WO2024150287A1 - Wireless communication node and terminal - Google Patents

Wireless communication node and terminal Download PDF

Info

Publication number
WO2024150287A1
WO2024150287A1 PCT/JP2023/000350 JP2023000350W WO2024150287A1 WO 2024150287 A1 WO2024150287 A1 WO 2024150287A1 JP 2023000350 W JP2023000350 W JP 2023000350W WO 2024150287 A1 WO2024150287 A1 WO 2024150287A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
node
communication node
fault
iab
Prior art date
Application number
PCT/JP2023/000350
Other languages
French (fr)
Japanese (ja)
Inventor
天楊 閔
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2023/000350 priority Critical patent/WO2024150287A1/en
Publication of WO2024150287A1 publication Critical patent/WO2024150287A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • This disclosure relates to wireless communication nodes and terminals.
  • the 3rd Generation Partnership Project (3GPP) is developing specifications for the 5th generation mobile communication system (5G, also known as New Radio (NR) or Next Generation (NG)) and is also developing specifications for the next generation of mobile communication systems, known as Beyond 5G, 5G Evolution or 6G.
  • 5G also known as New Radio (NR) or Next Generation (NG)
  • NG Next Generation
  • 3GPP Release 17 specifies Integrated Access and Backhaul (IAB), which integrates wireless access to terminals (User Equipment, UE) and wireless backhaul between wireless communication nodes that make up base stations (next generation NodeB, gNB).
  • IAB Integrated Access and Backhaul
  • Wireless communication nodes consist of an IAB-donor connected to the network and an IAB-node that is connected to the IAB-donor via wireless backhaul and performs wireless communication with the UE.
  • Non-Patent Document 1 3GPP Release 18 is discussing mobile IAB-nodes, which are equipped with IAB-nodes on moving objects such as automobiles and drones.
  • a failure such as a radio link failure (RLF) or handover failure (HOF) occurs between an IAB-node and an upper node (IAB-donor or another IAB-node) connected to the IAB-node
  • RLF radio link failure
  • HAF handover failure
  • the IAB-node is the mobile IAB-node described above, the parameters to be reported become more complex as the IAB-node moves, and there is a risk that recovery from a failure cannot be achieved by simply reporting the conventional failure information.
  • the IAB-node performs dual connectivity (DC) with multiple upper nodes, the selection of parameters to be reported and the report destination becomes more complex as the number of cells increases, and a similar problem may occur.
  • DC dual connectivity
  • the present disclosure has been made in light of these circumstances, and aims to provide a wireless communication node and terminal that can report fault information to the network without impeding the scalability of the IAB-node, such as improving mobility and supporting DC.
  • wireless communication node 150 that includes a control unit (control unit 180) that detects a fault that occurs between the wireless communication node and a higher-level node, and a transmission unit (fault reporting unit 170) that transmits fault information to the higher-level node, the fault information including information related to the movement of the wireless communication node.
  • control unit 180 that detects a fault that occurs between the wireless communication node and a higher-level node
  • transmission unit fault reporting unit 170
  • wireless communication node 150 that performs dual connections with multiple upper nodes, and includes a control unit (control unit 180) that detects a fault that occurs between the wireless communication node and the upper node, and a transmission unit (fault reporting unit 170) that transmits fault information to the upper node, and the fault information includes identification information of the cell in which the fault is detected.
  • control unit 180 that detects a fault that occurs between the wireless communication node and the upper node
  • transmission unit fault reporting unit 170
  • One aspect of the disclosure is a terminal (UE200) connected to a wireless communication node, the terminal (UE200) comprising a control unit (control unit 230) that detects a fault occurring between the wireless communication node and a higher-level node, and a transmission unit (fault reporting unit 220) that transmits fault information to the higher-level node, the fault information including information related to the movement of the terminal.
  • control unit 230 control unit 230
  • fault reporting unit 220 that transmits fault information to the higher-level node, the fault information including information related to the movement of the terminal.
  • FIG. 1 is a diagram showing the overall configuration of a wireless communication system.
  • FIG. 2 is a functional block diagram of an IAB-donor constituting a base station.
  • FIG. 3 is a functional block diagram of an IAB-node constituting a base station.
  • FIG. 4 is a functional block diagram of the terminal.
  • FIG. 5 is a diagram showing the occurrence of RLF.
  • FIG. 6 is a diagram showing the occurrence of RLF/HOF during handover.
  • FIG. 7 is a diagram showing the occurrence of RLF/HOF during handover.
  • FIG. 8 is a diagram showing the occurrence of RLF/HOF during handover.
  • FIG. 9 is a sequence diagram of reporting an RLF.
  • FIG. 10 shows the occurrence of RLF in DC.
  • FIG. 10 shows the occurrence of RLF in DC.
  • FIG. 11 is a sequence diagram for reporting RLF in a secondary cell group (SCG).
  • FIG. 12 is a sequence diagram of reporting RLF in a master cell group (MCG).
  • FIG. 13 is a diagram illustrating an example of a hardware configuration of a wireless communication node and a terminal.
  • FIG. 14 is a diagram illustrating an example of the configuration of a vehicle.
  • the wireless communication system 10 shown in Fig. 1 is a wireless communication system conforming to a method called 5G.
  • the wireless communication system 10 may be a wireless communication system conforming to a method called Beyond 5G, 5G Evolution, or 6G.
  • the wireless communication system 10 includes a Next Generation-Radio Access Network (NG-RAN) 20, a wireless communication node 100 connected to the NG-RAN 20 via a wired transmission path such as fiber transport, a wireless communication node 150 connected to the wireless communication node 100 via a wireless backhaul, and a terminal (User Equipment, UE) 200 connected to the wireless communication node 150.
  • the NG-RAN 20 is connected to a core network (CN) (not shown).
  • CN core network
  • the NG-RAN 20 and the CN may be simply referred to as a "network.”
  • the configuration of the wireless communication system 10 in which the wireless access to the UE 200 and the wireless backhaul between the wireless communication nodes 100 and 150 are integrated in this manner is called Integrated Access and Backhaul (IAB).
  • IAB Integrated Access and Backhaul
  • the specific configuration of the wireless communication system 10, for example the number of wireless communication nodes 100, 150 and UEs 200, is not limited to the example shown in FIG. 1 (see FIGS. 6 to 8 and 10).
  • the direction from the wireless communication node 100 to the wireless communication node 150 and UE 200 is the downlink (DL) direction
  • the direction from the wireless communication node 150 and UE 200 to the wireless communication node 100 and the network is the uplink (UL) direction.
  • the wireless communication node 100 may also be called an IAB-donor, and may be called an upper node or a Parent node based on the topology with the wireless communication node 150.
  • the wireless communication node 150 may also be called an IAB-node, and may be called a lower node or a Child node based on the topology with the wireless communication node 100.
  • Such names may also be applied between multiple wireless communication nodes 150.
  • the wireless communication nodes 150A and 150B in the configuration example shown in FIG. 10 may be called an upper node or a Parent node of the wireless communication node 150C.
  • the UE 200 may also be called a lower node or a Child node based on the topology with the wireless communication nodes 100 and 150.
  • the wireless communication node 100 has a Central Unit (CU), which is a function for connecting to a network, and a Distributed Unit (DU), which is a function for connecting to a lower node.
  • the wireless communication node 150 has a Mobile Terminal (MT), which is a function for connecting to a higher node, and a DU, which is a function for connecting to a lower node.
  • the MT and DU of the wireless communication node 150 are also called IAB-MT and IAB-DU, respectively.
  • the wireless communication node 150 may be a mobile IAB-node (see FIG. 5). In other words, it may be an IAB-node that is movable and mounted on a moving object such as an automobile or a drone. Such a wireless communication node 150 can flexibly set the communication range (coverage) of the UE 200.
  • the wireless communication node 150 may perform dual connectivity (DC) with multiple upper nodes (wireless communication nodes 150A, 150B) (see FIG. 10).
  • DC dual connectivity
  • Such a wireless communication node 150 (150C) is not only capable of high-speed communication, but can also connect to the network via the MCG even if a failure occurs in the SCG, for example.
  • the wireless communication node 100 (100A, 100B) comprises a transceiver unit 110, a NW IF unit 120, a fault reporting unit 130, and a control unit 140.
  • the transmitting/receiving unit 110 transmits and receives wireless signals to and from the lower node.
  • the transmitting/receiving unit 110 may be configured as a transmitting unit that transmits wireless signals to the lower node and a receiving unit that receives wireless signals from the lower node.
  • the NW IF unit 120 provides a communication interface that realizes a connection to a network.
  • the communication interface is, for example, an X2, Xn, N2, or N3 interface.
  • the fault reporting unit 130 reports fault information received from fault reporting units 170 and 220 of lower nodes, which will be described later, to the network.
  • the fault reporting unit 130 constitutes a transmission unit that transmits fault information to the network.
  • the control unit 140 controls the transmission and reception of wireless signals by the transceiver unit 110, the provision of a communication interface by the NW IF unit 120, and the reporting of fault information by the fault reporting unit 130.
  • the control unit 140 also cooperates with lower-level nodes to recover from faults that occur between the lower-level nodes.
  • the wireless communication node 150 (150A, 150B, 150C) includes a transceiver unit 160, a fault reporting unit 170, and a control unit 180.
  • the transmitting/receiving unit 160 transmits and receives wireless signals between the upper node and the lower node.
  • the transmitting/receiving unit 110 may be configured as a transmitting unit that transmits wireless signals to the upper node and the lower node, and a receiving unit that receives wireless signals from the upper node and the lower node.
  • the fault reporting unit 170 reports fault information relating to faults detected by the control unit 180 (described later) to the higher-level node.
  • the fault reporting unit 170 also reports fault information received from the fault reporting unit 220 of the lower-level node to the higher-level node.
  • the fault reporting unit 170 constitutes a transmitting unit that transmits fault information to the higher-level node.
  • the fault information reported (transmitted) to the higher-level node is reported (transmitted) to the network via the higher-level node.
  • the control unit 180 controls the transmission and reception of wireless signals by the transceiver unit 160, and the reporting of fault information by the fault reporting unit 170.
  • the control unit 180 also cooperates with the higher-level node to recover from faults that occur between the higher-level node and the control unit 180.
  • the control unit 180 detects a fault that occurs between the upper node and the node.
  • the fault may be, for example, a radio link fault (RLF) or a handover fault (HOF).
  • the control unit 180 generates fault information indicating the content of the detected fault.
  • the fault information is reported to the upper node by the fault reporting unit 170 as described above.
  • the control unit 180 may collect information related to the movement of the wireless communication node 150, such as the position, movement speed, flight status, etc., and include this information in the fault information generated in the event of a fault. Other specific examples of fault information generated by the control unit 180 will be described in detail in the operation example.
  • the UE 200 includes a transceiver unit 210, a fault reporting unit 220, and a control unit 230. As described above, the UE 200 is connected to the wireless communication node 150 and performs wireless communication with the wireless communication node 150, but is not limited to this. The UE 200 may be connected to the wireless communication node 100 and perform wireless communication with the wireless communication node 100, and the following description may be interpreted accordingly.
  • the transmitting/receiving unit 210 transmits and receives wireless signals to and from the upper node.
  • the transmitting/receiving unit 210 may be configured as a transmitting unit that transmits wireless signals to the upper node, and a receiving unit that receives wireless signals from the upper node.
  • the fault reporting unit 220 reports fault information relating to faults detected by the control unit 230 (described later) to the upper node.
  • the fault reporting unit 220 constitutes a transmission unit that transmits fault information to the upper node.
  • the fault information reported (transmitted) to the upper node is reported (transmitted) to the network via the upper node.
  • the control unit 230 controls the transmission and reception of wireless signals by the transceiver unit 210, and the reporting of fault information by the fault reporting unit 220.
  • the control unit 230 also cooperates with the higher-level node to recover from faults that occur between the higher-level node and the control unit 230.
  • the control unit 230 detects a fault that occurs between the upper node and the node.
  • the fault may be, for example, a radio link fault (RLF) or a handover fault (HOF).
  • the control unit 230 generates fault information indicating the content of the detected fault.
  • the fault information is reported to the upper node by the fault reporting unit 220 as described above.
  • the control unit 230 may collect information related to its own movement, such as position (which may or may not include altitude), altitude, movement speed (horizontal speed, vertical speed), flight status, etc., and include this information in the fault information generated in the event of a fault.
  • position which may or may not include altitude
  • movement speed horizontal speed, vertical speed
  • flight status etc.
  • Other specific examples of fault information generated by the control unit 230 will be described in detail in the operation example.
  • the fault occurring with the upper node is not a fault occurring between the upper node (wireless communication node 150) and the UE 200, but a fault occurring between the wireless communication nodes 100 and 150, as shown by the cross in FIG. 5.
  • the control unit 230 recognizes that a fault has occurred with the upper node (wireless communication node 150) when the connection with the network is lost.
  • the control unit 230 generates fault information based on this recognition, so that, for example, if the fault information includes cell identification information, the cell identification information indicates the cell formed by the wireless communication node 150 (mobile IAB cell), not the cell formed by the wireless communication node 100 (IAB cell).
  • the fault information generated by the control unit 180 described above includes cell identification information
  • the cell identification information indicates the cell formed by the wireless communication node 100 (IAB cell).
  • RLF may be interpreted as a concept that includes HOF.
  • the failure may mean RLF detection or HOF, or may mean the idle state of the RRC connection. Crosses in other figures may be interpreted in the same way.
  • the wireless communication node 150 or UE 200 When the wireless communication node 150 or UE 200 detects an RLF, it generates fault information (RLF report) to report to the network based on the contents of the RLF.
  • the fault information includes, for example, the following:
  • ⁇ Failure cause for example, mobile IAB BH RLF, mobile IAB BH RLF recovery failure, IAB BH RLF, IAB BH RLF recovery failure, BH RLF, BH RLF recovery failure, mobile IAB migration failure, mobile IAB full migration failure, IAB migration failure) , IAB full migration failure
  • Time required from RLF detection to failure recovery e.g., timeUntilBH-RLFRecovery ( ⁇ BH-RLF: BackHaul-RadioLinkFailure)
  • the fault information particularly the cell identification information (cell ID)
  • the cell identification information reported by the wireless communication node 150 and the UE 200 differs at each stage of handover.
  • RLF means a radio link failure (or its detection)
  • HOF means a handover failure
  • RLF/HOF may also mean a failure that occurs before or after handover.
  • RLF/HOF may be a radio link failure that is not caused by handover, or a failure that is caused by a handover failure.
  • the source IAB-donor of the transition source is the wireless communication node 100A
  • the target IAB-donor of the transition destination is the wireless communication node 100B
  • the CU and DU of the wireless communication node 100A are CU1 and DU1
  • the CU and DU of the wireless communication node 100B are CU2 and DU2.
  • the wireless communication node 150 has two IAB-DU functions, which are IAB-DU1 and IAB-DU2.
  • IAB-DU1 is connected to DU1 except during handover
  • IAB-DU2 is connected to DU2 except during handover.
  • the wireless communication node 150 is connected to the wireless communication node 100A.
  • the UE 200 is connected to the wireless communication node 150, but it can also be said that the UE 200 is connected to the wireless communication node 100A via the wireless communication node 150.
  • the CU1 and DU1 of the wireless communication node 100A, and the IAB-MT and IAB-DU1 of the wireless communication node 150 are connected.
  • the cell in which the RLF/HOF occurs as recognized by the wireless communication node 150 is the cell formed by the DU1 of the wireless communication node 100A.
  • the cell in which the RLF/HOF occurs as recognized by the UE 200 is the cell formed by the IAB-DU1 of the wireless communication node 150. Note that the recognition of the wireless communication node 150 and the UE 200 may be interpreted as recognition of which cell they are connected to in terms of the F1 interface.
  • the wireless communication node 150 reports the cell identification information of the cell formed by the DU1 of the wireless communication node 100A in the fault information
  • the UE 200 reports the cell identification information of the cell formed by the IAB-DU1 of the wireless communication node 150 in the fault information.
  • the wireless communication node 150 is connected to the wireless communication node 100B by MT mitigation.
  • the UE 200 is connected to the wireless communication node 150, but it can also be said that it is connected to the wireless communication node 100B via the wireless communication node 150.
  • the handover is not complete, and the CU1 of the wireless communication node 100A, the DU2 of the wireless communication node 100B, the IAB-MT of the wireless communication node 150, and the IAB-DU1 are connected.
  • the cell in which the RLF/HOF occurs as recognized by the wireless communication node 150 is the cell formed by the DU2 of the wireless communication node 100B.
  • the cell in which the RLF/HOF occurs as recognized by the UE 200 is the cell formed by the IAB-DU1 of the wireless communication node 150. Note that the recognition of the wireless communication node 150 and the UE 200 may be interpreted as recognition of which cell they are connected to in terms of the F1 interface.
  • the wireless communication node 150 reports the cell identification information of the cell formed by DU2 of the wireless communication node 100B in the fault information
  • the UE 200 reports the cell identification information of the cell formed by IAB-DU1 of the wireless communication node 150 in the fault information.
  • the wireless communication node 150 is connected to the wireless communication node 100B.
  • the UE 200 is connected to the wireless communication node 150, but it can also be said that the UE 200 is connected to the wireless communication node 100B via the wireless communication node 150.
  • the CU2 and DU2 of the wireless communication node 100B, and the IAB-MT and IAB-DU2 of the wireless communication node 150 are connected.
  • the cell in which the RLF/HOF occurs as recognized by the wireless communication node 150 is the cell formed by the DU2 of the wireless communication node 100B.
  • the cell in which the RLF/HOF occurs as recognized by the UE 200 is the cell formed by the IAB-DU2 of the wireless communication node 150. Note that the recognition of the wireless communication node 150 and the UE 200 may be interpreted as recognition of which cell they are connected to in terms of the F1 interface.
  • the wireless communication node 150 reports the cell identification information of the cell formed by the DU2 of the wireless communication node 100B in the fault information
  • the UE 200 reports the cell identification information of the cell formed by the IAB-DU2 of the wireless communication node 150 in the fault information.
  • the wireless communication node 150 or UE 200 detects RLF, it transmits an RRCRestablishmentRequest to the wireless communication node 100 (gNB/IAB-donor in the figure), which is the upper node.
  • the wireless communication node 100 transmits an RRCRestablishment to the wireless communication node 150 or UE 200.
  • the wireless communication node 150 or the UE 200 transmits RRCRestablishmentComplete (RLF-available) to the wireless communication node 100.
  • RLF-available may be transmitted using RRCSetupComplete/RRCReconfigurationComplete/RRCResumeComplete instead of RRCRestablishmentRequest.
  • the wireless communication node 100 transmits a UE information request to the wireless communication node 150 or the UE 200.
  • the wireless communication node 150 or the UE 200 transmits (reports) a UE information response (RLF report, i.e., fault information) to the wireless communication node 100.
  • RLF report i.e., fault information
  • the wireless communication node 150C is a mobile IAB-node, and is connected to multiple upper nodes, wireless communication nodes 150A and 150B, via DC. Furthermore, the wireless communication nodes 150A and 150B are normal (non-mobile) IAB-nodes, and are connected to the upper node, wireless communication node 100 (IAB-donor). Moreover, the wireless communication node 150A forms an MCG, and the wireless communication node 150B forms an SCG.
  • RLF occurs between wireless communication node 150C and wireless communication node 100B, which is one of multiple upper nodes, i.e., in the SCG.
  • this is not limited to the above, and the following can also be applied when an RLF occurs between wireless communication node 150C and wireless communication node 100A, i.e., in the MCG (see FIG. 12).
  • RLF may be understood as a concept that includes HOF.
  • failure information SCG failure info, MCG failure info
  • MCG failure info MCG failure info
  • the IAB-node is a mobile IAB-node, the location (which may or may not include altitude) of the mobile IAB-node or its cell, its altitude, and its moving speed (horizontal speed, vertical speed); Flying or not status Failure cause (e.g. mobile IAB BH RLF, IAB BH RLF, BH RLF)
  • wireless communication node 150C or UE 200 detects an RLF in the SCG, it transmits (reports) SCG failure info, i.e., failure information, to wireless communication node 150A (MN in the figure), which is the upper node.
  • SCG failure info i.e., failure information
  • wireless communication node 150C or UE 200 detects RLF in the MCG, it transmits (reports) MCG failure info, i.e., failure information, to wireless communication node 150B (SN in the figure), which is the upper node.
  • MCG failure info i.e., failure information
  • the wireless communication node 150 and the UE 200 in the above-described embodiment report, as fault information, information related to the movement of the wireless communication node 150 to the network. As a result, even if the wireless communication node 150 is a mobile IAB-node, the fault information can be reported to the network and used for fault recovery.
  • the wireless communication node 150C and UE 200 in the above-described embodiment report, as fault information, the identification information of the cell in which the fault was detected to the network.
  • the wireless communication nodes 150A and 150B, via DC it is possible to report fault information to the network and use the information to recover from the fault.
  • the fault information in the above-described embodiment may include at least one of the position, movement speed, and flight state of the wireless communication node or the cell formed by the wireless communication node. This can further enhance the content of the fault information reported to the network.
  • the fault information in the above-described embodiment may include the area in which the fault occurred. This makes it possible to identify areas in which the network is prone to faults.
  • the fault information in the above-described embodiment may include the time taken from detection of the fault to recovery from the fault. This makes it possible to know the time it will take for the network to recover from the fault.
  • wireless communication node is used, but it may also be called a communication node or a communication device. Also, a wireless communication node may be read as a base station.
  • DL and UL are used, but they may also be called forward link, return link, access link, etc.
  • the wireless communication nodes 150 and 150C are described as being mobile IAB-nodes, but they may also be non-mobile IAB-nodes.
  • the wireless communication nodes 150A and 150B are described as being non-mobile IAB-nodes, but they may also be mobile IAB-nodes.
  • the wireless communication node 150 may be understood as a concept that encompasses the wireless communication nodes 150A, 150B, and 150C.
  • the wireless communication node 100 may be understood as a concept that encompasses the wired communication nodes 100A and 100B.
  • the fault information is reported by the wireless communication node 150 or the UE 200, but it may be reported by the wireless communication node 150 and the UE 200.
  • the above-mentioned operational examples may be combined and applied in a composite manner, as long as no contradiction occurs.
  • the DC of operational example 2 may be applied to the wireless communication node 150 of operational example 1.
  • configure, activate, update, indicate, enable, specify, and select may be read as interchangeable.
  • link, associate, correspond, and map may be read as interchangeable, and allocate, assign, monitor, and map may also be read as interchangeable.
  • each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (e.g., using wires, wirelessly, etc.) and these multiple devices.
  • the functional blocks may be realized by combining the one device or the multiple devices with software.
  • Functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, regard, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment.
  • a functional block (component) that performs the transmission function is called a transmitting unit or transmitter.
  • the above-mentioned wireless communication nodes 100, 150 and UE 200 may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 13 is a diagram showing an example of the hardware configuration of the devices. As shown in FIG. 13, the devices may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, and a bus 1007.
  • apparatus can be interpreted as a circuit, device, unit, etc.
  • the hardware configuration of the apparatus may be configured to include one or more of the devices shown in the figure, or may be configured to exclude some of the devices.
  • Each functional block of the device ( Figures 2, 3, and 4) is realized by any hardware element of the computer device, or a combination of the hardware elements.
  • each function of the device is realized by loading a specific software (program) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications by the communications device 1004, and control at least one of reading and writing data in the memory 1002 and storage 1003.
  • a specific software program
  • the processor 1001 for example, runs an operating system to control the entire computer.
  • the processor 1001 may be configured as a central processing unit (CPU) that includes an interface with peripheral devices, a control unit, an arithmetic unit, registers, etc.
  • CPU central processing unit
  • the processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • the programs used are those that cause a computer to execute at least some of the operations described in the above-mentioned embodiments.
  • the various processes described above may be executed by one processor 1001, or may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the programs may be transmitted from a network via a telecommunications line.
  • Memory 1002 is a computer-readable recording medium and may be composed of, for example, at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc.
  • Memory 1002 may also be called a register, cache, main memory, etc.
  • Memory 1002 can store a program (program code), software module, etc. capable of executing a method according to one embodiment of the present disclosure.
  • Storage 1003 is a computer-readable recording medium, and may be, for example, at least one of an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a magneto-optical disk (e.g., a compact disk, a digital versatile disk, a Blu-ray (registered trademark) disk), a smart card, a flash memory (e.g., a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, etc.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the above-mentioned recording medium may be, for example, a database, a server, or other suitable medium including at least one of memory 1002 and storage 1003.
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, etc.
  • the communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize, for example, at least one of Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (e.g., a display, a speaker, an LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated into one device (e.g., a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
  • the device may be configured to include hardware such as a microprocessor, a digital signal processor (Digital Signal Processor (DSP), Application Specific Integrated Circuit (ASIC), Programmable Logic Device (PLD), Field Programmable Gate Array (FPGA), etc., and some or all of the functional blocks may be realized by the hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the processor 1001 may be implemented using at least one of these pieces of hardware.
  • the notification of information is not limited to the aspects/embodiments described in the present disclosure and may be performed using other methods.
  • the notification of information may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling), broadcast information (Master Information Block (MIB), System Information Block (SIB)), other signals, or a combination of these.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5th generation mobile communication system
  • 5G Future Radio Access
  • FAA New Radio
  • NR New Radio
  • W-CDMA registered trademark
  • GSM registered trademark
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), or other suitable systems and next generation systems enhanced therefrom.
  • Multiple systems may also be applied in combination (e.g., a combination of at least one of LTE and LTE-A with 5G).
  • certain operations that are described as being performed by a base station may in some cases be performed by its upper node.
  • various operations performed for communication with a terminal may be performed by at least one of the base station and other network nodes other than the base station (such as, but not limited to, an MME or an S-GW).
  • the above example shows a case where there is one other network node other than the base station, it may also be a combination of multiple other network nodes (such as an MME and an S-GW).
  • Information, signals can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). They may be input and output via multiple network nodes.
  • the input and output information may be stored in a specific location (e.g., memory) or may be managed using a management table.
  • the input and output information may be overwritten, updated, or appended.
  • the output information may be deleted.
  • the input information may be sent to another device.
  • the determination may be based on a value represented by one bit (0 or 1), a Boolean value (true or false), or a numerical comparison (e.g., a comparison with a predetermined value).
  • notification of specific information is not limited to being done explicitly, but may be done implicitly (e.g., not notifying the specific information).
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • software, instructions, information, etc. may be transmitted and received over a transmission medium.
  • a transmission medium For example, if software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
  • wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
  • wireless technologies such as infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
  • the channel and the symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell, a frequency carrier, etc.
  • system and “network” are used interchangeably.
  • a radio resource may be indicated by an index.
  • the names used for the above-mentioned parameters are not limiting in any respect. Furthermore, the formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure.
  • the various channels (e.g., PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
  • Base station BS
  • wireless base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station can accommodate one or more (e.g., three) cells (also called sectors). If a base station accommodates multiple cells, the overall coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small indoor base station (Remote Radio Head: RRH)).
  • a base station subsystem e.g., a small indoor base station (Remote Radio Head: RRH)
  • cell refers to part or the entire coverage area of a base station and/or a base station subsystem that provides communication services within that coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station may also be referred to by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, etc.
  • At least one of the base station and the mobile station may be a device mounted on a moving object, or the moving object itself, etc.
  • the moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned).
  • At least one of the base station and the mobile station may include a device that does not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be interpreted as a mobile station (user terminal, the same applies below).
  • each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a mobile station is replaced with communication between multiple mobile stations (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • the mobile station may be configured to have the functions of a base station.
  • terms such as "uplink” and "downlink” may be interpreted as terms corresponding to communication between terminals (for example, "side”).
  • the uplink channel, downlink channel, etc. may be interpreted as a side channel.
  • the mobile station in this disclosure may be interpreted as a base station.
  • the base station may be configured to have the functions of the mobile station.
  • a radio frame may be composed of one or more frames in the time domain. Each of the one or more frames in the time domain may be called a subframe.
  • a subframe may further be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
  • Numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology may indicate, for example, at least one of the following: Subcarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame structure, a particular filtering operation performed by the transceiver in the frequency domain, a particular windowing operation performed by the transceiver in the time domain, etc.
  • SCS Subcarrier Spacing
  • TTI Transmission Time Interval
  • radio frame structure a particular filtering operation performed by the transceiver in the frequency domain, a particular windowing operation performed by the transceiver in the time domain, etc.
  • a slot may consist of one or more symbols in the time domain (e.g., Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.).
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may be a numerology-based unit of time.
  • a slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (or PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (or PUSCH) mapping type B.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units for transmitting signals. Radio frame, subframe, slot, minislot, and symbol may each be referred to by a different name that corresponds to the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms.
  • the unit expressing the TTI may be called a slot, minislot, etc., instead of a subframe.
  • TTI refers to, for example, the smallest time unit for scheduling in wireless communication.
  • a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units.
  • radio resources such as frequency bandwidth and transmission power that can be used by each user terminal
  • the TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc.
  • the time interval e.g., the number of symbols
  • the time interval in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
  • one slot or one minislot when called a TTI, one or more TTIs (i.e., one or more slots or one or more minislots) may be the minimum time unit of scheduling.
  • the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI shorter than a normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms
  • a short TTI e.g., a shortened TTI, etc.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers included in an RB may be determined based on the numerology.
  • the time domain of an RB may include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs may also be referred to as a physical resource block (PRB), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, an RB pair, etc.
  • PRB physical resource block
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB pair, etc.
  • a resource block may be composed of one or more resource elements (RE).
  • RE resource elements
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a Bandwidth Part which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, and symbols are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection refers to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between elements may be physical, logical, or a combination thereof.
  • “connected” may be read as "access.”
  • two elements may be considered to be “connected” or “coupled” to each other using at least one of one or more wires, cables, and printed electrical connections, as well as electromagnetic energy having wavelengths in the radio frequency range, microwave range, and optical (both visible and invisible) range, as some non-limiting and non-exhaustive examples.
  • the reference signal may also be abbreviated as Reference Signal (RS) or referred to as a pilot depending on the applicable standard.
  • RS Reference Signal
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to an element using a designation such as "first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed therein or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions.
  • Determining and “determining” may include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., searching in a table, database, or other data structure), ascertaining something that is deemed to be a “judging” or “determining,” and the like.
  • Determining and “determining” may also include receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in memory), and the like.
  • judgment and “decision” can include considering resolving, selecting, choosing, establishing, comparing, etc., to have been “judged” or “decided.” In other words, “judgment” and “decision” can include considering some action to have been “judged” or “decided.” Additionally, “judgment” can be interpreted as “assuming,” “expecting,” “considering,” etc.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean “A and B are each different from C.”
  • Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”
  • FIG. 14 shows an example of the configuration of a vehicle 2001.
  • the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, an axle 2009, an electronic control unit 2010, various sensors 2021-2029, an information service unit 2012, and a communication module 2013.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also called a handle) and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • a steering wheel also called a handle
  • the electronic control unit 2010 is composed of a microprocessor 2031, a memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals are input to the electronic control unit 2010 from various sensors 2021 to 2027 provided in the vehicle.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from the various sensors 2021 to 2028 include a current signal from a current sensor 2021 that senses the current of the motor, a rotation speed signal of the front and rear wheels acquired by a rotation speed sensor 2022, an air pressure signal of the front and rear wheels acquired by an air pressure sensor 2023, a vehicle speed signal acquired by a vehicle speed sensor 2024, an acceleration signal acquired by an acceleration sensor 2025, an accelerator pedal depression amount signal acquired by an accelerator pedal sensor 2029, a brake pedal depression amount signal acquired by a brake pedal sensor 2026, a shift lever operation signal acquired by a shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 2028.
  • the information service unit 2012 is composed of various devices, such as a car navigation system, an audio system, speakers, a television, and a radio, for providing various types of information such as driving information, traffic information, and entertainment information, and one or more ECUs for controlling these devices.
  • the information service unit 2012 uses information acquired from external devices via the communication module 2013, etc., to provide various types of multimedia information and multimedia services to the occupants of the vehicle 1.
  • the driving assistance system unit 2030 is composed of various devices that provide functions for preventing accidents and reducing the driving burden on the driver, such as a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (e.g., GNSS, etc.), map information (e.g., high definition (HD) map, autonomous vehicle (AV) map, etc.), a gyro system (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chip, and an AI processor, as well as one or more ECUs that control these devices.
  • the driving assistance system unit 2030 also transmits and receives various information via the communication module 2013 to realize driving assistance functions or autonomous driving functions.
  • the communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 1 via the communication port.
  • the communication module 2013 transmits and receives data via the communication port 2033 between the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, axle 2009, microprocessor 2031 and memory (ROM, RAM) 2032 in electronic control unit 2010, and sensors 2021 to 2028, which are provided on the vehicle 2001.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication.
  • the communication module 2013 may be located either inside or outside the electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, etc.
  • the communication module 2013 transmits a current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication.
  • the communication module 2013 also transmits to an external device via wireless communication the following signals input to the electronic control unit 2010: a front wheel or rear wheel rotation speed signal acquired by a rotation speed sensor 2022, a front wheel or rear wheel air pressure signal acquired by an air pressure sensor 2023, a vehicle speed signal acquired by a vehicle speed sensor 2024, an acceleration signal acquired by an acceleration sensor 2025, an accelerator pedal depression amount signal acquired by an accelerator pedal sensor 2029, a brake pedal depression amount signal acquired by a brake pedal sensor 2026, a shift lever operation signal acquired by a shift lever sensor 2027, and a detection signal for detecting an obstacle, a vehicle, a pedestrian, etc. acquired by an object detection sensor 2028.
  • the communication module 2013 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device, and displays it on an information service unit 2012 provided in the vehicle.
  • the communication module 2013 also stores the various information received from the external device in a memory 2032 that can be used by the microprocessor 2031.
  • the microprocessor 2031 may control the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, axles 2009, sensors 2021-2028, and the like provided in the vehicle 2001.
  • the first feature is a wireless communication node that includes a control unit that detects a fault that occurs between the wireless communication node and a higher-level node, and a transmission unit that transmits fault information to the higher-level node, and the fault information includes information related to the movement of the wireless communication node.
  • the second feature is a wireless communication node that performs dual connections with multiple upper nodes, and includes a control unit that detects a fault that occurs between the wireless communication node and the upper node, and a transmission unit that transmits fault information to the upper node, and the fault information includes identification information of the cell in which the fault is detected.
  • the third feature is a wireless communication node in the first or second feature, in which the fault information includes at least one of the position, movement speed, and flight state of the wireless communication node or the cell formed by the wireless communication node.
  • the fourth feature is that in the first feature, the fault information is a wireless communication node that includes the area where the fault occurred.
  • the fifth feature is a wireless communication node according to the first feature, in which the fault information includes the time required from detection of the fault to recovery from the fault.
  • the sixth feature is a terminal connected to a wireless communication node, the terminal comprising a control unit that detects a fault occurring between the wireless communication node and a higher-level node, and a transmission unit that transmits fault information to the higher-level node, the fault information including information related to the movement of the terminal.
  • Wireless Communication Systems 20 NG-RAN 100, 100A, 100B wireless communication node 110 transceiver unit 120 NW IF unit 130 fault reporting unit 140 control unit 150, 150A, 150B, 150C wireless communication node 160 transceiver unit 170 fault reporting unit 180 control unit 200 UE 210 Transmitting/receiving unit 220 Fault reporting unit 230 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus 2001 Vehicle 2002 Drive unit 2003 Steering unit 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Left and right front wheels 2008 Left and right rear wheels 2009 Axle 2010 Electronic control unit 2012 Information service unit 2013 Communication module 2021 Current sensor 2022 Rotational speed sensor 2023 Air pressure sensor 2024 Vehicle speed sensor 2025 Acceleration sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving assistance system section 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 communication port

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

This wireless communication node comprises a control unit that detects any fault occurring between the wireless communication node and a higher-order node, and a transmission unit that transmits fault information to the higher-order node, the fault information including information pertaining to movement of the wireless communication node.

Description

無線通信ノード、端末Wireless communication node, terminal
 本開示は、無線通信ノード、端末に関する。 This disclosure relates to wireless communication nodes and terminals.
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる。)を仕様化し、さらに、Beyond 5G、5G Evolutionあるいは6Gと呼ばれる次世代の移動通信システムの仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) is developing specifications for the 5th generation mobile communication system (5G, also known as New Radio (NR) or Next Generation (NG)) and is also developing specifications for the next generation of mobile communication systems, known as Beyond 5G, 5G Evolution or 6G.
 例えば、3GPP Release 17において、端末(User Equipment、UE)への無線アクセスと、基地局(next generation NodeB、gNB)を構成する無線通信ノード間の無線バックホールとが統合されたIntegrated Access and Backhaul(IAB)について仕様化されている。無線通信ノードは、ネットワークに接続されるIAB-donorと、無線バックホールを介してIAB-donorに接続され、UEと無線通信を実行するIAB-nodeからなる。 For example, 3GPP Release 17 specifies Integrated Access and Backhaul (IAB), which integrates wireless access to terminals (User Equipment, UE) and wireless backhaul between wireless communication nodes that make up base stations (next generation NodeB, gNB). Wireless communication nodes consist of an IAB-donor connected to the network and an IAB-node that is connected to the IAB-donor via wireless backhaul and performs wireless communication with the UE.
 さらに、3GPP Release 18において、IAB-nodeを拡張する試みの一環として、自動車やドローンなどの移動体にIAB-nodeを搭載したmobile IAB-nodeについて議論されている(非特許文献1)。 Furthermore, as part of an attempt to expand the IAB-node, 3GPP Release 18 is discussing mobile IAB-nodes, which are equipped with IAB-nodes on moving objects such as automobiles and drones (Non-Patent Document 1).
 IAB-nodeと当該IAB-nodeに接続される上位ノード(IAB-donorまたは他のIAB-node)との間において、無線リンク障害(RLF)、ハンドオーバー障害(HOF)などの障害が発生した場合、当該IAB-nodeまたはその配下のUEは、上位ノードを介してネットワークに障害情報を報告する必要がある。 If a failure such as a radio link failure (RLF) or handover failure (HOF) occurs between an IAB-node and an upper node (IAB-donor or another IAB-node) connected to the IAB-node, the IAB-node or a UE under the IAB-node must report the failure information to the network via the upper node.
 しかしながら、IAB-nodeが上述したmobile IAB-nodeである場合、IAB-nodeの移動に伴い報告すべきパラメータが複雑なものとなるため、従来の障害情報を報告するだけでは障害から復旧できないおそれがあった。また、IAB-nodeが複数の上位ノードとデュアルコネクティビティ(DC)を実行する場合においても、セル数の増加に伴い報告すべきパラメータ及び報告先の選択が複雑なものとなるため、同様の問題が生じるおそれがあった。 However, when the IAB-node is the mobile IAB-node described above, the parameters to be reported become more complex as the IAB-node moves, and there is a risk that recovery from a failure cannot be achieved by simply reporting the conventional failure information. In addition, when the IAB-node performs dual connectivity (DC) with multiple upper nodes, the selection of parameters to be reported and the report destination becomes more complex as the number of cells increases, and a similar problem may occur.
 そこで、本開示は、このような状況に鑑みてなされたものであり、モビリティ向上やDC対応といったIAB-nodeの拡張性を妨げることなく、ネットワークに障害情報を報告する無線通信ノード及び端末の提供を目的とする。 The present disclosure has been made in light of these circumstances, and aims to provide a wireless communication node and terminal that can report fault information to the network without impeding the scalability of the IAB-node, such as improving mobility and supporting DC.
 開示の一態様は、無線通信ノード(無線通信ノード150)であって、前記無線通信ノードの上位ノードとの間に発生した障害を検出する制御部(制御部180)と、前記上位ノードに障害情報を送信する送信部(障害報告部170)と、を備え、前記障害情報は、前記無線通信ノードの移動に係る情報を含む、無線通信ノード(無線通信ノード150)である。 One aspect of the disclosure is a wireless communication node (wireless communication node 150) that includes a control unit (control unit 180) that detects a fault that occurs between the wireless communication node and a higher-level node, and a transmission unit (fault reporting unit 170) that transmits fault information to the higher-level node, the fault information including information related to the movement of the wireless communication node.
 開示の一態様は、複数の上位ノードと二重接続を実行する無線通信ノード(無線通信ノード150)であって、前記無線通信ノードの上位ノードとの間に発生した障害を検出する制御部(制御部180)と、前記上位ノードに障害情報を送信する送信部(障害報告部170)と、を備え、前記障害情報は、前記障害を検出したセルの識別情報を含む、無線通信ノード(無線通信ノード150)である。 One aspect of the disclosure is a wireless communication node (wireless communication node 150) that performs dual connections with multiple upper nodes, and includes a control unit (control unit 180) that detects a fault that occurs between the wireless communication node and the upper node, and a transmission unit (fault reporting unit 170) that transmits fault information to the upper node, and the fault information includes identification information of the cell in which the fault is detected.
 開示の一態様は、無線通信ノードに接続される端末(UE200)であって、前記無線通信ノードの上位ノードとの間に発生した障害を検出する制御部(制御部230)と、前記上位ノードに障害情報を送信する送信部(障害報告部220)と、を備え、前記障害情報は、前記端末の移動に係る情報を含む、端末(UE200)である。 One aspect of the disclosure is a terminal (UE200) connected to a wireless communication node, the terminal (UE200) comprising a control unit (control unit 230) that detects a fault occurring between the wireless communication node and a higher-level node, and a transmission unit (fault reporting unit 220) that transmits fault information to the higher-level node, the fault information including information related to the movement of the terminal.
図1は、無線通信システムの全体概略構成図である。FIG. 1 is a diagram showing the overall configuration of a wireless communication system. 図2は、基地局を構成するIAB-donorの機能ブロック図である。FIG. 2 is a functional block diagram of an IAB-donor constituting a base station. 図3は、基地局を構成するIAB-nodeの機能ブロック図である。FIG. 3 is a functional block diagram of an IAB-node constituting a base station. 図4は、端末の機能ブロック図である。FIG. 4 is a functional block diagram of the terminal. 図5は、RLFの発生を示す図である。FIG. 5 is a diagram showing the occurrence of RLF. 図6は、ハンドオーバーにおけるRLF/HOFの発生を示す図である。FIG. 6 is a diagram showing the occurrence of RLF/HOF during handover. 図7は、ハンドオーバーにおけるRLF/HOFの発生を示す図である。FIG. 7 is a diagram showing the occurrence of RLF/HOF during handover. 図8は、ハンドオーバーにおけるRLF/HOFの発生を示す図である。FIG. 8 is a diagram showing the occurrence of RLF/HOF during handover. 図9は、RLFを報告するシーケンス図である。FIG. 9 is a sequence diagram of reporting an RLF. 図10は、DCにおけるRLFの発生を示す図である。FIG. 10 shows the occurrence of RLF in DC. 図11は、セカンダリーセルグループ(SCG)におけるRLFを報告するシーケンス図である。FIG. 11 is a sequence diagram for reporting RLF in a secondary cell group (SCG). 図12は、マスターセルグループ(MCG)におけるRLFを報告するシーケンス図である。FIG. 12 is a sequence diagram of reporting RLF in a master cell group (MCG). 図13は、無線通信ノード及び端末のハードウェア構成の一例を示す図である。FIG. 13 is a diagram illustrating an example of a hardware configuration of a wireless communication node and a terminal. 図14は、車両の構成例を示す図である。FIG. 14 is a diagram illustrating an example of the configuration of a vehicle.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 The following describes the embodiments with reference to the drawings. Note that identical or similar symbols are used for identical functions and configurations, and descriptions thereof will be omitted as appropriate.
 (1)無線通信システムの全体概略構成
 図1に示す無線通信システム10は、5Gと呼ばれる方式に従った無線通信システムである。一方で、無線通信システム10は、Beyond 5G、5G Evolutionあるいは6Gと呼ばれる方式に従った無線通信システムであってもよい。
(1) Overall Schematic Configuration of Wireless Communication System The wireless communication system 10 shown in Fig. 1 is a wireless communication system conforming to a method called 5G. On the other hand, the wireless communication system 10 may be a wireless communication system conforming to a method called Beyond 5G, 5G Evolution, or 6G.
 図1に示すように、無線通信システム10は、Next Generation-Radio Access Network(NG-RAN)20と、ファイバートランスポートなどの有線伝送路を介してNG-RAN20に接続される無線通信ノード100と、無線バックホールを介して無線通信ノード100に接続される無線通信ノード150と、無線通信ノード150に接続される端末(User Equipment、UE)200とを含む。NG-RAN20は、図示しないコアネットワーク(CN)に接続される。NG-RAN20及びCNは、単に「ネットワーク」と表現されてもよい。 As shown in FIG. 1, the wireless communication system 10 includes a Next Generation-Radio Access Network (NG-RAN) 20, a wireless communication node 100 connected to the NG-RAN 20 via a wired transmission path such as fiber transport, a wireless communication node 150 connected to the wireless communication node 100 via a wireless backhaul, and a terminal (User Equipment, UE) 200 connected to the wireless communication node 150. The NG-RAN 20 is connected to a core network (CN) (not shown). The NG-RAN 20 and the CN may be simply referred to as a "network."
 このように、UE200への無線アクセスと、無線通信ノード100、150間の無線バックホールとが統合された無線通信システム10の構成は、Integrated Access and Backhaul(IAB)と呼ばれる。なお、無線通信システム10の具体的な構成、例えば無線通信ノード100、150及びUE200の数は、図1に示す例に限定されない(図6~図8、図10参照)。 The configuration of the wireless communication system 10 in which the wireless access to the UE 200 and the wireless backhaul between the wireless communication nodes 100 and 150 are integrated in this manner is called Integrated Access and Backhaul (IAB). Note that the specific configuration of the wireless communication system 10, for example the number of wireless communication nodes 100, 150 and UEs 200, is not limited to the example shown in FIG. 1 (see FIGS. 6 to 8 and 10).
 IABにおいては、無線通信ノード100から無線通信ノード150、UE200に向かう方向が下りリンク(DL)方向であり、無線通信ノード150、UE200から無線通信ノード100、ネットワークに向かう方向が上りリンク(UL)方向である。 In IAB, the direction from the wireless communication node 100 to the wireless communication node 150 and UE 200 is the downlink (DL) direction, and the direction from the wireless communication node 150 and UE 200 to the wireless communication node 100 and the network is the uplink (UL) direction.
 無線通信ノード100は、IAB-donorとも呼ばれ、さらに無線通信ノード150とのトポロジーに基づいて上位ノードまたはParent nodeと呼ばれてもよい。無線通信ノード150は、IAB-nodeとも呼ばれ、さらに無線通信ノード100とのトポロジーに基づいて下位ノードまたはChild nodeと呼ばれてもよい。なお、このような呼称は、複数の無線通信ノード150間においても適用可能である。例えば、図10に示す構成例における無線通信ノード150A、150Bは、無線通信ノード150Cの上位ノードまたはParent nodeと呼ばれてもよい。また、UE200も、無線通信ノード100、150とのトポロジーに基づいて下位ノードまたはChild nodeと呼ばれてもよい。 The wireless communication node 100 may also be called an IAB-donor, and may be called an upper node or a Parent node based on the topology with the wireless communication node 150. The wireless communication node 150 may also be called an IAB-node, and may be called a lower node or a Child node based on the topology with the wireless communication node 100. Such names may also be applied between multiple wireless communication nodes 150. For example, the wireless communication nodes 150A and 150B in the configuration example shown in FIG. 10 may be called an upper node or a Parent node of the wireless communication node 150C. The UE 200 may also be called a lower node or a Child node based on the topology with the wireless communication nodes 100 and 150.
 無線通信ノード100は、ネットワークに接続するための機能であるCentral Unit(CU)と、下位ノードに接続するための機能であるDistributed Unit(DU)とを有する。無線通信ノード150は、上位ノードに接続するための機能であるMobile Terminal(MT)と、下位ノードに接続するための機能であるDUとを有する。なお、無線通信ノード150のMT、DUは、それぞれIAB-MT、IAB-DUとも呼ばれる。 The wireless communication node 100 has a Central Unit (CU), which is a function for connecting to a network, and a Distributed Unit (DU), which is a function for connecting to a lower node. The wireless communication node 150 has a Mobile Terminal (MT), which is a function for connecting to a higher node, and a DU, which is a function for connecting to a lower node. The MT and DU of the wireless communication node 150 are also called IAB-MT and IAB-DU, respectively.
 無線通信ノード150は、mobile IAB-nodeであってもよい(図5参照)。すなわち、自動車やドローンなどの移動体に載置されて移動可能なIAB-nodeであってもよい。このような無線通信ノード150は、UE200の通信可能範囲(カバレッジ)を柔軟に設定することが出来る。 The wireless communication node 150 may be a mobile IAB-node (see FIG. 5). In other words, it may be an IAB-node that is movable and mounted on a moving object such as an automobile or a drone. Such a wireless communication node 150 can flexibly set the communication range (coverage) of the UE 200.
 無線通信ノード150(150C)は、複数の上位ノード(無線通信ノード150A、150B)と二重接続(DC)を実行してもよい(図10参照)。このような無線通信ノード150(150C)は、高速通信が実現可能であるだけでなく、例えばSCGにおいて障害が発生した場合であっても、MCGを介してネットワークに接続することが出来る。 The wireless communication node 150 (150C) may perform dual connectivity (DC) with multiple upper nodes ( wireless communication nodes 150A, 150B) (see FIG. 10). Such a wireless communication node 150 (150C) is not only capable of high-speed communication, but can also connect to the network via the MCG even if a failure occurs in the SCG, for example.
 (2)無線通信システムの機能ブロック構成
 (2.1)無線通信ノード(IAB-donor)の機能ブロック構成
 図2に示すように、無線通信ノード100(100A、100B)は、送受信部110と、NW IF部120と、障害報告部130と、制御部140とを備える。
(2) Functional Block Configuration of Wireless Communication System (2.1) Functional Block Configuration of Wireless Communication Node (IAB-donor) As shown in FIG. 2, the wireless communication node 100 (100A, 100B) comprises a transceiver unit 110, a NW IF unit 120, a fault reporting unit 130, and a control unit 140.
 送受信部110は、下位ノードとの間で無線信号を送受信する。なお、送受信部110は、下位ノードに無線信号を送信する送信部と、下位ノードから無線信号を受信する受信部と、を構成してもよい。 The transmitting/receiving unit 110 transmits and receives wireless signals to and from the lower node. The transmitting/receiving unit 110 may be configured as a transmitting unit that transmits wireless signals to the lower node and a receiving unit that receives wireless signals from the lower node.
 NW IF部120は、ネットワークとの接続を実現する通信インタフェースを提供する。通信インタフェースは、例えば、X2、Xn、N2、N3インタフェースである。 The NW IF unit 120 provides a communication interface that realizes a connection to a network. The communication interface is, for example, an X2, Xn, N2, or N3 interface.
 障害報告部130は、後述する下位ノードの障害報告部170、220から受信した障害情報を、ネットワークに報告する。すなわち、障害報告部130は、ネットワークに障害情報を送信する送信部を構成する。 The fault reporting unit 130 reports fault information received from fault reporting units 170 and 220 of lower nodes, which will be described later, to the network. In other words, the fault reporting unit 130 constitutes a transmission unit that transmits fault information to the network.
 制御部140は、送受信部110による無線信号の送受信、NW IF部120による通信インタフェースの提供、障害報告部130による障害情報の報告を制御する。また、制御部140は、下位ノードと協調し、下位ノードとの間に発生した障害を復旧する。 The control unit 140 controls the transmission and reception of wireless signals by the transceiver unit 110, the provision of a communication interface by the NW IF unit 120, and the reporting of fault information by the fault reporting unit 130. The control unit 140 also cooperates with lower-level nodes to recover from faults that occur between the lower-level nodes.
 (2.2)無線通信ノード(IAB-node)の機能ブロック構成
 図3に示すように、無線通信ノード150(150A、150B、150C)は、送受信部160と、障害報告部170と、制御部180とを備える。
(2.2) Functional Block Configuration of Wireless Communication Node (IAB-node) As shown in FIG. 3, the wireless communication node 150 (150A, 150B, 150C) includes a transceiver unit 160, a fault reporting unit 170, and a control unit 180.
 送受信部160は、上位ノード及び下位ノードとの間で無線信号を送受信する。なお、送受信部110は、上位ノード及び下位ノードに無線信号を送信する送信部と、上位ノード及び下位ノードから無線信号を受信する受信部と、を構成してもよい。 The transmitting/receiving unit 160 transmits and receives wireless signals between the upper node and the lower node. The transmitting/receiving unit 110 may be configured as a transmitting unit that transmits wireless signals to the upper node and the lower node, and a receiving unit that receives wireless signals from the upper node and the lower node.
 障害報告部170は、後述する制御部180が検出した障害に係る障害情報を、上位ノードに報告する。また、障害報告部170は、下位ノードの障害報告部220から受信した障害情報を、上位ノードに報告する。すなわち、障害報告部170は、上位ノードに障害情報を送信する送信部を構成する。なお、上位ノードに報告(送信)された障害情報は、上位ノードを介してネットワークに報告(送信)される。 The fault reporting unit 170 reports fault information relating to faults detected by the control unit 180 (described later) to the higher-level node. The fault reporting unit 170 also reports fault information received from the fault reporting unit 220 of the lower-level node to the higher-level node. In other words, the fault reporting unit 170 constitutes a transmitting unit that transmits fault information to the higher-level node. The fault information reported (transmitted) to the higher-level node is reported (transmitted) to the network via the higher-level node.
 制御部180は、送受信部160による無線信号の送受信、障害報告部170による障害情報の報告を制御する。また、制御部180は、上位ノードと協調し、上位ノードとの間に発生した障害を復旧する。 The control unit 180 controls the transmission and reception of wireless signals by the transceiver unit 160, and the reporting of fault information by the fault reporting unit 170. The control unit 180 also cooperates with the higher-level node to recover from faults that occur between the higher-level node and the control unit 180.
 制御部180は、上位ノードとの間に発生した障害を検出する。障害は、例えば無線リンク障害(RLF)、ハンドオーバー障害(HOF)である。制御部180は、検出した障害の内容を示す障害情報を生成する。障害情報は、上述したように障害報告部170により上位ノードに報告される。 The control unit 180 detects a fault that occurs between the upper node and the node. The fault may be, for example, a radio link fault (RLF) or a handover fault (HOF). The control unit 180 generates fault information indicating the content of the detected fault. The fault information is reported to the upper node by the fault reporting unit 170 as described above.
 また、無線通信ノード150がmobile IAB-nodeである場合、制御部180は、無線通信ノード150の移動に係る情報、例えば、位置、移動速度、飛行状態などの情報を収集し、障害が発生した場合に生成する障害情報に含めてもよい。この他、制御部180が生成する障害情報の具体的な例については、動作例において詳述する。 In addition, if the wireless communication node 150 is a mobile IAB-node, the control unit 180 may collect information related to the movement of the wireless communication node 150, such as the position, movement speed, flight status, etc., and include this information in the fault information generated in the event of a fault. Other specific examples of fault information generated by the control unit 180 will be described in detail in the operation example.
 (2.3)端末の機能ブロック構成
 図4に示すように、UE200は、送受信部210と、障害報告部220と、制御部230とを備える。なお、UE200は、上述したように無線通信ノード150に接続され、無線通信ノード150と無線通信を実行するが、これに限られない。UE200は、無線通信ノード100に接続され、無線通信ノード100と無線通信を実行してもよく、以下の説明をそのように読み替えてもよい。
(2.3) Functional Block Configuration of Terminal As shown in Fig. 4, the UE 200 includes a transceiver unit 210, a fault reporting unit 220, and a control unit 230. As described above, the UE 200 is connected to the wireless communication node 150 and performs wireless communication with the wireless communication node 150, but is not limited to this. The UE 200 may be connected to the wireless communication node 100 and perform wireless communication with the wireless communication node 100, and the following description may be interpreted accordingly.
 送受信部210は、上位ノードとの間で無線信号を送受信する。なお、送受信部210は、上位ノードに無線信号を送信する送信部と、上位ノードから無線信号を受信する受信部と、を構成してもよい。 The transmitting/receiving unit 210 transmits and receives wireless signals to and from the upper node. The transmitting/receiving unit 210 may be configured as a transmitting unit that transmits wireless signals to the upper node, and a receiving unit that receives wireless signals from the upper node.
 障害報告部220は、後述する制御部230が検出した障害に係る障害情報を、上位ノードに報告する。すなわち、障害報告部220は、上位ノードに障害情報を送信する送信部を構成する。なお、上位ノードに報告(送信)された障害情報は、上位ノードを介してネットワークに報告(送信)される。 The fault reporting unit 220 reports fault information relating to faults detected by the control unit 230 (described later) to the upper node. In other words, the fault reporting unit 220 constitutes a transmission unit that transmits fault information to the upper node. The fault information reported (transmitted) to the upper node is reported (transmitted) to the network via the upper node.
 制御部230は、送受信部210による無線信号の送受信、障害報告部220による障害情報の報告を制御する。また、制御部230は、上位ノードと協調し、上位ノードとの間に発生した障害を復旧する。 The control unit 230 controls the transmission and reception of wireless signals by the transceiver unit 210, and the reporting of fault information by the fault reporting unit 220. The control unit 230 also cooperates with the higher-level node to recover from faults that occur between the higher-level node and the control unit 230.
 制御部230は、上位ノードとの間に発生した障害を検出する。障害は、例えば無線リンク障害(RLF)、ハンドオーバー障害(HOF)である。制御部230は、検出した障害の内容を示す障害情報を生成する。障害情報は、上述したように障害報告部220により上位ノードに報告される。 The control unit 230 detects a fault that occurs between the upper node and the node. The fault may be, for example, a radio link fault (RLF) or a handover fault (HOF). The control unit 230 generates fault information indicating the content of the detected fault. The fault information is reported to the upper node by the fault reporting unit 220 as described above.
 また、接続される無線通信ノード150がmobile IAB-nodeである場合、制御部230は、自身の移動に係る情報、例えば、位置(高度を含んでもよいし、含まなくてもよい)、高度、移動速度(水平速度、垂直速度)、飛行状態などの情報を収集し、障害が発生した場合に生成する障害情報に含めてもよい。この他、制御部230が生成する障害情報の具体的な例については、動作例において詳述する。 In addition, if the connected wireless communication node 150 is a mobile IAB-node, the control unit 230 may collect information related to its own movement, such as position (which may or may not include altitude), altitude, movement speed (horizontal speed, vertical speed), flight status, etc., and include this information in the fault information generated in the event of a fault. Other specific examples of fault information generated by the control unit 230 will be described in detail in the operation example.
 なお、実施形態において、上位ノードとの間に発生した障害は、上位ノード(無線通信ノード150)とUE200との間に発生した障害ではなく、例えば図5の×印に示すように、無線通信ノード100、150間に発生した障害であるものとする。一方で、制御部230は、ネットワークとの接続が途絶えたことを、上位ノード(無線通信ノード150)との間に障害が発生したと認識する。制御部230は、この認識の下で障害情報を生成するので、例えば障害情報にセル識別情報が含まれる場合、当該セル識別情報は、無線通信ノード100が形成するセル(IAB cell)でなく、無線通信ノード150が形成するセル(mobile IAB cell)を示す。なお、上述した制御部180が生成する障害情報にセル識別情報が含まれる場合、当該セル識別情報は、無線通信ノード100が形成するセル(IAB cell)を示す。 In the embodiment, the fault occurring with the upper node is not a fault occurring between the upper node (wireless communication node 150) and the UE 200, but a fault occurring between the wireless communication nodes 100 and 150, as shown by the cross in FIG. 5. Meanwhile, the control unit 230 recognizes that a fault has occurred with the upper node (wireless communication node 150) when the connection with the network is lost. The control unit 230 generates fault information based on this recognition, so that, for example, if the fault information includes cell identification information, the cell identification information indicates the cell formed by the wireless communication node 150 (mobile IAB cell), not the cell formed by the wireless communication node 100 (IAB cell). In addition, if the fault information generated by the control unit 180 described above includes cell identification information, the cell identification information indicates the cell formed by the wireless communication node 100 (IAB cell).
 (3)無線通信システムの動作
 (3.1)課題
 (3.1.1)課題1
 IAB-nodeと当該IAB-nodeに接続される上位ノード(IAB-donorまたは他のIAB-node)との間において、無線リンク障害(RLF)、ハンドオーバー障害(HOF)などの障害が発生した場合、当該IAB-nodeまたはその配下のUEは、上位ノードを介してネットワークに障害情報を報告する必要がある。しかしながら、IAB-nodeが移動可能に構成されるmobile IAB-nodeである場合、IAB-nodeの移動に伴い報告すべきパラメータが複雑なものとなるため、従来の障害情報を報告するだけでは障害から復旧できないおそれがあった。
(3) Operation of wireless communication system (3.1) Issues (3.1.1) Issue 1
When a failure such as a radio link failure (RLF) or a handover failure (HOF) occurs between an IAB-node and an upper node (IAB-donor or another IAB-node) connected to the IAB-node, the IAB-node or a UE under the IAB-node needs to report failure information to a network via the upper node. However, when the IAB-node is a mobile IAB-node configured to be movable, parameters to be reported become complicated as the IAB-node moves, so there is a risk that recovery from the failure cannot be achieved by simply reporting the failure information as in the past.
 (3.1.2)課題2
 また、IAB-nodeが複数の上位ノードとデュアルコネクティビティ(DC)を実行する場合、セル数の増加に伴い報告すべきパラメータ及び報告先の選択が複雑なものとなるため、従来の障害情報を報告するだけでは障害から復旧できないおそれがあった。
(3.1.2) Issue 2
In addition, when an IAB-node performs dual connectivity (DC) with multiple upper nodes, the selection of parameters to be reported and the reporting destination becomes complicated as the number of cells increases, and there is a risk that recovery from a failure cannot be achieved by simply reporting conventional failure information.
 (3.2)動作例
 (3.2.1)動作例1
 図5~図9を参照しつつ、RLFが発生した場合に障害情報を報告する動作例1について説明する。図5に示すように、無線通信ノード150は、mobile IAB-nodeである。
(3.2) Operational Examples (3.2.1) Operational Example 1
An operation example 1 for reporting fault information when an RLF occurs will be described with reference to Fig. 5 to Fig. 9. As shown in Fig. 5, the wireless communication node 150 is a mobile IAB-node.
 ここで、図5の×印が示すように、無線通信ノード150と上位ノードである無線通信ノード100(IAB-donor)との間にRLFが発生したものとする。なお、RLFは、HOFを含む概念として解されてもよい。障害(×印)は、RLF検出またはHOFを意味してもよいし、RRC接続のアイドル状態を意味してもよい。他の図における×印も同様に解されてもよい。 Here, as indicated by the cross in FIG. 5, it is assumed that an RLF has occurred between the wireless communication node 150 and the upper node, the wireless communication node 100 (IAB-donor). Note that RLF may be interpreted as a concept that includes HOF. The failure (cross) may mean RLF detection or HOF, or may mean the idle state of the RRC connection. Crosses in other figures may be interpreted in the same way.
 無線通信ノード150またはUE200は、RLFを検出すると、このRLFの内容に基づいて、ネットワークに報告するための障害情報(RLF report)を生成する。障害情報は、例えば以下の内容を含む。 When the wireless communication node 150 or UE 200 detects an RLF, it generates fault information (RLF report) to report to the network based on the contents of the RLF. The fault information includes, for example, the following:
 ・source/previous cell ID、target cell ID、failed cell ID
 ・source/previous cellの受信品質、target cellの受信品質、failed cellの受信品質
 ・隣接セルの受信品質
 ・RLFを検出したセルが、mobile IAB cellであるか、あるいは通常の(mobileでない)IAB cellであるかを示すindication
 ・IAB-nodeがmobile IAB-nodeである場合、当該mobile IAB-nodeまたはそのセルの位置(高度を含んでもよいし、含まなくてもよい)、高度、移動速度(水平速度、垂直速度)、飛行状態(flying or not status)
 ・RLFが発生したエリア(例えば、Tracking AreaのTracking Area Code(TAC)、RAN Tracking AreaのRAN area code)、previous TAC、previous RAN area code(なお、previous TAC、previous RAN area codeも「RLFが発生したエリア」に含まれると解してもよい)
 ・Failure cause(例えば、mobile IAB BH RLF、mobile IAB BH RLF recovery failure、IAB BH RLF、IAB BH RLF recovery failure、BH RLF、BH RLF recovery failure、mobile IAB migration failure、mobile IAB full migration failure、IAB migration failure、IAB full migration failure)
 ・RLF検出から障害の復旧までにかかる時間(例えば、timeUntilBH-RLFRecovery(※BH-RLF:BackHaul-RadioLinkFailure))
・source/previous cell ID, target cell ID, failed cell ID
・Reception quality of source/previous cell, reception quality of target cell, reception quality of failed cell ・Reception quality of neighboring cells ・Whether the cell that detected RLF is a mobile IAB cell or a normal (non-mobile) IAB cell Indication of whether
If the IAB-node is a mobile IAB-node, the location (which may or may not include altitude) of the mobile IAB-node or its cell, its altitude, and its moving speed (horizontal speed, vertical speed); Flying or not status
Area where RLF occurred (e.g., Tracking Area Code (TAC) of Tracking Area, RAN area code of RAN Tracking Area), previous TAC, previous RAN area code (Note that previous TAC and previous RAN area code are also used in "RLF occurred" (It may be interpreted as being included in the "area").
・Failure cause (for example, mobile IAB BH RLF, mobile IAB BH RLF recovery failure, IAB BH RLF, IAB BH RLF recovery failure, BH RLF, BH RLF recovery failure, mobile IAB migration failure, mobile IAB full migration failure, IAB migration failure) , IAB full migration failure)
- Time required from RLF detection to failure recovery (e.g., timeUntilBH-RLFRecovery (※BH-RLF: BackHaul-RadioLinkFailure))
 さらに、図6~図8を参照しつつ、ハンドオーバーにおいてRLF/HOFが発生した場合に報告される障害情報、特にセル識別情報(cell ID)について、より詳細に説明する。具体的には、ハンドオーバーの各段階において、無線通信ノード150とUE200とで、報告されるセル識別情報が異なる点について説明する。なお、RLFは無線リンク障害(またはその検出)を意味し、HOFはハンドオーバーの失敗を意味するが、RLF/HOFはハンドオーバー前後に発生した障害を意味してもよい。すなわち、RLF/HOFは、ハンドオーバーに起因しない無線リンク障害であってもよいし、ハンドオーバーの失敗に起因する障害であってもよい。 Furthermore, with reference to Figures 6 to 8, the fault information, particularly the cell identification information (cell ID), reported when RLF/HOF occurs during handover will be explained in more detail. Specifically, the cell identification information reported by the wireless communication node 150 and the UE 200 differs at each stage of handover. Note that RLF means a radio link failure (or its detection) and HOF means a handover failure, but RLF/HOF may also mean a failure that occurs before or after handover. In other words, RLF/HOF may be a radio link failure that is not caused by handover, or a failure that is caused by a handover failure.
 図6~図8において、遷移元のsource IAB-donorを無線通信ノード100A、遷移先のtarget IAB-donorを無線通信ノード100Bとする。また、無線通信ノード100AのCU、DUをCU1、DU1とし、無線通信ノード100BのCU、DUをCU2、DU2とする。さらに、無線通信ノード150は、IAB-DUの機能を2つ有するものとし、それぞれをIAB-DU1、IAB-DU2とする。なお、IAB-DU1は、ハンドオーバーの途中を除いてDU1に接続されるものとし、IAB-DU2は、ハンドオーバーの途中を除いてDU2に接続されるものとする。 In Figures 6 to 8, the source IAB-donor of the transition source is the wireless communication node 100A, and the target IAB-donor of the transition destination is the wireless communication node 100B. The CU and DU of the wireless communication node 100A are CU1 and DU1, and the CU and DU of the wireless communication node 100B are CU2 and DU2. Furthermore, the wireless communication node 150 has two IAB-DU functions, which are IAB-DU1 and IAB-DU2. IAB-DU1 is connected to DU1 except during handover, and IAB-DU2 is connected to DU2 except during handover.
 まず、図6に示すように、ハンドオーバーを開始する前の状態について説明する。ここで、無線通信ノード150は、無線通信ノード100Aに接続されている。なお、UE200は、無線通信ノード150に接続されているが、無線通信ノード150を介して無線通信ノード100Aに接続されているともいえる。この時、F1インタフェースの観点からは、無線通信ノード100AのCU1、DU1、無線通信ノード150のIAB-MT、IAB-DU1が接続されている。 First, as shown in FIG. 6, the state before the start of handover will be described. Here, the wireless communication node 150 is connected to the wireless communication node 100A. Note that the UE 200 is connected to the wireless communication node 150, but it can also be said that the UE 200 is connected to the wireless communication node 100A via the wireless communication node 150. At this time, from the viewpoint of the F1 interface, the CU1 and DU1 of the wireless communication node 100A, and the IAB-MT and IAB-DU1 of the wireless communication node 150 are connected.
 従って、無線通信ノード150と無線通信ノード100Aとの間にRLF/HOFが発生した場合、無線通信ノード150の認識においてRLF/HOFが発生したセルは、無線通信ノード100AのDU1が形成するセルである。また、UE200の認識においてRLF/HOFが発生したセルは、無線通信ノード150のIAB-DU1が形成するセルである。なお、無線通信ノード150、UE200の認識は、F1インタフェースの観点でどのセルに接続しているかという認識に読み替えられてもよい。 Therefore, when an RLF/HOF occurs between the wireless communication node 150 and the wireless communication node 100A, the cell in which the RLF/HOF occurs as recognized by the wireless communication node 150 is the cell formed by the DU1 of the wireless communication node 100A. Also, the cell in which the RLF/HOF occurs as recognized by the UE 200 is the cell formed by the IAB-DU1 of the wireless communication node 150. Note that the recognition of the wireless communication node 150 and the UE 200 may be interpreted as recognition of which cell they are connected to in terms of the F1 interface.
 以上より、ハンドオーバーを開始する前の状態においてRLF/HOFが発生した場合、無線通信ノード150は、無線通信ノード100AのDU1が形成するセルのセル識別情報を障害情報に含めて報告し、UE200は、無線通信ノード150のIAB-DU1が形成するセルのセル識別情報を障害情報に含めて報告する。 As a result of the above, if an RLF/HOF occurs before the start of handover, the wireless communication node 150 reports the cell identification information of the cell formed by the DU1 of the wireless communication node 100A in the fault information, and the UE 200 reports the cell identification information of the cell formed by the IAB-DU1 of the wireless communication node 150 in the fault information.
 次に、図7に示すように、ハンドオーバーの途中の状態について説明する。ここで、無線通信ノード150は、MT mitigationにより、無線通信ノード100Bに接続されている。なお、UE200は、無線通信ノード150に接続されているが、無線通信ノード150を介して無線通信ノード100Bに接続されているともいえる。一方で、F1インタフェースの観点からは、ハンドオーバーが完了しておらず、無線通信ノード100AのCU1、無線通信ノード100BのDU2、無線通信ノード150のIAB-MT、IAB-DU1が接続されている。 Next, the state during handover will be described as shown in FIG. 7. Here, the wireless communication node 150 is connected to the wireless communication node 100B by MT mitigation. Note that the UE 200 is connected to the wireless communication node 150, but it can also be said that it is connected to the wireless communication node 100B via the wireless communication node 150. On the other hand, from the viewpoint of the F1 interface, the handover is not complete, and the CU1 of the wireless communication node 100A, the DU2 of the wireless communication node 100B, the IAB-MT of the wireless communication node 150, and the IAB-DU1 are connected.
 従って、無線通信ノード150と無線通信ノード100Bとの間にRLF/HOFが発生した場合であって、F1インタフェースのハンドオーバーが完了していない場合、無線通信ノード150の認識においてRLF/HOFが発生したセルは、無線通信ノード100BのDU2が形成するセルである。一方で、UE200の認識においてRLF/HOFが発生したセルは、無線通信ノード150のIAB-DU1が形成するセルである。なお、無線通信ノード150、UE200の認識は、F1インタフェースの観点でどのセルに接続しているかという認識に読み替えられてもよい。 Therefore, when an RLF/HOF occurs between the wireless communication node 150 and the wireless communication node 100B and the handover of the F1 interface is not completed, the cell in which the RLF/HOF occurs as recognized by the wireless communication node 150 is the cell formed by the DU2 of the wireless communication node 100B. On the other hand, the cell in which the RLF/HOF occurs as recognized by the UE 200 is the cell formed by the IAB-DU1 of the wireless communication node 150. Note that the recognition of the wireless communication node 150 and the UE 200 may be interpreted as recognition of which cell they are connected to in terms of the F1 interface.
 以上より、ハンドオーバーを開始する前の状態においてRLF/HOFが発生した場合、無線通信ノード150は、無線通信ノード100BのDU2が形成するセルのセル識別情報を障害情報に含めて報告し、UE200は、無線通信ノード150のIAB-DU1が形成するセルのセル識別情報を障害情報に含めて報告する。 As a result of the above, if an RLF/HOF occurs before the start of handover, the wireless communication node 150 reports the cell identification information of the cell formed by DU2 of the wireless communication node 100B in the fault information, and the UE 200 reports the cell identification information of the cell formed by IAB-DU1 of the wireless communication node 150 in the fault information.
 最後に、図8に示すように、ハンドオーバーを完了後の状態について説明する。ここで、無線通信ノード150は、無線通信ノード100Bに接続されている。なお、UE200は、無線通信ノード150に接続されているが、無線通信ノード150を介して無線通信ノード100Bに接続されているともいえる。この時、F1インタフェースの観点からは、無線通信ノード100BのCU2、DU2、無線通信ノード150のIAB-MT、IAB-DU2が接続されている。 Finally, as shown in FIG. 8, the state after the handover is completed will be described. Here, the wireless communication node 150 is connected to the wireless communication node 100B. Note that the UE 200 is connected to the wireless communication node 150, but it can also be said that the UE 200 is connected to the wireless communication node 100B via the wireless communication node 150. At this time, from the viewpoint of the F1 interface, the CU2 and DU2 of the wireless communication node 100B, and the IAB-MT and IAB-DU2 of the wireless communication node 150 are connected.
 従って、無線通信ノード150と無線通信ノード100Bとの間にRLF/HOFが発生した場合であって、F1インタフェースのハンドオーバーが完了している場合、無線通信ノード150の認識においてRLF/HOFが発生したセルは、無線通信ノード100BのDU2が形成するセルである。また、UE200の認識においてRLF/HOFが発生したセルは、無線通信ノード150のIAB-DU2が形成するセルである。なお、無線通信ノード150、UE200の認識は、F1インタフェースの観点でどのセルに接続しているかという認識に読み替えられてもよい。 Therefore, when an RLF/HOF occurs between the wireless communication node 150 and the wireless communication node 100B and handover of the F1 interface is completed, the cell in which the RLF/HOF occurs as recognized by the wireless communication node 150 is the cell formed by the DU2 of the wireless communication node 100B. Also, the cell in which the RLF/HOF occurs as recognized by the UE 200 is the cell formed by the IAB-DU2 of the wireless communication node 150. Note that the recognition of the wireless communication node 150 and the UE 200 may be interpreted as recognition of which cell they are connected to in terms of the F1 interface.
 以上より、ハンドオーバーを開始する前の状態においてRLF/HOFが発生した場合、無線通信ノード150は、無線通信ノード100BのDU2が形成するセルのセル識別情報を障害情報に含めて報告し、UE200は、無線通信ノード150のIAB-DU2が形成するセルのセル識別情報を障害情報に含めて報告する。 As a result of the above, if an RLF/HOF occurs before the start of a handover, the wireless communication node 150 reports the cell identification information of the cell formed by the DU2 of the wireless communication node 100B in the fault information, and the UE 200 reports the cell identification information of the cell formed by the IAB-DU2 of the wireless communication node 150 in the fault information.
 図9を参照しつつ、RLF検出から障害情報報告までのシーケンスについて説明する。まず、無線通信ノード150またはUE200(図中のUE/IAB-MT)がRLFを検出すると、上位ノードである無線通信ノード100(図中のgNB/IAB-donor)にRRCRestablishmentRequestを送信する。これに対して、無線通信ノード100は、無線無線通信ノード150またはUE200にRRCRestablishmentを送信する。 With reference to FIG. 9, the sequence from RLF detection to fault information reporting will be described. First, when the wireless communication node 150 or UE 200 (UE/IAB-MT in the figure) detects RLF, it transmits an RRCRestablishmentRequest to the wireless communication node 100 (gNB/IAB-donor in the figure), which is the upper node. In response, the wireless communication node 100 transmits an RRCRestablishment to the wireless communication node 150 or UE 200.
 次に、無線通信ノード150またはUE200は、無線通信ノード100にRRCRestablishmentComplete(RLF-available)を送信する。なお、RRCRestablishmentRequestの代わりに、RRCSetupComplete/RRCReconfigurationComplete/RRCResumeCompleteを用いてRLF-availableを送信してもよい。 Next, the wireless communication node 150 or the UE 200 transmits RRCRestablishmentComplete (RLF-available) to the wireless communication node 100. Note that RLF-available may be transmitted using RRCSetupComplete/RRCReconfigurationComplete/RRCResumeComplete instead of RRCRestablishmentRequest.
 最後に、無線通信ノード100は、無線通信ノード150またはUE200にUE information requestを送信する。これに対して、無線通信ノード150またはUE200は、無線通信ノード100にUE information response(RLF report、すなわち障害情報)を送信(報告)する。 Finally, the wireless communication node 100 transmits a UE information request to the wireless communication node 150 or the UE 200. In response, the wireless communication node 150 or the UE 200 transmits (reports) a UE information response (RLF report, i.e., fault information) to the wireless communication node 100.
 (3.2.2)動作例2
 図10~図12を参照しつつ、DCにおいてRLFが発生した場合に障害情報を報告する動作例2について説明する。図10に示すように、無線通信ノード150Cは、mobile IAB-nodeであり、複数の上位ノードである無線通信ノード150A、150BにDCで接続されている。さらに、無線通信ノード150A、150Bは、通常の(mobileでない)IAB-nodeであり、上位ノードである無線通信ノード100(IAB-donor)に接続されている。また、無線通信ノード150Aは、MCGを形成し、無線通信ノード150Bは、SCGを形成する。
(3.2.2) Operation example 2
10 to 12, an operation example 2 for reporting fault information when RLF occurs in DC will be described. As shown in FIG. 10, the wireless communication node 150C is a mobile IAB-node, and is connected to multiple upper nodes, wireless communication nodes 150A and 150B, via DC. Furthermore, the wireless communication nodes 150A and 150B are normal (non-mobile) IAB-nodes, and are connected to the upper node, wireless communication node 100 (IAB-donor). Moreover, the wireless communication node 150A forms an MCG, and the wireless communication node 150B forms an SCG.
 ここで、無線通信ノード150Cと複数の上位ノードの一方である無線通信ノード100Bとの間、すなわちSCGにおいてRLFが発生したものとする。ただし、これに限られるものでなく、無線通信ノード100Aとの間、すなわちMCGにおいてRLFが発生した場合であっても、以下の内容を適用することが出来る(図12参照)。なお、RLFは、HOFを含む概念として解されてもよい。 Here, it is assumed that an RLF occurs between wireless communication node 150C and wireless communication node 100B, which is one of multiple upper nodes, i.e., in the SCG. However, this is not limited to the above, and the following can also be applied when an RLF occurs between wireless communication node 150C and wireless communication node 100A, i.e., in the MCG (see FIG. 12). Note that RLF may be understood as a concept that includes HOF.
 無線通信ノード150CまたはUE200は、RLFを検出すると、このRLFの内容に基づいて、ネットワークに報告するための障害情報(SCG failure info、MCG failure info)を生成する。障害情報は、例えば以下の内容を含む。 When the wireless communication node 150C or UE 200 detects an RLF, it generates failure information (SCG failure info, MCG failure info) to report to the network based on the contents of the RLF. The failure information includes, for example, the following:
 ・previous cell ID、failed cell ID
 ・previous cellの受信品質、failed cellの受信品質
 ・隣接セルの受信品質
 ・RLFを検出したセルが、mobile IAB cellであるか、あるいは通常の(mobileでない)IAB cellであるかを示すindication
 ・IAB-nodeがmobile IAB-nodeである場合、当該mobile IAB-nodeまたはそのセルの位置(高度を含んでもよいし、含まなくてもよい)、高度、移動速度(水平速度、垂直速度)、飛行状態(flying or not status)
 ・Failure cause(例えば、mobile IAB BH RLF、IAB BH RLF、BH RLF)
・Previous cell ID, failed cell ID
- Reception quality of previous cell, reception quality of failed cell - Reception quality of neighboring cells - Indication of whether the cell where RLF was detected is a mobile IAB cell or a normal (non-mobile) IAB cell
If the IAB-node is a mobile IAB-node, the location (which may or may not include altitude) of the mobile IAB-node or its cell, its altitude, and its moving speed (horizontal speed, vertical speed); Flying or not status
Failure cause (e.g. mobile IAB BH RLF, IAB BH RLF, BH RLF)
 図11を参照しつつ、SCGにおけるRLF検出から障害情報報告までのシーケンスについて説明する。まず、無線通信ノード150CまたはUE200(図中のUE/IAB-MT)がSCGにおいてRLFを検出すると、上位ノードである無線通信ノード150A(図中のMN)にSCG failure info、すなわち障害情報を送信(報告)する。 With reference to Figure 11, the sequence from RLF detection in the SCG to reporting failure information will be described. First, when wireless communication node 150C or UE 200 (UE/IAB-MT in the figure) detects an RLF in the SCG, it transmits (reports) SCG failure info, i.e., failure information, to wireless communication node 150A (MN in the figure), which is the upper node.
 図12を参照しつつ、MCGにおけるRLF検出から障害情報報告までのシーケンスについて説明する。まず、無線通信ノード150CまたはUE200(図中のUE/IAB-MT)がMCGにおいてRLFを検出すると、上位ノードである無線通信ノード150B(図中のSN)にMCG failure info、すなわち障害情報を送信(報告)する。 With reference to Figure 12, the sequence from RLF detection in the MCG to reporting of failure information will be described. First, when wireless communication node 150C or UE 200 (UE/IAB-MT in the figure) detects RLF in the MCG, it transmits (reports) MCG failure info, i.e., failure information, to wireless communication node 150B (SN in the figure), which is the upper node.
 (4)作用・効果
 上述した実施形態の無線通信ノード150、UE200は、障害情報として、無線通信ノード150の移動に係る情報をネットワークに報告する。これにより、無線通信ノード150がmobile IAB-nodeであっても、ネットワークに障害情報を報告し、障害の復旧に役立てることが出来る。
(4) Actions and Effects The wireless communication node 150 and the UE 200 in the above-described embodiment report, as fault information, information related to the movement of the wireless communication node 150 to the network. As a result, even if the wireless communication node 150 is a mobile IAB-node, the fault information can be reported to the network and used for fault recovery.
 上述した実施形態の無線通信ノード150C、UE200は、障害情報として、障害を検出したセルの識別情報をネットワークに報告する。これにより、無線通信ノード150Cが複数の上位ノードである無線通信ノード150A、150BとDCで接続される場合であっても、ネットワークに障害情報を報告し、障害の復旧に役立てることが出来る。 The wireless communication node 150C and UE 200 in the above-described embodiment report, as fault information, the identification information of the cell in which the fault was detected to the network. As a result, even if the wireless communication node 150C is connected to multiple upper nodes, the wireless communication nodes 150A and 150B, via DC, it is possible to report fault information to the network and use the information to recover from the fault.
 上述した実施形態の障害情報は、無線通信ノードまたは当該無線通信ノードが形成するセルの位置、移動速度、飛行状態のうち少なくとも1つを含んでもよい。これにより、ネットワークに報告する障害情報の内容をより充実させることが出来る。 The fault information in the above-described embodiment may include at least one of the position, movement speed, and flight state of the wireless communication node or the cell formed by the wireless communication node. This can further enhance the content of the fault information reported to the network.
 上述した実施形態の障害情報は、障害が発生したエリアを含んでもよい。これにより、ネットワークが障害の発生しやすいエリアを把握することが出来る。 The fault information in the above-described embodiment may include the area in which the fault occurred. This makes it possible to identify areas in which the network is prone to faults.
 上述した実施形態の障害情報は、障害の検出から障害の復旧までにかかる時間を含んでもよい。これにより、ネットワークが障害の復旧までにかかる時間を把握することが出来る。 The fault information in the above-described embodiment may include the time taken from detection of the fault to recovery from the fault. This makes it possible to know the time it will take for the network to recover from the fault.
 (5)その他の実施形態
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(5) Other Embodiments The contents of the present invention have been described above in accordance with the embodiments. However, the present invention is not limited to these descriptions, and it will be obvious to those skilled in the art that various modifications and improvements are possible.
 上述した開示において、無線通信ノードという用語が用いられたが、通信ノードまたは通信装置などと呼ばれてもよい。また、無線通信ノードは、基地局と読み替えられてもよい。 In the above disclosure, the term wireless communication node is used, but it may also be called a communication node or a communication device. Also, a wireless communication node may be read as a base station.
 上述した開示において、DL、ULという用語が用いられていたが、フォワードリンク、リターンリンク、アクセスリンクなどと呼ばれてもよい。 In the disclosure above, the terms DL and UL are used, but they may also be called forward link, return link, access link, etc.
 上述した開示において、無線通信ノード150、150Cは、mobile IAB-nodeであるものとしたが、mobileでないIAB-nodeであってもよい。同様に、無線通信ノード150A、150Bは、mobileでないIAB-nodeであるものとしたが、mobile IAB-nodeであってもよい。なお、無線通信ノード150は、無線通信ノード150A、150B、150Cを包含する概念として解されてもよい。同様に、無線通信ノード100は、線通信ノード100A、100Bを包含する概念として解されてもよい。 In the above disclosure, the wireless communication nodes 150 and 150C are described as being mobile IAB-nodes, but they may also be non-mobile IAB-nodes. Similarly, the wireless communication nodes 150A and 150B are described as being non-mobile IAB-nodes, but they may also be mobile IAB-nodes. Note that the wireless communication node 150 may be understood as a concept that encompasses the wireless communication nodes 150A, 150B, and 150C. Similarly, the wireless communication node 100 may be understood as a concept that encompasses the wired communication nodes 100A and 100B.
 上述した開示において、障害情報は、無線通信ノード150またはUE200が報告するものとしたが、無線通信ノード150及びUE200が報告してもよい。 In the above disclosure, the fault information is reported by the wireless communication node 150 or the UE 200, but it may be reported by the wireless communication node 150 and the UE 200.
 上述した動作例は、矛盾が生じない限り、組み合わせて複合的に適用されてもよい。例えば、動作例1の無線通信ノード150において、動作例2のDCを適用してもよい。 The above-mentioned operational examples may be combined and applied in a composite manner, as long as no contradiction occurs. For example, the DC of operational example 2 may be applied to the wireless communication node 150 of operational example 1.
 上述した開示において、設定(configure)、アクティブ化(activate)、更新(update)、指示(indicate)、有効化(enable)、指定(specify)、選択(select)、は互いに読み替えられてもよい。同様に、リンクする(link)、関連付ける(associate)、対応する(correspond)、マップする(map)、は互いに読み替えられてもよく、配置する(allocate)、割り当てる(assign)、モニタする(monitor)、マップする(map)、も互いに読み替えられてもよい。 In the above disclosure, configure, activate, update, indicate, enable, specify, and select may be read as interchangeable. Similarly, link, associate, correspond, and map may be read as interchangeable, and allocate, assign, monitor, and map may also be read as interchangeable.
 さらに、固有(specific)、個別(dedicated)、UE固有、UE個別、は互いに読み替えられてもよい。同様に、共通(common)、共有(shared)、グループ共通(group-common)、UE共通、UE共有、は互いに読み替えられてもよい。 Furthermore, specific, dedicated, UE-specific, and UE-individual may be read as interchangeable. Similarly, common, shared, group-common, UE-common, and UE-shared may be read as interchangeable.
 上述した実施形態の説明に用いたブロック構成図(図2、3、4)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 The block diagrams (Figs. 2, 3, and 4) used to explain the above-mentioned embodiments show functional blocks. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (e.g., using wires, wirelessly, etc.) and these multiple devices. The functional blocks may be realized by combining the one device or the multiple devices with software.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼ばれる。何れも、上述したとおり、実現方法は特に限定されない。 Functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, regard, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment. For example, a functional block (component) that performs the transmission function is called a transmitting unit or transmitter. As mentioned above, there are no particular limitations on the method of realization for any of these.
 さらに、上述した無線通信ノード100、150及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、当該装置のハードウェア構成の一例を示す図である。図13に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Furthermore, the above-mentioned wireless communication nodes 100, 150 and UE 200 (the devices) may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 13 is a diagram showing an example of the hardware configuration of the devices. As shown in FIG. 13, the devices may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, and a bus 1007.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the term "apparatus" can be interpreted as a circuit, device, unit, etc. The hardware configuration of the apparatus may be configured to include one or more of the devices shown in the figure, or may be configured to exclude some of the devices.
 当該装置の各機能ブロック(図2、3、4)は、当該コンピュータ装置の何れかのハードウェア要素、又は当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (Figures 2, 3, and 4) is realized by any hardware element of the computer device, or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Furthermore, each function of the device is realized by loading a specific software (program) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications by the communications device 1004, and control at least one of reading and writing data in the memory 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 The processor 1001, for example, runs an operating system to control the entire computer. The processor 1001 may be configured as a central processing unit (CPU) that includes an interface with peripheral devices, a control unit, an arithmetic unit, registers, etc.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 The processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. The programs used are those that cause a computer to execute at least some of the operations described in the above-mentioned embodiments. Furthermore, the various processes described above may be executed by one processor 1001, or may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. The programs may be transmitted from a network via a telecommunications line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 Memory 1002 is a computer-readable recording medium and may be composed of, for example, at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. Memory 1002 may also be called a register, cache, main memory, etc. Memory 1002 can store a program (program code), software module, etc. capable of executing a method according to one embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 Storage 1003 is a computer-readable recording medium, and may be, for example, at least one of an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a magneto-optical disk (e.g., a compact disk, a digital versatile disk, a Blu-ray (registered trademark) disk), a smart card, a flash memory (e.g., a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, etc. Storage 1003 may also be referred to as an auxiliary storage device. The above-mentioned recording medium may be, for example, a database, a server, or other suitable medium including at least one of memory 1002 and storage 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, etc.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize, for example, at least one of Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカ、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (e.g., a display, a speaker, an LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated into one device (e.g., a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Furthermore, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Furthermore, the device may be configured to include hardware such as a microprocessor, a digital signal processor (Digital Signal Processor (DSP), Application Specific Integrated Circuit (ASIC), Programmable Logic Device (PLD), Field Programmable Gate Array (FPGA), etc., and some or all of the functional blocks may be realized by the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI))、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング)、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Furthermore, the notification of information is not limited to the aspects/embodiments described in the present disclosure and may be performed using other methods. For example, the notification of information may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling), broadcast information (Master Information Block (MIB), System Information Block (SIB)), other signals, or a combination of these. Furthermore, RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure may be applied to at least one of systems utilizing Long Term Evolution (LTE), LTE-Advanced (LTE-A), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system (5G), Future Radio Access (FRA), New Radio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), or other suitable systems and next generation systems enhanced therefrom. Multiple systems may also be applied in combination (e.g., a combination of at least one of LTE and LTE-A with 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The processing steps, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be reordered unless inconsistent. For example, the methods described in this disclosure present elements of various steps using an example order and are not limited to the particular order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In this disclosure, certain operations that are described as being performed by a base station may in some cases be performed by its upper node. In a network consisting of one or more network nodes having a base station, it is clear that various operations performed for communication with a terminal may be performed by at least one of the base station and other network nodes other than the base station (such as, but not limited to, an MME or an S-GW). Although the above example shows a case where there is one other network node other than the base station, it may also be a combination of multiple other network nodes (such as an MME and an S-GW).
 情報、信号(情報等)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information, signals (information, etc.) can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). They may be input and output via multiple network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、又は追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input and output information may be stored in a specific location (e.g., memory) or may be managed using a management table. The input and output information may be overwritten, updated, or appended. The output information may be deleted. The input information may be sent to another device.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be based on a value represented by one bit (0 or 1), a Boolean value (true or false), or a numerical comparison (e.g., a comparison with a predetermined value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or switched depending on the execution. In addition, notification of specific information (e.g., notification that "X is the case") is not limited to being done explicitly, but may be done implicitly (e.g., not notifying the specific information).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received over a transmission medium. For example, if software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that the terms explained in this disclosure and the terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, at least one of the channel and the symbol may be a signal (signaling). Also, the signal may be a message. Also, the component carrier (CC) may be called a carrier frequency, a cell, a frequency carrier, etc.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 As used in this disclosure, the terms "system" and "network" are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information. For example, a radio resource may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above-mentioned parameters are not limiting in any respect. Furthermore, the formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. The various channels (e.g., PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, terms such as "base station (BS)", "wireless base station", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", "access point", "transmission point", "reception point", "transmission/reception point", "cell", "sector", "cell group", "carrier", and "component carrier" may be used interchangeably. Base stations may also be referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 A base station can accommodate one or more (e.g., three) cells (also called sectors). If a base station accommodates multiple cells, the overall coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small indoor base station (Remote Radio Head: RRH)).
 「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The term "cell" or "sector" refers to part or the entire coverage area of a base station and/or a base station subsystem that provides communication services within that coverage.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" may be used interchangeably.
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station may also be referred to by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, etc. At least one of the base station and the mobile station may be a device mounted on a moving object, or the moving object itself, etc. The moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned). At least one of the base station and the mobile station may include a device that does not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Furthermore, the base station in the present disclosure may be interpreted as a mobile station (user terminal, the same applies below). For example, each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a mobile station is replaced with communication between multiple mobile stations (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). In this case, the mobile station may be configured to have the functions of a base station. Furthermore, terms such as "uplink" and "downlink" may be interpreted as terms corresponding to communication between terminals (for example, "side"). For example, the uplink channel, downlink channel, etc. may be interpreted as a side channel.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。 Similarly, the mobile station in this disclosure may be interpreted as a base station. In this case, the base station may be configured to have the functions of the mobile station.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。 A radio frame may be composed of one or more frames in the time domain. Each of the one or more frames in the time domain may be called a subframe.
 サブフレームはさらに時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A subframe may further be composed of one or more slots in the time domain. A subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology may indicate, for example, at least one of the following: Subcarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame structure, a particular filtering operation performed by the transceiver in the frequency domain, a particular windowing operation performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols in the time domain (e.g., Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.). A slot may be a numerology-based unit of time.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (or PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frame, subframe, slot, minislot, and symbol all represent time units for transmitting signals. Radio frame, subframe, slot, minislot, and symbol may each be referred to by a different name that corresponds to the radio frame, subframe, slot, minislot, and symbol.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, or one slot or one minislot may be called a TTI. In other words, at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms. Note that the unit expressing the TTI may be called a slot, minislot, etc., instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the smallest time unit for scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc. When a TTI is given, the time interval (e.g., the number of symbols) in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 In addition, when one slot or one minislot is called a TTI, one or more TTIs (i.e., one or more slots or one or more minislots) may be the minimum time unit of scheduling. In addition, the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms, and a short TTI (e.g., a shortened TTI, etc.) may be interpreted as a TTI having a TTI length of 1 ms or more but less than the TTI length of a long TTI.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers included in an RB may be determined based on the numerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Furthermore, the time domain of an RB may include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 In addition, one or more RBs may also be referred to as a physical resource block (PRB), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, an RB pair, etc.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Furthermore, a resource block may be composed of one or more resource elements (RE). For example, one RE may be a radio resource area of one subcarrier and one symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP), which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP). One or more BWPs may be configured for a UE within one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell," "carrier," etc. in this disclosure may be read as "BWP."
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The above-mentioned structures of radio frames, subframes, slots, minislots, and symbols are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected," "coupled," or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. The coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connected" may be read as "access." As used in this disclosure, two elements may be considered to be "connected" or "coupled" to each other using at least one of one or more wires, cables, and printed electrical connections, as well as electromagnetic energy having wavelengths in the radio frequency range, microwave range, and optical (both visible and invisible) range, as some non-limiting and non-exhaustive examples.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal may also be abbreviated as Reference Signal (RS) or referred to as a pilot depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with "part," "circuit," "device," etc.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to an element using a designation such as "first," "second," etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed therein or that the first element must precede the second element in some way.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When the terms "include," "including," and variations thereof are used in this disclosure, these terms are intended to be inclusive, similar to the term "comprising." Additionally, the term "or," as used in this disclosure, is not intended to be an exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, where articles have been added through translation, such as a, an, and the in English, this disclosure may include that the noun following these articles is in the plural form.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of actions. "Determining" and "determining" may include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., searching in a table, database, or other data structure), ascertaining something that is deemed to be a "judging" or "determining," and the like. "Determining" and "determining" may also include receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in memory), and the like. Additionally, "judgment" and "decision" can include considering resolving, selecting, choosing, establishing, comparing, etc., to have been "judged" or "decided." In other words, "judgment" and "decision" can include considering some action to have been "judged" or "decided." Additionally, "judgment" can be interpreted as "assuming," "expecting," "considering," etc.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In this disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean "A and B are each different from C." Terms such as "separate" and "combined" may also be interpreted in the same way as "different."
 図14は、車両2001の構成例を示す。図14に示すように、車両2001は、駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。 FIG. 14 shows an example of the configuration of a vehicle 2001. As shown in FIG. 14, the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, an axle 2009, an electronic control unit 2010, various sensors 2021-2029, an information service unit 2012, and a communication module 2013.
 駆動部2002は、例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。 The drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
 操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。 The steering unit 2003 includes at least a steering wheel (also called a handle) and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両に備えられた各種センサ2021~2027からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでもよい。 The electronic control unit 2010 is composed of a microprocessor 2031, a memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals are input to the electronic control unit 2010 from various sensors 2021 to 2027 provided in the vehicle. The electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
 各種センサ2021~2028からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。 Signals from the various sensors 2021 to 2028 include a current signal from a current sensor 2021 that senses the current of the motor, a rotation speed signal of the front and rear wheels acquired by a rotation speed sensor 2022, an air pressure signal of the front and rear wheels acquired by an air pressure sensor 2023, a vehicle speed signal acquired by a vehicle speed sensor 2024, an acceleration signal acquired by an acceleration sensor 2025, an accelerator pedal depression amount signal acquired by an accelerator pedal sensor 2029, a brake pedal depression amount signal acquired by a brake pedal sensor 2026, a shift lever operation signal acquired by a shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 2028.
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両1の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。 The information service unit 2012 is composed of various devices, such as a car navigation system, an audio system, speakers, a television, and a radio, for providing various types of information such as driving information, traffic information, and entertainment information, and one or more ECUs for controlling these devices. The information service unit 2012 uses information acquired from external devices via the communication module 2013, etc., to provide various types of multimedia information and multimedia services to the occupants of the vehicle 1.
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSSなど)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップなど)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)など)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能または自動運転機能を実現する。 The driving assistance system unit 2030 is composed of various devices that provide functions for preventing accidents and reducing the driving burden on the driver, such as a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (e.g., GNSS, etc.), map information (e.g., high definition (HD) map, autonomous vehicle (AV) map, etc.), a gyro system (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chip, and an AI processor, as well as one or more ECUs that control these devices. The driving assistance system unit 2030 also transmits and receives various information via the communication module 2013 to realize driving assistance functions or autonomous driving functions.
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031及び車両1の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~2028との間でデータを送受信する。 The communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 1 via the communication port. For example, the communication module 2013 transmits and receives data via the communication port 2033 between the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, axle 2009, microprocessor 2031 and memory (ROM, RAM) 2032 in electronic control unit 2010, and sensors 2021 to 2028, which are provided on the vehicle 2001.
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。 The communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication. The communication module 2013 may be located either inside or outside the electronic control unit 2010. The external device may be, for example, a base station, a mobile station, etc.
 通信モジュール2013は、電子制御部2010に入力された電流センサからの電流信号を、無線通信を介して外部装置へ送信する。また、通信モジュール2013は、電子制御部2010に入力された、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者などを検出するための検出信号などについても無線通信を介して外部装置へ送信する。 The communication module 2013 transmits a current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication. The communication module 2013 also transmits to an external device via wireless communication the following signals input to the electronic control unit 2010: a front wheel or rear wheel rotation speed signal acquired by a rotation speed sensor 2022, a front wheel or rear wheel air pressure signal acquired by an air pressure sensor 2023, a vehicle speed signal acquired by a vehicle speed sensor 2024, an acceleration signal acquired by an acceleration sensor 2025, an accelerator pedal depression amount signal acquired by an accelerator pedal sensor 2029, a brake pedal depression amount signal acquired by a brake pedal sensor 2026, a shift lever operation signal acquired by a shift lever sensor 2027, and a detection signal for detecting an obstacle, a vehicle, a pedestrian, etc. acquired by an object detection sensor 2028.
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部2012へ表示する。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、センサ2021~2028などの制御を行ってもよい。 The communication module 2013 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device, and displays it on an information service unit 2012 provided in the vehicle. The communication module 2013 also stores the various information received from the external device in a memory 2032 that can be used by the microprocessor 2031. Based on the information stored in the memory 2032, the microprocessor 2031 may control the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, axles 2009, sensors 2021-2028, and the like provided in the vehicle 2001.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。  Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described herein. The present disclosure can be implemented in modified and altered forms without departing from the spirit and scope of the present disclosure as defined by the claims. Therefore, the description of the present disclosure is intended as an illustrative example and does not have any limiting meaning with respect to the present disclosure.
 (付記)
 上述した開示は、以下のように表現されてもよい。
(Additional Note)
The above disclosure may be expressed as follows:
 第1の特徴は、無線通信ノードであって、前記無線通信ノードの上位ノードとの間に発生した障害を検出する制御部と、前記上位ノードに障害情報を送信する送信部と、を備え、前記障害情報は、前記無線通信ノードの移動に係る情報を含む、無線通信ノードである。 The first feature is a wireless communication node that includes a control unit that detects a fault that occurs between the wireless communication node and a higher-level node, and a transmission unit that transmits fault information to the higher-level node, and the fault information includes information related to the movement of the wireless communication node.
 第2の特徴は、複数の上位ノードと二重接続を実行する無線通信ノードであって、前記無線通信ノードの上位ノードとの間に発生した障害を検出する制御部と、前記上位ノードに障害情報を送信する送信部と、を備え、前記障害情報は、前記障害を検出したセルの識別情報を含む、無線通信ノードである。 The second feature is a wireless communication node that performs dual connections with multiple upper nodes, and includes a control unit that detects a fault that occurs between the wireless communication node and the upper node, and a transmission unit that transmits fault information to the upper node, and the fault information includes identification information of the cell in which the fault is detected.
 第3の特徴は、第1の特徴または第2の特徴において、前記障害情報は、前記無線通信ノードまたは当該無線通信ノードが形成するセルの位置、移動速度、飛行状態のうち少なくとも1つを含む、無線通信ノードである。 The third feature is a wireless communication node in the first or second feature, in which the fault information includes at least one of the position, movement speed, and flight state of the wireless communication node or the cell formed by the wireless communication node.
 第4の特徴は、第1の特徴において、前記障害情報は、前記障害が発生したエリアを含む、無線通信ノードである。 The fourth feature is that in the first feature, the fault information is a wireless communication node that includes the area where the fault occurred.
 第5の特徴は、第1の特徴において、前記障害情報は、前記障害の検出から前記障害の復旧までにかかる時間を含む、無線通信ノードである。 The fifth feature is a wireless communication node according to the first feature, in which the fault information includes the time required from detection of the fault to recovery from the fault.
 第6の特徴は、無線通信ノードに接続される端末であって、前記無線通信ノードの上位ノードとの間に発生した障害を検出する制御部と、前記上位ノードに障害情報を送信する送信部と、を備え、前記障害情報は、前記端末の移動に係る情報を含む、端末である。 The sixth feature is a terminal connected to a wireless communication node, the terminal comprising a control unit that detects a fault occurring between the wireless communication node and a higher-level node, and a transmission unit that transmits fault information to the higher-level node, the fault information including information related to the movement of the terminal.
 10 無線通信システム
 20 NG-RAN
 100、100A、100B 無線通信ノード
 110 送受信部
 120 NW IF部
 130 障害報告部
 140 制御部
 150、150A、150B、150C 無線通信ノード
 160 送受信部
 170 障害報告部
 180 制御部
 200 UE
 210 送受信部
 220 障害報告部
 230 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
 2001 車両
 2002 駆動部
 2003 操舵部
 2004 アクセルペダル
 2005 ブレーキペダル
 2006 シフトレバー
 2007 左右の前輪
 2008 左右の後輪
 2009 車軸
 2010 電子制御部
 2012 情報サービス部
 2013 通信モジュール
 2021 電流センサ
 2022 回転数センサ
 2023 空気圧センサ
 2024 車速センサ
 2025 加速度センサ
 2026 ブレーキペダルセンサ
 2027 シフトレバーセンサ
 2028 物体検出センサ
 2029 アクセルペダルセンサ
 2030 運転支援システム部
 2031 マイクロプロセッサ
 2032 メモリ(ROM、RAM)
 2033 通信ポート
10 Wireless Communication Systems 20 NG-RAN
100, 100A, 100B wireless communication node 110 transceiver unit 120 NW IF unit 130 fault reporting unit 140 control unit 150, 150A, 150B, 150C wireless communication node 160 transceiver unit 170 fault reporting unit 180 control unit 200 UE
210 Transmitting/receiving unit 220 Fault reporting unit 230 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus 2001 Vehicle 2002 Drive unit 2003 Steering unit 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Left and right front wheels 2008 Left and right rear wheels 2009 Axle 2010 Electronic control unit 2012 Information service unit 2013 Communication module 2021 Current sensor 2022 Rotational speed sensor 2023 Air pressure sensor 2024 Vehicle speed sensor 2025 Acceleration sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving assistance system section 2031 Microprocessor 2032 Memory (ROM, RAM)
2033 communication port

Claims (6)

  1.  無線通信ノードであって、
     前記無線通信ノードの上位ノードとの間に発生した障害を検出する制御部と、
     前記上位ノードに障害情報を送信する送信部と、
     を備え、
     前記障害情報は、前記無線通信ノードの移動に係る情報を含む、
     無線通信ノード。
    1. A wireless communication node, comprising:
    a control unit for detecting a fault occurring between the wireless communication node and a host node;
    A transmitter for transmitting fault information to the upper node;
    Equipped with
    the fault information includes information related to movement of the wireless communication node;
    Wireless communication node.
  2.  複数の上位ノードと二重接続を実行する無線通信ノードであって、
     前記無線通信ノードの上位ノードとの間に発生した障害を検出する制御部と、
     前記上位ノードに障害情報を送信する送信部と、
     を備え、
     前記障害情報は、前記障害を検出したセルの識別情報を含む、
     無線通信ノード。
    A wireless communication node that performs dual connectivity with a plurality of upper nodes,
    a control unit for detecting a fault occurring between the wireless communication node and a host node;
    A transmitter for transmitting fault information to the upper node;
    Equipped with
    The fault information includes identification information of a cell in which the fault is detected.
    Wireless communication node.
  3.  前記障害情報は、前記無線通信ノードまたは当該無線通信ノードが形成するセルの位置、移動速度、飛行状態のうち少なくとも1つを含む、
     請求項1に記載の無線通信ノード。
    The fault information includes at least one of a position, a moving speed, and a flight state of the wireless communication node or a cell formed by the wireless communication node.
    2. The wireless communication node according to claim 1.
  4.  前記障害情報は、前記障害が発生したエリアを含む、
     請求項1に記載の無線通信ノード。
    The fault information includes an area where the fault occurred.
    2. The wireless communication node according to claim 1.
  5.  前記障害情報は、前記障害の検出から前記障害の復旧までにかかる時間を含む、
     請求項1に記載の無線通信ノード。
    The fault information includes a time required from detection of the fault to recovery from the fault.
    2. The wireless communication node according to claim 1.
  6.  無線通信ノードに接続される端末であって、
     前記無線通信ノードの上位ノードとの間に発生した障害を検出する制御部と、
     前記上位ノードに障害情報を送信する送信部と、
     を備え、
     前記障害情報は、前記端末の移動に係る情報を含む、
     端末。
    A terminal connected to a wireless communication node,
    a control unit for detecting a fault occurring between the wireless communication node and a host node;
    A transmitter for transmitting fault information to the upper node;
    Equipped with
    The fault information includes information related to movement of the terminal.
    Terminal.
PCT/JP2023/000350 2023-01-11 2023-01-11 Wireless communication node and terminal WO2024150287A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/000350 WO2024150287A1 (en) 2023-01-11 2023-01-11 Wireless communication node and terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/000350 WO2024150287A1 (en) 2023-01-11 2023-01-11 Wireless communication node and terminal

Publications (1)

Publication Number Publication Date
WO2024150287A1 true WO2024150287A1 (en) 2024-07-18

Family

ID=91896586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000350 WO2024150287A1 (en) 2023-01-11 2023-01-11 Wireless communication node and terminal

Country Status (1)

Country Link
WO (1) WO2024150287A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535904A (en) * 2010-08-13 2013-09-12 華為技術有限公司 Method for providing information, mobile station apparatus, base station apparatus, and communication apparatus
JP2014112809A (en) * 2012-12-05 2014-06-19 Fujitsu Ltd Base station and handover control method
WO2015115458A1 (en) * 2014-01-31 2015-08-06 京セラ株式会社 Base station, user terminal, and communication control method
JP2021536706A (en) * 2018-09-08 2021-12-27 オフィノ, エルエルシー Backhaul link connection information
US20220015011A1 (en) * 2019-03-28 2022-01-13 Huawei Technologies Co., Ltd. Communications Method And Apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535904A (en) * 2010-08-13 2013-09-12 華為技術有限公司 Method for providing information, mobile station apparatus, base station apparatus, and communication apparatus
JP2014112809A (en) * 2012-12-05 2014-06-19 Fujitsu Ltd Base station and handover control method
WO2015115458A1 (en) * 2014-01-31 2015-08-06 京セラ株式会社 Base station, user terminal, and communication control method
JP2021536706A (en) * 2018-09-08 2021-12-27 オフィノ, エルエルシー Backhaul link connection information
US20220015011A1 (en) * 2019-03-28 2022-01-13 Huawei Technologies Co., Ltd. Communications Method And Apparatus

Similar Documents

Publication Publication Date Title
WO2024150287A1 (en) Wireless communication node and terminal
WO2024154206A1 (en) Terminal
WO2023084760A1 (en) Network node, communication method, and communication system
WO2024171432A1 (en) Wireless base station and wireless communication method
WO2024171315A1 (en) Wireless base station and wireless communication method
WO2024171311A1 (en) Wireless base station and wireless communication method
WO2024209683A1 (en) Wireless base station and wireless communication method
WO2023067722A1 (en) Wireless base station, wireless communication system, and wireless communication method
WO2023080094A1 (en) Wireless base station, wireless communication system, and wireless communication method
WO2023090401A1 (en) Wireless communication node and wireless communication method
WO2023152987A1 (en) Terminal, base station, and communication method
WO2023162748A1 (en) Terminal, base station, and communication method
WO2023139942A1 (en) Terminal, base station, and communication method
WO2024171419A1 (en) Wireless base station and wireless communication method
WO2024171464A1 (en) Wireless base station and wireless communication method
WO2024069903A1 (en) Terminal and communication method
WO2024171399A1 (en) Terminal, communication method, and radio communication system
WO2024171400A1 (en) Terminal, base station, communication system, and communication method
WO2024069904A1 (en) Terminal and communication method
WO2024080000A1 (en) Terminal, base station, and communication method
WO2024171418A1 (en) Wireless base station and wireless communication method
WO2024069902A1 (en) Terminal, base station, and communication method
WO2024034102A1 (en) Terminal and communication method
WO2024100905A1 (en) Terminal, base station, and communication method
WO2024034101A1 (en) Terminal and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23915911

Country of ref document: EP

Kind code of ref document: A1