WO2023095530A1 - 光学ユニット - Google Patents

光学ユニット Download PDF

Info

Publication number
WO2023095530A1
WO2023095530A1 PCT/JP2022/040005 JP2022040005W WO2023095530A1 WO 2023095530 A1 WO2023095530 A1 WO 2023095530A1 JP 2022040005 W JP2022040005 W JP 2022040005W WO 2023095530 A1 WO2023095530 A1 WO 2023095530A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
vehicle
distribution pattern
optical unit
Prior art date
Application number
PCT/JP2022/040005
Other languages
English (en)
French (fr)
Inventor
秀忠 田中
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021189857A external-priority patent/JP2023076866A/ja
Priority claimed from JP2021189858A external-priority patent/JP2023076867A/ja
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Publication of WO2023095530A1 publication Critical patent/WO2023095530A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • F21S41/145Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device the main emission direction of the LED being opposite to the main emission direction of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • F21S41/148Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device the main emission direction of the LED being perpendicular to the optical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/27Thick lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/67Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors
    • F21S41/675Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors by moving reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/12Combinations of only three kinds of elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/09Optical design with a combination of different curvatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/135Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions
    • F21W2102/14Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having vertical cut-off lines; specially adapted for adaptive high beams, i.e. wherein the beam is broader but avoids glaring other road users
    • F21W2102/145Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having vertical cut-off lines; specially adapted for adaptive high beams, i.e. wherein the beam is broader but avoids glaring other road users wherein the light is emitted between two parallel vertical cutoff lines, e.g. selectively emitted rectangular-shaped high beam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/165Arrangement or contour of the emitted light for high-beam region or low-beam region the borderlines between emitted regions and dark regions other than cut-off lines being variable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present disclosure relates to an optical unit.
  • the optical unit described above is a unit suitable for variable light distribution high beams in vehicle headlights, and together with other optical units for low beams constitutes a vehicle headlight.
  • a vehicle headlamp when only a low beam is emitted, it is necessary to stop the high beam emission by the optical unit for the variable light distribution high beam. Therefore, in the case of such a vehicle headlight, the optical unit for low beam is turned on, while the optical unit for high beam is turned off. Therefore, such a vehicle headlamp has room for improvement in the lighting design of the vehicle headlamp compared to the case where all the optical units are lit.
  • the present disclosure has been made in view of this situation, and one of the purposes thereof is to provide a new technique for improving the lighting design of vehicle headlights.
  • An optical unit includes a light source; a rotating reflector that rotates around a rotation axis while reflecting light emitted from the light source; a projection lens that projects the light reflected by the rotating reflector in front of the vehicle as a high beam light distribution pattern,
  • the light source is a first light emitting unit that lights when forming the high beam light distribution pattern; and a second light emitting unit that is lit when the first light emitting unit is off.
  • the optical unit can be illuminated even when the high beam light distribution pattern is not formed.
  • an optical unit includes a light source having a first light emitting portion and a second light emitting portion; a rotating reflector that rotates about a rotation axis while reflecting the first light emitted from the first light emitting unit; a fixed reflector that reflects the second light emitted from the second light emitting unit; The first light reflected by the rotating reflector is projected forward of the vehicle as a first light distribution pattern, and the second light reflected by the fixed reflector is projected forward of the vehicle as a second light distribution pattern.
  • a projection lens for The first light emitting unit is lit when forming a high beam light distribution pattern as the first light distribution pattern, The second light emitting section lights up when the first light emitting section is off.
  • the lighting design of vehicle headlamps can be improved.
  • FIG. 1 is a schematic horizontal cross-sectional view of the vehicle lamp according to the first embodiment.
  • FIG. 2 is a perspective view of a rotating reflector according to the first embodiment.
  • FIG. 3 is a top view of the circuit board according to the first embodiment.
  • FIG. 4A is a schematic diagram illustrating an irradiation range in which the light emitting region of the light source according to the first embodiment is reflected and projected with the rotating reflector stationary.
  • 4B is a schematic diagram showing an example of a light distribution pattern formed by the optical unit according to the first embodiment;
  • FIG. 5 is a top view schematically illustrating the schematic configuration of the vehicle lamp according to the second embodiment.
  • FIG. 6 is a side view schematically illustrating the schematic configuration of the vehicle lamp according to the second embodiment.
  • FIG. 1 is a schematic horizontal cross-sectional view of the vehicle lamp according to the first embodiment.
  • FIG. 2 is a perspective view of a rotating reflector according to the first embodiment.
  • FIG. 3 is a top view of
  • FIG. 7 is a top view schematically illustrating the schematic configuration of the vehicle lamp according to the third embodiment.
  • FIG. 8 is a side view schematically illustrating the schematic configuration of the vehicle lamp according to the third embodiment.
  • FIG. 9 is a schematic diagram showing an example of a light distribution pattern formed by the optical unit according to the third embodiment.
  • FIG. 10 is a top view schematically illustrating the schematic configuration of the vehicle lamp according to the fourth embodiment.
  • FIG. 11 is a side view schematically illustrating the schematic configuration of the vehicle lamp according to the fourth embodiment.
  • FIG. 12 is a side view schematically illustrating the configuration of a rotating reflector according to the fourth embodiment.
  • FIG. 13 is a top view illustrating the first light emitting portion of the device mounting board according to the fourth embodiment.
  • FIG. 14A is a schematic diagram illustrating an example of an irradiation range in which a light emitting region of a first light emitting portion of a light source according to a fourth embodiment is reflected and projected with a stationary rotating reflector.
  • FIG. 14B is a schematic diagram showing an example of a high-beam light distribution pattern formed by the optical unit according to the fourth embodiment.
  • FIG. 15 is a schematic diagram showing an example of a light distribution pattern formed by the optical unit according to the fourth embodiment.
  • An optical unit includes a light source; a rotating reflector that rotates around a rotation axis while reflecting light emitted from the light source; a projection lens that projects the light reflected by the rotating reflector in front of the vehicle as a high beam light distribution pattern,
  • the light source is a first light emitting unit that lights when forming the high beam light distribution pattern; and a second light emitting unit that is lit when the first light emitting unit is off. According to this configuration, the optical unit can be illuminated even when the high-beam light distribution pattern is not formed, so the lighting design of the vehicle headlamp can be improved.
  • an optical unit includes The second light emitting unit is provided on a first substrate on which the first light emitting unit is provided, The first substrate may be arranged at a position where the light emitted from the second light emitting section is reflected by the rotating reflector and then enters the projection lens. According to this configuration, the projection lens can be illuminated by the light emitted from the second light emitting section.
  • an optical unit includes The second light emitting unit is provided on a second substrate different from the first substrate on which the first light emitting unit is provided,
  • the second substrate may be arranged at a position where the light emitted from the second light emitting section is incident on the projection lens without being reflected by the rotating reflector. According to this configuration, the projection lens can be illuminated by the light emitted from the second light emitting section.
  • an optical unit includes The second light emitting unit may emit light forming a light distribution pattern including a region below the high beam light distribution pattern when lit. According to this configuration, even if the high beam light distribution pattern is not formed, for example, by illuminating the area below the horizontal line, the optical unit can be operated while suppressing glare to the preceding vehicle (preceding vehicle or oncoming vehicle). can illuminate.
  • an optical unit includes The rotating reflector is disposed so that the rotating shaft intersects the longitudinal direction of the vehicle, and has a reflecting surface that reflects the light emitted in the vehicle width direction from the first light emitting portion toward the front of the vehicle. good too.
  • an optical unit includes The rotating reflector is disposed so that the rotating shaft intersects the longitudinal direction of the vehicle, and has a reflecting surface that reflects light emitted obliquely upward to the rear of the vehicle from the first light emitting portion toward the front of the vehicle. You may
  • an optical unit includes a light source having a first light emitting portion and a second light emitting portion; a rotating reflector that rotates about a rotation axis while reflecting the first light emitted from the first light emitting unit; a fixed reflector that reflects the second light emitted from the second light emitting unit; The first light reflected by the rotating reflector is projected forward of the vehicle as a first light distribution pattern, and the second light reflected by the fixed reflector is projected forward of the vehicle as a second light distribution pattern.
  • a projection lens for The first light emitting unit is lit when forming a high beam light distribution pattern as the first light distribution pattern, The second light emitting section lights up when the first light emitting section is off. According to this configuration, the optical unit can be illuminated even when the high-beam light distribution pattern is not formed.
  • an optical unit includes The first light emitting section and the second light emitting section may be provided on the same substrate. With this configuration, the number of parts can be reduced and the space of the optical unit can be saved.
  • an optical unit includes The substrate may be arranged at a position where the light emitted from the second light emitting section is incident on the projection lens without being reflected by the rotating reflector. According to this configuration, it is possible to provide a plurality of light emitting units on the same substrate, which respectively emit light reflected by different reflectors.
  • an optical unit includes The second light emitting unit may form the second light distribution pattern including a region below the high beam light distribution pattern by the second light emitted when the light is turned on. According to this configuration, even if no high-beam light distribution pattern is formed, for example, by illuminating an area below the horizon, it is possible to light the optical unit while suppressing glare from the preceding vehicle and the oncoming vehicle. .
  • an optical unit includes The rotating reflector is arranged such that its rotation axis intersects the longitudinal direction of the vehicle, and reflects the first light emitted obliquely upward to the rear of the vehicle from the first light emitting portion toward the front of the vehicle. It may have a face.
  • the optical unit according to this embodiment can be used for various vehicle lamps. First, an outline of a vehicle lamp on which an optical unit (to be described later) according to an embodiment can be mounted will be described.
  • FIG. 1 is a schematic horizontal cross-sectional view of a vehicle lamp 10 according to the first embodiment.
  • FIG. 2 is a perspective view of the rotating reflector 22 according to the first embodiment.
  • a vehicle lamp 10 according to the first embodiment is a part of a left headlamp mounted on one side, for example, the left side of the front end of an automobile.
  • the headlight mounted on the left side and the headlight mounted on the right side have the same structure except that they are bilaterally symmetrical. Therefore, the left vehicle lamp 10 will be described in detail below, and the description of the right vehicle lamp will be omitted.
  • the vehicle lamp 10 includes a lamp body 12 having a recess opening forward (to the right in FIG. 1).
  • the lamp body 12 has a front opening covered with a transparent front cover 14 to form a lamp chamber 16 .
  • the lamp chamber 16 functions as a space in which one optical unit 18 is accommodated.
  • the optical unit 18 is a lamp unit configured to irradiate a variable high beam.
  • a variable high beam is controlled to change the shape of the light distribution pattern for the high beam.
  • a non-irradiation area can be generated in a part of the light distribution pattern.
  • the light distribution pattern is, for example, an irradiation area formed by the lamp on a screen (virtual screen) installed 25 to 50 m in front of the lamp.
  • the optical unit 18 includes a light source 20, a rotating reflector 22 that rotates about a rotation axis R while reflecting a first light L1 emitted from the light source 20 with a blade 22a, and and a heat sink 32 on which the light source 20 is mounted.
  • the light source 20 can be composed of semiconductor light-emitting elements such as LEDs, ELs, and LDs.
  • the light source 20 according to this embodiment includes a plurality of LEDs 20 a arranged on the circuit board 33 . Each LED 20a is configured to be turned on and off individually.
  • the rotating reflector 22 rotates in one direction around the rotation axis R by a drive source such as a motor 34. Further, as illustrated in FIG. 2, the rotating reflector 22 has two blades 22a having the same shape provided around a cylindrical rotating portion 22b. Further, as illustrated in FIG. 1, the rotating reflector 22 is arranged obliquely with respect to the optical axis Ax so that the rotation axis R intersects the vehicle longitudinal direction.
  • the rotating reflector 22 has a blade 22a that reflects the light emitted from the LED 20a in the vehicle width direction toward the front of the vehicle.
  • the blade 22a functions as a reflecting surface configured to scan forward with the light emitted from the light source 20 while rotating and reflected to form a desired light distribution pattern.
  • the reflecting surface 22c of the blade 22a of the rotating reflector 22 has a twisted shape such that the angle between the optical axis Ax and the reflecting surface changes in the circumferential direction around the rotation axis R. .
  • a rotation axis R of the rotating reflector 22 is provided within a plane including the optical axis Ax and the light source 20 .
  • the rotation axis R is provided substantially parallel to the scanning plane of the light (irradiation beam) of the LED 20a that scans in the horizontal direction by rotation.
  • the scanning plane can be regarded as, for example, a fan-shaped plane formed by continuously connecting the trajectory of the light of the LED 20a, which is the scanning light.
  • the shape of the projection lens 26 can be appropriately selected according to the light distribution characteristics such as the required light distribution pattern and illuminance distribution.
  • the projection lens 26 can be composed of, for example, an aspheric lens or a free-form lens.
  • FIG. 3 is a top view of the circuit board 33 according to the first embodiment.
  • the circuit board 33 according to the present embodiment includes eight LEDs 20a1 (20a) that illuminate an area including the HH line (see FIG. 4A) of the high-beam light distribution pattern, and from the HH line (see FIG. 4A).
  • Two LEDs 20a2 (20a) that illuminate the upper area and two LEDs 20a3 (20a) that illuminate the area below the HH line (see FIG. 4A) are mounted.
  • the direction of the optical axis Ax (see FIG. 1) of the vehicle lamp 10 is the forward direction.
  • the "vertical direction” is a direction including the “upward direction” and the “downward direction”.
  • "Fore-and-aft direction” is a direction that includes "forward direction” and "rearward direction.”
  • the front-rear direction is a direction orthogonal to the up-down direction.
  • the symbol U shown in FIG. 3 indicates an upward direction.
  • Symbol D indicates the downward direction.
  • Symbol F indicates the forward direction.
  • Symbol B indicates the rearward direction.
  • FIG. 4A is a schematic diagram illustrating an irradiation range in which the light emitting region of the light source 20 according to the first embodiment is reflected and projected while the rotating reflector 22 is stationary.
  • FIG. 4B is a schematic diagram showing an example of the light distribution pattern PH formed by the optical unit 18 according to the first embodiment.
  • the optical unit 18 when all the LEDs 20a of the light source 20 are turned on while the rotation of the rotating reflector 22 is stopped, the image of the light emitting area is reflected on the surface of the stationary rotating reflector 22, and the projection lens 26 The image is projected forward through (see FIG. 4A).
  • the lights emitted from the light emitting regions of the eight LEDs 20a1 form eight rectangular irradiation regions R3 on the HH line.
  • the respective lights emitted from the light emitting regions of the two LEDs 20a2 form two rectangular irradiation regions R4 above the irradiation region R3.
  • the respective lights emitted from the light emitting regions of the two LEDs 20a3 form two rectangular irradiation regions R5 below the irradiation region R3.
  • the high-beam light distribution pattern PH is formed by superimposing the partial light distribution patterns P1 and P2.
  • the rotating reflector 22 forms part or all of the high beam light distribution pattern PH by reflecting and scanning the pattern of the light emitting area of each LED 20a.
  • the vehicle lamp 10 described above is a lamp whose main function is to form a so-called high-beam light distribution pattern. Therefore, a general vehicle uses a combination of the vehicle lamp 10 and a separately provided lamp whose main function is to form a low-beam light distribution pattern. Therefore, in a situation where only the low-beam light distribution pattern is formed, if the vehicle lamp 10 does not turn on, the lamps that turn on and the lamps that do not turn on in the vehicle headlights line up, and there is room for improvement in the lighting design. be.
  • the vehicle lamp 10 according to the present embodiment, some of the LEDs of the light source 20 are turned on even when the high-beam light distribution pattern is not formed, so that the vehicle headlamp as a whole has a low-beam light distribution pattern.
  • the optical unit 18 can be illuminated even in situations where only patterns are formed.
  • the LEDs 20a3 are turned on so that the portion below the HH line is turned on.
  • a distributed light pattern P3 is formed.
  • the partial light distribution pattern P3 is a kind of low-beam light distribution pattern PL.
  • the LED 20a3 which is the second light emitting portion, is configured to emit light forming a light distribution pattern including a region below the high beam light distribution pattern PH when lit.
  • the LEDs 20a1 and 20a2 which are the first light emitting units, glare to the vehicle ahead is suppressed by illuminating the area below the line H--H, for example. It is possible to illuminate the optical unit 18 while doing so.
  • the low-beam light distribution pattern PL may be formed simultaneously with the high-beam light distribution pattern PH. In this case, it becomes easier to recognize that the optical unit 18 is shining. On the other hand, by not forming the low-beam light distribution pattern PL when forming the high-beam light distribution pattern PH, the power consumption of the vehicle lamp 10 as a whole can be suppressed.
  • the vehicle lamp 10 includes a control unit that controls turning on/off of the light source based on the situation in front of the vehicle detected by a sensor, camera, or the like provided in the vehicle body.
  • the vehicle lamp 10 turns on the LEDs necessary for forming a light distribution pattern for illuminating the front of the vehicle by the control unit.
  • the control unit is a combination of arithmetic units (CPU, IC) and storage units (ROM, RAM).
  • the LEDs 20a1, 20a2, and 20a3 provided in the light source 20 according to the present embodiment are provided on the same circuit board 33.
  • the circuit board 33 is arranged at a position where the light emitted from the LED 20 a 3 is reflected by the rotating reflector 22 and then enters the projection lens 26 .
  • the projection lens 26 can be illuminated only by the light emitted from the LED 20a3. Therefore, when a vehicle in front is detected by a camera or the like while driving while forming a light distribution pattern for high beam, the control unit provided in the vehicle lamp 10 turns off the LEDs 20a1 and 20a2 in the vehicle lamp 10 and turns off the LED 20a3. light up. As a result, even in the vehicle lamp 10 in which the formation of the high-beam light distribution pattern has been interrupted, the optical unit 18 can continue to emit light.
  • the light distribution pattern formed by the LED 20a3, which is the second light-emitting portion must be forward. Any material may be used as long as it does not easily give glare to the vehicle.
  • FIG. 5 is a top view schematically illustrating the schematic configuration of the vehicle lamp according to the second embodiment.
  • FIG. 6 is a side view schematically illustrating the schematic configuration of the vehicle lamp according to the second embodiment.
  • illustration of some parts such as a lamp body, a cover, and an extension, which are components of the vehicle lamp, is omitted.
  • illustration of a low-beam lamp which is separately provided as a vehicle headlamp, is omitted.
  • the same reference numerals are given to the same configurations as in the first embodiment, and the description thereof will be omitted as appropriate.
  • the vehicle lamp 40 has an optical unit 42 .
  • the optical unit 42 includes a light source 20, a rotating reflector 22 that rotates around a rotation axis R while reflecting light emitted from the light source 20, and a light reflected by the rotating reflector 22 in the light irradiation direction of the optical unit 42 ( a projection lens 43 for projecting forward F).
  • the rotating reflector 22 is arranged so that the rotation axis R of the rotating reflector intersects the horizontal plane H (see FIG. 6). That is, the rotating reflector 22 is disposed so that the rotation axis R intersects the vehicle front-rear direction, and has a reflecting surface 22c that reflects the light emitted from the light source 20 obliquely upward toward the rear of the vehicle toward the front of the vehicle. ing.
  • the angle ⁇ (see FIG. 6) formed between the rotation axis R of the rotating reflector 22 and the horizontal plane H is, for example, in the range of 1 to 45°, preferably in the range of 3 to 30°, more preferably in the range of 5 to 20°. be.
  • the diameter of the rotating reflector 22 is, for example, in the range of 30-100 mm, preferably in the range of 40-80 mm, more preferably in the range of 50-70 mm.
  • the width (in the vehicle width direction) of the projection lens 43 is, for example, in the range of 50-120 mm, preferably in the range of 60-100 mm, and more preferably in the range of 70-90 mm.
  • the height (vehicle height direction) of the projection lens 43 is, for example, 20 to 60 mm, preferably 25 to 50 mm, more preferably 25 to 35 mm.
  • the incident angle ⁇ (see FIG. 6) at which the light emitted from the light source 20 is incident on the blade 22a of the rotating reflector 22 is less than 45°, preferably 30° or less, more preferably 20° or less. This improves the incidence efficiency of the light flux reflected by the rotating reflector 22 to the projection lens 43 .
  • the light source 20 includes eight LEDs 20a1, two LEDs 20a2, and two LEDs 20a3 arranged along the vehicle width direction W, as in the first embodiment. Each LED is mounted on one circuit board 33 . Also, the circuit board 33 is fixed to the surface of the heat sink 44 .
  • the vehicle lamp 40 according to the second embodiment configured as described above can form the light distribution pattern PH illustrated in FIG. 4B, like the vehicle lamp 10 according to the first embodiment.
  • the LED 20a3 which is the second light emitting portion of the vehicle lamp 40, is configured to emit light forming a light distribution pattern PH including an area below the high beam light distribution pattern PH when turned on.
  • the optical unit 42 can be illuminated while suppressing the glare to the vehicle in front by illuminating the area below the HH line, for example.
  • an LED 20 a 3 as a second light emitting portion is arranged on the upper stage of the circuit board 33 of the light source 20 .
  • the circuit board 33 becomes larger as it extends upward, and part of the light emitted from the LEDs 20a1 and 20a2 as the first light emitting units and reflected by the rotating reflector 22 is blocked by the circuit board 33 and the heat sink 44. become.
  • the efficiency with which the light emitted by the light source 20 is used to illuminate the front of the vehicle decreases. Therefore, in the third embodiment, this problem is solved by disposing the two light emitting parts of the light source on separate substrates.
  • FIG. 7 is a top view schematically illustrating the schematic configuration of the vehicle lamp 50 according to the third embodiment.
  • FIG. 8 is a side view schematically illustrating the schematic configuration of the vehicle lamp 50 according to the third embodiment.
  • FIG. 9 is a schematic diagram of an example of the light distribution pattern PH formed by the optical unit according to the third embodiment.
  • the same reference numerals are assigned to the same configurations as those of the above-described embodiments, and the description thereof will be omitted as appropriate.
  • the vehicle lamp 50 includes an optical unit 52 .
  • the optical unit 52 includes a light source 54 , a rotating reflector 22 that rotates around a rotation axis R while reflecting light emitted from the light source 54 , and a light reflected by the rotating reflector 22 in the light irradiation direction of the optical unit 52 ( a projection lens 43 for projecting forward F).
  • the light source 54 includes eight LEDs 20a1 and two LEDs 20a2 as the LEDs 20a that are the first light emitting units.
  • the eight LEDs 20a1 and the two LEDs 20a2 are mounted on the first substrate 56 along the width direction W of the vehicle.
  • the light source 54 has an LED 20b that is a second light emitting portion.
  • the LED 20b is mounted on the second substrate 58.
  • the second substrate 58 is arranged at a position where the light emitted from the LED 20 b is not reflected by the rotating reflector 22 and enters the projection lens 43 .
  • the light emitting surface of the LED 20b faces forward F, and the light condensed by the condensing lens 60 is refracted when passing through the projection lens 43 and projected forward of the vehicle.
  • the vehicle lamp 50 according to the third embodiment configured as described above forms a high-beam light distribution pattern PH illustrated in FIG. 9 in the same manner as the vehicle lamp 40 according to the second embodiment. can.
  • the LED 20b is turned on to form a light distribution pattern P4 including a region below the high beam light distribution pattern PH. can.
  • the optical unit 52 can be illuminated while suppressing the glare to the vehicle in front by illuminating the area below the HH line, for example.
  • the light distribution pattern formed by the LEDs 20b is not necessarily limited to the location and shape of the light distribution pattern P4 described above.
  • it may be a light distribution pattern that partially illuminates an area above the line H--H within a range that does not give glare to the vehicle in front. This makes it easier for others to recognize that the optical unit is shining.
  • a light distribution pattern for example, a light distribution pattern that irradiates an area above the HH line in an area 10 degrees or more in the left and right direction with respect to the VV line (front in the vehicle traveling direction). may be
  • the optical unit according to this embodiment can be used for various vehicle lamps. First, an outline of a vehicle lamp on which an optical unit (to be described later) according to an embodiment can be mounted will be described.
  • FIG. 10 is a top view schematically illustrating the schematic configuration of the vehicle lamp 110 according to the fourth embodiment.
  • FIG. 11 is a side view schematically illustrating the schematic configuration of the vehicle lamp 110 according to the fourth embodiment.
  • FIG. 12 is a side view schematically illustrating the configuration of rotating reflector 116 according to the fourth embodiment.
  • a vehicle lamp 110 according to the present embodiment is part of a left headlamp mounted on one side, for example, the left side of the front end of an automobile.
  • the headlight mounted on the left side and the headlight mounted on the right side have the same structure except that they are bilaterally symmetrical. Therefore, the left vehicle lamp 110 will be described in detail below, and the description of the right vehicle lamp will be omitted. Also, in the following figures, illustration of some parts such as a lamp body, a cover, and an extension, which are components of the vehicle headlamp, is omitted.
  • a vehicle lamp 110 includes an optical unit 112 as illustrated in FIG.
  • the optical unit 112 includes a light source 114 and a rotating reflector 116 that rotates around a rotation axis R1 while reflecting light emitted from the light source 114 .
  • the optical unit 112 is a lamp unit configured to irradiate a variable high beam.
  • a variable high beam is controlled to change the shape of the light distribution pattern for the high beam.
  • a non-irradiation area can be generated in a part of the light distribution pattern.
  • the light distribution pattern is, for example, an irradiation area formed by the lamp on a screen (virtual screen) installed 25 to 50 m in front of the lamp.
  • the rotating reflector 116 is arranged so that the rotation axis R1 of the rotating reflector 116 intersects the horizontal plane H.
  • the rotating reflector 116 is arranged so that the rotation axis R1 intersects the longitudinal direction of the vehicle, and has a reflecting surface that reflects the light emitted from the light source 114 obliquely upward toward the rear of the vehicle toward the front of the vehicle.
  • the horizontal plane H is not only defined physically as a plane that intersects the gravity of the earth at right angles, but also includes, for example, the optical axis and the central axis of the projection lens 118 (a straight line passing through the center of the projection lens, which will be described later). ) and parallel to the reference plane P on which the vehicle lamp 110 is placed.
  • the horizontal plane H may be a plane including the optical axes of the left and right vehicle headlights.
  • the case where the rotation axis R1 intersects the horizontal plane H also includes the case where the line extending the rotation axis R intersects the horizontal plane H.
  • the light source 114 has a first light emitting portion 114a and a second light emitting portion 114b.
  • Each light emitting unit has one or more light emitting elements.
  • Semiconductor light-emitting elements such as LEDs, EL elements, and LD elements are preferable as such light-emitting elements.
  • the first light emitting portion 114a and the second light emitting portion 114b are mounted on the same element mounting board 115. As shown in FIG. As a result, the number of parts is reduced, and the space saving of the optical unit 112 is realized.
  • each element is configured so that it can be turned on and off individually.
  • the device mounting board 115 is fixed to the surface of the heat sink 117 .
  • the optical unit 112 includes a fixed reflector 120 that reflects the light L12 emitted from the second light emitting portion 114b.
  • the rotating reflector 116 rotates in one direction around the rotation axis R1 by a drive source such as a motor. Further, the rotating reflector 116 is provided with a blade 116a as a reflecting surface so as to form a desired light distribution pattern by scanning the light of each light source reflected while rotating. In other words, the rotating reflector 116 causes the visible light from the light emitting section to be emitted as an irradiation beam by its rotating motion. Also, the rotating reflector 116 forms a desired light distribution pattern by scanning with the irradiation beam.
  • the rotating reflector 116 two blades 116a having the same shape and functioning as reflecting surfaces are provided around a cylindrical rotating portion 116b.
  • the rotation axis R1 of the rotating reflector 116 is oblique to the horizontal plane H.
  • the rotation axis R1 is provided so as to intersect the scanning plane S of the light (irradiation beam) of each light source that scans in the horizontal direction by rotation.
  • the scanning plane can be regarded as, for example, a fan-shaped plane formed by continuously connecting the trajectories of the light beams of the scanning light sources.
  • This scanning plane S may be regarded as the horizontal plane H described above.
  • the shape of the blade 116a of the rotating reflector 116 is such that the angle formed by the optical axis Ax1 and the reflecting surface changes in the circumferential direction about the rotation axis R1. It has a twisted shape. This enables scanning using the light from the light source 114 .
  • the light source 114 can be arranged below the rotation axis R1 of the rotating reflector 116, as illustrated in FIG. Alternatively, by turning the optical unit 112 upside down, the light source 114 can be arranged above the rotational axis R1 of the rotating reflector 116 .
  • the optical unit 112 also includes a projection lens 118 that projects the light emitted from the light source 114 and reflected by the rotating reflector 116 in the light irradiation direction (forward F) of the optical unit 112 .
  • the light source 114 is located between the rotating reflector 116 and the projection lens 118 in the vehicle front-rear direction (direction along the optical axis Ax1) and below the optical path of the light L11 reflected by the rotating reflector 116 (or the rotating reflector 116 below the rotation axis of the Thereby, the length of the optical unit 112 in the longitudinal direction of the vehicle can be suppressed.
  • FIG. 13 is a top view illustrating the first light emitting portion of the device mounting substrate 115 according to this embodiment.
  • the device mounting substrate 115 according to the present embodiment includes eight LEDs 114a1 (114a) that illuminate an area including the HH line (see FIG. 14A) of the high beam light distribution pattern, and HH (see FIG. 14A).
  • Two LEDs 114a2 (114a) that illuminate the area above the line, and an LED 114b1 (see FIGS. 10 and 11) as a second light emitting section 114b that illuminates the area below the HH line are mounted. . Note that the vertical direction and the horizontal direction shown in FIG.
  • the "vertical direction” is a direction including the “upward direction” and the “downward direction”.
  • a “left-right direction” is a direction including a “left direction” and a “right direction.”
  • the horizontal direction is a direction orthogonal to the vertical direction.
  • the symbol U shown in FIG. 13 indicates an upward direction.
  • Symbol D indicates the downward direction.
  • Symbol L indicates the left direction.
  • the symbol R indicates the right direction.
  • FIG. 14A is a schematic diagram illustrating an irradiation range in which the light emitting region of the first light emitting section 114a of the light source 114 according to the fourth embodiment is reflected and projected with the rotating reflector stationary.
  • FIG. 14B is a schematic diagram showing an example of a high beam light distribution pattern formed by the optical unit 112 according to the fourth embodiment.
  • the optical unit 112 when all the first light emitting portions 114a of the light source 114 are turned on while the rotation of the rotating reflector 116 is stopped, the image of the light emitting region is reflected on the surface of the stationary rotating reflector 116. and the image is projected forward through the projection lens 118 (see FIG. 14A).
  • the lights emitted from the light emitting regions of the eight LEDs 114a1 form eight rectangular irradiation regions R13 on the HH line.
  • the respective lights emitted from the light emitting regions of the two LEDs 114a2 form two rectangular irradiation regions R14 above the irradiation region R13.
  • the rotating reflector 116 rotates, the irradiation regions R13 and R14 are scanned in the horizontal direction to form partial light distribution patterns P11 and P12, respectively.
  • the high-beam light distribution pattern PH1 is formed by superimposing the partial light distribution patterns P11 and P12.
  • the rotating reflector 116 forms part or all of the high beam light distribution pattern PH1 by reflecting and scanning the pattern of the light emitting regions of the LEDs 114a1 and 114a2.
  • the vehicle lamp 110 described above is a lamp whose main function is to form a so-called high-beam light distribution pattern.
  • a general vehicle uses a combination of the vehicle lamp 110 and a separately provided lamp whose main function is to form a low-beam light distribution pattern. Therefore, in a situation where only the low-beam light distribution pattern is formed, if the vehicle lamp 110 does not turn on, the lamps that turn on and the lamps that do not turn on in the vehicle headlights line up, and there is room for improvement in terms of lighting design. be.
  • the optical unit 112 includes a light source 114 having a first light emitting portion 114a and a second light emitting portion 114b, and a light source 114 having the first light emitting portion 114a.
  • a rotating reflector 116 that rotates around a rotation axis R1 while reflecting light L11 emitted from the second light emitting unit 114b, a fixed reflector 120 that reflects light L12 emitted from the second light emitting unit 114b, and a light L11 reflected by the rotating reflector 116. is projected in front of the vehicle as a first light distribution pattern, and the light L12 reflected by the fixed reflector 120 is projected in front of the vehicle as a second light distribution pattern.
  • the first light emitting unit 114a is lit when forming a high beam light distribution pattern as the first light distribution pattern
  • the second light emitting unit 114b is lit when the first light emitting unit 114a is turned off. do.
  • the vehicle lamp 110 As described above, in the vehicle lamp 110 according to the present embodiment, some of the LEDs of the light source 114 are turned on even when the high beam light distribution pattern is not formed, so that the vehicle headlamp as a whole is for low beam.
  • the optical unit 112 can be illuminated even when only the light distribution pattern is formed.
  • FIG. 15 is a schematic diagram showing an example of a light distribution pattern formed by the optical unit 112 according to the fourth embodiment.
  • the vehicular lamp 110 according to the present embodiment turns on the LED 114b1 even when the eight LEDs 114a1 and the two LEDs 114a2 that are turned on when forming the high-beam light distribution pattern are turned off.
  • a partial light distribution pattern P13 below the H line is formed.
  • the partial light distribution pattern P13 is a kind of low-beam light distribution pattern PL1.
  • the low-beam light distribution pattern PL1 may be formed simultaneously with the high-beam light distribution pattern PH1. In this case, it becomes easier to recognize that the optical unit 112 is shining. On the other hand, by not forming the low-beam light distribution pattern PL1 when forming the high-beam light distribution pattern PH1, the power consumption of the vehicle lamp 110 as a whole can be suppressed.
  • the vehicle lamp 110 includes a control unit that controls the turning on and off of the light source based on the situation in front of the vehicle detected by sensors, cameras, etc. provided in the vehicle body.
  • the vehicle lamp 110 turns on LEDs necessary for forming a light distribution pattern for illuminating the front of the vehicle by the control unit.
  • the control unit is a combination of arithmetic units (CPU, IC) and storage units (ROM, RAM).
  • the LEDs 114a1, 114a2, and 114b1 provided in the light source 114 according to this embodiment are provided on the same device mounting substrate 115.
  • FIG. The device mounting board 115 is arranged at a position where the light emitted from the LED 114 b 1 is not reflected by the rotating reflector 116 but is reflected by the fixed reflector 120 and enters the projection lens 118 .
  • the fixed reflector 120 has a shape and arrangement such that the light L12 emitted from the second light emitting section 114b is reflected and enters the projection lens 118. As shown in FIG.
  • the light source 114 emits light reflected by different reflectors, and the plurality of light emitting units (the first light emitting unit 114a and the second light emitting unit 114b) included in the light source 114 are provided on the same substrate.
  • the projection lens 118 can be illuminated only by the light emitted from the LED 114b1.
  • the control unit provided in the vehicle lamp 110 turns off the LEDs 114a1 and 114a2 in the vehicle lamp 110 and turns off the LED 114b1. light up.
  • the optical unit 112 can continue to illuminate even in the vehicle lamp 110 for which the formation of the high-beam light distribution pattern has been interrupted.
  • the optical unit 112 In order for the optical unit 112 to appear to glow when the light source 114 does not form the high-beam light distribution pattern PH1, the light distribution pattern formed by the LED 114b1, which is the second light emitting section 114b, must be formed in the front. Any material may be used as long as it does not easily give glare to the running vehicle.
  • the second light emitting unit 114b forms a low beam light distribution pattern PL1 including a region below the high beam light distribution pattern PH1 with the second light emitted when lit.
  • the optical unit 112 can be illuminated while suppressing the glare to the preceding vehicle and the oncoming vehicle by irradiating the area below the horizontal line.
  • it may be a light distribution pattern that illuminates a region above the HH line in a region that is 10 degrees or more in the left-right direction with respect to the VV line (the front in the direction in which the vehicle travels).
  • the angle ⁇ 1 (see FIG. 11) formed between the rotation axis R of the rotating reflector 116 and the horizontal plane H is, for example, in the range of 1 to 45°, preferably in the range of 3 to 30°, more preferably in the range of 5 to 20°. be.
  • the diameter of the rotating reflector 116 is, for example, in the range of 30-100 mm, preferably in the range of 40-80 mm, more preferably in the range of 50-70 mm.
  • the width (in the vehicle width direction) of the projection lens 118 is, for example, in the range of 50-120 mm, preferably in the range of 60-100 mm, and more preferably in the range of 70-90 mm.
  • the height (vehicle height direction) of the projection lens 118 is, for example, 20 to 60 mm, preferably 25 to 50 mm, more preferably 25 to 35 mm.
  • the incident angle ⁇ 1 (see FIG. 11) at which the light emitted from the light source is incident on the blade 116a of the rotating reflector 116 is less than 45°, preferably 30° or less, more preferably 20° or less. This improves the incidence efficiency of the light flux reflected by the rotating reflector 116 to the projection lens 118 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

光学ユニット(18,42,52)は、光源(20,54)と、光源(20,54)から出射した光を反射しながら回転軸を中心に回転する回転リフレクタと、回転リフレクタ(22)で反射された光を車両前方にハイビーム用配光パターンとして投影する投影レンズ(26,43)と、を備える。光源(20,54)は、ハイビーム用配光パターンを形成する際に点灯する第1の発光部と、第1の発光部が消灯している場合に点灯している第2の発光部と、を有する。

Description

光学ユニット
 本開示は、光学ユニットに関する。
 近年、光源から出射した光を車両前方に反射し、その反射光で車両前方の領域を走査することで所定の配光パターンを形成する装置が考案されている。例えば、光源から出射した光を反射しながら回転軸を中心に一方向に回転する回転リフレクタと、発光素子からなる光源と、を備え、回転リフレクタは、回転しながら反射した光源の光が所望の配光パターンを形成するよう反射面が設けられている光学ユニットが知られている(特許文献1参照)。
国際公開第2020/137636号
 前述の光学ユニットは、車両用前照灯における可変配光ハイビームに適したユニットであり、ロービーム用の他の光学ユニットと併せて車両用前照灯を構成する。このような車両前照灯の場合、ロービームのみを照射する状況では、可変配光ハイビーム用の光学ユニットによるハイビームの照射は停止する必要がある。したがって、このような車両前照灯の場合、ロービーム用の光学ユニットは点灯する一方で、ハイビーム用の光学ユニットは消灯する。そのため、このような車両前照灯は、全ての光学ユニットが点灯している場合と比較して、車両用前照灯の照明デザインに改善の余地がある。
 本開示はこうした状況に鑑みてなされたものであり、その目的とするところの一つは、車両用前照灯の照明デザインを向上させる新たな技術を提供することにある。
 本開示の一態様に係る光学ユニットは、
 光源と、
 前記光源から出射した光を反射しながら回転軸を中心に回転する回転リフレクタと、
 前記回転リフレクタで反射された光を車両前方にハイビーム用配光パターンとして投影する投影レンズと、を備え、
 前記光源は、
 前記ハイビーム用配光パターンを形成する際に点灯する第1の発光部と、
 前記第1の発光部が消灯している場合に点灯している第2の発光部と、を有する。
 上記のような構成によれば、ハイビーム用配光パターンを形成していない場合でも光学ユニットを光らせることができる。
 また、本開示の一態様に係る光学ユニットは、
 第1の発光部と第2の発光部とを有する光源と、
 前記第1の発光部から出射した第1の光を反射しながら回転軸を中心に回転する回転リフレクタと、
 前記第2の発光部から出射した第2の光を反射する固定リフレクタと、
 前記回転リフレクタで反射された前記第1の光を車両前方に第1の配光パターンとして投影し、前記固定リフレクタで反射された前記第2の光を車両前方に第2の配光パターンとして投影する投影レンズと、を備え、
 前記第1の発光部は、前記第1の配光パターンとしてハイビーム用配光パターンを形成する際に点灯し、
 前記第2の発光部は、前記第1の発光部が消灯している場合に点灯する。
 本開示によれば、車両用前照灯の照明デザインを向上できる。
図1は、第1の実施の形態に係る車両用灯具の水平断面概要図である。 図2は、第1の実施の形態に係る回転リフレクタの斜視図である。 図3は、第1の実施の形態に係る回路基板の上面図である。 図4Aは、第1の実施の形態に係る光源の発光領域が、回転リフレクタが静止した状態で反射投影された照射範囲を例示する模式図である。 図4Bは、第1の実施の形態に係る光学ユニットにより形成された配光パターンの一例を示す模式図である。 図5は、第2の実施の形態に係る車両用灯具の概略構成を模式的に例示する上面図である。 図6は、第2の実施の形態に係る車両用灯具の概略構成を模式的に例示する側面図である。 図7は、第3の実施の形態に係る車両用灯具の概略構成を模式的に例示する上面図である。 図8は、第3の実施の形態に係る車両用灯具の概略構成を模式的に例示する側面図である。 図9は、第3の実施の形態に係る光学ユニットにより形成された配光パターンの一例を示す模式図である。 図10は、第4の実施の形態に係る車両用灯具の概略構成を模式的に例示する上面図である。 図11は、第4の実施の形態に係る車両用灯具の概略構成を模式的に例示する側面図である。 図12は、第4の実施の形態に係る回転リフレクタの構成を模式的に例示する側面図である。 図13は、第4の実施の形態に係る素子搭載用基板のうち第1の発光部を例示する上面図である。 図14Aは、第4の実施の形態に係る光源の第1の発光部の発光領域が、回転リフレクタが静止した状態で反射投影された照射範囲を例示する模式図である。 図14Bは第4の実施の形態に係る光学ユニットにより形成されたハイビーム用配光パターンの一例を示す模式図である。 図15は、第4の実施の形態に係る光学ユニットにより形成された配光パターンの一例を示す模式図である。
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 本開示の一態様に係る光学ユニットは、
 光源と、
 前記光源から出射した光を反射しながら回転軸を中心に回転する回転リフレクタと、
 前記回転リフレクタで反射された光を車両前方にハイビーム用配光パターンとして投影する投影レンズと、を備え、
 前記光源は、
 前記ハイビーム用配光パターンを形成する際に点灯する第1の発光部と、
 前記第1の発光部が消灯している場合に点灯している第2の発光部と、を有する。
 この構成によれば、ハイビーム用配光パターンを形成していない場合でも光学ユニットを光らせることができるので、車両用前照灯の照明デザインを向上させることができる。
 また、本開示の一態様に係る光学ユニットは、
 前記第2の発光部は、前記第1の発光部が設けられている第1の基板に設けられており、
 前記第1の基板は、前記第2の発光部から出射した光が前記回転リフレクタで反射されてから前記投影レンズに入射する位置に配置されていてもよい。
 この構成によれば、第2の発光部から出射した光により投影レンズを光らせることができる。
 また、本開示の一態様に係る光学ユニットは、
 前記第2の発光部は、前記第1の発光部が設けられている第1の基板とは異なる第2の基板に設けられており、
 前記第2の基板は、前記第2の発光部から出射した光が前記回転リフレクタで反射されずに前記投影レンズに入射する位置に配置されていてもよい。
 この構成によれば、第2の発光部から出射した光により投影レンズを光らせることができる。
 また、本開示の一態様に係る光学ユニットは、
 前記第2の発光部は、点灯時に前記ハイビーム用配光パターンよりも下部の領域を含む配光パターンを形成する光を出射してもよい。
 この構成によれば、ハイビーム用配光パターンを形成していない場合でも、例えば、水平線より下部の領域を照射することで前走車(先行車や対向車)に対するグレアを抑制しつつ光学ユニットを光らせることができる。
 また、本開示の一態様に係る光学ユニットは、
 前記回転リフレクタは、前記回転軸が車両前後方向に対して交差するように配置されており、前記第1の発光部から車幅方向へ出射した光を車両前方へ反射する反射面を有してもよい。
 また、本開示の一態様に係る光学ユニットは、
 前記回転リフレクタは、前記回転軸が車両前後方向に対して交差するように配置されており、前記第1の発光部から車両後方へ斜め上に出射した光を車両前方へ反射する反射面を有してもよい。
 また、本開示の一態様に係る光学ユニットは、
 第1の発光部と第2の発光部とを有する光源と、
 前記第1の発光部から出射した第1の光を反射しながら回転軸を中心に回転する回転リフレクタと、
 前記第2の発光部から出射した第2の光を反射する固定リフレクタと、
 前記回転リフレクタで反射された前記第1の光を車両前方に第1の配光パターンとして投影し、前記固定リフレクタで反射された前記第2の光を車両前方に第2の配光パターンとして投影する投影レンズと、を備え、
 前記第1の発光部は、前記第1の配光パターンとしてハイビーム用配光パターンを形成する際に点灯し、
 前記第2の発光部は、前記第1の発光部が消灯している場合に点灯する。
 この構成によれば、ハイビーム用配光パターンを形成していない場合でも光学ユニットを光らせることができる。
 また、本開示の一態様に係る光学ユニットは、
 前記第1の発光部および前記第2の発光部は、同じ基板に設けられていてもよい。
 この構成によれば、部品点数が低減し、光学ユニットの省スペース化が実現できる。 
 また、本開示の一態様に係る光学ユニットは、
 前記基板は、前記第2の発光部から出射した光が前記回転リフレクタで反射されずに前記投影レンズに入射する位置に配置されていてもよい。
 この構成によれば、異なるリフレクタで反射される光をそれぞれ出射する複数の発光部を同じ基板に設けることができる。
 また、本開示の一態様に係る光学ユニットは、
 前記第2の発光部は、点灯時に出射する前記第2の光により、ハイビーム用配光パターンよりも下部の領域を含む前記第2の配光パターンを形成してもよい。
 この構成によれば、ハイビーム用配光パターンを形成していない場合でも、例えば、水平線より下部の領域を照射することで前走車や対向車に対するグレアを抑制しつつ光学ユニットを光らせることができる。
 また、本開示の一態様に係る光学ユニットは、
 前記回転リフレクタは、回転軸が車両前後方向に対して交差するように配置されており、前記第1の発光部から車両後方へ斜め上に出射した前記第1の光を車両前方へ反射する反射面を有していてもよい。
 以上の構成要素の任意の組合せ、本発明の表現を製造方法、灯具や照明などの装置、発光モジュール、光源などの間で変換したものもまた、本発明の態様として有効である。
[本開示の実施形態の詳細]
 以下、本開示を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、本開示の内容を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組合せは、必ずしも本開示の本質的なものであるとは限らない。
 [第1の実施の形態]
 本実施の形態に係る光学ユニットは、種々の車両用灯具に用いることができる。はじめに、実施の形態に係る後述の光学ユニットを搭載可能な車両用灯具の概略について説明する。
 (車両用灯具)
 図1は、第1の実施の形態に係る車両用灯具10の水平断面概要図である。図2は、第1の実施の形態に係る回転リフレクタ22の斜視図である。第1の実施の形態に係る車両用灯具10は、自動車の前端部の一方の側、例えば左側に搭載される左側前照灯の一部である。左側に搭載される前照灯と右側に搭載される前照灯は、左右対称である以外は同じ構造である。そのため、以下では、左側の車両用灯具10について詳述し、右側の車両用灯具については説明を省略する。
 図1に例示するように、車両用灯具10は、前方(図1における右方)に向かって開口した凹部を有するランプボディ12を備えている。ランプボディ12は、その前面開口が透明な前面カバー14によって覆われて灯室16が形成されている。灯室16は、一つの光学ユニット18が収容される空間として機能する。光学ユニット18は、可変ハイビームを照射できるように構成されたランプユニットである。可変ハイビームとは、ハイビーム用の配光パターンの形状を変化させるように制御されているものをいい、例えば、配光パターンの一部に非照射領域(遮光部)を生じさせることができる。ここで、配光パターンとは、例えば、灯具が灯具前方25~50mに設置したスクリーン(仮想スクリーン)上に形成する照射領域である。
 本実施の形態に係る光学ユニット18は、光源20と、光源20から出射した第1の光L1をブレード22aで反射しながら回転軸Rを中心に回転する回転リフレクタ22と、回転リフレクタ22で反射された第1の光L1を光学ユニットの光照射方向(図1における右方向)にハイビーム用配光パターンとして投影する投影レンズ26としての凸レンズと、光源20を搭載したヒートシンク32と、を備える。
 光源20は、例えばLED、EL、LDなどの半導体発光素子から構成されうる。本実施の形態に係る光源20は、回路基板33上に配置された複数のLED20aを備える。各LED20aは個別に点消灯可能に構成されている。
 回転リフレクタ22は、モータ34などの駆動源により回転軸Rを中心に一方向に回転する。また、図2に例示するように、回転リフレクタ22は、形状の同じ2枚のブレード22aが筒状の回転部22bの周囲に設けられている。また、図1に例示するように、回転リフレクタ22は、回転軸Rが車両前後方向に対して交差するよう、光軸Axに対して斜めに配置されている。回転リフレクタ22は、LED20aから車幅方向へ出射した光を車両前方へ反射するブレード22aを有している。ブレード22aは、光源20から出射した光を回転しながら反射した光で前方を走査し、所望の配光パターンを形成するように構成された反射面として機能する。回転リフレクタ22のブレード22aの反射面22cは、回転軸Rを中心とする周方向に向かうにつれて、光軸Axと該反射面とが成す角が変化するように捩られた形状を有している。
 回転リフレクタ22の回転軸Rは、光軸Axと光源20とを含む平面内に設けられている。換言すると、回転軸Rは、回転によって左右方向に走査するLED20aの光(照射ビーム)の走査平面に略平行に設けられている。これにより、光学ユニットの薄型化が図られる。ここで、走査平面とは、例えば、走査光であるLED20aの光の軌跡を連続的につなげることで形成される扇形の平面ととらえることができる。
 投影レンズ26の形状は、要求される配光パターンや照度分布などの配光特性に応じて適宜選択できる。投影レンズ26は、例えば非球面レンズや自由曲面レンズから構成されうる。
 (光源)
 次に、光源20が備える複数の半導体発光素子のレイアウトについて説明する。図3は、第1の実施の形態に係る回路基板33の上面図である。本実施の形態に係る回路基板33は、ハイビーム用配光パターンのH-H線(図4A参照)を含む領域を照らす8個のLED20a1(20a)と、H-H線(図4A参照)より上方の領域を照らす2個のLED20a2(20a)と、H-H線(図4A参照)より下方の領域を照らす2個のLED20a3(20a)と、が実装されている。なお、図3に示す上下方向および前後方向は、車両用灯具10の光軸Ax(図1参照)方向を前方向としている。また、「上下方向」は、「上方向」および「下方向」を含む方向である。「前後方向」は、「前方向」および「後方向」を含む方向である。前後方向は、上下方向に直交する方向である。なお、図3において図中に示した符号Uは上方向を示す。符号Dは下方向を示す。符号Fは前方向を示す。符号Bは後方向を示す。
 (配光パターン)
 図4Aは、第1の実施の形態に係る光源20の発光領域が、回転リフレクタ22が静止した状態で反射投影された照射範囲を例示する模式図である。図4Bは、第1の実施の形態に係る光学ユニット18により形成された配光パターンPHの一例を示す模式図である。
 本実施の形態に係る光学ユニット18において、回転リフレクタ22の回転が停止した状態で光源20のLED20aを全て点灯させると、静止した回転リフレクタ22の表面で発光領域の像が反射され、投影レンズ26を介して前方に当該像が投影される(図4A参照)。
 本実施の形態に係る光学ユニット18においては、8個のLED20a1の発光領域から出射されたそれぞれの光が、H-H線上に8個の矩形の照射領域R3を形成する。また、2個のLED20a2の発光領域から出射されたそれぞれの光が、照射領域R3の上方に2個の矩形の照射領域R4を形成する。また、2個のLED20a3の発光領域から出射されたそれぞれの光が、照射領域R3の下方に2個の矩形の照射領域R5を形成する。
 そして、回転リフレクタ22が回転すると、図4Bに例示するように、照射領域R3,R4,R5が左右方向に走査され、それぞれ部分配光パターンP1,P2,P3が形成される。本実施の形態では、部分配光パターンP1,P2が重畳されることでハイビーム用配光パターンPHが形成される。
 このように、本実施の形態に係る回転リフレクタ22は、各LED20aの発光領域のパターンを反射し走査することでハイビーム用配光パターンPHの一部または全部を形成する。
 上述の車両用灯具10は、いわゆるハイビーム用配光パターンの形成が主たる機能の灯具である。そのため、一般的な車両は、車両用灯具10と、別途設けられているロービーム用配光パターンの形成が主たる機能の灯具とを組み合わせて使用する。そのため、ロービーム用配光パターンのみを形成する状況で、車両用灯具10が点灯しないと、車両用前照灯の中で点灯する灯具と点灯しない灯具とが並ぶため、照明デザインとして改善の余地がある。
 そこで、本実施の形態に係る車両用灯具10では、ハイビーム用配光パターンを形成しない場合にも光源20の一部のLEDを点灯させることで、車両用前照灯が全体としてロービーム用配光パターンのみを形成する状況でも光学ユニット18を光らせることができる。
 具体的には、ハイビーム用配光パターンを形成する際に点灯する8個のLED20a1および2個のLED20a2が消灯している場合でも、LED20a3を点灯させることで、H-H線よりも下部の部分配光パターンP3が形成される。本実施の形態では、部分配光パターンP3が一種のロービーム用配光パターンPLとなる。
 このように、第2の発光部であるLED20a3は、点灯時にハイビーム用配光パターンPHよりも下部の領域を含む配光パターンを形成する光を出射するように構成されている。これにより、第1の発光部であるLED20a1,20a2によってハイビーム用配光パターンPHを形成していない場合でも、例えば、H-H線より下部の領域を照射することで前走車に対するグレアを抑制しつつ光学ユニット18を光らせることができる。
 なお、ロービーム用配光パターンPLをハイビーム用配光パターンPHと同時に形成してもよい。この場合、光学ユニット18が光っていることがより認識しやすくなる。一方、ハイビーム用配光パターンPHを形成する際にはロービーム用配光パターンPLが形成されないようにすることで、車両用灯具10全体の消費電力を抑えられる。
 車両用灯具10は、車両本体に設けられているセンサやカメラ等によって検出された車両前方の状況から光源の点消灯を制御する制御部を備える。車両用灯具10は、当該制御部によって、車両前方を照射する配光パターンの形成に必要なLEDを点灯させる。ここで、当該制御部は、演算装置(CPU,IC)や記憶装置(ROM,RAM)が組み合わされたものである。
 本実施の形態に係る光源20に備わるLED20a1,20a2,20a3は、同じ回路基板33に設けられている。回路基板33は、LED20a3から出射した光が回転リフレクタ22で反射されてから投影レンズ26に入射する位置に配置されている。これにより、LED20a3から出射した光だけでも投影レンズ26を光らせることができる。そこで、車両用灯具10に備わる制御部は、ハイビーム用配光パターンを形成しながら走行している途中でカメラ等によって前走車を検出した場合、車両用灯具10におけるLED20a1,20a2を消灯しLED20a3を点灯する。これにより、ハイビーム用配光パターンの形成を中断した車両用灯具10においても、引き続き光学ユニット18を光らせることができる。
 なお、光源20がハイビーム用配光パターンPHを形成していない場合に光学ユニット18が光っているように見えるためには、第2の発光部であるLED20a3によって形成される配光パターンが前走車に対してグレアを与えにくいものであればよい。
 [第2の実施の形態]
 図5は、第2の実施の形態に係る車両用灯具の概略構成を模式的に例示する上面図である。図6は、第2の実施の形態に係る車両用灯具の概略構成を模式的に例示する側面図である。なお、以下の各図では、車両用灯具の構成であるランプボディ、カバー、エクステンション等の一部の部品の図示を省略している。また、車両用前照灯として別途設けられているロービーム用の灯具の図示も省略している。なお、第1の実施の形態と同じ構成には同じ符号を付して説明を適宜省略する。
 車両用灯具40は、光学ユニット42を備える。光学ユニット42は、光源20と、光源20から出射された光を反射しながら回転軸Rを中心に回転する回転リフレクタ22と、回転リフレクタ22で反射された光を光学ユニット42の光照射方向(前方F)に投影する投影レンズ43と、を備える。回転リフレクタ22は、回転リフレクタの回転軸Rが水平面H(図6参照)と交差するように配置されている。つまり、回転リフレクタ22は、回転軸Rが車両前後方向に対して交差するように配置されており、光源20から車両後方へ斜め上に出射した光を車両前方へ反射する反射面22cを有している。
 次に、光学ユニット42の各構成の諸元の範囲について例示する。回転リフレクタ22の回転軸Rと水平面Hとの成す角α(図6参照)は、例えば、1~45°の範囲、好ましくは3~30°の範囲、より好ましくは5~20°の範囲である。回転リフレクタ22の直径は、例えば、30~100mmの範囲、好ましくは40~80mmの範囲、より好ましくは、50~70mmの範囲である。
 投影レンズ43の幅(車幅方向)は、例えば、50~120mmの範囲、好ましくは60~100mmの範囲、より好ましくは70~90mmの範囲である。投影レンズ43の高さ(車高方向)は、例えば、20~60mm、好ましくは、25~50mm、より好ましくは25~35mmである。
 光源20から出射した光が回転リフレクタ22のブレード22aに入射する入射角β(図6参照)は、45°未満であり、好ましくは30°以下、より好ましくは20°以下であるとよい。これにより、回転リフレクタ22で反射した光の光束の投影レンズ43への入射効率が向上する。
 光源20は、第1の実施の形態と同様に、8個のLED20a1と、2個のLED20a2と、2個のLED20a3と、が車幅方向Wに沿ってそれぞれ配置されている。各LEDは、一つの回路基板33に搭載されている。また、回路基板33は、ヒートシンク44の表面に固定されている。
 上述のように構成された第2の実施の形態に係る車両用灯具40は、第1の実施の形態に係る車両用灯具10と同様に、図4Bに例示する配光パターンPHを形成できる。つまり、車両用灯具40の第2の発光部であるLED20a3は、点灯時にハイビーム用配光パターンPHよりも下部の領域を含む配光パターンPHを形成する光を出射するように構成されている。これにより、ハイビーム用配光パターンPHを形成していない場合でも、例えば、H-H線より下部の領域を照射することで前走車に対するグレアを抑制しつつ光学ユニット42を光らせることができる。
 [第3の実施の形態]
 第2の実施の形態に係る車両用灯具40は、光源20の回路基板33の上段に第2の発光部としてのLED20a3が配置されている。そのため、回路基板33が上方に延びる形で大きくなり、第1の発光部としてのLED20a1,20a2から出射して回転リフレクタ22で反射された光の一部が回路基板33やヒートシンク44で妨げられることになる。その結果、光源20が発する光が車両前方の照射に利用される効率が低下する。そこで、第3の実施の形態では、光源が備える2つの発光部を別々の離れた基板に設けることでこの問題を解決している。
 図7は、第3の実施の形態に係る車両用灯具50の概略構成を模式的に例示する上面図である。図8は、第3の実施の形態に係る車両用灯具50の概略構成を模式的に例示する側面図である。図9は、第3の実施の形態に係る光学ユニットにより形成された配光パターンPHの一例の模式図である。なお、前述の各実施の形態と同じ構成には同じ符号を付して説明を適宜省略する。
 車両用灯具50は、光学ユニット52を備える。光学ユニット52は、光源54と、光源54から出射された光を反射しながら回転軸Rを中心に回転する回転リフレクタ22と、回転リフレクタ22で反射された光を光学ユニット52の光照射方向(前方F)に投影する投影レンズ43と、を備える。
 図7および図8に例示するように、光源54は、第1の発光部であるLED20aとして、8個のLED20a1および2個のLED20a2を備えている。8個のLED20a1および2個のLED20a2は、車幅方向Wに沿って、第1の基板56に搭載されている。また、光源54は、第2の発光部であるLED20bを備えている。LED20bは、第2の基板58に搭載されている。第2の基板58は、LED20bから出射した光が回転リフレクタ22で反射されずに投影レンズ43に入射する位置に配置されている。LED20bは、発光面が前方Fに向いており、集光レンズ60で集光された光が投影レンズ43を透過する際に屈折し、車両前方に投影される。
 上述のように構成された第3の実施の形態に係る車両用灯具50は、第2の実施の形態に係る車両用灯具40と同様に、図9に例示するハイビーム用配光パターンPHを形成できる。加えて、ハイビーム用配光パターンを形成するためのLED20a1,20a2を消灯した状態であっても、LED20bを点灯させることでハイビーム用配光パターンPHよりも下部の領域を含む配光パターンP4を形成できる。これにより、ハイビーム用配光パターンPHを形成していない場合でも、例えば、H-H線より下部の領域を照射することで前走車に対するグレアを抑制しつつ光学ユニット52を光らせることができる。
 なお、LED20bによって形成する配光パターンは、必ずしも前述の配光パターンP4の場所や形状に限られない。例えば、前走車にグレアを与えない範囲で、一部がH-H線よりも上の領域を照射する配光パターンであってもよい。これにより、光学ユニットが光っていることを他者がより認識しやすくなる。
 このような配光パターンとして、例えば、V-V線(車両進行方向における正面)に対して左右方向に10度以上外側の領域において、H-H線よりも上方の領域を照射する配光パターンであってもよい。
 [第4の実施の形態]
 本実施の形態に係る光学ユニットは、種々の車両用灯具に用いることができる。はじめに、実施の形態に係る後述の光学ユニットを搭載可能な車両用灯具の概略について説明する。
 (車両用灯具)
 図10は、第4の実施の形態に係る車両用灯具110の概略構成を模式的に例示する上面図である。図11は、第4の実施の形態に係る車両用灯具110の概略構成を模式的に例示する側面図である。図12は、第4の実施の形態に係る回転リフレクタ116の構成を模式的に例示する側面図である。
 本実施の形態に係る車両用灯具110は、自動車の前端部の一方の側、例えば左側に搭載される左側前照灯の一部である。左側に搭載される前照灯と右側に搭載される前照灯は、左右対称である以外は同じ構造である。そのため、以下では、左側の車両用灯具110について詳述し、右側の車両用灯具については説明を省略する。また、以下の各図では、車両用前照灯の構成であるランプボディ、カバー、エクステンション等の一部の部品の図示を省略している。
 図10に例示するように、車両用灯具110は、光学ユニット112を備える。光学ユニット112は、光源114と、光源114から出射された光を反射しながら回転軸R1を中心に回転する回転リフレクタ116と、を備える。光学ユニット112は、可変ハイビームを照射できるように構成されたランプユニットである。可変ハイビームとは、ハイビーム用の配光パターンの形状を変化させるように制御されているものをいい、例えば、配光パターンの一部に非照射領域(遮光部)を生じさせることができる。ここで、配光パターンとは、例えば、灯具が灯具前方25~50mに設置したスクリーン(仮想スクリーン)上に形成する照射領域である。
 図11に例示するように、回転リフレクタ116は、回転リフレクタ116の回転軸R1が水平面Hと交差するように配置されている。つまり、回転リフレクタ116は、回転軸R1が車両前後方向に対して交差するように配置されており、光源114から車両後方へ斜め上に出射した光を車両前方へ反射する反射面を有している。
 ここで、水平面Hとは、地球の重力と直角に交わる面といった物理的に定義される場合だけでなく、例えば、後述する投影レンズ118の光軸や中心軸(投影レンズの中心を通過する直線)を含み、車両用灯具110を載置する基準面Pに対して平行な面ということができる。あるいは、左右の車両用前照灯の各光軸を含む平面を水平面Hとしてもよい。また、回転軸R1が水平面Hと交差するとは、回転軸Rを延長した線が水平面Hと交差する場合も含まれる。
 図10および図11に例示するように、光源114は、第1の発光部114aと、第2の発光部114bと、を有する。各発光部は、一つ以上の発光素子を有する。このような発光素子としては、LED、EL素子、LD素子などの半導体発光素子が好ましい。第1の発光部114a及び第2の発光部114bは、同じ素子搭載用基板115に搭載されている。これにより、部品点数が低減し、光学ユニット112の省スペース化が実現される。また、各素子は個別に点消灯可能に構成されている。また、素子搭載用基板115は、ヒートシンク117の表面に固定されている。さらに、光学ユニット112は、第2の発光部114bから出射した光L12を反射する固定リフレクタ120を備えている。
 回転リフレクタ116は、モータなどの駆動源により回転軸R1を中心に一方向に回転する。また、回転リフレクタ116には、回転しながら反射した各光源の光を走査することで所望の配光パターンを形成するように、反射面としてのブレード116aが設けられている。つまり、回転リフレクタ116は、その回転動作により、発光部からの可視光を照射ビームとして出射させるものである。また、回転リフレクタ116は、当該照射ビームで走査することによって、所望の配光パターンを形成する。
 回転リフレクタ116には、反射面として機能する、形状の同じ2枚のブレード116aが筒状の回転部116bの周囲に設けられている。回転リフレクタ116の回転軸R1は、水平面Hに対して斜めになっている。換言すると、回転軸R1は、回転によって左右方向に走査する各光源の光(照射ビーム)の走査平面Sと交差するように設けられている。これにより、光学ユニット112の薄型化が図られる。ここで、走査平面とは、例えば、走査光である各光源の光の軌跡を連続的につなげることで形成される扇形の平面と捉えることができる。この走査平面Sを前述の水平面Hと捉えてもよい。
 また、図11および図12に例示するように、回転リフレクタ116のブレード116aの形状は、回転軸R1を中心とする周方向に向かうにつれて、光軸Ax1と反射面とが成す角が変化するように捩られた形状を有している。これにより、光源114の光を用いた走査が可能となる。
 また、本実施の形態に係る光学ユニット112は、図11に例示するように、光源114を回転リフレクタ116の回転軸R1よりも下方に配置できる。あるいは、光学ユニット112を上下反転することで、光源114を回転リフレクタ116の回転軸R1よりも上方に配置できる。
 また、光学ユニット112は、光源114から出射し、回転リフレクタ116で反射された光を光学ユニット112の光照射方向(前方F)に投影する投影レンズ118を備えている。光源114は、車両の前後方向(光軸Ax1に沿った方向)において回転リフレクタ116と投影レンズ118との間、かつ、回転リフレクタ116で反射された光L11の光路よりも下方(あるいは回転リフレクタ116の回転軸よりも下方)に配置されている。これにより、光学ユニット112の車両前後方向の長さを抑制できる。
 (光源)
 次に、光源が備える複数の半導体発光素子のレイアウトについて説明する。図13は、本実施の形態に係る素子搭載用基板115のうち第1の発光部を例示する上面図である。本実施の形態に係る素子搭載用基板115は、ハイビーム用配光パターンのH-H線(図14A参照)を含む領域を照らす8個のLED114a1(114a)と、H-H(図14A参照)線より上方の領域を照らす2個のLED114a2(114a)と、H-H線より下方の領域を照らす第2の発光部114bとしてのLED114b1(図10および図11参照)と、が実装されている。なお、図13に示す上下方向および左右方向は、車両用灯具110の光軸Ax1(図10参照)方向と交差する面内での方向としている。また、「上下方向」は、「上方向」および「下方向」を含む方向である。「左右方向」は、「左方向」および「右方向」を含む方向である。左右方向は、上下方向に直交する方向である。なお、図13において図中に示した符号Uは上方向を示す。符号Dは下方向を示す。符号Lは左方向を示す。符号Rは右方向を示す。
 (配光パターン)
 図14Aは、第4の実施の形態に係る光源114の第1の発光部114aの発光領域が、回転リフレクタが静止した状態で反射投影された照射範囲を例示する模式図である。図14Bは第4の実施の形態に係る光学ユニット112により形成されたハイビーム用配光パターンの一例を示す模式図である。
 本実施の形態に係る光学ユニット112において、回転リフレクタ116の回転が停止した状態で光源114の第1の発光部114aを全て点灯させると、静止した回転リフレクタ116の表面で発光領域の像が反射され、投影レンズ118を介して当該像が前方に投影される(図14A参照)。
 本実施の形態に係る光学ユニット112においては、8個のLED114a1の発光領域から出射されたそれぞれの光が、H-H線上に8個の矩形の照射領域R13を形成する。また、2個のLED114a2の発光領域から出射されたそれぞれの光が、照射領域R13の上方に2個の矩形の照射領域R14を形成する。
 そして、回転リフレクタ116が回転すると、照射領域R13,R14が左右方向に走査され、それぞれ部分配光パターンP11,P12が形成される。本実施の形態では、部分配光パターンP11,P12が重畳されることでハイビーム用配光パターンPH1が形成される。
 このように、本実施の形態に係る回転リフレクタ116は、各LED114a1,114a2の発光領域のパターンを反射し走査することでハイビーム用配光パターンPH1の一部または全部を形成する。
 上述の車両用灯具110は、いわゆるハイビーム用配光パターンの形成が主たる機能の灯具である。そして、一般的な車両は、車両用灯具110と、別途設けられているロービーム用配光パターンの形成が主たる機能の灯具とを組み合わせて使用する。そのため、ロービーム用配光パターンのみを形成する状況で、車両用灯具110が点灯しないと、車両用前照灯の中で点灯する灯具と点灯しない灯具とが並ぶため、照明デザインとして改善の余地がある。
 そこで、本実施の形態に係る光学ユニット112は、図10および図11に例示するように、第1の発光部114aと第2の発光部114bとを有する光源114と、第1の発光部114aから出射した光L11を反射しながら回転軸R1を中心に回転する回転リフレクタ116と、第2の発光部114bから出射した光L12を反射する固定リフレクタ120と、回転リフレクタ116で反射された光L11を車両前方に第1の配光パターンとして投影し、固定リフレクタ120で反射された光L12を車両前方に第2の配光パターンとして投影する投影レンズ118と、を備える。第1の発光部114aは、第1の配光パターンとしてハイビーム用配光パターンを形成する際に点灯し、第2の発光部114bは、第1の発光部114aが消灯している場合に点灯する。
 このように、本実施の形態に係る車両用灯具110では、ハイビーム用配光パターンを形成しない場合にも光源114の一部のLEDを点灯させることで、車両用前照灯が全体としてロービーム用配光パターンのみを形成する状況でも光学ユニット112を光らせることができる。
 図15は、第4の実施の形態に係る光学ユニット112により形成された配光パターンの一例を示す模式図である。本実施の形態に係る車両用灯具110は、ハイビーム用配光パターンを形成する際に点灯する8個のLED114a1及び2個のLED114a2が消灯している場合でも、LED114b1を点灯させることで、H-H線よりも下部の部分配光パターンP13が形成される。本実施の形態では、部分配光パターンP13が一種のロービーム用配光パターンPL1となる。
 なお、ロービーム用配光パターンPL1をハイビーム用配光パターンPH1と同時に形成してもよい。この場合、光学ユニット112が光っていることがより認識しやすくなる。一方、ハイビーム用配光パターンPH1を形成する際にはロービーム用配光パターンPL1が形成されないようにすることで、車両用灯具110全体の消費電力を抑えられる。
 車両用灯具110は、車両本体に設けられているセンサやカメラ等によって検出された車両前方の状況から光源の点消灯を制御する制御部を備える。車両用灯具110は、当該制御部によって車両前方を照射する配光パターンの形成に必要なLEDを点灯させる。ここで、当該制御部は、演算装置(CPU,IC)や記憶装置(ROM,RAM)が組み合わされたものである。
 本実施の形態に係る光源114に備わるLED114a1,114a2,114b1は同じ素子搭載用基板115に設けられている。素子搭載用基板115は、LED114b1から出射した光が回転リフレクタ116で反射されずに固定リフレクタ120で反射されて投影レンズ118に入射する位置に配置されている。固定リフレクタ120は、第2の発光部114bから出射した光L12が反射されて投影レンズ118に入射するような形状や配置となっている。このように、光源114は異なるリフレクタで反射される光をそれぞれ出射し、かつ光源114に備わる複数の発光部(第1の発光部114aと第2の発光部114b)は同じ基板に設けられている。また、LED114b1から出射した光だけでも投影レンズ118を光らせることができる。
 そこで、車両用灯具110に備わる制御部は、ハイビーム用配光パターンを形成しながら走行している途中でカメラ等によって前走車を検出した場合、車両用灯具110におけるLED114a1,114a2を消灯しLED114b1を点灯する。これにより、ハイビーム用配光パターンの形成を中断した車両用灯具110においても、引き続き光学ユニット112を光らせることができる。
 なお、光源114がハイビーム用配光パターンPH1を形成していない場合に光学ユニット112が光っているように見えるためには、第2の発光部114bであるLED114b1によって形成される配光パターンが前走車に対してグレアを与えにくいものであればよい。
 そこで、本実施の形態に係る第2の発光部114bは、点灯時に出射する第2の光により、ハイビーム用配光パターンPH1よりも下部の領域を含むロービーム用配光パターンPL1を形成する。これにより、ハイビーム用配光パターンPH1を形成していない場合でも、水平線より下部の領域を照射することで前走車や対向車に対するグレアを抑制しつつ光学ユニット112を光らせることができる。あるいは、V-V線(車両進行方向における正面)に対して左右方向に10度以上外側の領域において、H-H線よりも上方の領域を照射する配光パターンであってもよい。
 次に、光学ユニット112の各構成の諸元の範囲について例示する。回転リフレクタ116の回転軸Rと水平面Hとの成す角α1(図11参照)は、例えば、1~45°の範囲、好ましくは3~30°の範囲、より好ましくは5~20°の範囲である。回転リフレクタ116の直径は、例えば、30~100mmの範囲、好ましくは40~80mmの範囲、より好ましくは、50~70mmの範囲である。
 投影レンズ118の幅(車幅方向)は、例えば、50~120mmの範囲、好ましくは60~100mmの範囲、より好ましくは70~90mmの範囲である。投影レンズ118の高さ(車高方向)は、例えば、20~60mm、好ましくは、25~50mm、より好ましくは25~35mmである。
 光源から出射した光が回転リフレクタ116のブレード116aに入射する入射角β1(図11参照)は、45°未満であり、好ましくは30°以下、より好ましくは20°以下であるとよい。これにより、回転リフレクタ116で反射した光の光束の投影レンズ118への入射効率が向上する。
 以上、本開示を上述の各実施の形態を参照して説明したが、本開示は上述の各実施の形態に限定されるものではなく、各実施の形態の構成を適宜組み合わせたものや置換したものについても本開示に含まれるものである。また、当業者の知識に基づいて各実施の形態における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を各実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本開示の範囲に含まれうる。
 本出願は、2021年11月24日出願の日本国特許出願(特願2021-189857号)および2021年11月24日出願の日本国特許出願(特願2021-189858号)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (11)

  1.  光源と、
     前記光源から出射した光を反射しながら回転軸を中心に回転する回転リフレクタと、
     前記回転リフレクタで反射された光を車両前方にハイビーム用配光パターンとして投影する投影レンズと、を備え、
     前記光源は、
     前記ハイビーム用配光パターンを形成する際に点灯する第1の発光部と、
     前記第1の発光部が消灯している場合に点灯している第2の発光部と、
     を有する、光学ユニット。
  2.  前記第2の発光部は、前記第1の発光部が設けられている第1の基板に設けられており、
     前記第1の基板は、前記第2の発光部から出射した光が前記回転リフレクタで反射されてから前記投影レンズに入射する位置に配置されている、請求項1に記載の光学ユニット。
  3.  前記第2の発光部は、前記第1の発光部が設けられている第1の基板とは異なる第2の基板に設けられており、
     前記第2の基板は、前記第2の発光部から出射した光が前記回転リフレクタで反射されずに前記投影レンズに入射する位置に配置されている、請求項1に記載の光学ユニット。
  4.  前記第2の発光部は、点灯時に前記ハイビーム用配光パターンよりも下部の領域を含む配光パターンを形成する光を出射する、請求項1から請求項3のいずれか一項に記載の光学ユニット。
  5.  前記回転リフレクタは、前記回転軸が車両前後方向に対して交差するように配置されており、前記第1の発光部から車幅方向へ出射した光を車両前方へ反射する反射面を有する、請求項1から請求項4のいずれか一項に記載の光学ユニット。
  6.  前記回転リフレクタは、前記回転軸が車両前後方向に対して交差するように配置されており、前記第1の発光部から車両後方へ斜め上に出射した光を車両前方へ反射する反射面を有する、請求項1から請求項4のいずれか一項に記載の光学ユニット。
  7.  第1の発光部と第2の発光部とを有する光源と、
     前記第1の発光部から出射した第1の光を反射しながら回転軸を中心に回転する回転リフレクタと、
     前記第2の発光部から出射した第2の光を反射する固定リフレクタと、
     前記回転リフレクタで反射された前記第1の光を車両前方に第1の配光パターンとして投影し、前記固定リフレクタで反射された前記第2の光を車両前方に第2の配光パターンとして投影する投影レンズと、を備え、
     前記第1の発光部は、前記第1の配光パターンとしてハイビーム用配光パターンを形成する際に点灯し、
     前記第2の発光部は、前記第1の発光部が消灯している場合に点灯する、光学ユニット。
  8.  前記第1の発光部および前記第2の発光部は、同じ基板に設けられている、請求項7に記載の光学ユニット。
  9.  前記基板は、前記第2の発光部から出射した光が前記回転リフレクタで反射されずに前記投影レンズに入射する位置に配置されている、請求項8に記載の光学ユニット。
  10.  前記第2の発光部は、点灯時に出射する前記第2の光により、ハイビーム用配光パターンよりも下部の領域を含む前記第2の配光パターンを形成する、請求項7から請求項9のいずれか一項に記載の光学ユニット。
  11.  前記回転リフレクタは、回転軸が車両前後方向に対して交差するように配置されており、前記第1の発光部から車両後方へ斜め上に出射した前記第1の光を車両前方へ反射する反射面を有する、請求項7から請求項10のいずれか一項に記載の光学ユニット。
PCT/JP2022/040005 2021-11-24 2022-10-26 光学ユニット WO2023095530A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-189858 2021-11-24
JP2021-189857 2021-11-24
JP2021189857A JP2023076866A (ja) 2021-11-24 2021-11-24 光学ユニット
JP2021189858A JP2023076867A (ja) 2021-11-24 2021-11-24 光学ユニット

Publications (1)

Publication Number Publication Date
WO2023095530A1 true WO2023095530A1 (ja) 2023-06-01

Family

ID=86539366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040005 WO2023095530A1 (ja) 2021-11-24 2022-10-26 光学ユニット

Country Status (1)

Country Link
WO (1) WO2023095530A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018067523A (ja) * 2016-10-14 2018-04-26 株式会社小糸製作所 光学ユニット
WO2020137636A1 (ja) * 2018-12-25 2020-07-02 株式会社小糸製作所 光学ユニット

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018067523A (ja) * 2016-10-14 2018-04-26 株式会社小糸製作所 光学ユニット
WO2020137636A1 (ja) * 2018-12-25 2020-07-02 株式会社小糸製作所 光学ユニット

Similar Documents

Publication Publication Date Title
JP4535965B2 (ja) 車両用灯具
JP4782051B2 (ja) 二輪車用前照灯
JP5592183B2 (ja) 車両用灯具
JP4413762B2 (ja) 車両用照明灯具
JP6905862B2 (ja) 光学ユニット
JP5087500B2 (ja) 車両用灯具ユニット
JP7140559B2 (ja) 車両用ランプ
JP2017191748A (ja) 車両用灯具、および当該車両用灯具を備えた車両
JP2004095481A (ja) 車両用前照灯
JP2004095480A (ja) 車両用前照灯
JP2004342574A (ja) 車両用灯具
JP2005141918A (ja) 車両用前照灯
JP7155124B2 (ja) 灯具ユニットおよび車両用前照灯
JP2013004167A (ja) 車両用前照灯
CN111550745B (zh) 车辆用灯具
JP5381351B2 (ja) 車両用灯具
JP2013246968A (ja) 車両用灯具
JP7071347B2 (ja) 光学ユニット
JP6459305B2 (ja) 車両用前照灯
JP4234074B2 (ja) 車両用照明灯具
JP2009004309A (ja) 車両用灯具
JP6519353B2 (ja) 車両用前照灯
JP6628674B2 (ja) 車両用灯具
WO2023095530A1 (ja) 光学ユニット
JP2009104790A (ja) 車両用前照灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE