WO2023135916A1 - Work machine, and method and system for controlling work machine - Google Patents

Work machine, and method and system for controlling work machine Download PDF

Info

Publication number
WO2023135916A1
WO2023135916A1 PCT/JP2022/041841 JP2022041841W WO2023135916A1 WO 2023135916 A1 WO2023135916 A1 WO 2023135916A1 JP 2022041841 W JP2022041841 W JP 2022041841W WO 2023135916 A1 WO2023135916 A1 WO 2023135916A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
work machine
detection range
leaning
articulate
Prior art date
Application number
PCT/JP2022/041841
Other languages
French (fr)
Japanese (ja)
Inventor
彰宏 興津
健志 上前
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to CN202280070231.2A priority Critical patent/CN118202122A/en
Publication of WO2023135916A1 publication Critical patent/WO2023135916A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices

Definitions

  • the present invention relates to work machines, methods and systems for controlling work machines.
  • Patent Document 1 discloses a forklift equipped with an object detection system.
  • the object detection system includes radar equipment such as millimeter wave radar.
  • a radar device detects the presence or absence of an object by transmitting radio waves or ultrasonic waves and receiving radio waves or ultrasonic waves reflected by the object.
  • the controller sets a detection range around the forklift, and issues an alarm when an object is detected within the detection range. Further, the detection range is changed according to the vehicle speed and steering angle of the forklift.
  • the above object detection system is said to be able to appropriately determine whether or not an object exists around the forklift by changing the detection range according to the vehicle speed and steering angle.
  • a working machine such as a motor grader, which has a large degree of freedom in the posture of the vehicle body, it is not enough to apply the above-described technique.
  • An object of the present invention is to appropriately determine whether or not an object exists around a working machine.
  • a work machine includes a vehicle body, running wheels, a steering actuator, an articulate actuator, a steering angle sensor, an articulate angle sensor, an object sensor, and a controller.
  • the vehicle body includes a rear frame and a front frame. The front frame is connected to the rear frame so as to be rotatable to the left and right.
  • the running wheels are supported by the vehicle body.
  • the steering actuator steers the running wheels left and right.
  • the articulated actuator changes the articulated angle between the rear frame and the front frame.
  • the steering angle sensor detects the steering angle of the running wheels.
  • the articulate angle sensor detects an articulate angle.
  • the object sensor detects an object around the work machine and outputs a signal indicating the presence or absence of the object.
  • the controller sets a detection range around the work machine. The controller determines the presence or absence of an object within the detection range based on the signal from the object sensor. The controller sets the detection range according to the steering angle and articulate angle.
  • a method is a method for controlling a working machine.
  • the work machine includes a rear frame, a vehicle body, running wheels, a steering actuator, and an articulated actuator.
  • the vehicle body includes a rear frame and a front frame.
  • the front frame is connected to the rear frame so as to be rotatable to the left and right.
  • the running wheels are supported by the vehicle body.
  • the steering actuator steers the running wheels left and right.
  • the articulated actuator changes the articulated angle between the rear frame and the front frame.
  • the method includes detecting a steering angle, detecting an articulate angle, receiving a signal indicating the presence or absence of an object in the vicinity of the work machine, and performing a task according to the steering angle and the articulate angle. Setting a detection range around the machine and determining the presence or absence of an object within the detection range based on a signal from an object sensor.
  • a system is a system for controlling a working machine.
  • the work machine includes a rear frame, a vehicle body, running wheels, a steering actuator, and an articulated actuator.
  • the vehicle body includes a rear frame and a front frame.
  • the front frame is connected to the rear frame so as to be rotatable to the left and right.
  • the running wheels are supported by the vehicle body.
  • the steering actuator steers the running wheels left and right.
  • the articulated actuator changes the articulated angle between the rear frame and the front frame.
  • the system comprises a steering angle sensor, an articulate angle sensor, an object sensor and a controller.
  • the steering angle sensor detects the steering angle of the running wheels.
  • the articulate angle sensor detects an articulate angle.
  • the object sensor detects an object around the work machine and outputs a signal indicating the presence or absence of the object.
  • the controller sets a detection range around the work machine.
  • the controller determines the presence or absence of an object within the detection range based on the signal from the object sensor.
  • the controller sets the detection range according to the steering angle and articulate angle.
  • the detection range of objects around the work machine is set according to the steering angle and the articulate angle. Accordingly, it is possible to appropriately determine whether or not an object exists around the work machine.
  • FIG. 1 is a perspective view of a working machine according to an embodiment; FIG. It is a side view of a working machine.
  • Figure 3 is a top view of the front portion of the work machine; 1 is a front view of the front portion of the working machine;
  • FIG. 1 is a schematic diagram showing the configuration of a control system for a working machine;
  • FIG. It is a top view which shows an example of a detection range.
  • 4 is a flowchart showing processing for setting a detection range; 4 is a flowchart showing processing for setting a detection range;
  • FIG. 11 is a top view showing a detection range according to the processing of Modification 1;
  • FIG. 11 is a top view showing a detection range according to the processing of modification 2;
  • FIG. 11 is a top view showing a detection range according to the process of modification 3;
  • FIG. 11 is a top view showing a detection range according to the process of modification 3;
  • FIG. 12 is a top view showing a detection range according to the processing of Modification 4;
  • FIG. 13 is a top view showing a detection range according to the process of modification 5;
  • FIG. 13 is a top view showing a detection range according to the process of modification 5;
  • FIG. 11 is a top view showing a detection range according to the process of modification 6;
  • FIG. 10 is a top view showing a detection range according to the process of modification 7;
  • FIG. 10 is a top view showing a detection range according to the process of modification 7;
  • FIG. 11 is a top view showing a detection range according to the processing of Modification 8;
  • FIG. 11 is a top view showing a detection range according to the processing of Modification 8;
  • FIG. 11 is a top view showing a detection range according to the processing of modification 9;
  • FIG. 11 is a top view showing a detection range according to the processing of modification 9;
  • FIG. 11 is a top view showing a detection range according to the processing of modification 9;
  • It is a top view which shows the detection range which concerns on a modification.
  • FIG. 1 is a perspective view of a working machine 1 according to an embodiment.
  • FIG. 2 is a side view of the work machine 1.
  • the working machine 1 includes a vehicle body 2, running wheels 3A, 3B, 4A-4D, and a working machine 5.
  • the vehicle body 2 includes a front frame 11 , a rear frame 12 , a cab 13 and a power room 14 .
  • the rear frame 12 is connected to the front frame 11.
  • the front frame 11 is connected to the rear frame 12 so as to be rotatable with respect to the rear frame 12 . As will be described later, the front frame 11 can rotate left and right with respect to the rear frame 12 .
  • front, rear, left, and right directions are the state in which the articulated angle of the front frame 11 with respect to the rear frame 12 is zero, that is, the state in which the front frame 11 and the rear frame 12 are straight.
  • Front, back, left, and right directions are defined.
  • the cab 13 and power chamber 14 are arranged on the rear frame 12 .
  • a driver's seat (not shown) is arranged in the cab 13 .
  • the power chamber 14 is arranged behind the cab 13 .
  • the front frame 11 extends forward from the rear frame 12 .
  • the running wheels 3A, 3B, 4A-4D are rotatably supported by the vehicle body 2.
  • the running wheels 3A, 3B, 4A-4D include front wheels 3A, 3B and rear wheels 4A-4D.
  • the front wheels 3A and 3B are arranged apart from each other in the left-right direction.
  • the front wheels 3A, 3B are attached to the front frame 11.
  • the rear wheels 4A-4D are attached to the rear frame 12. As shown in FIG.
  • the work machine 5 is movably connected to the vehicle body 2.
  • Work implement 5 includes a support member 15 and a blade 16 .
  • the support member 15 is movably connected to the vehicle body 2 .
  • Support member 15 supports blade 16 .
  • Support member 15 includes drawbar 17 and circle 18 .
  • the drawbar 17 is arranged below the front frame 11 .
  • the drawbar 17 is connected to the front portion 19 of the front frame 11 .
  • the drawbar 17 extends rearward from the front portion 19 of the front frame 11 .
  • the drawbar 17 is supported by the front frame 11 so as to be swingable at least in the vertical and horizontal directions of the vehicle body 2 .
  • front portion 19 includes a ball joint.
  • the drawbar 17 is rotatably connected to the front frame 11 via a ball joint.
  • the circle 18 is connected to the rear of the drawbar 17.
  • Circle 18 is rotatably supported with respect to drawbar 17 .
  • Blades 16 are connected to circle 18 .
  • a blade 16 is supported by a drawbar 17 via a circle 18 .
  • the blade 16 is supported by the circle 18 so as to be rotatable around the tilt shaft 21.
  • the tilt shaft 21 extends in the left-right direction.
  • FIG. 3 is a top view of the front portion of the working machine 1.
  • the work machine 1 includes a first steering shaft 43A and a second steering shaft 43B.
  • the first steering shaft 43A and the second steering shaft 43B are provided on the front frame 11 .
  • the first steering shaft 43A and the second steering shaft 43B extend vertically.
  • the front wheels 3A are rotatably supported around the first steering shaft 43A.
  • the front wheel 3B is rotatably supported around the second steering shaft 43B. That is, the front wheels 3A and 3B are steerable running wheels.
  • the work machine 1 includes a plurality of steering actuators 41A, 41B for steering the front wheels 3A, 3B.
  • a plurality of steering actuators 41A, 41B are used to steer the front wheels 3A, 3B.
  • the steering actuators 41A and 41B are hydraulic cylinders.
  • a plurality of steering actuators 41A, 41B are connected to the front wheels 3A, 3B, respectively.
  • the plurality of steering actuators 41A, 41B expand and contract by hydraulic pressure. In the following description, the expansion and contraction of the hydraulic cylinder including the steering actuators 41A, 41B is referred to as "stroke operation".
  • the plurality of steering actuators 41A, 41B include a left steering cylinder 41A and a right steering cylinder 41B.
  • the left steering cylinder 41A and the right steering cylinder 41B are arranged apart from each other in the left-right direction.
  • the left steering cylinder 41A is connected to the front frame 11 and the front wheel 3A.
  • the right steering cylinder 41B is connected to the front frame 11 and the front wheel 3B.
  • the front wheels 3A and 3B are steered by stroke operations of the left steering cylinder 41A and the right steering cylinder 41B.
  • the work machine 1 includes an articulated shaft 44.
  • the articulated shaft 44 is provided on the front frame 11 and the rear frame 12 .
  • the articulate shaft 44 extends vertically.
  • the front frame 11 and the rear frame 12 are connected to each other so as to be rotatable about the articulate shaft 44 .
  • the state in which the vehicle body 2 is bent due to the front frame 11 and the rear frame 12 rotating about the articulate shaft 44 is referred to as an "articulated state”.
  • a state in which the front frame 11 and the rear frame 12 are not in the articulated state ie, the state in which the front frame 11 and the rear frame 12 are aligned in a straight line, will be referred to as a "straight line state.”
  • the work machine 1 includes a plurality of articulated actuators 27,28.
  • a plurality of articulated actuators 27 and 28 are used to rotate the front frame 11 with respect to the rear frame 12 .
  • the articulated actuators 27, 28 are hydraulic cylinders.
  • a plurality of articulated actuators 27 and 28 are connected to the front frame 11 and the rear frame 12 .
  • the plurality of articulated actuators 27, 28 expand and contract by hydraulic pressure.
  • the plurality of articulated actuators 27, 28 includes a left articulated cylinder 27 and a right articulated cylinder 28.
  • the left articulated cylinder 27 and the right articulated cylinder 28 are arranged apart from each other in the left-right direction.
  • the left articulated cylinder 27 is connected to the front frame 11 and the rear frame 12 on the left side of the vehicle body 2 .
  • the right articulated cylinder 28 is connected to the front frame 11 and the rear frame 12 on the right side of the vehicle body 2 .
  • the stroke motion of the left articulated cylinder 27 and the right articulated cylinder 28 causes the front frame 11 to rotate left and right with respect to the rear frame 12 .
  • FIG. 4 is a front view of the front part of the working machine 1.
  • the work machine 1 has a lean mechanism 6 .
  • the lean mechanism 6 tilts the front wheels 3A, 3B left and right.
  • the lean mechanism 6 includes an axle beam 56 , a leaning rod 57 and a leaning actuator 60 .
  • the axle beam 56 extends left and right from the front frame 11 .
  • Axle beam 56 is rotatably supported on front frame 11 about pivot shaft 58 .
  • the axle beam 56 is connected to the front wheel 3A via a wheel bracket 59A.
  • Axle beam 56 supports front wheel 3A rotatably around leaning shaft 54A.
  • Axle beam 56 is connected to front wheel 3B via wheel bracket 59B.
  • Axle beam 56 supports front wheel 3B rotatably around leaning shaft 54B.
  • the leaning shafts 54A, 54B extend in the front-rear direction.
  • the leaning rod 57 extends left and right through the front frame 11 .
  • the leaning rod 57 connects the front wheels 3A and 3B to each other.
  • the leaning rod 57 is connected to the front wheel 3A via a wheel bracket 59A.
  • the leaning rod 57 is connected to the front wheel 3B via a wheel bracket 59B.
  • the leaning actuator 60 is used to lean (lean) the front wheels 3A and 3B.
  • leaning actuator 60 is a hydraulic cylinder.
  • the leaning actuator 60 is connected to the front frame 11 and the front wheels 3A, 3B.
  • the leaning actuator 60 expands and contracts by hydraulic pressure. That is, by extending and contracting the leaning actuator 60, the front wheels 3A, 3B rotate around the leaning shafts 54A, 54B. As a result, the front wheels 3A and 3B tilt left and right.
  • the work machine 1 includes a plurality of actuators 22-26 for changing the attitude of the work machine 5.
  • actuators 22-25 are hydraulic cylinders.
  • Actuator 26 is a rotary actuator.
  • actuator 26 is a hydraulic motor.
  • Actuator 26 may be an electric motor.
  • a plurality of actuators 22 - 25 are connected to the work machine 5 .
  • a plurality of actuators 22-25 expand and contract by hydraulic pressure.
  • the actuators 22 to 25 extend and contract to change the attitude of the work implement 5 with respect to the vehicle body 2 .
  • the plurality of actuators 22 - 25 includes a left lift cylinder 22 , a right lift cylinder 23 , a drawbar shift cylinder 24 and a blade tilt cylinder 25 .
  • the left lift cylinder 22 and the right lift cylinder 23 are arranged apart from each other in the left-right direction.
  • the left lift cylinder 22 and the right lift cylinder 23 are connected to the drawbar 17 .
  • Left lift cylinder 22 and right lift cylinder 23 are connected to front frame 11 via lifter bracket 29 .
  • the draw bar 17 swings up and down due to stroke operations of the left lift cylinder 22 and the right lift cylinder 23 . Thereby, the blade 16 moves up and down.
  • the drawbar shift cylinder 24 is connected to the drawbar 17 and the front frame 11 .
  • the drawbar shift cylinder 24 is connected to the front frame 11 via a lifter bracket 29 .
  • the drawbar shift cylinder 24 extends obliquely downward from the front frame 11 toward the drawbar 17 .
  • the stroke operation of the drawbar shift cylinder 24 swings the drawbar 17 left and right.
  • the blade tilt cylinder 25 is connected to the circle 18 and the blade 16. The stroke operation of the blade tilt cylinder 25 rotates the blade 16 around the tilt shaft 21 .
  • the actuator 26 is connected to the drawbar 17 and the circle 18. Actuator 26 rotates circle 18 relative to drawbar 17 . Thereby, the blade 16 rotates around the rotation axis extending in the vertical direction.
  • FIG. 5 is a schematic diagram showing the configuration of the control system of the work machine 1.
  • work machine 1 includes a drive source 31 , a hydraulic pump 32 and a power transmission device 33 .
  • the work machine 1 includes a steering valve 42A, an articulate valve 42B, a leaning valve 42C, and a work machine valve 34.
  • the drive source 31 is, for example, an internal combustion engine. Alternatively, the drive source 31 may be an electric motor or a hybrid of an internal combustion engine and an electric motor.
  • the hydraulic pump 32 is driven by the drive source 31 to discharge hydraulic oil.
  • the hydraulic pump 32 supplies hydraulic fluid to the steering valve 42A, the articulate valve 42B, the leaning valve 42C, and the working machine valve 34.
  • the plurality of steering actuators 41A, 41B, the plurality of articulated actuators 27, 28, the leaning actuator 60, and the plurality of actuators 22-26 are operated.
  • only one hydraulic pump 32 is shown in FIG. 5, a plurality of hydraulic pumps may be provided.
  • the steering valve 42A is connected to the hydraulic pump 32 and a plurality of steering actuators 41A and 41B via hydraulic circuits.
  • the steering valve 42A controls the flow rate of hydraulic fluid supplied from the hydraulic pump 32 to the steering actuators 41A and 41B.
  • a plurality of steering actuators 41A and 41B perform a stroke operation by supplying the hydraulic fluid of the hydraulic pump 32 to the steering valve 42A.
  • the articulated valve 42B is connected to the hydraulic pump 32 and the plurality of articulated actuators 27, 28 via hydraulic circuits.
  • the articulated valve 42B controls the flow rate of hydraulic fluid supplied from the hydraulic pump 32 to the plurality of articulated actuators 27,28.
  • the plurality of articulate actuators 27 and 28 perform stroke operations by supplying hydraulic fluid from the hydraulic pump 32 to the articulate valve 42B.
  • the leaning valve 42C is connected to the hydraulic pump 32 and the leaning actuator 60 via a hydraulic circuit.
  • the leaning valve 42 ⁇ /b>C controls the flow rate of hydraulic oil supplied from the hydraulic pump 32 to the leaning actuator 60 .
  • the leaning actuator 60 performs a stroke operation by supplying the hydraulic oil of the hydraulic pump 32 to the leaning valve 42C.
  • the working machine valve 34 is connected to the hydraulic pump 32 and the plurality of actuators 22-26 via a hydraulic circuit.
  • the work implement valve 34 includes a plurality of valves connected to each of the plurality of actuators 22-26.
  • the work machine valve 34 controls the flow rate of hydraulic oil supplied from the hydraulic pump 32 to the actuators 22-26.
  • the power transmission device 33 transmits the driving force from the drive source 31 to the rear wheels 4A-4D.
  • the power transmission device 33 may include a torque converter and/or multiple transmission gears.
  • the power transmission device 33 may be a transmission such as HST (Hydraulic Static Transmission) or HMT (Hydraulic Mechanical Transmission).
  • the work machine 1 includes a steering operation member 45 , an articulate operation member 46 , a leaning operation member 47 , a work machine operation member 48 , a shift operation member 49 and an accelerator operation member 50 .
  • the steering operation member 45 can be operated by the operator to steer the front wheels 3A, 3B.
  • the steering operation member 45 is a lever such as a joystick.
  • the steering operation member 45 may be a member other than a lever.
  • the steering operation member 45 may be a steering wheel.
  • the steering operation member 45 outputs a steering operation signal indicating the operation of the steering operation member 45 by the operator.
  • the articulated operating member 46 is operable by the operator to rotate the front frame 11 with respect to the rear frame 12 .
  • the articulated operating member 46 is a lever such as a joystick.
  • the articulate operating member 46 may be a member other than a lever.
  • the articulate operation member 46 outputs an articulate operation signal indicating the operation of the articulate operation member 46 by the operator.
  • the leaning operation member 47 can be operated by the operator to tilt the front wheels 3A, 3B.
  • the leaning operation member 47 is a lever such as a joystick.
  • the leaning operation member 47 may be another member such as a switch or a touch panel.
  • the leaning operation member 47 outputs a leaning operation signal indicating the operation of the leaning operation member 47 by the operator.
  • the work machine operating member 48 can be operated by the operator to change the attitude of the work machine 5 .
  • the work machine operating member 48 includes, for example, a plurality of work machine levers.
  • the work machine operation member 48 may be another member such as a switch or a touch panel.
  • the work machine operating member 48 outputs a signal indicating the operation of the work machine operating member 48 by the operator.
  • the shift operation member 49 can be operated by an operator for switching between forward and reverse travel of the work machine 1 .
  • the shift operating member 49 includes, for example, a shift lever.
  • the shift operation member 49 may be another member such as a switch or a touch panel.
  • the shift operation member 49 outputs a signal indicating the operation of the shift operation member 49 by the operator.
  • the accelerator operation member 50 can be operated by an operator to make the work machine 1 run.
  • the accelerator operating member 50 includes, for example, an accelerator pedal.
  • the accelerator operation member 50 may be another member such as a switch or a touch panel.
  • the accelerator operation member 50 outputs a signal indicating the operation of the accelerator operation member 50 by the operator.
  • the work machine 1 includes a controller 37.
  • Controller 37 includes storage device 38 and processor 39 .
  • the processor 39 is a CPU, for example, and executes a program for controlling the work machine 1 .
  • the storage device 38 includes memories such as RAM and ROM, and auxiliary storage devices such as SSD or HDD.
  • the storage device 38 stores programs and data for controlling the work machine 1 .
  • the controller 37 controls the power transmission device 33 according to the operation of the shift operation member 49.
  • the traveling direction of the work machine 1 is switched between forward and reverse.
  • the speed stage of the power transmission device 33 is switched.
  • the shift operating member 49 may be mechanically connected to the power transmission device 33 .
  • the forward and reverse gears of the power transmission device 33 or the transmission gear may be switched.
  • the controller 37 controls the drive source 31 and the power transmission device 33 according to the operation of the accelerator operation member 50. As a result, the work machine 1 travels.
  • the controller 37 also controls the hydraulic pump 32 and the work machine valve 34 according to the operation of the work machine operation member 48 . As a result, the working machine 5 operates.
  • the controller 37 acquires the operation amount of the steering operation member 45 based on the steering operation signal from the steering operation member 45 .
  • the controller 37 expands and contracts the steering actuators 41A and 41B by controlling the steering valve 42A according to the steering operation signal. Thereby, the controller 37 changes the steering angle ⁇ s of the front wheels 3A and 3B.
  • the steering angle ⁇ s is the angle at which the front wheels 3A and 3B rotate with respect to the front frame 11 about the first steering shaft 43A and the second steering shaft 43B. Specifically, the steering angle ⁇ s is the rotation angle of the front wheels 3A and 3B with respect to the first center line L1 of the front frame 11. As shown in FIG. The first center line L1 extends in the front-rear direction of the front frame 11 .
  • the steering angle ⁇ s changes left and right from the neutral position due to stroke operations of the steering actuators 41A and 41B.
  • the steering angle ⁇ s at the neutral position is zero degrees.
  • the front wheels 3A, 3B are arranged parallel to the first center line L1 of the front frame 11 at the neutral position. In FIG. 3, 3A' and 3B' indicate the front wheels steered rightward from the neutral position by the steering angle .theta.s.
  • the controller 37 acquires the operation amount of the articulate operation member 46 based on the articulate operation signal from the articulate operation member 46 .
  • Controller 37 controls articulated valve 42B.
  • the controller 37 expands and contracts the left articulated cylinder 27 and the right articulated cylinder 28 by controlling the articulated valve 42B according to the articulated operation signal. Thereby, the controller 37 changes the articulate angle ⁇ a.
  • the articulate angle ⁇ a is the angle at which the front frame 11 rotates with respect to the rear frame 12 about the articulate shaft 44 .
  • the articulate angle ⁇ a is the angle between the first center line L1 of the front frame 11 and the second center line L2 of the rear frame 12 .
  • the second center line L2 extends in the longitudinal direction of the rear frame 12.
  • the second center line L2 passes through the articulate shaft 44 when the work machine 1 is viewed from above.
  • the articulate angle ⁇ a changes left and right from the neutral position.
  • the articulate angle ⁇ a in the neutral position is zero.
  • the articulate angle .theta.a to the left is a positive value and the articulate angle .theta.a to the right is a negative value.
  • FIG. 3 shows a state in which the front frame 11 is rotated about the articulate shaft 44 by the articulate angle ⁇ a.
  • the controller 37 acquires the operation amount of the leaning operation member 47 based on the leaning operation signal from the leaning operation member 47 .
  • the controller 37 controls the leaning valve 42C.
  • the controller 37 expands and contracts the leaning actuator 60 by controlling the leaning valve 42C according to the leaning operation signal.
  • the controller 37 changes the leaning angle ⁇ l according to the operation of the leaning operation member 47 by the operator.
  • the leaning angle ⁇ l is the tilt angle of the front wheels 3A, 3B in the left-right direction when the vehicle body 2 is viewed from the front.
  • the leaning angle ⁇ l is a tilting angle at which the front wheels 3A, 3B tilt around the leaning shafts 54A, 54B when the vehicle body 2 is viewed from the front.
  • the neutral position of the front wheels 3A, 3B is called the neutral position of the front wheels 3A, 3B.
  • the front wheels 3A and 3B are in the neutral position and the leaning angle ⁇ l is zero degrees.
  • 3A' and 3B' indicate the front wheels tilted leftward from the neutral position by the leaning angle .theta.l.
  • the work machine 1 includes a steering angle sensor 51 , an articulate angle sensor 52 and a leaning angle sensor 53 .
  • a steering angle sensor 51 is used to detect the steering angle ⁇ s of the front wheels 3A and 3B.
  • the steering angle sensor 51 outputs a signal indicating the steering angle ⁇ s.
  • the articulate angle sensor 52 is used to detect the articulate angle of the front frame 11 with respect to the rear frame 12.
  • the articulate angle sensor 52 outputs a signal indicating the articulate angle ⁇ a.
  • the leaning angle sensor 53 is used to detect the leaning angle ⁇ l of the front wheels 3A, 3B.
  • the leaning angle sensor 53 outputs a signal indicating the leaning angle ⁇ l.
  • the steering angle sensor 51, articulate angle sensor 52, and leaning angle sensor 53 may each be an IMU (inertial measurement unit).
  • the steering angle sensor 51, articulate angle sensor 52, and leaning angle sensor 53 may each be a camera.
  • the controller 37 may calculate the steering angle ⁇ s, the articulate angle ⁇ a, and the leaning angle ⁇ l by analyzing the images acquired by the sensors 51-53.
  • the steering angle sensor 51, articulate angle sensor 52, and leaning angle sensor 53 detect the stroke amounts of the steering actuators 41A and 41B, the stroke amounts of the articulate cylinders 27 and 28, and the stroke amount of the leaning actuator 60, respectively. It may be a sensor that In this case, the controller 37 calculates the steering angle ⁇ s, the articulate angle ⁇ a, and the leaning angle ⁇ l from the stroke amounts of the steering actuators 41A and 41B, the stroke amounts of the articulated cylinders 27 and 28, and the stroke amount of the leaning actuator 60, respectively. and may be calculated.
  • the steering angle sensor 51 may directly detect the steering angle ⁇ s.
  • the articulate angle sensor 52 may directly detect the articulate angle ⁇ a.
  • the leaning angle sensor 53 may directly detect the leaning angle ⁇ l.
  • the work machine 1 includes object sensors 61 and 62 and an output device 63.
  • Object sensors 61 and 62 detect objects around work machine 1 .
  • the object sensors 61 and 62 are, for example, radar devices such as millimeter wave radars.
  • the object sensors 61, 62 may be other types of sensors such as ultrasonic sensors, cameras, LIDAR (Light Detection and Ranging) devices.
  • the object sensor outputs a signal indicating the presence or absence of an object around the working machine 1 .
  • the object sensors 61 and 62 include a first object sensor 61 and a second object sensor 62.
  • the first object sensor 61 detects an object in front of the vehicle body 2 .
  • the first object sensor 61 is attached to the front frame 11, for example.
  • first object sensor 61 may be mounted elsewhere, such as on cab 13 .
  • the second object sensor 62 detects an object behind the vehicle body 2 .
  • the second object sensor 62 may be mounted, for example, on the rear frame 12 , or the second object sensor 62 may be mounted on the cab 13 or elsewhere such as the power compartment 14 .
  • the output device 63 is, for example, a display.
  • the output device 63 displays images according to command signals from the controller 37 .
  • output device 63 may be a speaker.
  • the output device 63 may output sound according to command signals from the controller 37 .
  • the controller 37 sets detection ranges 71 and 72 around the work machine 1, and determines the presence or absence of objects within the detection ranges 71 and 72 based on signals from the object sensors 61 and 62. For example, as shown in FIG. 6 , the controller 37 sets a first detection range 71 in front of the vehicle body 2 . The controller 37 sets a second detection range 72 behind the vehicle body 2 . The controller 37 causes the output device 63 to output an alarm when the object 100 is detected within the detection ranges 71 and 72 .
  • the controller 37 stores a first reference range 73 of the first detection range 71 and a second reference range 74 of the second detection range 72 .
  • the first reference range 73 and the second reference range 74 are set based on the width of the vehicle body 2 (hereinafter referred to as "vehicle width") L0.
  • vehicle width the width of the first reference range 73 and the width of the second reference range 74 are the same as the maximum vehicle width L0 of the work machine 1 excluding the work machine 5, respectively.
  • the controller 37 sets detection ranges 71 and 72 according to the steering angle ⁇ s, articulate angle ⁇ a, and leaning angle ⁇ l.
  • the controller 37 changes the detection ranges 71, 72 from the reference ranges 73, 74 according to the steering angle ⁇ s, articulate angle ⁇ a, and leaning angle ⁇ l.
  • a method of setting the detection ranges 71 and 72 by the controller 37 will be described below.
  • 7 and 8 are flowcharts showing the processing for setting the detection ranges 71 and 72 executed by the controller 37. FIG.
  • step S1 the controller 37 acquires the steering angle ⁇ s.
  • the controller 37 acquires the steering angle ⁇ s from the signal from the steering angle sensor 51 .
  • the controller 37 acquires the articulate angle ⁇ a.
  • the controller 37 acquires the articulate angle ⁇ a from the signal from the articulate angle sensor 52 .
  • the controller 37 acquires the leaning angle ⁇ l.
  • the controller 37 acquires the leaning angle ⁇ l from the signal from the leaning angle sensor 53 .
  • step S4 the controller 37 determines whether the steering angle ⁇ s is 0 degrees. In step S5, the controller 37 determines whether the articulate angle ⁇ a is 0 degrees. In step S6, the controller 37 determines whether the leaning angle ⁇ l is 0 degrees.
  • the controller 37 sets the reference ranges 73 and 74 as the detection ranges 71 and 72 in step S7. That is, the controller 37 sets the reference ranges 73 and 74 as the detection ranges 71 and 72 when the work machine 1 is not steered, is not leaning, and is traveling straight. Specifically, as shown in FIG. 6 , the controller 37 sets the first reference range 73 as the first detection range 71 . Also, the controller 37 sets the second reference range 74 as the second detection range 72 .
  • step S6 if the leaning angle ⁇ l is not 0 degrees, the process proceeds to step S8.
  • step S8 the controller 37 sets the detection ranges 71 and 72 by changing the reference ranges 73 and 74 according to the process of change 1.
  • FIG. FIG. 9 is a top view showing detection ranges 71 and 72 according to the modification 1 process.
  • the controller 37 moves the detection ranges 71 and 72 to the same side in the left-right direction as the direction in which the front wheels 3A and 3B are leaning (hereinafter referred to as the "leaning direction"). to expand. That is, the controller 37 expands the detection ranges 71 and 72 in the same direction as the leaning direction when the work machine 1 is not steered and moves straight while leaning.
  • the controller 37 expands the first detection range 71 from the first reference range 73 to the left.
  • the controller 37 expands the second detection range 72 leftward from the second reference range 74 .
  • the controller 37 does not expand the detection ranges 71 and 72 to the right.
  • the width Lall of the detection ranges 71 and 72 is represented by the following formula (1).
  • Lall L0 + Ll (1)
  • Ll is the increment of detection range when leaning.
  • the leaning increment Ll indicates the amount of lateral outward displacement of the front wheels 3A and 3B due to leaning.
  • D is the outer diameter of the front wheels 3A, 3B.
  • the controller 37 expands the first detection range 71 from the first reference range 73 to the right. Then, the second detection range 72 is expanded rightward from the second reference range 74 .
  • step S5 if the articulate angle ⁇ a is not 0 degrees, the process proceeds to step S9.
  • step S9 the controller 37 determines whether the leaning angle ⁇ l is 0 degrees. In step S9, if the leaning angle ⁇ l is 0 degrees, the process proceeds to step S10.
  • step S10 the controller 37 sets the detection ranges 71 and 72 by changing the reference ranges 73 and 74 according to the process of change 2.
  • FIG. 10 is a top view showing detection ranges 71 and 72 according to the modification 2 process. As shown in FIG. 10 , in the process of modification 2, the controller 37 curves the detection ranges 71 and 72 according to the turning radius of the work machine 1 according to the articulate angle ⁇ a. That is, when the work machine 1 is not steered, is not leaning, and turns in an articulated state, the detection ranges 71 and 72 are curved in accordance with the turning trajectories A1 and A2 of the work machine 1. Let
  • the controller 37 curves the detection ranges 71 and 72 leftward.
  • the controller 37 stores data indicating the relationship between the articulate angle ⁇ a and the turning radius of the work machine 1, and may calculate the turning radius from the articulate angle ⁇ a by referring to the data.
  • step S9 if the leaning angle ⁇ l is not 0 degrees, the process proceeds to step S11.
  • step S11 the controller 37 sets the detection ranges 71 and 72 by changing the reference ranges 73 and 74 according to the change 3 process.
  • 11 and 12 are top views showing detection ranges 71 and 72 according to the process of modification 3. FIG.
  • the controller 37 curves the detection ranges 71 and 72 according to the turning radius of the work machine 1 according to the articulate angle ⁇ a and the leaning angle ⁇ l. At the same time, the detection ranges 71 and 72 are expanded on the same side as the leaning direction. That is, when the work machine 1 is not being steered and the work machine 1 is leaning and turning in an articulated state, the controller 37 detects the turning trajectory of the work machine 1 in accordance with the turning trajectory in the same manner as the processing of the modification 2. While curving the ranges 71 and 72, the detection ranges 71 and 72 are expanded on the same side as the leaning direction.
  • the controller 37 stores data indicating the relationship between the articulate angle ⁇ a, the leaning angle ⁇ l, and the turning radius of the work machine 1. By referring to the data, the controller 37 can obtain the articulate angle ⁇ a, the leaning angle ⁇ l, and the like.
  • the turning radius of the work machine 1 may be calculated from
  • the controller 37 bends the detection ranges 71 and 72 leftward, The detection ranges 71 and 72 are expanded leftward by the increment Ll.
  • the controller 37 bends the detection ranges 71 and 72 to the left and 71 and 72 are expanded rightward by the increment Ll.
  • the width Lall of the detection ranges 71 and 72 is represented by the formula (1) described above.
  • step S4 if the steering angle ⁇ s is not 0 degrees, the process proceeds to step S12 shown in FIG.
  • the controller 37 determines whether the articulate angle ⁇ a is 0 degrees.
  • step S13 the controller 37 determines whether the leaning angle ⁇ l is 0 degrees. If both the articulate angle ⁇ a and the leaning angle ⁇ l are 0 degrees, the process proceeds to step S14.
  • step S14 the controller 37 sets the detection ranges 71 and 72 by changing the reference ranges 73 and 74 according to the process of change 4.
  • FIG. 13 is a top view showing detection ranges 71 and 72 according to the processing of modification 4.
  • the controller 37 curves the detection ranges 71 and 72 according to the turning radius of the work machine 1 according to the steering angle ⁇ s. That is, when the work machine 1 is not leaning and is in a straight line and turns by steering, the detection ranges 71 and 72 are curved according to the locus of the turn of the work machine 1 .
  • the controller 37 when the work machine 1 is turned left by steering, the controller 37 curves the detection ranges 71 and 72 leftward.
  • the controller 37 may store data indicating the relationship between the steering angle ⁇ s and the turning radius of the work machine 1, and refer to the data to calculate the turning radius from the steering angle ⁇ s.
  • the width Lall of the detection ranges 71 and 72 is the same as the width of the reference ranges 73 and 74, and is expressed by Equation (3) above.
  • the controller 37 when the work machine 1 is turned rightward by steering, the controller 37 curves the detection ranges 71 and 72 rightward.
  • step S13 if the leaning angle ⁇ l is not 0 degrees, the process proceeds to step S15.
  • step S15 the controller 37 sets the detection ranges 71 and 72 by changing the reference ranges 73 and 74 according to the process of change 5.
  • FIG. 14 and 15 are top views showing detection ranges 71 and 72 according to the process of modification 5.
  • the controller 37 curves the detection ranges 71 and 72 according to the turning radius of the work machine 1 according to the steering angle ⁇ s and the leaning angle ⁇ l.
  • the detection ranges 71 and 72 are expanded on the same side as the leaning direction. That is, when the work machine 1 is in a straight line and leans while turning by steering, the controller 37 bends the detection ranges 71 and 72 in accordance with the turning trajectory of the work machine 1, The detection ranges 71 and 72 are enlarged on the same side.
  • the controller 37 stores data indicating the relationship between the steering angle ⁇ s, the leaning angle ⁇ l, and the turning radius of the work machine 1. By referring to the data, the controller 37 can determine the working machine from the steering angle ⁇ s and the leaning angle ⁇ l. A turning radius of 1 may be calculated.
  • the controller 37 bends the detection ranges 71 and 72 leftward and 71 and 72 are expanded leftward by the increment Ll.
  • the controller 37 bends the detection ranges 71 and 72 to the left and 72 is expanded rightward by the increment Ll.
  • the width Lall of the detection ranges 71 and 72 is represented by the above-described formula (1).
  • the controller 37 curves the detection ranges 71 and 72 rightward and also bends the detection ranges 71 and 72 to the same direction as the leaning direction.
  • the detection ranges 71 and 72 are expanded to the side.
  • step S12 if the articulate angle ⁇ a is not 0 degrees, the process proceeds to step S16.
  • step S17 the controller 37 determines whether the leaning angle ⁇ l is 0 degrees. If the leaning angle ⁇ l is 0 degrees, the process proceeds to step S18.
  • step S18 the controller 37 sets the detection ranges 71 and 72 by changing the reference ranges 73 and 74 according to the process of change 6.
  • FIG. 16 is a top view showing detection ranges 71 and 72 according to the process of modification 6.
  • the controller 37 expands the reference ranges 73 and 74 in the horizontal direction according to the articulate angle ⁇ a.
  • the controller 37 expands the first detection range 71 from the first reference range 73 in the lateral direction opposite to the bending direction of the front frame 11 with respect to the rear frame 12 (hereinafter referred to as the "articulated direction").
  • the controller 37 expands the second detection range 72 from the second reference range 74 in the same side as the articulate direction.
  • the controller 37 sets the first detection range 71 as the first reference.
  • the range 73 is expanded rightward, and the second detection range 72 is expanded leftward from the second reference range 74 .
  • the width Lall of the detection ranges 71 and 72 is represented by the following formula (4).
  • Lall L0 + La (4)
  • La is the increment of the detection range in the articulated state. As shown in FIG. 4, the increment La in the articulated state indicates the lateral outward displacement amount of the front wheels 3A and 3B in the articulated state.
  • Lf is the distance between the articulate axis 44 and the center P1 of the axle beam 56, as shown in FIG. Although illustration is omitted, in the processing of Modification 6, when the front frame 11 is bent to the right with respect to the rear frame 12 and goes straight, the controller 37 sets the first detection range 71 to the first detection range.
  • the first detection range 73 is expanded leftward
  • the second detection range 72 is expanded rightward from the second reference range 74 .
  • step S17 if the leaning angle ⁇ l is not 0 degrees, the process proceeds to step S19.
  • step S19 the controller 37 sets the detection ranges 71 and 72 by changing the reference ranges 73 and 74 according to the process of change 7.
  • FIG. 17 and 18 are top views showing detection ranges 71 and 72 according to the processing of modification 7.
  • the controller 37 expands the reference ranges 73 and 74 in the left-right direction according to the articulate angle ⁇ a, and extends the detection ranges 71 and 72 on the same side as the leaning direction. Expanding. That is, when the work machine 1 moves straight in an articulated state while leaning, the controller 37 expands the detection ranges 71 and 72 in the lateral direction from the reference ranges 73 and 74 in accordance with the articulated angle ⁇ a. , the detection ranges 71 and 72 are expanded from the reference ranges 73 and 74 in the same direction as the leaning direction.
  • the controller 37 moves the first detection range 71 to the right by an increment La.
  • the first detection range 71 is expanded leftward by the increment Ll.
  • the controller 37 expands the second detection range 72 leftward by the increment La and expands the second detection range 72 leftward by the increment Ll.
  • the width Lall of the detection ranges 71 and 72 is represented by the following formula (6).
  • Lall L0 + La + Ll (6)
  • the controller 37 when the leaning direction is opposite to the articulate direction, the controller 37 does not expand the detection ranges 71 and 72 by the increment Ll during leaning. That is, the controller 37 performs the processing of change 7 described above when the leaning direction is the same as the articulating direction.
  • the controller 37 moves the first detection range 71 to the left.
  • the first detection range 71 is expanded rightward by an increment Ll.
  • the controller 37 expands the second detection range 72 rightward by the increment La and expands the second detection range 72 rightward by the increment Ll.
  • step S16 if the steering angle ⁇ s is different from the reversed value of the articulate angle ⁇ a (that is, ⁇ s ⁇ a), the process proceeds to step S20.
  • step S20 the controller 37 determines whether the leaning angle ⁇ l is 0 degrees. If the leaning angle ⁇ l is 0 degrees, the process proceeds to step S21.
  • step S21 the detection ranges 71 and 72 are set by changing the reference ranges 73 and 74 according to the process of change 8.
  • FIG. 19 and 20 are top views showing detection ranges 71 and 72 according to the process of modification 8.
  • the controller 37 controls the work machine 1 according to the articulate angle ⁇ a and the steering angle ⁇ s.
  • the detection ranges 71 and 72 are curved according to one turning radius. That is, when the work machine 1 turns with the articulate angle ⁇ a and the steering angle ⁇ s in a non-leaning state, the detection ranges 71 and 72 are curved according to the turning trajectory of the work machine 1 .
  • the controller 37 curves the detection ranges 71 and 72 leftward.
  • the controller 37 stores data indicating the relationship between the articulate angle ⁇ a, the steering angle ⁇ s, and the turning radius of the work machine 1. By referring to the data, the controller 37 can turn from the articulate angle ⁇ a and the steering angle ⁇ s. A radius may be calculated.
  • the width Lall of the detection ranges 71 and 72 is the same as the width of the reference ranges 73 and 74, and is expressed by Equation (3) above.
  • the controller 37 curves the detection ranges 71 and 72 according to the turning radius of the work machine 1 according to the articulate angle .theta.a and the steering angle .theta.s, and the reference ranges 73 and 73 according to the articulate angle .theta.a. 74 is enlarged in the horizontal direction.
  • controller 37 moves first detection range 71 from first reference range 73 to right. While expanding to the right, the first detection range 71 is curved to the right. The controller 37 also expands the second detection range 72 leftward from the second reference range 74 and curves the second detection range 72 rightward.
  • the width Lall of the detection ranges 71 and 72 is represented by the above-described formula (4).
  • the controller 37 expands the first detection range 71 leftward from the first reference range 73 and curves the first detection range 71 leftward.
  • the controller 37 also expands the second detection range 72 rightward from the second reference range 74 and curves the second detection range 72 leftward.
  • step S20 if the leaning angle ⁇ l is not 0 degrees, the process proceeds to step S22.
  • step S22 the controller 37 sets the detection ranges 71 and 72 by changing the reference ranges 73 and 74 according to the process of change 9.
  • FIG. 21 to 24 are top views showing detection ranges 71 and 72 according to the process of modification 9.
  • the controller 37 sets the articulate angle ⁇ a, the steering angle ⁇ s, and the leaning angle
  • the detection ranges 71 and 72 are curved according to the turning radius of the work machine 1 corresponding to ⁇ l, and the detection ranges 71 and 72 are expanded in the same direction as the leaning direction. That is, when the controller 37 turns with the articulate angle ⁇ a and the steering angle ⁇ s while leaning, the controller 37 bends the detection ranges 71 and 72 in accordance with the turning trajectory of the work machine 1, The detection ranges 71 and 72 are enlarged on the same side.
  • the controller 37 stores data indicating the relationship between the articulate angle ⁇ a, the steering angle ⁇ s, the leaning angle ⁇ l, and the turning radius of the work machine 1. By referring to the data, the controller 37 can determine the articulate angle ⁇ a and the steering angle. The turning radius of the work machine 1 may be calculated from ⁇ s and the leaning angle ⁇ l.
  • the controller 37 moves the detection ranges 71 and 72 to the left. While bending to the left, the detection ranges 71 and 72 are expanded leftward by the increment Ll. As shown in FIG. 22, when the work machine 1 leans to the right and turns to the left by the articulate angle ⁇ a and the steering angle ⁇ s, the controller 37 moves the detection ranges 71 and 72 to the left. Along with bending, the detection ranges 71 and 72 are expanded rightward by the increment Ll.
  • the width Lall of the detection ranges 71 and 72 is represented by the formula (1) described above.
  • the controller 37 detects the detection range 71 , 72 are bent to the right, and the detection ranges 71 and 72 are expanded to the same side as the leaning direction.
  • the controller 37 sets the articulate angle
  • the detection ranges 71 and 72 are curved according to the turning radius of the working machine 1 according to .theta.a, the steering angle .theta.s, and the leaning angle .theta.l, and the reference ranges 73 and 74 are expanded in the horizontal direction according to the articulate angle .theta.a.
  • the detection ranges 71 and 72 are expanded on the same side as the leaning direction.
  • the controller 37 detects the first detection range 71 is expanded rightward from the first reference range 73 by an increment La in the articulated state, the first detection range 71 is expanded leftward from the first reference range 73 by an increment Ll during leaning, and the first detection range 71 is bent to the right.
  • the controller 37 expands the second detection range 72 leftward from the second reference range 74 by an increment La, expands the second detection range 72 leftward from the second reference range 74 by an increment Ll, and expands the second detection range 72 leftward from the second reference range 74 by an increment Ll. 2 Curve the detection range 72 to the right.
  • the width Lall of the detection ranges 71 and 72 is represented by the above-described formula (6).
  • the controller 37 sets the first detection range 71 to The first detection range 71 is expanded leftward from the first reference range 73 by the increment La, the first detection range 71 is expanded rightward from the first reference range 73 by the increment Ll, and the first detection range 71 is curved leftward. Further, the controller 37 expands the second detection range 72 rightward from the second reference range 74 by the increment La, increases the second detection range 72 rightward from the second reference range 74 by the increment Ll, 2 Curve the detection range 72 to the left.
  • the width Lall of the detection ranges 71 and 72 is represented by the above-described formula (4).
  • detection ranges 71 and 72 for objects around the work machine 1 are set according to the articulate angle ⁇ a, the leaning angle ⁇ l, and the steering angle ⁇ s. Thereby, it is possible to appropriately determine whether or not an object exists around the work machine 1 .
  • the configuration of the working machine 1 is not limited to the above, and may be changed.
  • the configuration of work machine 5 may be changed.
  • a portion of the control system of work machine 1 may be located external to work machine 1 .
  • the various operating members 46 - 50 and output device 63 of work machine 1 may be located outside of work machine 1 .
  • the controller 37 may be composed of a plurality of controllers. The processing described above may be distributed to and executed by a plurality of controllers. Some of the multiple controllers may be arranged outside the work machine 1 .
  • the processing when an object is detected within the detection ranges 71 and 72 is not limited to the above embodiment and may be changed.
  • the controller 37 may stop the work implement 3 and/or the vehicle body 2, or perform processing such as restricting the movement.
  • the processing for setting the detection ranges 71 and 72 is not limited to the above embodiment, and may be changed.
  • the controller 37 may set the detection range to either the front or the rear of the vehicle body 2 .
  • the controller 37 may set the first detection range 71 in front of the vehicle body 2 when the work machine 1 is moving forward.
  • the controller 37 may set the second detection range 72 behind the vehicle body 2 when the work machine 1 is moving backward.
  • the thresholds for the articulate angle ⁇ a, the steering angle ⁇ s, and the leaning angle ⁇ l for determining whether to change the detection ranges 71 and 72 are not limited to 0 degrees, and may be other values.
  • the threshold value of the articulate angle ⁇ a may be a value so small that the work machine 1 can be considered to be in a straight line state.
  • the threshold value of the steering angle ⁇ s may be a value so small that it can be considered that the work machine 1 is not being steered.
  • the threshold value of the leaning angle ⁇ l may be a small value at which it can be considered that the work machine 1 is not leaning.
  • the change of the detection ranges 71 and 72 according to the leaning direction may be omitted.
  • the controller 37 may add an arbitrary margin width considering the detection error to the width Lall of the detection ranges 71 and 72 described above. For example, as shown in FIG. 25 , the controller 37 may set the detection ranges 71 and 72 by adding margin widths Lt to the left and right of the reference ranges 73 and 74 . Similarly, margin widths Lt may be added to the left and right sides of the detection ranges 71 and 72, respectively, for the detection ranges 71 and 72 determined by the processing of changes 1 to 9 described above.
  • the width of the front portion and the width of the rear portion of the vehicle body 2 are the same, but the width of the front portion and the width of the rear portion of the vehicle body 2 may be different.
  • the controller 37 may calculate the width of the first detection range 71 using the width of the front vehicle as the width of the first reference range 73 .
  • the controller 37 may calculate the width of the second detection range 72 using the width of the second reference range 74 as the width of the rear portion of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Guiding Agricultural Machines (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

This work machine comprises a vehicle body, traveling wheels, a steering actuator, an articulate actuator, a steering angle sensor, an articulate angle sensor, an object sensor, and a controller. The vehicle body includes a rear frame and a front frame. The front frame is connected to the rear frame so as to be rotatable to the left and right. The steering actuator steers the traveling wheels to the left and right. The articulate actuator changes the articulate angle between the rear frame and the front frame. The object sensor detects an object around the work machine, and outputs a signal indicating the presence or absence of the object. The controller sets a detection range around the work machine. The controller sets the detection range according to the steering angle and the articulate angle.

Description

作業機械、作業機械を制御するための方法、及びシステムWORK MACHINE, METHOD AND SYSTEM FOR CONTROLLING WORK MACHINE
 本発明は、作業機械、作業機械を制御するための方法、及びシステムに関する。 The present invention relates to work machines, methods and systems for controlling work machines.
 従来、作業機械において、レーダーなどのセンサによって、周辺の人、或いは障害物を検出する技術が用いられている。例えば、特許文献1には、物体検出システムを備えたフォークリフトが開示されている。物体検出システムは、ミリ波レーダーなどのレーダー装置を備えている。レーダー装置は、電波又は超音波を発信し、物体で反射された電波又は超音波を受信することで、物体の有無を検出する。 Conventionally, work machines have used technology to detect surrounding people or obstacles using sensors such as radar. For example, Patent Document 1 discloses a forklift equipped with an object detection system. The object detection system includes radar equipment such as millimeter wave radar. A radar device detects the presence or absence of an object by transmitting radio waves or ultrasonic waves and receiving radio waves or ultrasonic waves reflected by the object.
 上記の物体検出システムにおいて、レーダー装置の測定可能範囲に侵入した物体を全て検出して警報を出力する場合、警報が頻繁に発せられることになる。そのため、上記の物体検出システムでは、コントローラが、フォークリフトの周辺に検出範囲を設定し、検出範囲内において物体が検出された場合に、警報を発することとされている。また、フォークリフトの車速と操舵角とに応じて、検出範囲が変更される。 In the above object detection system, when all objects that have entered the measurable range of the radar device are detected and an alarm is output, the alarm will be issued frequently. Therefore, in the above object detection system, the controller sets a detection range around the forklift, and issues an alarm when an object is detected within the detection range. Further, the detection range is changed according to the vehicle speed and steering angle of the forklift.
特開2021-28266号公報Japanese Patent Application Laid-Open No. 2021-28266
 上記の物体検出システムでは、車速と操舵角とに応じて、検出範囲が変更されることで、フォークリフトの周辺に物体が存在するか否かを適切に判定できるとされている。しかし、例えばモータグレーダのように車体の姿勢の自由度が大きい作業機械においては、上述した技術を適用するだけでは十分ではない。本発明の目的は、作業機械の周辺に物体が存在するか否かを適切に判定することにある。 The above object detection system is said to be able to appropriately determine whether or not an object exists around the forklift by changing the detection range according to the vehicle speed and steering angle. However, in a working machine such as a motor grader, which has a large degree of freedom in the posture of the vehicle body, it is not enough to apply the above-described technique. An object of the present invention is to appropriately determine whether or not an object exists around a working machine.
 本発明の第1の態様に係る作業機械は、車体と、走行輪と、ステアリングアクチュエータと、アーティキュレートアクチュエータと、操舵角センサと、アーティキュレート角センサと、物体センサと、コントローラとを備える。車体は、リアフレームとフロントフレームとを含む。フロントフレームは、リアフレームに対して左右に回動可能に接続される。走行輪は、車体に支持される。ステアリングアクチュエータは、走行輪を左右に操舵する。アーティキュレートアクチュエータは、リアフレームとフロントフレームとの間のアーティキュレート角を変更する。操舵角センサは、走行輪の操舵角を検出する。アーティキュレート角センサは、アーティキュレート角を検出する。物体センサは、作業機械の周辺の物体を検出し、物体の有無を示す信号を出力する。コントローラは、作業機械の周辺に検出範囲を設定する。コントローラは、物体センサからの信号に基づいて、検出範囲内の物体の有無を判定する。コントローラは、操舵角とアーティキュレート角とに応じて、検出範囲を設定する。 A work machine according to a first aspect of the present invention includes a vehicle body, running wheels, a steering actuator, an articulate actuator, a steering angle sensor, an articulate angle sensor, an object sensor, and a controller. The vehicle body includes a rear frame and a front frame. The front frame is connected to the rear frame so as to be rotatable to the left and right. The running wheels are supported by the vehicle body. The steering actuator steers the running wheels left and right. The articulated actuator changes the articulated angle between the rear frame and the front frame. The steering angle sensor detects the steering angle of the running wheels. The articulate angle sensor detects an articulate angle. The object sensor detects an object around the work machine and outputs a signal indicating the presence or absence of the object. The controller sets a detection range around the work machine. The controller determines the presence or absence of an object within the detection range based on the signal from the object sensor. The controller sets the detection range according to the steering angle and articulate angle.
 本発明の第2の態様に係る方法は、作業機械を制御するための方法である。作業機械は、リアフレームと、車体と、走行輪と、ステアリングアクチュエータと、アーティキュレートアクチュエータと、を含む。車体は、リアフレームとフロントフレームとを含む。フロントフレームは、リアフレームに対して左右に回動可能に接続される。走行輪は、車体に支持される。ステアリングアクチュエータは、走行輪を左右に操舵する。アーティキュレートアクチュエータは、リアフレームとフロントフレームとの間のアーティキュレート角を変更する。当該方法は、操舵角を検出することと、アーティキュレート角を検出することと、作業機械の周辺の物体の有無を示す信号を受信することと、操舵角とアーティキュレート角とに応じて、作業機械の周辺に検出範囲を設定することと、物体センサからの信号に基づいて、検出範囲内の物体の有無を判定すること、を備える。 A method according to a second aspect of the present invention is a method for controlling a working machine. The work machine includes a rear frame, a vehicle body, running wheels, a steering actuator, and an articulated actuator. The vehicle body includes a rear frame and a front frame. The front frame is connected to the rear frame so as to be rotatable to the left and right. The running wheels are supported by the vehicle body. The steering actuator steers the running wheels left and right. The articulated actuator changes the articulated angle between the rear frame and the front frame. The method includes detecting a steering angle, detecting an articulate angle, receiving a signal indicating the presence or absence of an object in the vicinity of the work machine, and performing a task according to the steering angle and the articulate angle. Setting a detection range around the machine and determining the presence or absence of an object within the detection range based on a signal from an object sensor.
 本発明の第3の態様に係るシステムは、作業機械を制御するためのシステムである。作業機械は、リアフレームと、車体と、走行輪と、ステアリングアクチュエータと、アーティキュレートアクチュエータと、を含む。車体は、リアフレームとフロントフレームとを含む。フロントフレームは、リアフレームに対して左右に回動可能に接続される。走行輪は、車体に支持される。ステアリングアクチュエータは、走行輪を左右に操舵する。アーティキュレートアクチュエータは、リアフレームとフロントフレームとの間のアーティキュレート角を変更する。当該システムは、操舵角センサと、アーティキュレート角センサと、物体センサと、コントローラとを備える。操舵角センサは、走行輪の操舵角を検出する。アーティキュレート角センサは、アーティキュレート角を検出する。物体センサは、作業機械の周辺の物体を検出し、物体の有無を示す信号を出力する。コントローラは、作業機械の周辺に検出範囲を設定する。コントローラは、物体センサからの信号に基づいて、検出範囲内の物体の有無を判定する。コントローラは、操舵角とアーティキュレート角とに応じて、検出範囲を設定する。 A system according to a third aspect of the present invention is a system for controlling a working machine. The work machine includes a rear frame, a vehicle body, running wheels, a steering actuator, and an articulated actuator. The vehicle body includes a rear frame and a front frame. The front frame is connected to the rear frame so as to be rotatable to the left and right. The running wheels are supported by the vehicle body. The steering actuator steers the running wheels left and right. The articulated actuator changes the articulated angle between the rear frame and the front frame. The system comprises a steering angle sensor, an articulate angle sensor, an object sensor and a controller. The steering angle sensor detects the steering angle of the running wheels. The articulate angle sensor detects an articulate angle. The object sensor detects an object around the work machine and outputs a signal indicating the presence or absence of the object. The controller sets a detection range around the work machine. The controller determines the presence or absence of an object within the detection range based on the signal from the object sensor. The controller sets the detection range according to the steering angle and articulate angle.
 本発明では、操舵角とアーティキュレート角とに応じて、作業機械の周辺の物体の検出範囲が設定される。それにより、作業機械の周辺に物体が存在するか否かを適切に判定することができる。 In the present invention, the detection range of objects around the work machine is set according to the steering angle and the articulate angle. Accordingly, it is possible to appropriately determine whether or not an object exists around the work machine.
実施形態に係る作業機械の斜視図である。1 is a perspective view of a working machine according to an embodiment; FIG. 作業機械の側面図である。It is a side view of a working machine. 作業機械の前部の上面図である。Figure 3 is a top view of the front portion of the work machine; 作業機械の前部の正面図である。1 is a front view of the front portion of the working machine; FIG. 作業機械の制御システムの構成を示す模式図である。1 is a schematic diagram showing the configuration of a control system for a working machine; FIG. 検出範囲の一例を示す上面図である。It is a top view which shows an example of a detection range. 検出範囲を設定するための処理を示すフローチャートである。4 is a flowchart showing processing for setting a detection range; 検出範囲を設定するための処理を示すフローチャートである。4 is a flowchart showing processing for setting a detection range; 変更1の処理に従う検出範囲を示す上面図である。FIG. 11 is a top view showing a detection range according to the processing of Modification 1; 変更2の処理に従う検出範囲を示す上面図である。FIG. 11 is a top view showing a detection range according to the processing of modification 2; 変更3の処理に従う検出範囲を示す上面図である。FIG. 11 is a top view showing a detection range according to the process of modification 3; 変更3の処理に従う検出範囲を示す上面図である。FIG. 11 is a top view showing a detection range according to the process of modification 3; 変更4の処理に従う検出範囲を示す上面図である。FIG. 12 is a top view showing a detection range according to the processing of Modification 4; 変更5の処理に従う検出範囲を示す上面図である。FIG. 13 is a top view showing a detection range according to the process of modification 5; 変更5の処理に従う検出範囲を示す上面図である。FIG. 13 is a top view showing a detection range according to the process of modification 5; 変更6の処理に従う検出範囲を示す上面図である。FIG. 11 is a top view showing a detection range according to the process of modification 6; 変更7の処理に従う検出範囲を示す上面図である。FIG. 10 is a top view showing a detection range according to the process of modification 7; 変更7の処理に従う検出範囲を示す上面図である。FIG. 10 is a top view showing a detection range according to the process of modification 7; 変更8の処理に従う検出範囲を示す上面図である。FIG. 11 is a top view showing a detection range according to the processing of Modification 8; 変更8の処理に従う検出範囲を示す上面図である。FIG. 11 is a top view showing a detection range according to the processing of Modification 8; 変更9の処理に従う検出範囲を示す上面図である。FIG. 11 is a top view showing a detection range according to the processing of modification 9; 変更9の処理に従う検出範囲を示す上面図である。FIG. 11 is a top view showing a detection range according to the processing of modification 9; 変更9の処理に従う検出範囲を示す上面図である。FIG. 11 is a top view showing a detection range according to the processing of modification 9; 変更9の処理に従う検出範囲を示す上面図である。FIG. 11 is a top view showing a detection range according to the processing of modification 9; 変形例に係る検出範囲を示す上面図である。It is a top view which shows the detection range which concerns on a modification.
 以下図面を参照して、本発明の実施形態について説明する。図1は、実施形態に係る作業機械1の斜視図である。図2は、作業機械1の側面図である。図1に示すように、作業機械1は、車体2と、走行輪3A,3B,4A-4Dと、作業機5とを備える。車体2は、フロントフレーム11と、リアフレーム12と、キャブ13と、動力室14とを含む。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of a working machine 1 according to an embodiment. FIG. 2 is a side view of the work machine 1. FIG. As shown in FIG. 1, the working machine 1 includes a vehicle body 2, running wheels 3A, 3B, 4A-4D, and a working machine 5. As shown in FIG. The vehicle body 2 includes a front frame 11 , a rear frame 12 , a cab 13 and a power room 14 .
 リアフレーム12は、フロントフレーム11に接続されている。フロントフレーム11は、リアフレーム12に対して回動可能にリアフレーム12に連結されている。後述するように、フロントフレーム11は、リアフレーム12に対して、左右に回動可能である。 The rear frame 12 is connected to the front frame 11. The front frame 11 is connected to the rear frame 12 so as to be rotatable with respect to the rear frame 12 . As will be described later, the front frame 11 can rotate left and right with respect to the rear frame 12 .
 なお、以下の説明において、前後左右の各方向は、リアフレーム12に対するフロントフレーム11のアーティキュレート角がゼロである状態、すなわち、フロントフレーム11とリアフレーム12とが真っすぐな状態で、車体2の前後左右の各方向が定義される。 In the following description, the front, rear, left, and right directions are the state in which the articulated angle of the front frame 11 with respect to the rear frame 12 is zero, that is, the state in which the front frame 11 and the rear frame 12 are straight. Front, back, left, and right directions are defined.
 キャブ13と動力室14とは、リアフレーム12上に配置されている。キャブ13には、図示しない運転席が配置されている。動力室14は、キャブ13の後方に配置されている。フロントフレーム11は、リアフレーム12から前方へ延びている。 The cab 13 and power chamber 14 are arranged on the rear frame 12 . A driver's seat (not shown) is arranged in the cab 13 . The power chamber 14 is arranged behind the cab 13 . The front frame 11 extends forward from the rear frame 12 .
 走行輪3A,3B,4A-4Dは、車体2に回転可能に支持されている。走行輪3A,3B,4A-4Dは、前輪3A,3Bと、後輪4A-4Dとを含む。前輪3A,3Bは、互いに左右方向に離れて配置されている。前輪3A,3Bは、フロントフレーム11に取り付けられている。後輪4A-4Dは、リアフレーム12に取り付けられている。 The running wheels 3A, 3B, 4A-4D are rotatably supported by the vehicle body 2. The running wheels 3A, 3B, 4A-4D include front wheels 3A, 3B and rear wheels 4A-4D. The front wheels 3A and 3B are arranged apart from each other in the left-right direction. The front wheels 3A, 3B are attached to the front frame 11. As shown in FIG. The rear wheels 4A-4D are attached to the rear frame 12. As shown in FIG.
 作業機5は、車体2に対して可動的に接続されている。作業機5は、支持部材15とブレード16とを含む。支持部材15は、車体2に可動的に接続されている。支持部材15は、ブレード16を支持している。支持部材15は、ドローバ17とサークル18とを含む。ドローバ17は、フロントフレーム11の下方に配置される。 The work machine 5 is movably connected to the vehicle body 2. Work implement 5 includes a support member 15 and a blade 16 . The support member 15 is movably connected to the vehicle body 2 . Support member 15 supports blade 16 . Support member 15 includes drawbar 17 and circle 18 . The drawbar 17 is arranged below the front frame 11 .
 ドローバ17は、フロントフレーム11の前部19に接続されている。ドローバ17は、フロントフレーム11の前部19から後方へ延びている。ドローバ17は、フロントフレーム11に対して、少なくとも車体2の上下方向と左右方向とに揺動可能に支持されている。例えば、前部19は、ボールジョイントを含む。ドローバ17は、ボールジョイントを介して、フロントフレーム11に対して回転可能に接続されている。 The drawbar 17 is connected to the front portion 19 of the front frame 11 . The drawbar 17 extends rearward from the front portion 19 of the front frame 11 . The drawbar 17 is supported by the front frame 11 so as to be swingable at least in the vertical and horizontal directions of the vehicle body 2 . For example, front portion 19 includes a ball joint. The drawbar 17 is rotatably connected to the front frame 11 via a ball joint.
 サークル18は、ドローバ17の後部に接続されている。サークル18は、ドローバ17に対して回転可能に支持される。ブレード16は、サークル18に接続される。ブレード16は、サークル18を介して、ドローバ17に支持されている。図2に示すように、ブレード16は、チルト軸21回りに回転可能にサークル18に支持されている。チルト軸21は、左右方向に延びている。 The circle 18 is connected to the rear of the drawbar 17. Circle 18 is rotatably supported with respect to drawbar 17 . Blades 16 are connected to circle 18 . A blade 16 is supported by a drawbar 17 via a circle 18 . As shown in FIG. 2, the blade 16 is supported by the circle 18 so as to be rotatable around the tilt shaft 21. As shown in FIG. The tilt shaft 21 extends in the left-right direction.
 図3は、作業機械1の前部の上面図である。図3に示すように、作業機械1は、第1ステアリング軸43Aと第2ステアリング軸43Bとを備えている。第1ステアリング軸43Aと第2ステアリング軸43Bとは、フロントフレーム11に設けられる。第1ステアリング軸43Aと第2ステアリング軸43Bとは、上下方向に延びている。前輪3Aは、第1ステアリング軸43A回りに回転可能に支持される。前輪3Bは、第2ステアリング軸43B回りに回転可能に支持される。すなわち、前輪3A、3Bは、操舵可能な走行輪である。 FIG. 3 is a top view of the front portion of the working machine 1. FIG. As shown in FIG. 3, the work machine 1 includes a first steering shaft 43A and a second steering shaft 43B. The first steering shaft 43A and the second steering shaft 43B are provided on the front frame 11 . The first steering shaft 43A and the second steering shaft 43B extend vertically. The front wheels 3A are rotatably supported around the first steering shaft 43A. The front wheel 3B is rotatably supported around the second steering shaft 43B. That is, the front wheels 3A and 3B are steerable running wheels.
 作業機械1は、前輪3A,3Bを操舵するための複数のステアリングアクチュエータ41A,41Bを備えている。複数のステアリングアクチュエータ41A,41Bは、前輪3A,3Bを操舵するために用いられる。例えば、複数のステアリングアクチュエータ41A,41Bは、油圧シリンダである。複数のステアリングアクチュエータ41A,41Bは、前輪3A,3Bに、それぞれ接続されている。複数のステアリングアクチュエータ41A,41Bは、油圧によって伸縮する。以下の説明では、複数のステアリングアクチュエータ41A,41Bを含む油圧シリンダの伸縮が、「ストローク動作」と記される。 The work machine 1 includes a plurality of steering actuators 41A, 41B for steering the front wheels 3A, 3B. A plurality of steering actuators 41A, 41B are used to steer the front wheels 3A, 3B. For example, the steering actuators 41A and 41B are hydraulic cylinders. A plurality of steering actuators 41A, 41B are connected to the front wheels 3A, 3B, respectively. The plurality of steering actuators 41A, 41B expand and contract by hydraulic pressure. In the following description, the expansion and contraction of the hydraulic cylinder including the steering actuators 41A, 41B is referred to as "stroke operation".
 複数のステアリングアクチュエータ41A,41Bは、左ステアリングシリンダ41Aと、右ステアリングシリンダ41Bと、を含む。左ステアリングシリンダ41Aと右ステアリングシリンダ41Bとは、左右方向に互いに離れて配置されている。 The plurality of steering actuators 41A, 41B include a left steering cylinder 41A and a right steering cylinder 41B. The left steering cylinder 41A and the right steering cylinder 41B are arranged apart from each other in the left-right direction.
 左ステアリングシリンダ41Aは、フロントフレーム11と前輪3Aとに接続されている。右ステアリングシリンダ41Bは、フロントフレーム11と前輪3Bに接続されている。左ステアリングシリンダ41Aと右ステアリングシリンダ41Bとのストローク動作により、前輪3A,3Bが操舵される。 The left steering cylinder 41A is connected to the front frame 11 and the front wheel 3A. The right steering cylinder 41B is connected to the front frame 11 and the front wheel 3B. The front wheels 3A and 3B are steered by stroke operations of the left steering cylinder 41A and the right steering cylinder 41B.
 作業機械1は、アーティキュレート軸44を含む。アーティキュレート軸44は、フロントフレーム11とリアフレーム12とに設けられる。アーティキュレート軸44は、上下方向に延びている。フロントフレーム11とリアフレーム12とは、アーティキュレート軸44回りに回動可能に互いに接続されている。 The work machine 1 includes an articulated shaft 44. The articulated shaft 44 is provided on the front frame 11 and the rear frame 12 . The articulate shaft 44 extends vertically. The front frame 11 and the rear frame 12 are connected to each other so as to be rotatable about the articulate shaft 44 .
 なお、以下の説明において、フロントフレーム11とリアフレーム12とが、アーティキュレート軸44回りに互いに回動することで、車体2が屈曲した状態を「アーティキュレート状態」と呼ぶものとする。また、アーティキュレート状態ではない状態、すなわち、フロントフレーム11とリアフレーム12とが直線状に並んでいる状態を、「直線状態」と呼ぶものとする。 In the following description, the state in which the vehicle body 2 is bent due to the front frame 11 and the rear frame 12 rotating about the articulate shaft 44 is referred to as an "articulated state". Also, a state in which the front frame 11 and the rear frame 12 are not in the articulated state, ie, the state in which the front frame 11 and the rear frame 12 are aligned in a straight line, will be referred to as a "straight line state."
 作業機械1は、複数のアーティキュレートアクチュエータ27,28を備えている。複数のアーティキュレートアクチュエータ27,28は、リアフレーム12に対してフロントフレーム11を回動させるために用いられる。例えば、複数のアーティキュレートアクチュエータ27,28は、油圧シリンダである。複数のアーティキュレートアクチュエータ27,28は、フロントフレーム11とリアフレーム12とに接続されている。複数のアーティキュレートアクチュエータ27,28は、油圧によって伸縮する。 The work machine 1 includes a plurality of articulated actuators 27,28. A plurality of articulated actuators 27 and 28 are used to rotate the front frame 11 with respect to the rear frame 12 . For example, the articulated actuators 27, 28 are hydraulic cylinders. A plurality of articulated actuators 27 and 28 are connected to the front frame 11 and the rear frame 12 . The plurality of articulated actuators 27, 28 expand and contract by hydraulic pressure.
 複数のアーティキュレートアクチュエータ27,28は、左アーティキュレートシリンダ27と右アーティキュレートシリンダ28とを含む。左アーティキュレートシリンダ27と右アーティキュレートシリンダ28とは、左右方向に互いに離れて配置されている。 The plurality of articulated actuators 27, 28 includes a left articulated cylinder 27 and a right articulated cylinder 28. The left articulated cylinder 27 and the right articulated cylinder 28 are arranged apart from each other in the left-right direction.
 左アーティキュレートシリンダ27は、車体2の左側において、フロントフレーム11とリアフレーム12とに接続されている。右アーティキュレートシリンダ28とは、車体2の右側において、フロントフレーム11とリアフレーム12とに接続されている。左アーティキュレートシリンダ27と右アーティキュレートシリンダ28とのストローク動作により、フロントフレーム11はリアフレーム12に対して左右に回動する。 The left articulated cylinder 27 is connected to the front frame 11 and the rear frame 12 on the left side of the vehicle body 2 . The right articulated cylinder 28 is connected to the front frame 11 and the rear frame 12 on the right side of the vehicle body 2 . The stroke motion of the left articulated cylinder 27 and the right articulated cylinder 28 causes the front frame 11 to rotate left and right with respect to the rear frame 12 .
 図4は、作業機械1の前部の正面図である。図4に示すように、作業機械1は、リーン機構6を備えている。リーン機構6は、前輪3A,3Bを左右に傾倒させる。リーン機構6は、アクスルビーム56と、リーニングロッド57と、リーニングアクチュエータ60とを含む。アクスルビーム56は、フロントフレーム11から左右に延びている。アクスルビーム56は、ピボット軸58回りに回転可能にフロントフレーム11に支持されている。 4 is a front view of the front part of the working machine 1. FIG. As shown in FIG. 4 , the work machine 1 has a lean mechanism 6 . The lean mechanism 6 tilts the front wheels 3A, 3B left and right. The lean mechanism 6 includes an axle beam 56 , a leaning rod 57 and a leaning actuator 60 . The axle beam 56 extends left and right from the front frame 11 . Axle beam 56 is rotatably supported on front frame 11 about pivot shaft 58 .
 アクスルビーム56は、ホイールブラケット59Aを介して、前輪3Aに接続されている。アクスルビーム56は、前輪3Aをリーニング軸54A回りに回転可能に支持する。アクスルビーム56は、ホイールブラケット59Bを介して、前輪3Bに接続されている。アクスルビーム56は、前輪3Bをリーニング軸54B回りに回転可能に支持する。リーニング軸54A,54Bは、前後方向に延びている。 The axle beam 56 is connected to the front wheel 3A via a wheel bracket 59A. Axle beam 56 supports front wheel 3A rotatably around leaning shaft 54A. Axle beam 56 is connected to front wheel 3B via wheel bracket 59B. Axle beam 56 supports front wheel 3B rotatably around leaning shaft 54B. The leaning shafts 54A, 54B extend in the front-rear direction.
 リーニングロッド57は、フロントフレーム11を通って左右に延びている。リーニングロッド57は、前輪3A,3Bを互いに連結している。リーニングロッド57は、ホイールブラケット59Aを介して、前輪3Aに接続されている。リーニングロッド57は、ホイールブラケット59Bを介して、前輪3Bに接続されている。 The leaning rod 57 extends left and right through the front frame 11 . The leaning rod 57 connects the front wheels 3A and 3B to each other. The leaning rod 57 is connected to the front wheel 3A via a wheel bracket 59A. The leaning rod 57 is connected to the front wheel 3B via a wheel bracket 59B.
 リーニングアクチュエータ60は、前輪3A,3Bを傾倒(リーニング)するために用いられる。例えば、リーニングアクチュエータ60は、油圧シリンダである。リーニングアクチュエータ60は、フロントフレーム11と前輪3A,3Bとに接続されている。リーニングアクチュエータ60は、油圧によって伸縮する。すなわち、リーニングアクチュエータ60を伸縮させることによって、前輪3A,3Bがリーニング軸54A,54B回りに回転する。それにより、前輪3A,3Bが左右に傾倒する。 The leaning actuator 60 is used to lean (lean) the front wheels 3A and 3B. For example, leaning actuator 60 is a hydraulic cylinder. The leaning actuator 60 is connected to the front frame 11 and the front wheels 3A, 3B. The leaning actuator 60 expands and contracts by hydraulic pressure. That is, by extending and contracting the leaning actuator 60, the front wheels 3A, 3B rotate around the leaning shafts 54A, 54B. As a result, the front wheels 3A and 3B tilt left and right.
 図2に示すように、作業機械1は、作業機5の姿勢を変更するための複数のアクチュエータ22-26を備えている。例えば、複数のアクチュエータ22-25は、油圧シリンダである。アクチュエータ26は、回転アクチュエータである。本実施形態では、アクチュエータ26は油圧モータである。アクチュエータ26は、電動モータであってもよい。 As shown in FIG. 2, the work machine 1 includes a plurality of actuators 22-26 for changing the attitude of the work machine 5. For example, actuators 22-25 are hydraulic cylinders. Actuator 26 is a rotary actuator. In this embodiment, actuator 26 is a hydraulic motor. Actuator 26 may be an electric motor.
 複数のアクチュエータ22-25は、作業機5に接続されている。複数のアクチュエータ22-25は、油圧によって伸縮する。複数のアクチュエータ22-25は、伸縮することで、車体2に対する作業機5の姿勢を変更する。 A plurality of actuators 22 - 25 are connected to the work machine 5 . A plurality of actuators 22-25 expand and contract by hydraulic pressure. The actuators 22 to 25 extend and contract to change the attitude of the work implement 5 with respect to the vehicle body 2 .
 詳細には、複数のアクチュエータ22-25は、左リフトシリンダ22と、右リフトシリンダ23と、ドローバシフトシリンダ24と、ブレードチルトシリンダ25と、を含む。 Specifically, the plurality of actuators 22 - 25 includes a left lift cylinder 22 , a right lift cylinder 23 , a drawbar shift cylinder 24 and a blade tilt cylinder 25 .
 左リフトシリンダ22と右リフトシリンダ23とは、左右方向に互いに離れて配置されている。左リフトシリンダ22と右リフトシリンダ23とは、ドローバ17に接続されている。左リフトシリンダ22と右リフトシリンダ23とは、リフタブラケット29を介して、フロントフレーム11に接続されている。左リフトシリンダ22と右リフトシリンダ23とのストローク動作により、ドローバ17は、上下に揺動する。それにより、ブレード16が上下に移動する。 The left lift cylinder 22 and the right lift cylinder 23 are arranged apart from each other in the left-right direction. The left lift cylinder 22 and the right lift cylinder 23 are connected to the drawbar 17 . Left lift cylinder 22 and right lift cylinder 23 are connected to front frame 11 via lifter bracket 29 . The draw bar 17 swings up and down due to stroke operations of the left lift cylinder 22 and the right lift cylinder 23 . Thereby, the blade 16 moves up and down.
 ドローバシフトシリンダ24は、ドローバ17とフロントフレーム11とに接続されている。ドローバシフトシリンダ24は、リフタブラケット29を介してフロントフレーム11に接続されている。ドローバシフトシリンダ24は、フロントフレーム11からドローバ17に向かって、斜め下方に延びている。ドローバシフトシリンダ24のストローク動作により、ドローバ17は、左右に揺動する。 The drawbar shift cylinder 24 is connected to the drawbar 17 and the front frame 11 . The drawbar shift cylinder 24 is connected to the front frame 11 via a lifter bracket 29 . The drawbar shift cylinder 24 extends obliquely downward from the front frame 11 toward the drawbar 17 . The stroke operation of the drawbar shift cylinder 24 swings the drawbar 17 left and right.
 ブレードチルトシリンダ25は、サークル18とブレード16とに接続されている。ブレードチルトシリンダ25のストローク動作により、ブレード16がチルト軸21回りに回転する。 The blade tilt cylinder 25 is connected to the circle 18 and the blade 16. The stroke operation of the blade tilt cylinder 25 rotates the blade 16 around the tilt shaft 21 .
 アクチュエータ26は、ドローバ17とサークル18とに接続されている。アクチュエータ26は、ドローバ17に対してサークル18を回転させる。それにより、ブレード16が、上下方向に延びる回転軸回りに回転する。 The actuator 26 is connected to the drawbar 17 and the circle 18. Actuator 26 rotates circle 18 relative to drawbar 17 . Thereby, the blade 16 rotates around the rotation axis extending in the vertical direction.
 図5は、作業機械1の制御システムの構成を示す模式図である。図5に示すように、作業機械1は、駆動源31と、油圧ポンプ32と、動力伝達装置33とを含む。作業機械1は、ステアリングバルブ42Aと、アーティキュレートバルブ42Bと、リーニングバルブ42Cと、作業機バルブ34とを含む。駆動源31は、例えば内燃機関である。或いは、駆動源31は、電動モータ、或いは内燃機関と電動モータとのハイブリッドであってもよい。 FIG. 5 is a schematic diagram showing the configuration of the control system of the work machine 1. FIG. As shown in FIG. 5 , work machine 1 includes a drive source 31 , a hydraulic pump 32 and a power transmission device 33 . The work machine 1 includes a steering valve 42A, an articulate valve 42B, a leaning valve 42C, and a work machine valve 34. The drive source 31 is, for example, an internal combustion engine. Alternatively, the drive source 31 may be an electric motor or a hybrid of an internal combustion engine and an electric motor.
 油圧ポンプ32は、駆動源31によって駆動されることで、作動油を吐出する。油圧ポンプ32は、ステアリングバルブ42Aと、アーティキュレートバルブ42Bと、リーニングバルブ42Cと、作業機バルブ34とに、作動油を供給する。これにより、複数のステアリングアクチュエータ41A,41Bと、複数のアーティキュレートアクチュエータ27,28と、リーニングアクチュエータ60と、複数のアクチュエータ22-26とが、作動する。なお、図5では、1つの油圧ポンプ32のみが図示されているが、複数の油圧ポンプが備えられてもよい。 The hydraulic pump 32 is driven by the drive source 31 to discharge hydraulic oil. The hydraulic pump 32 supplies hydraulic fluid to the steering valve 42A, the articulate valve 42B, the leaning valve 42C, and the working machine valve 34. As a result, the plurality of steering actuators 41A, 41B, the plurality of articulated actuators 27, 28, the leaning actuator 60, and the plurality of actuators 22-26 are operated. Although only one hydraulic pump 32 is shown in FIG. 5, a plurality of hydraulic pumps may be provided.
 ステアリングバルブ42Aは、油圧回路を介して、油圧ポンプ32と複数のステアリングアクチュエータ41A,41Bとに接続されている。ステアリングバルブ42Aは、油圧ポンプ32から複数のステアリングアクチュエータ41A,41Bに供給される作動油の流量を、制御する。油圧ポンプ32の作動油がステアリングバルブ42Aに供給されることによって、複数のステアリングアクチュエータ41A,41Bはストローク動作を行う。 The steering valve 42A is connected to the hydraulic pump 32 and a plurality of steering actuators 41A and 41B via hydraulic circuits. The steering valve 42A controls the flow rate of hydraulic fluid supplied from the hydraulic pump 32 to the steering actuators 41A and 41B. A plurality of steering actuators 41A and 41B perform a stroke operation by supplying the hydraulic fluid of the hydraulic pump 32 to the steering valve 42A.
 アーティキュレートバルブ42Bは、油圧回路を介して、油圧ポンプ32と複数のアーティキュレートアクチュエータ27,28とに接続されている。アーティキュレートバルブ42Bは、油圧ポンプ32から複数のアーティキュレートアクチュエータ27,28に供給される作動油の流量を制御する。油圧ポンプ32の作動油がアーティキュレートバルブ42Bに供給されることによって、複数のアーティキュレートアクチュエータ27,28はストローク動作を行う。 The articulated valve 42B is connected to the hydraulic pump 32 and the plurality of articulated actuators 27, 28 via hydraulic circuits. The articulated valve 42B controls the flow rate of hydraulic fluid supplied from the hydraulic pump 32 to the plurality of articulated actuators 27,28. The plurality of articulate actuators 27 and 28 perform stroke operations by supplying hydraulic fluid from the hydraulic pump 32 to the articulate valve 42B.
 リーニングバルブ42Cは、油圧回路を介して、油圧ポンプ32とリーニングアクチュエータ60とに接続されている。リーニングバルブ42Cは、油圧ポンプ32からリーニングアクチュエータ60に供給される作動油の流量を制御する。油圧ポンプ32の作動油がリーニングバルブ42Cに供給されることによって、リーニングアクチュエータ60はストローク動作を行う。 The leaning valve 42C is connected to the hydraulic pump 32 and the leaning actuator 60 via a hydraulic circuit. The leaning valve 42</b>C controls the flow rate of hydraulic oil supplied from the hydraulic pump 32 to the leaning actuator 60 . The leaning actuator 60 performs a stroke operation by supplying the hydraulic oil of the hydraulic pump 32 to the leaning valve 42C.
 作業機バルブ34は、油圧回路を介して、油圧ポンプ32と複数のアクチュエータ22-26とに接続されている。作業機バルブ34は、複数のアクチュエータ22-26それぞれに接続される複数の弁を、含む。作業機バルブ34は、油圧ポンプ32から複数のアクチュエータ22-26に供給される作動油の流量を、制御する。 The working machine valve 34 is connected to the hydraulic pump 32 and the plurality of actuators 22-26 via a hydraulic circuit. The work implement valve 34 includes a plurality of valves connected to each of the plurality of actuators 22-26. The work machine valve 34 controls the flow rate of hydraulic oil supplied from the hydraulic pump 32 to the actuators 22-26.
 動力伝達装置33は、駆動源31からの駆動力を後輪4A-4Dに伝達する。動力伝達装置33は、トルクコンバータ、及び/又は、複数の変速ギアを含んでもよい。或いは、動力伝達装置33は、HST(Hydraulic Static Transmission)、或いは、HMT(Hydraulic Mechanical Transmission)などのトランスミッションであってもよい。 The power transmission device 33 transmits the driving force from the drive source 31 to the rear wheels 4A-4D. The power transmission device 33 may include a torque converter and/or multiple transmission gears. Alternatively, the power transmission device 33 may be a transmission such as HST (Hydraulic Static Transmission) or HMT (Hydraulic Mechanical Transmission).
 作業機械1は、ステアリング操作部材45と、アーティキュレート操作部材46と、リーニング操作部材47と、作業機操作部材48と、シフト操作部材49と、アクセル操作部材50とを含む。 The work machine 1 includes a steering operation member 45 , an articulate operation member 46 , a leaning operation member 47 , a work machine operation member 48 , a shift operation member 49 and an accelerator operation member 50 .
 ステアリング操作部材45は、前輪3A,3Bを操舵するためにオペレータによって操作可能である。ステアリング操作部材45は、ジョイスティックなどのレバーである。或いは、ステアリング操作部材45は、レバー以外の部材であってもよい。例えば、ステアリング操作部材45は、ステアリングホイールであってもよい。ステアリング操作部材45は、オペレータによるステアリング操作部材45への操作を示すステアリング操作信号を出力する。 The steering operation member 45 can be operated by the operator to steer the front wheels 3A, 3B. The steering operation member 45 is a lever such as a joystick. Alternatively, the steering operation member 45 may be a member other than a lever. For example, the steering operation member 45 may be a steering wheel. The steering operation member 45 outputs a steering operation signal indicating the operation of the steering operation member 45 by the operator.
 アーティキュレート操作部材46は、リアフレーム12に対してフロントフレーム11を回動させるためにオペレータによって操作可能である。アーティキュレート操作部材46は、ジョイスティックなどのレバーである。或いは、アーティキュレート操作部材46は、レバー以外の部材であってもよい。アーティキュレート操作部材46は、オペレータによるアーティキュレート操作部材46への操作を示すアーティキュレート操作信号を出力する。 The articulated operating member 46 is operable by the operator to rotate the front frame 11 with respect to the rear frame 12 . The articulated operating member 46 is a lever such as a joystick. Alternatively, the articulate operating member 46 may be a member other than a lever. The articulate operation member 46 outputs an articulate operation signal indicating the operation of the articulate operation member 46 by the operator.
 リーニング操作部材47は、前輪3A,3Bを傾倒させるためにオペレータによって操作可能である。リーニング操作部材47は、ジョイスティックなどのレバーである。或いは、リーニング操作部材47は、スイッチ、或いはタッチパネルなどの他の部材であってもよい。リーニング操作部材47は、オペレータによるリーニング操作部材47の操作を示すリーニング操作信号を出力する。 The leaning operation member 47 can be operated by the operator to tilt the front wheels 3A, 3B. The leaning operation member 47 is a lever such as a joystick. Alternatively, the leaning operation member 47 may be another member such as a switch or a touch panel. The leaning operation member 47 outputs a leaning operation signal indicating the operation of the leaning operation member 47 by the operator.
 作業機操作部材48は、作業機5の姿勢を変更するためにオペレータによって操作可能である。作業機操作部材48は、例えば複数の作業機レバーを含む。或いは、作業機操作部材48は、スイッチ、或いはタッチパネルなどの他の部材であってもよい。作業機操作部材48は、オペレータによる作業機操作部材48への操作を示す信号を出力する。 The work machine operating member 48 can be operated by the operator to change the attitude of the work machine 5 . The work machine operating member 48 includes, for example, a plurality of work machine levers. Alternatively, the work machine operation member 48 may be another member such as a switch or a touch panel. The work machine operating member 48 outputs a signal indicating the operation of the work machine operating member 48 by the operator.
 シフト操作部材49は、作業機械1の前進と後進とを切り換えるためのオペレータによって操作可能である。シフト操作部材49は、例えばシフトレバーを含む。或いは、シフト操作部材49は、スイッチ、或いはタッチパネルなどの他の部材であってもよい。シフト操作部材49は、オペレータによるシフト操作部材49への操作を示す信号を出力する。 The shift operation member 49 can be operated by an operator for switching between forward and reverse travel of the work machine 1 . The shift operating member 49 includes, for example, a shift lever. Alternatively, the shift operation member 49 may be another member such as a switch or a touch panel. The shift operation member 49 outputs a signal indicating the operation of the shift operation member 49 by the operator.
 アクセル操作部材50は、作業機械1を走行させるためにオペレータによって操作可能である。アクセル操作部材50は、例えばアクセルペダルを含む。或いは、アクセル操作部材50は、スイッチ、或いはタッチパネルなどの他の部材であってもよい。アクセル操作部材50は、オペレータによるアクセル操作部材50への操作を示す信号を出力する。 The accelerator operation member 50 can be operated by an operator to make the work machine 1 run. The accelerator operating member 50 includes, for example, an accelerator pedal. Alternatively, the accelerator operation member 50 may be another member such as a switch or a touch panel. The accelerator operation member 50 outputs a signal indicating the operation of the accelerator operation member 50 by the operator.
 図5に示すように、作業機械1は、コントローラ37を含む。コントローラ37は、記憶装置38とプロセッサ39とを含む。プロセッサ39は、例えばCPUであり、作業機械1を制御するためのプログラムを実行する。記憶装置38は、RAM及びROMなどのメモリと、SSD或いはHDDなどの補助記憶装置を含む。記憶装置38は、作業機械1を制御するためのプログラムとデータとを記憶している。 As shown in FIG. 5, the work machine 1 includes a controller 37. Controller 37 includes storage device 38 and processor 39 . The processor 39 is a CPU, for example, and executes a program for controlling the work machine 1 . The storage device 38 includes memories such as RAM and ROM, and auxiliary storage devices such as SSD or HDD. The storage device 38 stores programs and data for controlling the work machine 1 .
 コントローラ37は、シフト操作部材49の操作に応じて、動力伝達装置33を制御する。これにより、作業機械1の進行方向が、前進と後進とに切り換えられる。また、動力伝達装置33の速度段が切り換えられる。或いは、シフト操作部材49は、機械的に動力伝達装置33に接続されてもよい。シフト操作部材49の動作を機械的に動力伝達装置33に伝達することで、動力伝達装置33の前進と後進のギア、或いは変速ギアが切り替えられてもよい。 The controller 37 controls the power transmission device 33 according to the operation of the shift operation member 49. As a result, the traveling direction of the work machine 1 is switched between forward and reverse. Also, the speed stage of the power transmission device 33 is switched. Alternatively, the shift operating member 49 may be mechanically connected to the power transmission device 33 . By mechanically transmitting the operation of the shift operation member 49 to the power transmission device 33, the forward and reverse gears of the power transmission device 33 or the transmission gear may be switched.
 コントローラ37は、アクセル操作部材50の操作に応じて、駆動源31及び動力伝達装置33を制御する。これにより、作業機械1が走行する。また、コントローラ37は、作業機操作部材48の操作に応じて、油圧ポンプ32と作業機バルブ34とを制御する。これにより、作業機5が動作する。 The controller 37 controls the drive source 31 and the power transmission device 33 according to the operation of the accelerator operation member 50. As a result, the work machine 1 travels. The controller 37 also controls the hydraulic pump 32 and the work machine valve 34 according to the operation of the work machine operation member 48 . As a result, the working machine 5 operates.
 コントローラ37は、ステアリング操作部材45からのステアリング操作信号により、ステアリング操作部材45の操作量を取得する。コントローラ37は、ステアリング操作信号に応じてステアリングバルブ42Aを制御することで、複数のステアリングアクチュエータ41A,41Bを伸縮させる。これにより、コントローラ37は、前輪3A,3Bの操舵角θsを変化させる。 The controller 37 acquires the operation amount of the steering operation member 45 based on the steering operation signal from the steering operation member 45 . The controller 37 expands and contracts the steering actuators 41A and 41B by controlling the steering valve 42A according to the steering operation signal. Thereby, the controller 37 changes the steering angle θs of the front wheels 3A and 3B.
 図3に示すように、操舵角θsは、第1ステアリング軸43A及び第2ステアリング軸43Bを中心としてフロントフレーム11に対して前輪3A,3Bが回動する角度である。詳細には、操舵角θsは、フロントフレーム11の第1中心線L1に対する前輪3A,3Bの回転角度である。第1中心線L1は、フロントフレーム11の前後方向に延びる。 As shown in FIG. 3, the steering angle θs is the angle at which the front wheels 3A and 3B rotate with respect to the front frame 11 about the first steering shaft 43A and the second steering shaft 43B. Specifically, the steering angle θs is the rotation angle of the front wheels 3A and 3B with respect to the first center line L1 of the front frame 11. As shown in FIG. The first center line L1 extends in the front-rear direction of the front frame 11 .
 操舵角θsは、複数のステアリングアクチュエータ41A,41Bのストローク動作によって中立位置から左右に変化する。中立位置の操舵角θsは、ゼロ度である。前輪3A,3Bは、中立位置において、フロントフレーム11の第1中心線L1と平行に配置される。なお、図3において、3A’及び3B’は、中立位置から右方へ操舵角θsだけ操舵された状態の前輪を示している。 The steering angle θs changes left and right from the neutral position due to stroke operations of the steering actuators 41A and 41B. The steering angle θs at the neutral position is zero degrees. The front wheels 3A, 3B are arranged parallel to the first center line L1 of the front frame 11 at the neutral position. In FIG. 3, 3A' and 3B' indicate the front wheels steered rightward from the neutral position by the steering angle .theta.s.
 コントローラ37は、アーティキュレート操作部材46からのアーティキュレート操作信号により、アーティキュレート操作部材46の操作量を取得する。コントローラ37は、アーティキュレートバルブ42Bを制御する。例えば、コントローラ37は、アーティキュレート操作信号に応じてアーティキュレートバルブ42Bを制御することによって、左アーティキュレートシリンダ27と右アーティキュレートシリンダ28を伸縮させる。これにより、コントローラ37は、アーティキュレート角θaを変化させる。 The controller 37 acquires the operation amount of the articulate operation member 46 based on the articulate operation signal from the articulate operation member 46 . Controller 37 controls articulated valve 42B. For example, the controller 37 expands and contracts the left articulated cylinder 27 and the right articulated cylinder 28 by controlling the articulated valve 42B according to the articulated operation signal. Thereby, the controller 37 changes the articulate angle θa.
 図3に示すように、アーティキュレート角θaは、アーティキュレート軸44を中心としてリアフレーム12に対してフロントフレーム11が回動する角度である。詳細には、アーティキュレート角θaは、フロントフレーム11の第1中心線L1とリアフレーム12の第2中心線L2がなす角度である。 As shown in FIG. 3, the articulate angle θa is the angle at which the front frame 11 rotates with respect to the rear frame 12 about the articulate shaft 44 . Specifically, the articulate angle θa is the angle between the first center line L1 of the front frame 11 and the second center line L2 of the rear frame 12 .
 第2中心線L2は、リアフレーム12の前後方向に延びる。第2中心線L2は、作業機械1の上面視でアーティキュレート軸44を通過する。アーティキュレート角θaは、中立位置から左右に変化する。中立位置のアーティキュレート角θaは、ゼロである。左方へのアーティキュレート角θaは正の値であり、右方へのアーティキュレート角θaは負の値である。 The second center line L2 extends in the longitudinal direction of the rear frame 12. The second center line L2 passes through the articulate shaft 44 when the work machine 1 is viewed from above. The articulate angle θa changes left and right from the neutral position. The articulate angle θa in the neutral position is zero. The articulate angle .theta.a to the left is a positive value and the articulate angle .theta.a to the right is a negative value.
 アーティキュレート角θaがゼロである場合、第2中心線L2の方向は、第1中心線L1の方向と一致する。すなわち、アーティキュレート角θaがゼロである場合、車体2は直線状態である。なお、図3では、フロントフレーム11が、アーティキュレート軸44回りに、アーティキュレート角θaだけ回動した状態が示されている。 When the articulate angle θa is zero, the direction of the second center line L2 matches the direction of the first center line L1. That is, when the articulate angle θa is zero, the vehicle body 2 is straight. Note that FIG. 3 shows a state in which the front frame 11 is rotated about the articulate shaft 44 by the articulate angle θa.
 コントローラ37は、リーニング操作部材47からのリーニング操作信号により、リーニング操作部材47の操作量を取得する。コントローラ37は、リーニングバルブ42Cを制御する。例えば、コントローラ37は、リーニング操作信号に応じてリーニングバルブ42Cを制御することによって、リーニングアクチュエータ60を伸縮させる。これにより、コントローラ37は、オペレータによるリーニング操作部材47の操作に応じて、リーニング角θlを変化させる。 The controller 37 acquires the operation amount of the leaning operation member 47 based on the leaning operation signal from the leaning operation member 47 . The controller 37 controls the leaning valve 42C. For example, the controller 37 expands and contracts the leaning actuator 60 by controlling the leaning valve 42C according to the leaning operation signal. Thereby, the controller 37 changes the leaning angle θl according to the operation of the leaning operation member 47 by the operator.
 図4に示すように、リーニング角θlは、車体2を前方から見て、前輪3A、3Bの左右方向への傾倒角度である。例えば、リーニング角θlは、車体2を前方から見て、前輪3A,3Bがリーニング軸54A,54Bまわりに傾倒する傾倒角度である。 As shown in FIG. 4, the leaning angle θl is the tilt angle of the front wheels 3A, 3B in the left-right direction when the vehicle body 2 is viewed from the front. For example, the leaning angle θl is a tilting angle at which the front wheels 3A, 3B tilt around the leaning shafts 54A, 54B when the vehicle body 2 is viewed from the front.
 以下の説明において、前輪3A,3Bが水平面に対して直立した状態(実線で示す3A、3B)を、前輪3A,3Bの中立位置と呼ぶものとする。前輪3A,3Bが中立位置で、リーニング角θlは、ゼロ度である。なお、図4において、3A’,3B’は、中立位置から左方にリーニング角θlだけ傾倒した前輪を示している。 In the following description, the state in which the front wheels 3A, 3B stand upright with respect to the horizontal plane (3A, 3B indicated by solid lines) is called the neutral position of the front wheels 3A, 3B. The front wheels 3A and 3B are in the neutral position and the leaning angle θl is zero degrees. In FIG. 4, 3A' and 3B' indicate the front wheels tilted leftward from the neutral position by the leaning angle .theta.l.
 作業機械1は、操舵角センサ51と、アーティキュレート角センサ52と、リーニング角センサ53と、を備えている。操舵角センサ51は、前輪3A,3Bの操舵角θsを検出するために用いられる。操舵角センサ51は、操舵角θsを示す信号を出力する。 The work machine 1 includes a steering angle sensor 51 , an articulate angle sensor 52 and a leaning angle sensor 53 . A steering angle sensor 51 is used to detect the steering angle θs of the front wheels 3A and 3B. The steering angle sensor 51 outputs a signal indicating the steering angle θs.
 アーティキュレート角センサ52は、リアフレーム12に対するフロントフレーム11のアーティキュレート角を検出するために用いられる。アーティキュレート角センサ52は、アーティキュレート角θaを示す信号を出力する。リーニング角センサ53は、前輪3A,3Bのリーニング角θlを検出するために用いられる。リーニング角センサ53は、リーニング角θlを示す信号を出力する。 The articulate angle sensor 52 is used to detect the articulate angle of the front frame 11 with respect to the rear frame 12. The articulate angle sensor 52 outputs a signal indicating the articulate angle θa. The leaning angle sensor 53 is used to detect the leaning angle θl of the front wheels 3A, 3B. The leaning angle sensor 53 outputs a signal indicating the leaning angle θl.
 操舵角センサ51、アーティキュレート角センサ52、リーニング角センサ53は、それぞれIMU(慣性計測装置)であってもよい。或いは、操舵角センサ51、アーティキュレート角センサ52、リーニング角センサ53は、それぞれカメラであってもよい。その場合、コントローラ37は、各センサ51-53が取得した画像を解析することで、操舵角θsとアーティキュレート角θaとリーニング角θlとを算出してもよい。 The steering angle sensor 51, articulate angle sensor 52, and leaning angle sensor 53 may each be an IMU (inertial measurement unit). Alternatively, the steering angle sensor 51, articulate angle sensor 52, and leaning angle sensor 53 may each be a camera. In that case, the controller 37 may calculate the steering angle θs, the articulate angle θa, and the leaning angle θl by analyzing the images acquired by the sensors 51-53.
 或いは、操舵角センサ51、アーティキュレート角センサ52、リーニング角センサ53は、それぞれステアリングアクチュエータ41A,41Bのストローク量と、アーティキュレートシリンダ27,28のストローク量と、リーニングアクチュエータ60のストローク量とを検出するセンサであってもよい。その場合、コントローラ37は、テアリングアクチュエータ41A,41Bのストローク量と、アーティキュレートシリンダ27,28のストローク量と、リーニングアクチュエータ60のストローク量とから、それぞれ操舵角θsとアーティキュレート角θaとリーニング角θlとを算出してもよい。 Alternatively, the steering angle sensor 51, articulate angle sensor 52, and leaning angle sensor 53 detect the stroke amounts of the steering actuators 41A and 41B, the stroke amounts of the articulate cylinders 27 and 28, and the stroke amount of the leaning actuator 60, respectively. It may be a sensor that In this case, the controller 37 calculates the steering angle θs, the articulate angle θa, and the leaning angle θl from the stroke amounts of the steering actuators 41A and 41B, the stroke amounts of the articulated cylinders 27 and 28, and the stroke amount of the leaning actuator 60, respectively. and may be calculated.
 或いは、操舵角センサ51は、操舵角θsを直接的に検出してもよい。アーティキュレート角センサ52は、アーティキュレート角θaを直接的に検出してもよい。リーニング角センサ53は、リーニング角θlを直接的に検出してもよい。 Alternatively, the steering angle sensor 51 may directly detect the steering angle θs. The articulate angle sensor 52 may directly detect the articulate angle θa. The leaning angle sensor 53 may directly detect the leaning angle θl.
 図5に示すように、作業機械1は、物体センサ61,62と、出力装置63とを備えている。物体センサ61,62は、作業機械1の周辺の物体を検出する。物体センサ61,62は、例えば、ミリ波レーダーなどのレーダー装置である。或いは、物体センサ61,62は、超音波センサ、カメラ、LIDAR(Light Detection and Ranging)装置などの他の種類のセンサであってもよい。物体センサは、作業機械1の周辺における物体の有無を示す信号を出力する。 As shown in FIG. 5, the work machine 1 includes object sensors 61 and 62 and an output device 63. Object sensors 61 and 62 detect objects around work machine 1 . The object sensors 61 and 62 are, for example, radar devices such as millimeter wave radars. Alternatively, the object sensors 61, 62 may be other types of sensors such as ultrasonic sensors, cameras, LIDAR (Light Detection and Ranging) devices. The object sensor outputs a signal indicating the presence or absence of an object around the working machine 1 .
 物体センサ61,62は、第1物体センサ61と第2物体センサ62とを含む。第1物体センサ61は、車体2の前方における物体を検出する。第1物体センサ61は、例えば、フロントフレーム11に取り付けられる。或いは、第1物体センサ61は、キャブ13などの他の場所に取り付けられてもよい。第2物体センサ62は、車体2の後方における物体を検出する。第2物体センサ62は、例えば、リアフレーム12に取り付けられる、或いは、第2物体センサ62は、キャブ13、或いは動力室14などの他の場所に取り付けられてもよい。 The object sensors 61 and 62 include a first object sensor 61 and a second object sensor 62. The first object sensor 61 detects an object in front of the vehicle body 2 . The first object sensor 61 is attached to the front frame 11, for example. Alternatively, first object sensor 61 may be mounted elsewhere, such as on cab 13 . The second object sensor 62 detects an object behind the vehicle body 2 . The second object sensor 62 may be mounted, for example, on the rear frame 12 , or the second object sensor 62 may be mounted on the cab 13 or elsewhere such as the power compartment 14 .
 出力装置63は、例えばディスプレイである。出力装置63は、コントローラ37からの指令信号に応じて画像を表示する。或いは、出力装置63は、スピーカーであってもよい。出力装置63は、コントローラ37からの指令信号に応じて音声を出力してもよい。 The output device 63 is, for example, a display. The output device 63 displays images according to command signals from the controller 37 . Alternatively, output device 63 may be a speaker. The output device 63 may output sound according to command signals from the controller 37 .
 コントローラ37は、作業機械1の周辺に検出範囲71,72を設定し、物体センサ61,62からの信号に基づいて、検出範囲71,72内の物体の有無を判定する。例えば、図6に示すように、コントローラ37は、車体2の前方に第1検出範囲71を設定する。コントローラ37は、車体2の後方に第2検出範囲72を設定する。コントローラ37は、検出範囲71,72内に物体100を検出した場合には、出力装置63に警報を出力させる。 The controller 37 sets detection ranges 71 and 72 around the work machine 1, and determines the presence or absence of objects within the detection ranges 71 and 72 based on signals from the object sensors 61 and 62. For example, as shown in FIG. 6 , the controller 37 sets a first detection range 71 in front of the vehicle body 2 . The controller 37 sets a second detection range 72 behind the vehicle body 2 . The controller 37 causes the output device 63 to output an alarm when the object 100 is detected within the detection ranges 71 and 72 .
 コントローラ37は、第1検出範囲71の第1基準範囲73と、第2検出範囲72の第2基準範囲74とを記憶している。第1基準範囲73と第2基準範囲74とは、車体2の幅(以下、「車幅」と呼ぶ)L0に基づいて設定される。第1基準範囲73の幅と第2基準範囲74の幅とは、それぞれ作業機5を除く作業機械1の最大の車幅L0と同じである。 The controller 37 stores a first reference range 73 of the first detection range 71 and a second reference range 74 of the second detection range 72 . The first reference range 73 and the second reference range 74 are set based on the width of the vehicle body 2 (hereinafter referred to as "vehicle width") L0. The width of the first reference range 73 and the width of the second reference range 74 are the same as the maximum vehicle width L0 of the work machine 1 excluding the work machine 5, respectively.
 コントローラ37は、操舵角θsと、アーティキュレート角θaと、リーニング角θlとに応じて、検出範囲71,72を設定する。コントローラ37は、操舵角θsと、アーティキュレート角θaと、リーニング角θlとに応じて、検出範囲71,72を基準範囲73,74から変更する。以下、コントローラ37による検出範囲71,72の設定方法について説明する。図7及び図8は、コントローラ37によって実行される検出範囲71,72を設定するための処理を示すフローチャートである。 The controller 37 sets detection ranges 71 and 72 according to the steering angle θs, articulate angle θa, and leaning angle θl. The controller 37 changes the detection ranges 71, 72 from the reference ranges 73, 74 according to the steering angle θs, articulate angle θa, and leaning angle θl. A method of setting the detection ranges 71 and 72 by the controller 37 will be described below. 7 and 8 are flowcharts showing the processing for setting the detection ranges 71 and 72 executed by the controller 37. FIG.
 図7に示すように、ステップS1では、コントローラ37は、操舵角θsを取得する。コントローラ37は、操舵角センサ51からの信号により、操舵角θsを取得する。ステップS2では、コントローラ37は、アーティキュレート角θaを取得する。コントローラ37は、アーティキュレート角センサ52からの信号により、アーティキュレート角θaを取得する。ステップS3では、コントローラ37は、リーニング角θlを取得する。コントローラ37は、リーニング角センサ53からの信号により、リーニング角θlを取得する。 As shown in FIG. 7, in step S1, the controller 37 acquires the steering angle θs. The controller 37 acquires the steering angle θs from the signal from the steering angle sensor 51 . At step S2, the controller 37 acquires the articulate angle θa. The controller 37 acquires the articulate angle θa from the signal from the articulate angle sensor 52 . In step S3, the controller 37 acquires the leaning angle θl. The controller 37 acquires the leaning angle θl from the signal from the leaning angle sensor 53 .
 ステップS4では、コントローラ37は、操舵角θsが0度であるかを判定する。ステップS5では、コントローラ37は、アーティキュレート角θaが0度であるかを判定する。ステップS6では、コントローラ37は、リーニング角θlが0度であるかを判定する。 At step S4, the controller 37 determines whether the steering angle θs is 0 degrees. In step S5, the controller 37 determines whether the articulate angle θa is 0 degrees. In step S6, the controller 37 determines whether the leaning angle θl is 0 degrees.
 操舵角θsとアーティキュレート角θaとリーニング角θlとが0度である場合、ステップS7において、コントローラ37は、基準範囲73,74を検出範囲71,72として設定する。すなわち、コントローラ37は、作業機械1が、操舵されておらず、リーニングしておらず、直線状態で直進する場合には、基準範囲73,74を検出範囲71,72として設定する。詳細には、図6に示すように、コントローラ37は、第1基準範囲73を第1検出範囲71として設定する。また、コントローラ37は、第2基準範囲74を第2検出範囲72として設定する。 When the steering angle θs, the articulate angle θa, and the leaning angle θl are 0 degrees, the controller 37 sets the reference ranges 73 and 74 as the detection ranges 71 and 72 in step S7. That is, the controller 37 sets the reference ranges 73 and 74 as the detection ranges 71 and 72 when the work machine 1 is not steered, is not leaning, and is traveling straight. Specifically, as shown in FIG. 6 , the controller 37 sets the first reference range 73 as the first detection range 71 . Also, the controller 37 sets the second reference range 74 as the second detection range 72 .
 ステップS6において、リーニング角θlが0度ではない場合には、処理はステップS8に進む。ステップS8では、コントローラ37は、変更1の処理に従って、基準範囲73,74を変更することで、検出範囲71,72を設定する。図9は、変更1の処理に従う検出範囲71,72を示す上面図である。 In step S6, if the leaning angle θl is not 0 degrees, the process proceeds to step S8. In step S8, the controller 37 sets the detection ranges 71 and 72 by changing the reference ranges 73 and 74 according to the process of change 1. FIG. FIG. 9 is a top view showing detection ranges 71 and 72 according to the modification 1 process.
 図9に示すように、変更1の処理では、コントローラ37は、左右方向において前輪3A,3Bがリーニングしている方向(以下、「リーニング方向」と呼ぶ)と同じ側に、検出範囲71,72を拡大する。すなわち、コントローラ37は、作業機械1が、操舵されておらず、直線状態で、リーニングしながら直進する場合には、リーニング方向と同じ側に、検出範囲71,72を拡大する。 As shown in FIG. 9, in the process of modification 1, the controller 37 moves the detection ranges 71 and 72 to the same side in the left-right direction as the direction in which the front wheels 3A and 3B are leaning (hereinafter referred to as the "leaning direction"). to expand. That is, the controller 37 expands the detection ranges 71 and 72 in the same direction as the leaning direction when the work machine 1 is not steered and moves straight while leaning.
 例えば、前輪3A,3Bが左方にリーニングしている場合には、コントローラ37は、第1検出範囲71を第1基準範囲73から左方に拡大する。コントローラ37は、第2検出範囲72を第2基準範囲74から左方に拡大する。また、コントローラ37は、検出範囲71,72を右方には拡大しない。この場合、検出範囲71,72の幅Lallは、以下の式(1)で表される。
Lall=L0+Ll   (1)
For example, when the front wheels 3A and 3B are leaning to the left, the controller 37 expands the first detection range 71 from the first reference range 73 to the left. The controller 37 expands the second detection range 72 leftward from the second reference range 74 . Also, the controller 37 does not expand the detection ranges 71 and 72 to the right. In this case, the width Lall of the detection ranges 71 and 72 is represented by the following formula (1).
Lall = L0 + Ll (1)
 Llは、リーニング時の検出範囲の増分である。リーニング時の増分Llは、リーニングによる前輪3A,3Bの左右方向外方への変位量を示す。リーニング時の増分Llは、以下の式(2)で表される。
Ll=D×cosθl   (2)
Ll is the increment of detection range when leaning. The leaning increment Ll indicates the amount of lateral outward displacement of the front wheels 3A and 3B due to leaning. The increment Ll during leaning is represented by the following equation (2).
Ll=D×cos θl (2)
 図4に示すように、Dは前輪3A,3Bの外径である。なお、図示を省略するが、変更1の処理では、前輪3A,3Bが右方にリーニングしている場合には、コントローラ37は、第1検出範囲71を第1基準範囲73から右方に拡大し、第2検出範囲72を第2基準範囲74から右方に拡大する。 As shown in Fig. 4, D is the outer diameter of the front wheels 3A, 3B. Although illustration is omitted, in the processing of modification 1, when the front wheels 3A and 3B are leaning to the right, the controller 37 expands the first detection range 71 from the first reference range 73 to the right. Then, the second detection range 72 is expanded rightward from the second reference range 74 .
 ステップS5において、アーティキュレート角θaが0度ではない場合には、処理はステップS9に進む。ステップS9では、コントローラ37は、リーニング角θlが0度であるかを判定する。ステップS9において、リーニング角θlが0度である場合には、処理はステップS10に進む。 In step S5, if the articulate angle θa is not 0 degrees, the process proceeds to step S9. In step S9, the controller 37 determines whether the leaning angle θl is 0 degrees. In step S9, if the leaning angle θl is 0 degrees, the process proceeds to step S10.
 ステップS10では、コントローラ37は、変更2の処理に従って、基準範囲73,74を変更することで、検出範囲71,72を設定する。図10は、変更2の処理に従う検出範囲71,72を示す上面図である。図10に示すように、変更2の処理では、コントローラ37は、アーティキュレート角θaに応じた作業機械1の旋回半径に応じて、検出範囲71,72を湾曲させる。すなわち、作業機械1が、操舵されておらず、リーニングしておらず、アーティキュレート状態で旋回する場合には、作業機械1の旋回の軌跡A1,A2に合わせて、検出範囲71,72を湾曲させる。 In step S10, the controller 37 sets the detection ranges 71 and 72 by changing the reference ranges 73 and 74 according to the process of change 2. FIG. 10 is a top view showing detection ranges 71 and 72 according to the modification 2 process. As shown in FIG. 10 , in the process of modification 2, the controller 37 curves the detection ranges 71 and 72 according to the turning radius of the work machine 1 according to the articulate angle θa. That is, when the work machine 1 is not steered, is not leaning, and turns in an articulated state, the detection ranges 71 and 72 are curved in accordance with the turning trajectories A1 and A2 of the work machine 1. Let
 例えば、作業機械1がアーティキュレート状態で左方に旋回する場合には、コントローラ37は、検出範囲71,72を左方に湾曲させる。コントローラ37は、アーティキュレート角θaと作業機械1の旋回半径との関係を示すデータを記憶しており、当該データを参照することで、アーティキュレート角θaから旋回半径を算出してもよい。検出範囲71,72の幅Lallは、基準範囲73,74の幅と同じであり、以下の式(3)で表される。
Lall=L0   (3)
For example, when the work machine 1 turns leftward in the articulated state, the controller 37 curves the detection ranges 71 and 72 leftward. The controller 37 stores data indicating the relationship between the articulate angle θa and the turning radius of the work machine 1, and may calculate the turning radius from the articulate angle θa by referring to the data. The width Lall of the detection ranges 71 and 72 is the same as the width of the reference ranges 73 and 74 and is represented by the following formula (3).
Lall=L0 (3)
 なお、図示を省略するが、変更2の処理では、作業機械1がアーティキュレート状態で右方に旋回する場合には、コントローラ37は、検出範囲71,72を右方に湾曲させる。 Although illustration is omitted, in the processing of modification 2, when the work machine 1 turns rightward in the articulated state, the controller 37 curves the detection ranges 71 and 72 rightward.
 ステップS9において、リーニング角θlが0度ではない場合には、処理はステップS11に進む。ステップS11では、コントローラ37は、変更3の処理に従って、基準範囲73,74を変更することで、検出範囲71,72を設定する。図11及び図12は、変更3の処理に従う検出範囲71,72を示す上面図である。 In step S9, if the leaning angle θl is not 0 degrees, the process proceeds to step S11. In step S11, the controller 37 sets the detection ranges 71 and 72 by changing the reference ranges 73 and 74 according to the change 3 process. 11 and 12 are top views showing detection ranges 71 and 72 according to the process of modification 3. FIG.
 図11及び図12に示すように、変更3の処理では、コントローラ37は、アーティキュレート角θaとリーニング角θlとに応じた作業機械1の旋回半径に応じて、検出範囲71,72を湾曲させると共に、リーニング方向と同じ側に、検出範囲71,72を拡大する。すなわち、コントローラ37は、作業機械1が操舵されておらず、リーニングしながら、アーティキュレート状態で旋回する場合には、変更2の処理と同様に、作業機械1の旋回の軌跡に合わせて、検出範囲71,72を湾曲させると共に、リーニング方向と同じ側に、検出範囲71,72を拡大する。例えば、コントローラ37は、アーティキュレート角θaとリーニング角θlと作業機械1の旋回半径との関係を示すデータを記憶しており、当該データを参照することで、アーティキュレート角θaとリーニング角θlとから作業機械1の旋回半径を算出してもよい。 As shown in FIGS. 11 and 12, in the process of modification 3, the controller 37 curves the detection ranges 71 and 72 according to the turning radius of the work machine 1 according to the articulate angle θa and the leaning angle θl. At the same time, the detection ranges 71 and 72 are expanded on the same side as the leaning direction. That is, when the work machine 1 is not being steered and the work machine 1 is leaning and turning in an articulated state, the controller 37 detects the turning trajectory of the work machine 1 in accordance with the turning trajectory in the same manner as the processing of the modification 2. While curving the ranges 71 and 72, the detection ranges 71 and 72 are expanded on the same side as the leaning direction. For example, the controller 37 stores data indicating the relationship between the articulate angle θa, the leaning angle θl, and the turning radius of the work machine 1. By referring to the data, the controller 37 can obtain the articulate angle θa, the leaning angle θl, and the like. The turning radius of the work machine 1 may be calculated from
 例えば、図11に示すように、作業機械1が左方にリーニングしながら、アーティキュレート状態で左方に旋回する場合には、コントローラ37は、検出範囲71,72を左方に湾曲させると共に、検出範囲71,72を増分Llだけ左方に拡大する。図12に示すように、作業機械1が右方にリーニングしながら、アーティキュレート状態で左方に旋回する場合には、コントローラ37は、検出範囲71,72を左方に湾曲させると共に、検出範囲71,72を増分Llだけ右方に拡大する。検出範囲71,72の幅Lallは、上述した(1)式で表される。 For example, as shown in FIG. 11 , when the work machine 1 turns leftward while leaning leftward, the controller 37 bends the detection ranges 71 and 72 leftward, The detection ranges 71 and 72 are expanded leftward by the increment Ll. As shown in FIG. 12, when the work machine 1 is leaning to the right and turning to the left in an articulated state, the controller 37 bends the detection ranges 71 and 72 to the left and 71 and 72 are expanded rightward by the increment Ll. The width Lall of the detection ranges 71 and 72 is represented by the formula (1) described above.
 なお、図示を省略するが、変更3の処理では、作業機械1がアーティキュレート状態によって右方に旋回する場合には、コントローラ37は、検出範囲71,72を右方に湾曲させると共に、リーニング方向と同じ側に、検出範囲71,72を拡大する。 Although illustration is omitted, in the processing of modification 3, when the work machine 1 turns to the right due to the articulated state, the controller 37 bends the detection ranges 71 and 72 to the right and The detection ranges 71 and 72 are expanded on the same side as .
 ステップS4において、操舵角θsが0度ではない場合には、処理は、図8に示すステップS12に進む。ステップS12では、コントローラ37は、アーティキュレート角θaが0度であるかを判定する。ステップS13では、コントローラ37は、リーニング角θlが0度であるかを判定する。アーティキュレート角θaとリーニング角θlとがともに0度である場合には、処理はステップS14に進む。 In step S4, if the steering angle θs is not 0 degrees, the process proceeds to step S12 shown in FIG. In step S12, the controller 37 determines whether the articulate angle θa is 0 degrees. In step S13, the controller 37 determines whether the leaning angle θl is 0 degrees. If both the articulate angle θa and the leaning angle θl are 0 degrees, the process proceeds to step S14.
 ステップS14では、コントローラ37は、変更4の処理に従って、基準範囲73,74を変更することで、検出範囲71,72を設定する。図13は、変更4の処理に従う検出範囲71,72を示す上面図である。図13に示すように、変更4の処理では、コントローラ37は、操舵角θsに応じた作業機械1の旋回半径に応じて、検出範囲71,72を湾曲させる。すなわち、作業機械1が、リーニングしておらず、直線状態で、操舵により旋回する場合には、作業機械1の旋回の軌跡に合わせて、検出範囲71,72を湾曲させる。 In step S14, the controller 37 sets the detection ranges 71 and 72 by changing the reference ranges 73 and 74 according to the process of change 4. FIG. 13 is a top view showing detection ranges 71 and 72 according to the processing of modification 4. FIG. As shown in FIG. 13, in the process of modification 4, the controller 37 curves the detection ranges 71 and 72 according to the turning radius of the work machine 1 according to the steering angle θs. That is, when the work machine 1 is not leaning and is in a straight line and turns by steering, the detection ranges 71 and 72 are curved according to the locus of the turn of the work machine 1 .
 例えば、図13に示すように、作業機械1が操舵によって左方に旋回する場合には、コントローラ37は、検出範囲71,72を左方に湾曲させる。例えば、コントローラ37は、操舵角θsと作業機械1の旋回半径との関係を示すデータを記憶しており、当該データを参照することで、操舵角θsから旋回半径を算出してもよい。検出範囲71,72の幅Lallは、基準範囲73,74の幅と同じであり、上述した式(3)で表される。なお、図示を省略するが、変更4の処理では、作業機械1が操舵によって右方に旋回する場合には、コントローラ37は、検出範囲71,72を右方に湾曲させる。 For example, as shown in FIG. 13, when the work machine 1 is turned left by steering, the controller 37 curves the detection ranges 71 and 72 leftward. For example, the controller 37 may store data indicating the relationship between the steering angle θs and the turning radius of the work machine 1, and refer to the data to calculate the turning radius from the steering angle θs. The width Lall of the detection ranges 71 and 72 is the same as the width of the reference ranges 73 and 74, and is expressed by Equation (3) above. Although illustration is omitted, in the processing of modification 4, when the work machine 1 is turned rightward by steering, the controller 37 curves the detection ranges 71 and 72 rightward.
 ステップS13において、リーニング角θlが0度ではない場合には、処理はステップS15に進む。ステップS15では、コントローラ37は、変更5の処理に従って、基準範囲73,74を変更することで、検出範囲71,72を設定する。図14及び図15は、変更5の処理に従う検出範囲71,72を示す上面図である。 In step S13, if the leaning angle θl is not 0 degrees, the process proceeds to step S15. In step S15, the controller 37 sets the detection ranges 71 and 72 by changing the reference ranges 73 and 74 according to the process of change 5. FIG. 14 and 15 are top views showing detection ranges 71 and 72 according to the process of modification 5. FIG.
 図14及び図15に示すように、変更5の処理では、コントローラ37は、操舵角θsとリーニング角θlとに応じた作業機械1の旋回半径に応じて、検出範囲71,72を湾曲させると共に、リーニング方向と同じ側に、検出範囲71,72を拡大する。すなわち、コントローラ37は、作業機械1が直線状態で、リーニングしながら、操舵によって旋回する場合には、作業機械1の旋回の軌跡に合わせて、検出範囲71,72を湾曲させると共に、リーニング方向と同じ側に、検出範囲71,72を拡大する。コントローラ37は、操舵角θsとリーニング角θlと作業機械1の旋回半径との関係を示すデータを記憶しており、当該データを参照することで、操舵角θsとリーニング角θlとから、作業機械1の旋回半径を算出してもよい。 As shown in FIGS. 14 and 15, in the process of modification 5, the controller 37 curves the detection ranges 71 and 72 according to the turning radius of the work machine 1 according to the steering angle θs and the leaning angle θl. , the detection ranges 71 and 72 are expanded on the same side as the leaning direction. That is, when the work machine 1 is in a straight line and leans while turning by steering, the controller 37 bends the detection ranges 71 and 72 in accordance with the turning trajectory of the work machine 1, The detection ranges 71 and 72 are enlarged on the same side. The controller 37 stores data indicating the relationship between the steering angle θs, the leaning angle θl, and the turning radius of the work machine 1. By referring to the data, the controller 37 can determine the working machine from the steering angle θs and the leaning angle θl. A turning radius of 1 may be calculated.
 例えば、図14に示すように、作業機械1が左方にリーニングしながら、操舵によって左方に旋回する場合には、コントローラ37は、検出範囲71,72を左方に湾曲させると共に、検出範囲71,72を増分Llだけ左方に拡大する。図15に示すように、作業機械1が右方にリーニングしながら、操舵によって左方に旋回する場合には、コントローラ37は、検出範囲71,72を左方に湾曲させると共に、検出範囲71,72を増分Llだけ右方に拡大する。検出範囲71,72の幅Lallは、上述した式(1)で表される。 For example, as shown in FIG. 14, when the work machine 1 is leaning leftward and turned leftward by steering, the controller 37 bends the detection ranges 71 and 72 leftward and 71 and 72 are expanded leftward by the increment Ll. As shown in FIG. 15, when the work machine 1 is leaning to the right and turning to the left by steering, the controller 37 bends the detection ranges 71 and 72 to the left and 72 is expanded rightward by the increment Ll. The width Lall of the detection ranges 71 and 72 is represented by the above-described formula (1).
 なお、図示を省略するが、変更5の処理では、作業機械1が操舵によって右方に旋回する場合には、コントローラ37は、検出範囲71,72を右方に湾曲させると共に、リーニング方向と同じ側に、検出範囲71,72を拡大する。 Although illustration is omitted, in the processing of modification 5, when the work machine 1 is turned rightward by steering, the controller 37 curves the detection ranges 71 and 72 rightward and also bends the detection ranges 71 and 72 to the same direction as the leaning direction. The detection ranges 71 and 72 are expanded to the side.
 ステップS12において、アーティキュレート角θaが0度ではない場合には、処理はステップS16に進む。ステップS16では、コントローラ37は、操舵角θsと、アーティキュレート角θaの正負を逆にした値が同じ(すなわち、θs=-θa)であるかを判定する。操舵角θsと、アーティキュレート角θaの正負を逆にした値が同じである場合には、処理はステップS17に進む。ステップS17では、コントローラ37はリーニング角θlが0度であるかを判定する。リーニング角θlが0度である場合には、処理は、ステップS18に進む。 In step S12, if the articulate angle θa is not 0 degrees, the process proceeds to step S16. In step S16, the controller 37 determines whether the steering angle θs and the articulate angle θa are the same (that is, θs=−θa). If the steering angle .theta.s and the articulate angle .theta.a are the same, the process proceeds to step S17. In step S17, the controller 37 determines whether the leaning angle θl is 0 degrees. If the leaning angle θl is 0 degrees, the process proceeds to step S18.
 ステップS18では、コントローラ37は、変更6の処理に従って、基準範囲73,74を変更することで、検出範囲71,72を設定する。図16は、変更6の処理に従う検出範囲71,72を示す上面図である。 In step S18, the controller 37 sets the detection ranges 71 and 72 by changing the reference ranges 73 and 74 according to the process of change 6. FIG. 16 is a top view showing detection ranges 71 and 72 according to the process of modification 6. FIG.
 図16に示すように、操舵角θsと、アーティキュレート角θaの正負を逆にした値とが同じである場合には、作業機械1は、アーティキュレート状態で直進する。変更6の処理では、コントローラ37は、アーティキュレート角θaに応じて基準範囲73,74を左右方向に拡大する。コントローラ37は、左右方向においてリアフレーム12に対するフロントフレーム11の屈曲方向(以下、「アーティキュレート方向」と呼ぶ)と反対側に、第1検出範囲71を第1基準範囲73から拡大する。また、コントローラ37は、アーティキュレート方向と同じ側に、第2検出範囲72を第2基準範囲74から拡大する。 As shown in FIG. 16, when the steering angle θs and the value obtained by inverting the positive and negative of the articulate angle θa are the same, the work machine 1 travels straight in the articulated state. In the process of modification 6, the controller 37 expands the reference ranges 73 and 74 in the horizontal direction according to the articulate angle θa. The controller 37 expands the first detection range 71 from the first reference range 73 in the lateral direction opposite to the bending direction of the front frame 11 with respect to the rear frame 12 (hereinafter referred to as the "articulated direction"). Also, the controller 37 expands the second detection range 72 from the second reference range 74 in the same side as the articulate direction.
 例えば、図16に示すように、フロントフレーム11がリアフレーム12に対して左方に屈曲した状態で、作業機械1が直進する場合には、コントローラ37は、第1検出範囲71を第1基準範囲73から右方に拡大し、第2検出範囲72を第2基準範囲74から左方に拡大する。この場合、検出範囲71,72の幅Lallは、以下の式(4)で表される。
Lall=L0+La   (4)
For example, as shown in FIG. 16, when the work machine 1 moves straight while the front frame 11 is bent to the left with respect to the rear frame 12, the controller 37 sets the first detection range 71 as the first reference. The range 73 is expanded rightward, and the second detection range 72 is expanded leftward from the second reference range 74 . In this case, the width Lall of the detection ranges 71 and 72 is represented by the following formula (4).
Lall = L0 + La (4)
 Laは、アーティキュレート状態での検出範囲の増分である。図4に示すように、アーティキュレート状態での増分Laは、アーティキュレート状態での前輪3A,3Bの左右方向外方への変位量を示す。アーティキュレート状態での増分Laは、以下の式(5)で表される。
La=Lf×sinθa   (5)
La is the increment of the detection range in the articulated state. As shown in FIG. 4, the increment La in the articulated state indicates the lateral outward displacement amount of the front wheels 3A and 3B in the articulated state. The increment La in the articulated state is represented by Equation (5) below.
La=Lf×sin θa (5)
 図3に示すように、Lfは、アーティキュレート軸44とアクスルビーム56の中心P1との間の距離である。なお、図示を省略するが、変更6の処理では、フロントフレーム11がリアフレーム12に対して右方に屈曲している状態で直進する場合には、コントローラ37は、第1検出範囲71を第1基準範囲73から左方に拡大し、第2検出範囲72を第2基準範囲74から右方に拡大する。  Lf is the distance between the articulate axis 44 and the center P1 of the axle beam 56, as shown in FIG. Although illustration is omitted, in the processing of Modification 6, when the front frame 11 is bent to the right with respect to the rear frame 12 and goes straight, the controller 37 sets the first detection range 71 to the first detection range. The first detection range 73 is expanded leftward, and the second detection range 72 is expanded rightward from the second reference range 74 .
 ステップS17おいて、リーニング角θlが0度ではない場合には、処理はステップS19に進む。ステップS19では、コントローラ37は、変更7の処理に従って、基準範囲73,74を変更することで、検出範囲71,72を設定する。図17及び図18は、変更7の処理に従う検出範囲71,72を示す上面図である。 In step S17, if the leaning angle θl is not 0 degrees, the process proceeds to step S19. In step S19, the controller 37 sets the detection ranges 71 and 72 by changing the reference ranges 73 and 74 according to the process of change 7. FIG. 17 and 18 are top views showing detection ranges 71 and 72 according to the processing of modification 7. FIG.
 図17に示すように、変更7の処理では、コントローラ37は、アーティキュレート角θaに応じて基準範囲73,74を左右方向に拡大すると共に、リーニング方向と同じ側に、検出範囲71,72を拡大する。すなわち、コントローラ37は、作業機械1が、リーニングしながら、アーティキュレート状態で直進する場合には、アーティキュレート角θaに応じて検出範囲71,72を基準範囲73,74から左右方向に拡大すると共に、リーニング方向と同じ側に、検出範囲71,72を基準範囲73,74から拡大する。 As shown in FIG. 17, in the process of modification 7, the controller 37 expands the reference ranges 73 and 74 in the left-right direction according to the articulate angle θa, and extends the detection ranges 71 and 72 on the same side as the leaning direction. Expanding. That is, when the work machine 1 moves straight in an articulated state while leaning, the controller 37 expands the detection ranges 71 and 72 in the lateral direction from the reference ranges 73 and 74 in accordance with the articulated angle θa. , the detection ranges 71 and 72 are expanded from the reference ranges 73 and 74 in the same direction as the leaning direction.
 例えば、図17に示すように、作業機械1が左方にリーニングしながら、左方へのアーティキュレート状態で直進する場合には、コントローラ37は、第1検出範囲71を右方に増分Laだけ拡大すると共に、第1検出範囲71を増分Llだけ左方に拡大する。また、コントローラ37は、第2検出範囲72を左方に増分Laだけ拡大すると共に、第2検出範囲72を増分Llだけ左方に拡大する。この場合、検出範囲71,72の幅Lallは、以下の式(6)で表される。
Lall=L0+La+Ll   (6)
For example, as shown in FIG. 17, when the work machine 1 moves straight while leaning to the left and in an articulated state to the left, the controller 37 moves the first detection range 71 to the right by an increment La. Along with the expansion, the first detection range 71 is expanded leftward by the increment Ll. Further, the controller 37 expands the second detection range 72 leftward by the increment La and expands the second detection range 72 leftward by the increment Ll. In this case, the width Lall of the detection ranges 71 and 72 is represented by the following formula (6).
Lall = L0 + La + Ll (6)
 ただし、図18に示すように、リーニング方向がアーティキュレート方向と逆である場合には、コントローラ37は、リーニング時の増分Llによる検出範囲71,72の拡大を行わない。すなわち、コントローラ37は、リーニング方向がアーティキュレート方向と同じである場合に、上述した変更7の処理を行う。 However, as shown in FIG. 18, when the leaning direction is opposite to the articulate direction, the controller 37 does not expand the detection ranges 71 and 72 by the increment Ll during leaning. That is, the controller 37 performs the processing of change 7 described above when the leaning direction is the same as the articulating direction.
 なお、図示を省略するが、変更7の処理では、フロントフレーム11が右方にリーニングしながら、右方へのアーティキュレート状態で直進する場合には、コントローラ37は、第1検出範囲71を左方に増分Laだけ拡大すると共に、第1検出範囲71を右方に増分Llだけ拡大する。また、コントローラ37は、第2検出範囲72を右方に増分Laだけ拡大すると共に、第2検出範囲72を右方に増分Llだけ拡大する。 Although illustration is omitted, in the processing of modification 7, when the front frame 11 moves straight while leaning to the right while articulating to the right, the controller 37 moves the first detection range 71 to the left. In addition, the first detection range 71 is expanded rightward by an increment Ll. Further, the controller 37 expands the second detection range 72 rightward by the increment La and expands the second detection range 72 rightward by the increment Ll.
 ステップS16において、操舵角θsと、アーティキュレート角θaの正負を逆にした値とが異なる場合(すなわち、θs≠θa)には、処理はステップ20に進む。 In step S16, if the steering angle θs is different from the reversed value of the articulate angle θa (that is, θs≠θa), the process proceeds to step S20.
 ステップS20では、コントローラ37はリーニング角θlが0度であるかを判定する。リーニング角θlが0度である場合には、処理は、ステップS21に進む。ステップS21では、変更8の処理に従って、基準範囲73,74を変更することで、検出範囲71,72を設定する。図19及び図20は、変更8の処理に従う検出範囲71,72を示す上面図である。 In step S20, the controller 37 determines whether the leaning angle θl is 0 degrees. If the leaning angle θl is 0 degrees, the process proceeds to step S21. In step S21, the detection ranges 71 and 72 are set by changing the reference ranges 73 and 74 according to the process of change 8. FIG. 19 and 20 are top views showing detection ranges 71 and 72 according to the process of modification 8. FIG.
 図19に示すように、変更8の処理では、作業機械1の旋回方向とアーティキュレート方向とが同じである場合には、コントローラ37は、アーティキュレート角θaと操舵角θsとに応じた作業機械1の旋回半径に応じて、検出範囲71,72を湾曲させる。すなわち、作業機械1が、リーニングしていない状態で、アーティキュレート角θaと操舵角θsとによって旋回する場合には、作業機械1の旋回の軌跡に合わせて、検出範囲71,72を湾曲させる。 As shown in FIG. 19, in the process of modification 8, when the turning direction and the articulate direction of the work machine 1 are the same, the controller 37 controls the work machine 1 according to the articulate angle θa and the steering angle θs. The detection ranges 71 and 72 are curved according to one turning radius. That is, when the work machine 1 turns with the articulate angle θa and the steering angle θs in a non-leaning state, the detection ranges 71 and 72 are curved according to the turning trajectory of the work machine 1 .
 例えば、作業機械1がアーティキュレート角θaと操舵角θsとによって左方に旋回する場合(θs>-θa)には、コントローラ37は、検出範囲71,72を左方に湾曲させる。コントローラ37は、アーティキュレート角θaと操舵角θsと作業機械1の旋回半径との関係を示すデータを記憶しており、当該データを参照することで、アーティキュレート角θaと操舵角θsとから旋回半径を算出してもよい。検出範囲71,72の幅Lallは、基準範囲73,74の幅と同じであり、上述した式(3)で表される。 For example, when the work machine 1 turns leftward due to the articulate angle θa and the steering angle θs (θs>−θa), the controller 37 curves the detection ranges 71 and 72 leftward. The controller 37 stores data indicating the relationship between the articulate angle θa, the steering angle θs, and the turning radius of the work machine 1. By referring to the data, the controller 37 can turn from the articulate angle θa and the steering angle θs. A radius may be calculated. The width Lall of the detection ranges 71 and 72 is the same as the width of the reference ranges 73 and 74, and is expressed by Equation (3) above.
 なお、図示を省略するが、変更8の処理では、作業機械1の旋回方向とアーティキュレート方向が同じであり、作業機械1が、アーティキュレート角θaと操舵角θsとによって右方に旋回する場合(θs<-θa)には、コントローラ37は、検出範囲71,72を右方に湾曲させる。 Although illustration is omitted, in the processing of modification 8, the turning direction and the articulate direction of the work machine 1 are the same, and the work machine 1 turns to the right by the articulate angle θa and the steering angle θs. When (θs<−θa), the controller 37 curves the detection ranges 71 and 72 to the right.
 図20に示すように、変更8の処理では、操舵角θsと、アーティキュレート角θaの正負を逆にした値とが異なると共に、作業機械1の旋回方向とアーティキュレート方向とが逆である場合には、コントローラ37は、アーティキュレート角θaと操舵角θsとに応じた作業機械1の旋回半径に応じて、検出範囲71,72を湾曲させると共に、アーティキュレート角θaに応じて基準範囲73,74を左右方向に拡大する。 As shown in FIG. 20, in the processing of modification 8, when the steering angle θs and the articulate angle θa are different, and the turning direction of the work machine 1 is opposite to the articulating direction. , the controller 37 curves the detection ranges 71 and 72 according to the turning radius of the work machine 1 according to the articulate angle .theta.a and the steering angle .theta.s, and the reference ranges 73 and 73 according to the articulate angle .theta.a. 74 is enlarged in the horizontal direction.
 例えば、図20に示すように、アーティキュレート方向が左方であり、作業機械1の旋回方向が右方である場合には、コントローラ37は、第1検出範囲71を第1基準範囲73から右方に拡大すると共に、第1検出範囲71を右方へ湾曲させる。また、コントローラ37は、第2検出範囲72を第2基準範囲74から左方に拡大すると共に、第2検出範囲72を右方へ湾曲させる。この場合、検出範囲71,72の幅Lallは、上述した式(4)で表される。 For example, as shown in FIG. 20, when the articulate direction is leftward and the turning direction of work machine 1 is rightward, controller 37 moves first detection range 71 from first reference range 73 to right. While expanding to the right, the first detection range 71 is curved to the right. The controller 37 also expands the second detection range 72 leftward from the second reference range 74 and curves the second detection range 72 rightward. In this case, the width Lall of the detection ranges 71 and 72 is represented by the above-described formula (4).
 なお、図示を省略するが、変更8の処理では、操舵角θsと、アーティキュレート角θaの正負を逆にした値とが異なると共に、アーティキュレート方向が右方であり、作業機械1の旋回方向が左方である場合には、コントローラ37は、第1検出範囲71を第1基準範囲73から左方に拡大すると共に、第1検出範囲71を左方へ湾曲させる。また、コントローラ37は、第2検出範囲72を第2基準範囲74から右方に拡大すると共に、第2検出範囲72を左方へ湾曲させる。 Although illustration is omitted, in the processing of modification 8, the steering angle θs and the value obtained by inverting the sign of the articulate angle θa are different, the articulate direction is rightward, and the turning direction of the work machine 1 is is to the left, the controller 37 expands the first detection range 71 leftward from the first reference range 73 and curves the first detection range 71 leftward. The controller 37 also expands the second detection range 72 rightward from the second reference range 74 and curves the second detection range 72 leftward.
 ステップS20おいて、リーニング角θlが0度ではない場合には、処理はステップS22に進む。ステップS22では、コントローラ37は、変更9の処理に従って、基準範囲73,74を変更することで、検出範囲71,72を設定する。図21から図24は、変更9の処理に従う検出範囲71,72を示す上面図である。 In step S20, if the leaning angle θl is not 0 degrees, the process proceeds to step S22. In step S22, the controller 37 sets the detection ranges 71 and 72 by changing the reference ranges 73 and 74 according to the process of change 9. FIG. 21 to 24 are top views showing detection ranges 71 and 72 according to the process of modification 9. FIG.
 図21及び図22に示すように、変更9の処理では、アーティキュレート方向と作業機械1の旋回方向とが同じである場合には、コントローラ37は、アーティキュレート角θaと操舵角θsとリーニング角θlとに応じた作業機械1の旋回半径に応じて、検出範囲71,72を湾曲させると共に、リーニング方向と同じ側に、検出範囲71,72を拡大する。すなわち、コントローラ37は、リーニングしながら、アーティキュレート角θaと操舵角θsとによって旋回する場合には、作業機械1の旋回の軌跡に合わせて、検出範囲71,72を湾曲させると共に、リーニング方向と同じ側に、検出範囲71,72を拡大する。コントローラ37は、アーティキュレート角θaと操舵角θsとリーニング角θlと作業機械1の旋回半径との関係を示すデータを記憶しており、当該データを参照することで、アーティキュレート角θaと操舵角θsとリーニング角θlとから、作業機械1の旋回半径を算出してもよい。 As shown in FIGS. 21 and 22, in the process of modification 9, when the articulate direction and the turning direction of the work machine 1 are the same, the controller 37 sets the articulate angle θa, the steering angle θs, and the leaning angle The detection ranges 71 and 72 are curved according to the turning radius of the work machine 1 corresponding to θl, and the detection ranges 71 and 72 are expanded in the same direction as the leaning direction. That is, when the controller 37 turns with the articulate angle θa and the steering angle θs while leaning, the controller 37 bends the detection ranges 71 and 72 in accordance with the turning trajectory of the work machine 1, The detection ranges 71 and 72 are enlarged on the same side. The controller 37 stores data indicating the relationship between the articulate angle θa, the steering angle θs, the leaning angle θl, and the turning radius of the work machine 1. By referring to the data, the controller 37 can determine the articulate angle θa and the steering angle. The turning radius of the work machine 1 may be calculated from θs and the leaning angle θl.
 例えば、図21に示すように、作業機械1が左方にリーニングしながら、アーティキュレート角θaと操舵角θsとによって左方に旋回する場合には、コントローラ37は、検出範囲71,72を左方に湾曲させると共に、検出範囲71,72を増分Llだけ左方に拡大する。図22に示すように、作業機械1が右方にリーニングしながら、アーティキュレート角θaと操舵角θsとによって左方に旋回する場合には、コントローラ37は、検出範囲71,72を左方に湾曲させると共に、検出範囲71,72を増分Llだけ右方に拡大する。検出範囲71,72の幅Lallは、上述した(1)式で表される。 For example, as shown in FIG. 21, when the work machine 1 leans to the left and turns to the left by the articulate angle θa and the steering angle θs, the controller 37 moves the detection ranges 71 and 72 to the left. While bending to the left, the detection ranges 71 and 72 are expanded leftward by the increment Ll. As shown in FIG. 22, when the work machine 1 leans to the right and turns to the left by the articulate angle θa and the steering angle θs, the controller 37 moves the detection ranges 71 and 72 to the left. Along with bending, the detection ranges 71 and 72 are expanded rightward by the increment Ll. The width Lall of the detection ranges 71 and 72 is represented by the formula (1) described above.
 なお、図示を省略するが、変更9の処理では、アーティキュレート方向と作業機械1の旋回方向とが同じであり、作業機械1が右方に旋回する場合には、コントローラ37は、検出範囲71,72を右方に湾曲させると共に、リーニング方向と同じ側に、検出範囲71,72を拡大する。 Although illustration is omitted, in the processing of modification 9, when the articulate direction and the turning direction of the work machine 1 are the same and the work machine 1 turns rightward, the controller 37 detects the detection range 71 , 72 are bent to the right, and the detection ranges 71 and 72 are expanded to the same side as the leaning direction.
 図23に示すように、変更9の処理では、アーティキュレート方向と作業機械1の旋回方向とが反対であり、リーニング方向がアーティキュレート方向と同じである場合には、コントローラ37は、アーティキュレート角θaと操舵角θsとリーニング角θlとに応じた作業機械1の旋回半径に応じて、検出範囲71,72を湾曲させ、アーティキュレート角θaに応じて基準範囲73,74を左右方向に拡大すると共に、リーニング方向と同じ側に、検出範囲71,72を拡大する。 As shown in FIG. 23, in the process of modification 9, when the articulate direction and the turning direction of the work machine 1 are opposite and the leaning direction is the same as the articulate direction, the controller 37 sets the articulate angle The detection ranges 71 and 72 are curved according to the turning radius of the working machine 1 according to .theta.a, the steering angle .theta.s, and the leaning angle .theta.l, and the reference ranges 73 and 74 are expanded in the horizontal direction according to the articulate angle .theta.a. At the same time, the detection ranges 71 and 72 are expanded on the same side as the leaning direction.
 例えば、図23に示すように、アーティキュレート方向が左方であり、作業機械1の旋回方向が右方であり、リーニング方向が左方である場合には、コントローラ37は、第1検出範囲71を第1基準範囲73からアーティキュレート状態での増分Laだけ右方に拡大し、第1検出範囲71を第1基準範囲73からリーニング時の増分Llだけ左方に拡大すると共に、第1検出範囲71を右方へ湾曲させる。また、コントローラ37は、第2検出範囲72を第2基準範囲74から左方に増分Laだけ拡大し、第2検出範囲72を第2基準範囲74から増分Llだけ左方に拡大すると共に、第2検出範囲72を右方へ湾曲させる。この場合、検出範囲71,72の幅Lallは、上述した式(6)で表される。 For example, as shown in FIG. 23, when the articulate direction is leftward, the turning direction of the work machine 1 is rightward, and the leaning direction is leftward, the controller 37 detects the first detection range 71 is expanded rightward from the first reference range 73 by an increment La in the articulated state, the first detection range 71 is expanded leftward from the first reference range 73 by an increment Ll during leaning, and the first detection range 71 is bent to the right. The controller 37 expands the second detection range 72 leftward from the second reference range 74 by an increment La, expands the second detection range 72 leftward from the second reference range 74 by an increment Ll, and expands the second detection range 72 leftward from the second reference range 74 by an increment Ll. 2 Curve the detection range 72 to the right. In this case, the width Lall of the detection ranges 71 and 72 is represented by the above-described formula (6).
 なお、図示を省略するが、アーティキュレート方向が右方であり、作業機械1の旋回方向が左方であり、リーニング方向が右方である場合には、コントローラ37は、第1検出範囲71を第1基準範囲73から増分Laだけ左方に拡大し、第1検出範囲71を第1基準範囲73から増分Llだけ右方に拡大すると共に、第1検出範囲71を左方へ湾曲させる。また、コントローラ37は、第2検出範囲72を第2基準範囲74から増分Laだけ右方に拡大し、第2検出範囲72を第2基準範囲74から増分Llだけ右方に増大すると共に、第2検出範囲72を左方へ湾曲させる。 Although illustration is omitted, when the articulate direction is rightward, the turning direction of the work machine 1 is leftward, and the leaning direction is rightward, the controller 37 sets the first detection range 71 to The first detection range 71 is expanded leftward from the first reference range 73 by the increment La, the first detection range 71 is expanded rightward from the first reference range 73 by the increment Ll, and the first detection range 71 is curved leftward. Further, the controller 37 expands the second detection range 72 rightward from the second reference range 74 by the increment La, increases the second detection range 72 rightward from the second reference range 74 by the increment Ll, 2 Curve the detection range 72 to the left.
 ただし、図24に示すように、変更9の処理では、アーティキュレート方向と作業機械1の旋回方向とが反対であり、リーニング方向がアーティキュレート方向と反対である場合には、リーニング時の増分Llによる検出範囲71,72の拡大を行わない。この場合、検出範囲71,72の幅Lallは、上述した式(4)で表される。 However, as shown in FIG. 24, in the processing of modification 9, when the articulate direction and the turning direction of the work machine 1 are opposite and the leaning direction is opposite to the articulate direction, the increment Ll during leaning , the detection ranges 71 and 72 are not expanded. In this case, the width Lall of the detection ranges 71 and 72 is represented by the above-described formula (4).
 以上説明した本実施形態に係る作業機械1では、アーティキュレート角θaとリーニング角θlと操舵角θsとに応じて、作業機械1の周辺の物体の検出範囲71,72が設定される。それにより、作業機械1の周辺に物体が存在するか否かを適切に判定することができる。 In the work machine 1 according to the present embodiment described above, detection ranges 71 and 72 for objects around the work machine 1 are set according to the articulate angle θa, the leaning angle θl, and the steering angle θs. Thereby, it is possible to appropriately determine whether or not an object exists around the work machine 1 .
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications are possible without departing from the gist of the invention.
 作業機械1の構成は、上記のものに限らず、変更されてもよい。例えば、作業機5の構成が変更されてもよい。作業機械1の制御システムの一部は、作業機械1の外部に配置されてもよい。例えば、作業機械1の各種の操作部材46-50と出力装置63とが作業機械1の外部に配置されてもよい。 The configuration of the working machine 1 is not limited to the above, and may be changed. For example, the configuration of work machine 5 may be changed. A portion of the control system of work machine 1 may be located external to work machine 1 . For example, the various operating members 46 - 50 and output device 63 of work machine 1 may be located outside of work machine 1 .
 コントローラ37は、複数のコントローラによって構成されてもよい。上述した処理は、複数のコントローラに分散して実行されてもよい。複数のコントローラの一部は、作業機械1の外部に配置されてもよい。 The controller 37 may be composed of a plurality of controllers. The processing described above may be distributed to and executed by a plurality of controllers. Some of the multiple controllers may be arranged outside the work machine 1 .
 物体が検出範囲71,72内で検出された場合の処理は、上記の実施形態のものに限らず変更されてもよい。例えば、物体が検出範囲71,72内で検出された場合、コントローラ37は、作業機3、及び/又は、車体2を停止させる、或いは動作を制限するなどの処理を行ってもよい。 The processing when an object is detected within the detection ranges 71 and 72 is not limited to the above embodiment and may be changed. For example, when an object is detected within the detection ranges 71 and 72, the controller 37 may stop the work implement 3 and/or the vehicle body 2, or perform processing such as restricting the movement.
 検出範囲71,72を設定するための処理は、上記の実施形態のものに限らず、変更されてもよい。コントローラ37は、車体2の前方と後方とのいずれかのみに検出範囲を設定してもよい。コントローラ37は、作業機械1が前進している場合に、車体2の前方に第1検出範囲71を設定してもよい。コントローラ37は、作業機械1が後進している場合に、車体2の後方に第2検出範囲72を設定してもよい。 The processing for setting the detection ranges 71 and 72 is not limited to the above embodiment, and may be changed. The controller 37 may set the detection range to either the front or the rear of the vehicle body 2 . The controller 37 may set the first detection range 71 in front of the vehicle body 2 when the work machine 1 is moving forward. The controller 37 may set the second detection range 72 behind the vehicle body 2 when the work machine 1 is moving backward.
 検出範囲71,72の変更の処理を判定するためのアーティキュレート角θaと操舵角θsとリーニング角θlとの閾値は、0度に限らず、他の値であってもよい。例えば、アーティキュレート角θaの閾値は、作業機械1が直線状態と見なせる程度の小さな値であってもよい。操舵角θsの閾値は、作業機械1が操舵されていないと見なせる程度の小さな値であってもよい。リーニング角θlの閾値は、作業機械1がリーニングしていないと見なせる程度の小さな値であってもよい。リーニング方向に応じた検出範囲71,72の変更は省略されてもよい。 The thresholds for the articulate angle θa, the steering angle θs, and the leaning angle θl for determining whether to change the detection ranges 71 and 72 are not limited to 0 degrees, and may be other values. For example, the threshold value of the articulate angle θa may be a value so small that the work machine 1 can be considered to be in a straight line state. The threshold value of the steering angle θs may be a value so small that it can be considered that the work machine 1 is not being steered. The threshold value of the leaning angle θl may be a small value at which it can be considered that the work machine 1 is not leaning. The change of the detection ranges 71 and 72 according to the leaning direction may be omitted.
 コントローラ37は、上記の検出範囲71,72の幅Lallに、検出の誤差を考慮した任意のマージン幅を追加してもよい。例えば、図25に示すように、コントローラ37は、基準範囲73,74の左右にマージン幅Ltを追加することで、検出範囲71,72を設定してもよい。上述した変更1~変更9の処理によって決定される検出範囲71,72についても同様に、検出範囲71,72の左右にそれぞれマージン幅Ltが追加されてもよい。 The controller 37 may add an arbitrary margin width considering the detection error to the width Lall of the detection ranges 71 and 72 described above. For example, as shown in FIG. 25 , the controller 37 may set the detection ranges 71 and 72 by adding margin widths Lt to the left and right of the reference ranges 73 and 74 . Similarly, margin widths Lt may be added to the left and right sides of the detection ranges 71 and 72, respectively, for the detection ranges 71 and 72 determined by the processing of changes 1 to 9 described above.
 上記の実施形態では、車体2の前部の車幅と後部の車幅が同じであるが、車体2の前部の車幅と後部の車幅とは異なってもよい。その場合、コントローラ37は、前部の車幅を第1基準範囲73の幅として、第1検出範囲71の幅を算出してもよい。コントローラ37は、後部の車幅を第2基準範囲74の幅として、第2検出範囲72の幅を算出してもよい。 In the above embodiment, the width of the front portion and the width of the rear portion of the vehicle body 2 are the same, but the width of the front portion and the width of the rear portion of the vehicle body 2 may be different. In that case, the controller 37 may calculate the width of the first detection range 71 using the width of the front vehicle as the width of the first reference range 73 . The controller 37 may calculate the width of the second detection range 72 using the width of the second reference range 74 as the width of the rear portion of the vehicle.
 本発明によれば、作業機械の周辺に物体が存在するか否かを適切に判定することができる。 According to the present invention, it is possible to appropriately determine whether an object exists around the work machine.
 2:車体、 3A,3B:走行輪、 11:フロントフレーム、 12:リアフレーム、 27,28:アーティキュレートアクチュエータ、 37:コントローラ、 41A,41B:ステアリングアクチュエータ、 51:操舵角センサ、 52:アーティキュレート角センサ、 53:リーニング角センサ、 60:リーニングアクチュエータ、 61,62:物体センサ、 71,72:検出範囲、 73,74:基準範囲、 θa:アーティキュレート角、 θl:リーニング角、 θs:操舵角 2: vehicle body, 3A, 3B: running wheels, 11: front frame, 12: rear frame, 27, 28: articulated actuator, 37: controller, 41A, 41B: steering actuator, 51: steering angle sensor, 52: articulated Angle sensor 53: leaning angle sensor 60: leaning actuator 61, 62: object sensor 71, 72: detection range 73, 74: reference range θa: articulate angle θl: leaning angle θs: steering angle

Claims (19)

  1.  作業機械であって、
     リアフレームと、前記リアフレームに対して左右に回動可能に接続されるフロントフレームとを含む車体と、
     前記車体に支持される走行輪と、
     前記走行輪を左右に操舵するステアリングアクチュエータと、
     前記リアフレームと前記フロントフレームとの間のアーティキュレート角を変更するアーティキュレートアクチュエータと、
     前記走行輪の操舵角を検出する操舵角センサと、
     前記アーティキュレート角を検出するアーティキュレート角センサと、
     前記作業機械の周辺の物体を検出し、前記物体の有無を示す信号を出力する物体センサと、
     前記作業機械の周辺に検出範囲を設定し、前記物体センサからの信号に基づいて、前記検出範囲内の前記物体の有無を判定するコントローラと、
    を備え、
     前記コントローラは、前記操舵角と前記アーティキュレート角とに応じて、前記検出範囲を設定する、
    作業機械。
    a working machine,
    a vehicle body including a rear frame and a front frame connected to the rear frame so as to be rotatable to the left and right;
    a running wheel supported by the vehicle body;
    a steering actuator that steers the running wheels left and right;
    an articulated actuator that changes an articulated angle between the rear frame and the front frame;
    a steering angle sensor that detects a steering angle of the running wheels;
    an articulate angle sensor that detects the articulate angle;
    an object sensor that detects an object around the work machine and outputs a signal indicating the presence or absence of the object;
    a controller that sets a detection range around the work machine and determines the presence or absence of the object within the detection range based on a signal from the object sensor;
    with
    The controller sets the detection range according to the steering angle and the articulate angle.
    working machine.
  2.  前記コントローラは、
      前記車体の幅に基づいて、前記検出範囲の基準範囲を設定し、
      前記アーティキュレート角に応じて、前記検出範囲を前記基準範囲から変更する、
    請求項1に記載の作業機械。
    The controller is
    setting a reference range for the detection range based on the width of the vehicle body;
    changing the detection range from the reference range according to the articulate angle;
    A work machine according to claim 1.
  3.  前記コントローラは、前記作業機械が前記アーティキュレート角に応じて旋回する場合には、前記アーティキュレート角に応じた前記作業機械の旋回半径に応じて、前記検出範囲を湾曲させる、
    請求項2に記載の作業機械。
    When the work machine turns according to the articulate angle, the controller curves the detection range according to a turning radius of the work machine according to the articulate angle.
    A work machine according to claim 2.
  4.  前記コントローラは、前記アーティキュレート角の方向と前記作業機械の旋回方向とが反対である場合には、前記アーティキュレート角に応じて前記検出範囲を前記基準範囲から左右方向に拡大する、
    請求項2又は3に記載の作業機械。
    When the direction of the articulate angle and the turning direction of the work machine are opposite to each other, the controller expands the detection range in the horizontal direction from the reference range according to the articulate angle.
    A working machine according to claim 2 or 3.
  5.  前記コントローラは、前記検出範囲が前記フロントフレームの前方に設定される場合、左右方向において前記フロントフレームに対して前記リアフレームと同じ側に、前記検出範囲を前記基準範囲から拡大する、
    請求項4に記載の作業機械。
    When the detection range is set in front of the front frame, the controller expands the detection range from the reference range to the same side of the front frame as the rear frame in the horizontal direction.
    A working machine according to claim 4.
  6.  前記コントローラは、前記検出範囲が前記リアフレームの後方に設定される場合、左右方向において前記リアフレームに対して前記フロントフレームと同じ側に、前記検出範囲を前記基準範囲から拡大する、
    請求項4に記載の作業機械。
    When the detection range is set behind the rear frame, the controller expands the detection range from the reference range to the same side of the rear frame as the front frame in the horizontal direction.
    A working machine according to claim 4.
  7.  前記走行輪のリーニング角を変更するリーニングアクチュエータと、
     前記リーニング角を検出するリーニング角センサと、
    をさらに備え、
     前記コントローラは、前記リーニング角に応じて、前記検出範囲を前記基準範囲から変更する、
    請求項2に記載の作業機械。
    a leaning actuator that changes the leaning angle of the running wheels;
    a leaning angle sensor that detects the leaning angle;
    further comprising
    wherein the controller changes the detection range from the reference range according to the leaning angle;
    A working machine according to claim 2.
  8.  前記コントローラは、左右方向において前記走行輪がリーニングしている方向と同じ側に、前記検出範囲を前記基準範囲から拡大する、
    請求項7に記載の作業機械。
    The controller expands the detection range from the reference range to the same side in the left-right direction as the direction in which the running wheels are leaning.
    A work machine according to claim 7.
  9.  前記コントローラは、前記作業機械の旋回方向と前記アーティキュレート角の方向とが逆向きであり、且つ、前記走行輪がリーニングしている方向と、前記作業機械の旋回方向とが一致している場合には、前記リーニング角に応じた前記検出範囲の拡大を行わない、
    請求項8に記載の作業機械。
    When the turning direction of the work machine and the direction of the articulate angle are opposite to each other, and the direction in which the running wheels are leaning coincides with the turning direction of the work machine, the controller does not expand the detection range according to the leaning angle,
    A work machine according to claim 8 .
  10.  作業機械を制御するための方法であって、前記作業機械は、リアフレームと、前記リアフレームに対して左右に回動可能に接続されるフロントフレームとを含む車体と、前記車体に支持される走行輪と、前記走行輪を左右に操舵するステアリングアクチュエータと、前記リアフレームと前記フロントフレームとの間のアーティキュレート角を変更するアーティキュレートアクチュエータと、を含み、前記方法は、
     前記走行輪の操舵角を検出することと、
     前記アーティキュレート角を検出することと、
     前記作業機械の周辺の物体の有無を示す信号を受信することと、
     前記操舵角と前記アーティキュレート角とに応じて、前記作業機械の周辺に検出範囲を設定することと、
     前記物体センサからの信号に基づいて、前記検出範囲内の前記物体の有無を判定すること、
    を備える方法。
    A method for controlling a work machine, wherein the work machine includes a vehicle body including a rear frame, a front frame connected to the rear frame so as to be able to rotate left and right, and supported by the vehicle body. The method includes running wheels, a steering actuator that steers the running wheels left and right, and an articulated actuator that changes an articulated angle between the rear frame and the front frame, wherein the method comprises:
    detecting a steering angle of the running wheels;
    detecting the articulate angle;
    receiving a signal indicating the presence or absence of an object in the vicinity of the work machine;
    setting a detection range around the work machine according to the steering angle and the articulate angle;
    Determining the presence or absence of the object within the detection range based on the signal from the object sensor;
    How to prepare.
  11.  前記車体の幅に基づいて、前記検出範囲の基準範囲を設定することと、
     前記アーティキュレート角に応じて、前記検出範囲を前記基準範囲から変更すること、
    をさらに備える、
    請求項10に記載の方法。
    setting a reference range for the detection range based on the width of the vehicle body;
    changing the detection range from the reference range according to the articulate angle;
    further comprising
    11. The method of claim 10.
  12.  前記作業機械が前記アーティキュレート角に応じて旋回する場合には、前記アーティキュレート角に応じた前記作業機械の旋回半径に応じて、前記検出範囲を湾曲させることをさらに備える、
    請求項11に記載の方法。
    further comprising curving the detection range according to a turning radius of the work machine according to the articulate angle when the work machine turns according to the articulate angle;
    12. The method of claim 11.
  13.  前記アーティキュレート角の方向と前記作業機械の旋回方向とが反対である場合には、前記アーティキュレート角に応じて前記検出範囲を前記基準範囲から左右方向に拡大すること、
    をさらに備える、
    請求項11又は12に記載の方法。
    enlarging the detection range in the horizontal direction from the reference range according to the articulate angle when the direction of the articulate angle and the turning direction of the work machine are opposite;
    further comprising
    13. A method according to claim 11 or 12.
  14.  前記検出範囲が前記フロントフレームの前方に設定される場合、左右方向において前記フロントフレームに対して前記リアフレームと同じ側に、前記検出範囲を前記基準範囲から拡大することをさらに備える、
    請求項13に記載の方法。
    Further comprising: when the detection range is set in front of the front frame, expanding the detection range from the reference range to the same side of the front frame as the rear frame in the horizontal direction;
    14. The method of claim 13.
  15.  前記検出範囲が前記リアフレームの後方に設定される場合、左右方向において前記リアフレームに対して前記フロントフレームと同じ側に、前記検出範囲を前記基準範囲から拡大することをさらに備える、
    請求項13に記載の方法。
    further comprising expanding the detection range from the reference range to the same side as the front frame with respect to the rear frame in the left-right direction when the detection range is set behind the rear frame;
    14. The method of claim 13.
  16.  前記作業機械は、前記走行輪のリーニング角を変更するリーニングアクチュエータをさらに含み、
     前記リーニング角を検出することと、
     前記リーニング角に応じて、前記検出範囲を前記基準範囲から変更すること、
    をさらに備える、
    請求項11に記載の方法。
    The work machine further includes a leaning actuator that changes the leaning angle of the running wheels,
    detecting the leaning angle;
    changing the detection range from the reference range according to the leaning angle;
    further comprising
    12. The method of claim 11.
  17.  左右方向において前記走行輪がリーニングしている方向と同じ側に、前記検出範囲を前記基準範囲から拡大することをさらに備える、
    請求項16に記載の方法。
    Further comprising expanding the detection range from the reference range to the same side in the left-right direction as the direction in which the running wheel is leaning,
    17. The method of claim 16.
  18.  前記作業機械の旋回方向と前記アーティキュレート角の方向とが逆向きであり、且つ、前記走行輪がリーニングしている方向と、前記作業機械の旋回方向とが一致している場合には、前記リーニング角に応じた前記検出範囲の拡大を行わないことをさらに備える、
    請求項17に記載の方法。
    When the turning direction of the work machine and the direction of the articulate angle are opposite to each other, and the direction in which the running wheels are leaning matches the turning direction of the work machine, the Further comprising not expanding the detection range according to the leaning angle,
    18. The method of claim 17.
  19.  作業機械を制御するためのシステムであって、前記作業機械は、リアフレームと、前記リアフレームに対して左右に回動可能に接続されるフロントフレームとを含む車体と、前記車体に支持される走行輪と、前記走行輪を左右に操舵するステアリングアクチュエータと、前記リアフレームと前記フロントフレームとの間のアーティキュレート角を変更するアーティキュレートアクチュエータと、を含み、前記システムは、
     前記走行輪の操舵角を検出する操舵角センサと、
     前記アーティキュレート角を検出するアーティキュレート角センサと、
     前記作業機械の周辺の物体を検出し、前記物体の有無を示す信号を出力する物体センサと、
     前記作業機械の周辺に検出範囲を設定し、前記物体センサからの信号に基づいて、前記検出範囲内の前記物体の有無を判定するコントローラと、
    を備え、
     前記コントローラは、前記操舵角と前記アーティキュレート角とに応じて、前記検出範囲を設定する、
    システム。
    A system for controlling a work machine, wherein the work machine is supported by a vehicle body including a rear frame, a front frame connected to the rear frame so as to be able to turn left and right, and the vehicle body. The system includes running wheels, a steering actuator that steers the running wheels left and right, and an articulated actuator that changes an articulated angle between the rear frame and the front frame, the system comprising:
    a steering angle sensor that detects a steering angle of the running wheels;
    an articulate angle sensor that detects the articulate angle;
    an object sensor that detects an object around the work machine and outputs a signal indicating the presence or absence of the object;
    a controller that sets a detection range around the work machine and determines the presence or absence of the object within the detection range based on a signal from the object sensor;
    with
    The controller sets the detection range according to the steering angle and the articulate angle.
    system.
PCT/JP2022/041841 2022-01-12 2022-11-10 Work machine, and method and system for controlling work machine WO2023135916A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280070231.2A CN118202122A (en) 2022-01-12 2022-11-10 Work machine, method of controlling work machine, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-003218 2022-01-12
JP2022003218A JP2023102618A (en) 2022-01-12 2022-01-12 Work machine, and method and system for controlling work machine

Publications (1)

Publication Number Publication Date
WO2023135916A1 true WO2023135916A1 (en) 2023-07-20

Family

ID=87278894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041841 WO2023135916A1 (en) 2022-01-12 2022-11-10 Work machine, and method and system for controlling work machine

Country Status (3)

Country Link
JP (1) JP2023102618A (en)
CN (1) CN118202122A (en)
WO (1) WO2023135916A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157379A1 (en) * 2011-05-13 2012-11-22 日立建機株式会社 Device for monitoring area around working machine
JP2020160914A (en) * 2019-03-27 2020-10-01 株式会社豊田自動織機 Object detection device
JP2020165230A (en) * 2019-03-29 2020-10-08 日立建機株式会社 Wheel loader
KR20210105138A (en) * 2020-02-18 2021-08-26 두산인프라코어 주식회사 System and method of controlling wheel loader
JP2021143579A (en) * 2020-03-13 2021-09-24 株式会社小松製作所 Motor grader and display control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157379A1 (en) * 2011-05-13 2012-11-22 日立建機株式会社 Device for monitoring area around working machine
JP2020160914A (en) * 2019-03-27 2020-10-01 株式会社豊田自動織機 Object detection device
JP2020165230A (en) * 2019-03-29 2020-10-08 日立建機株式会社 Wheel loader
KR20210105138A (en) * 2020-02-18 2021-08-26 두산인프라코어 주식회사 System and method of controlling wheel loader
JP2021143579A (en) * 2020-03-13 2021-09-24 株式会社小松製作所 Motor grader and display control method

Also Published As

Publication number Publication date
CN118202122A (en) 2024-06-14
JP2023102618A (en) 2023-07-25

Similar Documents

Publication Publication Date Title
JP4620644B2 (en) Vehicle rear wheel steering device
JPWO2018038266A1 (en) Work vehicle and control method of work vehicle
JP7417485B2 (en) Work machines and methods for controlling work machines
WO2023135916A1 (en) Work machine, and method and system for controlling work machine
JP7358164B2 (en) Control system, work vehicle control method, and work vehicle
US20240337089A1 (en) Work machine and method for controlling work machine
WO2023135917A1 (en) Work machine, and method and system for controlling work machine
WO2022264713A1 (en) Work machine, and method for controlling work machine
WO2023112563A1 (en) Work machine, method for controlling work machine, and system
WO2023112560A1 (en) Work machine, and method and system for controlling work machine
WO2023021826A1 (en) Work machine and method for controlling work machine
WO2023145196A1 (en) Work machine, method for controlling work machine, and control system for work machine
WO2024089987A1 (en) Work machine and method for controlling work machine
WO2023286444A1 (en) Work machine and method for controlling work machine
WO2023021825A1 (en) Work machine and method for controlling work machine
WO2023286443A1 (en) Work machine and method for controlling work machine
WO2024232167A1 (en) Work machine and method for controlling work machine
WO2023238504A1 (en) Work machinery, and method and system for controlling work machinery
JP7402724B2 (en) Steering equipment and working machines
WO2023286442A1 (en) Work machine and method for controlling work machine
WO2024053259A1 (en) Work machine and method for controlling work machine
WO2023053700A1 (en) System and method for controlling work machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920437

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18699462

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280070231.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE