部に伝えておくようにすれば、室外機制御部の起動後には、速やかにバッテリの残量の情報を室内機制御部から受領できるので、バッテリの充電量を確実に把握することが可能となる。
In the air conditioner according to embodiment 4, the outdoor unit control unit may be configured to be started when the voltage of the DC bus to which the DC power source is connected reaches a specified voltage. In this configuration, if the DC power source is a battery, battery power is not consumed when the air conditioner is not operating, and the battery power can be used effectively. Even with this configuration, if information about the remaining battery charge is transmitted to the indoor unit control unit when the outdoor unit ends operation, the information about the remaining battery charge can be promptly received from the indoor unit control unit after the outdoor unit control unit is started, making it possible to reliably grasp the amount of charge in the battery.
なお、以上の実施の形態では、空気調和機を例示して説明したが、空気調和機と同様な冷凍サイクル機器であるヒートポンプ給湯機、冷蔵庫、冷凍機などへの適用も可能である。
In the above embodiment, an air conditioner has been described as an example, but the invention can also be applied to heat pump water heaters, refrigerators, freezers, and other refrigeration cycle devices similar to air conditioners.
また、以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
In addition, the configurations shown in the above embodiments are merely examples, and may be combined with other known technologies, or the embodiments may be combined with each other. In addition, parts of the configurations may be omitted or modified without departing from the spirit of the invention.
10 交流電源、20 室内機、21 室内機基板、22,51 整流部、23 室内機制御部、24 室内機アクチュエータ、25,91 交流開閉器、30 通信線、31 電源線、32 直流電源線、40 室外機、50 室外機基板、52,53 インバータ、54 室外機制御部、56 直流母線、60 圧縮機、70 室外機ファン、80 バッテリ、82 DC/DC変換器、90 室外機アクチュエータ、92 直流開閉器、100 空気調和機、200 プロセッサ、202 メモリ。
10 AC power supply, 20 indoor unit, 21 indoor unit board, 22, 51 rectification unit, 23 indoor unit control unit, 24 indoor unit actuator, 25, 91 AC switch, 30 communication line, 31 power line, 32 DC power line, 40 outdoor unit, 50 outdoor unit board, 52, 53 inverter, 54 outdoor unit control unit, 56 DC busbar, 60 compressor, 70 outdoor unit fan, 80 battery, 82 DC/DC converter, 90 outdoor unit actuator, 92 DC switch, 100 air conditioner, 200 processor, 202 memory.
Claims (13)
- 交流電源から交流電源電圧が印加される室内機と、
通信線及び少なくとも1つ以上の電源線によって前記室内機と電気的に接続される室外機と、
前記室内機から前記室外機へ前記交流電源電圧を印加するための交流開閉器と、
前記室外機に接続可能に構成される充放電及び昇降圧制御可能な直流電源と、
を備え、
前記室外機は、前記交流電源電圧を整流することで得られる第1の直流電源電圧及び前記直流電源から印加される第2の直流電源電圧の双方、又は何れか一方を受電して動作する室外機負荷を備える
空気調和機。 an indoor unit to which an AC power supply voltage is applied from an AC power supply;
an outdoor unit electrically connected to the indoor unit by a communication line and at least one power line;
an AC switch for applying the AC power supply voltage from the indoor unit to the outdoor unit;
A DC power source that is connectable to the outdoor unit and capable of charge/discharge and step-up/step-down control;
Equipped with
the outdoor unit includes an outdoor unit load that operates by receiving both or either one of a first DC power supply voltage obtained by rectifying the AC power supply voltage and a second DC power supply voltage applied from the DC power supply. - 交流電源から交流電源電圧が印加される室外機と、
通信線及び少なくとも1つ以上の電源線によって前記室外機と電気的に接続される室内機と、
前記室外機から前記室内機へ前記交流電源電圧を印加するための交流開閉器と、
前記室外機に接続可能に構成される充放電及び昇降圧制御可能な直流電源と、
を備え、
前記室外機は、前記交流電源電圧を整流することで得られる第1の直流電源電圧及び前記直流電源から印加される第2の直流電源電圧の双方、又は何れか一方を受電して動作する室外機負荷を備える
空気調和機。 an outdoor unit to which an AC power supply voltage is applied from an AC power supply;
an indoor unit electrically connected to the outdoor unit by a communication line and at least one power line;
an AC switch for applying the AC power supply voltage from the outdoor unit to the indoor unit;
A DC power source that is connectable to the outdoor unit and capable of charge/discharge and step-up/step-down control;
Equipped with
the outdoor unit includes an outdoor unit load that operates by receiving both or either one of a first DC power supply voltage obtained by rectifying the AC power supply voltage and a second DC power supply voltage applied from the DC power supply. - 前記室外機の動作を制御する室外機制御部を備え、
前記室外機制御部には、前記第2の直流電源電圧が常時印加される
請求項1又は2に記載の空気調和機。 An outdoor unit control unit that controls the operation of the outdoor unit,
The air conditioner according to claim 1 or 2, wherein the second DC power supply voltage is constantly applied to the outdoor unit control unit. - 前記室外機の動作を制御する室外機制御部を備え、
前記室外機制御部は、前記直流電源が接続される直流母線の電圧が規定電圧に達したときに起動される
請求項1又は2に記載の空気調和機。 An outdoor unit control unit that controls the operation of the outdoor unit,
The air conditioner according to claim 1 or 2, wherein the outdoor unit control unit is activated when a voltage of a DC bus to which the DC power supply is connected reaches a specified voltage. - 前記第2の直流電源電圧を前記室内機に印加するための直流開閉器を備える
請求項1から4の何れか1項に記載の空気調和機。 The air conditioner according to claim 1 , further comprising a DC switch for applying the second DC power supply voltage to the indoor unit. - 前記交流電源電圧を受電せずに動作する交流非受電動作とするときには、前記直流開閉器を閉状態とすることで前記室内機に前記第2の直流電源電圧を印加する
請求項5に記載の空気調和機。 The air conditioner according to claim 5 , wherein, when the air conditioner is in an AC non-receiving operation in which the air conditioner operates without receiving the AC power supply voltage, the DC switch is closed to apply the second DC power supply voltage to the indoor unit. - 前記交流非受電動作とするときは、前記交流電源の停電時である
請求項6に記載の空気調和機。 The air conditioner according to claim 6 , wherein the AC non-receiving operation occurs when a power outage occurs in the AC power source. - 前記交流非受電動作とするときは、前記空気調和機に対してデマンドレスポンス要求が指示されているときである
請求項6に記載の空気調和機。 The air conditioner according to claim 6 , wherein the AC non-receiving operation is performed when a demand response request is issued to the air conditioner. - 前記デマンドレスポンス要求に基づいて前記直流電源から供給される電力量を調整する
請求項8に記載の空気調和機。 The air conditioner according to claim 8 , wherein the amount of power supplied from the DC power supply is adjusted based on the demand response request. - 交流電源から交流電源電圧が印加される室外機と、
少なくとも通信線によって前記室外機と電気的に接続される室内機と、
前記室外機に接続可能に構成される充放電及び昇降圧制御可能な直流電源と、
を備え、
前記室外機は、
前記交流電源電圧を整流することで得られる第1の直流電源電圧及び前記直流電源から印加される第2の直流電源電圧の双方、又は何れか一方を受電して動作する室外機負荷と、
前記直流電源が接続される前記室外機の直流母線と前記室内機とを電気的に接続する直流電源線と、
前記第1の直流電源電圧及び前記第2の直流電源電圧を前記室内機に印加するための直流開閉器と、
を備える空気調和機。 an outdoor unit to which an AC power supply voltage is applied from an AC power supply;
an indoor unit electrically connected to the outdoor unit by at least a communication line;
A DC power source that is connectable to the outdoor unit and capable of charge/discharge and step-up/step-down control;
Equipped with
The outdoor unit includes:
an outdoor unit load that operates by receiving both or either one of a first DC power supply voltage obtained by rectifying the AC power supply voltage and a second DC power supply voltage applied from the DC power supply;
a DC power supply line electrically connecting a DC busbar of the outdoor unit to which the DC power supply is connected and the indoor unit;
a DC switch for applying the first DC power supply voltage and the second DC power supply voltage to the indoor unit;
An air conditioner equipped with: - 前記室外機の動作を制御する室外機制御部を備え、
前記室外機制御部には、前記第2の直流電源電圧が常時印加される
請求項10に記載の空気調和機。 An outdoor unit control unit that controls the operation of the outdoor unit,
The air conditioner according to claim 10 , wherein the second DC power supply voltage is constantly applied to the outdoor unit control unit. - 前記室外機の動作を制御する室外機制御部を備え、
前記室外機制御部は、前記直流母線の電圧が規定電圧に達したときに起動される
請求項10に記載の空気調和機。 An outdoor unit control unit that controls the operation of the outdoor unit,
The air conditioner according to claim 10, wherein the outdoor unit control unit is activated when the voltage of the DC bus reaches a specified voltage. - 前記室外機は、室外機ファンを備え、
前記室外機ファンが外力によって回転した際には前記直流電源を充電する
請求項1から12の何れか1項に記載の空気調和機。 The outdoor unit includes an outdoor unit fan,
The air conditioner according to claim 1 , wherein the DC power supply is charged when the outdoor unit fan is rotated by an external force.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/001505 WO2024154293A1 (en) | 2023-01-19 | 2023-01-19 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/001505 WO2024154293A1 (en) | 2023-01-19 | 2023-01-19 | Air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024154293A1 true WO2024154293A1 (en) | 2024-07-25 |
Family
ID=91955635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/001505 WO2024154293A1 (en) | 2023-01-19 | 2023-01-19 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024154293A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11325540A (en) * | 1998-05-15 | 1999-11-26 | Daikin Ind Ltd | Storage battery apparatus for air conditioner |
JP2001178177A (en) * | 1999-12-17 | 2001-06-29 | Mitsubishi Electric Corp | Motor drive apparatus and air conditioner |
JP2005201549A (en) * | 2004-01-16 | 2005-07-28 | Toshiba Kyaria Kk | Air conditioner, solar battery for air conditioner, and solar battery connecting method with air conditioner |
JP2008039231A (en) * | 2006-08-03 | 2008-02-21 | Toshiba Kyaria Kk | Outdoor unit for refrigeration cycle device |
JP2011196584A (en) * | 2010-03-18 | 2011-10-06 | Fujitsu General Ltd | Air conditioner |
US20160131378A1 (en) * | 2014-11-07 | 2016-05-12 | Daikin Industries, Ltd. | Air conditioning system |
JP2016220398A (en) * | 2015-05-20 | 2016-12-22 | シャープ株式会社 | Electrical equipment |
-
2023
- 2023-01-19 WO PCT/JP2023/001505 patent/WO2024154293A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11325540A (en) * | 1998-05-15 | 1999-11-26 | Daikin Ind Ltd | Storage battery apparatus for air conditioner |
JP2001178177A (en) * | 1999-12-17 | 2001-06-29 | Mitsubishi Electric Corp | Motor drive apparatus and air conditioner |
JP2005201549A (en) * | 2004-01-16 | 2005-07-28 | Toshiba Kyaria Kk | Air conditioner, solar battery for air conditioner, and solar battery connecting method with air conditioner |
JP2008039231A (en) * | 2006-08-03 | 2008-02-21 | Toshiba Kyaria Kk | Outdoor unit for refrigeration cycle device |
JP2011196584A (en) * | 2010-03-18 | 2011-10-06 | Fujitsu General Ltd | Air conditioner |
US20160131378A1 (en) * | 2014-11-07 | 2016-05-12 | Daikin Industries, Ltd. | Air conditioning system |
JP2016220398A (en) * | 2015-05-20 | 2016-12-22 | シャープ株式会社 | Electrical equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9172249B2 (en) | Intelligent microgrid controller | |
JP3148817U (en) | Solar power generator | |
JP5016894B2 (en) | Air conditioning / power generation apparatus and control method thereof | |
US7614245B2 (en) | Fuel cell power generation refrigerating system | |
CN102611094A (en) | Photovoltaic power source for electromechanical system | |
JP2001008385A (en) | Power storing system | |
CN111628519A (en) | Power supply control method of power supply system, power supply system and storage medium | |
JP3595165B2 (en) | Air conditioner using solar power | |
US20200329531A1 (en) | Heating apparatus comprising a battery and a power inverter for introducing energy from the battery to the electric supply device | |
JP2000295784A (en) | Power storage system | |
JP2011217590A (en) | Air conditioning system | |
Arteconi et al. | Demand side management of a building summer cooling load by means of a thermal energy storage | |
WO2024154293A1 (en) | Air conditioner | |
JP2011200097A (en) | Air conditioning system | |
JPH1146458A (en) | Solar power generating system | |
CN109764436B (en) | Heat pump energy storage system for stabilizing short-term fluctuation of intermittent energy | |
US20090178423A1 (en) | Power selection system for air conditioner | |
JP2000179911A (en) | Air conditioner | |
CN205825309U (en) | Photovoltaic generation refrigerated air-conditioning system | |
JP4566084B2 (en) | Energy storage air conditioning system | |
JPH06137650A (en) | Storage battery type air conditioner | |
JP2014128102A (en) | Power supply system | |
EP2413449A2 (en) | Air conditioning system | |
JP3869615B2 (en) | Air conditioner with built-in auxiliary power supply | |
JPH11325545A (en) | Storage battery type air conditioning system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23917506 Country of ref document: EP Kind code of ref document: A1 |