WO2023106241A1 - 銅系線材および半導体デバイス - Google Patents

銅系線材および半導体デバイス Download PDF

Info

Publication number
WO2023106241A1
WO2023106241A1 PCT/JP2022/044602 JP2022044602W WO2023106241A1 WO 2023106241 A1 WO2023106241 A1 WO 2023106241A1 JP 2022044602 W JP2022044602 W JP 2022044602W WO 2023106241 A1 WO2023106241 A1 WO 2023106241A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
wire
less
bonding
based wire
Prior art date
Application number
PCT/JP2022/044602
Other languages
English (en)
French (fr)
Inventor
茂樹 関谷
勝政 長谷川
秀一 北河
邦照 三原
秀雄 金子
司 高澤
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2023511909A priority Critical patent/JPWO2023106241A1/ja
Priority to CN202280006972.4A priority patent/CN116568835A/zh
Priority to KR1020237012521A priority patent/KR20240121658A/ko
Priority to DE112022005812.9T priority patent/DE112022005812T5/de
Publication of WO2023106241A1 publication Critical patent/WO2023106241A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods

Definitions

  • the present disclosure relates to copper-based wires and semiconductor devices.
  • a bonding wire is a wire-shaped member that electrically connects a semiconductor chip and an electrode.
  • bonding wires are bonded to semiconductor chips using ultrasonic bonding.
  • Patent Document 1 describes a solar cell lead wire that can suppress uneven deformation during winding onto and unwinding from a bobbin. Low. However, Patent Document 1 does not mention the Young's modulus of the solar cell lead wire, and it is unclear whether the solar cell lead wire can withstand the impact when ultrasonically bonded to the semiconductor chip by wedge bonding.
  • Patent Document 2 describes a palladium-coated copper bonding wire that suppresses shrinkage cavities that are formed during ball bonding and that can accommodate narrower pitches between bonding wires.
  • Patent Document 2 there is no mention of the Young's modulus and 0.2% yield strength of the palladium-coated copper bonding wire. Not sure.
  • a sufficient current cannot be passed because the final wire diameter of the palladium-coated copper bonding wire is too thin to meet the demand for high output and high current.
  • An object of the present disclosure is to provide a soft copper-based wire that is small in load even when pressed against a semiconductor chip and has excellent impact durability, and a semiconductor device that includes the copper-based wire as a bonding wire.
  • the ratio (L T /L B ) of the length L T of the twin grain boundary to the length L B of the grain boundary where the misorientation of adjacent crystals is 15 degrees or more is 0.0.
  • [5] The copper-based wire according to any one of [1] to [4] above, wherein the copper-based wire is made of oxygen-free copper.
  • the copper-based wire according to any one of [1] to [5] above, wherein the copper-based wire has a palladium coating layer covering the outer peripheral surface.
  • the present disclosure it is possible to provide a soft copper-based wire that is small in load even when pressed against a semiconductor chip and has excellent impact durability, and a semiconductor device that includes the copper-based wire as a bonding wire.
  • FIG. 1 is a perspective view showing an example of a half tower device of an embodiment.
  • FIG. 2 is a schematic diagram showing an example of a cross section perpendicular to the longitudinal direction of the bonding wire before wedge bonding.
  • FIG. 3 is a schematic diagram showing an example of a cross section perpendicular to the longitudinal direction of the bonding wire during wedge bonding.
  • the present inventors have focused on simultaneously controlling the crystal grain size and crystal orientation of a copper-based wire, and found that the crystal grain size and crystal orientation in the cross section of the copper-based wire are different from those of the copper-based wire. It was found to affect Young's modulus and 0.2% yield strength. As a result, a soft copper-based wire that is small in load even when pressed against a semiconductor chip and has excellent impact durability is achieved. I have found that it can be suppressed. The present disclosure has been completed based on such findings.
  • a copper-based wire according to an embodiment is made of copper or a copper alloy, and has an average crystal grain size of 20 ⁇ m or more and 150 ⁇ m or less in a cross section perpendicular to the longitudinal direction of the copper-based wire, and has a crystal orientation of ⁇ 111>.
  • the accumulation rate is 40% or less
  • the Young's modulus is 80 GPa or more and 120 GPa or less
  • the 0.2% yield strength is 20 MPa or more and 90 MPa or less.
  • a copper-based wire is composed of copper (copper wire) or copper alloy (copper alloy wire).
  • the copper-based wire may be a copper alloy containing a small amount of elements such as silver (Ag), chromium (Cr), and tin (Sn).
  • copper is preferred in view of the trend toward larger currents.
  • tough pitch copper which is pure copper composed of 99.90% by mass or more of copper (Cu) and inevitable impurities, and 99.96% by mass or more. of Cu, 10 ppm or less of oxygen and unavoidable impurities.
  • the copper alloy constituting the copper-based wire includes 0.1% by mass to 1.0% by mass of Ag, 0.1% by mass to 1.0% by mass of Cr, and 0.1% by mass to 1.0% by mass. It is preferable to have an alloy composition containing at least one element of Sn in mass % or less, with the balance being Cu and unavoidable impurities.
  • the tensile durability of the copper-based wire can be improved. Therefore, when the copper-based wire is used as a bonding wire and bonded to the electrode of the semiconductor chip, it can withstand a tensile load when the copper-based wire is drawn out, and the bonding speed can be improved. On the other hand, when Ag, Cr, and Sn exceed the above upper limit values, it can be a factor of lowering the electrical conductivity of the copper-based wire. Therefore, in order to use the copper-based wire as a bonding wire for power semiconductors, it is preferable to add the above elements at a low concentration.
  • the upper limit of the Ag content is more preferably 0.7% by mass or less, and still more preferably 0.4% by mass or less.
  • the upper limit of the Cr content is more preferably 0.7% by mass or less, and still more preferably 0.4% by mass or less.
  • the copper alloy contains Sn the upper limit of the Sn content is more preferably 0.7% by mass or less, and still more preferably 0.4% by mass or less.
  • Unavoidable impurities mean impurities at a content level that are unavoidably mixed in during the manufacturing process. Since the content of unavoidable impurities may cause the conductivity of the copper-based wire to decrease, the content of unavoidable impurities is preferably small.
  • the inevitable impurities include, for example, aluminum (Al), beryllium (Be), cadmium (Cd), iron (Fe), magnesium (Mg), nickel (Ni), phosphorus (P). , lead (Pd), silicon (Si), and titanium (Ti).
  • the inevitable impurities include, in addition to the above elements, elements intentionally contained in the copper alloy and alloyed with copper, such as Ag, Cr, and Sn. .
  • the upper limit of the content of inevitable impurities is preferably 20 ppm or less in total of the above elements.
  • the average crystal grain size is 20 ⁇ m or more and 150 ⁇ m or less
  • the crystal orientation ⁇ 111> integration rate is 40% or less.
  • the accumulation rate of the ⁇ 111> crystal orientation is the ratio of the crystal orientations in the range ⁇ 15° shifted from the ⁇ 111> crystal orientation to the total crystal orientation.
  • the average crystal grain size of the copper-based wire is 20 ⁇ m or more in the cross section perpendicular to the longitudinal direction of the copper-based wire, an increase in the 0.2% proof stress of the copper-based wire can be suppressed. Further, when the average crystal grain size is 150 ⁇ m or less, disconnection of the copper-based wire due to non-uniform deformation that occurs when the copper-based wire is pulled can be suppressed. From the above viewpoint, the lower limit of the average crystal grain size in the cross section of the copper-based wire is 20 ⁇ m or more, preferably 30 ⁇ m or more, more preferably 40 ⁇ m or more, and the upper limit is 150 ⁇ m or less.
  • the integration rate of the ⁇ 111> crystal orientation in the cross section of the copper-based wire is 40% or less, preferably 30% or less, more preferably 20% or less.
  • crystal grain size and crystal orientation are generally known material factors.
  • the heat treatment temperature is set high for the purpose of increasing the crystal grain size
  • the crystal orientation also changes depending on the heat treatment temperature, making it impossible to simultaneously control the crystal grain size and the crystal orientation.
  • the Young's modulus and 0.2% proof stress can be controlled within the above ranges, so the copper-based wire is soft and pressed against the semiconductor chip. It has a small load and excellent impact resistance.
  • the lower limit is 80 GPa or more
  • the upper limit is 120 GPa or less, preferably 110 GPa or less, and more preferably 100 GPa or less.
  • the 0.2% yield strength of the copper-based wire has a lower limit of 20 MPa or more and an upper limit of 90 MPa or less, preferably 60 MPa or less, and more preferably 40 MPa or less.
  • material deformation includes elastic deformation and plastic deformation.
  • a copper-based wire is required to have a low Young's modulus and a low yield strength from the viewpoints of being soft, having a small load when pressed against a semiconductor chip, and being excellent in impact durability.
  • the Young's modulus and 0.2% proof stress of the copper-based wire are within the above range, it is soft, the load is small even when pressed against a semiconductor chip, and the impact resistance is excellent. Therefore, when manufacturing a semiconductor device using a copper-based wire as a bonding wire, the load on the semiconductor chip is reduced when the copper-based wire is bonded to the semiconductor chip, so damage to the semiconductor chip can be suppressed.
  • the lower the Young's modulus and the 0.2% yield strength within the above ranges the easier the copper-based wire is to be deformed when bonded to a semiconductor chip, and the better the impact durability.
  • the copper-based wire when the Young's modulus and 0.2% yield strength are equal to or higher than the above lower limits, when the copper-based wire is fed out from the bobbin to be set in an ultrasonic bonding machine for bonding with the semiconductor chip, the copper-based wire Can suppress tensile breakage.
  • n value C ⁇ ⁇ n ( ⁇ : true stress, C: strength constant, ⁇ : true strain).
  • the n value is generally a contradictory characteristic to the 0.2% yield strength, and the lower the 0.2% yield strength, the higher the n value, and the higher the 0.2% yield strength, the lower the n value.
  • the n value of the copper-based wire is preferably 0.45 or less, more preferably 0.35 or less.
  • the n value is a value that changes during plastic deformation, and considering the ease of deformation as a bonding wire, it is considered that the n value should be defined by the value at the initial stage of deformation. % to 5% range. For samples in which a nominal strain of 5% or more could not be obtained, the n value was calculated in the range from the nominal strain when calculating the 0.2% proof stress by the offset method to the nominal strain at which the maximum tensile strength was obtained.
  • the total integration rate of the crystal orientation ⁇ 100> and the crystal orientation ⁇ 110> is preferably 15% or more, more preferably 20% or more, and still more preferably 25%. % or more.
  • the total integration rate of the crystal orientation ⁇ 100> and the crystal orientation ⁇ 110> is 15% or more, that is, the crystal orientation ⁇ 100> and the crystal orientation ⁇ 110> are copper-based at a rate of 15% or more If it is oriented in the longitudinal direction of the wire, the Young's modulus tends to be low, and a soft copper-based wire tends to be obtained.
  • the total integration rate of the crystal orientation ⁇ 100> and the crystal orientation ⁇ 110> is preferably 40% or less.
  • the copper-based wire can be more durable against a tensile load when unwinding from the bobbin.
  • the total integration rate of the crystal orientation ⁇ 100> and the crystal orientation ⁇ 110> is ⁇ 15° shifted from the crystal orientation ⁇ 100> with respect to all crystal orientations. It is the ratio of the total crystal orientation of the crystal orientations in the range of +15° and the crystal orientations in the range ⁇ 15° from the crystal orientation ⁇ 110>.
  • twin grain boundaries are low-energy grain boundaries with high atomic coherence, dislocations are less likely to accumulate during working than at large-angle grain boundaries, and the force applied during bending can be reduced.
  • the shape of the copper-based wire can be appropriately selected according to the amount of current required for the semiconductor device, the wiring space, etc., and is preferably a round wire or a ribbon wire.
  • a round wire is a copper-based wire having a circular cross section.
  • Ribbon wires include rectangular wires, striated wires, and track-shaped wires.
  • a rectangular wire has a shape in which a cross section of a copper-based wire is surrounded by four straight lines.
  • the striated wire is a copper-based wire having a rectangular cross-sectional shape.
  • the track-shaped wire is a shape in which the cross section of the copper-based wire is surrounded by two straight lines and two curved lines connecting the ends of the two straight lines, that is, a so-called track shape.
  • the copper-based wire is a round wire
  • the wire diameter of the copper-based wire (round wire) is 0.1 mm or more, a relatively high current can flow through the copper-based wire, so the copper-based wire is used as a power semiconductor.
  • Suitable for bonding wires for Further, when the wire diameter of the copper-based wire (round wire) is 0.5 mm or less, it is possible to adequately secure wiring space for the trend toward miniaturization of semiconductor devices, and it is easy to bend.
  • the copper-based wire is a ribbon wire
  • the thickness of the copper-based wire is 0.1 mm or more
  • a relatively high current can flow through the copper-based wire.
  • the thickness of the copper-based wire (ribbon wire) is 0.5 mm or less, it is possible to adequately secure wiring space for the trend toward miniaturization of semiconductor devices, and it is easy to bend.
  • the copper-based wire may have a metal coating layer covering the outer peripheral surface.
  • a preferred metal coating layer is a palladium coating layer.
  • the palladium covering layer covering the outer peripheral surface of the copper-based wire is formed by plating, for example.
  • Such a copper-based wire is suitable for bonding wires for semiconductor devices because it is soft, has a small load even when pressed against a semiconductor chip, has excellent impact durability, and is soft.
  • a casting process is performed.
  • electrolytic copper is melted in a reducing atmosphere to obtain a cylindrical ingot called a billet.
  • the extrusion process or rolling process is performed.
  • the billet is processed into a round bar by hot extrusion.
  • the rolling process is performed continuously with the casting process using a continuous casting and rolling mill.
  • molten copper is poured into a ring-shaped rotating mold to form an ingot, and rolling is repeated in the vertical or horizontal direction to obtain a wire rod.
  • the first wire drawing process is performed.
  • the round bar or wire rod obtained in the above step is drawn to a predetermined wire diameter.
  • the first wire drawing step includes a peeling step for removing surface defects that have occurred up to the above steps.
  • the first heat treatment process is performed.
  • the second heat treatment step which is a subsequent step, the average crystal grain size in the cross section of the copper-based wire and the accumulation rate of the predetermined crystal orientation are simultaneously controlled within a predetermined range. heat treatment.
  • the heat treatment temperature is 400°C or higher and 900°C or lower. If the heat treatment temperature is less than 400° C., the crystal grains are difficult to grow, and the second heat treatment step simultaneously reduces the average crystal grain size in the cross section of the copper-based wire to 20 ⁇ m or more and the crystal orientation ⁇ 111> accumulation rate of 40% or less. difficult to achieve.
  • the heat treatment is performed at 200 to 300° C., but as shown in Comparative Examples A2 and A3 described later, either the average crystal grain size or the crystal orientation ⁇ 111> accumulation rate is used. or both do not meet the above given ranges of this disclosure.
  • the heat treatment temperature exceeds 900° C.
  • the average crystal grain size in the cross section of the copper-based wire exceeds 150 ⁇ m due to the second heat treatment step, and the copper-based wire cannot withstand the tension when it is drawn out from the bobbin. , cause disconnection.
  • the heat treatment time is 10 minutes or more and 6 hours or less. If the heat treatment time is less than 10 minutes, the crystal grains will not be uniform because the time is insufficient for uniformly heat treating the entire sample when a large number of samples are heated in a batch furnace. Therefore, it is not possible to stably achieve an average crystal grain size of 20 ⁇ m or more in the cross section of the copper-based wire by the second heat treatment step. On the other hand, if the heat treatment time exceeds 6 hours, the second heat treatment step will increase the average crystal grain size in the cross section of the copper-based wire to 20 ⁇ m or more, but the industrial cost will be too high.
  • the heat treatment time is shortened to 6 seconds or more and 15 seconds or less compared to the batch heat treatment, so the heat treatment temperature is 700 ° C. or more. Set to 950°C or less.
  • the reason for setting the upper limit and lower limit of the heat treatment temperature in the heat treatment while running is the same as in the batch heat treatment.
  • the second wire drawing process is performed.
  • wire drawing is performed at a processing rate of 10% or more and 70% or less. If the processing rate is less than 10%, the driving force for recrystallization during the second heat treatment step is insufficient, and the second heat treatment step reduces the accumulation rate of the predetermined crystal orientation in the cross section of the copper-based wire within the desired range. cannot be controlled. On the other hand, if the working rate is more than 70%, a large amount of working strain is introduced, and strain is introduced into the entire sample. The accumulation rate cannot be controlled within the desired range, and furthermore, it is difficult to achieve an average crystal grain size of 20 ⁇ m or more in the cross section of the copper-based wire.
  • the processing rate is 15% or more and 50% or less.
  • the processing rate is expressed by dividing the value obtained by subtracting the sample cross-sectional area after wire drawing from the sample cross-sectional area before wire drawing by the sample cross-sectional area before wire drawing and multiplying by 100.
  • the second heat treatment process is performed.
  • the heat treatment temperature is 500° C. or more and 900° C. or less
  • the heat treatment time is 6 seconds or more and 15 seconds or less.
  • the copper-based wire has a metal coating layer
  • the copper-based wire is immersed in an alkaline bath, and electricity is applied so that the copper-based wire becomes a cathode, thereby removing organic stains present on the surface of the copper-based wire.
  • the washed copper-based wire is immersed in a sulfuric acid bath to remove the oxide film on the surface of the copper-based wire.
  • the washed copper-based wire is immersed in a palladium-containing solution and electroplated with a predetermined current and time to form a palladium coating layer, which is a metal coating layer, on the surface of the copper-based wire.
  • the electroplating current and time are appropriately set according to the thickness of the metal coating layer.
  • FIG. 1 is a perspective view showing an example of a half tower device of an embodiment.
  • the semiconductor device of the embodiment includes a semiconductor chip and bonding wires bonded to the semiconductor chip, the bonding wires being made of copper or a copper alloy and provided on top of the semiconductor chip.
  • the average crystal grain size is 10 ⁇ m or more and 100 ⁇ m or less, and the crystal orientation ⁇ 111> integration rate. is 40% or less.
  • Electrode 2a is, for example, an aluminum electrode or a copper electrode.
  • the bonding wire 4 is made of copper (copper wire) or copper alloy (copper alloy wire).
  • the bonding wire may be, for example, a copper alloy containing a small amount of elements such as Ag, Cr, and Sn. In addition, it is preferably copper. Among them, the higher the copper content, the higher the conductivity, so it is preferable to use tough pitch copper, which is pure copper containing 99.90% by mass or more of Cu and unavoidable impurities, and 99.96% by mass or more of Cu, Oxygen-free copper containing 10 ppm or less of oxygen and unavoidable impurities is more preferable.
  • the copper alloy constituting the bonding wire 0.1% by mass or more and 1.0% by mass or less of Ag, 0.1% by mass or more and 1.0% by mass or less of Cr, 0.1% by mass or more and 1.0% by mass or less It is preferable to have an alloy composition containing at least one element of Sn in mass % or less, with the balance being Cu and unavoidable impurities.
  • the tensile durability of the bonding wire 4 can be improved when Ag, Cr, and Sn are at least the above lower limits. Therefore, it is possible to withstand a tensile load when the bonding wires 4 are drawn out when bonding the bonding wires 4 to the electrodes 2a of the semiconductor chip 2, and the bonding speed can be improved.
  • Ag, Cr, and Sn exceed the above upper limits, it can be a factor of lowering the electrical conductivity of the bonding wire 4 . Therefore, it is preferable to add the above elements at a low concentration for bonding wires for power semiconductors.
  • the upper limit of the Ag content is more preferably 0.7% by mass or less, and still more preferably 0.4% by mass or less.
  • the upper limit of the Cr content is more preferably 0.7% by mass or less, and still more preferably 0.4% by mass or less.
  • the copper alloy contains Sn the upper limit of the Sn content is more preferably 0.7% by mass or less, and still more preferably 0.4% by mass or less.
  • the remainder other than the elements mentioned above is unavoidable impurities. It is preferable that the content of the inevitable impurities is small because the conductivity of the bonding wire 4 may be lowered depending on the content of the inevitable impurities.
  • the inevitable impurities include, for example, aluminum (Al), beryllium (Be), cadmium (Cd), iron (Fe), magnesium (Mg), nickel (Ni), and phosphorus (P). , lead (Pd), silicon (Si), and titanium (Ti).
  • the inevitable impurities include, in addition to the above elements, elements intentionally contained in the copper alloy and alloyed with copper, such as Ag, Cr, and Sn. .
  • the upper limit of the content of inevitable impurities is preferably 20 ppm or less in total of the above elements.
  • the average crystal grain size is 10 ⁇ m or more and 100 ⁇ m or less
  • the integration rate of the crystal orientation ⁇ 111> is 40% or less.
  • the integration rate of the ⁇ 111> crystal orientation is the ratio of the crystal orientations in the range ⁇ 15° shifted from the ⁇ 111> crystal orientation to the total crystal orientation.
  • the bonding portion 6 is a portion of the bonding wire 4 that is bonded to the electrode 2 a on the semiconductor chip 2 .
  • the bonding between the semiconductor chip 2 and the bonding wire 4 will cause Damage to the semiconductor chip 2 is suppressed, and a good semiconductor device 1 can be obtained.
  • the total integration rate of the crystal orientation ⁇ 100> and the crystal orientation ⁇ 110> is preferably 15% or more and 40% or less.
  • the total integration rate of the crystal orientation ⁇ 100> and the crystal orientation ⁇ 110> is ⁇ 15° from the crystal orientation ⁇ 100> with respect to all crystal orientations. It is the ratio of the total crystal orientation of the crystal orientations in the deviated range and the crystal orientations in the range ⁇ 15° deviated from the crystal orientation ⁇ 110>.
  • the bonding wires 4 are soft, have excellent impact resistance, and are easy to bend during routing. As a result, space can be saved.
  • the ratio of the length LT of the twin grain boundary to the length LB of the grain boundary where the misorientation of adjacent crystals is 15 degrees or more is preferably 0.7 or more and 1.0 or less.
  • the bonding wire 4 is soft, has excellent impact durability, and is easy to bend during routing. As a result, space can be saved.
  • the bonding wire 4 is a round wire
  • the wire diameter of the bonding wire 4 is 0.1 mm or more.
  • a relatively high current can flow through the bonding wire 4 when the thickness is 0.1 mm or more. Therefore, the bonding wire 4 is suitable as a bonding wire for power semiconductors.
  • the wire diameter of the bonding wire 4 (round wire) is 0.5 mm or less and the thickness of the bonding wire 4 (ribbon wire) is 0.5 mm or less, the wiring space is reduced in response to the trend toward miniaturization of semiconductor devices. In addition, the bonding wire 4 can be easily bent.
  • the bonding wire 4 may have a metal film layer (not shown) covering the outer peripheral surface.
  • a preferred metal coating layer is a palladium coating layer.
  • the palladium covering layer covering the outer peripheral surface of the bonding wire 4 is formed by plating, for example.
  • the bonding wire 4 is preferably the copper-based wire material of the above embodiment.
  • FIG. 2 is a schematic diagram showing an example of a cross section perpendicular to the longitudinal direction of the bonding wire before wedge bonding
  • FIG. 3 is a schematic diagram showing an example of a cross section perpendicular to the longitudinal direction of the bonding wire during wedge bonding. It is a diagram.
  • the bonding wires 4 are joined to the electrodes 2a on the semiconductor chip 2.
  • the bonding wire 4 is pressed against the electrode 2a on the semiconductor chip 2 with a wedge-shaped tool 7, and ultrasonic waves are applied at a frequency of 60 kHz or more and 120 kHz or less for a time of 0.1 seconds or more and 0.8 seconds or less.
  • the bonding wires 4 are joined to the electrodes 2 a of the semiconductor chip 2 .
  • a semiconductor device comprising the semiconductor chip 2 and the bonding wires 4 bonded to the semiconductor chip 2 can be obtained.
  • the average crystal grain size and the crystal orientation ⁇ 111> integration rate in the cross section of the copper-based wire are controlled.
  • the Young's modulus and the 0.2% yield strength which have conventionally been in a trade-off relationship, can be lowered at the same time. Therefore, the copper-based wire is soft, and even if it is pressed against a semiconductor chip, the load is small and it is excellent in impact resistance.
  • the copper-based wire deforms appropriately when it is bonded to a semiconductor chip mounted on a semiconductor device, reducing the load on the semiconductor chip. Therefore, damage to the semiconductor chip due to bonding between the semiconductor chip and the bonding wire can be suppressed.
  • Examples A1 to A4, A7 to A14 and Comparative Examples A1 to A3 A copper-based material composed of the components shown in Table 1 was subjected to a casting process, an extrusion process, and a first wire drawing process to obtain a wire having a wire diameter of 0.56 mm. Subsequently, a first heat treatment step was performed under the conditions shown in Table 2. Subsequently, a second wire drawing process was performed to obtain wires having the shape, wire diameter, thickness, width, and working ratio shown in Table 2. In the second wire drawing step, a round hole die, a rectangular die, or a cassette roller die (CRD) that draws wire through a gap arranged between two rolls was used to finish a round wire or ribbon wire. Subsequently, a second heat treatment step was performed under the conditions shown in Table 2. Thus, a copper-based wire was obtained.
  • a first heat treatment step was performed under the conditions shown in Table 2.
  • a second wire drawing process was performed to obtain wires having the shape, wire diameter, thickness,
  • Examples A5-A6 A copper-based material composed of the components shown in Table 1 was subjected to a casting process, a rolling process, and a first wire drawing process to obtain a strip having a thickness of 0.56 mm. Subsequently, a first heat treatment step was performed under the conditions shown in Table 2. Subsequently, a second wire drawing process was performed to obtain wires having the shape, thickness, width, and working ratio shown in Table 2. In the second wire drawing step, the wire was rolled to a thickness shown in Table 2, slitted, cut into a desired width, and finished into a ribbon wire. Subsequently, a second heat treatment step was performed under the conditions shown in Table 2. Thus, a copper-based wire was obtained.
  • Example A15 A plating step was performed on the copper-based wire obtained in Example A1.
  • a copper-based wire is immersed in an alkaline bath containing caustic soda, sodium carbonate, and sodium silicate, and a current of 5 A/dm 2 is applied for 5 seconds so that the copper-based wire becomes the cathode. Organic stains present on the surface of the wire were removed. Subsequently, the washed copper-based wire was immersed in a 10% concentration sulfuric acid bath for 5 seconds to remove the oxide film on the surface of the copper-based wire.
  • the washed copper-based wire was immersed in a palladium-containing solution, electroplating was performed at a current of 4 to 20 A/dm 2 , and the current value and time were adjusted so that the thickness of the palladium coating layer was 1 ⁇ m. Then, a palladium coating layer was formed on the surface of the copper-based wire. The thickness of the palladium coating layer was obtained by observing a cross section perpendicular to the longitudinal direction of the copper-based wire with an optical microscope.
  • the palladium-containing solution consisted of 8 g/L of palladium metal (98 g/L of dichlorotetraamminepalladium, which is a palladium metal complex), 400 g/L of ammonium nitrate and 160 g/L of ammonium chloride, and was diluted with aqueous ammonia to a pH of 8 to 9. The pH was adjusted so that The temperature of the palladium-containing solution was 60°C.
  • Examples B1 to B15 and Comparative Examples B1 to B3 As shown in Table 4, using the copper-based wires obtained in the above Examples and Comparative Examples as bonding wires, copper-based electrodes (aluminum electrode pads) provided on a semiconductor chip having a length of 10 mm and a width of 10 mm. The wires were pressed against each other and ultrasonic bonding was applied to join the copper-based wires to the semiconductor chip. The ultrasonic waves were applied at a frequency of 60 kHz and a time of 0.3 seconds. Thus, a semiconductor device was obtained by wedge bonding.
  • copper-based electrodes aluminum electrode pads
  • the object to be measured is the cross-section cut perpendicular to the longitudinal direction of a copper-based wire rod, which is mirror-finished by polishing, or the joint 6 between the semiconductor chip and the bonding wire as shown in FIG.
  • a cross section cut along the cutting line P perpendicular to the longitudinal direction of the wire is mirror-finished by polishing (in FIG. 1, of the two cross sections, the surface of the bonding wire on the front right side of the paper surface) and
  • the measurement area was the entire range of the cross section.
  • the measurement was performed with an EBSD step size of 1 ⁇ m. In the EBSD measurement, n3 (three measurement targets) was measured and the average value was calculated.
  • the average crystal grain size was calculated by the area method by selecting the chart-grain size (diameter) of the analysis software for the measurement range.
  • an orientation parallel to the longitudinal direction of the copper-based wire or bonding wire is selected on the IPFmap, and the crystal orientation ⁇ 111> and the crystal orientation ⁇ 100> with respect to that orientation on the chart-crystal direction.
  • the ratio of the area of grains oriented ⁇ 15° from the crystal orientation ⁇ 110> to the area of grains of all orientations respectively, the integration rate of crystal orientation ⁇ 111>, the integration rate of crystal orientation ⁇ 100>, and the crystal orientation ⁇ 110> as the accumulation rate.
  • [3] 0.2% Yield Strength According to JIS Z2241, a tensile test was performed using a precision universal testing machine (manufactured by Shimadzu Corporation), and the 0.2% yield strength (MPa) was determined by the offset method. In addition, the tensile test was performed for each of three samples (n3), and the average value was obtained. A 0.2% yield strength of 20 MPa or more and 90 MPa or less was considered acceptable.
  • Young's modulus Young's modulus was measured using a Young's modulus measuring device JE-RT (manufactured by Technoplus Japan) using a resonance method. The sample was cut into an arbitrary length of 40 mm or more and 60 mm or less so that the amplitude at the resonance frequency during measurement was large, and the weight of the sample was measured to calculate the density. n3 was measured and the average value was calculated. A Young's modulus of 80 GPa or more and 120 GPa or less was considered acceptable.
  • the average crystal grain size and crystal orientation ⁇ 111> accumulation ratio in the cross section of the copper-based wire, the Young's modulus of the copper-based wire, and the 0.2% proof stress was controlled within a predetermined range, the copper-based wire material was soft, had a small load even when pressed against a semiconductor chip, and was excellent in impact resistance.
  • the average crystal grain size and crystal The integration rate of the ⁇ 111> orientation is within a predetermined range, and the copper-based wire deforms appropriately when bonded to the semiconductor chip, so the load on the semiconductor chip is reduced. No breakage of the semiconductor chip occurred.
  • Comparative Example A1 the accumulation rate of the crystal orientation ⁇ 111> in the cross section of the copper-based wire and the Young's modulus of the copper-based wire were not controlled within a predetermined range. Furthermore, in Comparative Example B1 in which the copper-based material obtained in Comparative Example A1 was used as the bonding wire, the integration rate of the crystal orientation ⁇ 111> was not within the predetermined range in the cross section of the bonding wire at the joint. Therefore, in Comparative Example B1, the semiconductor chip was damaged due to bonding between the semiconductor chip and the bonding wire.
  • Comparative Example A2 the average crystal grain size and crystal orientation ⁇ 111> accumulation rate in the cross section of the copper-based wire, as well as the Young's modulus and 0.2% yield strength of the copper-based wire, were not controlled within a predetermined range. rice field. Furthermore, in Comparative Example B2 using the copper-based material obtained in Comparative Example A2 as a bonding wire, the average crystal grain size and the crystal orientation ⁇ 111> integration rate in the cross section of the bonding wire at the bonding portion were within a predetermined range. it wasn't Therefore, in Comparative Example B2, the semiconductor chip was damaged due to the bonding between the semiconductor chip and the bonding wire.
  • Comparative Example A3 the average crystal grain size in the cross section of the copper-based wire and the 0.2% yield strength were not controlled within the predetermined ranges. Furthermore, in Comparative Example B3 in which the copper-based material obtained in Comparative Example A3 was used as the bonding wire, the average crystal grain size was not within the predetermined range in the cross section of the bonding wire at the joint. Therefore, in Comparative Example B3, the semiconductor chip was damaged due to the bonding between the semiconductor chip and the bonding wire.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Wire Bonding (AREA)

Abstract

銅系線材は、銅または銅合金から構成され、前記銅系線材の長手方向に垂直な横断面において、平均結晶粒径は20μm以上150μm以下であり、かつ、結晶方位<111>の集積率は40%以下であり、ヤング率が80GPa以上120GPa以下、0.2%耐力が20MPa以上90MPa以下である。

Description

銅系線材および半導体デバイス
 本開示は、銅系線材および半導体デバイスに関する。
 半導体デバイスにおいて、ボンディングワイヤは、半導体チップと電極とを電気的に接続するワイヤ状の部材である。通常、ボンディングワイヤは、超音波接合を用いて半導体チップに接合される。
 ボンディングワイヤが硬いと、ボンディングワイヤを半導体チップに押し当てた際に半導体チップへの負荷が大きくなり、半導体チップが破損してしまうという問題が生じる。さらに、近年では、高出力化や大電流化に貢献する次世代パワー半導体チップ(SiC、GaNなど)が開発されているが、半導体チップ自体は脆く、また小型化に伴う半導体チップの薄膜化により、耐久性への要求は一段と厳しくなっている。
 例えば、特許文献1には、ボビンへの巻取りおよびボビンからの繰出し時における不均一な変形を抑制し得る太陽電池用リード線が記載され、太陽電池用リード線の0.2%耐力は比較的低い。しかしながら、特許文献1では、太陽電池用リード線のヤング率についての言及はなく、太陽電池用リード線を半導体チップにウェッジボンディングで超音波接合したときの衝撃に耐久できるかどうか不明である。
 また、特許文献2には、ボールボンディング時に形成する引け巣を抑制し、さらにはボンディングワイヤ間の狭ピッチ化にも対応できるパラジウム被覆銅ボンディングワイヤが記載されている。しかしながら、特許文献2では、パラジウム被覆銅ボンディングワイヤのヤング率および0.2%耐力についての言及はなく、パラジウム被覆銅ボンディングワイヤを半導体チップにウェッジボンディングで超音波接合したときの衝撃に耐久できるかどうか不明である。さらには、高出力化や大電流化の要求に対して、パラジウム被覆銅ボンディングワイヤの最終線径が細すぎるため、十分な電流が流せないといった問題がある。
特開2013-102054号公報 国際公開第2020/183748号
 本開示の目的は、半導体チップに押し当てても負荷が小さく、衝撃耐久性に優れる、軟らかい銅系線材、および銅系線材をボンディングワイヤとして備える半導体デバイスを提供することである。
[1] 銅または銅合金から構成される銅系線材であって、前記銅系線材の長手方向に垂直な横断面において、平均結晶粒径は20μm以上150μm以下であり、かつ、結晶方位<111>の集積率は40%以下であり、ヤング率が80GPa以上120GPa以下、0.2%耐力が20MPa以上90MPa以下である、銅系線材。
[2] 前記横断面において、結晶方位<100>の集積率および結晶方位<110>の集積率の合計集積率は、15%以上40%以下である、上記[1]に記載の銅系線材。
[3] 前記横断面において、隣接する結晶の方位差が15度以上の結晶粒界の長さLに対する双晶粒界の長さLの比(L/L)は、0.7以上1.0以下である、上記[1]または[2]に記載の銅系線材。
[4] 前記銅系線材は、丸線またはリボン線である、上記[1]~[3]のいずれか1つに記載の銅系線材。
[5] 前記銅系線材は、無酸素銅から構成される、上記[1]~[4]のいずれか1つに記載の銅系線材。
[6] 前記銅系線材は、外周面を被覆するパラジウム被覆層を有する、上記[1]~[5]のいずれか1つに記載の銅系線材。
[7] 半導体チップと前記半導体チップに接合されるボンディングワイヤとを備え、前記ボンディングワイヤは銅または銅合金から構成され、前記半導体チップの上部に設けられる電極と前記ボンディングワイヤとの接合部における、前記ボンディングワイヤの長手方向に垂直な前記ボンディングワイヤの横断面において、平均結晶粒径が10μm以上100μm以下であり、かつ、結晶方位<111>の集積率が40%以下である、半導体デバイス。
[8] 前記横断面において、結晶方位<100>の集積率および結晶方位<110>の集積率の合計集積率は、15%以上40%以下である、上記[7]に記載の半導体デバイス。
[9] 前記横断面において、隣接する結晶の方位差が15度以上の結晶粒界の長さLに対する双晶粒界の長さLの比(L/L)は、0.7以上1.0以下である、上記[7]または[8]に記載の半導体デバイス。
[10] 前記ボンディングワイヤは、無酸素銅から構成される、上記[7]~[9]のいずれか1つに記載の半導体デバイス。
[11] 前記ボンディングワイヤは、外周面を被覆するパラジウム被覆層を有する、上記[7]~[10]のいずれか1つに記載の半導体デバイス。
 本開示によれば、半導体チップに押し当てても負荷が小さく、衝撃耐久性に優れる、軟らかい銅系線材、および銅系線材をボンディングワイヤとして備える半導体デバイスを提供することができる。
図1は、実施形態の半塔体デバイスの一例を示す斜視図である。 図2は、ウェッジボンディング前のボンディングワイヤの長手方向に垂直な横断面の一例を示す概略図である。 図3は、ウェッジボンディング時のボンディングワイヤの長手方向に垂直な横断面の一例を示す概略図である。
 以下、実施形態を詳細に説明する。
 本発明者らは、鋭意研究を重ねた結果、銅系線材の結晶粒径および結晶方位を同時に制御することに着目し、銅系線材の横断面における結晶粒径および結晶方位が銅系線材のヤング率および0.2%耐力に影響することを見出した。その結果、半導体チップに押し当てても負荷が小さく、衝撃耐久性に優れる、軟らかい銅系線材を達成すると共に、銅系線材をボンディングワイヤとして用いると、半導体デバイスに搭載される半導体チップの破損を抑制できることを見出した。本開示は、かかる知見に基づいて完成させるに至った。
 はじめに、実施形態の銅系線材について説明する。
 実施形態の銅系線材は、銅または銅合金から構成され、前記銅系線材の長手方向に垂直な横断面において、平均結晶粒径は20μm以上150μm以下であり、かつ、結晶方位<111>の集積率は40%以下であり、ヤング率が80GPa以上120GPa以下、0.2%耐力が20MPa以上90MPa以下である、
 銅系線材は、銅(銅線)または銅合金(銅合金線)から構成される。
 銅系線材は、例えば銀(Ag)、クロム(Cr)、スズ(Sn)などの元素を少量含む銅合金でもよいが、軟らかさと半導体チップおよび電極間の導通を確保し、近年の高出力化、大電流化の傾向を加味すると、銅であることが好ましい。その中でも、銅の含有量が多いほど導電率が高いことから、99.90質量%以上の銅(Cu)および不可避不純物からなる純銅であるタフピッチ銅であることが好ましく、99.96質量%以上のCu、10ppm以下の酸素および不可避不純物からなる無酸素銅であることがより好ましい。
 銅系線材を構成する銅合金としては、0.1質量%以上1.0質量%以下のAg、0.1質量%以上1.0質量%以下のCr、0.1質量%以上1.0質量%以下のSnの少なくとも1種の元素を含有し、残部がCuおよび不可避不純物からなる合金組成を有することが好ましい。
 Ag、Cr、Snが上記下限値以上であると、銅系線材の引張耐久性を向上できる。そのため、銅系線材をボンディングワイヤとして半導体チップの電極に接合する際の銅系線材の繰り出し時の引張負荷に対して耐久することができ、接合スピードを向上させることができる。一方で、Ag、Cr、Snが上記上限値超であると、銅系線材の導電率を低下させる要因となりうる。そのため、銅系線材をパワー半導体向けのボンディングワイヤとして用いるには、上記元素の低濃度での添加が好ましい。このような観点から、銅合金がAgを含む場合のAgの含有量について、上限値は、より好ましくは0.7質量%以下、さらに好ましくは0.4質量%以下である。銅合金がCrを含む場合のCrの含有量について、上限値は、より好ましくは0.7質量%以下、さらに好ましくは0.4質量%以下である。銅合金がSnを含む場合のSnの含有量について、上限値は、より好ましくは0.7質量%以下、さらに好ましくは0.4質量%以下である。
 上述した元素以外の残部は不可避不純物である。不可避不純物は、製造工程上、不可避的に混入してしまう含有レベルの不純物を意味する。不可避不純物の含有量によっては銅系線材の導電率を低下させる要因になりうるため、不可避不純物の含有量は少ないことが好ましい。
 銅系線材が銅合金の場合、不可避不純物としては、例えば、アルミニウム(Al)、ベリリウム(Be)、カドミウム(Cd)、鉄(Fe)、マグネシウム(Mg)、ニッケル(Ni)、リン(P)、鉛(Pd)、ケイ素(Si)、チタン(Ti)などの元素が挙げられる。また、銅系線材が銅の場合、不可避不純物としては、上記の元素に加えて、銅合金に意図的に含有されて銅と合金化する元素、例えばAg、Cr、Snなどの元素も含まれる。なお、不可避不純物の含有量の上限は、上記元素の合計で20ppm以下であることが好ましい。
 また、銅系線材の長手方向に垂直な横断面において、平均結晶粒径は20μm以上150μm以下であり、かつ、結晶方位<111>の集積率は40%以下である。銅系線材の横断面において、結晶方位<111>の集積率とは、全結晶方位に対する、結晶方位<111>から±15°ずれた範囲の結晶方位の割合である。
 ここで、従来では、背反の関係であったヤング率および0.2%耐力を同時に下げることは困難であったが、結晶粒径および結晶方位がヤング率および0.2%耐力に影響することを見出した。こうした知見から、銅系線材の横断面における平均結晶粒径および結晶方位<111>の集積率を上記範囲内に制御することで、以下に説明するように、銅系線材のヤング率および0.2%耐力を上記範囲内に容易に制御することができる。
 銅系線材の長手方向に垂直な横断面において、銅系線材の平均結晶粒径が20μm以上であると、銅系線材の0.2%耐力の増加を抑制できる。また、上記平均結晶粒径が150μm以下であると、銅系線材が引っ張られたときに生じる不均一変形に起因する銅系線材の断線を抑制できる。上記の観点から、銅系線材の横断面における平均結晶粒径について、下限値は、20μm以上、好ましくは30μm以上、より好ましくは40μm以上であり、上限値は、150μm以下である。
 また、銅系線材の長手方向に垂直な横断面において、銅系線材の結晶方位<111>の集積率が40%以下であると、ヤング率の増加を抑制でき、軟らかさが向上する。上記の観点から、銅系線材の横断面における結晶方位<111>の集積率は、40%以下、好ましくは30%以下、より好ましくは20%以下である。
 ここで、金属材料の分野では、結晶粒径および結晶方位は一般的に知られている材料因子である。しかしながら、結晶粒径を大きくする目的で熱処理温度を高く設定すると、熱処理温度によって結晶方位も変化してしまい、結晶粒径と結晶方位とを同時に制御することができなかった。本開示では、結晶粒径と結晶方位とを上記範囲内に制御することで、ヤング率および0.2%耐力を上記範囲内に制御できるため、銅系線材は、軟らかく、半導体チップに押し当てても負荷が小さく、衝撃耐久性に優れている。
 また、銅系線材のヤング率について、下限値は、80GPa以上であり、上限値は、120GPa以下、好ましくは110GPa以下、より好ましくは100GPa以下である。
 また、銅系線材の0.2%耐力について、下限値は、20MPa以上であり、上限値は、90MPa以下、好ましくは60MPa以下、より好ましくは40MPa以下である。
 ここで、材料の変形には弾性変形と塑性変形がある。弾性変形では、σ=Eε(σ:応力、E:ヤング率、ε:ひずみ)の関係があり、与える歪に対して比例関係で応力が作用する。すなわち、ヤング率が低い方が緩やかに変形するため、負荷は小さくなる。そして、ある歪領域を超えると、材料が元に戻らなくなる塑性変形が生じ、この塑性変形し始める応力を耐力と言う。こうしたことから、耐力が低い方が塑性変形しやすく負荷は小さくなる。軟らかく、半導体チップに押し当てても負荷が小さく、衝撃耐久性に優れる観点から、銅系線材では、ヤング率および耐力は低いことが求められる。
 銅系線材のヤング率および0.2%耐力が上記範囲内であると、軟らかく、半導体チップに押し当てても負荷が小さく、衝撃耐久性に優れる。そのため、銅系線材をボンディングワイヤとして用いる半導体デバイスの製造時に、銅系線材を半導体チップに接合する際の半導体チップへの負荷が軽減されるため、半導体チップの破損を抑制できる。特に、上記範囲内において、ヤング率および0.2%耐力が低いほうが、銅系線材は半導体チップに接合する際に容易に変形し衝撃耐久性に優れる。また、ヤング率および0.2%耐力が上記下限値以上であると、半導体チップとの接合のため、銅系線材を超音波接合機にセッティングするためにボビンから繰り出す際に、銅系線材の引張切れを抑制できる。
 また、塑性変形中の硬くなりやすさを表す材料特性として加工硬化指数(n値とも言う)があり、n値は式:σ=C×εnで表される(σ:真応力、C:強度定数、ε:真ひずみ)。n値は、一般に0.2%耐力と背反の特性であり、0.2%耐力が低ければn値は高く、0.2%耐力が高ければn値は低くなるが、銅系線材をボンディングワイヤとして用いる場合、理想的には塑性変形をし始めた後は、低いn値の方が容易に変形できる点で好ましい。よって、銅系線材のn値は、0.45以下が好ましく、0.35以下がさらに好ましい。なお、n値は塑性変形中に変化する値であり、ボンディングワイヤとしての変形しやすさを考慮すると変形初期の値にてn値を規定すべきと考え、ここではn値を公称ひずみが1%~5%の範囲にて算出した。5%以上公称ひずみが得られないサンプルについては、オフセット法にて0.2%耐力を算出した際の公称ひずみから最大引張強度となる公称ひずみまでの範囲にてn値を算出した。
 また、銅系線材の横断面において、結晶方位<100>の集積率および結晶方位<110>の集積率の合計集積率は、好ましくは15%以上、より好ましくは20%以上、さらに好ましくは25%以上である。結晶方位<100>の集積率および結晶方位<110>の集積率の合計集積率が15%以上である、すなわち、15%以上の割合で結晶方位<100>および結晶方位<110>が銅系線材の長手方向に向いていると、ヤング率が低くなりやすく、軟らかい銅系線材が得られやすい。
 また、銅系線材の横断面において、結晶方位<100>の集積率および結晶方位<110>の集積率の合計集積率は、好ましくは40%以下である。上記合計集積率が40%以下であると、銅系線材をボビンから繰り出す際の引張負荷に対してより耐久することができる。
 ここで、銅系線材の横断面において、結晶方位<100>の集積率および結晶方位<110>の集積率の合計集積率とは、全結晶方位に対する、結晶方位<100>から±15°ずれた範囲の結晶方位および結晶方位<110>から±15°ずれた範囲の結晶方位の合計結晶方位の割合である。
 また、双晶粒界は原子の整合性が高い低エネルギーの粒界であり、大角粒界よりも加工時に転位が蓄積されにくく、曲げ加工の際に負荷する力を軽減することができることから、双晶粒界の存在割合は多い方が良い。そのため、銅系線材の横断面において、隣接する結晶の方位差が15度以上の結晶粒界の長さLに対する双晶粒界の長さLの比(L/L)は、0.7以上1.0以下であることが好ましい。
 また、銅系線材の形状について、半導体デバイスに求められる電流量や配策スペースなどに応じて適宜選択でき、丸線またはリボン線であることが好ましい。丸線は、銅系線材の横断面の形状が円形状である。リボン線には、平角線、条線、トラック形状線が含まれる。平角線は、銅系線材の横断面が4つの直線で囲まれる形状である。条線は、銅系線材の横断面の形状が矩形状である。トラック形状線は、銅系線材の横断面が2つの直線および2つの直線の端部をつなぐ2つの曲線で囲まれる形状、いわゆるトラック形状である。
 銅系線材が丸線の場合、銅系線材(丸線)の線径が0.1mm以上であると、銅系線材には比較的高い電流を流すことができるため、銅系線材はパワー半導体向けのボンディングワイヤに好適である。また、銅系線材(丸線)の線径が0.5mm以下であると、半導体デバイスの小型化のトレンドに対する配線スペースの確保に十分に対応でき、さらには、容易に曲げやすい。
 また、銅系線材がリボン線の場合、銅系線材(リボン線)の厚さが0.1mm以上であると、銅系線材には比較的高い電流を流すことができるため、銅系線材はパワー半導体向けのボンディングワイヤに好適である。また、銅系線材(リボン線)の厚さが0.5mm以下であると、半導体デバイスの小型化のトレンドに対する配線スペースの確保に十分に対応でき、さらには、容易に曲げやすい。
 また、銅系線材の外周面の酸化を防止するために、銅系線材は、外周面を被覆する金属被膜層を有してもよい。金属被膜層としては、好適にはパラジウム被覆層である。銅系線材の外周面を被覆するパラジウム被覆層は、例えばめっき処理によって形成される。
 このような銅系線材は、半導体チップに押し当てても負荷が小さく、衝撃耐久性に優れる、軟らかいことから、半導体デバイス用のボンディングワイヤに好適に用いられる。
 次に、実施形態の銅系線材の製造方法について説明する。
 実施形態の銅系線材の製造方法では、まず、鋳造工程を行う。鋳造工程では、還元雰囲気下で電気銅を溶かし、円柱状のビレットと呼ばれる鋳塊を得る。
 鋳造工程の後には、押出工程または圧延工程を行う。押出工程では、ビレットを熱間押出により丸棒の状態に加工する。圧延工程は、連続鋳造圧延機を用いて、鋳造工程と共に連続して実施される。この場合、リング状の回転鋳型に溶銅を流し込み鋳塊とし、上下方向または左右方向からの圧延を繰り返すことによって、荒引線を得る。
 押出工程または圧延工程の後には、第1伸線工程を行う。第1伸線工程では、上記工程で得られた丸棒または荒引線を所定の線径まで伸線する。また、上記工程までに生じた表面欠陥を除去するための皮むき工程が第1伸線工程に含まれている。
 第1伸線工程の後には、第1熱処理工程を行う。第1熱処理工程では、後工程の第2熱処理工程後によって、銅系線材の横断面における平均結晶粒径および所定の結晶方位の集積率が所定範囲内に同時に制御されるために、比較的高温での熱処理を施す。
 第1熱処理工程がバッチ焼鈍炉を用いるバッチ式熱処理の場合、熱処理温度は400℃以上900℃以下である。熱処理温度が400℃未満であると、結晶粒が成長しにくく、第2熱処理工程によって、銅系線材の横断面における平均結晶粒径20μm以上および結晶方位<111>の集積率40%以下を同時に達成しにくい。なお、上記特許文献1では、200~300℃で熱処理しているが、後述の比較例A2および比較例A3で示すように、平均結晶粒径および結晶方位<111>の集積率のいずれか一方または両方が本開示の上記所定範囲を満たさない。一方で、熱処理温度が900℃超であると、第2熱処理工程によって、銅系線材の横断面における平均結晶粒径は150μm超となり、銅系線材がボビンからの繰り出し時の張力に耐え切れず、断線の原因となる。
 また、第1熱処理工程がバッチ式熱処理の場合、熱処理時間は10分以上6時間以内である。熱処理時間が10分未満であると、多数の試料をバッチ炉で加熱するときに、試料全体を均一に熱処理するためには時間的に不十分であるため、結晶粒も均一にならない。そのため、第2熱処理工程による、銅系線材の横断面における平均結晶粒径20μm以上を安定的に達成できない。一方で、熱処理時間が6時間超であると、第2熱処理工程によって、銅系線材の横断面における平均結晶粒径は20μm以上になるものの、工業的にコストがかかりすぎる。
 第1熱処理工程がある長さの加熱炉を通線させて焼鈍する走間熱処理の場合、バッチ式熱処理に比べて熱処理時間が6秒以上15秒以内と短くなるため、熱処理温度は700℃以上950℃以下に設定する。走間熱処理における熱処理温度の上限値および下限値の設定理由は、バッチ式熱処理と同様である。
 第1熱処理工程の後には、第2伸線工程を行う。第2伸線工程では、加工率10%以上70%以下で伸線を行う。加工率が10%未満であると、第2熱処理工程時に再結晶するための駆動力が不足し、第2熱処理工程によって、銅系線材の横断面における所定の結晶方位の集積率を所望範囲内に制御できない。一方で、加工率が70%超であると、導入する加工歪が多くなり、試料全体に歪が導入されてしまうため、第2熱処理工程によって、銅系線材の横断面における所定の結晶方位の集積率を所望範囲内に制御できず、さらには、銅系線材の横断面における平均結晶粒径20μm以上を達成しにくい。こうした観点から、加工率は15%以上50%以下であることが好ましい。加工率とは、伸線前の試料断面積から伸線後の試料断面積を引いた値を伸線前の試料断面積で割って100をかけたものとして表される。
 第2伸線工程の後には、第2熱処理工程を行う。第2熱処理工程では、走間熱処理にて、熱処理温度は500℃以上900℃以下、熱処理時間は6秒以上15秒以内である。こうして、銅系線材を得ることができる。
 また、銅系線材が金属被覆層を有する場合、銅系線材に対してめっき工程を行うことが好ましい。めっき工程では、まず、銅系線材をアルカリ浴に浸漬し、銅系線材が陰極になるように通電し、銅系線材の表面に存在する有機物の汚れを除去する。続いて、水洗後の銅系線材を硫酸浴に浸漬し、銅系線材の表面の酸化被膜を除去する。続いて、水洗後の銅系線材をパラジウム含有溶液に浸漬し、所定の電流および時間にて電気めっきを行い、金属被覆層であるパラジウム被覆層を銅系線材の表面に形成する。金属被覆層の厚さに応じて、電気めっきの電流および時間を適宜設定する。
 次に、実施形態の半導体デバイスについて説明する。
 図1は、実施形態の半塔体デバイスの一例を示す斜視図である。図1に示すように、実施形態の半導体デバイスは、半導体チップと前記半導体チップに接合されるボンディングワイヤとを備え、前記ボンディングワイヤは銅または銅合金から構成され、前記半導体チップの上部に設けられる電極と前記ボンディングワイヤとの接合部における、前記ボンディングワイヤの長手方向に垂直な前記ボンディングワイヤの横断面において、平均結晶粒径が10μm以上100μm以下であり、かつ、結晶方位<111>の集積率が40%以下である。
 半導体デバイス1において、ダイパッド3上に半導体チップ2、さらに半導体チップ2の上部に電極2aが設けられ、一方で基板電極であるインナーリード5が存在し、電極2aとインナーリード5がボンディングワイヤ4で接続されている。電極2aは、例えばアルミニウム電極または銅電極である。
 ボンディングワイヤ4は、銅(銅線)または銅合金(銅合金線)から構成される。
 ボンディングワイヤは、例えばAg、Cr、Snなどの元素を少量含む銅合金でもよいが、軟らかさと半導体チップ2およびインナーリード5間の導通を確保し、近年の高出力化、大電流化の傾向を加味すると、銅であることが好ましい。その中でも、銅の含有量が多いほど導電率が高いことから、99.90質量%以上のCuおよび不可避不純物からなる純銅であるタフピッチ銅であることが好ましく、99.96質量%以上のCu、10ppm以下の酸素および不可避不純物からなる無酸素銅であることがより好ましい。
 ボンディングワイヤ4を構成する銅合金としては、0.1質量%以上1.0質量%以下のAg、0.1質量%以上1.0質量%以下のCr、0.1質量%以上1.0質量%以下のSnの少なくとも1種の元素を含有し、残部がCuおよび不可避不純物からなる合金組成を有することが好ましい。
 Ag、Cr、Snが上記下限値以上であると、ボンディングワイヤ4の引張耐久性を向上できる。そのため、ボンディングワイヤ4を半導体チップ2の電極2aに接合する際のボンディングワイヤ4の繰り出し時の引張負荷に対して耐久することができ、接合スピードを向上させることができる。一方で、Ag、Cr、Snが上記上限値超であると、ボンディングワイヤ4の導電率を低下させる要因となりうる。そのため、パワー半導体向けのボンディングワイヤとしては上記元素の低濃度での添加が好ましい。このような観点から、銅合金がAgを含む場合のAgの含有量について、上限値は、より好ましくは0.7質量%以下、さらに好ましくは0.4質量%以下である。銅合金がCrを含む場合のCrの含有量について、上限値は、より好ましくは0.7質量%以下、さらに好ましくは0.4質量%以下である。銅合金がSnを含む場合のSnの含有量について、上限値は、より好ましくは0.7質量%以下、さらに好ましくは0.4質量%以下である。
 上述した元素以外の残部は不可避不純物である。不可避不純物の含有量によってはボンディングワイヤ4の導電率を低下させる要因になりうるため、不可避不純物の含有量は少ないことが好ましい。
 ボンディングワイヤ4が銅合金の場合、不可避不純物としては、例えば、アルミニウム(Al)、ベリリウム(Be)、カドミウム(Cd)、鉄(Fe)、マグネシウム(Mg)、ニッケル(Ni)、リン(P)、鉛(Pd)、ケイ素(Si)、チタン(Ti)などの元素が挙げられる。また、ボンディングワイヤ4が銅の場合、不可避不純物としては、上記の元素に加えて、銅合金に意図的に含有されて銅と合金化する元素、例えばAg、Cr、Snなどの元素も含まれる。なお、不可避不純物の含有量の上限は、上記元素の合計で20ppm以下であることが好ましい。
 また、半導体チップ2上の電極2aとボンディングワイヤ4との接合部6における、ボンディングワイヤ4の長手方向に垂直なボンディングワイヤ4の横断面において、平均結晶粒径は10μm以上100μm以下であり、かつ、結晶方位<111>の集積率は40%以下である。ボンディングワイヤ4の横断面において、結晶方位<111>の集積率とは、全結晶方位に対する、結晶方位<111>から±15°ずれた範囲の結晶方位の割合である。また、接合部6とは、ボンディングワイヤ4の、半導体チップ2上の電極2aと接合している部分である。
 接合部6におけるボンディングワイヤ4の横断面において、ボンディングワイヤ4の平均結晶粒径および結晶方位<111>の集積率が上記範囲内であると、半導体チップ2とボンディングワイヤ4との接合に起因する半導体チップ2の破損が抑制され、良好な半導体デバイス1を得ることができる。
 また、接合部6におけるボンディングワイヤ4の横断面において、結晶方位<100>の集積率および結晶方位<110>の集積率の合計集積率は、15%以上40%以下であることが好ましい。接合部6におけるボンディングワイヤ4の横断面において、結晶方位<100>の集積率および結晶方位<110>の集積率の合計集積率とは、全結晶方位に対する、結晶方位<100>から±15°ずれた範囲の結晶方位および結晶方位<110>から±15°ずれた範囲の結晶方位の合計結晶方位の割合である。
 接合部6におけるボンディングワイヤ4の横断面において、ボンディングワイヤ4の上記合計集積率が上記範囲内であると、ボンディングワイヤ4について、軟らかくなり、衝撃耐久性に優れ、配策時の曲げが容易となることから、省スペース化が可能となる。
 また、接合部6におけるボンディングワイヤ4の横断面において、隣接する結晶の方位差が15度以上の結晶粒界の長さLに対する双晶粒界の長さLの比(L/L)は、0.7以上1.0以下であることが好ましい。接合部6におけるボンディングワイヤ4の横断面において、上記比(L/L)が上記範囲内であると、ボンディングワイヤ4について、軟らかくなり、衝撃耐久性に優れ、配策時の曲げが容易となることから、省スペース化が可能となる。
 また、ボンディングワイヤ4が丸線の場合には、ボンディングワイヤ4(丸線)の線径が0.1mm以上であり、ボンディングワイヤ4がリボン線の場合には、ボンディングワイヤ4(リボン線)の厚さが0.1mm以上であると、ボンディングワイヤ4には比較的高い電流を流すことができる。そのため、ボンディングワイヤ4は、パワー半導体向けのボンディングワイヤに好適である。
 また、ボンディングワイヤ4(丸線)の線径が0.5mm以下であり、ボンディングワイヤ4(リボン線)の厚さが0.5mm以下であると、半導体デバイスの小型化のトレンドに対する配線スペースの確保に十分に対応でき、さらには、ボンディングワイヤ4を容易に曲げやすい。
 また、ボンディングワイヤ4の外周面の酸化を防止するために、ボンディングワイヤ4は、外周面を被覆する不図示の金属被膜層を有してもよい。金属被膜層としては、好適にはパラジウム被覆層である。ボンディングワイヤ4の外周面を被覆するパラジウム被覆層は、例えばめっき処理によって形成される。
 半導体チップ2の電極2aとボンディングワイヤ4との接合に起因する半導体チップ2の破損を抑制する観点から、ボンディングワイヤ4は上記実施形態の銅系線材であることが好ましい。
 次に、実施形態の半導体デバイスにおける半導体チップ2とボンディングワイヤ4との接合方法について説明する。ここでは、ウェッジボンディングで半導体チップ2とボンディングワイヤ4とを接合する方法を説明するが、半導体チップ2とボンディングワイヤ4との接合方法はウェッジボンディングに限定されるわけではない。
 図2は、ウェッジボンディング前のボンディングワイヤの長手方向に垂直な横断面の一例を示す概略図であり、図3は、ウェッジボンディング時のボンディングワイヤの長手方向に垂直な横断面の一例を示す概略図である。
 ボンディングワイヤ4は、半導体チップ2上の電極2aに接合される。ウェッジボンディングでは、ウェッジ状の工具7でボンディングワイヤ4を半導体チップ2上の電極2aに押し当て、60kHz以上120kHz以下の周波数、0.1秒以上0.8秒以内の時間で、超音波を印加して、ボンディングワイヤ4を半導体チップ2の電極2aに接合する。こうして、半導体チップ2と半導体チップ2に接合されるボンディングワイヤ4とを備える半導体デバイスを得ることができる。
 以上説明した実施形態によれば、銅系線材の結晶粒径および結晶方位を同時に制御することに着目し、銅系線材の横断面における平均結晶粒径および結晶方位<111>の集積率を制御することによって、従来では背反の関係であったヤング率および0.2%耐力を同時に下げることができる。そのため、銅系線材は、軟らかく、半導体チップに押し当てても負荷が小さく、衝撃耐久性に優れている。さらに、銅系線材をボンディングワイヤとして用いると、半導体デバイスに搭載される半導体チップに銅系線材(ボンディングワイヤ)を接合する際に、銅系線材が適度に変形するため、半導体チップへの負荷が軽減され、半導体チップとボンディングワイヤとの接合に起因する半導体チップの破損を抑制できる。
 以上、実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本開示の概念および特許請求の範囲に含まれるあらゆる態様を含み、本開示の範囲内で種々に改変することができる。
 次に、実施例および比較例について説明するが、本開示はこれら実施例に限定されるものではない。
(実施例A1~A4、A7~A14および比較例A1~A3)
 表1に示す成分で構成される銅系材料について鋳造工程、押出工程、および第1伸線工程を施し、線径0.56mmの線材を得た。続いて、表2に示す条件で第1熱処理工程を施した。続いて、第2伸線工程を施し、表2に示す形状、線径、厚さ、幅、および加工率を有する線材を得た。第2伸線工程では、丸穴ダイス、平角形状のダイス、または2つのロールで配置される隙間を通して伸線するカセットローラーダイス(CRD)を用いて、丸線またはリボン線に仕上げた。続いて、表2に示す条件で第2熱処理工程を施した。こうして、銅系線材を得た。
(実施例A5~A6)
 表1に示す成分で構成される銅系材料について鋳造工程、圧延工程、および第1伸線工程を施し、厚さ0.56mmの条材を得た。続いて、表2に示す条件で第1熱処理工程を施した。続いて、第2伸線工程を施し、表2に示す形状、厚さ、幅、および加工率を有する線材を得た。第2伸線工程では、表2に示す厚さまで圧延し、スリット加工をして所望の幅に切り出し、リボン線に仕上げた。続いて、表2に示す条件で第2熱処理工程を施した。こうして、銅系線材を得た。
(実施例A15)
 実施例A1で得られた銅系線材について、めっき工程を施した。めっき工程では、まず、苛性ソーダ、炭酸ソーダ、ケイ酸ソーダからなるアルカリ浴に銅系線材を浸漬し、銅系線材が陰極になるように電流を5A/dmにて5秒間通電し、銅系線材の表面に存在する有機物の汚れを除去した。続いて、水洗後の銅系線材を10%濃度の硫酸浴に5秒間浸漬し、銅系線材の表面の酸化被膜を除去した。続いて、水洗後の銅系線材をパラジウム含有溶液に浸漬し、電流4~20A/dmにて電気めっきを行い、パラジウム被覆層の厚さが1μmになるように電流値および時間を調節して、パラジウム被覆層を銅系線材の表面に形成した。パラジウム被覆層の厚さは、銅系線材の長手方向に垂直な断面を光学顕微鏡で観察して求めた。
 パラジウム含有溶液は、パラジウム金属量8g/L(パラジウム金属錯体であるジクロロテトラアンミンパラジウム98g/L)、硝酸アンモニウム400g/L、塩化アンモニウム160g/Lからなるもので、アンモニア水にてpH8~9の間になるようにpHを調整した。パラジウム含有溶液の温度は60℃とした。
(実施例B1~B15および比較例B1~B3)
 表4に示すように、上記実施例および比較例で得られた銅系線材をボンディングワイヤとして用いて、縦10mm、横10mmの半導体チップ上に設けられている電極(アルミニウム電極パッド)に銅系線材を押し当てて、超音波接合を施して、半導体チップに銅系線材を接合した。超音波の印加条件は、周波数60kHz、時間0.3秒であった。こうして、ウェッジボンディングによって、半導体デバイスを得た。
[評価]
 上記実施例および比較例で得られた銅系線材および半導体デバイスについて、下記の評価を行った。結果を表3~4に示す。
[1] 平均結晶粒径、結晶方位の集積率、および比(L/L
 平均結晶粒径、結晶方位および比(L/L)は、高分解能走査型分析電子顕微鏡(日本電子株式会社製、JSM-7001FA)に付属するEBSD検出器(TSL社製、OIM5.0 HIKARI)を用いて連続して測定した結晶方位データから解析ソフト(TSL社製、OIM Analysis)を用いて算出した結晶方位解析データから得た。「EBSD」とは、Electron BackScatter Diffractionの略で、走査型電子顕微鏡(SEM)内で測定試料に電子線を照射したときに生じる反射電子菊池線回折を利用した結晶方位解析技術のことである。
 測定対象は、1本の銅系線材を長手方向に対して垂直に切断した横断面を研磨で鏡面仕上げされた面、または図1に示すように半導体チップとボンディングワイヤとの接合部6をボンディングワイヤの長手方向に対して垂直な切断線Pに沿って切断した切断横断面を研磨で鏡面仕上げされた面(図1では、2つの切断横断面のうち、紙面右手前側のボンディングワイヤの面)とした。測定領域は、断面の全範囲とした。測定は、EBSDのステップサイズ1μmで行った。EBSDでの測定では、n3(3つの測定対象)の測定を実施し、その平均値を算出した。
 平均結晶粒径は、測定範囲に対して解析ソフトのchart-grain size(diameter)を選択し、area法にて算出した。
 各結晶方位の集積率は、IPFmap上で銅系線材またはボンディングワイヤの長手方向に平行な方位を選択し、chart-crystal directionにてその方位に対して結晶方位<111>、結晶方位<100>、結晶方位<110>から±15°の方位粒の面積が全方位粒の面積に占める割合を、それぞれ結晶方位<111>の集積率、結晶方位<100>の集積率、結晶方位<110>の集積率とした。
 また、Rotation Angleにて15°以上65°以下を選択し、その結晶方位差の合計の長さをLとし、CSLにてΣ3を選択し、その合計の長さをLとした。そして、LをLで割って、比(L/L)を算出した。なお、CSLとは、Coincidence Site Latticeの略で、対応を意味し、双晶粒界は対応粒界Σ3で表される。
[2] 成分分析
 線径8mmの荒引線を得た段階で、荒引線をプレスして平板状にし、発光分光分析を用いてn3の平均値を算出した。
[3] 0.2%耐力
 JIS Z2241に準じて、精密万能試験機(株式会社島津製作所製)を用いて、引張試験を行い、オフセット法にて0.2%耐力(MPa)を求めた。なお、引張試験は、各試料3本ずつ行い(n3)、その平均値を求めた。0.2%耐力は、20MPa以上90MPa以下を合格とした。
[4] ヤング率
 共振法を用いたヤング率測定装置JE-RT(日本テクノプラス製)を用いて、ヤング率測定を実施した。サンプルを測定時の共振周波数における振幅が大きくなるように40mm以上60mm以下の任意の長さに切り出し、サンプルの重さを測定して密度を算出した。n3の測定を行い、平均値を算出した。ヤング率は、80GPa以上120GPa以下を合格とした。
[5] 加工硬化指数
 JIS Z2241に準じて、精密万能試験機(株式会社島津製作所製)を用いて、引張試験を行い、式:σ=C×εn(σ:真応力、C:強度定数、ε:真ひずみ、n:加工硬化指数)より加工硬化指数を求めた。
[6] 半導体チップの破損
 半導体チップ上に設けられているアルミニウム電極パッドに銅系線材を押し当てて、超音波接合を施して、半導体チップに銅系線材を接合した際の半導体チップの破損状態について評価した。実施例および比較例で得られた半導体デバイスについて、超音波接合後の半導体チップ上のアルミニウム電極パッド表面を目視で観察し、き裂が観察されたものは、半導体チップの破損ありとして不合格とした。一方で、き裂が確認されなかったものは、半導体チップの破損なしとして合格とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~3に示すように、実施例A1~A15では、銅系線材の横断面における平均結晶粒径および結晶方位<111>の集積率、ならびに銅系線材のヤング率および0.2%耐力が所定範囲内に制御されていたため、銅系線材は軟らかく、半導体チップに押し当てても負荷が小さく、衝撃耐久性に優れていた。さらに、表4に示すように、実施例A1~A15で得られた銅系材料をボンディングワイヤとして用いた実施例B1~B15では、接合部におけるボンディングワイヤの横断面において、平均結晶粒径および結晶方位<111>の集積率が所定範囲内であり、半導体チップに接合する際に銅系線材が適度に変形したため、半導体チップへの負荷が軽減され、半導体チップとボンディングワイヤとの接合に起因する半導体チップの破損は発生しなかった。
 一方、比較例A1では、銅系線材の横断面における結晶方位<111>の集積率、および銅系線材のヤング率が所定範囲内に制御されていなかった。さらに、比較例A1で得られた銅系材料をボンディングワイヤとして用いた比較例B1では、接合部におけるボンディングワイヤの横断面において、結晶方位<111>の集積率が所定範囲内でなかった。そのため、比較例B1では、半導体チップとボンディングワイヤとの接合に起因する半導体チップの破損が発生した。
 また、比較例A2では、銅系線材の横断面における平均結晶粒径および結晶方位<111>の集積率、ならびに銅系線材のヤング率および0.2%耐力が所定範囲内に制御されていなかった。さらに、比較例A2で得られた銅系材料をボンディングワイヤとして用いた比較例B2では、接合部におけるボンディングワイヤの横断面において、平均結晶粒径および結晶方位<111>の集積率が所定範囲内でなかった。そのため、比較例B2では、半導体チップとボンディングワイヤとの接合に起因する半導体チップの破損が発生した。
 また、比較例A3では、銅系線材の横断面における平均結晶粒径、および0.2%耐力が所定範囲内に制御されていなかった。さらに、比較例A3で得られた銅系材料をボンディングワイヤとして用いた比較例B3では、接合部におけるボンディングワイヤの横断面において、平均結晶粒径が所定範囲内でなかった。そのため、比較例B3では、半導体チップとボンディングワイヤとの接合に起因する半導体チップの破損が発生した。
 1 半導体デバイス
 2 半導体チップ
 2a 電極
 3 ダイパッド
 4 ボンディングワイヤ
 5 インナーリード
 6 接合部
 7 ウェッジ状の工具

Claims (11)

  1.  銅または銅合金から構成される銅系線材であって、
     前記銅系線材の長手方向に垂直な横断面において、平均結晶粒径は20μm以上150μm以下であり、かつ、結晶方位<111>の集積率は40%以下であり、
     ヤング率が80GPa以上120GPa以下、
     0.2%耐力が20MPa以上90MPa以下である、銅系線材。
  2.  前記横断面において、結晶方位<100>の集積率および結晶方位<110>の集積率の合計集積率は、15%以上40%以下である、請求項1に記載の銅系線材。
  3.  前記横断面において、隣接する結晶の方位差が15度以上の結晶粒界の長さLに対する双晶粒界の長さLの比(L/L)は、0.7以上1.0以下である、請求項1または2に記載の銅系線材。
  4.  前記銅系線材は、丸線またはリボン線である、請求項1~3のいずれか1項に記載の銅系線材。
  5.  前記銅系線材は、無酸素銅から構成される、請求項1~4のいずれか1項に記載の銅系線材。
  6.  前記銅系線材は、外周面を被覆するパラジウム被覆層を有する、請求項1~5のいずれか1項に記載の銅系線材。
  7.  半導体チップと前記半導体チップに接合されるボンディングワイヤとを備え、
     前記ボンディングワイヤは銅または銅合金から構成され、
     前記半導体チップの上部に設けられる電極と前記ボンディングワイヤとの接合部における、前記ボンディングワイヤの長手方向に垂直な前記ボンディングワイヤの横断面において、平均結晶粒径が10μm以上100μm以下であり、かつ、結晶方位<111>の集積率が40%以下である、半導体デバイス。
  8.  前記横断面において、結晶方位<100>の集積率および結晶方位<110>の集積率の合計集積率は、15%以上40%以下である、請求項7に記載の半導体デバイス。
  9.  前記横断面において、隣接する結晶の方位差が15度以上の結晶粒界の長さLに対する双晶粒界の長さLの比(L/L)は、0.7以上1.0以下である、請求項7または8に記載の半導体デバイス。
  10.  前記ボンディングワイヤは、無酸素銅から構成される、請求項7~9のいずれか1項に記載の半導体デバイス。
  11.  前記ボンディングワイヤは、外周面を被覆するパラジウム被覆層を有する、請求項7~10のいずれか1項に記載の半導体デバイス。
PCT/JP2022/044602 2021-12-07 2022-12-02 銅系線材および半導体デバイス WO2023106241A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023511909A JPWO2023106241A1 (ja) 2021-12-07 2022-12-02
CN202280006972.4A CN116568835A (zh) 2021-12-07 2022-12-02 铜系线材及半导体器件
KR1020237012521A KR20240121658A (ko) 2021-12-07 2022-12-02 구리계 선재 및 반도체 디바이스
DE112022005812.9T DE112022005812T5 (de) 2021-12-07 2022-12-02 Kupferbasiertes Drahtmaterial und Halbleitervorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021198360 2021-12-07
JP2021-198360 2021-12-07

Publications (1)

Publication Number Publication Date
WO2023106241A1 true WO2023106241A1 (ja) 2023-06-15

Family

ID=86730471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044602 WO2023106241A1 (ja) 2021-12-07 2022-12-02 銅系線材および半導体デバイス

Country Status (5)

Country Link
JP (1) JPWO2023106241A1 (ja)
KR (1) KR20240121658A (ja)
CN (1) CN116568835A (ja)
DE (1) DE112022005812T5 (ja)
WO (1) WO2023106241A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002770A1 (ja) * 2014-06-30 2016-01-07 新日鉄住金マテリアルズ株式会社 金属線、太陽電池集電用インターコネクター、太陽電池モジュール、及び金属線の製造方法
WO2020059856A1 (ja) * 2018-09-21 2020-03-26 日鉄ケミカル&マテリアル株式会社 半導体装置用Cu合金ボンディングワイヤ
WO2020183748A1 (ja) * 2019-03-12 2020-09-17 田中電子工業株式会社 パラジウム被覆銅ボンディングワイヤ、パラジウム被覆銅ボンディングワイヤの製造方法、及びこれを用いたワイヤ接合構造、半導体装置並びにその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013102054A (ja) 2011-11-08 2013-05-23 Mitsubishi Cable Ind Ltd 太陽電池用リード線

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002770A1 (ja) * 2014-06-30 2016-01-07 新日鉄住金マテリアルズ株式会社 金属線、太陽電池集電用インターコネクター、太陽電池モジュール、及び金属線の製造方法
WO2020059856A1 (ja) * 2018-09-21 2020-03-26 日鉄ケミカル&マテリアル株式会社 半導体装置用Cu合金ボンディングワイヤ
WO2020183748A1 (ja) * 2019-03-12 2020-09-17 田中電子工業株式会社 パラジウム被覆銅ボンディングワイヤ、パラジウム被覆銅ボンディングワイヤの製造方法、及びこれを用いたワイヤ接合構造、半導体装置並びにその製造方法

Also Published As

Publication number Publication date
JPWO2023106241A1 (ja) 2023-06-15
KR20240121658A (ko) 2024-08-09
CN116568835A (zh) 2023-08-08
DE112022005812T5 (de) 2024-09-12

Similar Documents

Publication Publication Date Title
JP4143662B2 (ja) Cu−Ni−Si系合金
JP4857395B1 (ja) Cu−Ni−Si系合金及びその製造方法
JP5441876B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
JP6499159B2 (ja) 銅合金線材及びその製造方法
JP4799701B1 (ja) 電子材料用Cu−Co−Si系銅合金条及びその製造方法
JP4197718B2 (ja) 酸化膜密着性に優れた高強度銅合金板
JP4168077B2 (ja) 酸化膜密着性に優れた電気電子部品用銅合金板
JPWO2015034071A1 (ja) 銅合金線材及びその製造方法
TWI429768B (zh) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
KR101338710B1 (ko) Ni-Si-Co 계 구리 합금 및 그 제조 방법
JPWO2013150627A1 (ja) 優れた耐疲労特性を有するCu−Mg−P系銅合金板及びその製造方法
JP5700834B2 (ja) 酸化膜密着性に優れた高強度銅合金板
US20130042949A1 (en) Method of manufacturing soft-dilute-copper-alloy-material
JP5467163B1 (ja) 銅合金板、それを備える放熱用電子部品および、銅合金板の製造方法
EP2444978A2 (en) Solar cell conductor and method of manufacturing the same
JP2008182170A (ja) 太陽電池用はんだめっき線及びその製造方法並びに太陽電池
JP2013049893A (ja) 太陽電池インターコネクタ用導体及び太陽電池用インターコネクタ
JP2013104082A (ja) Cu−Co−Si系合金及びその製造方法
WO2023106241A1 (ja) 銅系線材および半導体デバイス
JP5795939B2 (ja) 導電性、耐熱性及びはんだ濡れ性に優れたCu−Fe−P系銅合金板及びその製造方法
JP2013102054A (ja) 太陽電池用リード線
JP4987155B1 (ja) Cu−Ni−Si系合金及びその製造方法
JP4345075B2 (ja) ワイアーボンディング性およびダイボンディング性に優れた銅及び銅基合金とその製造方法
JP5514762B2 (ja) 曲げ加工性に優れたCu−Co−Si系合金
US12049690B2 (en) Copper alloy plate and method for producing same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023511909

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280006972.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904170

Country of ref document: EP

Kind code of ref document: A1