WO2022270217A1 - ユニット - Google Patents
ユニット Download PDFInfo
- Publication number
- WO2022270217A1 WO2022270217A1 PCT/JP2022/021517 JP2022021517W WO2022270217A1 WO 2022270217 A1 WO2022270217 A1 WO 2022270217A1 JP 2022021517 W JP2022021517 W JP 2022021517W WO 2022270217 A1 WO2022270217 A1 WO 2022270217A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gear
- case
- motor
- rotation axis
- wall portion
- Prior art date
Links
- 230000007246 mechanism Effects 0.000 claims abstract description 107
- 239000002826 coolant Substances 0.000 claims abstract description 13
- 230000013011 mating Effects 0.000 claims description 13
- 239000003921 oil Substances 0.000 description 82
- 238000001816 cooling Methods 0.000 description 64
- 239000000498 cooling water Substances 0.000 description 36
- 230000002093 peripheral effect Effects 0.000 description 32
- 230000005540 biological transmission Effects 0.000 description 22
- 238000010586 diagram Methods 0.000 description 16
- 238000005192 partition Methods 0.000 description 13
- 239000013256 coordination polymer Substances 0.000 description 6
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 229910000976 Electrical steel Inorganic materials 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000003570 air Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- -1 for example Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000007659 motor function Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/19—Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/048—Type of gearings to be lubricated, cooled or heated
- F16H57/0482—Gearings with gears having orbital motion
- F16H57/0483—Axle or inter-axle differentials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K11/00—Arrangement in connection with cooling of propulsion units
- B60K11/02—Arrangement in connection with cooling of propulsion units with liquid cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K7/00—Disposition of motor in, or adjacent to, traction wheel
- B60K7/0007—Disposition of motor in, or adjacent to, traction wheel the motor being electric
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H37/00—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
- F16H37/02—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
- F16H37/06—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
- F16H37/08—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
- F16H37/0806—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with a plurality of driving or driven shafts
- F16H37/0813—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with a plurality of driving or driven shafts with only one input shaft
- F16H37/082—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with a plurality of driving or driven shafts with only one input shaft and additional planetary reduction gears
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/0401—Features relating to lubrication or cooling or heating using different fluids, e.g. a traction fluid for traction gearing and a lubricant for bearings or reduction gears
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/0412—Cooling or heating; Control of temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/0412—Cooling or heating; Control of temperature
- F16H57/0415—Air cooling or ventilation; Heat exchangers; Thermal insulations
- F16H57/0417—Heat exchangers adapted or integrated in the gearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/042—Guidance of lubricant
- F16H57/0421—Guidance of lubricant on or within the casing, e.g. shields or baffles for collecting lubricant, tubes, pipes, grooves, channels or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/042—Guidance of lubricant
- F16H57/0421—Guidance of lubricant on or within the casing, e.g. shields or baffles for collecting lubricant, tubes, pipes, grooves, channels or the like
- F16H57/0424—Lubricant guiding means in the wall of or integrated with the casing, e.g. grooves, channels, holes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/0434—Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
- F16H57/0435—Pressure control for supplying lubricant; Circuits or valves therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/045—Lubricant storage reservoirs, e.g. reservoirs in addition to a gear sump for collecting lubricant in the upper part of a gear case
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/045—Lubricant storage reservoirs, e.g. reservoirs in addition to a gear sump for collecting lubricant in the upper part of a gear case
- F16H57/0454—Sealings between different partitions of a gearing or to a reservoir
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/0467—Elements of gearings to be lubricated, cooled or heated
- F16H57/0475—Engine and gearing, i.e. joint lubrication or cooling or heating thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/0467—Elements of gearings to be lubricated, cooled or heated
- F16H57/0476—Electric machines and gearing, i.e. joint lubrication or cooling or heating thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/0467—Elements of gearings to be lubricated, cooled or heated
- F16H57/0479—Gears or bearings on planet carriers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/048—Type of gearings to be lubricated, cooled or heated
- F16H57/0482—Gearings with gears having orbital motion
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/20—Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
- H02K5/203—Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/10—Structural association with clutches, brakes, gears, pulleys or mechanical starters
- H02K7/116—Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K2001/001—Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K2001/003—Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
- B60K2001/006—Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K7/00—Disposition of motor in, or adjacent to, traction wheel
- B60K2007/0046—Disposition of motor in, or adjacent to, traction wheel the motor moving together with the vehicle body, i.e. moving independently from the wheel axle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2306/00—Other features of vehicle sub-units
- B60Y2306/03—Lubrication
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2410/00—Constructional features of vehicle sub-units
- B60Y2410/10—Housings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2410/00—Constructional features of vehicle sub-units
- B60Y2410/102—Shaft arrangements; Shaft supports, e.g. bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H2200/00—Transmissions for multiple ratios
- F16H2200/0021—Transmissions for multiple ratios specially adapted for electric vehicles
Definitions
- the present invention relates to units.
- Patent Document 1 discloses a unit having a rotating electric machine and a reduction gear.
- the unit in one aspect of the invention comprises: having a housing that accommodates the power transmission mechanism; the housing has a passage through which coolant flows;
- the planetary gear mechanism has a stepped pinion gear,
- the stepped pinion gear has a small pinion and a large pinion,
- the flow path has a portion that overlaps the large pinion when viewed in the radial direction.
- heat exchange efficiency can be improved.
- FIG. 1 is a skeleton diagram for explaining units mounted on a vehicle.
- FIG. 2 is an external view of the unit.
- FIG. 3 is a schematic cross-sectional view of the unit.
- FIG. 4 is an enlarged view around the planetary reduction gear.
- FIG. 5 is a diagram illustrating a cooling water circulation system in the unit.
- FIG. 6 is a diagram for explaining cooling paths.
- FIG. 7 is a diagram for explaining cooling paths.
- FIG. 8 is a diagram explaining how oil is scraped up by the rotation of the planetary gear mechanism.
- FIG. 9 is a diagram illustrating a catch tank.
- FIG. 10 is a diagram illustrating a catch tank.
- a “unit” is also called a “motor unit”, a “power transmission device”, or the like.
- a motor unit is a unit having at least a motor.
- a power transmission device is a device having at least a power transmission mechanism, and the power transmission mechanism is, for example, a gear mechanism and/or a differential gear mechanism.
- a unit that is a device comprising a motor and a power transmission belongs to the concept of both a motor unit and a power transmission.
- the “housing” contains the motor, gear, and inverter.
- a housing consists of one or more cases.
- "3 in 1” means a form in which a part of the motor case that houses the motor and a part of the inverter case that houses the inverter are integrally formed.
- the cover and the case constitute one case
- the case accommodating the motor and the case accommodating the inverter are integrally formed.
- a "motor” is a rotating electric machine that has a motor function and/or a generator function.
- a second element (part, portion, etc.) connected to the first element (part, portion, etc.); a second element (part, portion, etc.) connected downstream of the first element (part, portion, etc.);
- a second element (part, section, etc.) connected upstream of an element (part, section, etc.)
- the first element and the second element are power-transmittably connected.
- the power input side is upstream, and the power output side is downstream.
- the first element and the second element may be connected via another element (clutch, other gear mechanism, etc.).
- “Overlapping when viewed from a predetermined direction” means that a plurality of elements are arranged in a predetermined direction, and has the same meaning as “overlapping in a predetermined direction”.
- the "predetermined direction” is, for example, an axial direction, a radial direction, a gravitational direction, a vehicle running direction (vehicle forward direction, vehicle backward direction), or the like. If a drawing shows that multiple elements (parts, parts, etc.) are lined up in a predetermined direction, there is a sentence in the description explaining that they overlap when viewed in a predetermined direction. can be regarded as
- not overlapped when viewed from a predetermined direction and “offset when viewed from a predetermined direction” mean that a plurality of elements are not aligned in a predetermined direction, and "not overlapped in a predetermined direction”. , is synonymous with the description of "offset in a predetermined direction".
- the "predetermined direction” is, for example, an axial direction, a radial direction, a gravitational direction, a vehicle running direction (vehicle forward direction, vehicle backward direction), or the like. If a drawing shows that multiple elements (parts, parts, etc.) are not aligned in a predetermined direction, the description of the specification includes a sentence explaining that they do not overlap when viewed in a predetermined direction. can be regarded as
- the first element is located between the second element (part, portion, etc.) and the third element (part, portion, etc.) when viewed from a predetermined direction" In the case it means that the first element can be observed to be between the second and third elements.
- the "predetermined direction” includes an axial direction, a radial direction, a gravity direction, a vehicle running direction (vehicle forward direction, vehicle backward direction), and the like. For example, when the second element, the first element, and the third element are arranged in this order along the axial direction, the first element is between the second element and the third element when viewed in the radial direction.
- the drawing shows that the first element is between the second element and the third element when viewed from a predetermined direction
- the first element is the second element when viewed from a predetermined direction in the description of the specification. It can be considered that there is a sentence explaining what is between the third element.
- Axial direction means the axial direction of the rotation axis of the parts that make up the unit.
- Rotary direction means a direction perpendicular to the rotation axis of the parts that make up the unit.
- the parts are, for example, motors, gear mechanisms, differential gear mechanisms, and the like.
- a rotating element of a planetary gear mechanism (for example, a sun gear, a carrier, a ring gear, etc.) is "fixed" to another element, which means that it may be directly fixed or fixed via another member. good.
- the downstream side in the rotational direction means the downstream side in the rotational direction when the vehicle moves forward or the rotational direction when the vehicle moves backward. It is preferable to set it to the downstream side in the rotational direction when the vehicle moves forward, which occurs frequently.
- the downstream side in the rotational direction of the planetary gear mechanism means the downstream side in the revolution direction of the pinion gear.
- a "catch tank” is an element (part, part, etc.) that has the function of a tank (container) into which oil is introduced.
- the term “catch” refers to the fact that oil is supplied to the tank from the outside of the tank.
- the catch tank is provided, for example, using at least part of the housing, or is provided separately from the housing. Integrally forming the catch tank and the housing contributes to a reduction in the number of parts.
- Coolant is a refrigerant, for example, liquid (cooling water, etc.), gas (air, etc.), etc. Coolant is a concept that includes oil, but when both oil and coolant are used in this specification, it means that coolant is composed of a material different from that of oil.
- a "heat exchange section” is an element (part, section, etc.) that exchanges heat between two different heat exchange media.
- Combinations of two heat exchange media are, for example, oil and cooling water, cooling water and air, air and oil, and the like.
- a coolant flow passage formed in the housing as the heat exchange portion. This is because it can contribute to the reduction of the dimensions of the unit.
- the coolant flow path formed in the housing is a part integrally formed with the housing. For example, heat exchange between coolant and oil and/or air in the housing takes place through the walls of the housing.
- a "cabin” means a room in a vehicle where passengers board.
- FIG. 1 is a skeleton diagram for explaining units mounted on a vehicle.
- FIG. 2 is an external view of the unit.
- FIG. 3 is a schematic cross-sectional view of the unit.
- FIG. 3 shows the state in which the inverter case is removed.
- FIG. 4 is an enlarged view around the planetary reduction gear.
- FIG. 5 is a diagram illustrating a cooling water circulation system in the unit.
- FIG. 6 is a diagram for explaining cooling paths.
- FIG. 6 shows the unit viewed from the same direction as FIG.
- the second case member is indicated by broken lines, and the inverter case is omitted.
- the regions of the protrusion 111c and the thick portions 118 and 119 are hatched.
- FIG. 6 the regions of the protrusion 111c and the thick portions 118 and 119 are hatched.
- FIG. 7 is a diagram for explaining cooling paths.
- FIG. 7 shows the unit of FIG. 2 viewed from above.
- the second case member is indicated by broken lines.
- FIG. 8 is a diagram explaining how oil is scraped up by the rotation of the planetary gear mechanism.
- FIG. 8 is a schematic diagram of the AA cross section in FIG.
- FIG. 9 is a diagram illustrating a catch tank.
- FIG. 9 is an enlarged view of area A in FIG.
- FIG. 10 is a diagram illustrating a catch tank.
- FIG. 10 is a schematic diagram of the BB section of FIG.
- the piping P3 is also shown in the cross section.
- the unit 1 includes a motor 2, a power transmission mechanism 3 that transmits the power output by the motor 2 to the drive wheels K, K of the vehicle, and an inverter 7 (Fig. 2).
- the housing HS of the unit 1 is a "3 in 1" unit in which a portion of the motor case 10 that houses the motor 2 and an inverter case 17 that houses the inverter 7 are integrally formed.
- the unit 1 includes a power transmission mechanism 3, a planetary reduction gear 4 (reduction gear mechanism, planetary gear mechanism), a differential mechanism 5 (differential gear mechanism), and an output shaft. It has a certain drive shaft 9 (9A, 9B).
- a planetary reduction gear 4 a differential mechanism 5, and a drive shaft 9 (9A, 9B) are provided along a transmission path for output rotation of the motor 2 around the rotation axis X.
- the axis of the drive shaft 9 ( 9 A, 9 B) is coaxial with the rotation axis X of the motor 2
- the differential mechanism 5 is coaxial with the motor 2 .
- the planetary reduction gear 4 is connected downstream of the motor 2 .
- a differential mechanism 5 is connected downstream of the motor 2 via a planetary reduction gear 4 .
- a drive shaft 9 ( 9 A, 9 B) is connected downstream of the differential mechanism 5 .
- the housing HS of the unit 1 is a 3-in-1 type housing and accommodates the motor 2, the power transmission mechanism 3 and the inverter 7.
- the housing HS is composed of one or more cases.
- the housing HS has, for example, a motor case 10 that houses the motor 2 , a gear case 14 that houses the power transmission mechanism 3 , and an inverter case 17 that houses the inverter 7 .
- a gear case 14 is joined to one end side of the motor case 10 in the rotation axis X direction.
- An inverter case 17 is joined above the motor case 10 in the direction of the vertical line VL when the unit 1 is mounted on the vehicle, at a position avoiding a catch tank 15, which will be described later.
- the inverter 7 is an electronic component including a smoothing capacitor, a power semiconductor element, a driver board, and the like.
- the inverter 7 is electrically connected to the motor 2 inside the motor case 10 by wiring (not shown).
- the motor 2 has a portion that overlaps the differential mechanism 5 (differential gear mechanism) when viewed in the axial direction (see FIG. 3).
- differential mechanism 5 differential gear mechanism
- “when viewed in the axial direction” means when viewed from the rotation axis X direction.
- the motor 2 has a portion that overlaps the planetary reduction gear 4 (reduction gear mechanism).
- the planetary reduction gear 4 (reduction gear mechanism) has a portion that overlaps the differential mechanism 5 (differential gear mechanism).
- the planetary reduction gear 4 (reduction gear mechanism) has a portion that overlaps the motor 2 .
- the differential mechanism 5 (differential gear mechanism) has a portion that overlaps the planetary reduction gear 4 (reduction gear mechanism).
- the differential mechanism 5 (differential gear mechanism) has a portion that overlaps the motor 2 when viewed in the axial direction.
- the motor 2 When viewed in the axial direction, the motor 2 has a portion that overlaps the differential mechanism 5 (differential gear mechanism).
- the motor case 10 includes a first case member 11, a second case member 12 fitted around the first case member 11, and a cover member 13 joined to one end of the second case member 12.
- the first case member 11 has a support wall portion 111 surrounding the rotation axis X with a space therebetween, and a flange-like joint portion 112 provided at the other end 111b of the support wall portion 111 .
- the support wall portion 111 is provided along the rotation axis X of the motor 2 . Inside the support wall portion 111, the motor 2 and part of the power transmission mechanism 3, which will be described later, are accommodated.
- the second case member 12 includes a peripheral wall portion 121 surrounding the rotation axis X with a space therebetween, a flange-like joint portion 122 provided at one end 121a of the peripheral wall portion 121, and a flange-like joint portion 122 provided at the other end 121b of the peripheral wall portion 121. and a flange-like joint 123 .
- the peripheral wall portion 121 of the second case member 12 is formed with an inner diameter that allows it to be externally inserted into the support wall portion 111 of the first case member 11 .
- the first case member 11 and the second case member 12 are assembled together by externally inserting the peripheral wall portion 121 of the second case member 12 into the supporting wall portion 111 of the first case member 11 .
- These joints 123 and 112 are connected to each other by bolts (not shown).
- a wall portion 110 (cover) extending radially inward is provided in a region between one end 111a and the other end 111b of the support wall portion 111 .
- the wall portion 110 is provided in a direction perpendicular to the rotation axis X.
- An opening 110a through which the drive shaft 9A is inserted is formed in a region of the wall portion 110 intersecting with the rotation axis X. As shown in FIG.
- a motor support portion 115 extending toward the motor 2 is provided on the surface of the wall portion 110 on the side of the motor 2 (right side in the drawing).
- the motor support portion 115 has a tubular shape surrounding the opening 110a.
- the motor support portion 115 is inserted inside a coil end 253b, which will be described later.
- the motor support portion 115 faces the end portion 21b of the rotor core 21 with a gap in the rotation axis X direction.
- a bearing B ⁇ b>1 is supported on the inner circumference of the motor support portion 115 .
- the outer circumference of the motor shaft 20 is supported by a motor support portion 115 via a bearing B1.
- a cylindrical wall portion 116 is provided on the surface of the wall portion 110 on the side of the differential mechanism 5 (left side in the figure).
- the tubular wall portion 116 has a tubular shape surrounding the opening 110a.
- the cylindrical wall portion 116 extends along the rotation axis X toward the differential mechanism 5 side.
- a bearing B ⁇ b>2 is supported on the inner circumference of the cylindrical wall portion 116 .
- the bearing B2 supports the outer circumference of a tubular wall portion 61 of the differential case 50, which will be described later.
- thick portions 118 and 119 are provided on one end 111a side and the other end side 111b side of the support wall portion 111 (see FIG. 6).
- the thick portions 118 and 119 protrude radially outward from the outer periphery of the support wall portion 111 .
- the radial thickness H2 of the thick portions 118 and 119 is greater than the radial thickness H1 of the support wall portion 111 .
- the thick portions 118 and 119 are provided over the entire circumference of the support wall portion 111 in the circumferential direction around the rotation axis X.
- Seal grooves 113 and 113 are opened in the outer peripheral surfaces of the thick portions 118 and 119, respectively.
- the seal grooves 113, 113 are provided along the circumferential direction around the rotation axis X, and are provided over the entire circumferential direction around the rotation axis X of the thick portions 118, 119, respectively.
- the seal grooves 113, 113 are fitted with seal materials C, C. These sealing materials C, C are pressed against the inner periphery of the peripheral wall portion 121 that is fitted over the support wall portion 111 to seal the gap between the outer periphery of the support wall portion 111 and the inner periphery of the peripheral wall portion 121. do.
- a protrusion 111c is provided on the outer circumference of the support wall portion 111 of the first case member 11. As shown in FIG. The protrusion 111c is provided in a region between the thick portions 118 and 119 in the rotation axis X direction.
- the radial thickness (protrusion height) of the projection 111 c in the radial direction of the rotation axis X is the same as the radial thickness H2 of the thick portions 118 and 119 .
- the projection 111c is one wall that extends in the circumferential direction around the rotation axis X and surrounds the rotation axis X at intervals.
- the projection 111c is provided along the entire circumference of the support wall portion 111 along the circumferential direction around the rotation axis X.
- the protrusions 111c are provided with a phase shift in the circumferential direction around the rotation axis X, and are provided in a spiral shape in which the positions in the rotation axis X direction are different from the one end 111a side of the support wall portion 111 toward the other end 111b side. ing.
- the projection 111c When viewed in the radial direction, the projection 111c is provided along a straight line Lq inclined from a straight line Lp perpendicular to the rotation axis X. As shown in FIG. The angle ⁇ between the straight lines Lp and Lq is the lead angle forming the spiral.
- the protrusion 111c is connected to the thick portion 118 via the connection wall 111d.
- the projection 111c is connected to the thick portion 119 via the connection wall 111e.
- the connection walls 111d and 111e are provided along the rotation axis X, respectively.
- the projection height (thickness) of the connection walls 111d and 111e in the radial direction of the rotation axis X is the same as the thickness H2 of the projection 111c and the thick portions 118 and 119. As shown in FIG.
- the peripheral wall portion 121 of the second case member 12 is fitted over the support wall portion 111 of the first case member 11 (see broken lines in FIGS. 6 and 7).
- the peripheral wall portion 121 of the second case member 12 contacts the thick portions 118 and 119 of the support wall portion 111 of the first case member 11, the projection 111c, and the connection walls 111d and 111e.
- a spiral space is formed that continues from the one end 111a side of the support wall portion 111 toward the other end 111b side.
- This spiral space forms a cooling passage CP1 through which cooling water W (see FIG. 5), which is a coolant, flows.
- the cooling water W exchanges heat with the motor 2 and the oil OL accommodated inside the support wall portion 111 via the support wall portion 111 .
- the spiral cooling path CP1 is simplified and shown in a straight line.
- the cooling path CP1 has an inlet CP1a for the cooling water W at a portion surrounded by the protrusion 111c, the thick portion 118, and the connection wall 111d on the one end 111a side of the support wall portion 111.
- the cooling path CP1 has an outlet CP1b for the cooling water W at a portion surrounded by the protrusion 111c, the thick portion 119, and the connection wall 111e on the side of the other end 111b of the support wall portion 111.
- An inlet CP1a and an outlet CP1b of the cooling water W correspond to the start point and end point of the spiral space, respectively.
- one end of a pipe P1 is connected to an inlet CP1a of the cooling path CP1.
- the other end of the pipe P1 is connected to a cooling path CP2 of the inverter case 17, which will be described later.
- One end of the pipe P2 is connected to the outlet CP1b of the cooling path CP1.
- the other end of the pipe P2 is connected to an oil cooler 83, which will be described later.
- the pipes P1 and P2 are provided so as to pass through the peripheral wall portion 121 of the second case member 12, respectively.
- the cover member 13 has a wall portion 130 perpendicular to the rotation axis X and a joint portion 132 .
- the cover member 13 is located on the side opposite to the differential mechanism 5 (on the right side in the drawing) when viewed from the second case member 12 .
- the joint portion 132 of the cover member 13 is joined to the joint portion 122 of the second case member 12 from the rotation axis X direction.
- the cover member 13 and the second case member 12 are connected to each other with bolts (not shown). In this state, the opening of the second case member 12 on the joint portion 122 side (right side in the drawing) is closed with the cover member 13 .
- an insertion hole 130a for the drive shaft 9A is provided in the central portion of the wall portion 130.
- a lip seal RS is provided on the inner circumference of the insertion hole 130a.
- the lip seal RS brings the lip portion (not shown) into elastic contact with the outer circumference of the drive shaft 9A.
- a gap between the inner periphery of the insertion hole 130a and the outer periphery of the drive shaft 9A is sealed with a lip seal RS.
- a peripheral wall portion 131 surrounding the insertion hole 130a is provided on the surface of the wall portion 130 on the second case member 12 side (left side in the figure).
- a drive shaft 9A is supported on the inner periphery of the peripheral wall portion 131 via a bearing B4.
- a motor support portion 135 and a connection wall 136 are provided on the inner diameter side of the joint portion 132 .
- the motor support portion 135 is provided on the motor 2 side (left side in the figure) when viewed from the peripheral wall portion 131 .
- the motor support portion 135 has a tubular shape surrounding the rotation axis X with a space therebetween.
- a cylindrical connection wall 136 is connected to the outer periphery of the motor support portion 135 .
- the connection wall 136 is formed with a larger outer diameter than the peripheral wall portion 131 on the wall portion 130 side (right side in the drawing).
- the connection wall 136 is oriented along the rotation axis X and extends away from the motor 2 .
- the connection wall 136 connects the motor support portion 135 and the joint portion 132 .
- One end 20a side of the motor shaft 20 penetrates the inside of the motor support portion 135 from the motor 2 side to the peripheral wall portion 131 side.
- a bearing B ⁇ b>1 is supported on the inner periphery of the motor support portion 135 .
- the outer circumference of the motor shaft 20 is supported by a motor support portion 135 via a bearing B1.
- a lip seal RS is provided at a position adjacent to the bearing B1.
- Oil holes 136 a and 136 b are opened on the inner periphery of the connection wall 136 .
- the oil OL flows into the space (internal space Sc) surrounded by the connection wall 136 through the oil hole 136a.
- the oil OL that has flowed into the internal space Sc is discharged from the oil hole 136b.
- the lip seal RS is provided to prevent the oil OL in the connection wall 136 from flowing into the motor 2 side.
- the gear case 14 has a peripheral wall portion 141 and a flange-like joint portion 142 provided at the end portion of the peripheral wall portion 141 on the motor case 10 side.
- a support portion 145 for a bearing B2, which will be described later, is provided at an end portion of the peripheral wall portion 141 opposite to the joint portion 142 (on the left side in the drawing).
- the peripheral wall portion 141 has a cylindrical wall portion 141 a connected to the joint portion 142 and an inclined portion 141 b (inclined surface) connected to the support portion 145 .
- the inclined portion 141b is inclined such that the inner diameter decreases from the cylinder wall portion 141a toward the support portion 145 .
- the planetary reduction gear 4 and the differential mechanism 5 which are the power transmission mechanism 3 are accommodated inside the peripheral wall portion 141 .
- the gear case 14 is positioned on the differential mechanism 5 side (left side in the drawing) when viewed from the motor case 10 .
- the joint portion 142 of the gear case 14 is joined to the joint portion 112 of the first case member 11 of the motor case 10 from the rotation axis X direction.
- the gear case 14 and the first case member 11 are connected to each other with bolts (not shown).
- a mating surface T between the joint portion 142 of the gear case 14 and the joint portion 112 of the first case member 11 is orthogonal to the rotation axis X.
- the cooling path CP1 extends along the rotation axis X in a direction away from the mating surface T toward the motor 2 side.
- the space formed inside the joined motor case 10 and gear case 14 is partitioned into two by the wall portion 110 (cover) of the first case member 11 .
- a space surrounded by the support wall portion 111, the wall portion 110, and the cover member 13 serves as the motor chamber Sa.
- the motor 2 is housed in the motor chamber Sa.
- a space surrounded by the support wall portion 111, the wall portion 110, and the gear case 14 serves as a gear chamber Sb.
- the power transmission mechanism 3 is housed in the gear chamber Sb.
- a wall portion 110 that is a cover is sandwiched between the motor 2 and the differential mechanism 5 inside the housing HS.
- the gear chamber Sb has a first gear chamber Sb1 on the side of the first case member 11 and a second gear chamber Sb2 on the side of the gear case 14 with the mating surface T as a boundary.
- the cover here may have a portion housed within the housing HS, and may be wholly housed in the housing HS like the wall portion 110 . Also, the cover may be separate from the first case member 11, for example. In this case, the cover may be sandwiched between the motor case 10 and the gear case 14 and fixed. A part of the cover may be exposed outside the housing HS.
- the motor 2 has a cylindrical motor shaft 20, a cylindrical rotor core 21 fitted onto the motor shaft 20, and a stator core 25 surrounding the outer circumference of the rotor core 21 with a gap.
- bearings B ⁇ b>1 and B ⁇ b>1 are externally inserted and fixed on both sides of the rotor core 21 .
- a bearing B ⁇ b>1 positioned on the one end 20 a side (right side in the drawing) of the motor shaft 20 when viewed from the rotor core 21 is supported on the inner periphery of the motor support portion 135 of the cover member 13 .
- a bearing B ⁇ b>1 located on the other end 20 b side (left side in the drawing) is supported on the inner periphery of a cylindrical motor support portion 115 of the first case member 11 .
- the motor support portions 135, 115 are arranged on the inner diameter side of coil ends 253a, 253b, which will be described later.
- the motor support portions 135 and 115 are arranged to face one end portion 21a and the other end portion 21b of the rotor core 21 with a gap in the rotation axis X direction.
- the rotor core 21 is formed by laminating a plurality of silicon steel plates. Each of the silicon steel plates is fitted over the motor shaft 20 in a state where relative rotation with the motor shaft 20 is restricted.
- the silicon steel plate has a ring shape when viewed from the rotation axis X direction of the motor shaft 20 .
- N-pole and S-pole magnets are provided alternately in the circumferential direction around the rotation axis X on the outer peripheral side of the silicon steel plate.
- a stator core 25 surrounding the outer periphery of the rotor core 21 is formed by laminating a plurality of electromagnetic steel sheets.
- the stator core 25 is fixed to the inner periphery of the cylindrical support wall portion 111 of the first case member 11 .
- Each of the electromagnetic steel sheets has a ring-shaped yoke portion 251 fixed to the inner periphery of the support wall portion 111 and tooth portions 252 protruding from the inner periphery of the yoke portion 251 toward the rotor core 21 side.
- stator core 25 having a configuration in which the windings 253 are distributed over a plurality of teeth 252 is employed.
- the stator core 25 is longer than the rotor core 21 in the direction of the rotation axis X by the coil ends 253a and 253b projecting in the direction of the rotation axis X. As shown in FIG.
- a stator core in which windings are concentratedly wound may be employed for each of the plurality of tooth portions 252 protruding toward the rotor core 21 side.
- the wall portion 110 (motor support portion 115) of the first case member 11 is provided with an opening 110a.
- the other end 20b side of the motor shaft 20 passes through the opening 110a to the differential mechanism 5 side (left side in the figure) and is located in the first gear chamber Sb1.
- the other end 20b of the motor shaft 20 faces a side gear 54A, which will be described later, with a gap in the rotation axis X direction.
- a lip seal RS is inserted between the motor shaft 20 and the opening 110 a of the wall portion 110 .
- An oil OL for lubricating the planetary reduction gear 4 and the differential mechanism 5 is sealed in the gear chamber Sb.
- the lip seal RS is provided to prevent the oil OL in the gear chamber Sb from flowing into the motor case 10 .
- the sun gear 41 of the planetary reduction gear 4 is spline-fitted to the other end 20b side of the motor shaft 20 in the first gear chamber Sb1.
- a toothed portion 41a is formed on the outer periphery of the sun gear 41, and a large-diameter gear portion 431 of the stepped pinion gear 43 is meshed with the toothed portion 41a.
- the stepped pinion gear 43 has a large-diameter gear portion 431 (large pinion) that meshes with the sun gear 41 and a small-diameter gear portion 432 (small pinion) having a smaller diameter than the large-diameter gear portion 431 .
- the large-diameter gear portion 431 and the small-diameter gear portion 432 are integral gear components arranged side by side in the direction of the axis X1 parallel to the rotation axis X. As shown in FIG.
- the outer circumference of the small diameter gear portion 432 meshes with the inner circumference of the ring gear 42 .
- the ring gear 42 has a ring shape surrounding the rotation axis X with a space therebetween. Engagement teeth are provided on the outer periphery of the ring gear 42, and the engagement teeth are spline-fitted to teeth 146a provided on the inner periphery of the cylindrical wall portion 141a. The rotation of the ring gear 42 around the rotation axis X is restricted.
- the pinion shaft 44 penetrates the inner diameter side of the large-diameter gear portion 431 and the small-diameter gear portion 432 .
- the stepped pinion gear 43 is rotatably supported on the outer circumference of the pinion shaft 44 via needle bearings NB, NB.
- the stepped pinion gear 43 is provided across the mating surface T between the first case member 11 and the gear case 14 and straddles the first gear chamber Sb1 and the second gear chamber Sb2.
- the large-diameter gear portion 431 of the stepped pinion gear 43 is located inside the first gear chamber Sb1.
- the large-diameter gear portion 431 meshes with the sun gear 41 on the inner diameter side of the rotating shaft X in the radial direction.
- the large-diameter gear portion 431 faces the inner peripheral surface 111s (see FIG. 3) of the support wall portion 111 on the radially outer side of the rotation axis X with a gap therebetween, and overlaps the cooling path CP1.
- the small diameter gear portion 432 of the stepped pinion gear 43 is located inside the second gear chamber Sb2.
- the small-diameter gear portion 432 meshes with the ring gear 42 on the radially outer side of the rotation axis X. As shown in FIG.
- the differential mechanism 5 has a differential case 50 (differential case) as an input element, a drive shaft (output shaft) as an output element, and a differential gear set as a differential element.
- the differential case 50 may be composed of two case members assembled in the rotation axis X direction.
- the differential case 50 also functions as a carrier that supports the stepped pinion gear 43 of the planetary reduction gear 4. As shown in FIG. 4 , the stepped pinion gear 43 is rotatably supported by the differential case 50 via the pinion shaft 44 . As shown in FIG. 8, in the differential case 50 of the present embodiment, a total of three stepped pinion gears 43 are arranged around the rotation axis X at intervals in the circumferential direction.
- a pinion mate gear 52 which is a bevel gear type differential gear, and side gears 54A and 54B are provided as a differential gear set.
- the pinion mate gear 52 is supported by the pinion mate shaft 51 .
- the pinion mate shaft 51 has a central member 510 arranged on the rotation axis X and a shaft member 511 connected to the outer diameter side of the central member 510 .
- a plurality of shaft members 511 are provided in the circumferential direction around the rotation axis X at equal intervals.
- the shaft member 511 is inserted through a radially extending support hole 69 of the differential case 50 and supported.
- the pinion mate gears 52 are fitted one by one onto each of the shaft members 511 and are rotatably supported.
- the side gear 54A is positioned on one side of the central member 510 in the direction of the rotation axis X, and the side gear 54B is positioned on the other side.
- the side gears 54A, 54B are rotatably supported by the differential case 50, respectively.
- the side gear 54A meshes with the pinion mate gear 52 from one side in the rotation axis X direction.
- the side gear 54B meshes with the pinion mate gear 52 from the other side in the rotation axis X direction.
- An opening 60 and a cylindrical wall portion 61 surrounding the opening 60 are provided in the central portion of one end side (right side in the drawing) of the differential case 50 .
- the cylindrical wall portion 61 extends toward the motor case 10 side.
- the outer circumference of the cylinder wall portion 61 is supported by the wall portion 110 of the first case member 11 via the bearing B2.
- the drive shaft 9A passing through the opening 60 is inserted from the rotation axis X direction.
- the drive shaft 9A passes through the insertion hole 130a of the wall portion 130 of the cover member 13, and is provided across the inner diameter side of the motor shaft 20 of the motor 2 and the sun gear 41 of the planetary reduction gear 4 in the rotation axis X direction. .
- a through-hole 65 and a cylindrical wall portion 66 surrounding the through-hole are formed in the central portion of the other end side (left side in the figure) of the differential case 50 .
- a bearing B ⁇ b>2 is fitted on the cylindrical wall portion 66 .
- the bearing B ⁇ b>2 externally inserted into the cylinder wall portion 66 is held by the support portion 145 of the gear case 14 .
- a tubular wall portion 66 of the differential case 50 is rotatably supported by the gear case 14 via a bearing B2.
- the drive shaft 9B passing through the opening 145a of the gear case 14 is inserted into the support portion 145 from the rotation axis X direction.
- the drive shaft 9B is rotatably supported by a support portion 145.
- the cylinder wall portion 66 functions as a shaft support portion that supports the outer circumference of the drive shaft 9B.
- a lip seal RS is fixed to the inner circumference of the opening 145a.
- a lip portion (not shown) of the lip seal RS is in elastic contact with the outer circumference of the cylinder wall portion 540 of the side gear 54B externally fitted on the drive shaft 9B. As a result, the gap between the outer circumference of the cylindrical wall portion 540 of the side gear 54B and the inner circumference of the opening 145a is sealed.
- the distal end portions of the drive shafts 9 (9A, 9B) face each other with a gap in the rotation axis X direction.
- Side gears 54A and 54B supported by a differential case 50 are spline-fitted to the outer circumferences of the tip portions of the drive shafts 9 (9A and 9B), respectively.
- the side gears 54A, 54B and the drive shaft 9 (9A, 9B) are connected to each other so as to rotate about the rotation axis X together.
- the side gears 54A and 54B are arranged opposite to each other with a gap in the rotation axis X direction.
- a central member 510 of the pinion mate shaft 51 is positioned between the side gears 54A, 54B.
- the pinion mate gear 52 of the pinion mate shaft 51 is assembled to a side gear 54A positioned on one side in the direction of the rotation axis X and a side gear 54B positioned on the other side in a state in which the teeth thereof are meshed with each other.
- a support hole 62 on the one end 44a side of the pinion shaft 44 is formed on the outer diameter side of the opening 60 on the one end side (right side in the drawing) of the differential case 50 .
- a support hole 68 on the side of the other end 44b of the pinion shaft 44 is formed in the other end side of the differential case 50 (left side in the drawing).
- the support holes 62 and 68 are formed at overlapping positions in the rotation axis X direction.
- the support holes 62 and 68 are formed at intervals in the circumferential direction around the rotation axis X so as to match the position where the stepped pinion gear 43 is arranged.
- One end 44 a of the pinion shaft 44 is inserted into the support hole 62 and the other end 44 b is inserted into the support hole 68 .
- the other end 44 b of the pinion shaft 44 is press-fitted into the support hole 68 so that the pinion shaft 44 is fixed to the differential case 50 so as not to rotate relative to it.
- a stepped pinion gear 43 externally fitted on the pinion shaft 44 is rotatably supported around an axis X1 parallel to the rotation axis X. As shown in FIG.
- lubricating oil OL is stored inside the gear case 14 .
- the differential case 50 rotates around the rotation axis X, the oil OL is scraped up by the differential case 50 .
- the differential case 50, the pinion shaft 44, and the like are provided with oil passages, oil holes, and the like for introducing oil that has been raked up by the differential case 50. As shown in FIG. This makes it easier for the oil OL to be introduced into rotating members such as the bearing B2 and the needle bearing NB.
- the differential case 50 rotates around the rotation axis X in the clockwise direction CW when viewed from the gear case 14 side.
- the small diameter gear portion 432 of the stepped pinion gear 43 meshes with the ring gear 42 fixed to the inner circumference of the gear case 14 . Therefore, as shown in FIG. 8, the large-diameter gear portion 431 of the stepped pinion gear 43 revolves around the rotation axis X in the clockwise direction CW while rotating around the axis X1 in the counterclockwise direction.
- a catch tank 15 is provided above the first gear chamber Sb1 in the first case member 11. As shown in FIG. The catch tank 15 is positioned on one side (right side in the drawing) of a vertical line VL perpendicular to the rotation axis X. As shown in FIG.
- the first case member 11 has a bulging portion 151 formed by bulging a portion of the support wall portion 111 radially outward.
- the catch tank 15 is a space formed inside the bulging portion 151 .
- the bulging portion 151 is composed of a first wall portion 151a provided along a horizontal line HL passing through the rotation axis X, and a second wall portion 151b provided along a vertical line VL.
- a first wall portion 151 a of the bulging portion 151 constitutes a bottom wall of the catch tank 15 .
- a second wall portion 151 b of the bulging portion 151 constitutes a side wall of the catch tank 15 .
- a partition wall 152 separates the catch tank 15 and the first gear chamber Sb1.
- the partition wall 152 is one wall branched from the support wall portion 111 below the bulging portion 151 .
- the partition wall 152 is provided in a direction along a virtual circle Im′ (see FIG. 9) having a larger diameter than the virtual circle Im (see FIG. 8), which is the revolution locus drawn by the outermost circumference of the large-diameter gear portion 431 .
- the partition wall 152 is inclined toward the horizontal line HL as it moves away from the vertical line VL in the horizontal direction (to the right in FIG. 8).
- the catch tank 15 communicates with the first gear chamber Sb1 through a communication port 152a provided in the partition wall 152.
- the communication port 152a opens toward the upstream side of the large-diameter gear portion 431 in the revolution direction.
- the partition wall 152 extends from the surface of the wall portion 110 on the side of the first gear chamber Sb1 toward the gear case 14 in the rotation axis X direction.
- a through hole 155 is provided in the second wall portion 151b of the bulging portion 151. As shown in FIG. The through hole 155 is provided near the partition wall 152 in the direction of the vertical line VL. A boss portion 156 surrounding the through hole 155 is provided on the second wall portion 151b. One end of the pipe P3 is fitted in the through hole 155 from the radial direction of the rotation axis X. As shown in FIG. A seal ring (not shown) is interposed between the pipe P3 and the through hole 155 .
- the pipe P3 penetrates the cooling path CP1 in the radial direction of the rotation axis X and extends through the outside of the second case member 12 to the cover member 13 (see FIG. 2).
- the other end of the pipe P3 communicates with an oil hole 136a (see FIG. 3) provided in the cover member 13. As shown in FIG. 10, the pipe P3 penetrates the cooling path CP1 in the radial direction of the rotation axis X and extends through the outside of the second case member 12 to the cover member 13 (see FIG. 2).
- the other end of the pipe P3 communicates with an oil hole 136a (see FIG. 3) provided in the cover member 13.
- FIG. 3 As shown in FIG.
- the bulging portion 151 forming the catch tank 15 is provided on the other end 111b side of the support wall portion 111 of the first case member 11 .
- the projection 111c protrudes from the outer circumference of the support wall portion 111 along the contour of the bulging portion 151 .
- the second case member 12 has a bulging portion 125 that bulges outward in the radial direction.
- the bulging portion 125 is provided on the other end 121b side of the peripheral wall portion 121 .
- the bulging portion 125 has a shape that follows the contour of the bulging portion 151 of the first case member 11 .
- the bulging portion 125 includes a first wall portion 125a provided in a direction along the horizontal line HL and a second wall portion 125b provided in a direction along the vertical line VL. , consists of
- the bulging portion 125 has a through hole 126 through which the pipe P3 passes and a boss portion 127 surrounding the through hole 126.
- a seal ring (not shown) is interposed between the pipe P3 and the through hole 126.
- the bulge portion 151 of the first case member 11 has a second The bulging portions 125 of the two case members 12 overlap each other.
- the spiral cooling path CP1 formed in the motor case 10 is formed in a range in the direction of the rotation axis X across the motor chamber Sa, the first gear chamber Sb1, and the catch tank 15 (see FIG. 6). ).
- the cooling path CP1 is a portion adjacent to the first wall portion 151a (bottom wall) of the bulging portion 151 of the catch tank 15. have Further, the cooling path CP1 has a portion adjacent to the second wall portion 151b (side wall) of the bulging portion 151 forming the catch tank 15 .
- the unit 1 is provided with a cooling water W circulation system 80 .
- the circulation system 80 circulates the cooling water W between the cooling path CP ⁇ b>1 of the motor case 10 and the cooling path CP ⁇ b>2 of the inverter case 17 .
- the circulation system 80 further includes an oil cooler 83, a water pump WP, and a radiator 82, which are connected by piping or the like through which cooling water W flows.
- the water pump WP pumps cooling water W through the circulation system 80 .
- the radiator 82 is a device that dissipates the heat of the cooling water W and cools it.
- the oil cooler 83 is a heat exchanger that exchanges heat between the cooling water W and the oil OL.
- the cooling water W pressure-fed to the water pump WP is supplied to the oil cooler 83 through the cooling path CP1 in the motor case 10 after flowing through the cooling path CP2 in the inverter case 17 .
- the oil cooler 83 cools the oil OL by exchanging heat between the cooling water W and the oil OL.
- the cooling water W flowing through the oil cooler 83 is cooled by the radiator 82 and then supplied to the cooling path CP2 of the inverter case 17 again.
- the cooling path CP1 is connected to the pipe P1 at the inlet CP1a.
- the pipe P ⁇ b>1 is also connected to the cooling path CP ⁇ b>2 of the inverter case 17 .
- the cooling path CP1 is connected to a pipe P2 passing through the second case member 12 at an outlet CP1b.
- the pipe P2 is also connected to the oil cooler 83 .
- the cooling water W discharged from the cooling path CP2 of the inverter case 17 is supplied to the inlet CP1a of the cooling path CP1 through the pipe P1.
- the cooling water W spirally moves inside the motor case 10 from the inlet CP1a toward the outlet CP1b.
- the cooling water W cools the motor 2, cools the oil OL in the first gear chamber Sb1, and cools the oil OL in the catch tank 15 in the course of moving spirally in the motor case 10.
- the cooling water W that has reached the outlet CP1b of the cooling path CP1 is discharged to the oil cooler 83 through the pipe P2.
- a planetary reduction gear 4 As shown in FIG. 1, in the unit 1, a planetary reduction gear 4, a differential mechanism 5, and drive shafts 9A and 9B are provided along the output rotation transmission path of the motor 2. As shown in FIG. 1, a planetary reduction gear 4, a differential mechanism 5, and drive shafts 9A and 9B are provided along the output rotation transmission path of the motor 2. As shown in FIG. 1, a planetary reduction gear 4, a differential mechanism 5, and drive shafts 9A and 9B are provided along the output rotation transmission path of the motor 2. As shown in FIG.
- the sun gear 41 serves as an input portion for the output rotation of the motor 2
- the differential case 50 that supports the stepped pinion gear 43 serves as an output portion for the input rotation.
- the stepped pinion gear 43 (the large-diameter gear portion 431 and the small-diameter gear portion 432) is rotated by the rotation input from the sun gear 41 side. , and rotates around the axis X1.
- the small diameter gear portion 432 of the stepped pinion gear 43 meshes with the ring gear 42 fixed to the inner circumference of the gear case 14 . Therefore, the stepped pinion gear 43 revolves around the rotation axis X while rotating around the axis X1.
- the outer diameter of the small-diameter gear portion 432 is smaller than the outer diameter of the large-diameter gear portion 431 .
- the differential case 50 supporting the stepped pinion gear 43 rotates around the rotation axis X at a rotation speed lower than the rotation input from the motor 2 side. Therefore, the rotation input to the sun gear 41 of the planetary reduction gear 4 is greatly reduced by the stepped pinion gear 43 and then output to the differential case 50 (differential mechanism 5).
- Lubricating oil OL is stored inside the gear chamber Sb.
- the oil OL in the gear chamber Sb is raked up by the differential case 50 rotating around the rotation axis X when the output rotation of the motor 2 is transmitted.
- the raking oil OL causes the meshing portion between the sun gear 41 and the large-diameter gear portion 431 , the meshing portion between the small-diameter gear portion 432 and the ring gear 42 , and the pinion mate gear 52 . and the meshing portions with the side gears 54A and 54B are lubricated.
- the large-diameter gear portion 431 rotates (revolves) around the rotation axis X in the clockwise direction CW within the first gear chamber Sb1.
- the oil OL in the first gear chamber Sb1 also flows around the rotation axis X in the clockwise direction CW.
- the oil OL in the first gear chamber Sb1 Specifically, of the oil OL in the first gear chamber Sb1, the oil OL stored on the lower side in the direction of the vertical line VL moves on the inner peripheral surface 111s of the support wall portion 111 clockwise around the rotation axis X. It moves in the turning direction CW (white arrow a in FIG. 8).
- the oil OL in the first gear chamber Sb1 the oil OL that has been scraped up in the direction of the vertical line VL moves in the clockwise direction CW around the rotation axis X (white arrow b in FIG. 8), It scatters radially outward of the rotation axis X.
- a catch tank 15 is provided above the first gear chamber Sb1.
- the catch tank 15 is located downstream of the large-diameter gear portion 431 in the revolution direction. Part of the oil OL that has been scraped up and scattered by the revolution of the large-diameter gear portion 431 flows into the catch tank 15 through the communication port 152a.
- the catch tank 15 is located on the right side of the vertical line VL, that is, on the downstream side of the large-diameter gear portion 431 in the revolution direction.
- most of the oil OL scraped up by the large-diameter gear portion 431 that revolves around the rotation axis X can flow into the catch tank 15 (see FIG. 8).
- 8 illustrates the case where the large-diameter gear portion 431 rotates in the counterclockwise direction around the axis X1 and revolves in the clockwise direction CW around the rotation axis X, but the rotation direction of the large-diameter gear portion 431 And the direction of revolution may be reverse to the direction of rotation shown in FIG.
- the large-diameter gear portion 431 may rotate clockwise around the axis X1 and revolve around the rotation axis X in the counterclockwise direction.
- the oil OL is introduced into the catch tank 15 by utilizing the clockwise rotation of the large-diameter gear portion 431 about the axis X1.
- the partition wall 152 is positioned radially outside the imaginary circle Im through which the outermost periphery of the large-diameter gear portion 431 rotating about the rotation axis X passes.
- the partition wall 152 has an arc shape along the imaginary circle Im'.
- the partition wall 152 is inclined in a direction in which the height in the vertical line VL direction decreases (to approach the horizontal line HL) as it moves away from the vertical line VL to the outer side in the horizontal line direction HL. Accordingly, the oil OL that has flowed into the catch tank 15 moves downward in the direction of the vertical line VL along the slope of the partition wall 152 . Therefore, the oil OL that has flowed into the catch tank 15 is accumulated in the area of the catch tank 15 surrounded by the partition wall 152 and the second wall portion 151b.
- the oil OL accumulated in the area surrounded by the partition wall 152 and the second wall portion 151b passes through the second wall portion 151b and flows into the pipe P3 opening into the catch tank 15.
- the oil OL that has flowed into the pipe P3 is discharged into the internal space Sc through the oil hole 136a (see FIG. 2) on the cover member 13 side to which the other end of the pipe P3 is connected (see FIG. 3).
- the oil OL supplied to the internal space Sc is discharged from the oil hole 136b after lubricating the bearing B4.
- the oil OL discharged from the oil hole 136b is re-supplied into the gear chamber Sb from the oil hole Ha via a pipe (not shown).
- the radius of rotation (radius of revolution) of the large-diameter gear portion 431 is the largest.
- the oil OL in the first gear chamber Sb1 moves (scatters) greatly in the circumferential direction by being scraped up by the large-diameter gear portion 431 .
- the raking oil OL is introduced into the catch tank 15, thereby lowering the oil level in the first gear chamber Sb1. As a result, it is possible to reduce the stirring resistance of the oil OL when the large-diameter gear portion 431 revolves.
- the large-diameter gear portion 431, the inner peripheral surface 111s of the support wall portion 111, and the cooling path CP1 radially overlap (see FIG. 3). Therefore, the oil OL moving along the inner peripheral surface 111 s and the cooling water W flowing through the cooling path CP ⁇ b>1 can exchange heat through the region of the support wall portion 111 .
- the oil OL stored in the lower side of the vertical line VL direction out of the oil OL in the first gear chamber Sb1 is , along the inner peripheral surface 111s of the support wall portion 111 in the clockwise direction CW around the rotation axis X. As shown in FIG. In this process, the oil OL is cooled by heat exchange with the cooling water W in the cooling path CP1.
- the cooling path CP ⁇ b>1 has a portion adjacent to the first wall portion 151 a (bottom wall) of the bulging portion 151 forming the catch tank 15 .
- the oil OL that has been raked up the oil OL that flows along the inner circumference of the first wall portion 151a passes through the area of the first wall portion 151a in the bulging portion 151, and the cooling water that flows through the cooling path CP1. is cooled by heat exchange of (see FIG. 9). Therefore, the temperature of the oil OL flowing into the catch tank 15 can be lowered in advance.
- the cooling path CP1 has a portion adjacent to the second wall portion 151b (side wall) of the bulging portion 151 that constitutes the catch tank 15 .
- the oil OL stored in the catch tank 15 is also cooled by heat exchange with the cooling water W flowing through the cooling passage CP1 through the region of the second wall portion 151b in the bulging portion 151.
- FIG. Therefore, it is possible to efficiently cool the oil OL supplied from the catch tank 15 through the pipe P3 to the internal space Sc on the cover member 13 side.
- the cooling path CP1 is provided in a range spanning the motor chamber Sa, the first gear chamber Sb1, and the catch tank 15. Therefore, the total length of the cooling path is longer than when the cooling path is provided only around the motor chamber Sa, and the contact area between the cooling water W and the motor case 10 (housing HS) is increased. Thereby, the heat exchange efficiency in the unit 1 is improved.
- Unit 1 is It has a housing HS that houses the motor 2 and the planetary gear mechanism 4 .
- the housing HS has a cooling path CP1 (flow path) through which cooling water W (coolant) for cooling the motor 2 flows.
- the planetary gear mechanism 4 has a stepped pinion gear 43 (stepped pinion gear).
- the stepped pinion gear 43 has a small diameter gear portion 432 (small pinion) and a large diameter gear portion 431 (large pinion).
- the motor 2 and the planetary gear mechanism 4 are arranged in the rotation axis X direction.
- the cooling path CP1 When viewed from the radial direction of the rotation axis X (when viewed in the radial direction), the cooling path CP1 extends in the rotation axis X direction.
- the cooling path CP1 has a portion that overlaps the large-diameter gear portion 431 in the radial direction of the rotation axis X. As shown in FIG.
- the contact area between the housing HS and the cooling water W increases.
- the heat exchange efficiency in the unit 1 is improved.
- the cooling path CP1 for cooling the motor 2 to the side of the first gear chamber Sb1 that accommodates the large-diameter gear portion 431
- the total length of the cooling path CP1 is reduced compared to when only the motor 2 is cooled. can be lengthened. Since the contact area between the cooling water W and the housing HS is increased by increasing the total length of the cooling path CP1, the heat exchange efficiency in the unit 1 is improved.
- the cooling path CP1 can serve both to cool the motor 2 and to cool the oil OL.
- the large-diameter gear portion 431 has the largest radius of rotation.
- the oil OL in the housing HS moves (scatters) greatly in the circumferential direction by being scraped up by the large-diameter gear portion 431 . Therefore, by configuring as described above, a part of the cooling passage CP1 in the housing HS is radially overlapped with the large-diameter gear portion 431, so that the cooling water W and the oil OL moving largely in the circumferential direction can increase the distance over which heat exchange takes place.
- the housing HS has a motor case 10 (a case with flow path) having a cooling path CP1 and a gear case 14 (a facing case) facing the motor case 10 .
- the cooling path CP1 extends away from the mating surface T between the motor case 10 and the gear case 14 in the rotation axis X direction.
- the mating surface T is provided at a position offset from the large-diameter gear portion 431 in the rotation axis X direction.
- the contact area between the cooling water W and the housing HS is increased.
- the heat exchange efficiency in the unit 1 is improved.
- the entire length of the cooling path CP1 extending away from the mating surface T in the direction of the rotation axis X is can be lengthened.
- the contact area between the cooling water W passing through the cooling path CP1 and the housing HS is increased, so that the heat exchange efficiency in the unit 1 is improved.
- the differential case 50 that is the carrier of the planetary gear mechanism 4 constitutes the input element of the differential gear mechanism 5 .
- the differential case 50 is connected to the stepped pinion gear 43 of the planetary gear mechanism 4 so as to rotate together.
- the differential gear mechanism 5 is housed in the gear case 14 .
- the small diameter gear portion 432 of the stepped pinion gear 43 meshes with the ring gear 42 fixed to the gear case 14 when viewed from the radial direction of the rotation axis X. As shown in FIG.
- the mating surface T becomes the boundary portion between the cylinder wall portion 141a and the inclined portion 141b of the peripheral wall portion 141 (see FIG. 3). Then, it becomes difficult to set the planetary gear mechanism 4 and the differential gear mechanism 5 in the gear chamber Sb at the time of assembly. Therefore, by configuring as described above and positioning the mating surface T between the large-diameter gear portion 431 and the small-diameter gear portion 432, the small-diameter gear portion 432, the differential case 50, and the differential gear mechanism 5 can be collectively set in the gear case 14. This is advantageous in that the heat exchange efficiency in the unit 1 is improved while the assembling properties of the constituent parts of the unit 1 are not impaired.
- the cooling path CP1 When viewed from the radial direction of the rotation axis X, the cooling path CP1 has a portion that overlaps the motor 2 .
- the cooling path CP1 is provided in a range that overlaps the large-diameter gear portion 431 and the motor 2 in the radial direction of the rotating shaft X, thereby increasing the total length of the cooling path CP1. This increases the contact area between the housing HS and the cooling water W, thereby improving the heat exchange efficiency in the unit 1 .
- the catch tank 15 has a portion sandwiched between the cooling path CP ⁇ b>1 and the virtual circle Im that is the orbit of the large-diameter gear portion 431 .
- the inlet CP1a and the outlet CP1b of the cooling passage CP1 are positioned more than the rotational axis X (horizontal line HL) of the motor 2.
- the inlet CP1a may be provided above the rotation axis X (horizontal line HL) of the motor 2 in the vertical line VL direction
- the outlet CP1b may be provided below the rotation axis X (horizontal line HL) of the motor 2 in the vertical line VL direction. .
- the flow of the cooling water W can be made smooth using gravity.
- the housing may contain at least the motor.
- the power transmission mechanism may or may not be housed in the same housing.
- the housing may accommodate at least the inverter.
- the power transmission mechanism may or may not be housed in the same housing.
- the housing may contain at least a battery. In this case, the power transmission mechanism may or may not be housed in the same housing.
- the power transmission mechanism 3 has, for example, a gear mechanism, an annular mechanism, or the like.
- the gear mechanism includes, for example, a reduction gear mechanism, an increase gear mechanism, a differential gear mechanism (differential mechanism), and the like.
- the reduction gear mechanism and the acceleration gear mechanism have, for example, a planetary gear mechanism, a parallel gear mechanism, and the like.
- the annular mechanism has, for example, an endless annular component or the like. Endless annular parts and the like include, for example, chain sprockets, belts and pulleys, and the like.
- the differential mechanism is, for example, a bevel gear type differential gear, a planetary gear type differential gear, or the like.
- the differential mechanism has a differential case that is an input element, two output shafts that are output elements, and a differential gear set that is a differential element.
- the differential gear set In a bevel gear type differential gear, the differential gear set has bevel gears.
- the differential gear set In a planetary gear type differential gear, the differential gear set has planetary gears.
- the unit 1 may have a gear that rotates integrally with the differential case.
- a final gear (differential ring gear) of the parallel gear mechanism rotates integrally with the differential case.
- the pinion gear rotates (revolves) integrally with the differential case.
- a reduction gear mechanism is connected downstream of the motor 2 .
- a differential gear mechanism is connected downstream of the reduction gear mechanism. That is, a differential gear mechanism is connected downstream of the motor 2 via a reduction gear mechanism.
- a speed increasing gear mechanism may be used instead of the speed reducing gear mechanism.
- a single-pinion planetary gear mechanism can use, for example, a sun gear as an input element, a ring gear as a fixed element, and a carrier as an output element.
- a double-pinion planetary gear mechanism can have, for example, a sun gear as an input element, a ring gear as an output element, and a carrier as a fixed element.
- a stepped pinion gear, a non-stepped pinion gear, or the like can be used as the pinion gear of the single pinion type or double pinion type planetary gear mechanism.
- a stepped pinion gear has a large pinion and a small pinion. For example, it is preferable to mesh the large pinion with the sun gear. For example, it is preferable to fit the small pinion to the ring gear.
- a non-stepped pinion gear is a type that is not a stepped pinion gear.
- the unit mounted on the vehicle is exemplified as an example, but it is not limited to this aspect.
- the unit can also be applied to vehicles other than vehicles.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Power Engineering (AREA)
- General Details Of Gearings (AREA)
Abstract
Description
動力伝達機構を収容するハウジングを有し、
前記ハウジングはクーラントが流れる流路を有し、
遊星歯車機構はステップドピニオンギアを有し、
前記ステップドピニオンギアはスモールピニオンとラージピニオンとを有し、
径方向視において前記流路は前記ラージピニオンとオーバーラップする部分を有する。
「ユニット」は、「モータユニット」、「動力伝達装置」等とも呼ばれる。モータユニットは、少なくともモータを有するユニットである。動力伝達装置は、少なくとも動力伝達機構を有する装置であり、動力伝達機構は、例えば、歯車機構及び/又は差動歯車機構である。モータ及び動力伝達機構を有する装置であるユニットは、モータユニット及び動力伝達装置の双方の概念に属する。
図面上において複数の要素(部品、部分等)が所定方向に並んでいることが図示されている場合は、明細書の説明において、所定方向視においてオーバーラップしていることを説明した文章があるとみなして良い。
図面上において複数の要素(部品、部分等)が所定方向に並んでいないことが図示されている場合は、明細書の説明において、所定方向視においてオーバーラップしていないことを説明した文章があるとみなして良い。
例えば、第2要素と第1要素と第3要素とが、この順で軸方向に沿って並んでいる場合は、径方向視において、第1要素は第2要素と第3要素との間に位置しているといえる。図面上において、所定方向視において第1要素が第2要素と第3要素との間にあることが図示されている場合は、明細書の説明において所定方向視において第1要素が第2要素と第3要素との間にあることを説明した文章があるとみなして良い。
本発明のある態様では熱交換部として、例えばハウジングに形成されたクーラントの流れる流路を用いると好適である。ユニットの寸法の縮小に寄与することができるからである。
図1は、車両に搭載されるユニットを説明するスケルトン図である。
図2は、ユニットの外観図である。
図3は、ユニットの断面模式図である。図3は、インバータケースを取り除いた状態を示している。
図4は、遊星減速ギア周りの拡大図である。
図5は、ユニットにおける冷却水の循環システムを説明する図である。
図6は、冷却路を説明する図である。図6は、図2と同じ方向から見たユニットを示している。図6では、第2ケース部材を破線で示すと共に、インバータケースを省略している。また、図6の拡大図では、突起111cと、厚肉部118、119の領域にハッチングを付して示している。
図7は、冷却路を説明する図である。図7では、図2のユニットを上方から見たものを示している。図7では、第2ケース部材を破線で示している。
図8は、遊星歯車機構の回転によるオイルの掻き上げを説明する図である。図8は、図4におけるA-A断面の模式図である。
図9は、キャッチタンクを説明する図である。図9は、図8のA領域の拡大図である。
図10は、キャッチタンクを説明する図である。図10は、図8のB-B断面の模式図である。なお、図10では、配管P3も断面で示している。
ユニット1のハウジングHSは、モータ2を収容するモータケース10の一部と、インバータ7を収容するインバータケース17が、一体に形成された形式の「3in1」ユニットである。
ユニット1では、モータ2の回転軸X回りの出力回転の伝達経路に沿って、遊星減速ギア4と、差動機構5と、ドライブシャフト9(9A、9B)と、が設けられている。ドライブシャフト9(9A、9B)の軸線は、モータ2の回転軸Xと同軸であり、差動機構5はモータ2と同軸である。
ここで、遊星減速ギア4は、モータ2の下流に接続されている。差動機構5は、遊星減速ギア4を介してモータ2の下流に接続されている。ドライブシャフト9(9A、9B)は、差動機構5の下流に接続されている。
軸方向視において、モータ2は、遊星減速ギア4(減速歯車機構)にオーバーラップする部分を有する。
軸方向視において、遊星減速ギア4(減速歯車機構)は、差動機構5(差動歯車機構)にオーバーラップする部分を有する。
軸方向視において、遊星減速ギア4(減速歯車機構)は、モータ2にオーバーラップする部分を有する。
軸方向視において、差動機構5(差動歯車機構)は、遊星減速ギア4(減速歯車機構)にオーバーラップする部分を有する。
軸方向視において、差動機構5(差動歯車機構)は、モータ2にオーバーラップする部分を有する。
軸方向視において、モータ2は、差動機構5(差動歯車機構)とオーバーラップする部分を有する。
支持壁部111はモータ2の回転軸Xに沿わせた向きで設けられている。支持壁部111の内側には、モータ2と、後記する動力伝達機構3の一部とが収容される。
第2ケース部材12の周壁部121は、第1ケース部材11の支持壁部111に外挿可能な内径で形成されている。
第1ケース部材11と第2ケース部材12は、第1ケース部材11の支持壁部111に、第2ケース部材12の周壁部121を外挿して互いに組み付けられている。
モータ支持部115は、後記するコイルエンド253bの内側に挿入されている。モータ支持部115は、ロータコア21の端部21bに回転軸X方向の隙間をあけて対向している。モータ支持部115の内周には、ベアリングB1が支持されている。モータシャフト20の外周が、ベアリングB1を介してモータ支持部115で支持されている。
第2ケース部材12の周壁部121は、第1ケース部材11の支持壁部111の厚肉部118、119と、突起111cと、接続壁111d、111eとに当接する。
冷却水Wは支持壁部111を介して、支持壁部111の内部に収容されたモータ2、オイルOLと熱交換を行う。なお、図5では螺旋状の冷却路CP1を、簡略化して直線状に示している。
配管P1、P2は、それぞれ第2ケース部材12の周壁部121を貫通して設けられている。
第2ケース部材12から見てカバー部材13は、差動機構5とは反対側(図中、右側)に位置している。カバー部材13の接合部132は、第2ケース部材12の接合部122に回転軸X方向から接合されている。カバー部材13と第2ケース部材12は、ボルト(図示せず)で互いに連結されている。この状態において第2ケース部材12は、接合部122側(図中、右側)の開口が、カバー部材13で塞がれている。
挿通孔130aの内周には、リップシールRSが設けられている。リップシールRSは、図示しないリップ部をドライブシャフト9Aの外周に弾発的に接触させている。挿通孔130aの内周と、ドライブシャフト9Aの外周との隙間が、リップシールRSにより封止されている。
壁部130における第2ケース部材12側(図中、左側)の面には、挿通孔130aを囲む周壁部131が設けられている。周壁部131の内周には、ドライブシャフト9AがベアリングB4を介して支持されている。
モータ支持部135の外周には、円筒状の接続壁136が接続されている。接続壁136は、壁部130側(図中、右側)の周壁部131よりも大きい外径で形成されている。
接続壁136は、回転軸Xに沿う向きで設けられており、モータ2から離れる方向に延びている。接続壁136は、モータ支持部135と接合部132とを接続している。
モータ支持部135の内周には、ベアリングB1が支持されている。モータシャフト20の外周が、ベアリングB1を介してモータ支持部135で支持されている。
ベアリングB1と隣り合う位置には、リップシールRSが設けられている。
回転軸Xの径方向からみて、冷却路CP1は、回転軸Xに沿って合わせ面Tからモータ2側に離れる方向に延びている。
ロータコア21から見てモータシャフト20の一端20a側(図中、右側)に位置するベアリングB1は、カバー部材13のモータ支持部135の内周に支持されている。他端20b側(図中、左側)に位置するベアリングB1は、第1ケース部材11の円筒状のモータ支持部115の内周に支持されている。
モータシャフト20の回転軸X方向から見て、珪素鋼板はリング状を成している。珪素鋼板の外周側では、図示しないN極とS極の磁石が、回転軸X周りの周方向に交互に設けられている。
電磁鋼板の各々は、支持壁部111の内周に固定されたリング状のヨーク部251と、ヨーク部251の内周からロータコア21側に突出するティース部252と、を有している。
モータシャフト20の他端20bは、後記するサイドギア54Aに、回転軸X方向の隙間をあけて対向している。
ギア室Sb内には、遊星減速ギア4と差動機構5を潤滑するためのオイルOLが封入されている。
リップシールRSは、ギア室Sb内のオイルOLがモータケース10内に流入することを阻止するために設けられている。
大径歯車部431と小径歯車部432は、回転軸Xに平行な軸線X1方向に並んで配置された、一体のギア部品である。
段付きピニオンギア43は、ピニオン軸44の外周にニードルベアリングNB、NBを介して回転可能に支持されている。
大径歯車部431は、回転軸Xの径方向内径側でサンギア41と噛合している。大径歯車部431は、回転軸Xの径方向外側で支持壁部111の内周面111s(図3参照)と間隔を空けて対向していると共に、冷却路CP1とオーバーラップしている。
段付きピニオンギア43の小径歯車部432は、第2ギア室Sb2内に位置している。
小径歯車部432は、回転軸Xの径方向外側でリングギア42と噛合している。
ピニオンメートシャフト51は、回転軸X上に配置された中心部材510と、中心部材510の外径側に連結されたシャフト部材511を有する。図示は省略するが、複数のシャフト部材511が回転軸X周りの周方向に等間隔で設けられている。シャフト部材511は、デフケース50の径方向に延びる支持孔69に挿通され、支持されている。
サイドギア54Aは、回転軸X方向における一方側から、ピニオンメートギア52に噛合している。サイドギア54Bは、回転軸X方向における他方側から、ピニオンメートギア52に噛合している。
開口部145aの内周には、リップシールRSが固定されている。リップシールRSの図示しないリップ部が、ドライブシャフト9Bに外挿されたサイドギア54Bの筒壁部540の外周に弾発的に接触している。
これにより、サイドギア54Bの筒壁部540の外周と開口部145aの内周との隙間が封止されている。
ドライブシャフト9(9A、9B)の先端部の外周に、デフケース50に支持されたサイドギア54A、54Bがそれぞれスプライン嵌合している。サイドギア54A、54Bとドライブシャフト9(9A、9B)とが、回転軸X回りに一体回転可能に連結されている。
ピニオンメートシャフト51のピニオンメートギア52は、回転軸X方向の一方側に位置するサイドギア54Aおよび他方側に位置するサイドギア54Bに、互いの歯部を噛合させた状態で組み付けられている。
詳細な説明は省略するが、デフケース50、ピニオン軸44等には、デフケース50に掻き上げられたオイルを導入するための油路、油孔等が設けられている。これによって、ベアリングB2、ニードルベアリングNB等の回転部材にオイルOLが導入されやすくなっている。
膨出部151の第1壁部151aは、キャッチタンク15の底壁を構成する。膨出部151の第2壁部151bは、キャッチタンク15の側壁を構成する。
仕切壁152は、膨出部151の下側で支持壁部111から分岐した1つの壁である。
仕切壁152は、大径歯車部431の最外周が描く公転軌跡である仮想円Im(図8参照)よりも大径の仮想円Im’(図9参照)に沿う向きに設けられている。仕切壁152は、鉛直線VLから水平線方向(図8における右方向)に離れるにつれて、水平線HLに近づく向きに傾斜している。
支持壁部111における膨出部151が設けられた領域では、突起111cは、膨出部151の外形に沿って支持壁部111の外周から突出している。
これにより、モータケース10に形成される螺旋状の冷却路CP1は、モータ室Saと、第1ギア室Sb1と、キャッチタンク15とに跨る回転軸X方向の範囲に形成される(図6参照)。
循環システム80は、前記したモータケース10の冷却路CP1とインバータケース17の冷却路CP2との間で、冷却水Wを循環させる。循環システム80は、さらに、オイルクーラ83、ウォーターポンプWPおよびラジエータ82を備えており、これらは冷却水Wが通流する配管等で接続されている。
ラジエータ82は、冷却水Wの熱を放熱して冷却する装置である。
オイルクーラ83は、冷却水Wと、オイルOLとの熱交換を行う熱交換器である。
冷却水Wは、モータケース10内を螺旋状に移動する過程で、モータ2の冷却と第1ギア室Sb1内のオイルOLの冷却と、キャッチタンク15内のオイルOLの冷却とを行う。
そして、冷却路CP1の出口CP1bに到達した冷却水Wは、配管P2からオイルクーラ83へ排出される。
図1に示すように、ユニット1では、モータ2の出力回転の伝達経路に沿って、遊星減速ギア4と、差動機構5と、ドライブシャフト9A、9Bと、が設けられている。
ここで、段付きピニオンギア43の小径歯車部432は、ギアケース14の内周に固定されたリングギア42に噛合している。そのため、段付きピニオンギア43は、軸線X1回りに自転しながら、回転軸X周りに公転する。
これにより、段付きピニオンギア43を支持するデフケース50が、モータ2側から入力された回転よりも低い回転速度で回転軸X回りに回転する。
そのため、遊星減速ギア4のサンギア41に入力された回転は、段付きピニオンギア43により、大きく減速されたのちに、デフケース50(差動機構5)に出力される。
図3および図4に示すように、掻き上げられたオイルOLにより、サンギア41と大径歯車部431との噛合部と、小径歯車部432とリングギア42との噛合部と、ピニオンメートギア52とサイドギア54A、54Bとの噛合部とが潤滑される。
ユニット1を搭載した車両の走行時に、大径歯車部431が回転軸X回りに公転すると、第1ギア室Sb1内のオイルOLのうち、鉛直線VL方向の下側に貯留されたオイルOLは、支持壁部111の内周面111sに沿って回転軸X周りの時計回り方向CWに大きく移動する。この過程で、オイルOLは、冷却路CP1の冷却水Wとの熱交換により冷却される。
ここで、冷却路CP1は、キャッチタンク15を構成する膨出部151の第1壁部151a(底壁)に隣接する部分を有している。掻き上げられたオイルOLのうち、第1壁部151aの内周に沿って流れるオイルOLは、膨出部151における第1壁部151aの領域を介して、冷却路CP1を通流する冷却水の熱交換により冷却される(図9参照)。よって、キャッチタンク15へ流入されるオイルOLの温度を予め低くすることができる。
よって、キャッチタンク15から配管P3を通って、カバー部材13側の内部空間Scへ供給されるオイルOLを、効率的に冷却することができる。
(1)ユニット1は、
モータ2と遊星歯車機構4を収容するハウジングHSを有する。
ハウジングHSは、モータ2を冷却する冷却水W(クーラント)が流れる冷却路CP1(流路)を有する。
遊星歯車機構4は、段付きピニオンギア43(ステップドピニオンギア)を有する。
段付きピニオンギア43は、小径歯車部432(スモールピニオン)と大径歯車部431(ラージピニオン)とを有する。
モータ2と遊星歯車機構4は、回転軸X方向に並んでいる。
回転軸Xの径方向から視て(径方向視において)、冷却路CP1は、回転軸X方向に延びる。
冷却路CP1は、回転軸Xの径方向で、大径歯車部431とオーバーラップする部分を有する。
具体的には、モータ2を冷却する冷却路CP1を、大径歯車部431を収容する第1ギア室Sb1側まで及ばせることで、モータ2だけを冷却する場合よりも、冷却路CP1の全長を長くできる。冷却路CP1の全長を長くできる分、冷却水WとハウジングHSとの接触面積が増加するので、ユニット1における熱交換効率が向上する。
また、冷却路CP1でモータ2の冷却と、オイルOLの冷却とを兼ねることができる。これにより、オイルOLを冷却するために、モータ2の冷却路とは別の冷却路を設けて、配管等で接続する必要がない。
また、遊星歯車機構4では、大径歯車部431の回転半径が最も大きい。ハウジングHS内のオイルOLは、大径歯車部431で掻き上げられることで周方向に大きく移動する(飛散する)。
そこで、上記のように構成して、ハウジングHS内の冷却路CP1の一部を大径歯車部431と径方向にオーバーラップさせることで、周方向に大きく移動するオイルOLとの冷却水Wとの熱交換が行われる距離を長くできる。
回転軸Xの径方向から視て、冷却路CP1は、モータケース10とギアケース14との合わせ面Tから回転軸X方向に離れる方向に延びる。
合わせ面Tは、回転軸X方向における大径歯車部431からオフセットした位置に設けられている。
具体的には、冷却路CP1を有するモータケース10を大径歯車部431と径方向にオーバーラップする位置まで延ばすことで、合わせ面Tから回転軸X方向に離れる方向に延びる冷却路CP1の全長を長くすることができる。これにより、冷却路CP1内を通る冷却水WとハウジングHSとの接触面積が増加するので、ユニット1における熱交換効率が向上する。
また、合わせ面Tを大径歯車部431から回転軸X方向にオフセットさせることで、大径歯車部431で掻き上げられたオイルOLが、合わせ面T近辺からリークすることを低減できる。
デフケース50は、遊星歯車機構4の段付きピニオンギア43と一体回転可能に接続される。
差動歯車機構5はギアケース14に収容されている。
回転軸Xの径方向から視て、段付きピニオンギア43の小径歯車部432は、ギアケース14に固定されたリングギア42と噛合する。
そこで、上記のように構成して、合わせ面Tの位置を、大径歯車部431と小径歯車部432との間の位置とすることで、小径歯車部432、デフケース50、差動歯車機構5をギアケース14にまとめてセットできる。ユニット1における熱交換効率を向上しつつ、ユニット1の構成部品の組付性も損なわない点で有利である。
キャッチタンク15は、冷却路CP1と大径歯車部431の公転軌道である仮想円Imとに挟まれた部分を有する。
また、キャッチタンク15に導入されたオイルOLも冷却路CP1によって冷却することができるため、ユニット1における熱交換効率が向上する。
また、本発明の他の態様として、少なくともインバータを収容するハウジングとしても良い。この場合、同一のハウジング内に動力伝達機構が収容されていても良いし、収容させていなくても良い。
また、本発明の他の態様として、少なくともバッテリを収容するハウジングとしても良い。この場合、同一のハウジング内に動力伝達機構が収容されていても良いし、収容させていなくても良い。
歯車機構は、例えば、減速歯車機構、増速歯車機構、差動歯車機構(差動機構)等を有する。
減速歯車機構及び増速歯車機構は、例えば、遊星歯車機構、平行歯車機構等を有する。
環状機構は、例えば、無端環状部品等を有する。
無端環状部品等は、例えば、チェーンスプロケット、ベルト&プーリ等を有する。
差動機構は、入力要素であるデファレンシャルケースと、出力要素である2つの出力軸と、差動要素である差動歯車セットと、を有する。
傘歯車式のデファレンシャルギアにおいて、差動歯車セットは傘歯車を有する。
遊星歯車式のデファレンシャルギアにおいて、差動歯車セットは遊星歯車を有する。
例えば、平行歯車機構のうちのファイナルギア(デフリングギア)は、デファレンシャルケースと一体に回転する。例えば、遊星歯車機構のキャリアとデファレンシャルケースとが接続している場合、ピニオンギアがデファレンシャルケースと一体に回転(公転)する。
シングルピニオン型の遊星歯車機構は、例えば、サンギアを入力要素とし、リングギアを固定要素とし、キャリアを出力要素とすることができる。
ダブルピニオン型の遊星歯車機構は、例えば、サンギアを入力要素とし、リングギアを出力要素とし、キャリアを固定要素とすることができる。
シングルピニオン型又はダブルピニオン型の遊星歯車機構のピニオンギアは、例えば、ステップドピニオンギア、ノンステップドピニオンギア等を用いることができる。
ステップドピニオンギアは、ラージピニオンおよびとスモールピニオンとを有する。例えば、ラージピニオンをサンギアに噛合させると好適である。例えば、スモールピニオンをリングギアに嵌合させると好適である。
ノンステップドピニオンギアは、ステップドピニオンギアではない形式である。
2 :モータ
10 :モータケース(流路付きケース)
14 :ギアケース(対向ケース)
15 :キャッチタンク
4 :遊星歯車機構
42 :リングギア
43 :段付きピニオンギア(ステップドピニオンギア)
431 :大径歯車部(ラージピニオン)
432 :小径歯車部(スモールピニオン)
5 :差動機構(差動歯車機構)
50 :デフケース(キャリア)
CP1 :冷却路(流路)
HS :ハウジング
T :合わせ面
W :冷却水(クーラント)
X :回転軸
Claims (6)
- 遊星歯車機構を収容するハウジングを有し、
前記ハウジングはクーラントが流れる流路を有し、
遊星歯車機構はステップドピニオンギアを有し、
前記ステップドピニオンギアはスモールピニオンとラージピニオンとを有し、
径方向視において前記流路は前記ラージピニオンとオーバーラップする部分を有する、ユニット。 - 請求項1において、
ハウジングは前記流路を有する流路付ケースと前記流路付ケースと対向する対向ケースと、を有し、
径方向視において前記流路は前記流路付ケースと前記対向ケースとの合わせ面から離れる方向に向かって延びる、ユニット。 - 請求項2において、
前記遊星歯車機構のキャリアは差動歯車機構の入力要素と一体回転可能に接続され、
前記差動歯車機構は前記対向ケースに収容され、
径方向視において、前記スモールピニオンは前記対向ケースに固定されたリングギアと噛合する、ユニット。 - 請求項1乃至請求項3のいずれか一において、
径方向視において前記流路はモータとオーバーラップする部分を有する、ユニット。 - 請求項1乃至請求項3のいずれか一において、
前記ハウジング内にキャッチタンクを有し、
前記キャッチタンクは前記流路と前記ラージピニオンの公転軌道とに挟まれた部分を有する、ユニット。 - 請求項4において、
前記ハウジング内にキャッチタンクを有し、
前記キャッチタンクは前記流路と前記ラージピニオンの公転軌道とに挟まれた部分を有する、ユニット。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280044841.5A CN117545944A (zh) | 2021-06-24 | 2022-05-26 | 组件 |
US18/573,064 US20240288062A1 (en) | 2021-06-24 | 2022-05-26 | Unit |
EP22828136.6A EP4360938A4 (en) | 2021-06-24 | 2022-05-26 | UNIT |
JP2023529735A JP7486912B2 (ja) | 2021-06-24 | 2022-05-26 | ユニット |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021105243 | 2021-06-24 | ||
JP2021-105243 | 2021-06-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022270217A1 true WO2022270217A1 (ja) | 2022-12-29 |
Family
ID=84544477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/021517 WO2022270217A1 (ja) | 2021-06-24 | 2022-05-26 | ユニット |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240288062A1 (ja) |
EP (1) | EP4360938A4 (ja) |
JP (1) | JP7486912B2 (ja) |
CN (1) | CN117545944A (ja) |
WO (1) | WO2022270217A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4361466A4 (en) * | 2021-06-24 | 2024-09-25 | Jatco Ltd | UNIT |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004260898A (ja) * | 2003-02-25 | 2004-09-16 | Nissan Motor Co Ltd | 電気自動車の駆動ユニット |
JP2008185078A (ja) | 2007-01-29 | 2008-08-14 | Honda Motor Co Ltd | 車両駆動装置の油圧回路 |
JP2009281446A (ja) * | 2008-05-20 | 2009-12-03 | Dana Automotive Systems Group Llc | 車軸温度制御装置 |
JP2012105457A (ja) * | 2010-11-10 | 2012-05-31 | Ihi Corp | 回転機及び車両 |
JP2017052335A (ja) * | 2015-09-07 | 2017-03-16 | トヨタ自動車株式会社 | 車両用伝動装置 |
WO2020032026A1 (ja) * | 2018-08-09 | 2020-02-13 | 日本電産株式会社 | モータユニット |
JP2020054066A (ja) * | 2018-09-25 | 2020-04-02 | ダイハツ工業株式会社 | 車両 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5643127A (en) * | 1995-03-06 | 1997-07-01 | Toyota Jidosha Kabushiki Kaisha | Vehicle power transmission having fluid-tight enclosure accommodating lubricating points and storing lubricating oil delivered from mechanical oil pump |
JP4485566B2 (ja) * | 2007-11-13 | 2010-06-23 | 本田技研工業株式会社 | モータ式動力装置 |
JP5016076B2 (ja) * | 2010-02-25 | 2012-09-05 | トヨタ自動車株式会社 | 車両用動力伝達装置 |
JP2011174583A (ja) * | 2010-02-25 | 2011-09-08 | Toyota Motor Corp | 車両用動力伝達装置 |
JP5290217B2 (ja) * | 2010-02-25 | 2013-09-18 | トヨタ自動車株式会社 | 車両用動力伝達装置 |
JP4981152B2 (ja) * | 2010-04-20 | 2012-07-18 | トヨタ自動車株式会社 | 車両用オイルポンプ |
JP2011256969A (ja) * | 2010-06-10 | 2011-12-22 | Toyota Motor Corp | 駆動装置の潤滑装置 |
JP6796421B2 (ja) * | 2016-07-22 | 2020-12-09 | Ntn株式会社 | 潤滑油の供給構造 |
DE102017120985A1 (de) * | 2016-09-14 | 2018-03-15 | Borgwarner Inc. | Elektrisches fahrzeugantriebssystem |
JP2018103676A (ja) * | 2016-12-22 | 2018-07-05 | 本田技研工業株式会社 | 動力装置 |
JP7086271B2 (ja) * | 2018-10-04 | 2022-06-17 | ジーケーエヌ オートモーティブ リミテッド | 冷却作用を備えた電気駆動装置 |
JP7392218B2 (ja) * | 2019-06-13 | 2023-12-06 | ジヤトコ株式会社 | 潤滑構造 |
US10989297B2 (en) * | 2019-07-19 | 2021-04-27 | Ford Global Technologies, Llc | Electric powertrain with sun bearing |
JP7215432B2 (ja) * | 2020-01-09 | 2023-01-31 | トヨタ自動車株式会社 | トランスアクスル |
-
2022
- 2022-05-26 WO PCT/JP2022/021517 patent/WO2022270217A1/ja active Application Filing
- 2022-05-26 CN CN202280044841.5A patent/CN117545944A/zh active Pending
- 2022-05-26 JP JP2023529735A patent/JP7486912B2/ja active Active
- 2022-05-26 US US18/573,064 patent/US20240288062A1/en active Pending
- 2022-05-26 EP EP22828136.6A patent/EP4360938A4/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004260898A (ja) * | 2003-02-25 | 2004-09-16 | Nissan Motor Co Ltd | 電気自動車の駆動ユニット |
JP2008185078A (ja) | 2007-01-29 | 2008-08-14 | Honda Motor Co Ltd | 車両駆動装置の油圧回路 |
JP2009281446A (ja) * | 2008-05-20 | 2009-12-03 | Dana Automotive Systems Group Llc | 車軸温度制御装置 |
JP2012105457A (ja) * | 2010-11-10 | 2012-05-31 | Ihi Corp | 回転機及び車両 |
JP2017052335A (ja) * | 2015-09-07 | 2017-03-16 | トヨタ自動車株式会社 | 車両用伝動装置 |
WO2020032026A1 (ja) * | 2018-08-09 | 2020-02-13 | 日本電産株式会社 | モータユニット |
JP2020054066A (ja) * | 2018-09-25 | 2020-04-02 | ダイハツ工業株式会社 | 車両 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4360938A4 |
Also Published As
Publication number | Publication date |
---|---|
US20240288062A1 (en) | 2024-08-29 |
EP4360938A4 (en) | 2024-10-23 |
EP4360938A1 (en) | 2024-05-01 |
CN117545944A (zh) | 2024-02-09 |
JP7486912B2 (ja) | 2024-05-20 |
JPWO2022270217A1 (ja) | 2022-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7109875B2 (ja) | 動力伝達装置 | |
WO2022270211A1 (ja) | ユニット | |
JP7456382B2 (ja) | モータユニット | |
WO2022270217A1 (ja) | ユニット | |
WO2022074997A1 (ja) | 動力伝達装置 | |
WO2022270212A1 (ja) | ユニット | |
WO2022270213A1 (ja) | ユニット | |
WO2022270216A1 (ja) | ユニット | |
WO2022270214A1 (ja) | ユニット | |
WO2022270215A1 (ja) | 車両 | |
JP7321950B2 (ja) | 動力伝達装置 | |
WO2022270101A1 (ja) | ユニット | |
WO2022270102A1 (ja) | ユニット | |
WO2022074996A1 (ja) | 装置 | |
JP2021124185A (ja) | 動力伝達装置 | |
JP7415105B2 (ja) | 動力伝達装置 | |
CN117561388A (zh) | 组件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22828136 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023529735 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18573064 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280044841.5 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022828136 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022828136 Country of ref document: EP Effective date: 20240124 |