WO2024116940A1 - Production method for silver coating material, silver coating material, and energizing component - Google Patents

Production method for silver coating material, silver coating material, and energizing component Download PDF

Info

Publication number
WO2024116940A1
WO2024116940A1 PCT/JP2023/041654 JP2023041654W WO2024116940A1 WO 2024116940 A1 WO2024116940 A1 WO 2024116940A1 JP 2023041654 W JP2023041654 W JP 2023041654W WO 2024116940 A1 WO2024116940 A1 WO 2024116940A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
silver plating
plating layer
layer
coated material
Prior art date
Application number
PCT/JP2023/041654
Other languages
French (fr)
Japanese (ja)
Inventor
悠太郎 平井
健太郎 荒井
陽介 佐藤
恵理 土屋
Original Assignee
Dowaメタルテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaメタルテック株式会社 filed Critical Dowaメタルテック株式会社
Publication of WO2024116940A1 publication Critical patent/WO2024116940A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/46Electroplating: Baths therefor from solutions of silver
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment

Definitions

  • the present invention relates to a method for producing a silver-coated material that is useful as a material for contacts and terminal parts such as connectors, switches, and relays used in automotive and consumer electrical wiring. It also relates to a silver-coated material that can be obtained by the production method, and current-carrying parts that use the silver-coated material.
  • silver-coated material refers to a material on which a silver-coated layer is formed.
  • a “silver-coated layer” is a layer of silver formed on the surface of a material, and examples of this include a silver layer consisting of one or more silver-plated layers, and a silver layer obtained by subjecting such a silver layer to heat treatment.
  • materials used for contacts and terminal parts of connectors and switches are relatively inexpensive materials with excellent corrosion resistance and mechanical properties, such as copper or copper alloys and stainless steel, plated with tin, silver, gold, etc. depending on the required properties, such as electrical properties and solderability.
  • tin-plated materials are inexpensive but have poor corrosion resistance in high-temperature environments.
  • Gold-plated materials have excellent corrosion resistance and are highly reliable, but are expensive.
  • silver-plated materials have the advantage of being cheaper than gold-plated materials and having better corrosion resistance than tin-plated materials.
  • Patent Document 1 a method for obtaining silver-plated products with better abrasion resistance than conventional methods.
  • the method involves using a plating solution containing a specified amount of benzothiazoles or their derivatives.
  • Patent Document 1 By following the method disclosed in Patent Document 1, it is possible to significantly improve the wear resistance of the silver plating layer compared to conventional methods. However, it was found that the silver plating material obtained by the method of Patent Document 1 does not necessarily have sufficient peel resistance in areas that have been subjected to severe bending, and there is room for improvement. In addition, there is an increasing demand for improved durability against micro-friction wear for silver-coated materials used in vibrating environments, such as automotive terminals and connectors.
  • the present invention aims to provide a silver-coated material that has good resistance to peeling of the silver-coated layer in severely bent areas and also has good durability against micro-sliding abrasion.
  • the inventors have found that the above object can be achieved by forming a silver plating layer containing carbon and sulfur by electroplating on a normal silver plating layer to which no carbon or sulfur has been added using a silver plating solution containing benzothiazoles or their derivatives, and then constructing a modified silver coating layer derived from the multi-layer silver plating layer by heat treatment.
  • This specification discloses the following invention.
  • a method for producing a silver-coated material comprising the steps of: [2] The method for producing a silver-coated material described in [1] above, wherein the average thickness of the lower silver plating layer is 0.06 to 3.0 ⁇ m. [3] The method for producing a silver-coated material according to the above [1] or [2], wherein the upper silver plating layer has an average thickness of 0.3 to 10.0 ⁇ m. [4] The method for producing a silver-coated material according to any one of the above [1] to [3], wherein the silver plating solution used in the upper silver plating step contains one or more substances selected from benzothiazoles and their derivatives at a concentration of 0.01 to 0.80 mol/L.
  • n1 to n2 indicating a numerical range means “greater than or equal to n1 and less than or equal to n2.”
  • n1 and n2 are numerical values that satisfy n1 ⁇ n2.
  • the present invention makes it possible to provide a silver-coated material that has good resistance to peeling of the silver-coated layer in severely bent areas and also has good durability against micro-sliding wear. Therefore, the present invention contributes to improving the reliability of current-carrying parts such as connectors used as in-vehicle parts that are exposed to vibrations.
  • FIG. 2 is a schematic diagram illustrating a cross-sectional structure of an embodiment of a material to be subjected to a heat treatment step in the method for producing a silver-coated material of the present invention.
  • FIG. 2 is a schematic diagram illustrating a cross-sectional structure of an embodiment of a material after a heat treatment step in the method for producing a silver-coated material of the present invention.
  • 13 is an element concentration profile in the depth direction by XPS for the silver coating layer of the test material obtained in Example 3.
  • FIG. 1 shows a schematic cross-sectional structure of an embodiment of a material to be subjected to a heat treatment step in the manufacturing method of the silver-coated material of the present invention.
  • a lower silver plating layer 20 and an upper silver plating layer 30 are formed on a material 10.
  • the "material” referred to here means a material equivalent to the "material to be plated” for forming the lower silver plating layer 20.
  • the material 10 in the illustrated example has a base plating layer 2 on a base material 1.
  • the substrate 1 examples include copper or a copper alloy, stainless steel, aluminum or an aluminum alloy, an iron-nickel alloy, and a nickel-based alloy. Considering the use of the current-carrying part, a material having a substrate of copper or a copper alloy is preferable.
  • the undercoat plating layer 2 is an effective layer for ensuring sufficient adhesion of the silver coating layer to the substrate, and examples of the undercoat plating layer include a plating layer made of copper, nickel, or an alloy thereof. From the viewpoint of heat resistance, a nickel plating layer is preferable.
  • the lower silver plating layer 20 is a silver layer to which no carbon or sulfur has been added (unavoidable traces of carbon and sulfur are permitted).
  • the lower silver plating layer 20 may be formed by multiple silver plating processes.
  • the lower silver plating layer 20 is composed of a silver strike plating layer 3 and a silver plating layer 4 formed thereon.
  • the silver strike plating layer 3 is a very thin electrolytic silver plating layer with an average thickness of, for example, 0.001 to 0.05 ⁇ m or 0.001 to 0.02 ⁇ m, and is a silver film formed as necessary as a base treatment for forming the main silver plating layer.
  • the upper silver plating layer 30 is a silver plating layer to which carbon and sulfur have been added, and can be formed by the method described below.
  • FIG 2 shows a schematic example of a cross-sectional structure observable by a scanning electron microscope (SEM) of an embodiment of a material after a heat treatment step in the manufacturing method of the silver-coated material of the present invention.
  • a silver coating layer 40 derived from adjacent silver layers is formed by the heat treatment.
  • the silver plating layer 40 is derived from a lower silver plating layer 20 consisting of a silver strike plating layer 3 and a silver plating layer 4, and an upper silver plating layer 30.
  • a lower silver plating layer is formed on the above-mentioned material (material to be plated) using a silver plating solution that does not contain benzothiazoles and their derivatives.
  • the term "silver plating solution that does not contain benzothiazoles and their derivatives" is a provision for distinguishing the lower silver plating step from the upper silver plating step described below. That is, in the lower silver plating step, a silver plating layer can be formed by a conventionally known method. It is also possible to carry out the lower silver plating step by a plurality of plating steps, such as a silver strike plating step and a normal silver plating step.
  • the amount of carbon and sulfur mixed in the lower silver plating layer is sufficiently tolerable up to a level equivalent to that of an electric silver plating layer using a general cyan-based silver plating solution (e.g., a glossy silver plating solution, a matte silver plating solution, etc.).
  • a general cyan-based silver plating solution e.g., a glossy silver plating solution, a matte silver plating solution, etc.
  • the concentration of one or more substances selected from benzothiazoles and their derivatives in the silver plating solution is, for example, in the range of 0.001 mol/L or less, and it is preferable that the C/Ag atomic ratio representing the ratio of the number of carbon and silver atoms in the silver plating layer is 0.020 or less, and the S/Ag atomic ratio representing the ratio of the number of sulfur and silver atoms is 0.003 or less.
  • an electrolytic silver plating method using a cyanide-based silver plating solution may be used for both the formation of the silver strike plating layer and the formation of the silver plating layer thereon.
  • the use of a silver plating solution using a complexing agent other than a cyanide compound is not excluded.
  • the average thickness of the lower silver plating layer is preferably set in the range of 0.06 to 3.0 ⁇ m, and more preferably in the range of 0.1 to 1.0 ⁇ m. Considering economic efficiency, it is preferably set in the range of 0.5 times or less the average thickness of the upper silver plating layer described below.
  • electrolytic silver plating can be performed in a silver plating solution made of an aqueous solution containing potassium silver cyanide (K[Ag(CN) 2 ]) and potassium cyanide (KCN) under conditions set at a current density of 1 to 10 A/ dm2 and a current application time of 1 to 90 seconds.
  • the silver plating solution can contain additives such as brighteners (e.g., selenium) as necessary.
  • the silver plating layer 4 obtained under such conditions is preferably a silver plating layer containing 99.0 mass% or more of Ag.
  • a silver plating layer containing carbon and sulfur is formed on the lower silver plating layer 20. It is preferable to form a silver plating layer in which the C/Ag atomic ratio, which represents the ratio of the number of carbon and silver atoms, is, for example, 0.050 to 0.200 and the S/Ag atomic ratio, which represents the ratio of the number of sulfur and silver atoms, is, for example, 0.005 to 0.050, in measurement data by XPS (X-ray photoelectron spectroscopy) for the vicinity of the center of the thickness of the lower silver plating layer 20.
  • Such an upper silver plating layer 30 containing carbon and sulfur can be formed, for example, by an electric silver plating method as follows.
  • a cyanide-containing silver plating solution As the silver plating solution, it is preferable to use a cyanide-containing silver plating solution.
  • the cyanide-containing substance and silver-containing substance which are the main components of the cyanide-containing silver plating solution, conventionally known substances can be used.
  • an aqueous solution containing potassium silver cyanide (K[Ag(CN) 2 ]) or silver cyanide (AgCN) and potassium cyanide (KCN) or sodium cyanide (NaCN) is suitable.
  • Benzothiazole C 7 H 5 NS
  • the benzothiazole is preferably a benzothiazole having a mercapto group (-SH), such as 2-mercaptobenzothiazole.
  • sodium 2-mercaptobenzothiazole sodium mercaptobenzothiazole (sodium mercaptobenzothiazole (SMBT)), zinc-2-mercaptobenzothiazole, 5-chloro-2-mercaptobenzothiazole, 6-amino-2-mercaptobenzothiazole, 6-nitro-2-mercaptobenzothiazole, 2-mercapto-5-methoxybenzothiazole, etc.
  • SMBT sodium 2-mercaptobenzothiazole
  • zinc-2-mercaptobenzothiazole 5-chloro-2-mercaptobenzothiazole, 6-amino-2-mercaptobenzothiazole, 6-nitro-2-mercaptobenzothiazole, 2-mercapto-5-methoxybenzothiazole, etc.
  • alkali metal salts of benzothiazoles are preferred, and for example, sodium salts of benzothiazoles such as sodium 2-mercaptobenzothiazole (sodium mercaptobenzothiazole (
  • the reduction in the friction coefficient exerts an effect of suppressing the occurrence of adhesion due to insertion/removal and sliding, and this is also thought to be effective in improving wear resistance. Since the components derived from the organic additives are contained in the silver coating layer even after the heat treatment described below, the above-mentioned effect of improving wear resistance is maintained. In addition, the use of mercaptobenzothiazole or its derivatives makes it easier to incorporate the components of the organic additives into the silver plating layer, which is preferable.
  • the concentration of free cyanide in the silver plating solution can be set, for example, in the range of 3 to 70 g/L, preferably 10 to 70 g/L, and even more preferably 15 to 60 g/L.
  • the concentration of free cyanide in the silver plating solution can be determined by diluting the silver plating solution with water, adding an aqueous solution of potassium iodide, and dripping an aqueous solution of silver nitrate until the silver plating solution becomes cloudy, and then measuring the amount of the dripped solution.
  • the concentration of one or more substances selected from benzothiazoles and their derivatives in the silver plating solution can be set, for example, in the range of 0.01 to 0.80 mol/L, preferably 0.015 to 0.35 mol/L, more preferably 0.03 to 0.3 mol/L, and even more preferably 0.07 to 0.25 mol/L.
  • the concentration of silver in the silver plating solution can be set, for example, in the range of 15 to 150 g/L, and more preferably in the range of 30 to 120 g/L.
  • the concentration of potassium silver cyanide or silver cyanide in the silver plating solution can be set, for example, in the range of 30 to 220 g/L, and more preferably in the range of 50 to 200 g/L.
  • the concentration of potassium cyanide or sodium cyanide in the silver plating solution can be set, for example, in the range of 30 to 150 g/L, and more preferably in the range of 35 to 145 g/L, and even more preferably in the range of 38 to 110 g/L.
  • the concentration of benzothiazoles or their alkali metal salts in the silver plating solution can be set, for example, in the range of 15 to 70 g/L, and may be controlled in the range of 20 to 50 g/L.
  • the electrolytic silver plating for forming the upper silver plating layer 30 is preferably performed at a liquid temperature of 15 to 50°C, more preferably 18 to 47°C.
  • the current density of this electrolytic silver plating can be set in the range of, for example, 0.5 to 12 A/ dm2 , and more preferably 0.5 to 10 A/ dm2 .
  • the plating time may be set according to the application so that the average thickness of the upper silver plating layer 30 formed by this electrolytic silver plating is, for example, in the range of 0.3 to 10.0 ⁇ m, more preferably 0.5 to 3.0 ⁇ m.
  • the lower silver plating layer 20 is a normal silver plating layer with a high silver concentration and a low carbon concentration.
  • the upper silver plating layer 30 has a relatively lower silver concentration than the lower silver plating layer 20 due to the introduction of carbon and sulfur.
  • the heat treatment conditions are such that the silver coating layer after the upper silver plating process is held in a temperature range of 250 to 400 ° C for 3 to 60 seconds, more preferably 3 to 30 seconds.
  • a heat pattern is adopted in which the maximum temperature T MAX of the silver coating layer is in the range of 250 to 400 ° C, and the time during which the temperature of the silver coating layer is 250 ° C or more and Tmax (° C) or less is in the range of 3 to 60 seconds, more preferably 3 to 30 seconds. If the maximum temperature Tmax is too low or the holding time at 250 to 400 ° C is too short, there is a risk that the effect of improving the peel resistance of the silver coating layer at the severe bending part cannot be sufficiently obtained.
  • This heat treatment can be performed in an air atmosphere. In actual product manufacturing sites, the heat treatment conditions can be controlled appropriately by determining in advance through preliminary experiments the heat curve (temperature change over time) of the silver coating layer according to the thickness of the substrate in the heating equipment to be used.
  • the silver-coated material according to the present invention obtained through the above-mentioned lower silver plating process, upper silver plating process and heat treatment process has a significantly improved durability against fretting wear, and the peeling resistance of the silver coating layer at the site subjected to severe bending is as excellent as that of a general silver-plated material.
  • the silver coating layer has a high silver concentration both in the region near the outermost surface in the depth direction and in the region near the substrate, and the silver concentration is low in the region between them.
  • carbon in the silver coating tends to be concentrated toward the center in the depth direction, and in particular, a region with a high silver concentration and a low carbon concentration is formed near the substrate of the silver coating layer.
  • the cumulative sputtering time at a depth position where the atomic percentage of silver decreases to 1/2 of the maximum value in a depth direction element concentration profile of the silver coating layer by XPS (X-ray photoelectron spectroscopy) is t 0 (minutes)
  • the maximum point of the atomic percentage of silver in a region (the outermost surface side of the sample) where the cumulative sputtering time is shorter than t 0 / 2 on the silver profile curve is point P 1
  • the maximum point of the atomic percentage of silver in a region (the center side of the sample) where the cumulative sputtering time is longer than t 0 / 2 is point P 2
  • the minimum point of the atomic percentage of silver between points P 1 and P 2 is point Q
  • the ratio Ag(Q)/Ag(P 1 ) of the atomic percentage of silver at point Q to the atomic percentage of silver at point P 1 is 0.90
  • FIG. 4 shows an element concentration profile in the depth direction by XPS for a silver coating layer obtained in Example 3 (heat treatment conditions: maximum temperature of 350° C., holding time in the temperature range of 250° C. to the maximum temperature of 10 seconds) described later.
  • the cumulative sputtering time t 0 by argon at the depth position where the atomic percentage of silver decreases to 1/2 of the maximum value is 47 minutes, and t 0 /2 is 23.5 minutes.
  • the maximum atomic percentage point of silver in the region (the outermost surface side of the sample) where the cumulative sputtering time is less than t 0 /2 on the silver profile curve is indicated as P 1
  • the maximum atomic percentage point of silver in the region (the center side of the sample) where the cumulative sputtering time is greater than t 0 /2 is indicated as P 2
  • the minimum atomic percentage point of silver between points P 1 and P 2 is indicated as Q.
  • the ratio Ag(Q)/Ag( P1 ) of the atomic ratio of silver at point Q to the atomic ratio of silver at point P1 is 0.824, which satisfies the above-mentioned regulation of the present invention of "0.90 or less".
  • the ratio Ag(Q)/Ag( P2 ) of the atomic ratio of silver at point P2 to the atomic ratio of silver at point P2 is 0.820, which also satisfies the above-mentioned regulation of the present invention of "0.90 or less".
  • the C/Ag atomic ratio at the depth position corresponding to point Q is 0.278, which satisfies the above-mentioned regulation of the present invention of "0.15 or more”.
  • the C/Ag atomic ratio at the depth position corresponding to point P2 is 0.054, which also satisfies the above-mentioned regulation of the present invention of "0.10 or less".
  • the silver-coated material according to the present invention preferably has an average crystallite diameter of 20 nm or more in the silver coating layer obtained by heat treatment. It is believed that by not making the silver crystal grains excessively fine, plastic deformation of the silver plating layer occurs moderately easily, which is particularly advantageous for improving the peel resistance of the silver coating layer containing carbon and sulfur in areas subjected to severe bending processing. There is no particular upper limit for the average crystallite diameter, but it may be, for example, 120 nm or less.
  • the average thickness of the silver coating layer in the silver-coated material according to the present invention is preferably 0.5 to 5 ⁇ m, and more preferably 0.7 to 3 ⁇ m, as measured, for example, with a fluorescent X-ray film thickness gauge.
  • a typical form of the silver-coated material according to the present invention is a sheet material (silver-coated metal sheet material) having a silver coating layer on at least one surface of the metal plate.
  • the sheet thickness can be, for example, 0.05 to 3.5 mm, and is more preferably 0.1 to 3.0 mm.
  • sheet material refers to a sheet-like metal material. Thin sheet-like metal materials are sometimes called “foils,” and such “foils” are also included in the “sheet material” referred to here. Long sheet-like metal materials wound into a coil are also included in the “sheet material.” The thickness of the sheet-like metal material is called the "sheet thickness.”
  • the above silver-coated material can be processed by a known method to obtain current-carrying parts such as connectors, switches, relays, etc., and is particularly applicable to high-voltage parts.
  • current-carrying parts such as connectors, switches, relays, etc.
  • Example 1 (Preprocessing) A rolled plate of 67 mm x 50 mm x 0.3 mm made of oxygen-free copper (C1020, 1/2H) was prepared as the substrate. This substrate was used as the cathode and the stainless steel plate was used as the anode in an alkaline degreasing solution, and electrolytic degreasing was performed for 30 seconds at a voltage of 5 V. The substrate was then rinsed with water and immersed in a 3% aqueous sulfuric acid solution for 15 seconds for pickling. The substrate, whose surface had been cleaned in this way, was subjected to the following steps in order to produce a silver-coated material.
  • Nickel base plating process In a dull nickel plating solution consisting of an aqueous solution containing 540 g/L of nickel sulfamate tetrahydrate, 25 g/L of nickel chloride, and 35 g/L of boric acid, electroplating was performed for 70 seconds under conditions of a solution temperature of 50° C. and a current density of 7 A/dm 2 while stirring at 500 rpm with a stirrer, using the pretreated substrate as the cathode and a nickel electrode plate as the anode, to form a dull nickel undercoat plating layer on the substrate.
  • the thickness of the undercoat nickel plating layer was measured at the center of the surface of this plate sample with a fluorescent X-ray film thickness meter (SFT-110A, manufactured by Hitachi High-Tech Science Corporation) and found to be 1 ⁇ m.
  • SFT-110A fluorescent X-ray film thickness meter
  • Silver strike plating step In a silver strike plating solution consisting of an aqueous solution containing 3 g/L of potassium silver cyanide (K[Ag(CN) 2 ]) and 90 g/L of potassium cyanide (KCN), the plate material sample on which the above-mentioned undercoat nickel plating layer was formed was used as the cathode, and a platinum-coated titanium electrode plate was used as the anode, and electroplating was carried out at room temperature (25°C) with a current density of 2.0 A/ dm2 for 10 seconds while stirring with a stirrer at 500 rpm, forming a silver strike plating layer with an average thickness of about 0.01 ⁇ m. The silver strike plating solution was then thoroughly washed away by rinsing with water.
  • K[Ag(CN) 2 ] potassium silver cyanide
  • KCN potassium cyanide
  • Silver plating step In a silver plating solution consisting of an aqueous solution containing 175 g/L of potassium silver cyanide (K[Ag(CN) 2 ]), 95 g/L of potassium cyanide (KCN), and further containing an amount of potassium selenocyanate (KSeCN) such that the selenium concentration was 37 mg/L, the plate material sample on which the silver strike plating layer was formed was used as the cathode, and the silver electrode plate was used as the anode, and electroplating was performed for 4 seconds under conditions of a solution temperature of 18°C and a current density of 7 A/ dm2 while stirring at 500 rpm with a stirrer, to form a silver plating layer.
  • the thickness of the lower silver plating layer consisting of the silver plating layer and the silver strike plating layer formed here was measured at the center of the surface of this plate material sample by the fluorescent X-ray thickness meter and was found to be 0.2 ⁇ m.
  • K[Ag(CN) 2 ] potassium silver cyanide
  • KCN potassium cyanide
  • KCN 2-mercaptobenzothiazole sodium
  • the concentration of free cyan in the silver plating solution was 38 g/L.
  • the total thickness of the lower silver plating layer and the upper silver plating layer at the center of the surface of this plate material sample was measured by the fluorescent X-ray film thickness meter described above, and was found to be 1.2 ⁇ m.
  • the thickness of each silver plating layer is shown in Table 1.
  • the silver coating layer of the plate sample obtained in the above upper silver plating process was subjected to heat treatment using the temperature control function of the tabletop hot stirrer. Specifically, the temperature of the tabletop hot stirrer was set to 300°C, and after the temperature stabilized at the set value, the plate sample was placed on the flat plate surface of the tabletop hot stirrer, and the silver coating layer on one side of the plate sample was brought into close contact with the plate surface of the tabletop hot stirrer. 30 seconds after the start of placement, the plate sample was removed from the plate surface of the tabletop hot stirrer and allowed to cool in air at room temperature. That is, the placement time was 30 seconds.
  • the obtained silver-coated material was used as a test material and subjected to the following tests. (180° bending test) After bending the test plate material 180°, the bent portion was bent back to the original plate shape, and the outer and inner surfaces of the bent portion were observed to check whether peeling of the silver coating layer occurred.
  • the durability number under these conditions is 3500 times or more, it can be determined that the silver-coated layer has excellent wear resistance against fine sliding. Therefore, those with a durability of less than 3,500 cycles were rated as ⁇ (freak abrasion resistance: insufficient), those with a durability of 3,500 or more cycles but less than 5,000 cycles were rated as ⁇ (freak abrasion resistance: good), and those with a durability of 5,000 cycles or more were rated as ⁇ (freak abrasion resistance: excellent), and those with a rating of ⁇ or higher were judged to pass.
  • the durability of the silver-coated material obtained in this example was 3,700 cycles, and was rated as "good.”
  • the (111) peak appearing at 2 ⁇ of approximately 38°, the (200) peak appearing at 2 ⁇ of approximately 44°, the (220) peak appearing at 2 ⁇ of approximately 64°, and the (311) peak appearing at 2 ⁇ of approximately 77° were used.
  • Example 2 A silver-coated material was produced in the same manner as in Example 1, except that in the heat treatment step, the temperature of the tabletop hot stirrer was set to 350° C. and the time of placement on the tabletop hot stirrer was 5 seconds.
  • the silver-coated material obtained in this example was rated as ⁇ for peel resistance in a 180° bending test, and rated as ⁇ for fretting wear resistance in a fretting durability test (endurance count: 8200 times).
  • the contact resistance was 0.23 m ⁇ , and the average crystallite diameter of the silver coating layer was 25.0 nm.
  • Example 3 A silver-coated material was produced in the same manner as in Example 1, except that in the heat treatment step, the set temperature of the tabletop hot stirrer was 350° C. and the time of placement on the tabletop hot stirrer was 10 seconds.
  • the silver-coated material obtained in this example was rated as ⁇ for peel resistance in a 180° bending test, and rated as ⁇ for fretting wear resistance in a fretting durability test (10,000 cycles).
  • the contact resistance was 0.18 m ⁇ , and the average crystallite diameter of the silver coating layer was 88.8 nm.
  • Example 1 The silver-coated material was used as a test material after the upper silver plating step was completed in the same manner as in Example 1, without carrying out the heat treatment step.
  • the silver-coated material obtained in this example was rated x for peel resistance in a 180° bending test, and rated ⁇ for fretting wear resistance in a fretting durability test (endurance count 6000 times).
  • the contact resistance was 0.29 m ⁇ , and the average crystallite diameter of the silver coating layer was 16.6 nm. It is clear that without heat treatment, the peel resistance of the silver coating layer at the site subjected to severe bending is not improved.
  • Example 2 A silver-coated material was produced in the same manner as in Example 1, except that in the lower silver plating step, only a silver strike plating layer was formed and the formation of a main silver plating layer was omitted, and the heat treatment step was omitted.
  • the silver-coated material obtained in this example was rated x for peel resistance in a 180° bending test, and rated ⁇ for fretting wear resistance in a fretting durability test (durability of 4,800 cycles).
  • This silver-coated material corresponds to the technology disclosed in Patent Document 1. In this case, it is found that the peel resistance of the silver-coated layer is poor at the portion subjected to severe bending.
  • Example 3 A silver-coated material was produced in the same manner as in Example 1, except that in the lower silver plating step, only a silver strike plating layer was formed and the formation of a main silver plating layer was omitted, and in the heat treatment step, the set temperature of the tabletop hot stirrer was 300° C. and the time for which the material was placed on the tabletop hot stirrer was 10 seconds.
  • the silver-coated material obtained in this example was rated as ⁇ for peel resistance in a 180° bending test, and rated as ⁇ for fretting wear resistance in a fretting durability test (durability of 1800 cycles).
  • the silver strike plating layer formed in this example is very thin, with an average thickness of about 0.01 ⁇ m, and is therefore not considered to be the lower silver plating layer.
  • the lower plating layer was not formed, it was not possible to achieve both the improvement in peel resistance and the improvement in fretting wear resistance at the site subjected to severe bending, even when the heat treatment process was performed.
  • Example 4 A silver-coated material was produced in the same manner as in Example 1, except that the lower silver plating step and the upper silver plating step were changed to the silver plating step described below, and the heat treatment step was omitted.
  • a silver strike plating layer was formed in the same manner as in Example 1. Next, in a silver plating solution containing 175 g/L potassium silver cyanide (K[Ag(CN) 2 ]), 95 g/L potassium cyanide (KCN), and an amount of potassium selenocyanate (KSeCN) such that the selenium concentration was 69 mg/L, electroplating was performed with the plate material sample on which the silver strike plating layer was formed as the cathode and the silver electrode plate as the anode under conditions of a solution temperature of 18°C, a current density of 5 A/ dm2 , and a current application time of 120 seconds while stirring at 500 rpm with a stirrer, to form a silver plating layer.
  • K[Ag(CN) 2 ] potassium silver cyanide
  • KCN potassium selenocyanate
  • KSeCN potassium selenocyanate
  • the thickness of the silver coating layer consisting of the silver plating layer and the silver strike plating layer formed here was measured at the center of the surface of this plate material sample by the fluorescent X-ray thickness meter and found to be 5 ⁇ m.
  • This silver coating layer is not a plating layer intended to introduce carbon or sulfur, but a known bright silver plating layer, and therefore, for convenience, the thickness is shown in the "Lower Silver Plating Layer" column in Table 1 (the same applies to Comparative Example 5 described below).
  • the silver-coated material obtained in this example was rated as ⁇ for peel resistance in a 180° bending test, and rated as x for fretting wear resistance in a fretting durability test (3000 cycles).
  • the contact resistance was 0.20 m ⁇ , and the average crystallite diameter of the silver coating layer was 27.8 nm. It can be seen that when the plating solution does not contain a silver coating layer obtained by using benzothiazoles or their derivatives, the fretting wear resistance is poor.
  • Comparative Example 5 A silver-coated material was produced in the same manner as in Comparative Example 4, except that a silver plating solution containing potassium selenocyanate (KSeCN) in an amount giving a selenium concentration of 37 mg/L was used, and the current density during electroplating was changed from 5 A/ dm2 to 7 A/ dm2 and the current application time was changed from 120 seconds to 90 seconds.
  • KSeCN potassium selenocyanate
  • the silver-coated material obtained in this example was rated as ⁇ for peel resistance in a 180° bending test, and rated as x for fretting wear resistance in a fretting durability test (endurance count 1500 times).
  • the contact resistance was 0.18 m ⁇ , and the average crystallite diameter of the silver coating layer was 75.0 nm.
  • this example also shows that when the plating solution does not contain a silver coating layer obtained by using benzothiazoles or their derivatives, the fretting wear resistance is poor.
  • the element concentration profile in the depth direction was measured by XPS for each of the elements C, O, S, Ag, Ni, and Cu in Comparative Example 1, and for each of the elements C, K, O, N, S, Ag, and Ni in Example 3.
  • the X-ray photoelectron spectrometer used was a PHI5000 VersaProbeIII manufactured by ULVAC-PHI, Inc.
  • the measurement was performed under the following conditions: ultimate vacuum: 10 ⁇ 7 Pa, excitation source: monochromatic AlK ⁇ , output: 25 W, acceleration voltage: 15 kV, beam size: 100 ⁇ m ⁇ , incidence angle: 90 deg, and irradiation with an electron beam from an electron neutralization gun at an emission current: 20 ⁇ A, bias voltage: 1.0 V, and acceleration voltage: 30.0 V, and with argon ions from an argon ion gun at an ion species: Ar + , acceleration voltage: 0.11 kV, and emission current: 7 mA, with a photoelectron take-off angle: 45 deg, number of integrations: 5, integration time: 40 ms (20 ms ⁇ 2), pass energy: 140 eV, and measurement energy interval: 0.25 eV/step.
  • the spectral species used to determine the atomic concentration were the 3d orbital binding energy peak (Ag3d) for Ag, the 1s orbital binding energy peak (C1s) for C, and the 2p orbital binding energy peak (S2p) for S, and the Shirley method was used for background processing.
  • 3 and 4 show element concentration profiles in the depth direction by XPS for Comparative Example 1 and Example 3, respectively.
  • the above-mentioned points P1 , P2 , and Q are shown in the figures.
  • Table 2 summarizes the evaluation based on these element concentration profiles in the depth direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

[Problem] To provide a silver coating material which has favorable peeling resistance of a silver coating layer in a severely bent part and also has favorable durability against fine sliding wear. [Solution] This production method for a silver coating material comprises: a lower silver plating step for forming a lower silver-plated layer on a material using a silver plating solution not containing benzothiazoles and derivatives thereof; an upper silver plating step for forming an upper silver-plated layer on the lower silver-plated layer by means of an electroplating method using a silver plating solution containing at least one substance selected from among benzothiazoles and derivatives thereof; and a heat treatment step for holding the lower silver-plated layer and the upper silver-plated layer in the temperature range of 250-400ºC for 3-60 seconds.

Description

銀被覆材の製造方法、銀被覆材および通電部品Method for manufacturing silver-coated material, silver-coated material and current-carrying component
 本発明は、車載用や民生用の電気配線に使用されるコネクタ、スイッチ、リレーなどの接点や、端子部品の材料として有用な銀被覆材の製造方法に関する。また、その製造方法によって得ることができる銀被覆材、およびその銀被覆材を材料に用いた通電部品に関する。ここで、「銀被覆材」とは銀被覆層が形成されている材料を意味する。「銀被覆層」は素材の表面上に形成された銀の層であり、1層または2層以上の銀めっき層からなる銀層や、それらの銀層に熱処理を加えて得られた銀層などがこれに該当する。 The present invention relates to a method for producing a silver-coated material that is useful as a material for contacts and terminal parts such as connectors, switches, and relays used in automotive and consumer electrical wiring. It also relates to a silver-coated material that can be obtained by the production method, and current-carrying parts that use the silver-coated material. Here, "silver-coated material" refers to a material on which a silver-coated layer is formed. A "silver-coated layer" is a layer of silver formed on the surface of a material, and examples of this include a silver layer consisting of one or more silver-plated layers, and a silver layer obtained by subjecting such a silver layer to heat treatment.
 従来、コネクタやスイッチなどの接点や端子部品などの材料として、銅または銅合金、ステンレス鋼など、比較的安価で耐食性や機械的特性などに優れた素材に、電気特性、はんだ付け性などの必要な特性に応じて、錫、銀、金などのめっきを施しためっき材が使用されている。これらのうち、錫めっき材は、安価であるが高温環境下における耐食性に劣る。金めっき材は、耐食性に優れ信頼性が高いが、高コストである。一方、銀めっき材は、金めっき材と比べて安価であり、錫めっき材と比べて耐食性に優れるという利点を持つ。  Traditionally, materials used for contacts and terminal parts of connectors and switches are relatively inexpensive materials with excellent corrosion resistance and mechanical properties, such as copper or copper alloys and stainless steel, plated with tin, silver, gold, etc. depending on the required properties, such as electrical properties and solderability. Of these, tin-plated materials are inexpensive but have poor corrosion resistance in high-temperature environments. Gold-plated materials have excellent corrosion resistance and are highly reliable, but are expensive. On the other hand, silver-plated materials have the advantage of being cheaper than gold-plated materials and having better corrosion resistance than tin-plated materials.
 コネクタやスイッチなどの接点や端子部品などの材料には、コネクタの挿抜やスイッチの摺動に伴う耐摩耗性も要求される。しかし、銀めっき材は軟質で摩耗し易いため、銀めっき材を接続端子などの材料として使用すると、挿抜や摺動により凝着して凝着摩耗が生じ易くなったり、接続端子の挿入時に表面が削られて摩擦係数が高くなり挿入力が増加したりする問題があった。 Materials for contacts and terminal parts of connectors and switches are required to be resistant to wear caused by the insertion and removal of connectors and the sliding of switches. However, because silver-plated materials are soft and easily worn, there are problems with using silver-plated materials as materials for connection terminals, etc., as they can easily become worn due to adhesion caused by insertion and removal or sliding, or the surface can be scraped off when the connection terminal is inserted, increasing the coefficient of friction and increasing the insertion force.
 本出願人は、従来よりも耐摩耗性に優れた銀めっき材を得る手法を特許文献1に開示した。その手法は、所定量のベンゾチアゾール類またはその誘導体を含むめっき液を使用するというものである。 The applicant disclosed in Patent Document 1 a method for obtaining silver-plated products with better abrasion resistance than conventional methods. The method involves using a plating solution containing a specified amount of benzothiazoles or their derivatives.
特開2022-48959号公報JP 2022-48959 A
 特許文献1に開示の手法に従えば、銀めっき層の耐摩耗性を従来よりも顕著に向上させることができる。しかし、特許文献1の手法で得られた銀めっき材では、厳しい曲げ加工を施した部位などにおける銀めっき層の耐剥離性に関しては、必ずしも十分であるとは言えず、改善の余地があることがわかった。また、自動車用の端子、コネクタなど、振動する環境で使用される銀被覆材には、微摺動磨耗に対する耐久性改善の要求も高まっている。 By following the method disclosed in Patent Document 1, it is possible to significantly improve the wear resistance of the silver plating layer compared to conventional methods. However, it was found that the silver plating material obtained by the method of Patent Document 1 does not necessarily have sufficient peel resistance in areas that have been subjected to severe bending, and there is room for improvement. In addition, there is an increasing demand for improved durability against micro-friction wear for silver-coated materials used in vibrating environments, such as automotive terminals and connectors.
 本発明は、厳しい曲げ加工部での銀被覆層の耐剥離性が良好で、かつ微摺動磨耗に対する耐久性も良好な銀被覆材を提供することを目的とする。 The present invention aims to provide a silver-coated material that has good resistance to peeling of the silver-coated layer in severely bent areas and also has good durability against micro-sliding abrasion.
 発明者らは検討の結果、炭素や硫黄が添加されていない通常の銀めっき層の上に、ベンゾチアゾール類またはその誘導体を含む銀めっき液を用いた電気めっきにより炭素および硫黄が導入された銀めっき層を形成し、その後、熱処理によって上記複層の銀めっき層に由来する改質された銀被覆層を構築することにより、上記目的が達成できることを見出した。本明細書では以下の発明を開示する。 As a result of their investigations, the inventors have found that the above object can be achieved by forming a silver plating layer containing carbon and sulfur by electroplating on a normal silver plating layer to which no carbon or sulfur has been added using a silver plating solution containing benzothiazoles or their derivatives, and then constructing a modified silver coating layer derived from the multi-layer silver plating layer by heat treatment. This specification discloses the following invention.
 [1]素材上に、ベンゾチアゾール類およびその誘導体を含まない銀めっき液を用いて下部銀めっき層を形成する下部銀めっき工程と、
 前記下部銀めっき層の上に、ベンゾチアゾール類およびその誘導体から選ばれる1種以上の物質を含む銀めっき液を用いた電気めっき法により上部銀めっき層を形成する上部銀めっき工程と、
 前記下部銀めっき層および上部銀めっき層を250~400℃の温度域に3~60秒保持する熱処理工程と、
を含む銀被覆材の製造方法。
 [2]前記下部銀めっき層の平均厚さが0.06~3.0μmである、上記[1]に記載の銀被覆材の製造方法。
 [3]前記上部銀めっき層の平均厚さが0.3~10.0μmである、上記[1]または[2]に記載の銀被覆材の製造方法。
 [4]前記上部銀めっき工程で使用する銀めっき液は、ベンゾチアゾール類およびその誘導体から選ばれる1種以上の物質を0.01~0.80モル/Lの濃度で含むものである、上記[1]~[3]のいずれかに記載の銀被覆材の製造方法。
 [5]前記上部銀めっき工程において、前記ベンゾチアゾール類およびその誘導体から選ばれる1種以上の物質が、メルカプトベンゾチアゾールおよびその誘導体から選ばれる1種以上の物質である、上記[1]~[4]のいずれかに記載の銀被覆材の製造方法。
 [6]前記上部銀めっき工程において、前記ベンゾチアゾール類およびその誘導体から選ばれる1種以上の物質が、ベンゾチアゾール類およびそのアルカリ金属塩から選ばれる1種以上の物質である、上記[1]~[4]のいずれかに記載の銀被覆材の製造方法。
 [7]前記下部銀めっき工程に供する前記素材は、銅または銅合金を基材に持つものである、上記[1]~[6]のいずれかに記載の銀被覆材の製造方法。
 [8]前記下部銀めっき工程に供する前記素材は、前記下部銀めっき層を形成する表面にニッケルめっき層を有するものである、上記[1]~[7]のいずれかに記載の銀被覆材の製造方法。
 [9]前記下部銀めっき層は、銀ストライクめっき層と、その上の銀めっき層からなるものである、上記[1]~[8]のいずれかに記載の銀被覆材の製造方法。
 [10]銅または銅合金を基材に持つ素材の表面に銀被覆層が形成されている銀被覆材であって、XPS(X線光電子分光分析法)による前記銀被覆層の深さ方向元素濃度プロファイルにおいて、銀の原子割合が最大値の1/2に減少する深さ位置の累積スパッタ時間をt(分)とし、銀のプロファイル曲線上で、累積スパッタ時間がt/2より小さい領域(試料最表面側)での銀の原子割合最大点を点P、累積スパッタ時間がt/2より大きい領域(試料中心側)での銀の原子割合最大点を点P、点Pと点Pの間での銀の原子割合最小点を点Qとするとき、点Qでの銀の原子割合Ag(Q)と点Pでの銀の原子割合Ag(P)の比Ag(Q)/Ag(P)が0.90以下、前記Ag(Q)と点Pでの銀の原子割合Ag(P)の比Ag(Q)/Ag(P)が0.90以下、点Qに相当する深さ位置でのC/Ag原子比が0.15以上、かつ点Pに相当する深さ位置でのC/Ag原子比が0.10以下である銀被覆材。
 [11]前記銀被覆層の銀の平均結晶子径が20nm以上である、上記[10]に記載の銀被覆材。
 [12]上記[10]または[11]に記載の銀被覆材を材料に用いた通電部品。
[1] a lower silver plating step of forming a lower silver plating layer on a material using a silver plating solution that does not contain benzothiazoles and their derivatives;
an upper silver plating step of forming an upper silver plating layer on the lower silver plating layer by electroplating using a silver plating solution containing one or more substances selected from benzothiazoles and derivatives thereof;
a heat treatment step of holding the lower silver plating layer and the upper silver plating layer at a temperature range of 250 to 400° C. for 3 to 60 seconds;
A method for producing a silver-coated material comprising the steps of:
[2] The method for producing a silver-coated material described in [1] above, wherein the average thickness of the lower silver plating layer is 0.06 to 3.0 μm.
[3] The method for producing a silver-coated material according to the above [1] or [2], wherein the upper silver plating layer has an average thickness of 0.3 to 10.0 μm.
[4] The method for producing a silver-coated material according to any one of the above [1] to [3], wherein the silver plating solution used in the upper silver plating step contains one or more substances selected from benzothiazoles and their derivatives at a concentration of 0.01 to 0.80 mol/L.
[5] The method for producing a silver-coated material according to any one of [1] to [4] above, wherein in the upper silver plating step, the one or more substances selected from benzothiazoles and derivatives thereof are one or more substances selected from mercaptobenzothiazole and derivatives thereof.
[6] The method for producing a silver-coated material according to any one of [1] to [4] above, wherein in the upper silver plating step, the one or more substances selected from benzothiazoles and derivatives thereof are one or more substances selected from benzothiazoles and alkali metal salts thereof.
[7] The method for producing a silver-coated material according to any one of [1] to [6] above, wherein the material subjected to the lower silver plating step has a copper or copper alloy base material.
[8] The method for producing a silver-coated material according to any one of [1] to [7] above, wherein the material subjected to the lower silver plating step has a nickel plating layer on the surface on which the lower silver plating layer is to be formed.
[9] The method for producing a silver-coated material according to any one of [1] to [8] above, wherein the lower silver plating layer comprises a silver strike plating layer and a silver plating layer thereon.
[10] A silver-coated material having a silver coating layer formed on the surface of a material having a copper or copper alloy as a base material, wherein, in a depth direction element concentration profile of the silver coating layer by XPS (X-ray photoelectron spectroscopy), the cumulative sputtering time at a depth position where the atomic ratio of silver decreases to 1/2 of the maximum value is t 0 (minutes), and on the silver profile curve, the maximum point of the atomic ratio of silver in a region (the outermost surface side of the sample) where the cumulative sputtering time is shorter than t 0 /2 is point P 1 , the maximum point of the atomic ratio of silver in a region (the center side of the sample) where the cumulative sputtering time is longer than t 0 /2 is point P 2 , and the minimum point of the atomic ratio of silver between points P 1 and P 2 is point Q, the ratio Ag(Q)/Ag(P 1 ) of the atomic ratio of silver at point Q to the atomic ratio of silver at point P 1 is 0.90 or less, and the ratio Ag(Q)/Ag(P 1 ) of the atomic ratio of silver at point P 2 is 0.90 or less. a ratio Ag(Q)/Ag( P2 ) of 0.90 or less, a C/Ag atomic ratio at a depth position corresponding to point Q of 0.15 or more, and a C/Ag atomic ratio at a depth position corresponding to point P2 of 0.10 or less.
[11] The silver-coated material according to [10] above, wherein the average crystallite size of silver in the silver-coating layer is 20 nm or more.
[12] An electrical component using the silver-coated material according to [10] or [11] above as a material.
 本明細書において、数値範囲を示す表記「n1~n2」は、「n1以上n2以下」であることを意味する。ここで、n1、n2は、n1<n2を満たす数値である。 In this specification, the notation "n1 to n2" indicating a numerical range means "greater than or equal to n1 and less than or equal to n2." Here, n1 and n2 are numerical values that satisfy n1 < n2.
 本発明によれば、厳しい曲げ加工部での銀被覆層の耐剥離性が良好で、かつ微摺動磨耗に対する耐久性も良好な銀被覆材が提供可能となった。したがって本発明は、とくに振動に曝される車載部品として使用されるコネクタ等の通電部品の信頼性向上に資するものである。 The present invention makes it possible to provide a silver-coated material that has good resistance to peeling of the silver-coated layer in severely bent areas and also has good durability against micro-sliding wear. Therefore, the present invention contributes to improving the reliability of current-carrying parts such as connectors used as in-vehicle parts that are exposed to vibrations.
本発明の銀被覆材の製造方法における、熱処理工程に供するための材料の実施態様である断面構造を模式的に例示した図。FIG. 2 is a schematic diagram illustrating a cross-sectional structure of an embodiment of a material to be subjected to a heat treatment step in the method for producing a silver-coated material of the present invention. 本発明の銀被覆材の製造方法における、熱処理工程後の材料の実施態様である断面構造を模式的に例示した図。FIG. 2 is a schematic diagram illustrating a cross-sectional structure of an embodiment of a material after a heat treatment step in the method for producing a silver-coated material of the present invention. 比較例1で得られた供試材の銀被覆層についてのXPSによる深さ方向の元素濃度プロファイル。Element concentration profile in the depth direction by XPS for the silver coating layer of the test material obtained in Comparative Example 1. 実施例3で得られた供試材の銀被覆層についてのXPSによる深さ方向の元素濃度プロファイル。13 is an element concentration profile in the depth direction by XPS for the silver coating layer of the test material obtained in Example 3.
 図1に、本発明の銀被覆材の製造方法における、熱処理工程に供するための材料の実施態様である断面構造を模式的に例示する。素材10の上に、下部銀めっき層20と上部銀めっき層30が形成されている。ここで言う「素材」は、下部銀めっき層20を形成させるための「被めっき材」に相当する材料を意味する。図示の例における素材10は、基材1の上に、下地めっき層2を有している。 FIG. 1 shows a schematic cross-sectional structure of an embodiment of a material to be subjected to a heat treatment step in the manufacturing method of the silver-coated material of the present invention. A lower silver plating layer 20 and an upper silver plating layer 30 are formed on a material 10. The "material" referred to here means a material equivalent to the "material to be plated" for forming the lower silver plating layer 20. The material 10 in the illustrated example has a base plating layer 2 on a base material 1.
 基材1としては、銅または銅合金、ステンレス鋼、アルミニウムまたはアルミニウム合金、鉄-ニッケル系合金、ニッケル基合金などが例示できる。通電部品の用途を考慮すると、銅または銅合金を基材とする材料が好ましい。下地めっき層2は、基材に対する銀被覆層の密着性を十分に確保する上で有効な層であり、例えば銅、ニッケル、またはそれらの合金からなるめっき層が例示できる。耐熱性の観点からはニッケルめっき層が好ましい。 Examples of the substrate 1 include copper or a copper alloy, stainless steel, aluminum or an aluminum alloy, an iron-nickel alloy, and a nickel-based alloy. Considering the use of the current-carrying part, a material having a substrate of copper or a copper alloy is preferable. The undercoat plating layer 2 is an effective layer for ensuring sufficient adhesion of the silver coating layer to the substrate, and examples of the undercoat plating layer include a plating layer made of copper, nickel, or an alloy thereof. From the viewpoint of heat resistance, a nickel plating layer is preferable.
 下部銀めっき層20としては、炭素や硫黄が添加されていない銀層(不可避的な微量の炭素、硫黄の混入は許容される)が適用される。下部銀めっき層20は複数の銀めっき工程によって形成されたものであってもよい。図示の例では、銀ストライクめっき層3と、その上に形成された銀めっき層4によって下部銀めっき層20が構成されている。銀ストライクめっき層3は平均厚さが例えば0.001~0.05μm、あるいは0.001~0.02μmと非常に薄い電気銀めっき層であり、メインとなる銀めっき層を形成させるための下地処理として必要に応じて形成される銀皮膜である。上部銀めっき層30は、炭素および硫黄が添加された銀めっき層であり、後述の手法により形成させることができる。 The lower silver plating layer 20 is a silver layer to which no carbon or sulfur has been added (unavoidable traces of carbon and sulfur are permitted). The lower silver plating layer 20 may be formed by multiple silver plating processes. In the illustrated example, the lower silver plating layer 20 is composed of a silver strike plating layer 3 and a silver plating layer 4 formed thereon. The silver strike plating layer 3 is a very thin electrolytic silver plating layer with an average thickness of, for example, 0.001 to 0.05 μm or 0.001 to 0.02 μm, and is a silver film formed as necessary as a base treatment for forming the main silver plating layer. The upper silver plating layer 30 is a silver plating layer to which carbon and sulfur have been added, and can be formed by the method described below.
 図2に、本発明の銀被覆材の製造方法における、熱処理工程後の材料の実施態様である、走査電子顕微鏡(SEM)により観察可能な断面構造を模式的に例示する。熱処理によって、隣接する各銀層に由来する銀被覆層40が形成されている。図1に示した断面構造の材料に熱処理を施した場合は、図2に示すように、基材1上に下地めっき層2と銀被覆層40がある。その銀めっき層40は、銀ストライクめっき層3と銀めっき層4とからなる下部銀めっき層20、および上部銀めっき層30に由来するものである。 Figure 2 shows a schematic example of a cross-sectional structure observable by a scanning electron microscope (SEM) of an embodiment of a material after a heat treatment step in the manufacturing method of the silver-coated material of the present invention. A silver coating layer 40 derived from adjacent silver layers is formed by the heat treatment. When the material with the cross-sectional structure shown in Figure 1 is subjected to heat treatment, as shown in Figure 2, there is a base plating layer 2 and a silver coating layer 40 on the substrate 1. The silver plating layer 40 is derived from a lower silver plating layer 20 consisting of a silver strike plating layer 3 and a silver plating layer 4, and an upper silver plating layer 30.
[下部銀めっき工程]
 まず、上記の素材(被めっき材)の上に、ベンゾチアゾール類およびその誘導体を含まない銀めっき液を用いて下部銀めっき層を形成する。「ベンゾチアゾール類およびその誘導体を含まない銀めっき液」は、後述の上部銀めっき工程と区別するための規定である。すなわち、下部銀めっき工程では、従来一般的な公知の手法で銀めっき層を形成させることができる。銀ストライクめっき工程と、通常の銀めっき工程を行うといった、複数のめっき工程によって実施することも可能である。下部銀めっき層中の炭素および硫黄の混入量は、一般的なシアン系の銀めっき液(例えば光沢銀めっき液、無光沢銀めっき液など)を使用した電気銀めっき層と同等レベルまでは十分に許容される。具体的には、銀めっき液中のベンゾチアゾール類およびその誘導体から選ばれる1種以上の物質の濃度は、例えば0.001モル/L以下の範囲であり、銀めっき層中の炭素と銀の原子数の比を表すC/Ag原子比が0.020以下、硫黄と銀の原子数の比を表すS/Ag原子比が0.003以下であることが好ましい。通常、銀ストライクめっき層の形成、その上への銀めっき層の形成とも、シアン系の銀めっき液を使用した電気銀めっき法を採用すればよい。シアン化合物以外の錯化剤を使用した銀めっき液の適用も排除されない。下部銀めっき層の平均厚さは0.06~3.0μmの範囲で設定することが好ましく、0.1~1.0μmの範囲で設定することがより好ましい。経済性を考慮すると、後述の上部銀めっき層の平均厚さに対し0.5倍以下の範囲で設定することが好ましい。
[Lower silver plating process]
First, a lower silver plating layer is formed on the above-mentioned material (material to be plated) using a silver plating solution that does not contain benzothiazoles and their derivatives. The term "silver plating solution that does not contain benzothiazoles and their derivatives" is a provision for distinguishing the lower silver plating step from the upper silver plating step described below. That is, in the lower silver plating step, a silver plating layer can be formed by a conventionally known method. It is also possible to carry out the lower silver plating step by a plurality of plating steps, such as a silver strike plating step and a normal silver plating step. The amount of carbon and sulfur mixed in the lower silver plating layer is sufficiently tolerable up to a level equivalent to that of an electric silver plating layer using a general cyan-based silver plating solution (e.g., a glossy silver plating solution, a matte silver plating solution, etc.). Specifically, the concentration of one or more substances selected from benzothiazoles and their derivatives in the silver plating solution is, for example, in the range of 0.001 mol/L or less, and it is preferable that the C/Ag atomic ratio representing the ratio of the number of carbon and silver atoms in the silver plating layer is 0.020 or less, and the S/Ag atomic ratio representing the ratio of the number of sulfur and silver atoms is 0.003 or less. Generally, an electrolytic silver plating method using a cyanide-based silver plating solution may be used for both the formation of the silver strike plating layer and the formation of the silver plating layer thereon. The use of a silver plating solution using a complexing agent other than a cyanide compound is not excluded. The average thickness of the lower silver plating layer is preferably set in the range of 0.06 to 3.0 μm, and more preferably in the range of 0.1 to 1.0 μm. Considering economic efficiency, it is preferably set in the range of 0.5 times or less the average thickness of the upper silver plating layer described below.
 下部銀めっき層20を構成するメインの銀めっき層(銀ストライクめっきを除く部分であり図1の例では符号4に相当する部分)を形成させるための好ましいめっき条件として、以下の態様が例示できる。
 例えばシアン化銀カリウム(K[Ag(CN)])とシアン化カリウム(KCN)を含む水溶液からなる銀めっき液中において、電流密度1~10A/dm、通電時間1~90秒の範囲で設定した条件にて電気銀めっきを施すことができる。その銀めっき液には、必要に応じて光沢剤などの添加成分(例えばセレン)を含有させることができる。このような条件で得られる銀めっき層4は、99.0質量%以上のAgを含有する銀のめっき層であることが好ましい。
The following are examples of preferable plating conditions for forming the main silver plating layer (the portion excluding the silver strike plating, which corresponds to reference numeral 4 in the example of FIG. 1) that constitutes the lower silver plating layer 20.
For example, electrolytic silver plating can be performed in a silver plating solution made of an aqueous solution containing potassium silver cyanide (K[Ag(CN) 2 ]) and potassium cyanide (KCN) under conditions set at a current density of 1 to 10 A/ dm2 and a current application time of 1 to 90 seconds. The silver plating solution can contain additives such as brighteners (e.g., selenium) as necessary. The silver plating layer 4 obtained under such conditions is preferably a silver plating layer containing 99.0 mass% or more of Ag.
 なお、ベンゾチアゾール類およびその誘導体を含まない銀めっき液を用いて形成された銀めっき層であっても、例えば銀ストライクめっき層のみからなる銀皮膜のように、平均厚さが0.05μm以下と非常に薄いものは、本発明で対象とする「下部銀めっき層」(図1の例では符号20)には該当しないとみなす。 In addition, even if a silver plating layer is formed using a silver plating solution that does not contain benzothiazoles or its derivatives, if the silver plating layer is very thin, for example, a silver film consisting only of a silver strike plating layer, with an average thickness of 0.05 μm or less, it is not considered to fall under the "lower silver plating layer" (reference numeral 20 in the example in Figure 1) that is the subject of this invention.
[上部銀めっき工程]
 次に、上記の下部銀めっき層20の上に、炭素と硫黄を含む銀めっき層を形成させる。下部銀めっき層20の厚さ中央付近についてのXPS(X線光電子分光分析法)による測定データにおいて、炭素と銀の原子数の比を表すC/Ag原子比が例えば0.050~0.200、硫黄と銀の原子数の比を表すS/Ag原子比が例えば0.005~0.050である銀めっき層を形成させることが好ましい。このような炭素と硫黄を含む上部銀めっき層30は、例えば以下のような電気銀めっき法によって形成させることができる。
[Top silver plating process]
Next, a silver plating layer containing carbon and sulfur is formed on the lower silver plating layer 20. It is preferable to form a silver plating layer in which the C/Ag atomic ratio, which represents the ratio of the number of carbon and silver atoms, is, for example, 0.050 to 0.200 and the S/Ag atomic ratio, which represents the ratio of the number of sulfur and silver atoms, is, for example, 0.005 to 0.050, in measurement data by XPS (X-ray photoelectron spectroscopy) for the vicinity of the center of the thickness of the lower silver plating layer 20. Such an upper silver plating layer 30 containing carbon and sulfur can be formed, for example, by an electric silver plating method as follows.
(上部銀めっき工程のめっき液)
 銀めっき液としては、シアン含有銀めっき液を使用することが好ましい。シアン含有銀めっき液の主成分であるシアン含有物質、銀含有物質に関しては、従来公知のものが適用できる。例えば、シアン化銀カリウム(K[Ag(CN)])またはシアン化銀(AgCN)と、シアン化カリウム(KCN)またはシアン化ナトリウム(NaCN)とを含有する水溶液が好適である。
(Plating solution for upper silver plating process)
As the silver plating solution, it is preferable to use a cyanide-containing silver plating solution. As for the cyanide-containing substance and silver-containing substance, which are the main components of the cyanide-containing silver plating solution, conventionally known substances can be used. For example, an aqueous solution containing potassium silver cyanide (K[Ag(CN) 2 ]) or silver cyanide (AgCN) and potassium cyanide (KCN) or sodium cyanide (NaCN) is suitable.
 めっき液への添加剤として、本発明では、ベンゾチアゾール類およびその誘導体から選ばれる1種以上の物質を適用する。この点は特許文献1の技術と同様である。ベンゾチアゾール(CNS)は、ベンゼン骨格とチアゾール骨格を有する複素環式化合物である。ベンゾチアゾール類は、2-メルカプトベンゾチアゾールなどのメルカプト基(-SH)を有するベンゾチアゾールであることが好ましい。また、ベンゾチアゾール類の誘導体として、2-メルカプトベンゾチアゾールナトリウム(ナトリウムメルカプトベンゾチアゾール(SMBT))、亜鉛-2-メルカプトベンゾチアゾール、5-クロロ-2-メルカプトベンゾチアゾール、6-アミノ-2-メルカプトベンゾチアゾール、6-ニトロ-2-メルカプトベンゾチアゾール、2-メルカプト-5-メトキシベンゾチアゾールなどを使用することができる。これらのベンゾチアゾール類の誘導体のうち、ベンゾチアゾール類のアルカリ金属塩が好ましく、例えば2-メルカプトベンゾチアゾールナトリウム(ナトリウムメルカプトベンゾチアゾール(SMBT))などの、ベンゾチアゾール類のナトリウム塩が好適である。 In the present invention, one or more substances selected from benzothiazoles and their derivatives are used as additives to the plating solution. This is the same as the technology of Patent Document 1. Benzothiazole (C 7 H 5 NS) is a heterocyclic compound having a benzene skeleton and a thiazole skeleton. The benzothiazole is preferably a benzothiazole having a mercapto group (-SH), such as 2-mercaptobenzothiazole. In addition, as derivatives of benzothiazoles, sodium 2-mercaptobenzothiazole (sodium mercaptobenzothiazole (SMBT)), zinc-2-mercaptobenzothiazole, 5-chloro-2-mercaptobenzothiazole, 6-amino-2-mercaptobenzothiazole, 6-nitro-2-mercaptobenzothiazole, 2-mercapto-5-methoxybenzothiazole, etc. can be used. Of these benzothiazole derivatives, alkali metal salts of benzothiazoles are preferred, and for example, sodium salts of benzothiazoles such as sodium 2-mercaptobenzothiazole (sodium mercaptobenzothiazole (SMBT)) are preferred.
 銀めっき液中に有機添加剤としてメルカプトベンゾチアゾールなどのベンゾチアゾール類またはそのアルカリ金属塩(好ましくはナトリウム塩)を添加して電気銀めっきを行うと、形成される銀めっき層中に有機添加剤由来の成分(炭素や硫黄を含む成分)が取り込まれ、後述の熱処理によって形成される銀被覆層の中に前記の有機添加剤由来の成分が含有されることによって耐摩耗性が向上するものと考えられる。また、有機添加剤由来の成分の潤滑効果により表層の摩擦係数を低下させることができると考えられる。摩擦係数の低下は、銀被覆材を接続端子などの材料として使用した場合に、挿抜や摺動による凝着の発生抑制作用を発揮し、そのことも耐摩耗性の向上に有効であると推察される。後述の熱処理後においても銀被覆層中には有機添加剤由来の成分が含まれることから、上記の耐摩耗性向上効果は維持される。なお、メルカプトベンゾチアゾールまたはその誘導体を使用すると、有機添加剤の成分を銀めっき層中に取り込みやすくなり、好ましい。 When electrolytic silver plating is performed by adding benzothiazoles such as mercaptobenzothiazole or their alkali metal salts (preferably sodium salts) as organic additives to a silver plating solution, components derived from the organic additives (components containing carbon and sulfur) are incorporated into the silver plating layer that is formed, and the components derived from the organic additives are contained in the silver coating layer formed by the heat treatment described below, which is thought to improve wear resistance. It is also thought that the lubricating effect of the components derived from the organic additives can reduce the friction coefficient of the surface layer. When the silver coating material is used as a material for connection terminals, etc., the reduction in the friction coefficient exerts an effect of suppressing the occurrence of adhesion due to insertion/removal and sliding, and this is also thought to be effective in improving wear resistance. Since the components derived from the organic additives are contained in the silver coating layer even after the heat treatment described below, the above-mentioned effect of improving wear resistance is maintained. In addition, the use of mercaptobenzothiazole or its derivatives makes it easier to incorporate the components of the organic additives into the silver plating layer, which is preferable.
 銀めっき液中のフリーシアンの濃度は、例えば3~70g/Lの範囲で設定することができ、10~70g/Lとすることがより好ましく、15~60g/Lとすることが更に好ましい。銀めっき液中のフリーシアンの濃度は、銀めっき液を水で希釈した後に、ヨウ化カリウム水溶液を加えて、銀めっき液が白濁するまで硝酸銀水溶液を滴下して、その滴下量から求めることができる。 The concentration of free cyanide in the silver plating solution can be set, for example, in the range of 3 to 70 g/L, preferably 10 to 70 g/L, and even more preferably 15 to 60 g/L. The concentration of free cyanide in the silver plating solution can be determined by diluting the silver plating solution with water, adding an aqueous solution of potassium iodide, and dripping an aqueous solution of silver nitrate until the silver plating solution becomes cloudy, and then measuring the amount of the dripped solution.
 銀めっき液中のベンゾチアゾール類およびその誘導体から選ばれる1種以上の物質の濃度は、例えば0.01~0.80モル/Lの範囲で設定することができ、0.015~0.35モル/Lとすることが好ましく、0.03~0.3モル/Lとすることがより好ましく、0.07~0.25モル/Lとすることが更に好ましい。 The concentration of one or more substances selected from benzothiazoles and their derivatives in the silver plating solution can be set, for example, in the range of 0.01 to 0.80 mol/L, preferably 0.015 to 0.35 mol/L, more preferably 0.03 to 0.3 mol/L, and even more preferably 0.07 to 0.25 mol/L.
 銀めっき液中の銀の濃度は、例えば15~150g/Lの範囲で設定することができ、30~120g/Lとすることがより好ましい。銀めっき液中のシアン化銀カリウムまたはシアン化銀の濃度は、例えば30~220g/Lの範囲で設定することができ、50~200g/Lとすることがより好ましい。銀めっき液中のシアン化カリウムまたはシアン化ナトリウムの濃度は、例えば30~150g/Lの範囲で設定することができ、35~145g/Lとすることがより好ましく、38~110g/Lとすることが更に好ましい。銀めっき液中のベンゾチアゾール類またはそのアルカリ金属塩の濃度は、例えば15~70g/Lの範囲で設定することができ、20~50g/Lの範囲に管理してもよい。 The concentration of silver in the silver plating solution can be set, for example, in the range of 15 to 150 g/L, and more preferably in the range of 30 to 120 g/L. The concentration of potassium silver cyanide or silver cyanide in the silver plating solution can be set, for example, in the range of 30 to 220 g/L, and more preferably in the range of 50 to 200 g/L. The concentration of potassium cyanide or sodium cyanide in the silver plating solution can be set, for example, in the range of 30 to 150 g/L, and more preferably in the range of 35 to 145 g/L, and even more preferably in the range of 38 to 110 g/L. The concentration of benzothiazoles or their alkali metal salts in the silver plating solution can be set, for example, in the range of 15 to 70 g/L, and may be controlled in the range of 20 to 50 g/L.
(上部銀めっき工程の銀めっき条件)
 上部銀めっき層30を形成させるための電気銀めっきは、液温15~50℃で行われるのが好ましく、液温18~47℃で行われるのがさらに好ましい。この電気銀めっきの電流密度は例えば0.5~12A/dmの範囲で設定することができ、0.5~10A/dmで行うことがより好ましい。欠陥の少ない良好な銀めっき層を効率良く形成するためには、2A/dm以上の電流密度を確保することが好ましく、3A/dm以上とすることがより好ましい。めっき時間は、この電気銀めっきによって形成される上部銀めっき層30の平均厚さが例えば0.3~10.0μm、より好ましくは0.5~3.0μmの範囲となるように、用途に応じて設定すればよい。
(Silver plating conditions for the upper silver plating process)
The electrolytic silver plating for forming the upper silver plating layer 30 is preferably performed at a liquid temperature of 15 to 50°C, more preferably 18 to 47°C. The current density of this electrolytic silver plating can be set in the range of, for example, 0.5 to 12 A/ dm2 , and more preferably 0.5 to 10 A/ dm2 . In order to efficiently form a good silver plating layer with few defects, it is preferable to ensure a current density of 2 A/dm2 or more , and more preferably 3 A/ dm2 or more. The plating time may be set according to the application so that the average thickness of the upper silver plating layer 30 formed by this electrolytic silver plating is, for example, in the range of 0.3 to 10.0 μm, more preferably 0.5 to 3.0 μm.
[熱処理工程]
 特許文献1に開示されるように、添加剤としてベンゾチアゾール類またはその誘導体を使用した銀めっき液で電気銀めっきを行うと、銀被覆層の耐摩耗性を顕著に向上させることができる。その反面、厳しい曲げ加工を施した箇所での銀被覆層の耐剥離性に関しては、従来一般的な銀めっき材よりも低下してしまう。発明者らの検討によれば、上記のように隣接する下部銀めっき層20と上部銀めっき層30とによって構成される銀被覆層に対して、250~400℃の温度域に3~60秒保持する熱処理を施すことによって、耐摩耗性の改善効果を維持したまま、厳しい曲げ加工部での銀被覆層40の耐剥離性をも従来一般的な銀めっき材と同等以上に回復させることができる。
[Heat treatment process]
As disclosed in Patent Document 1, when electrolytic silver plating is performed using a silver plating solution containing benzothiazoles or their derivatives as additives, the wear resistance of the silver coating layer can be significantly improved. On the other hand, the peel resistance of the silver coating layer at the severely bent portion is lower than that of conventional general silver-plated materials. According to the inventors' study, by subjecting the silver coating layer composed of the adjacent lower silver plating layer 20 and upper silver plating layer 30 as described above to a heat treatment in which the silver coating layer is held at a temperature range of 250 to 400°C for 3 to 60 seconds, the peel resistance of the silver coating layer 40 at the severely bent portion can be restored to the same level as or better than that of conventional general silver-plated materials while maintaining the improved wear resistance.
 下部銀めっき層20は銀濃度が高く炭素濃度が低い通常の銀めっき層である。一方、上部銀めっき層30は炭素や硫黄が導入されたことによって相対的に銀濃度が下部銀めっき層20よりも低くなっている。これら異種の銀めっき層が隣接してなる銀被覆層に上記の熱処理を施すと、原子の拡散によって、新たな構造の銀被覆層40が形成される。その新たな構造は、銀被覆層の深さ方向最表面寄りの領域と基材寄りの領域の両方において銀濃度が高く、それらの間の領域では銀濃度が低い、特異な銀濃度分布を呈するものとなる。また、銀被覆層40中の基材寄りには銀濃度が高く、かつ炭素濃度が低い領域の存在が維持される。このような銀被覆層中の典型的な元素分布は後述の図4に示される。 The lower silver plating layer 20 is a normal silver plating layer with a high silver concentration and a low carbon concentration. On the other hand, the upper silver plating layer 30 has a relatively lower silver concentration than the lower silver plating layer 20 due to the introduction of carbon and sulfur. When the above-mentioned heat treatment is performed on a silver coating layer consisting of these different types of silver plating layers adjacent to each other, a silver coating layer 40 with a new structure is formed by atomic diffusion. This new structure exhibits a unique silver concentration distribution in which the silver concentration is high both in the region closest to the surface in the depth direction of the silver coating layer and in the region closest to the substrate, and the silver concentration is low in the region between them. In addition, the existence of a region with a high silver concentration and a low carbon concentration is maintained near the substrate in the silver coating layer 40. A typical element distribution in such a silver coating layer is shown in Figure 4 described below.
 このような元素濃度分布を呈する銀被覆層によって厳しい曲げ加工部での銀被覆層の耐剥離性低下が克服されるメカニズムについては現時点で未解明であるが、熱処理後の銀被覆層の基材寄りに銀濃度が高く炭素濃度が低い領域が存在することが影響している可能性がある。 The mechanism by which a silver coating layer with such an element concentration distribution overcomes the decrease in peel resistance of the silver coating layer in severely bent areas is currently unclear, but this may be due to the presence of an area with high silver concentration and low carbon concentration near the substrate in the silver coating layer after heat treatment.
 熱処理条件は、上部銀めっき工程を終えた銀被覆層を250~400℃の温度域に3~60秒、より好ましくは3~30秒保持する条件とする。この熱処理では銀被覆層の最高到達温度TMAXが250~400℃の範囲となり、銀被覆層の温度が250℃以上Tmax(℃)以下となる時間が3~60秒、より好ましくは3~30秒の範囲となるヒートパターンを採用する。最高到達温度Tmaxが低すぎる場合や、250~400℃での保持時間が短すぎる場合は、厳しい曲げ加工部での銀被覆層の耐剥離性改善効果が十分に得られない恐れがある。最高到達温度Tmaxが高すぎる場合や、250~400℃での保持時間が長すぎる場合は、耐摩耗性、特に微摺動磨耗に対する耐久性を安定して高く維持する上で不利となる。この熱処理は大気雰囲気で実施することができる。実際の製品製造現場では、使用する加熱装置において予め基材の板厚に応じた銀被覆層のヒートカーブ(温度の経時変化)を予備実験により把握しておくことにより、適正な熱処理条件にコントロールすることができる。 The heat treatment conditions are such that the silver coating layer after the upper silver plating process is held in a temperature range of 250 to 400 ° C for 3 to 60 seconds, more preferably 3 to 30 seconds. In this heat treatment, a heat pattern is adopted in which the maximum temperature T MAX of the silver coating layer is in the range of 250 to 400 ° C, and the time during which the temperature of the silver coating layer is 250 ° C or more and Tmax (° C) or less is in the range of 3 to 60 seconds, more preferably 3 to 30 seconds. If the maximum temperature Tmax is too low or the holding time at 250 to 400 ° C is too short, there is a risk that the effect of improving the peel resistance of the silver coating layer at the severe bending part cannot be sufficiently obtained. If the maximum temperature Tmax is too high or the holding time at 250 to 400 ° C is too long, it is disadvantageous in maintaining a stable high level of wear resistance, especially durability against fretting wear. This heat treatment can be performed in an air atmosphere. In actual product manufacturing sites, the heat treatment conditions can be controlled appropriately by determining in advance through preliminary experiments the heat curve (temperature change over time) of the silver coating layer according to the thickness of the substrate in the heating equipment to be used.
[銀被覆材]
 上記の下部銀めっき工程、上部銀めっき工程および熱処理工程を経て得られた、本発明に従う銀被覆材は、微摺動磨耗に対する耐久性が顕著に改善されており、かつ厳しい曲げ加工を施した部位での銀被覆層の耐剥離性についても一般的な銀めっき材と同様に優れている。その銀被覆層は上述のように、深さ方向最表面寄りの領域と基材寄りの領域の両方において銀濃度が高く、それらの間の領域では銀濃度が低くなっている。また、銀被覆中の炭素は、深さ方向中央寄りに濃化する傾向が見られ、特に銀被覆層の基材寄りには銀濃度が高く、かつ炭素濃度が低い領域が形成されている。より具体的には、本発明の好ましい態様である銀被覆材の銀被覆層は、XPS(X線光電子分光分析法)による前記銀被覆層の深さ方向元素濃度プロファイルにおいて、銀の原子割合が最大値の1/2に減少する深さ位置の累積スパッタ時間をt(分)とし、銀のプロファイル曲線上で、累積スパッタ時間がt/2より小さい領域(試料最表面側)での銀の原子割合最大点を点P、累積スパッタ時間がt/2より大きい領域(試料中心側)での銀の原子割合最大点を点P、点Pと点Pの間での銀の原子割合最小点を点Qとするとき、点Qでの銀の原子割合Ag(Q)と点Pでの銀の原子割合Ag(P)の比Ag(Q)/Ag(P)が0.90以下、前記Ag(Q)と点Pでの銀の原子割合Ag(P)の比Ag(Q)/Ag(P)が0.90以下、点Qに相当する深さ位置でのC/Ag原子比が0.15以上、かつ点Pに相当する深さ位置でのC/Ag原子比が0.10以下であることによって特定される。
[Silver-coated material]
The silver-coated material according to the present invention obtained through the above-mentioned lower silver plating process, upper silver plating process and heat treatment process has a significantly improved durability against fretting wear, and the peeling resistance of the silver coating layer at the site subjected to severe bending is as excellent as that of a general silver-plated material. As described above, the silver coating layer has a high silver concentration both in the region near the outermost surface in the depth direction and in the region near the substrate, and the silver concentration is low in the region between them. In addition, carbon in the silver coating tends to be concentrated toward the center in the depth direction, and in particular, a region with a high silver concentration and a low carbon concentration is formed near the substrate of the silver coating layer. More specifically, in the silver coating layer of the silver-coated material which is a preferred embodiment of the present invention, when the cumulative sputtering time at a depth position where the atomic percentage of silver decreases to 1/2 of the maximum value in a depth direction element concentration profile of the silver coating layer by XPS (X-ray photoelectron spectroscopy) is t 0 (minutes), the maximum point of the atomic percentage of silver in a region (the outermost surface side of the sample) where the cumulative sputtering time is shorter than t 0 / 2 on the silver profile curve is point P 1 , the maximum point of the atomic percentage of silver in a region (the center side of the sample) where the cumulative sputtering time is longer than t 0 / 2 is point P 2 , and the minimum point of the atomic percentage of silver between points P 1 and P 2 is point Q, the ratio Ag(Q)/Ag(P 1 ) of the atomic percentage of silver at point Q to the atomic percentage of silver at point P 1 is 0.90 or less, and the ratio Ag(Q)/Ag(P 2 ) is 0.90 or less, the C/Ag atomic ratio at the depth position corresponding to point Q is 0.15 or more, and the C/Ag atomic ratio at the depth position corresponding to point P2 is 0.10 or less.
 後述の実施例3(熱処理条件;最高到達温度350℃、250℃以上最高到達温度以下の温度域での保持時間10秒)で得られた銀被覆層についてのXPSによる深さ方向の元素濃度プロファイルを示した図4を例に、上記本発明の規定の充足可否の判定方法について説明する。この例では、銀の原子割合が最大値の1/2に減少する深さ位置のアルゴンによる累積スパッタ時間tは47分、t/2は23.5分である。図4中には、銀のプロファイル曲線上において、累積スパッタ時間がt/2より小さい領域(試料最表面側)での銀の原子割合最大点をP、累積スパッタ時間がt/2より大きい領域(試料中心側)での銀の原子割合最大点をPと表示してある。また、点Pと点Pの間での銀の原子割合最小点をQと表示してある。この例では、点Qでの銀の原子割合Ag(Q)と点Pでの銀の原子割合Ag(P)の比Ag(Q)/Ag(P)は0.824であり、上記本発明の規定「0.90以下」を充足している。前記Ag(Q)と点Pでの銀の原子割合Ag(P)の比Ag(Q)/Ag(P)は0.820であり、これも上記本発明の規定「0.90以下」を充足している。点Qに相当する深さ位置でのC/Ag原子比は0.278であり、上記本発明の規定「0.15以上」を充足している。点Pに相当する深さ位置でのC/Ag原子比は0.054であり、これも上記本発明の規定「0.10以下」を充足している。 A method of determining whether the above-mentioned provisions of the present invention are satisfied will be described with reference to FIG. 4, which shows an element concentration profile in the depth direction by XPS for a silver coating layer obtained in Example 3 (heat treatment conditions: maximum temperature of 350° C., holding time in the temperature range of 250° C. to the maximum temperature of 10 seconds) described later. In this example, the cumulative sputtering time t 0 by argon at the depth position where the atomic percentage of silver decreases to 1/2 of the maximum value is 47 minutes, and t 0 /2 is 23.5 minutes. In FIG. 4, the maximum atomic percentage point of silver in the region (the outermost surface side of the sample) where the cumulative sputtering time is less than t 0 /2 on the silver profile curve is indicated as P 1 , and the maximum atomic percentage point of silver in the region (the center side of the sample) where the cumulative sputtering time is greater than t 0 /2 is indicated as P 2 . In addition, the minimum atomic percentage point of silver between points P 1 and P 2 is indicated as Q. In this example, the ratio Ag(Q)/Ag( P1 ) of the atomic ratio of silver at point Q to the atomic ratio of silver at point P1 is 0.824, which satisfies the above-mentioned regulation of the present invention of "0.90 or less". The ratio Ag(Q)/Ag( P2 ) of the atomic ratio of silver at point P2 to the atomic ratio of silver at point P2 is 0.820, which also satisfies the above-mentioned regulation of the present invention of "0.90 or less". The C/Ag atomic ratio at the depth position corresponding to point Q is 0.278, which satisfies the above-mentioned regulation of the present invention of "0.15 or more". The C/Ag atomic ratio at the depth position corresponding to point P2 is 0.054, which also satisfies the above-mentioned regulation of the present invention of "0.10 or less".
 また、本発明に従う銀被覆材は、熱処理によって得られた銀被覆層の平均結晶子径が20nm以上であることが好ましい。銀の結晶粒が過度に微細化していないことによって、銀めっき層の塑性変形が適度に生じ易くなることが考えられ、特に炭素と硫黄を含有する銀被覆層の厳しい曲げ加工部での耐剥離性向上に有利となる。平均結晶子径の上限は特に規定していないが、例えば120nm以下であればよい。本発明に従う銀被覆材における銀被覆層の平均厚さは、例えば蛍光X線膜厚計による測定で、0.5~5μmであることが好ましく、0.7~3μmであることがより好ましい。 In addition, the silver-coated material according to the present invention preferably has an average crystallite diameter of 20 nm or more in the silver coating layer obtained by heat treatment. It is believed that by not making the silver crystal grains excessively fine, plastic deformation of the silver plating layer occurs moderately easily, which is particularly advantageous for improving the peel resistance of the silver coating layer containing carbon and sulfur in areas subjected to severe bending processing. There is no particular upper limit for the average crystallite diameter, but it may be, for example, 120 nm or less. The average thickness of the silver coating layer in the silver-coated material according to the present invention is preferably 0.5 to 5 μm, and more preferably 0.7 to 3 μm, as measured, for example, with a fluorescent X-ray film thickness gauge.
 本発明に従う銀被覆材の代表的な形態は、金属板の少なくとも片側表面に銀被覆層を持つ板材(銀被覆金属板材)である。その板厚は例えば0.05~3.5mmとすることができ、0.1~3.0mmであることがより好ましい。ここで「板材」とはシート状の金属材料を意味する。薄いシート状の金属材料は「箔」と呼ばれることもあるが、そのような「箔」もここでいう「板材」に含まれる。コイル状に巻き取られた長尺のシート状金属材料も「板材」に含まれる。また、シート状の金属材料の厚さを「板厚」と呼ぶ。 A typical form of the silver-coated material according to the present invention is a sheet material (silver-coated metal sheet material) having a silver coating layer on at least one surface of the metal plate. The sheet thickness can be, for example, 0.05 to 3.5 mm, and is more preferably 0.1 to 3.0 mm. Here, "sheet material" refers to a sheet-like metal material. Thin sheet-like metal materials are sometimes called "foils," and such "foils" are also included in the "sheet material" referred to here. Long sheet-like metal materials wound into a coil are also included in the "sheet material." The thickness of the sheet-like metal material is called the "sheet thickness."
[通電部品]
 上記の銀被覆材を公知の方法で加工して、コネクタ、スイッチ、リレーなどの通電部品を得ることができ、特に高耐圧部品にも適用可能である。本発明に従う銀被覆材を用いた通電部品では、上述した銀被覆層が接触相手材と摺接し得る部分を構成する構造を有していることが、効果的である。
[Electrically-carrying parts]
The above silver-coated material can be processed by a known method to obtain current-carrying parts such as connectors, switches, relays, etc., and is particularly applicable to high-voltage parts. In the current-carrying parts using the silver-coated material according to the present invention, it is effective that the above-mentioned silver-coated layer has a structure that constitutes a part that can slide against a contacting material.
[実施例1]
(前処理)
 基材として、無酸素銅(C1020、1/2H)からなる67mm×50mm×0.3mmの圧延板を用意した。アルカリ脱脂液中でこの基材を陰極、ステンレス鋼板を陽極として、電圧5Vで30秒間電解脱脂を施し、基材を水洗した後、3%硫酸水溶液中に15秒間浸漬することにより酸洗した。このようにして表面を清浄化した基材に対して、以下に示す工程を順次施し、銀被覆材を作製した。
[Example 1]
(Preprocessing)
A rolled plate of 67 mm x 50 mm x 0.3 mm made of oxygen-free copper (C1020, 1/2H) was prepared as the substrate. This substrate was used as the cathode and the stainless steel plate was used as the anode in an alkaline degreasing solution, and electrolytic degreasing was performed for 30 seconds at a voltage of 5 V. The substrate was then rinsed with water and immersed in a 3% aqueous sulfuric acid solution for 15 seconds for pickling. The substrate, whose surface had been cleaned in this way, was subjected to the following steps in order to produce a silver-coated material.
(下地ニッケルめっき工程)
 スルファミン酸ニッケル四水和物540g/L、塩化ニッケル25g/L、およびホウ酸35g/Lを含む水溶液からなる無光沢ニッケルめっき液中において、前処理を行った基材を陰極とし、ニッケル電極板を陽極として、スターラーにより500rpmで撹拌しながら液温50℃、電流密度7A/dmの条件で70秒間電気めっきを行って、基材上に無光沢下地ニッケルめっき層を形成した。この板材試料の表面中央部において、下地ニッケルめっき層の厚さを蛍光X線膜厚計(株式会社日立ハイテクサイエンス製、SFT-110A)により測定したところ、1μmであった。
(Nickel base plating process)
In a dull nickel plating solution consisting of an aqueous solution containing 540 g/L of nickel sulfamate tetrahydrate, 25 g/L of nickel chloride, and 35 g/L of boric acid, electroplating was performed for 70 seconds under conditions of a solution temperature of 50° C. and a current density of 7 A/dm 2 while stirring at 500 rpm with a stirrer, using the pretreated substrate as the cathode and a nickel electrode plate as the anode, to form a dull nickel undercoat plating layer on the substrate. The thickness of the undercoat nickel plating layer was measured at the center of the surface of this plate sample with a fluorescent X-ray film thickness meter (SFT-110A, manufactured by Hitachi High-Tech Science Corporation) and found to be 1 μm.
(下部銀めっき工程)
 銀ストライクめっき工程
 シアン化銀カリウム(K[Ag(CN)])3g/L、およびシアン化カリウム(KCN)90g/Lを含む水溶液からなる銀ストライクめっき液中において、上記の下地ニッケルめっき層が形成された板材試料を陰極とし、白金で被覆したチタン電極板を陽極として、スターラーにより500rpmで撹拌しながら室温(25℃)において電流密度2.0A/dmで10秒間電気めっきを行って、平均厚さ0.01μm程度の銀ストライクめっき層を形成した。その後、水洗して銀ストライクめっき液を十分に洗い流した。
(Lower silver plating process)
Silver strike plating step In a silver strike plating solution consisting of an aqueous solution containing 3 g/L of potassium silver cyanide (K[Ag(CN) 2 ]) and 90 g/L of potassium cyanide (KCN), the plate material sample on which the above-mentioned undercoat nickel plating layer was formed was used as the cathode, and a platinum-coated titanium electrode plate was used as the anode, and electroplating was carried out at room temperature (25°C) with a current density of 2.0 A/ dm2 for 10 seconds while stirring with a stirrer at 500 rpm, forming a silver strike plating layer with an average thickness of about 0.01 μm. The silver strike plating solution was then thoroughly washed away by rinsing with water.
 銀めっき工程
 シアン化銀カリウム(K[Ag(CN)])175g/L、シアン化カリウム(KCN)95g/Lを含み、さらにセレン濃度が37mg/Lとなる量のセレノシアン酸カリウム(KSeCN)を含む水溶液からなる銀めっき液中において、上記の銀ストライクめっき層が形成された板材試料を陰極とし、銀電極板を陽極として、スターラーにより500rpmで撹拌しながら液温18℃、電流密度7A/dmの条件で4秒間電気めっきを行って、銀めっき層を形成した。この板材試料の表面中央部において、ここで形成した銀めっき層と銀ストライクめっき層とからなる下部銀めっき層の厚さを上記の蛍光X線膜厚計により測定したところ、0.2μmであった。
Silver plating step In a silver plating solution consisting of an aqueous solution containing 175 g/L of potassium silver cyanide (K[Ag(CN) 2 ]), 95 g/L of potassium cyanide (KCN), and further containing an amount of potassium selenocyanate (KSeCN) such that the selenium concentration was 37 mg/L, the plate material sample on which the silver strike plating layer was formed was used as the cathode, and the silver electrode plate was used as the anode, and electroplating was performed for 4 seconds under conditions of a solution temperature of 18°C and a current density of 7 A/ dm2 while stirring at 500 rpm with a stirrer, to form a silver plating layer. The thickness of the lower silver plating layer consisting of the silver plating layer and the silver strike plating layer formed here was measured at the center of the surface of this plate material sample by the fluorescent X-ray thickness meter and was found to be 0.2 μm.
(上部銀めっき工程)
 シアン化銀カリウム(K[Ag(CN)])175g/L、シアン化カリウム(KCN)95g/L、およびベンゾチアゾール類またはその誘導体に該当する物質として2-メルカプトベンゾチアゾールナトリウム(CNNaS)30g/L(=0.16モル/L)を含む水溶液からなる銀めっき液中において、上記の下部銀めっき層が形成された板材試料を陰極とし、銀電極板を陽極として、スターラーにより500rpmで撹拌しながら液温35℃、電流密度7A/dmの条件で18秒間電気めっきを行って、上部銀めっき層を形成した。なお、銀めっき液中のフリーシアンの濃度は38g/Lである。この板材試料の表面中央部において、下部銀めっき層と上部銀めっき層のトータル厚さを上記の蛍光X線膜厚計により測定したところ、1.2μmであった。このようにして、板材の両面に下部銀めっき層と上部銀めっき層を有する銀被覆材を得た。
 表1中に各銀めっき層の厚さを示してある。上部銀めっき層の厚さは、下部銀めっき層と上部銀めっき層のトータル厚さの測定値から、下部銀めっき層厚さの測定値を差し引いた値を記載してある(以下の各例において同様。)。本例の場合、上部銀めっき層の厚さは1.2μm-0.2μm=1μmと求まる。
(Top silver plating process)
In a silver plating solution consisting of an aqueous solution containing 175 g/L of potassium silver cyanide (K[Ag(CN) 2 ]), 95 g/L of potassium cyanide (KCN), and 30 g/L (=0.16 mol/L) of 2-mercaptobenzothiazole sodium (C 7 H 4 NNaS 2 ) as a substance corresponding to benzothiazoles or its derivatives, electroplating was performed for 18 seconds under conditions of a solution temperature of 35° C. and a current density of 7 A/dm 2 while stirring at 500 rpm with a stirrer in a silver plating solution consisting of an aqueous solution containing 175 g/L of potassium silver cyanide (K[Ag(CN) 2 ]), 95 g/L of potassium cyanide (KCN), and 30 g/L (=0.16 mol/L) of 2-mercaptobenzothiazole sodium (C 7 H 4 NNaS 2 ) as a substance corresponding to benzothiazoles or its derivatives, with the plate material sample on which the lower silver plating layer was formed as described above as the cathode and the silver electrode plate as the anode, to form an upper silver plating layer. The concentration of free cyan in the silver plating solution was 38 g/L. The total thickness of the lower silver plating layer and the upper silver plating layer at the center of the surface of this plate material sample was measured by the fluorescent X-ray film thickness meter described above, and was found to be 1.2 μm. In this manner, a silver-coated material having a lower silver plating layer and an upper silver plating layer on both sides of the plate material was obtained.
The thickness of each silver plating layer is shown in Table 1. The thickness of the upper silver plating layer is the value obtained by subtracting the measured value of the lower silver plating layer from the measured value of the total thickness of the lower silver plating layer and the upper silver plating layer (the same applies to each of the following examples). In this example, the thickness of the upper silver plating layer is calculated to be 1.2 μm - 0.2 μm = 1 μm.
(熱処理工程)
 卓上ホットスターラーの温調機能を利用して上記の上部銀めっき工程で得られた板材試料の銀被覆層に熱処理を施した。具体的には、卓上ホットスターラーの温度を300℃に設定し、温度が設定値に安定したのち、板材試料を卓上ホットスターラーのフラットな盤面上に載置し、板材試料の片側の銀被覆層を卓上ホットスターラーの盤面と密着させた。載置開始から30秒後に板材試料を卓上ホットスターラーの盤面から離し、常温の空気中で放冷した。すなわち載置時間は30秒である。この実験では片側表面からの加熱としたが、別途予備実験によるヒートカーブの測定により、卓上ホットスターラーの盤面に対して反対側の表面まで急速に昇温し、両側の銀被覆層の最高到達温度Tmaxはともに卓上ホッとスターラーの設定温度とほぼ等しくなること、および両側の銀被覆層が250℃以上Tmax(℃)以下の温度域に保持される時間は載置時間とほぼ同じとなることが確認された。したがって、本例では、両側の銀被覆層いずれにおいても250℃以上300℃(Tmax)以下の温度域に保持される時間は30秒であるとみなすことができる。
 このようにして熱処理工程を終えた銀被覆材を得た。
(Heat treatment process)
The silver coating layer of the plate sample obtained in the above upper silver plating process was subjected to heat treatment using the temperature control function of the tabletop hot stirrer. Specifically, the temperature of the tabletop hot stirrer was set to 300°C, and after the temperature stabilized at the set value, the plate sample was placed on the flat plate surface of the tabletop hot stirrer, and the silver coating layer on one side of the plate sample was brought into close contact with the plate surface of the tabletop hot stirrer. 30 seconds after the start of placement, the plate sample was removed from the plate surface of the tabletop hot stirrer and allowed to cool in air at room temperature. That is, the placement time was 30 seconds. In this experiment, heating was performed from one side surface, but a measurement of the heat curve in a separate preliminary experiment confirmed that the temperature rose rapidly to the surface opposite the plate surface of the tabletop hot stirrer, and the maximum temperature Tmax of the silver coating layers on both sides was almost equal to the set temperature of the tabletop hot stirrer, and the time during which the silver coating layers on both sides were held in a temperature range of 250°C or higher and Tmax (°C) or lower was almost the same as the placement time. Therefore, in this example, the time during which both silver coating layers are held in the temperature range of 250° C. or more and 300° C. or less (Tmax) can be regarded as 30 seconds.
In this way, a silver-coated material was obtained after the heat treatment process.
 得られた銀被覆材を供試材として、以下の試験に供した。
(180°曲げ試験)
 供試材である板材について180°曲げ加工を施したのち、その曲げ部を概ね元の板形状まで曲げ戻し、曲げ部の外側表面および内側表面を観察することにより銀被覆層の剥離が生じるかどうかを検査した。この試験で曲げ部の外側表面と内側表面のいずれにも銀被覆層の剥離(脱落)および浮きが認められなかったものを◎(耐剥離性:優秀)、曲げ部の外側表面と内側表面のいずれにも銀被覆層の剥離(脱落)が認められないが、少なくとも一方の銀被覆層に軽微な浮きが認められたものを○(耐剥離性:良好)、曲げ部の外側表面と内側表面の少なくとも一方の銀被覆層に銀被覆層の剥離(脱落)が認められたものを×(耐剥離性:不良)とし、○評価以上を合格と判定した。
 本例で得た銀被覆材は◎評価であった。
The obtained silver-coated material was used as a test material and subjected to the following tests.
(180° bending test)
After bending the test plate material 180°, the bent portion was bent back to the original plate shape, and the outer and inner surfaces of the bent portion were observed to check whether peeling of the silver coating layer occurred. In this test, a test piece in which no peeling (falling off) or lifting of the silver coating layer was observed on either the outer or inner surface of the bent portion was rated as ⊚ (excellent peeling resistance), a test piece in which no peeling (falling off) of the silver coating layer was observed on either the outer or inner surface of the bent portion but at least one of the silver coating layers was slightly lifted was rated as ◯ (good peeling resistance), and a test piece in which peeling (falling off) of the silver coating layer was observed on at least one of the outer and inner surfaces of the bent portion was rated as × (poor peeling resistance). A test piece with a rating of ◯ or higher was judged to pass.
The silver-coated material obtained in this example was rated as excellent.
(微摺動耐久試験)
 供試材である銀被覆材を2枚用意し、一方をインデント加工(内側R=1.5mm)して圧子として使用し、他方を平板状の評価試料として使用し、精密摺動試験装置(株式会社山崎精機研究所製、CRS-G2050-DWA)により、評価試料に圧子を一定の荷重(5N)で押し当てながら、微摺動の往復動作(摺動距離0.1mm、摺動速度0.2mm/s)を継続し、接触抵抗が0.5mΩを超えたときの往復摺動回数を、当該銀被覆層の耐久回数とした。この条件での耐久回数が3500回以上であれば、当該銀被覆層は微摺動に対する優れた耐摩耗性を有すると判断できる。したがって、耐久回数が3500回未満のものを×評価(耐微摺動摩耗性:不十分)、3500回以上5000回未満のものを○評価(耐微摺動摩耗性:良好)、5000回以上のものを◎評価(耐微摺動摩耗性:優秀)とし、○評価以上を合格と判定した。
 本例で得た銀被覆材の耐久回数は3700回であり、○評価であった。
(Minor friction durability test)
Two sheets of silver-coated material were prepared as test materials, one of which was indented (inner R = 1.5 mm) and used as an indenter, and the other was used as a flat evaluation sample. Using a precision sliding tester (Yamazaki Seiki Kenkyusho Co., Ltd., CRS-G2050-DWA), the indenter was pressed against the evaluation sample with a constant load (5 N) while continuing a fine sliding reciprocating motion (sliding distance 0.1 mm, sliding speed 0.2 mm/s), and the number of reciprocating sliding movements when the contact resistance exceeded 0.5 mΩ was taken as the durability number of the silver-coated layer. If the durability number under these conditions is 3500 times or more, it can be determined that the silver-coated layer has excellent wear resistance against fine sliding. Therefore, those with a durability of less than 3,500 cycles were rated as × (freak abrasion resistance: insufficient), those with a durability of 3,500 or more cycles but less than 5,000 cycles were rated as ○ (freak abrasion resistance: good), and those with a durability of 5,000 cycles or more were rated as ◎ (freak abrasion resistance: excellent), and those with a rating of ○ or higher were judged to pass.
The durability of the silver-coated material obtained in this example was 3,700 cycles, and was rated as "good."
(接触抵抗の測定)
 供試材表面の銀被覆層について、上記の精密摺動試験装置を用いて接触抵抗を測定した。その結果、本例の銀被覆材の接触抵抗は0.23mΩであった。
(Contact resistance measurement)
The contact resistance of the silver-coated layer on the surface of the test material was measured using the above-mentioned precision sliding test device, and the result was that the contact resistance of the silver-coated material of this example was 0.23 mΩ.
(結晶子径の測定)
 供試材の銀被覆層について、X線回折装置(株式会社リガク製の全自動多目的水平型X線回折装置、Smart Lab)によって測定したCu-Kα線によるX線回折パターンに基づき、銀結晶の(111)面、(200)面、(220)面および(311)面の各々の結晶面に垂直方向の結晶子径を、各々のピークの半価幅からシェラー(Scherrer)の式によりそれぞれ算出し、各結晶面の配向比率による重みづけをして、各結晶面の結晶子径の加重平均により平均結晶子径を算出した。ここで、シェラーの定数を0.9400とした。
 半価幅の測定には、2θが38°付近に現れる(111)ピークと、44°付近に現れる(200)ピークと、64°付近に現れる(220)ピークと、77°付近に現れる(311)ピーク)を使用した。
 上記の配向比率として、Cu管球、Kβフィルタ法を用いて、走査範囲2θ/θを走査して得られたX線回折パターンに基づく銀めっき皮膜の(111)面、(200)面、(220)面および(311)面の各々のX線回折ピークの強度を、JCPDSカードNo.40783に記載された各々の相対強度比(粉末測定時の相対強度比)((111):(200):(220):(311)=100:40:25:26)で割ることにより補正して得られた値(補正強度)を使用した。
 その結果、本例で得た銀被覆材における銀被覆層の平均結晶子径は60.2nmであった。
 以上の結果を表1にまとめて示す。
(Measurement of crystallite size)
For the silver coating layer of the test material, based on the X-ray diffraction pattern measured by an X-ray diffractometer (Rigaku Corporation, fully automatic multipurpose horizontal X-ray diffractometer, Smart Lab) using Cu-Kα radiation, the crystallite diameters in the direction perpendicular to each crystal plane of the (111) plane, (200) plane, (220) plane and (311) plane of the silver crystal were calculated from the half-width of each peak by Scherrer's formula, and the average crystallite diameter was calculated by the weighted average of the crystallite diameters of each crystal plane, weighted by the orientation ratio of each crystal plane. Here, Scherrer's constant was set to 0.9400.
For the measurement of the half width, the (111) peak appearing at 2θ of approximately 38°, the (200) peak appearing at 2θ of approximately 44°, the (220) peak appearing at 2θ of approximately 64°, and the (311) peak appearing at 2θ of approximately 77° were used.
As the orientation ratio, a value (corrected intensity) obtained by correcting the intensities of the X-ray diffraction peaks of the (111) plane, the (200) plane, the (220) plane, and the (311) plane of the silver plating film based on an X-ray diffraction pattern obtained by scanning the scanning range 2θ/θ using a Cu tube and a Kβ filter method, by the respective relative intensity ratios (relative intensity ratios at the time of powder measurement) ((111):(200):(220):(311)=100:40:25:26) listed in JCPDS Card No. 40783 was used.
As a result, the average crystallite size of the silver coating layer in the silver-coated material obtained in this example was 60.2 nm.
The above results are shown in Table 1.
[実施例2]
 熱処理工程において、卓上ホットスターラーの設定温度を350℃とし、卓上ホットスターラーへの載置時間を5秒としたことを除き、実施例1と同様の方法で銀被覆材を作製した。
 本例で得た銀被覆材は、180°曲げ試験による耐剥離性が◎評価、微摺動耐久試験による耐微摺動摩耗性も◎評価(耐久回数8200回)であった。また、接触抵抗は0.23mΩ、銀被覆層の平均結晶子径は25.0nmであった。
[Example 2]
A silver-coated material was produced in the same manner as in Example 1, except that in the heat treatment step, the temperature of the tabletop hot stirrer was set to 350° C. and the time of placement on the tabletop hot stirrer was 5 seconds.
The silver-coated material obtained in this example was rated as ⊚ for peel resistance in a 180° bending test, and rated as ⊚ for fretting wear resistance in a fretting durability test (endurance count: 8200 times). The contact resistance was 0.23 mΩ, and the average crystallite diameter of the silver coating layer was 25.0 nm.
[実施例3]
 熱処理工程において、卓上ホットスターラーの設定温度を350℃とし、卓上ホットスターラーへの載置時間を10秒としたことを除き、実施例1と同様の方法で銀被覆材を作製した。
 本例で得た銀被覆材は、180°曲げ試験による耐剥離性が◎評価、微摺動耐久試験による耐微摺動摩耗性も◎評価(耐久回数10000回)であった。また、接触抵抗は0.18mΩ、銀被覆層の平均結晶子径は88.8nmであった。
[Example 3]
A silver-coated material was produced in the same manner as in Example 1, except that in the heat treatment step, the set temperature of the tabletop hot stirrer was 350° C. and the time of placement on the tabletop hot stirrer was 10 seconds.
The silver-coated material obtained in this example was rated as ⊚ for peel resistance in a 180° bending test, and rated as ⊚ for fretting wear resistance in a fretting durability test (10,000 cycles). The contact resistance was 0.18 mΩ, and the average crystallite diameter of the silver coating layer was 88.8 nm.
[比較例1]
 熱処理工程を実施せず、実施例1と同様の方法で上部銀めっき工程までを終えた段階の銀被覆材を供試材とした。
 本例で得た銀被覆材は、180°曲げ試験による耐剥離性が×評価、微摺動耐久試験による耐微摺動摩耗性が◎評価(耐久回数6000回)であった。また、接触抵抗は0.29mΩ、銀被覆層の平均結晶子径は16.6nmであった。
 熱処理を行わない場合には、厳しい曲げ加工を施した部位での銀被覆層の耐剥離性は改善されないことがわかる。
[Comparative Example 1]
The silver-coated material was used as a test material after the upper silver plating step was completed in the same manner as in Example 1, without carrying out the heat treatment step.
The silver-coated material obtained in this example was rated x for peel resistance in a 180° bending test, and rated ⊚ for fretting wear resistance in a fretting durability test (endurance count 6000 times). The contact resistance was 0.29 mΩ, and the average crystallite diameter of the silver coating layer was 16.6 nm.
It is clear that without heat treatment, the peel resistance of the silver coating layer at the site subjected to severe bending is not improved.
[比較例2]
 下部銀めっき工程で銀ストライクめっき層のみを形成しメインの銀めっき層の形成を省略したこと、および熱処理工程を省略したことを除き、実施例1と同様の方法で銀被覆材を作製した。
 本例で得た銀被覆材は、180°曲げ試験による耐剥離性が×評価、微摺動耐久試験による耐微摺動摩耗性が○評価(耐久回数4800回)であった。
 この銀被覆材は特許文献1に開示の技術に相当するものである。この場合、厳しい曲げ加工を施した部位での銀被覆層の耐剥離性に劣ることがわかる。
[Comparative Example 2]
A silver-coated material was produced in the same manner as in Example 1, except that in the lower silver plating step, only a silver strike plating layer was formed and the formation of a main silver plating layer was omitted, and the heat treatment step was omitted.
The silver-coated material obtained in this example was rated x for peel resistance in a 180° bending test, and rated ◯ for fretting wear resistance in a fretting durability test (durability of 4,800 cycles).
This silver-coated material corresponds to the technology disclosed in Patent Document 1. In this case, it is found that the peel resistance of the silver-coated layer is poor at the portion subjected to severe bending.
[比較例3]
 下部銀めっき工程で銀ストライクめっき層のみを形成しメインの銀めっき層の形成を省略したこと、および熱処理工程において、卓上ホットスターラーの設定温度を300℃とし、卓上ホットスターラーへの載置時間を10秒としたことを除き、実施例1と同様の方法で銀被覆材を作製した。
 本例で得た銀被覆材は、180°曲げ試験による耐剥離性が○評価、微摺動耐久試験による耐微摺動摩耗性が×評価(耐久回数1800回)であった。
 本例で形成した銀ストライクめっき層は平均厚さ0.01μm程度と非常に薄いので、これは下部銀めっき層とはみなされない。下部めっき層を形成しなかった場合には、熱処理工程を実施しても、厳しい曲げ加工を施した部位での耐剥離性と、耐微摺動摩耗性の改善を両立させることができなかった。
[Comparative Example 3]
A silver-coated material was produced in the same manner as in Example 1, except that in the lower silver plating step, only a silver strike plating layer was formed and the formation of a main silver plating layer was omitted, and in the heat treatment step, the set temperature of the tabletop hot stirrer was 300° C. and the time for which the material was placed on the tabletop hot stirrer was 10 seconds.
The silver-coated material obtained in this example was rated as ◯ for peel resistance in a 180° bending test, and rated as × for fretting wear resistance in a fretting durability test (durability of 1800 cycles).
The silver strike plating layer formed in this example is very thin, with an average thickness of about 0.01 μm, and is therefore not considered to be the lower silver plating layer. In the case where the lower plating layer was not formed, it was not possible to achieve both the improvement in peel resistance and the improvement in fretting wear resistance at the site subjected to severe bending, even when the heat treatment process was performed.
[比較例4]
 下部銀めっき工程と上部銀めっき工程を下記の銀めっき工程に変えたこと、および熱処理工程を省略したことを除き、実施例1と同様の方法で銀被覆材を作製した。
[Comparative Example 4]
A silver-coated material was produced in the same manner as in Example 1, except that the lower silver plating step and the upper silver plating step were changed to the silver plating step described below, and the heat treatment step was omitted.
(銀めっき工程)
 実施例1と同様の方法で銀ストライクめっき層を形成させた。
 次いで、シアン化銀カリウム(K[Ag(CN)])175g/L、シアン化カリウム(KCN)95g/Lを含み、さらにセレン濃度が69mg/Lとなる量のセレノシアン酸カリウム(KSeCN)を含む水溶液からなる銀めっき液中において、上記の銀ストライクめっき層が形成された板材試料を陰極とし、銀電極板を陽極として、スターラーにより500rpmで撹拌しながら液温18℃、電流密度5A/dm、通電時間120秒の条件で電気めっきを行って、銀めっき層を形成した。この板材試料の表面中央部において、ここで形成した銀めっき層と銀ストライクめっき層とからなる銀被覆層の厚さを上記の蛍光X線膜厚計により測定したところ、5μmであった。
 この銀被覆層は炭素や硫黄の導入を意図しためっき層ではなく、公知の光沢銀めっき層であるので、表1中には便宜上「下部銀めっき層」の欄に厚さを示してある(後述の比較例5においても同様。)。
(Silver plating process)
A silver strike plating layer was formed in the same manner as in Example 1.
Next, in a silver plating solution containing 175 g/L potassium silver cyanide (K[Ag(CN) 2 ]), 95 g/L potassium cyanide (KCN), and an amount of potassium selenocyanate (KSeCN) such that the selenium concentration was 69 mg/L, electroplating was performed with the plate material sample on which the silver strike plating layer was formed as the cathode and the silver electrode plate as the anode under conditions of a solution temperature of 18°C, a current density of 5 A/ dm2 , and a current application time of 120 seconds while stirring at 500 rpm with a stirrer, to form a silver plating layer. The thickness of the silver coating layer consisting of the silver plating layer and the silver strike plating layer formed here was measured at the center of the surface of this plate material sample by the fluorescent X-ray thickness meter and found to be 5 μm.
This silver coating layer is not a plating layer intended to introduce carbon or sulfur, but a known bright silver plating layer, and therefore, for convenience, the thickness is shown in the "Lower Silver Plating Layer" column in Table 1 (the same applies to Comparative Example 5 described below).
 本例で得た銀被覆材は、180°曲げ試験による耐剥離性が◎評価、微摺動耐久試験による耐微摺動摩耗性が×評価(耐久回数3000回)であった。また、接触抵抗は0.20mΩ、銀被覆層の平均結晶子径は27.8nmであった。
 めっき液にベンゾチアゾール類またはその誘導体を使用して得た銀被覆層を持たない場合、耐微摺動摩耗性に劣ることがわかる。
The silver-coated material obtained in this example was rated as ⊚ for peel resistance in a 180° bending test, and rated as x for fretting wear resistance in a fretting durability test (3000 cycles). The contact resistance was 0.20 mΩ, and the average crystallite diameter of the silver coating layer was 27.8 nm.
It can be seen that when the plating solution does not contain a silver coating layer obtained by using benzothiazoles or their derivatives, the fretting wear resistance is poor.
[比較例5]
 セレノシアン酸カリウム(KSeCN)をセレン濃度が37mg/Lとなる量で含む銀めっき液を使用したこと、および電気めっき時の電流密度5A/dmから7A/dmに、通電時間を120秒から90秒にそれぞれ変えたことを除き、比較例4と同様の方法で銀被覆材を作製した。この板材試料の表面中央部において、ここで形成した銀めっき層と銀ストライクめっき層とからなる銀被覆層の厚さを上記の蛍光X線膜厚計により測定したところ、5μmであった。
 本例で得た銀被覆材は、180°曲げ試験による耐剥離性が◎評価、微摺動耐久試験による耐微摺動摩耗性が×評価(耐久回数1500回)であった。また、接触抵抗は0.18mΩ、銀被覆層の平均結晶子径は75.0nmであった。
 比較例4と同様、本例からも、めっき液にベンゾチアゾール類またはその誘導体を使用して得た銀被覆層を持たない場合、耐微摺動摩耗性に劣ることがわかる。
[Comparative Example 5]
A silver-coated material was produced in the same manner as in Comparative Example 4, except that a silver plating solution containing potassium selenocyanate (KSeCN) in an amount giving a selenium concentration of 37 mg/L was used, and the current density during electroplating was changed from 5 A/ dm2 to 7 A/ dm2 and the current application time was changed from 120 seconds to 90 seconds. The thickness of the silver coating layer formed here, consisting of the silver plating layer and the silver strike plating layer, was measured at the center of the surface of this sheet material sample by the above-mentioned fluorescent X-ray film thickness meter and was found to be 5 μm.
The silver-coated material obtained in this example was rated as ⊚ for peel resistance in a 180° bending test, and rated as x for fretting wear resistance in a fretting durability test (endurance count 1500 times). The contact resistance was 0.18 mΩ, and the average crystallite diameter of the silver coating layer was 75.0 nm.
As in Comparative Example 4, this example also shows that when the plating solution does not contain a silver coating layer obtained by using benzothiazoles or their derivatives, the fretting wear resistance is poor.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<XPSによる銀被覆層の元素濃度プロファイルの測定>
 参考のため、比較例1(熱処理なし)、および実施例3(熱処理条件;最高到達温度350℃、250℃以上最高到達温度以下の温度域での保持時間10秒)で得られた銀被覆層についての、XPS(X線光電子分光分析法)による深さ方向の元素濃度プロファイル測定結果を例示する。測定は以下のようにして行った。
<Measurement of element concentration profile of silver coating layer by XPS>
For reference, the results of element concentration profile measurement in the depth direction by XPS (X-ray photoelectron spectroscopy) for the silver coating layers obtained in Comparative Example 1 (no heat treatment) and Example 3 (heat treatment conditions: maximum temperature of 350° C., holding time in the temperature range of 250° C. or higher and maximum temperature of 10 seconds) are shown below. The measurement was performed as follows.
 供試材の銀被覆層の最表面から、XPSにより、比較例1ではC、O、S、Ag、Ni、Cuの各元素、実施例3ではC、K、O、N、S、Ag、Niの各元素の各元素について、それぞれ深さ方向の元素濃度プロファイルを測定した。
 X線光電子分光分析装置として、アルバック・ファイ株式会社製、PHI5000 VersaProbeIIIを使用した。測定は、到達真空度:10-7Pa、励起源:単色化AlKα、出力:25W、加速電圧:15kV、ビームサイズを100μmΦ、入射角:90degとし、電子中和銃によりエミッション電流:20μA、バイアス電圧:1.0V、加速電圧30.0Vで電子線を、またアルゴンイオン銃によりイオン種:Ar、加速電圧:0.11kV、エミッション電流:7mAでアルゴンイオンをそれぞれ照射しながら、光電子取り出し角:45deg、積算回数:5回、積分時間:40ms(20ms×2)、パスエネルギー:140eV、測定エネルギー間隔:0.25eV/stepとして行った。
 深さ方向の分析のための表面スパッタは、アルゴンイオン銃によりイオン種:Ar、加速電圧:4kV、エミッション電流:20mA、掃引領域:2.7mm×2.7mm、スパッタレート:20nm/分(SiO換算)の条件で行った。各測定深さに調整するためのスパッタ時間の間隔は、各例とも、累積スパッタ時間20分までは1分間隔、それ以降は4分間隔とした。
 原子濃度を求めるためのスペクトル種として、Agは3d軌道の結合エネルギー(Ag3d)のピーク、Cは1s軌道の結合エネルギー(C1s)のピーク、Sは2p軌道の結合エネルギー(S2p)のピークをそれぞれ用い、バックグラウンド処理にはShirley法を使用した。
From the outermost surface of the silver coating layer of the test material, the element concentration profile in the depth direction was measured by XPS for each of the elements C, O, S, Ag, Ni, and Cu in Comparative Example 1, and for each of the elements C, K, O, N, S, Ag, and Ni in Example 3.
The X-ray photoelectron spectrometer used was a PHI5000 VersaProbeIII manufactured by ULVAC-PHI, Inc. The measurement was performed under the following conditions: ultimate vacuum: 10 −7 Pa, excitation source: monochromatic AlKα, output: 25 W, acceleration voltage: 15 kV, beam size: 100 μmΦ, incidence angle: 90 deg, and irradiation with an electron beam from an electron neutralization gun at an emission current: 20 μA, bias voltage: 1.0 V, and acceleration voltage: 30.0 V, and with argon ions from an argon ion gun at an ion species: Ar + , acceleration voltage: 0.11 kV, and emission current: 7 mA, with a photoelectron take-off angle: 45 deg, number of integrations: 5, integration time: 40 ms (20 ms×2), pass energy: 140 eV, and measurement energy interval: 0.25 eV/step.
Surface sputtering for analysis in the depth direction was performed using an argon ion gun under the following conditions: ion species: Ar + , acceleration voltage: 4 kV, emission current: 20 mA, sweep area: 2.7 mm × 2.7 mm, sputtering rate: 20 nm/min ( SiO2 equivalent). The intervals of sputtering time to adjust to each measurement depth were 1 min intervals until the cumulative sputtering time reached 20 min, and 4 min intervals thereafter in each example.
The spectral species used to determine the atomic concentration were the 3d orbital binding energy peak (Ag3d) for Ag, the 1s orbital binding energy peak (C1s) for C, and the 2p orbital binding energy peak (S2p) for S, and the Shirley method was used for background processing.
 図3に比較例1、図4に実施例3についてのXPSによる深さ方向の元素濃度プロファイルをそれぞれ例示する。図中には、上述の点P、点P、点Qを示してある。また、表2に、これらの深さ方向の元素濃度プロファイルに基づく評価をまとめて記載してある。 3 and 4 show element concentration profiles in the depth direction by XPS for Comparative Example 1 and Example 3, respectively. The above-mentioned points P1 , P2 , and Q are shown in the figures. Table 2 summarizes the evaluation based on these element concentration profiles in the depth direction.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 1  基材
 2  下地めっき層
 3  銀ストライクめっき層
 4  銀めっき層
 10  素材
 20  下部銀めっき層
 30  上部銀めっき層
 40  銀被覆層
REFERENCE SIGNS LIST 1 Substrate 2 Undercoat plating layer 3 Silver strike plating layer 4 Silver plating layer 10 Material 20 Lower silver plating layer 30 Upper silver plating layer 40 Silver coating layer

Claims (12)

  1.  素材上に、ベンゾチアゾール類およびその誘導体を含まない銀めっき液を用いて下部銀めっき層を形成する下部銀めっき工程と、
     前記下部銀めっき層の上に、ベンゾチアゾール類およびその誘導体から選ばれる1種以上の物質を含む銀めっき液を用いた電気めっき法により上部銀めっき層を形成する上部銀めっき工程と、
     前記下部銀めっき層および上部銀めっき層を250~400℃の温度域に3~60秒保持する熱処理工程と、
    を含む銀被覆材の製造方法。
    a lower silver plating step of forming a lower silver plating layer on the base material using a silver plating solution that does not contain benzothiazoles and their derivatives;
    an upper silver plating step of forming an upper silver plating layer on the lower silver plating layer by electroplating using a silver plating solution containing one or more substances selected from benzothiazoles and derivatives thereof;
    a heat treatment step of holding the lower silver plating layer and the upper silver plating layer at a temperature range of 250 to 400° C. for 3 to 60 seconds;
    A method for producing a silver-coated material comprising the steps of:
  2.  前記下部銀めっき層の平均厚さが0.06~3.0μmである、請求項1に記載の銀被覆材の製造方法。 The method for manufacturing a silver-coated material according to claim 1, wherein the average thickness of the lower silver plating layer is 0.06 to 3.0 μm.
  3.  前記上部銀めっき層の平均厚さが0.3~10.0μmである、請求項1に記載の銀被覆材の製造方法。 The method for manufacturing a silver-coated material according to claim 1, wherein the average thickness of the upper silver plating layer is 0.3 to 10.0 μm.
  4.  前記上部銀めっき工程で使用する銀めっき液は、ベンゾチアゾール類およびその誘導体から選ばれる1種以上の物質を0.01~0.80モル/Lの濃度で含むものである、請求項1に記載の銀被覆材の製造方法。 The method for producing a silver-coated material according to claim 1, wherein the silver plating solution used in the upper silver plating step contains one or more substances selected from benzothiazoles and their derivatives at a concentration of 0.01 to 0.80 mol/L.
  5.  前記上部銀めっき工程において、前記ベンゾチアゾール類およびその誘導体から選ばれる1種以上の物質が、メルカプトベンゾチアゾールおよびその誘導体から選ばれる1種以上の物質である、請求項1に記載の銀被覆材の製造方法。 The method for producing a silver-coated material according to claim 1, wherein in the upper silver plating process, the one or more substances selected from benzothiazoles and their derivatives are one or more substances selected from mercaptobenzothiazole and its derivatives.
  6.  前記上部銀めっき工程において、前記ベンゾチアゾール類およびその誘導体から選ばれる1種以上の物質が、ベンゾチアゾール類およびそのアルカリ金属塩から選ばれる1種以上の物質である、請求項1に記載の銀被覆材の製造方法。 The method for producing a silver-coated material according to claim 1, wherein in the upper silver plating step, the one or more substances selected from benzothiazoles and their derivatives are one or more substances selected from benzothiazoles and their alkali metal salts.
  7.  前記下部銀めっき工程に供する前記素材は、銅または銅合金を基材に持つものである、請求項1に記載の銀被覆材の製造方法。 The method for manufacturing a silver-coated material according to claim 1, wherein the material subjected to the lower silver plating process has a base material of copper or a copper alloy.
  8.  前記下部銀めっき工程に供する前記素材は、前記下部銀めっき層を形成する表面にニッケルめっき層を有するものである、請求項1に記載の銀被覆材の製造方法。 The method for manufacturing a silver-coated material according to claim 1, wherein the material subjected to the lower silver plating process has a nickel plating layer on the surface on which the lower silver plating layer is formed.
  9.  前記下部銀めっき層は、銀ストライクめっき層と、その上の銀めっき層からなるものである、請求項1に記載の銀被覆材の製造方法。 The method for manufacturing a silver-coated material according to claim 1, wherein the lower silver plating layer is composed of a silver strike plating layer and a silver plating layer thereon.
  10.  銅または銅合金を基材に持つ素材の表面に銀被覆層が形成されている銀被覆材であって、XPS(X線光電子分光分析法)による前記銀被覆層の深さ方向元素濃度プロファイルにおいて、銀の原子割合が最大値の1/2に減少する深さ位置の累積スパッタ時間をt(分)とし、銀のプロファイル曲線上で、累積スパッタ時間がt/2より小さい領域(試料最表面側)での銀の原子割合最大点を点P、累積スパッタ時間がt/2より大きい領域(試料中心側)での銀の原子割合最大点を点P、点Pと点Pの間での銀の原子割合最小点を点Qとするとき、点Qでの銀の原子割合Ag(Q)と点Pでの銀の原子割合Ag(P)の比Ag(Q)/Ag(P)が0.90以下、前記Ag(Q)と点Pでの銀の原子割合Ag(P)の比Ag(Q)/Ag(P)が0.90以下、点Qに相当する深さ位置でのC/Ag原子比が0.15以上、かつ点Pに相当する深さ位置でのC/Ag原子比が0.10以下である銀被覆材。 A silver-coated material having a silver coating layer formed on the surface of a material having a copper or copper alloy substrate, wherein, in a depth direction element concentration profile of the silver coating layer by XPS (X-ray photoelectron spectroscopy), a cumulative sputtering time at a depth position where the atomic ratio of silver decreases to 1/2 of the maximum value is t 0 (minutes), a maximum point of the atomic ratio of silver in a region (the outermost surface side of the sample) where the cumulative sputtering time is shorter than t 0 /2 on a silver profile curve is point P 1 , a maximum point of the atomic ratio of silver in a region (the center side of the sample) where the cumulative sputtering time is longer than t 0 /2 is point P 2 , and a minimum point of the atomic ratio of silver between points P 1 and P 2 is point Q, a ratio Ag(Q)/Ag(P 1 ) of the atomic ratio of silver at point Q to the atomic ratio of silver at point P 1 is 0.90 or less, and a ratio Ag(Q)/Ag(P 1 ) of the atomic ratio of silver at point P 2 is 0.90 or less. a ratio Ag(Q)/Ag( P2 ) of 0.90 or less, a C/Ag atomic ratio at a depth position corresponding to point Q of 0.15 or more, and a C/Ag atomic ratio at a depth position corresponding to point P2 of 0.10 or less.
  11.  前記銀被覆層の銀の平均結晶子径が20nm以上である、請求項10に記載の銀被覆材。 The silver-coated material according to claim 10, wherein the average crystallite size of the silver in the silver-coated layer is 20 nm or more.
  12.  請求項10または11に記載の銀被覆材を材料に用いた通電部品。 An electrically conductive part made using the silver coating material described in claim 10 or 11.
PCT/JP2023/041654 2022-11-29 2023-11-20 Production method for silver coating material, silver coating material, and energizing component WO2024116940A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-189901 2022-11-29
JP2022189901A JP2024077764A (en) 2022-11-29 2022-11-29 Production method of silver coating material, silver coating material, and conductive component

Publications (1)

Publication Number Publication Date
WO2024116940A1 true WO2024116940A1 (en) 2024-06-06

Family

ID=91323850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041654 WO2024116940A1 (en) 2022-11-29 2023-11-20 Production method for silver coating material, silver coating material, and energizing component

Country Status (2)

Country Link
JP (1) JP2024077764A (en)
WO (1) WO2024116940A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022048959A (en) * 2020-09-15 2022-03-28 Dowaメタルテック株式会社 Silver-plated material and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022048959A (en) * 2020-09-15 2022-03-28 Dowaメタルテック株式会社 Silver-plated material and method for producing the same

Also Published As

Publication number Publication date
JP2024077764A (en) 2024-06-10

Similar Documents

Publication Publication Date Title
JP6611602B2 (en) Silver plating material and method for producing the same
JP6395560B2 (en) Silver plating material and method for producing the same
JP5319101B2 (en) Sn plating material for electronic parts
JP5848169B2 (en) Silver plating material
JP5667543B2 (en) Silver plating material and method for producing the same
JP5848168B2 (en) Silver plating material
TWI719093B (en) Manufacturing method of tinned copper terminal material
CN110997984B (en) Tin-plated copper terminal material, terminal and wire terminal part structure
JP5185759B2 (en) Conductive material and manufacturing method thereof
WO2016121312A1 (en) Silver-plated member and method for manufacturing same
TW201907622A (en) Tinned copper terminal material, terminal and wire end structure
WO2024116940A1 (en) Production method for silver coating material, silver coating material, and energizing component
JP7121232B2 (en) Copper terminal material, copper terminal, and method for producing copper terminal material
JP7455634B2 (en) Silver plating material and its manufacturing method, and terminal parts
JP7172583B2 (en) Terminal materials for connectors
WO2023188446A1 (en) Production method for silver-plated material, silver-coated sheet metal, and conductive component
JP2022092093A (en) Ag COATING MATERIAL, PRODUCTION METHOD OF Ag COATING MATERIAL, AND TERMINAL COMPONENT
JP2020128575A (en) Terminal material for connector, terminal for connector, and method of producing terminal material for connector
WO2023188637A1 (en) Silver-plated material and method for producing same
JP2020056055A (en) Terminal material for connector, terminal for connector, and manufacturing method of terminal material for connector
WO2019031549A1 (en) Terminal material with silver coating film, and terminal with silver coating film
JP2022182670A (en) Conductive member and method for manufacturing conductive member
JP2023152637A (en) Silver-plated material and method for producing the same
JP2020056057A (en) Terminal material for connector, terminal for connector, and manufacturing method of terminal material for connector
KR20180014697A (en) CONSTRUCTION MATERIAL AND PREPARATION METHOD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23897588

Country of ref document: EP

Kind code of ref document: A1